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Abstract: Access control policies typically take the form of a set of static rules
pertaining to individual entities under control. This can be impractical in real-
world scenarios: authorization invariably depends on wider situational context
which often tends to be highly dynamic. This leads to increasingly complex
rules, which have to change over time to reflect the evolution of the controlled
system.

Ensemble-based architectures allow dynamic formation of goal-oriented groups
in systems with large number of independent autonomous components. Because
of the ad-hoc and situation-aware nature of group formation, ensembles offer a
novel way of approaching access control.

The goal of this work is to design a Scala framework and internal DSL for describ-
ing access control related situations via ensembles. In particular, the framework
will define ensemble semantics suitable for evaluating the ensembles and estab-
lishing access control at runtime.
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1. Introduction
More and more areas of human activity are becoming computerized and con-
nected to ever-growing networks. This allows us to use these networks in novel,
increasingly powerful ways, as disparate systems are now able to communicate,
aggregate knowledge, and relay commands across domains. The growth and per-
vasiveness of Internet of Things has a great promise for building cyber-physical
networks, starting at smart homes, smart buildings, and growing towards smart
cities and large-scale smart grids.

At this scale, systems are necessarily heterogeneous. Devices from different
manufacturers are connected via custom communication protocols on virtual sub-
networks and managed by different organizations. Even if we limit the scope to
a single organization wanting to computerize its physical properties, different
parts of the system will usually be provided by different vendors, with separate
connectivity and separate management consoles.

To further complicate things, there is a strong demand for dynamic inter-
connectivity. Adding a new sensor to a smart home should be seamless, and
allowing house guests to, e.g., control music on the home stereo, should not
be an insurmountable challenge. This is even more important in smart cities,
where almost by definition users cannot be known in advance. And in enterprise
environments, Bring-Your-Own-Device (BYOD) policies require that employees
are able to access company systems with their own smart devices.

Taken together, we are now surrounded by interconnected systems of enorm-
ous complexity. Managing such systems is a significant challenge. Due to the
nature of the requirements, systems are also more vulnerable to malicious actors.
And as their importance increases, so does the value for an attacker. Therefore,
security is of the utmost concern.

Our focus is on a particular aspect of system security, access control, both
in physical and digital realms. Given a security policy, and the identities of
users, it is necessary to determine whether they are authorized to perform various
actions. From the physical realm, this usually means access to physical spaces,
e.g., controlled by a smart lock or a card reader; but also control of building
infrastructure such as heating and air conditioning, lights, etc. On the digital
side, access permissions to data are common. And in a highly dynamic system, it
is necessary to determine whether one party should be allowed to communicate
with, and use services of, the counter-party.

Permissions are often context-dependent. In a smart city, users might only be
allowed to control resources that are near them, but denied access to more distant
parts of the grid. Autonomous cars coordinating on an intersection should allow
communication between each other, but only those that are actually engaged in
the coordination task. Emergency exits should remain locked most of the time,
but allow anyone out when a fire alarm is activated — and emergency response
teams should be authorized to access spaces that have strong access controls
under normal circumstances.

Current state-of-the-art access control systems are not well suited for these
tasks. In most approaches, a static set of rules is used for describing the security
policy, basically enumerating the situations that can arise and their resolutions.
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While modern approaches such as Attribute-Based Access Control can take the
situation context into account, describing possibly overlapping situations causes
an explosion of complexity. The resulting policy is difficult to manage and audit,
resulting in possible unintended interactions between rules, or missed corner cases
with undesired behavior.

This is especially true in heterogeneous, large-scale and highly dynamic sys-
tems. The sheer number of agents and their possible interactions makes it difficult
to enumerate all combinations of circumstances and situations for the purpose of
designing a comprehensive security policy.

This work explores a different way of specifying security policies. We build on
previous research in the area of autonomic component ensembles, which provide
a more natural way of describing systems consisting of dynamic relationships
between many independent agents. Security situations are expressed in terms of
ensembles, and the security policy attaches rules to these ensembles.

Continuing the work from [1], our aim is to present a policy specification lan-
guage based on the ensemble model. We propose clear and well-defined semantics
for the language, allowing its user to specify ensembles and constraints for their
existence in a declarative way, with the goals of composability, readability and
maintainability.

We also present an accompanying framework for identifying security situations
and resolving ensembles specified in the security policy. We make sure the sys-
tem is capable of observing and modeling non-computational entities and other
agents that are not controlled directly, such as humans. The framework can
either respond to access control queries directly, or emit a set of rules suitable for
traditional systems.

1.1 Structure of this Work
We introduce a running example in chapter 2. This is a scenario which will serve
as context and motivation for the rest of this work. In subsequent chapters, we will
refer back to the running example for showcases of certain features, performance
effects, etc.

In chapter 3 we look at problem background and related work in the fields of
ensemble based systems and dynamic access control. A brief overview of many
existing approaches is provided and evaluated with regard to our goals.

Chapter 4 summarizes the problem, presents a broad overview of the proposed
solution, and restates our requirements in concrete terms.

Chapter 5 is intended as a user guide to the TCOOF-Trust framework and
language. It contains explanations of core concepts and their semantics, provides
practical examples and a full reference of the features of the DSL. It also contains
a full implementation of the security policy of the running example.

Translation process from the DSL to a constraint satisfaction problem is de-
scribed in chapter 6, together with implementation details for the DSL constructs.

In chapter 7 we evaluate performance of the basic operations of the framework,
and then test the running example implementation in a number of synthetic and
real-world-like scenarios.

Finally, chapter 8 summarizes our findings and concludes the work.
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2. Running Example
For our running example, we use a modified scenario based on a real-life problem,
which was first introduced in [1]. We will refer back to this scenario throughout
the work, in order to showcase problems, features of the DSL, and implementation
details.

2.1 Scenario
The scenario models a company that works on sensitive projects for its clients. At
any given time, multiple projects can be developed in parallel. Developers working
on the same project must be able to cooperate. However, to limit exposure of
sensitive intellectual property, developers from different projects should not come
into contact with each other; namely, developers of two different projects are not
allowed to stay in the same room while in the company building. To this end,
each developer has a smart device (mobile phone, smart watch, etc.) that can
direct them to the appropriate rooms.

We assume that each developer is assigned to exactly one project. Only two
types of rooms are considered: workrooms and lunchrooms.

Workrooms are open whenever the building is open, which is from 7:30 AM
to 9 PM. Each workroom is assigned to a particular project. All developers on a
project are permitted to enter all workrooms for that project, to allow for efficient
collaboration. We assume that workroom assignment is fixed for the duration of
our scenario and that it provides enough capacity for all developers of a given
project.

Lunchrooms only open around midday, from 11:30 AM to 3 PM. Each lunch-
room has a set maximum occupancy. We expect that there will not be enough
lunchrooms to seat all developers, esp. with the constraint that developers from
different projects must not meet in the same room. Therefore, room assignment
must be dynamic. Developers will be equipped with smart devices which can
send seating requests and display the current situation.

Our interest lies in access permissions. Specifically, we want to investigate
which developers can enter which rooms at various times and under various con-
ditions, and how an access control system could handle a given situation.

Figure 2.1 illustrates a possible situation. Developers on blue and red pro-
jects are moving around in the building, which has three lunchrooms and three
workrooms. Two workrooms (computer symbol) are assigned to the red project
and one is assigned to the blue project, as indicated by the symbol color. Lunch-
rooms (food symbol) are not assigned to projects. Each room has a capacity of
four people.

There is a red, blue or black lock on each door. Red and blue indicates that
the door is open to developers of the corresponding project. Black indicates that
anyone can open the door. The lock on room D is closed, showing that nobody
can enter. In this case, it is because the room is full.

Room B is also full, but the lock remains open, because our security policy
does not take workroom capacity into account.
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Figure 2.1: Example scenario with workrooms and lunchrooms

The red worker in the middle is allowed to enter room A, because it is a
workroom assigned to a red project. The hungry red worker is not allowed to
enter room D, however, because the room is full. She would be allowed to enter
room E, currently open to developers of red project, but the hungry blue worker
in the middle cannot do that. There is already a red worker inside, and the
security policy disallows developers from different projects to meet in the same
room. Hungry blue worker at the bottom can enter room F, because it is empty,
so no security conflict arises.

2.2 Workroom Assignment
If we ignore lunchrooms for a moment, the problem is relatively simple. Access
permissions are known in advance. At night, no rooms are open and nobody is
allowed to enter. In the day, every developer assigned to a particular project is
allowed to enter every workroom assigned to that same project. We can enumerate
the available workrooms, and for each one, enumerate all persons allowed to
enter that room. Only those people are allowed to enter, and no other access
permissions exist. The rules are fixed and don’t need to be updated except when
scenario definition changes.

Figure 2.2 shows all possible configurations. Either it is night time, in which
case nobody can enter, or it is daytime, and blue developers can enter, while red
ones cannot. This scenario is easy to solve even in traditional entity-based access
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Figure 2.2: Workrooms at night and in the day

control systems. The only dynamic parameter is time of day, which is commonly
supported on contemporary electronic locks.

2.3 Lunchroom Assignment
During lunch hours, a developer can request seating in a lunchroom. This intro-
duces a dynamic and unpredictable element. It is no longer sufficient to enforce
access control rules, we need to re-evaluate the situation and generate new access
grants.

There are several possible approaches to this situation. One option is to
leave the choice to the human: during lunch hours, every developer is allowed to
enter every lunchroom, except when (a) the lunchroom is full, or (b) developers
from a different project are already present in the lunchroom. The advantage of
this approach is twofold. First of all, it gives greater freedom to the developers.
The system is not trying to make decisions for them, and everyone can choose
a lunchroom based on their own criteria, such as how close it is, where their
friends sit, etc. Second, because the system does not need to make choices, it is
computationally simpler. We need to monitor the situation and update access
grants based on current seating and room capacity, but we can still describe the
situation using conditional entity-based rules.

There are some drawbacks, too. When individual developers choose lunch-
rooms for themselves, they only take their local context into account. This can
lead to a situation shown on figure 2.3. Red developers have occupied all the
available lunchrooms. Even though there is more than enough total available
seats, none of the hungry blue developers can use them.

There is also no way to reserve a seat in advance; a developer could head out
towards their favorite lunchroom, only to find out that it is occupied and they
need to go elsewhere.

On the opposite end of the spectrum, we can have the access control system
make all the decisions. We are working with the assumption that developers are
free to choose when they want lunch, so we cannot simply pre-generate fixed time
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Figure 2.3: Inefficient use of available lunchrooms

slots and seats and solve a scheduling problem. However, we can still assign a
particular lunchroom whenever a developer requests a seat. The rule would be as
follows: during lunch hours, a developer can request a lunchroom. When a valid
seat becomes available, the developer is allowed to enter the assigned lunchroom
once. When they leave the lunchroom, their seat is freed for next requests.

This is the variant that we will be using in the rest of this work. It gives us
the opportunity to explore behavior of an access control system with regards to
solving conflicting and/or overlapping requirements.

We must note, however, that in the real world, a less strict system would
be preferable. Perhaps a hybrid of the two outlined here: allow the developers
to choose a lunchroom based on individual preferences, reserve a seat through a
smart device, while employing heuristics to keep some free lunchrooms so that
no project is starved, both in the technical and the literal sense.

2.4 Assignment Criteria
When assigning lunchrooms, we must satisfy the scenario rules: developers from
different project must not be allowed to enter the same room, and we cannot
assign more developers to a lunchroom than its capacity. But in addition, we
might want to optimize for other criteria.
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First of all, we want to achieve good utilization and availability of lunchrooms.
More specifically, every lunch request should be serviced as soon as possible, and
thus every developer should be able to have lunch at the time of their choosing.
This means two things: (1) we need to seat as many developers as possible at
the same time, and (2) at any given time, we should be able to seat a developer
from any project.

While obviously limited by total capacity, there is a lot of room for different
choices with regard to these criteria. Consider a situation where a group of 6
developers from project A and a group of 4 developers from project B request
lunch simultaneously, and there is only one free lunchroom available. By (1),
we should seat the group from project A, because it is bigger. But if all the
other lunchrooms are occupied by project A, we should probably give the room
to the B group to better achieve (2) — this would reserve the free space for more
developers of project B, while we can expect spaces for A developers to become
available in the other lunchrooms.

We could continue adding criteria, of course. Earlier requests should have
priority. It might be desirable to assign lunchrooms that are physically close to
the requester. We might try to keep groups together. Perhaps requests should be
prioritized by employee seniority, or maybe we should even keep reserved seats for
the bosses at all times. Each developer could sort the lunchrooms by preference
and their selection should be taken into account.

Obviously, each additional criterion is making the problem more complex. It is
not our goal to solve this complexity; the point here is to show that requirements
can vary and this needs to be taken into consideration.
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3. Background and Related Work
3.1 Ensemble-Based Architectures
The complexity of managing a system grows with its size. This has traditionally
been handled through hierarchical decomposition, component-oriented program-
ming, and similar techniques. With the rise of the Internet of Things, however,
we are reaching the limits of these approaches. If the environment consists of
many independent agents with no clear functional hierarchy, it is impractical to
impose a top-down view of control. There is no single point of access to a “swarm”
of sensors, smart things, and cyber-physical systems in general, especially when
these are distributed over a large area with no promise of reliable connectivity
and continued availability. The use-cases are new, too: clients want to access the
system from different locations and perspectives, use different services in different
configurations, and take advantage of the inherent dynamicity.

The problem is partially solved through Service-Oriented Architectures [27].
SOA revolves around modular, dynamically discovered and dynamically bound
services. Unlike a typical “hard-coded” component-based system, SOA can deal
with small services that are randomly appearing and disappearing from the net-
work. There are limitations, though. SOA is still a top-down approach that
assumes its parts are discrete services. This is not necessarily true with IoT.
Consider a home sensor network. SOA can expose every sensor as its own ser-
vice, but then it falls to the client to locate, e.g., all sensors in a single room.
Alternately, the whole network could be a single service, but then it needs to
have “zoom in on a single room” as a feature. This gets complicated when the
query changes, e.g., when locating all temperature sensors. The issue is more
pronounced when considering a heterogeneous city-wide network of smart things.
Also, service discovery starts being a difficult problem when the number of ser-
vices grows to tens of thousands.

A whole other issue is agent collaboration. Certain problems lend themselves
to distributed approaches — e.g., self-driving cars collaborating to find parking
spaces along their driving routes. While it is possible to create a centralized
service for this task, it would be more practical to have the agents collaborate
directly and locally. This is not a problem that SOA can solve, and indeed it is
unsuitable for any kind of top-down approach. Instead, we need to look towards
multi-agent systems to manage the collaboration, and possibly some other ap-
proaches that will allow the agents to locate each other, establish communication
links, organize and reorganize.

To restate: we are experiencing an explosion of the size of cyber-physical
systems and the number of independent computing devices, and traditional ap-
proaches fail to use these systems efficiently. There is a growing need to organize
highly dynamic systems that consist of many independent agents. Not only is a
different approach required, we actually need different abstractions.

One such abstraction is the ensemble. An ensemble is a loose coalition of
components formed around a shared goal. A component can be any kind of
moving part: in a software system, a component would be a module, object,
service, any piece of code performing a particular functionality. In the world of
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cyber-physical systems, a component can be a computer, an IoT device, a drone,
etc. As we show in this work, we can even model humans, rooms and other
non-computational entities as components.

Members of an ensemble inhabit specific roles, which are usually described
in terms of capabilities or services a component can provide. This decouples
concrete components from the ensemble. For example, an ensemble providing
environmental data for a HVAC1 system could have a “thermometer” role, a
“CO2 detector” role, and an “uplink” role which handles Internet connectivity.
These would be inhabited by appropriate devices, without regard to which specific
device is providing which service.

A single component can perform multiple roles in the same ensemble (e.g., an
Internet-capable thermometer can function both as a sensor and as an uplink), or
be a member of several different ensembles (the same uplink can serve multiple
sensor suites at the same time). It is also conceptually simple to replace a com-
ponent with a different one in the same role, in case the former member becomes
unavailable or no longer fits the ensemble’s parameters.

Ensembles are composable; an ensemble can contain any number of sub-
ensembles, which in turn can be composed of more sub-ensembles. Sometimes it
is useful to set up a role which can be inhabited by a sub-ensemble.

One of the key features of an ensemble-based architecture is its high level
of dynamicity. Ensembles are formed and dissolved when needed. Similarly,
membership in an ensemble is driven by current context and conditions, not by
any sort of explicit registration. Therefore, the natural way to specify ensembles
is declarative. We can use predicates over component properties and the local
conditions. E.g., a smart parking lot can define an ensemble as “parking meter,
plus all vehicles seeking parking within 10 minutes from it.”

This meshes well with ideas of autonomic computing [12]: individual com-
ponents could be able to determine ensemble membership based on their own
knowledge, without a central coordinator. Alternately, when a global perspective
is available, a coordinator can use all available information to optimize ensemble
membership and role assignment, and can be flexible in responding to change.

Due to its ephemeral nature, it is difficult to work with an ensemble “from the
outside”. In an autonomic system, ensembles might not even be visible from the
outside, their existence known only to the individual members. And even with
a central coordinator, there are some challenges: for example, an ensemble can
dissolve at any time and its constituent components can be reassigned. There
is no way to maintain a persistent reference to a particular ensemble or a role
within it. Instead, the ensemble system should be considered self-organizing and
self-governing. A user of the ensemble system can post goals, and the system will
ensure that ensembles are formed to resolve that goal.

3.1.1 Related Work
Ensembles present a perspective which differs significantly from traditional views
of component systems. For this reason, new methodologies and paradigms are
being designed for efficient programming of ensemble systems.

1Heating, Ventilation, Air Conditioning
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Software Component Ensemble Language was introduced in [4] in 2013 and
refined a year later in [18]. SCEL is designed as a “kernel” language, a mostly
abstract grammar that is supposed to be a building block for more concrete and
full-featured languages. Its paradigm is built on four concepts: knowledge of
individual components; behaviors operating over knowledge bases; aggregations
as collections of components; and finally policies that can control and adapt
execution of behaviors. Each component is represented as an interface exposing
its knowledge base, available behaviors, and governing policies.

Despite having “ensemble” in the name, there is no explicit notion of an
ensemble nor a role. They exist implicitly, via the ability to control targets of
actions with logical predicates.

Interestingly, the SCEL paper [18] shows an access control sub-language as an
example of the policy concept. However, the language is used to protect processes
on the level of one component, and its capability to consider broader situation
context is limited, so it is of little interest to the topic of this work.

HELENA, from Handling massively distributed systems with ELaborate EN-
semble Architectures [9] [13], is a rigorous formal approach to ensemble-based
systems, focused primarily on the role concept. The goal of the design is to en-
able formal verification of ensemble behavior. Role operations are specified by
a labeled transition system, and ensembles are modeled as automata. Compon-
ents are considered resources for the roles they can fulfill, but are themselves
passive; any active behavior is initiated through the role abstraction.

As the HELENA approach examines the problem from the role level, the
process of forming an ensemble is left unexplored. Finding components to inhabit
roles is assumed to be implicit.

The Distributed Emergent Ensembles of Components (DEECo) model [2] is a
more practice-oriented approach, tailored for use in IoT applications. It defines
a paradigm of ensemble-based component systems, where components, roles, and
ensembles are all first-class objects. The DEECo paper also discusses the question
of reliability of communication and presumes use of mesh networking.

Membership in an ensemble is determined by a membership condition over
components’ knowledge attributes. Component roles are modeled as interfaces,
prescribing the knowledge attributes that must be available to the ensemble. En-
semble definition further specifies what knowledge is exchanged between mem-
bers, when, and how often.

Ensemble formation is initiated by a coordinator. Each ensemble specifies a
single coordinator role. The component which inhabits that role will look for
other members via local or routed broadcast on the network, and facilitate the
knowledge exchange processes. While the paper doesn’t elaborate on this, the
concept is nevertheless important, as it basically imposes locality on the search
for members.

A follow-up paper [14] expands on the idea of search locality, adds discussion
of performance issues, and introduces the concept of filtering as a way to limit
the number of components in consideration. It also adds a concept of fitness,
a quality score of the formed ensemble. For example, it is possible to specify
that an ensemble consisting of nearby components is a better candidate than an
ensemble whose components are far from each other.
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In [3] an architecture definition language called Trait-based Coalition Form-
ation ADL (TCOF-ADL) is presented. Its express goal is to facilitate selection
of components and formation of ensembles, while ensuring that formation re-
sponsibilities are properly distributed between agents in the ensemble system. It
provides some basic predicates and allows components to be extended with en-
semble formation related traits such as location awareness, data prediction, and
a statistical evaluator. The language is implemented as a Scala-internal DSL and
employs a constraint solver to help with ensemble membership resolution.

A variant of TCOF-ADL, named TCOOF-Trust2, is presented in [1]. The
paper specifically deals with application of ensemble concepts to access control,
and this work is a direct follow-up to the same research. The TCOOF-Trust
language reuses some of the original constructs, as well as the ensemble formation
engine, and adds commands related to access control decisions.

3.2 Access Control in Dynamic Systems
Historically, access control tended to be rule-based and local to specific resources,
such as files or concrete objects. In UNIX, for example, each file has an owner
and a group, and a fixed bitmap of permissions that can be granted or denied
to the owner, members of the group, or everyone else. An improvement to this
system is an Access Control List (ACL) attached to an object, which can list an
arbitrary number of users, groups, and their permissions.

As system complexity grows, this is no longer a sufficient solution. Many con-
temporary systems use some variant of Role-Based Access Control [8] (RBAC).
Access control rules are expressed as tuples: (role, operation, subject), authorizing
members of role to perform operation on a subject resource. In addition, roles
can be arranged in a hierarchy, so that a role higher in the hierarchy inherits
all permissions of lower roles. This naturally fits human organizational hierarch-
ies: e.g., a supervisor role will usually inherit all permissions of the worker role,
without need to specify them again.

A single user can be assigned to any number of roles. This provides an im-
portant abstraction and simplifies user management, as it is now possible to grant
or revoke user privileges simply by modifying their role assignment. A more re-
cent Organization-based Access Control [11] (OrBAC) model adds another layer
of abstraction: each of role, operation and subjects in the master policy can now
be “implemented” by a corresponding object in a local environment. This en-
ables sharing policies between organizations at design-time and collaboration at
run-time, as two organizations can cross-authorize their users in compatible roles.

As described, RBAC-like policies are not aware of wider context. Role R
has permission to perform operation O on subject S at all times, regardless of
situation or current conditions. That is not good enough for many real-world
scenarios, where context plays an important role. For instance, a “worker” should
have permission to “enter” the “workspace” — but only during work hours.

Several approaches arose to close this gap. Context-Sensitive RBAC [16] adds
context information to roles, operations, and subjects, and attaches predicates

2The additional “O” in the name is not explained. Presumably it comes from changing
“coalition” to “coordination” in the acronym.
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over the contexts to individual access control rules. Similarly, Context-Aware
RBAC [15] introduces preconditions that can query context information before
allowing the rule to apply. In addition, a “context guard” predicate can be
specified, which must hold true in order for active sessions to remain open. In [26],
context constraints are separated into those that can be evaluated at design-time
and those that must be evaluated at run-time, and a development methodology
for constrained rules is presented.

In recent years, Attribute-based Access Control [10] (ABAC) is gaining pop-
ularity because of its even greater flexibility. In ABAC, permissions are not
attached to roles, but to arbitrary expressions over attributes of users and sub-
jects. As an example, RBAC could be considered a special case of ABAC, with
the only attribute under consideration being the list of user’s roles. But every ob-
ject can have any number of attributes and these can dynamically reflect current
situation. Attributes of environment, such as current date and time, can also be
accessed.

A popular realization of the ABAC model is OASIS XACML [19] standard,
which is an XML-based policy language, and a more developer-friendly language
ALFA [20] that translates directly to XACML. Developers can describe rules
using a large number of built-in predicates, or they can define custom functions
for more complex situations.

The main limitation of these approaches, which we will collectively call “rule-
based”, is the actor-action-subject perspective. ABAC is capable of querying
the situation, but the query still originates from a static description of applicable
actors, actions, and subjects. In other words, rules can query context, but context
cannot influence rules.

This makes rule-based approaches highly impractical in scenarios where the
context does in fact cause the rules to change. The implementation of such
context-dependent security policy is scattered across many different rules, which
makes it hard to audit, maintain and debug. In fact, it is difficult to enumerate
the rules that should be affected in the first place.

One example is dynamic global state which cross-cuts ordinary rules. For
instance, a “night policy” might be different from a “day policy”. Affected rules
would need to have two variants, and updating one of the policies couldn’t be
done in one place. In addition, if global states can overlap (consider a “lock-down
state” when every door only opens for members of a designated responder group
and nobody else), complexity can grow exponentially. This growth manifests
in every affected rule, possibly to the point where it is more practical to go
outside the ABAC system and simply maintain separate manually deployed policy
configurations.

In highly dynamic systems, such as IoT networks, the same limitation can be
seen from a different angle: it is burdensome to express every possible combination
of actors, actions, and subjects beforehand. Dynamic relationships arise, form,
and dissolve throughout the life of the system. In our running example, a person
is not allowed to enter a room if another person working on a different project
is already inside that room. Such rule can be expressed as a context query with
some creative use of attributes, but it is more natural to query the context first
and dynamically form the rule afterwards.

A number of so-called “adaptive security” solutions and frameworks have been
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proposed to get around this limitation, each with their own pros and cons.
dynSMAUG [17] paper works with the concept of a situation distinct from

context. While context is a collection of information on the actors and the envir-
onment at a specific point in time, a situation is a time frame — an interval in
which some context predicates hold true, possibly including particular sequences
of events. Situations are defined separately from the security policy in a SQL-like
language Esper [7], and currently applicable situations are exposed as attributes
queryable by XACML/ALFA languages.

While the model is sound, the need to describe the policy in two phases and in
two different languages is impractical in terms of maintainability. Furthermore,
the Esper language is powerful but also very complex even for simple cases.

A self-learning model was presented in [25]. Protected assets, operational goals
and possible threats are modeled and then compiled to a fuzzy decision network.
This network can evaluate the state of the system at run-time and configure
or reconfigure applicable security policies. This solution, however, is limited to
reasoning about a closed system, with no consideration for independent agents.

The solution presented in [24] uses inference rules based on logic program-
ming to build higher-level context information from lower-level knowledge (such
as sensor readings). Resulting high-level knowledge is then used as a basis for
security actions. This enables the policy designer to make security decisions at
the appropriate level of abstraction.
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4. Solution Overview
Contemporary access control models are overwhelmingly of the rule-based variety
— that is, the policy is a set of rules in the format “actor is permitted to action
on subject”. They do not cope well with highly dynamic systems, where strong
situational awareness and ability to handle ad-hoc formed relationships between
independent agents is required. Adaptive models have been proposed, which can
handle some parts of the problem, but there is currently no consensus on the
appropriate way to control systems like smart spaces, IoT sensor swarms, and
other large-scale dynamic environments.

We are interested in a model that would have all of the following properties:

• Situational awareness. The system should be context-aware by default, able
to detect situations based on low-level information, and make situation-
appropriate decisions.

• Dynamicity. The system should cope well with environments consisting of
a large number of agents that can appear, disappear, and form ad-hoc rela-
tionships at any time. It should enable decomposition of the environment
into logical groups, and update immediately when availability or properties
of the group members change.

• Composability. It should be possible to break the policy down to functional
parts and build higher levels of policy from the lower-level components.
It should also be possible to develop parts of the security policy separately,
even if they relate to the same actors or subjects. The resulting policies
should be applicable at the same time if their end results do not conflict,
and there should be a way to resolve conflicts that arise.

• Maintainability. The policy specification should enable good engineering
practices. Related concepts should be specified close together. Security
decisions should be made at the appropriate abstraction level. It should
be easy to see which parts of the policy are affected by a change, or which
parts must be changed to achieve the desired effect.

The idea explored in this work is to describe security situations in terms of
ensembles with attached access control decisions, have a solver element identify
which components are members of which ensembles, and apply the rules on them.

Ensemble-based architectures naturally possess the first three desired proper-
ties. They are designed for large-scale systems composed of many independent
agents, and are suitable for highly dynamic environments. Ensemble formation
depends on current context. An ensemble is a logical group of components, so
it is a decomposition of the larger system. It can also itself be constructed from
sub-ensembles, allowing composability. Components are not limited to a single
ensemble, so ensembles can overlap.

As for the fourth property, maintainability, that depends for the most part
on the design of a specification language and choice of the right abstractions.
As explained in section 3.1, declarative specification is a natural approach for
ensembles. Another notable feature we are interested in is composability on the
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language level, not just on the conceptual level. Work on SCEL and DEECo is
a good inspiration here.

To make ensemble-based architectures applicable to the problem of dynamic
access control, we will need to tweak some of their properties.

First of all, ensemble-based systems are usually distributed and components
self-organize based on their knowledge. That approach is obviously not applicable
to access control. We will require a trusted supervisor with complete information
to form the ensembles and enforce the rules.

Another issue is beyond-control entities. Access control systems routinely
deal with independent agents beyond their control, such as humans; after all, the
whole point of an access control system is to make decisions that limit actions
of beyond-control agents. Ensemble systems, on the other hand, tend to require
agent cooperation in order to achieve their goals.

The ensembles that we use are not goal-oriented, however. There is no reason
to control actions of individual components or direct them imperatively. From the
access control point of view, component knowledge — and indeed the ensemble
structure as such — is purely descriptive. We can represent beyond-control entit-
ies as virtual components and gather knowledge about them indirectly via sensors.
E.g., the system can track a human’s position with an indoor positioning system
and their smartphone, and can monitor room capacity by counting incoming and
outgoing door openings.

Using a central supervisor happens to help us here, too. It is a good place to
store the collected knowledge, and to perform computations that would be done
on the components in a more traditional ensemble system.

4.1 Practical Example

Figure 4.1: Example situation: no outstanding lunch requests

Figure 4.1 illustrates a part of our running example. There are two lunch-
rooms, each with six available spaces. Two people from a blue project are already
eating in the left one, and three people from a red project are eating in the right
one. The translucent shapes indicate two existing ensembles, each of which is
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formed around a door lock. Membership in an ensemble grants the person a
permission to open the corresponding lock.

In the first picture, nobody is requesting access to a lunchroom. The only
people allowed to unlock the doors are those already inside, who should obviously
be allowed to leave.

Figure 4.2: Example situation: new lunch requests

In picture 4.2, four more people from the red project are hungry, as indicated
by thought bubbles. When the system is informed of this, it should allocate
lunchroom seats to the hungry people. The red ensemble extends to include
three of the hungry people — but not the fourth, because there is no more space
for them in the lunchroom. The blue ensemble doesn’t include them, because
they are working on a red project, and this would violate the constraint that
people from different projects cannot eat together.

The example in figure 4.3 uses a pseudo-language to concisely express the
ensemble configuration, which roles exist, and what constraints limit the available
solutions. The allow verbs also specify access control rules to apply on the
ensemble.

ensemble Lunchroom {
role Room = select 1 of all rooms
role Eaters = select all of Room inhabitants
role Requesters = select some of all hungry

constraint {(Eaters + Requesters) must not exceed Room capacity}
constraint {all Eaters and Requesters must have the same project}

allow Requesters to enter Room
allow Eaters to leave Room

}

constraint {Room from every Lunchroom must be distinct}
constraint {Requesters from every Lunchroom must be disjoint}

Figure 4.3: Pseudo-code for specifying a small ensemble configuration
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The code defines an ensemble type for a single lunchroom. Three roles are
defined: Room is the selected lunchroom, Eaters are people already inside, and
Requesters are those who are waiting for a seat. All eaters are selected, but
only some requesters. This prevents a requester from displacing someone who is
already in the room. The ensemble-local constraints ensure that we do not pick
more people than we can (which effectively only limits the number of new picks)
and that all selected people are from the same project.

Global constraints, applied over all instances of Lunchroom, ensure that no
more than one ensemble is formed per room and that a single requester is not
picked for more than one lunchroom. It is important to note that ensembles
are generally allowed to overlap; without this constraint, situation on picture 4.4
would be perfectly valid. The same requester would take up space in both lunch-
rooms, pushing out the hungry person in the top left.

Figure 4.4: Example situation: same person is selected for both rooms

Given a definition similar to the example above, the supervisor should analyze
the current situation, choose an appropriate assignment of components to roles,
and grant the specified permissions.

4.2 Goals Revisited
There are now several open problems that must be solved in order to make the
above example actually work. There are also several more necessary features that
are not shown in the example. We can divide the goals into two distinct areas:
the specification language, and an implementation of the supervisor element. In
the rest of the text, we will call this supervisor element the solver.

4.2.1 Specification Language
Our example uses pseudo-code to outline the desired semantics. We need a lan-
guage that is parsable by the solver and expressive enough to support all the
desired features. Our goal is to design such language and specify its semantics in
detail.
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Language design poses a problem on its own. It would be ideal to reuse an
existing language and only extend it to support our use-case. For this reason,
we decided to implement an internal domain-specific language (DSL). Scala [28]
was chosen as the host language for its flexible syntax and strong typing system.
Scala gives us a repertoire of powerful language features, operators, and primitives
readily available for the DSL. We are thus free to concentrate on the specification
semantics.

At its most basic, our language must allow definition of ensembles, roles within
them, and membership predicates for role inhabitants. As shown in the example,
it must also be possible to specify arbitrary constraints, applicable both locally
within the ensemble and globally over multiple ensembles.

Next, the language must provide a way to specify when an ensemble is applic-
able. In our running example, lunchrooms should only open during lunch hours.
This is partially possible with arbitrary constraints on the ensemble formation:
if one of the constraints is “it must be lunch time”, the ensemble will simply not
form at other times. However, an ability to enforce that a particular ensemble is
formed might be useful in certain use cases.

Many ensemble configurations can have multiple solutions. Looking back at
picture 4.2, there is nothing in the pseudo-code specification telling the red en-
semble to find as many hungry people as it can. If the ensemble remained the
same as on picture 4.1, it would still fit all the constraints. The specification lan-
guage should thus have a way of indicating “solution quality”, or scoring a given
solution.

Finally, as we are interested in access control, it must be possible to attach
security decisions to the ensembles and specify when and how they apply. A reas-
onable format is RBAC-like actor-action-subject — it is familiar, and at the point
when the rule is applied, we have already expressed all contextual awareness by
forming the ensemble.

4.2.2 Solver Implementation
The second goal is to have a working implementation of the supervisor element.
It should process a policy specification and determine which ensembles are ap-
plicable and which components will inhabit which roles. When the specification
is ambiguous, the solver should choose a solution that satisfies all constraints.

Given a set of components and arbitrary constraints, finding a valid role as-
signment can be transformed into a constraint satisfaction problem. This would
allow us to reuse an existing constraint solver library instead of creating our own.
Therefore, the solver should be capable of converting the relevant parts of policy
description into a representation appropriate for a constraint solver.

As previously stated, some scenarios can have a method of scoring the solution
quality. The solver must be able to configure itself to either find any viable
solution, or to find a solution optimal in some variable. Furthermore, certain
problems can be described in multiple different ways, and different descriptions
can have different performance characteristics. The solver must be amenable to
such tweaks, possibly even configurable in how it explores the solution space.

And of course, after a solution is found, the solver must allow users to inspect
the solution and execute access control queries.
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4.2.3 Solution Novelty
This work is a direct follow-up to the paper [1], which introduced both the idea
of using ensembles for access control, and the Scala DSL implementation which
is the basis for our framework. That implementation was presented as a proof of
concept, mainly intended for rapid prototyping. Our aim is to improve upon it
in several notable areas.

On the DSL side, our main goal is to extend, refine, and stabilize the set of
available language constructs. Each function, method, or construct should have
well-defined semantics and a clearly stated purpose.

Another goal is to ensure that using the DSL is user-friendly and free of
pitfalls. The original code already makes good use of Scala’s type system to
catch many problems at design time. We review and extend this system and
clearly document the limitations of the DSL embedding.

We ensure that the framework codebase is using good engineering practices
and that it is readable, reusable, and extendable. We provide a straightforward
and efficient API for embedding in other projects, and add a comprehensive test
suite with unit tests for each feature of the framework.

Finally, we perform detailed performance evaluation of various features of
the solver and the framework as a whole, and provide infrastructure for further
measurements.
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5. Ensemble Framework
We have designed and developed a framework for managing access control with
ensembles. It consists of a domain-specific language (DSL) for describing the en-
sembles, and a runtime environment which can analyze the ensemble description
and generate the specified ensembles from available components.

The DSL is internal within the Scala language. That means that it uses
the basic syntax of Scala, is compiled with the Scala compiler and runs on the
Java virtual machine. We have implemented a number of functions and language
constructs that enable the user to express ensemble-related concepts in a succinct
and readable way. We also leverage Scala’s strong type system to enforce typing
checks and catch problems at compile-time.

This chapter serves as a user guide to the framework. Section 5.3 shows a very
simple example of usage. Section 5.4 introduces each of the main concepts in
the framework, their function and semantics. Section 5.5 translates our running
example from chapter 2 to the DSL. Finally, section 5.6 lists all features available
in the DSL and their usage.

5.1 Typographical Conventions
In the following text, italic type is used to emphasize newly introduced terms.
After the term is explained, its further occurrences are set in normal type.

To highlight source code elements, such as functions, types, variable names,
and code snippets, we use monospace font.

5.2 Overview
The purpose of the framework is to analyze the DSL-specified ensemble structure
and assign components to appropriate roles in a way that fits all the constraints,
and/or maximizes values of some variables. This can be understood as a con-
straint satisfaction problem (CSP). Therefore, the main component of the frame-
work is a CSP solver. We use the word solving for the process of determining
ensemble membership, and a solution is a particular assignment of components to
roles in the ensembles. Only when the scenario is solved, we can generate access
control rules based on the solution.

Input of the framework consists of two parts. First is a description of the
ensemble structure, expressed with the DSL. Second is a collection of components,
which are supposed to be assigned to roles.

When the computation is done, the framework outputs a reference to the
solution. It is possible to examine which ensembles were activated and which
components were selected for which roles. The framework also emits access con-
trol rules and notifications.
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5.3 Hello, World!
The following code snippet describes a simple ensemble with one member — the
greeter, who is granted the "greet" permission for each of people.

1 class Person(name: String) extends Component {
2 name(name)
3 }
4
5 class SimpleScenario(val people: Seq[Person]) {
6
7 class HelloWorld extends Ensemble {
8 val greeter = oneOf(people)
9

10 allow(greeter, "greet", people)
11 }
12
13 val policy = Policy.root(new HelloWorld)
14 }

Line 1 defines a very simple component — a person with a name.
Line 5 defines a scenario class. We use scenario classes to enclose the ensemble

definitions and related data. In this case, it’s the list of people on which our
ensemble will be operating.

Line 7 defines a root ensemble, and line 8 specifies a greeter role, which is
oneOf the people in this scenario.

With line 10 we grant the selected greeter the permission to perform action
"greet" on any of the people. Actions are specified as strings.

Finally, line 13 sets up a new instance of the HelloWorld ensemble as a root.
This tells the solver where to start.

We have specified our scenario, but the code above doesn’t actually do any-
thing. We need a way to execute it and provide the list of people. Let’s create a
companion object:

15 object SimpleScenario {
16 val Names = Seq("Roland", "Lilith", "Mordecai", "Brick")
17
18 def main(args: Array[String]): Unit = {
19 val people = for (name <- Names) yield new Person(name)
20 val scenario = new SimpleScenario(people)
21
22 scenario.policy.resolve()
23 for (action <- scenario.policy.actions) println(action)
24 }
25 }

The main function generates a list of Person instances, which is then used
to instantiate the scenario on line 20. The resolve call on line 22 instructs the
framework to find and apply the first solution. Line 23 prints out all permission
grants.

When the program is executed, its output will look like this:
AllowAction(<Component:Roland>,greet,<Component:Roland>)
AllowAction(<Component:Roland>,greet,<Component:Lilith>)
AllowAction(<Component:Roland>,greet,<Component:Mordecai>)
AllowAction(<Component:Roland>,greet,<Component:Brick>)

We can see that the solver selected the first Person to be a greeter, and granted
them permission to perform the "greet" action on all the other Persons.
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5.4 Core Concepts

5.4.1 Components
Every entity that the runtime knows about needs to be represented as an object
derived from Component. That means connected devices, locks, and even people,
are treated as components. They can be members of ensembles and inhabit roles.

A component represents the system’s knowledge of an entity, but the frame-
work has no control over it. From its point of view, a component and its data
are purely inputs. This is also how we can represent people as components: as
far as the runtime is concerned, they are view-only.

Component instances don’t need any methods, and in fact they should not
have any. The possible exception to this recommendation is “computed know-
ledge”. Sometimes it is useful to have a helper method that returns the result of
some computation over the component’s attributes. For example, a worker com-
ponent can have knowledge of its location, and a method isInLunchRoom that
returns true if the location is a lunchroom. The result of this method is still
component knowledge, i.e., something we know about the component, but does
not need to be stored as a value.

Components should come from outside the ensemble definitions, preferably
from outside the scenario class. Component instances should never be created
within an ensemble. All knowledge about a component should be represented in
its attributes.

5.4.2 Ensembles
Every ensemble is represented as an instance of a subclass of Ensemble. The
instance holds references to roles and their assigned components, sub-ensembles,
situation predicates and constraints.

If there is just one ensemble or sub-ensemble for a particular purpose, it can
be specified as a singleton with Scala’s object keyword. If more ensembles of the
same type are needed, a class is more appropriate. All instances of the class must
be explicitly created in the parent ensemble body. Every instance must also be
registered, using either rules or ensembles call:

1 class Root extends Ensemble {
2 object SubEnsembleObject extends Ensemble {
3 // ...
4 }
5 class SubEnsemble(id: Int) extends Ensemble {
6 // ...
7 }
8
9 val subEnsembles = for (i <- 1 to 5) yield new SubEnsemble(i)

10 rules(subEnsembles)
11 ensembles(SubEnsembleObject)
12 }

Section 5.4.3 explains the difference between rules and ensembles.
The class body can specify role membership, sub-ensembles, constraints, and

situation predicates. Each of these features is described in its own subsection.
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5.4.3 Ensemble Activation and Situations
An ensemble can be active or inactive. We also use the term selected — as in, the
ensemble is selected as a member of the parent ensemble. Ensembles registered
with the rules function are active by default. When registered with ensembles,
the framework dynamically determines whether the ensemble should be active or
inactive, based on constraints in its parents.

An active ensemble takes part in the computation and all constraints specified
in the ensemble must be satisfied. Inactive ensembles are not considered, their
roles have no members, and all their sub-ensembles are also inactive — i.e., an
ensemble can only be active if all its parents are active.

It is possible to specify a boolean situation predicate. If the predicate evalu-
ates to false, the ensemble and all of its children are deactivated. Note that an
ensemble registered with ensembles can still be inactive if its situation predicate
is true; it is a necessary condition, not a sufficient one.

The situation predicate is specified via the situation construct. At most
one situation predicate can be used per ensemble; if more than one situation is
defined, the last one is used and all others are ignored.

5.4.4 Roles
Fundamentally, an ensemble is a collection of components assigned to distinct
roles.

Some role assignments can be known in advance. Such roles don’t need to be
explicitly created. It is a good practice to assign the component to a member
variable of the ensemble, but it is perfectly legal to use a variable from an outer
scope directly.

Other roles are assigned dynamically by the framework. For these, it is ne-
cessary to describe parameters of the assignment and a collection of candidates.

The function subsetOf specifies that a particular role is a subset of a given
collection of components, or a subset of inhabitants of a different role. An optional
argument allows in-line specification of a constraint on the subset’s cardinality,
e.g., that no more than N components must be selected.

As a shortcut, the oneOf function defines that exactly one of the candidates
will be selected for the role. The allOf function defines that all of the candidates
will be selected, effectively converting components directly to roles. This can be
useful in some cases, but it is usually not necessary to do it explicitly.

The function unionOf can link several roles into a single group. This is useful
in situations where a constraint applies over many roles together and it would be
difficult to express it in terms of the individual roles.

Dynamically assigned roles are sets of components. A component can be a
member of multiple roles, but cannot be a member of the same role in the same
ensemble more than once.

The result of each of these functions is a role object. After a solution is found,
this object can be used to access a list of the selected elements. At solving time,
however, the results are not yet available, and instead specialized methods of
the role object must be used. See section 5.6.5 for a complete list of available
operations.
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5.4.5 Constraints
A constraint places arbitrary limits on the solution. Unlike situation predicates,
which are evaluated beforehand, constraints are applied during the search for a
solution. It is thus a good place to specify requirements that the solution must
fulfill. Constraints can be used to specify that membership of some role must
be disjoint with another role, mark one role’s cardinality as strictly smaller than
that of another role, etc.

Constraint predicates are specified with a constraint call. There can be
multiple constraint calls in an ensemble, and all specified constraints must be
fulfilled in the solution. If a constraint in an active ensemble cannot be fulfilled,
no solution will be found.

Constraints in inactive ensembles are ignored.
Care must be taken when creating constraints over the results of subsetOf

and the other role functions. Role objects define several methods, such as all,
sum, and others, whose results are valid constraint objects. However, if the list of
selected members is accessed directly while specifying a constraint, an exception
will be thrown. See section 5.6.5 for details.

5.4.6 Solution Utility
It is possible to attach a utility expression to an ensemble. If present, the frame-
work will by default try to maximize the value of this expression when looking
for solutions. In other words, solutions with higher utility are preferred.

Utility expression can be specified with the utility construct. Only one
utility expression can be specified per ensemble. If more than one utility is
used, only the last one takes effect.

If multiple ensembles specify an utility expression, the total utility of the
solution is a simple sum of all the individual utilities. This is usually the desired
behavior. E.g., when calculating utilities for individual lunchrooms from the
running example, each room has its own utility, and we are interested in the sum
of all rooms.

Sometimes this solution is insufficient, however. Maybe the total utility of an
ensemble is the average utility of each of its sub-ensembles. If that’s the case,
utility should not be used in the sub-ensembles, only in the parent. The sub-
ensembles can instead specify a method calculating the partial utility, which will
then be used in parent’s utility expression:

1 class Root extends Ensemble {
2 class SubEnsemble extends Ensemble {
3 val someRole = subsetOf(members, _ < 4)
4 def subUtility = someRole.cardinality * someRole.sum(_.weight)
5 }
6
7 val subEnsembles = for (_ <- 1 to 5) yield new SubEnsemble
8 utility {
9 subEnsembles.map(_.subUtility).reduce(_ + _) / subEnsembles.size

10 }
11 }

Only active ensembles are counted towards the utility total.
Similar to role objects, utilities are not actual numbers. Methods like sum are

not available and more elaborate calculations must be built from basic operators.
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5.4.7 Root Ensemble
One ensemble must be designated as top-level, or root, in the scenario. This tells
the framework where to start with solving. The root ensemble is always active,
and situation specified in the root has no effect.

It would be natural to specify the root ensemble as an object, but due to
limitations of the DSL embedding, that is not possible. The root ensemble must
be a class, instantiated in a call to Policy.root:

1 class Example {
2 class Root extends Ensemble {
3 // ...
4 }
5 val policy = Policy.root(new Root)
6 }

See section 6.2.7 for explanation of this requirement.
Result of the Policy.root call is a Policy object. By convention, we always

store it in a member variable named policy in a scenario class.

5.4.8 Scenarios and Solving
Once a policy is specified, it is necessary to supply the actual Component instances
and other contextual data. These are usually enclosed in a so-called scenario
class.

In terms of code, the scenario class is a plain class and does not need to
implement any particular traits. Its purpose is code organization: it is a good
practice to keep the policy definition (i.e., the hierarchy of Ensembles) in the same
scope with the required context information. Having the context encapsulated
within a class enables use-cases such as multiple instances of the same policy for
different buildings.

By convention, a policy instance is stored in an attribute named policy.
The policy instance, created with Policy.root call, provides access to the

framework’s solving functionality. The most basic feature is the resolve()
method, which performs the computation, assigns members to roles, and gen-
erates access control rules. The solution can be examined through the instance
member, which is a reference to the instance of the root ensemble. The rules can
be accessed through the actions member or queried via the allows() method.

The framework does not monitor the situation continuously. The solution
generated with resolve() is valid for the situation at the time it was called.
If the situation changes, component knowledge updates, etc., the user of the
framework is responsible for calling resolve() again.

Every call to resolve() runs from scratch. Previously established ensembles
are dissolved and members are assigned to roles without consideration for pre-
vious assignments. This matches the operation of ensemble-based systems: en-
sembles are loose coalitions that form and re-form based on current conditions.
For handling of persistence, refer to subsection 5.4.11.

If no utility functions are specified, resolve() will find and apply the first
solution that satisfies all the constraints. When utility functions are present, it
will find and apply a solution with the highest utility.
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It is also possible to iterate over possible solutions manually. The init()
method will reset solver state. After that, every call to solve() will find a new
solution, viewable through instance, or return false if no more solutions are
found. Finally, a call to commit() will apply access control rules from the current
solution.

The behavior is slightly different with utility functions; there is an added
constraint that each new solution must have higher utility than the one before it.
That means that it will not be possible to examine every valid solution, and the
computation will stop at the first solution that cannot be improved. Of course,
finding out that a particular solution cannot be improved might take a long time.

5.4.9 Time Limits
Some security policies can have an exponential number of solutions. Absent other
constraints, there are 2N possible results of subsetOf on N members. Finding a
solution with maximum utility could therefore take a very long time.

To manage this issue, it is possible to configure a time limit after which the
search stops. As explained in the previous section, an optimizing solver iterates
through valid solutions, searching for those with increasing utility. By setting a
time limit, we are effectively declaring that we are interested not in the optimal
solution, but the best that can be found inside the limit.

Time limits are most useful in scenarios with utility expressions. They provide
little benefit when iterating over all valid solutions, as the search can usually be
stopped simply by not requesting another solution.

An optional parameter to init() or resolve() specifies a time limit in mil-
liseconds. The countdown starts at the time the method is called, and carries
across calls to solve(). If the time limit expires while solve() is running, it will
stop the computation and return false, and all subsequent calls will also return
false — same as if no more solutions can be found.

5.4.10 Access Control
When the scenario is solved and component assignments are known, the runtime
emits specified access control rules. There are two available functions: allow and
deny. Both take three arguments: actor, action and subject. Actors and subjects
can be components, collections of components, or roles. Action must be a string.

Specifying a collection of actors or subjects is the same as specifying each
actor and each subject one by one. Specifying a role applies the rule to selected
members of that role.

If the ensemble is active, access control directives will be emitted. The frame-
work takes a default-deny approach. If a triplet does not exist in emitted direct-
ives, the permission is denied. If an allow triplet exists, the permission is granted,
unless a deny triplet also exists. This way, it is possible to grant a wide permis-
sion in an ensemble, but refine it in a sub-ensemble or a different situation-specific
ensemble.
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5.4.11 Notifications and Persistence
Using the function notify, it is possible to attach messages to components. This
is the only way the framework can affect components (which are usually autonom-
ous entities beyond our control). The notification feature serves two purposes.

First, it is possible to query the notifications inside an ensemble. This way it
is possible to persist earlier configurations. Consider this example:

1 case class Reservation(room: Room) extends Notification
2
3 class SeatReservations(room: Room) extends Ensemble {
4 val alreadyReserved = workers.filter(_.notified(Reservation(room)))
5 val newlyReserved = oneOf(workers.filter(_.askingForReservation))
6
7 allow(alreadyReserved, "enter", room)
8 allow(newlyReserved, "enter", room)
9 notify(newlyReserved, Reservation(room))

10 }

Workers that have reserved seats in previous runs will still be granted the
"enter" permission on subsequent runs. If we didn’t attach the notification,
they would lose the permission when the solution is rerun.

Second, a notification action is recorded as part of the generated access control
rules. Users of the system can listen for these notification actions and forward
them to components. This can be useful to, e.g., send a message to a worker’s
smartphone, to inform them about their seat reservation.

Notification messages must implement trait Notification. It is useful to
define them as case classes, so that it is possible to filter them by value, as
demonstrated in the example.

5.5 Implementing the Running Example

5.5.1 Overview
Our scenario consists of workers, which are assigned to projects; workrooms,
which are also assigned to projects; and lunchrooms, which are unassigned. Work-
ers, workrooms, and lunchrooms will be represented as components. Two distinct
sub-problems exist, each with its own parameters: assignment of workrooms and
assignment of lunchrooms. These can be naturally described as separate en-
sembles.

When the building is open, workers are allowed to enter all workrooms as-
signed to their project. We will create an ensemble for every project, and this
ensemble will have the following roles:

– project workers, inhabited by all workers for that project
– project rooms, inhabited by all workrooms for that project

The ensemble will grant all project workers access to all project rooms.
Lunchrooms open at lunch time. Workers can indicate that they are hungry,

which we represent as a knowledge field on the worker component. We would
like to collect hungry workers in small ensembles, each granting access to a single
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lunchroom. To accomplish that, we will create an ensemble for every lunchroom,
with the following roles:

– occupants, inhabited by all workers currently in the room, plus all workers
that have previously been assigned to the room

– assignees, inhabited by hungry workers who are not yet assigned

The ensemble will attempt to collect assignees from the pool of all hungry workers,
up until room capacity is filled. An additional constraint is that every member
of this ensemble must be assigned to the same project. That means that if there
are existing occupants, new assignees must have the same project as them. If the
room has no current occupants, new assignees can be selected from any project.

In addition, not all seatings are equally good. We want to use lunchrooms
sparingly: given the choice between putting a worker into an empty lunchroom
and an occupied one, the occupied should be picked, so that we keep the empty
lunchroom available for other projects.

Once a satisfactory solution has been found, the ensemble will allow both
occupants and assignees to enter the lunchroom, and notify new assignees that a
seat was found for them.

5.5.2 Implementation
Following this description is a full listing of the policy for the running example,
including definitions of components.

Lines 1–18 define component types. All rooms are of common supertype
Room. Apart from name, the LunchRoom has a knowledge field capacity, stating
its maximum occupancy.

Workers have three knowledge fields: their assigned project (specified in con-
structor), their hungry status, and their current location. A helper method
isInLunchRoom returns true if the worker’s location is a lunchroom, as an ex-
ample of “computed knowledge” from section 5.4.1

Next, case classes are defined on lines 20–24. Projects do not need to be com-
ponents, but we still need structured information about them, particularly their
list of assigned workrooms. We also create a case class for lunchroom assignment
notifications.

Scenario class definition starts at line 26. Its inputs are lists of projects,
workers, workrooms, and lunchrooms. An instance of this scenario class could
represent a workday in a single building. Opening and closing times are part of
the security policy and are hard-coded at lines 31–34.

Line 37 defines a variable to represent current time. In a real-life deployment,
this might be represented by a reference to system clock; however, for our testing,
it is useful to set the current time explicitly.

We also define a helper attribute workersByProject for easier access to lists
of workers from the same project.

Class RoomAssignment at line 42 represents the policy root. It defines one
pseudo-role, hungryWorkers, which is inhabited by all workers who are (1) hungry,
(2) not currently in a lunchroom, and (3) not already assigned to a lunchroom.
This will be the pool from which the lunchroom ensembles select candidates.
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Furthermore, the root ensemble contains definitions of the two sub-ensembles for
our two sub-problems.

Workroom ensemble is described by the class WorkroomAssignment on line 54.
It takes a project definition as a parameter. Its situation predicate specifies
that it is only active between BuildingOpenTime and BuildingCloseTime. The
statically-assigned role projectWorkers is simply the list of workers for the en-
semble’s project. The grant at line 61 allows all projectWorkers to enter all
workrooms of the project.

Lunchroom ensemble is represented by the LunchroomAssignment class at
line 67, and takes a lunchroom as an argument. Like the workroom ensemble,
it also has a situation predicate; this time specifying that it applies between
LunchOpenTime and LunchCloseTime.

The first role, occupants at line 75, is a statically determined list of workers
that are either (a) already assigned to the room, as determined by the appro-
priate LunchRoomAssigned notification, or (b) physically present in the room, as
indicated by their location attribute.

We use occupants to calculate freeSpaces, the number of remaining seats
in the room. Then, at line 82, we define the assignees role as a dynamically
selected subset of hungryWorkers, limiting its size to the number of free seats.

The eaters role at line 84 is a union of occupants and assignees. It is not a
meaningful role in the ensemble, but implementation-wise, it is needed to specify
the constraint on the next line: all eaters must have the same value of their
project attribute.

Lines 89–92 define the utility expression. Fuller rooms are preferred, which is
expressed by setting the utility to the square of total number of used seats. This
way, a solution that places two workers in the same lunchroom is measured as
better than a solution that places each of them in a separate room.

Finally, assignees are notified of their assignment at line 95, and line 96
allows all eaters to enter the room.

Back at the RoomAssignment level, lines 99–102 create instances of the sub-
ensembles. An instance of WorkroomAssignment is generated for every project,
and an instance LunchroomAssignment is generated for every lunchroom. The
rules call configures the sub-ensembles to be selected whenever their situation
predicate is true, i.e., they are always active in their specified time-frames.

The constraint at line 105 ensures that all instances of the assignees role are
disjoint, or in other words, that no worker can get a seat reservation in more than
one lunchroom at the same time.

Line 108 instantiates the policy object and makes it available as an attribute.

31



5.5.3 Source Code

1 // Different types of rooms
2 abstract class Room(name: String) extends Component {
3 name(s"Room:$name")
4 }
5 class LunchRoom(name: String, val capacity: Int)
6 extends Room("Lunch" + name)
7 class WorkRoom(name: String)
8 extends Room("Work" + name)
9

10 // Worker assigned to a project, can be hungry or not
11 class Worker(id: Int, val project: Project) extends Component {
12 name(s"Worker:$id:${project.name}")
13 var hungry = false
14 var location: Option[Room] = None
15
16 def isInLunchRoom: Boolean =
17 location.map(_.isInstanceOf[LunchRoom]).getOrElse(false)
18 }
19
20 // Project with pre-assigned workrooms
21 case class Project(name: String, workrooms: Seq[WorkRoom])
22
23 // Notification for lunchroom assignment
24 case class LunchRoomAssigned(room: LunchRoom) extends Notification
25
26 class LunchScenario(val projects: Seq[Project],
27 val workers: Seq[Worker],
28 val workrooms: Seq[WorkRoom],
29 val lunchrooms: Seq[LunchRoom]) {
30 // Opening times of the building and of the lunchrooms
31 val BuildingOpenTime = LocalTime.of( 7, 30)
32 val BuildingCloseTime = LocalTime.of(21, 0)
33 val LunchOpenTime = LocalTime.of(11, 30)
34 val LunchCloseTime = LocalTime.of(15, 0)
35
36 val DefaultNow = LocalTime.of(8, 42)
37 var now = DefaultNow
38
39 // mapping projects to lists of workers
40 val workersByProject = workers.groupBy(_.project)
41
42 class RoomAssignment extends Ensemble {
43 name("assign workers to projects and rooms")
44
45 // list of all hungry workers waiting for a lunchroom
46 val hungryWorkers = workers.filter { w =>
47 w.hungry &&
48 !w.isInLunchRoom &&
49 !w.notified[LunchRoomAssigned]
50 }
51
52 // Each worker assigned to a project can access all workrooms
53 // assigned to that project when the building is open.
54 class WorkroomAssignment(project: Project) extends Ensemble {
55 name(s"assign workrooms to workers on project ${project.name}")
56
57 situation { (now isAfter BuildingOpenTime) &&
58 (now isBefore BuildingCloseTime) }
59
60 val projectWorkers = workersByProject.getOrElse(project, Seq.empty)
61 allow(projectWorkers, "enter", project.workrooms)
62 }
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63
64 // Each hungry worker will get an assigned lunchroom so that
65 // no lunchroom is over capacity and workers from different
66 // projects do not meet in the same lunchroom.
67 class LunchroomAssignment(room: LunchRoom) extends Ensemble {
68 name(s"assign workers to lunchroom ${room.name}")
69
70 // Only activate when lunchrooms are open
71 situation { (now isAfter LunchOpenTime) &&
72 (now isBefore LunchCloseTime) }
73
74 // list of previously assigned workers
75 val occupants = workers.filter { w =>
76 w.notified(LunchRoomAssigned(room)) ||
77 w.location.contains(room)
78 }
79
80 // newly-assigned hungry workers must fit into free space
81 val freeSpaces = room.capacity - occupants.size
82 val assignees = subsetOf(hungryWorkers, _ <= freeSpaces)
83
84 val eaters = unionOf(occupants, assignees)
85 constraint { eaters.allEqual(_.project) }
86
87 // Set the solution utility to square of the number of occupants,
88 // i.e., prefer many workers in one room over few workers in many rooms
89 utility {
90 val occupied = assignees.cardinality + occupants.size
91 occupied * occupied
92 }
93
94 // grant access rights and notify newly selected hungry workers
95 notify(assignees, LunchRoomAssigned(room))
96 allow(eaters, "enter", room)
97 }
98
99 val workroomAssignments =

100 rules(projects.map(new WorkroomAssignment(_)))
101 val lunchroomAssignments =
102 rules(lunchrooms.map(new LunchroomAssignment(_)))
103
104 // ensure that a worker is not assigned to more than one lunchroom
105 constraint(lunchroomAssignments.map(_.assignees).allDisjoint)
106 }
107
108 val policy = Policy.root(new RoomAssignment)
109 }
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5.6 Reference
Scala is a strongly typed language, so a Scala-internal DSL is also strongly typed.
In order to make this section more concise, however, we will be using simplified
type signatures. The following simplifications are used:

• Whenever a function has bounded type parameters, we omit them in favor
of the most general type.

• If a function does not return a value, the return type Unit is omitted.

• Whenever a function has a variadic argument (denoted with an asterisk),
at least one argument must be provided.

• For every function with a variadic argument of type T, denoted as “T*”, an
overload exists that takes a single Iterable[T] argument instead.

• We use type name Role for brevity, but that type does not exist. The actual
type is MemberGroup[Component].

For readers not deeply familiar with Scala, we point out the by-name paramet-
ers feature. Whenever an argument type is prefixed with “=>”, it is not evaluated
immediately, but only when it is used. This allows us to write expressions that
would fail at ensemble definition time, but work fine when the framework executes
them.

5.6.1 Component class
Component must be used as a superclass of every component type. Only one
function is available at declaration time:

name(nm: String)
Set a name of the component. This is useful for debugging purposes, when
printing out ensemble memberships.

Component instances also have several methods from trait Notifiable for query-
ing received notifications:

notifications: Iterable[Notification]
Return a collection of all Notification instances received by this compon-
ent.

notified(notification: Notification): Boolean
Query a specific notification. Return true if the exact specified notification
was received by this component.

notified[N <: Notification]: Boolean
Query a notification class. Return true if any notification of type N was
received by this component.

34



5.6.2 Integer type
Integer is a generic reference to an integer number whose value might not be
known until a solution is found. It is usually a result of operations on member
group objects. Basic arithmetic operators on Integers are overloaded to return
Integers and basic comparison operators are overloaded to return Logicals.
Implicit conversion from Int is available, so that it is possible to mix Integer
calculations with standard Scala math.

One notable imperfection is that the equality operator “==” cannot be over-
loaded in Scala. For comparing values of Integers, use the triple-equals “===”
operator instead. The operator “==” will compare object identities and return
a boolean.

5.6.3 Logical type
Logical is a generic reference to a truth value which might not be known until a
solution is found. It is usually the type of constraint operations. Basic boolean
operators on Logicals are overloaded to return Logicals. Implicit conversion
from Boolean is available, so that it is possible to mix Logical expressions with
statically evaluated booleans.

5.6.4 Ensemble class
The security policy consists of a nested series of classes deriving from Ensemble.
Most of the ensemble definition happens in the body of Ensemble, so this class
provides most of the available functions.

name(nm: String)
Set a descriptive name of the ensemble. This is useful for code documenta-
tion and for debugging purposes, when printing out ensemble memberships.

utility(util: => Integer)
Assign an utility function to the ensemble. util is an Integer expression
that is evaluated for each solution being tested. Refer to subsection 5.4.6
for detailed semantics.

rules(ensembles: Ensemble*): EnsembleGroup
Register sub-ensemble(s) with static activation. Sub-ensembles registered
via this function must be activated if possible.
Each sub-ensemble must be registered with rules or ensembles to take part
in the computation.

ensembles(ensembles: Ensemble*): EnsembleGroup
Register sub-ensemble(s) with dynamic activation. Sub-ensembles that are
registered via this function can be activated by the solver, if that leads to
a good solution.
Each sub-ensemble must be registered with rules or ensembles to take part
in the computation.
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oneOf(items: Component*): Role
oneOf(role: Role): Role

Define a role inhabited by exactly one of the specified components or inhab-
itants of the specified role.

allOf(items: Component*): Role
Define a role inhabited by all of the specified components.
This function is useful for explicit conversion of components to role ob-
jects. However, in most cases, components and collections of components
are implicitly converted to roles as needed. E.g., the following two ensemble
definitions are equivalent:

1 val members = for (_ <- 1 to 5) yield new Member
2
3 object WithAllOf extends Ensemble {
4 val role = allOf(members)
5 allow(role, "open", door)
6 }
7
8 object WithoutAllOf extends Ensemble {
9 allow(members, "open", door)

10 }

subsetOf(items: Component*): Role
subsetOf(role: Role): Role
subsetOf(role: Role, cardinality: Integer => Logical): Role

Define a role inhabited by a subset of the specified components or inhabit-
ants of the specified role.
The optional argument cardinality specifies a constraint on the subset’s
cardinality. It is a function that takes an Integer argument, representing
the subset’s cardinality, and returns a Logical result configuring whether
the cardinality is valid. It is possible to use Scala’s placeholder underscore
as a shortcut, i.e.:

val role = subsetOf(components, _ < 10)

unionOf(roles: Role*): Role
Defines a role whose members are a union of specified roles. Specifically,
any component that inhabits one of the roles also inhabits the union role,
and if a component inhabits the union role, then there exists at least one
role in roles which the component also inhabits. This is mainly useful
for specifying constraints over collections of roles that would otherwise be
difficult to express individually; e.g., total size of the union must not exceed
a specified number.

allow(actors: Role, action: String, subjects: Role)
Grant permission to each inhabitant of actors role to perform action on
each inhabitant of the subjects role.
Through implicit conversions, it is possible to use a component or an iterable
of components in place of any of the Role arguments.
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deny(actors: Role, action: String, subjects: Role)
Deny permission to each inhabitant of actors role to perform action on
each inhabitant of the subjects role.
Through implicit conversions, it is possible to use a component or an iterable
of components in place of any of the Role arguments.

notify(targets: Role, message: Notification)
Send a message to each of targets. The message is persisted across solver
runs, and its presence can be queried when forming ensembles. See subsec-
tion 5.4.11 for detailed semantics and subsection 5.6.1 for query methods.
Through implicit conversions, it is possible to use a component or an iterable
of components in place of the Role argument.

constraint(clause: => Logical)
Set up a constraint that must be satisfied in every solution. The clause must
be of type Logical, because it is propagated to the constraint programming
engine, where it limits the search space. Therefore, it is possible to use role
object expressions as constraints.
Multiple constraints can be specified in an ensemble and each one must be
satisfied in a valid solution.

situation(predicate: => Boolean)
Set up a situation predicate. The predicate is evaluated before the solver
starts processing the ensemble. If it evaluates to false, the ensemble is
excluded from the solution.
situation has no effect in the root ensemble.

5.6.5 Member Groups
The base class MemberGroup[T] maintains a collection of components or en-
sembles. A so-called “role object” is in fact a MemberGroup[C <: Component].
Ensemble groups are represented by a subclass EnsembleGroup, which performs
additional handling related to ensemble hierarchies. However, all functionality
relevant to the DSL is defined in the base class, and thus identical for roles and
ensemble groups.

For simplicity, we will use the type name “Member” to stand in for the member
type of a MemberGroup.

The member group provides a notion of selected members — a subset of the
member collection which is considered part of the solution. For instance, a role
created with the oneOf function will have exactly one selected member.

All Integer methods can be used to build constraints with arithmetic and
comparison operators. All Logical methods can be used as constraints directly,
or combined with other constraints using boolean operators. For simplicity, the
descriptions use terms like “true if” or “false if”, but keep in mind that the truth
value of Logical is only relative to a candidate solution.

selectedMembers: Iterable[Member]
List of Member instances that are selected for the solution.
Throws an exception if no solution has been generated.
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cardinality: Integer
Cardinality of the group, i.e., the number of selected members.

contains(member: Any): Logical
True if the specified member is selected.

containsOtherThan(member: Any): Logical
True if at least one member other than member is selected.

containsOnly(member: Any): Logical
True if member is the only selected member.

sum(func: Member => Integer): Integer
Sum of values obtained by applying func on each selected member.
Typically used to sum the value of some knowledge field of the selected
components. Scala’s placeholder underscore is useful here:

val swarm = subsetOf(robots)
constraint { swarm.sum(_.arms) > 7 }

all(func: Member => Logical): Logical
True if predicate func holds for all selected members.

some(func: Member => Logical): Logical
True if predicate func holds for at least one selected member.

allEqual(func: Member => Any): Logical
True if result of func is the same for every selected member. In other words,
the set of values yielded by func for each selected member has at most one
element.
Typically used to ensure that components selected for a role all have the
same value of some knowledge field, e.g., belong to the same team, have the
same rank, etc.

allDifferent(func: Member => Any): Logical
True if result of func is different for every selected member. In other words,
the set of values yielded by func for each selected member is the same size
as the set of selected members.
Typically used to ensure that components selected for a role all differ in
some knowledge field, e.g., no two components from the same team are
picked.

disjointAfterMap[T,M](funcThis: Member => T,
other: MemberGroup[M],
funcOther: M => T): Logical

True if, after converting the selected members of this and the other group
to a common type T, the resulting sets are disjoint.
There are two types of usage for this function. One type is ensuring that
two groups of same or similar types of components are partitioned according
to some variable — e.g., groups of workers disjoint over the projects they
are working on.
The other type is ensuring that two groups of different types of components
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do not mix with regard to some property. An example of this would be a
sort of “wolf, goat, cabbage” scenario: the eaters role in a Shore ensemble
must be disjoint with the foods role, so that none of the eaters will eat any
of the food.

5.6.6 Collections of Member Groups
Special behavior is defined for collections of MemberGroups, which are typically
obtained by mapping a collection of ensembles to one of their roles. The purpose
of this behavior is to support a common idiom: ensuring that membership of a
role in multiple ensembles does not overlap.

The following example assigns workers to teams in a way that no worker is
assigned to two teams:

1 val workers: List[Worker] = /* ... */
2
3 class Team(val id: Int) extends Ensemble {
4 val teamMembers = subsetOf(workers, _ > 0)
5 }
6
7 val teams = rules {
8 for (i <- 1 to 4) yield new Team(i)
9 }

10
11 constraint { teams.map(_.teamMembers).allDisjoint }
12 constraint { teams.map(_.teamMembers).cardinality === workers.size }

A collection of member groups has the following methods:

cardinality: Integer
Cardinality of the collection, i.e., the total number of selected members
across all groups in the collection.

allDisjoint: Logical
True if all groups in the collection are disjoint, i.e., no member is selected
in more than one group.

5.6.7 Policy class
The Policy class represents the security policy in a single object, and provides
methods to initiate solving and examine its results.

The resolve() method is the most straightforward way to interact with the
policy object:

resolve(): Boolean
resolve(limit: Long): Boolean

Find a valid solution and record security actions. If no utility expression is
defined, returns the first solution that satisfies all constraints. If an utility
expression is defined, returns the maximum utility solution, or the best
solution that could be found within a time limit. Returns true if a solution
was found, or false if not.
When limit is specified, it is used as a time limit for the solving process, in
milliseconds. If the method does not return before the time limit expires,
the best solution found so far is recorded.
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This is an all-in-one method that performs all solving steps automatically.
To customize the solving process, it is necessary to use the methods below.

The following attributes are available as soon as a solution is attempted:

exists: Boolean
True if a solution was found.

instance: Ensemble
Reference to an instance of the root ensemble class. Through instance, it
is possible to examine role and sub-ensemble assignment.

actions: Iterable[Action]
Generated list of security actions, collected from all sub-ensembles. Con-
tains objects of type AllowAction, DenyAction and NotifyAction.

solutionUtility: Int
Total utility of the solution, if one exists. If the solution exists but has no
utility expressions, this will return zero.

allows(actor: Component,
action: String,
subject: Component): Boolean

Return true if actor is permitted to action on subject.
See section 5.4.10 for semantics of access control queries.

In case a customization of the solving process is needed, the following methods
are available to run the solving step-by-step:

init()
init(limit: Long)

Reset the solver, configure time limit, delete all solutions and recorded se-
curity actions, and prepare for finding a solution.
Time limit is in milliseconds and applies across all subsequent solving runs.
If the time limit expires while a call to solve() is in progress, the solving
process stops and solve() returns false. See section 5.4.9 for details.
Must be called whenever the situation changes, otherwise the policy will
reflect the previous state of ensembles, components, and the environment.
In particular, must be called before the first call to solve().

solve(): Boolean
Find one solution. Return true if a valid solution is found, false otherwise.
This method can be called repeatedly to iterate over all solutions. If no
solution is found, and a previously-found solution exists, it will still be
accessible.
If no utility expression is specified, repeated calls will yield successive solu-
tions. With a utility expression, each successive call will find a solution with
higher utility than the previous one. If no such solution exists, solve() will
return false, even if other solutions exist with equal utility. To find the
solution with maximum utility, the following idiom is used:

while (policy.solve()) {}
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commit()
Commit current solution, generate security rules, and send notifications to
components. Must be called before accessing actions for a new solution.
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6. Implementation Details
6.1 Modeling for Constraint Solver
As explained in previous chapters, our framework employs a general solver for
constraint satisfaction problems (CSPs). We have chosen Choco solver [23], a free
and open-source constraint programming library for Java. Much of the work the
framework does is converting the ensemble configuration into a problem input for
Choco solver. This section explains the process in detail.

6.1.1 Overview of Choco Solver
Choco is a very fast constraint solver, designed with research applications in
mind. It is written in Java 8, which allows us to integrate it easily with our Scala
framework. Out of the box, Choco supports integer, boolean, and real values,
and sets of integers. It allows the users to constrain domains of variables with
basic equalities and inequalities, simple arithmetic expressions, boolean opera-
tions, automatons, if/then/else expressions, membership conditions, etc. It is
also possible to implement custom constraints and their propagators.

Choco’s key component is a Model object, which represents the problem cur-
rently being solved. Methods of this objects can be used to create variables of
different types. For our framework, we make use of BoolVar, IntVar and SetVar.

Domain of a IntVar is [−232, 232 − 1]. It can be represented in two distinct
ways: a bounded domain is a contiguous interval between the upper and lower
bound, while an enumerated domain can be any set of integers. The latter is
obviously less performant and memory-efficient. However, for our use-case, we
only use enumerated domains.

Domain of a BoolVar is {0, 1}, i.e., it is implemented as an integer. The
important feature of BoolVar is that it can be used for reification of constraints;
i.e., the resulting value of the variable represents whether a particular constraint
was satisfied or not.

Domain of a SetVar is any set of integers. The default internal representation
is a bit set, through Java’s BitSet data type. We use set variables to represent
ensemble or role membership. Integers in the set represent indices into an array
that holds the member objects.

Each constraint is also represented as a Java object, generated by a factory
method on the Model instance. Every constraint can either be posted or reified.

Posting a constraint means that it will represent a rule in the model. Every
solution must satisfy that constraint.

Reifying a constraint associates it with a boolean variable. That variable
resolves to true if the constraint is satisfied, or false if not. This allows expressing
constraints as boolean expressions or if-then constructs based on the status of
other constraints.

Choco solver provides a rich library of built-in constraint constructors. Ar-
bitrary arithmetic operations on IntVars are available, as well as tests of set
membership, intersections, union, subset relation, etc. More complex construc-
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tions can be built with boolean operators, and it is possible to set up constraint
dependencies with ifThen and ifOnlyIf methods.

6.1.2 Modeling Basics
At its heart, ensemble assignment is a set membership problem. It makes sense
that the basic building block would be a SetVar. The framework assembles com-
ponents and ensembles into groups, and each group is represented by a SetVar
over the entities’ indices within the group: if an index is included in the SetVar,
the corresponding entity is considered part of the solution, and we say it is selec-
ted.

Per-group sets mean that the same entity can have a different index in different
groups. That makes certain operations awkward. Namely, in many cases we
cannot use the built-in set operations, because for a given index n, n ∈ A usually
represents a different entity than the same n ∈ B. This makes operations like set
union meaningless and we need to reconstruct them from primitives.

The alternative would be to assign an unique index to every entity and rep-
resent membership through these unique indices. However, that would lead to
sparse sets, which would make their in-memory representations inefficient.

In case of ensembles, there is an implicit dependency relationship: a child
ensemble can be selected if and only if its parent is also selected. Similarly, if an
ensemble is not selected, no components are selected for any of its roles. These
dependencies must be expressed as constraints on group membership.

6.1.3 Ensemble Selection and Situations
Several things must be true if an ensemble is selected: its parent must also be
selected, its situation predicate must not be false, and all of its constraints must
be satisfied. These requirements can be expressed in simple implications:

1. Root ensemble is always selected.

2. IF parent ensemble is not selected, THEN none of its children are selected.

3. IF ensemble is selected, THEN its situation predicate must be true, and
its constraints must be satisfied.

No rule specifies when an ensemble should be selected, though. With the
exception of the root ensemble, this means that the simplest solution is to not
select any ensembles.

There are steps the user can take to avoid this problem. They can specify con-
straints in the root ensemble that enforce existence of some or all sub-ensembles,
or they can configure utility functions in a way that maximizes the number of
selected ensembles, etc. The drawback of these approaches is their obscurity.
The problem itself is non-obvious, why should the policy designer think about
resolving it in the first place?

Furthermore, the natural way of writing ensemble selection constraints is in-
direct, through the ensemble’s properties or membership of its roles. But in such
case, the variable representing ensemble selection remains free. This is a per-
formance hit, in the form of larger search space: the solver will still attempt to
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find solutions that satisfy the constraint with various configurations of selected
ensembles. Using an utility function is similar: even though a solution with more
ensembles is better, other solutions are not invalid and might still need to be
examined.

In some cases, this behavior is desirable. In access control scenarios, however,
it is rarely needed. Most cases can be solved by keying ensemble selection either
to the resource being accessed, or to privileged actors — even if the corresponding
set of actors or subjects ends up being empty.

To facilitate that, ensembles registered via the rules call have mandatory
selection based on the situation predicate. The following rule is added:

4. IF parent ensemble is selected, AND child’s situation predicate is true,
THEN child ensemble is also selected.

Using (1) together with (4), it is easy to derive membership status of every
ensemble registered with rules.

6.1.4 Constraint Propagation
To make use of Choco solver’s constraint programming machinery, all constraints
must be posted as instances of the Constraint class. To do otherwise would be
highly inefficient; the solver would present us with an exhaustive list of solutions,
exponential in the number of elements, and the framework would check constraint
applicability on each one. This is the work we are trying to avoid by using a CSP
solver in the first place.

As designers of the DSL, we want to allow the user to write constraint ex-
pressions with the language’s operators. If we were designing an external DSL
with custom parsing, we could convert the expressions to solver concepts. In an
internal DSL, however, there is already a well-defined syntax and semantics for
integer and boolean operations.

There are two kinds of constraints. Logical constraints place requirements on
truth values of statements: a particular component is or is not a member of a
particular role; a predicate holds for all or some members of the role, and similar.
Arithmetic constraints place requirements on results of calculations and establish
equalities or inequalities between integer values. Of course, an arithmetic con-
straint still boils down to a truth value of a statement. However, calculations
with Ints in the host language must be properly converted to Choco’s IntVars
and the arithmetic predicates on them.

6.1.5 Logical Constraints
Logical constraints are represented by the trait Logical, which emulates the
built-in Boolean type. The trait defines the following operators: “&&” (conjunc-
tion), “||” (disjunction), “->” (implication), “<->” (equivalence), and unary “!”
(negation). Implication is defined in terms of disjunction and negation, and equi-
valence is defined as an implication in both directions. The remaining operators
must be defined in implementations of Logical.

There are three concrete implementations: LogicalBoolean, LogicalBoolVar
and LogicalLogOp.
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LogicalBoolean simply boxes the native Boolean type in a Logical interface.
Any time a Boolean value comes into contact with a Logical, it is implicitly
converted to LogicalBoolean. This allows us to define all operators with Logical
operands.

Having a constraint type whose value is statically known is also useful for
short-circuiting. A complicated boolean expression needs to be converted to
Choco constraints if the values of variables are unavailable, but can be evaluated
directly when they are known. The framework makes use of short-circuiting in
several places; most notably, when generating a list of constraints for an ensemble.
All ensemble constraints must be satisfied, so if a LogicalBoolean(false) is
found, the whole set of constraints evaluates to false.

LogicalBoolVar is backed by Choco’s BoolVar, and LogicalLogOp is backed
by a LogOp. The difference is a matter of Choco implementation: BoolVar rep-
resents a variable in the constraint problem, while a LogOp represents a con-
straint, namely, a tree of boolean clauses in Choco’s SAT constraint propagator.
Both share a common interface ILogic. The framework defines a common su-
perclass LogicalWithILogic, which implements the “&&” and “||” operators.
Short-circuiting is used here too: if one of the operands is a LogicalBoolean, the
result is either a fixed truth value or the value of the other operand. Only when
both operands are LogicalWithILogics, a new LogOp is created.

The only difference between a BoolVar and a LogOp is negation. A BoolVar
class has a not() method; for LogOp, no such method is available and the negation
must be constructed from a nand operation.

6.1.6 Arithmetic Constraints
Arithmetic constraints are represented by the trait Integer, which emulates the
built-in Int type. The trait defines the basic arithmetic operators “+”, “-” (in-
cluding unary minus), “*”, and “/”; and comparison operators “===”, “!=”, “<”,
“>”, “<=”, and “>=”. All listed operators take Integers as operands. Arithmetic
operators return Integers, while comparison operators return Logicals.

Note that the normal equality operator “==” cannot be used. See section 6.2.4
for technical details.

Only two concrete implementations of Integer exist.
Similar to the LogicalBoolean type, an IntegerInt boxes the native Int

type, and an implicit conversion is available that ensures any Ints interacting
with an Integer are automatically boxed.

IntegerIntVar encapsulates Choco’s IntVar, which always represents a vari-
able in the constraint problem. Unlike the logical constraints, there is no “tree”
type to represent arithmetic. For every operation involving an IntVar, a new
variable representing the result must be generated, and a constraint is posted
that links the result variable to the operands. This means that unlike Logical
types, Integers need access to the solver instance to implement the operations.
Because of that, the concrete implementations are defined inside the SolverModel
class.
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6.1.7 MemberGroup class
The MemberGroup lies at the core of the framework. It is a collection of ele-
ments of the specified member type, underpinned by a SetVar. Instances of
MemberGroup[Component] represent roles, and a subclass EnsembleGroup repres-
ents ensemble groups (see section 6.1.8 for details). The purpose of MemberGroup
is to provide mapping between SetVar values and member instances, and to wrap
constraints on the SetVar in Logicals.

The class takes an iterable of candidate member instances as a constructor
argument, converts it to a Set, so that no value is saved more than once, and then
to an IndexedSeq, so that each member has a fixed index. The original order is
lost in this process. An allMembersVar: SetVar is created, with a lower bound
of empty set and an upper bound of all indices of the member set.

In addition, a isActiveVar: BoolVar is created that represents the group’s
active state. A MemberGroup can be active or inactive. If inactive, no members
can be selected. This is enforced by the following constraint: IF isActiveVar is
false, THEN allMembersVar must be empty.

Choco provides a number of built-in constraints on SetVars through the
ISetConstraintFactory interface. It is possible to define unions, intersections,
and differences of collections of sets, specify that all sets are disjoint, find their
minimum or maximum elements, and several other operations. Unfortunately,
support for functional features, such as mapping elements to other values, is lim-
ited — e.g., it is not possible to specify a constraint that at least one member
must satisfy some predicate, because there is no built-in way to map set members
to predicates.

Constraints are often expressed in terms of universal or existential statements,
so we need to implement these features using set primitives.

The universal predicate all(func: Member => Logical) is implemented as
follows. First, the mapping function func is applied to all members, returning
a per-member predicate. Then a constraint is generated for each member: IF
x is selected, THEN predicate must apply. Finally, all member constraints are
merged together with an AND operator.

It would be possible to implement the existential predicate some(func) in
a similar way: the member constraint would be “x is selected AND predicate
applies”, and the constraints would be joined with an OR operator.

However, as it turns out, Choco internally represents logical trees in a Con-
junctive Normal Form (CNF), and the generated expression is in a Disjunctive
Normal Form (DNF). Converting from DNF to CNF exponentially increases the
size of the formula. This is a problem, because there are as many DNF clauses
as there are members in the group.

To avoid the issue, a different approach is used. One of the built-in constraints
allows “channeling” a SetVar to an array of BoolVars: bools[i] is true if and
only if i is selected in the set. We construct an array of BoolVars corresponding
to results of func for each candidate, and create a new SetVar channeling this
array. This gives us a set of “applicable members” for which func is true.

We then generate a constraint requiring that this set and the set of selected
members are not disjoint. I.e., at least one selected member must also be an
applicable member.
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If required, it would be possible to use the same approach for the all predicate.
The final constraint would need to specify that the set of selected members is a
subset of applicable members.

Predicates allEqual(func: Member => Any) and allDifferent(func) are
using a similar technique. We set up channeling between the set of selected
members and set of result values: each unique result of func is assigned an index,
and that index is selected in the value set if there is at least one selected member
with that result value.

Given this channeling, the allEqual constraint specifies that cardinality of the
value set must be 1 (or 0 if the selected member set is empty), and allDifferent
specifies that cardinality of the value set must be equal to cardinality of the
selected member set.

disjointAfterMap is a predicate that applies a function to the current mem-
ber set, and a different function to another member set. The predicate is satisfied
if the results of the mappings are disjoint. Value channeling is used in this pre-
dicate too, except the indices for values are taken from a common set. It is then
straightforward to set up a disjoint constraint between the two channeled value
sets.

The method sum(func: Member => Integer) returns an Integer represent-
ing the sum based on membership. Choco has a built-in function that takes the
sum of selected members, given a statically-known set of “weights”, or values, for
each member. If all results of func are of type IntegerInt, meaning that their
values are statically known, we use Choco’s builtin. Otherwise it is necessary to
construct the sum from IntVars.

An array of IntVars is created and each is conditionally set either to zero (if
the corresponding member is not selected) or the result of func. The resulting
sum then adds together all such IntVars.

The membership predicate contains(member) can be converted to Choco’s
membership constraint directly. Similarly, containsOnly(member) specifies the
membership and enforces that cardinality of the set is exactly 1.

containsOtherThan(member) is only slightly more complicated. If the member
is not selected (or not in the set of candidates at all), it is enough to ensure that
the set cardinality is at least 1. Otherwise the cardinality must be at least 2 —
one for the selected member, one for the required other element.

6.1.8 Ensemble Hierarchy
Apart from constraints, situation predicates, utility expressions and other mis-
cellaneous data, ensembles hold sub-ensembles, and roles and their members.
Figure 6.1 illustrates this structure.

One notable feature is that an ensemble does not hold its members directly.
Instead, it holds MemberGroups. Selection parameters in each group are inde-
pendent from other groups; that way it is possible to have dynamically selected
ensembles and selection enforcement by rules in the same ensemble.

Ensembles also keep track of their own selection status. If an ensemble is
selected in its parent group, it can select its own members; more precisely, its
groups are allowed to select their members.
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Figure 6.1: Ensemble object diagram

To facilitate this, ensemble has an isSelectedVar: BoolVar representing the
selection status. When adding a role or an ensemble group, its isActiveVar is
set to equal the parent ensemble’s isSelectedVar, as indicated on figure 6.1 by
the dotted line. If an ensemble is selected, all its groups become active and can
select members. If it is not selected, its groups are inactive and the whole branch
of the hierarchy is effectively turned off.

If an ensemble is part of an ensemble group, its isSelectedVar is reified with
the corresponding membership constraint in the group’s allMembersVar (plus
the result of its situation predicate). The root ensemble is not a member of any
groups, so its isSelectedVar is bound to true by the policy object.

6.2 From Scala to DSL
The Scala language has many features which make it suitable as a host lan-
guage for an internal DSL. The ability to use blocks of code as expressions allows
us to define custom language constructs. By-name parameters enable delayed
evaluation, a necessary feature for writing declarative code in otherwise mostly
imperative language. Arbitrary nesting, together with code in class bodies, makes
the resulting language flow feel natural. Scala’s type system allows us to retain
advantages of strong typing and build generic containers that do the right thing
— and at the same time, type inference is powerful enough so that users of the
DSL almost never come into contact with type annotations. Finally, operator
overloading lets us emulate primitive types with custom classes, and implicit
conversions ensure that the emulated types interoperate with the built-in ones.

This section describes the overall architecture of the framework, and technical
details of all language constructs used in the DSL. Although we give a brief
overview of each language feature that we are using, this section is mostly intended
for readers already familiar with the Scala language.
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6.2.1 DSL Constructs
The DSL uses a number of distinct language constructs. An ensemble definition
is, in Scala terms, implementing a child class:

class MyEnsemble extends Ensemble { /* ... */ }

Creating a dynamic role is realized as creating a member field from the result
of a function call:

val role = subsetOf(members)

The call runs directly in the class body. In Scala, this means that it is executed
as part of the constructor.

Scala does have first-class functions, but it does not have top-level functions.
Each function must be defined within a class. Functions that are available at
ensemble definition time are in fact methods of the class Ensemble. Their results
are tied to the enclosing Ensemble instance, which is also where the registration
actually happens; if the result of subsetOf in the above snippet was not saved
to a member variable, the selection from members would still happen behind the
scenes.

This is also one of the reasons ensemble instances must be explicitly registered
with rules or ensembles: without the registration call, the enclosing instance
would not know about the nested instances. While it would technically be possible
to examine the class through reflection and find all Ensemble instances in member
attributes, this would be needlessly fragile in practice.

Apart from “functions”, the DSL also makes use of “constructs”. The following
code looks distinctly different from the above:

utility {
val occupied = occupants.size + assignees.cardinality
occupied * occupied

}

Although utility looks more like a keyword or a flow-control statement, it
is in fact a normal method. Its definition could look like this:

def utility(util: Integer)

I.e., it is a method that takes a single argument of type Integer. The special
syntax is enabled by two useful properties of Scala.

One, code blocks are expressions whose value is the last expression in the
block. In this case, the value of the code block is “occupied * occupied”. Given
that a code block is an expression like any other, it is possible to use code blocks
in unusual places, such as function arguments. The following is a contrived but
perfectly valid example of Scala code:

1 val maximum = math.max(
2 {
3 val a = someFunc()
4 if (a > 5) a
5 else {
6 val b = someOtherFunc()
7 a + b
8 }
9 }, 0)

Two, Scala allows omitting parentheses in certain conditions. In particular,
when calling a function with one argument, it is possible to omit the enclosing
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parentheses if the argument is a code block enclosed in curly braces. The following
three statements are equivalent:

utility(3)
utility({ 3 })
utility { 3 }

This way it is possible to define methods that can behave as custom language
constructs. Note that this feature is particularly useful in combination with by-
name parameters. See section 6.2.7 for detailed explanation.

6.2.2 Ensemble Structure
Each Ensemble instance contains the following data:

• Collection of role objects, representing dynamically assigned roles

• Collection of EnsembleGroup objects for each rules or ensembles call

• Collection of constraints, in the form of callables that return a Logical

• Collection of associated security actions and notifications

• Situation predicate, if defined

• Utility function, if defined

For each type of data, methods are available for configuring this data at
ensemble definition time.

As the total number of methods is rather large, and the related functionalities
are mostly independent, each is implemented in a separate trait. We maintain
separation of concerns between traits and declare their dependencies through
inheritance and self-type annotations.

Trait inheritance works the same as normal class inheritance. Most of en-
semble traits inherit from Initializable, allowing them to override the _init
method and access the solver instance; see section 6.2.6 for details. Inheritance
also allows us to inject implicit conversions from CommonImplicits trait.

Self-type annotation in a trait enforces that any concrete class implementing
that trait must also conform to the declared self-type. This usually means that
it must implement some other trait. For example, the following self-type in trait
WithRoles informs the compiler of a dependency on two other traits:

trait WithRoles {
this: WithConstraints with WithSelectionStatus =>
/* ... */

}

The WithRoles trait is then allowed to access members of the other traits on
self.

Functional difference between inheritance and self-type annotation is subtle,
but the takeaway is that self-types define a looser coupling, because they do not
lock-in the inheritance hierarchy. We use self-types to declare that a trait uses a
functionality from another trait, but is not an extended version of it.

The following list describes the individual traits of Ensemble.
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Initializable
Provides an initialization hook, plus access to the solver instance through
the _solverModel property.

CommonImplicits
Defines implicit conversion from Int to Integer, from Boolean to Logical,
and adds methods to collections of MemberGroups. This makes those implicit
conversions available in ensemble definition context.

WithName
Provides a name property. Mainly for debugging purposes.

WithActions
Provides allow, deny and notify functions, and a method to collect results
of these functions from sub-ensembles. To achieve that, it has a dependency
on WithEnsembleGroups.

WithConstraints
Provides the constraint function, storage of registered constraints, and
functionality related to converting constraints to solver objects.

WithEnsembleGroups
Provides the ability to register groups of sub-ensembles, and the rules and
ensembles methods. Because groups must activate themselves based on the
parent ensemble selection status, this trait requires WithSelectionStatus.

WithRoles
Provides the ability to register roles via role functions. Because roles impli-
citly use constraints, and the subsetOf function allows adding a constraint
on the subset cardinality, this requires the WithConstraints trait. In ad-
dition, WithSelectionStatus is required to support group activation based
on ensemble selection status.

WithSelectionStatus
Provides a BoolVar indicating the ensemble’s selection status.

WithUtility
Provides methods to define and query the utility expression of the ensemble,
and collects utility value from sub-ensembles. To access sub-ensembles, this
trait requires the WithEnsembleGroups trait.

The Ensemble class itself defines the situation function and handling of the
situation predicate. While it would be straightforward to extract this functional-
ity to a separate trait, we opted to keep it in Ensemble. The functionality is small
enough that it does not clutter the class, esp. given that Ensemble is otherwise
empty; and it does not figure in the dependency graph, so extracting it would
have little benefit for the rest of the code (unlike WithSelectionStatus, which
is also small and uncomplicated, but is a dependency of two other traits).
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6.2.3 Implicit Conversions
Scala’s implicit conversions allow values of one type to be automatically converted
to a different type, if they appear in a context where the target type is required.
Two kinds of implicit conversions are available. With implicit def, a function
returning the target type is applied to the value in question. An implicit class
creates an instance of a new class, effectively allowing to add new methods to
existing types.

Code that uses implicit conversions is less readable, because there are non-
local hidden calls. In the following example, an implicit conversion adds a method
named foo to a value of type Int. It is impossible to know what is foo just from
this snippet; one would need to locate all methods named foo in the codebase
and then figure out which implicit conversion is in play.

val x: Int = 7
val y = x.foo()

For this reason, it is usually better to avoid implicit conversions in normal code.
However, they can be extremely helpful when creating a DSL.

For an implicit conversion to take effect, its function or class must be in scope:
either defined in the same class (or a parent class), or explicitly imported.

We use implicit conversions for several different purposes. The most common
one is upgrading Ints to Integers and Booleans to Logicals. This is important
for seamless interoperability of native integer or boolean expressions with solver
constraints, as described in section 6.1.4. The appropriate conversion functions
are defined in trait CommonImplicits, which is mixed in where required. Import-
antly, it is mixed into the main Ensemble class, thus ensuring that user code will
have these conversions in scope whenever defining an ensemble.

Implicit conversions also help cut down on the number of different method
overloads. The method unionOf accepts either an iterable of MemberGroups, or a
variable number of MemberGroup arguments. However, we want to support using
Components for unionOf directly. Otherwise, every time the user wanted to make
an union of a role and a fixed list of components, they would need to specify a
role for the component list. Scala has no support for union types, so it would be
impossible to specify a function that takes a variable number of “MemberGroup or
Component or Iterable[Component]” arguments.

Instead, an implicit conversion from Component or Iterable[Component] to
MemberGroup[Component] is defined, allowing the users to use either roles or fixed
sets of components interchangeably.

Similarly, the allow, deny and notify verbs should accept components, list of
components, or roles as their arguments. In the notify case, it is simple enough
to provide three overloads for three acceptable argument types. However, allow
and deny have two arguments of this type. A full set of overloads would need
9 variants of each verb. Instead, each of these verbs only accepts MemberGroups
as arguments, and implicit conversions ensure that components and lists of com-
ponents are usable as well.

Two distinct implicit conversions are used with ensemble collections. First,
an EnsembleGroup converts to a list of all its members, so that methods like
map can be used on results of rules call directly. Second, an implicit class
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WithMembersIterable adds methods cardinality and allDisjoint to collec-
tions of MemberGroups. This enables the following common idiom:

val r = rules(/* list of ensembles */)
constraint { r.map(_.someRole).allDisjoint }

The variable r of type EnsembleGroup is converted to Iterable[E <: Ensemble],
so that map can be applied on it. This iterable is a plain sequence of objects of
the appropriate ensemble type, which has a member role someRole. The result
of the map is therefore a plain sequence of MemberGroup objects.

This sequence is then implicitly converted to a class WithMembersIterable,
which has the method allDisjoint, ensuring that no member is selected more
than once for someRole.

Note that the implicit conversion turns the EnsembleGroup into a list of all its
members, not just the selected ones. This is because at the time the conversion
is used, the list of selected members is not yet known.

The provided methods work due to the fact that inactive (not selected) en-
sembles do not have any members. Empty roles add zero to cardinality, and
are guaranteed to be disjoint with non-empty ones.

An implicit conversion from an EnsembleGroup to its allMembers carries some
risk of confusion when used in an inappropriate context. E.g., when inspecting
a solution, the user might inadvertently invoke the implicit conversion and their
code will visit even ensembles that are not part of the solution. We consider this
risk acceptable because, again, ensembles that are not selected do not have any
members.

6.2.4 Operator Overloading
Method names in Scala are allowed to use special characters, and operators are
defined as regular methods with the appropriate name. For instance, overloading
the “+” operator on an IntegerInt type could look like this:

def +(other: Integer): Integer = other match {
case IntegerInt(value) => new IntegerInt(value + this.value)
// ...

}

Combined with implicit conversions, both of the following will work:
val leftHand: Integer = someInteger + 5
val rightHand: Integer = 5 + someInteger

The first case is simple. The expression “someInteger + 5” is interpreted as
“someInteger.+(5)”. Because someInteger has a “+” operator, Scala tries to use
it. The operator is defined for an Integer, and there is an implicit conversion
available that upgrades 5 to Integer. The resulting instance is passed to the “+”
method.

The second case is slightly more complicated. As before, the expression trans-
lates to “5.+(someInteger)”. In this case, the built-in Int type does not have
an appropriate “+” operator for handling anything someInteger could be conver-
ted to. It is necessary to search the list of possible implicit conversions of the
left-hand operand, to see if one of them comes with an appropriate definition of
“+”.
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This process works fine for most operators, but fails for “==”. The problem
here is that “==” is defined on the root class Any with the following signature:

final def ==(arg: Any): Boolean

The method is final, so it cannot be overridden. It calls the equals method
internally, which is available for overriding, but then the return value is Boolean,
which is not appropriate when we need the result as a Logical.

It is possible to overload a specialized version of “==” with a different return
type. For the Integer trait, the following definitions are desirable:

def ==(other: Integer): Logical
def ==(other: Int): Logical

We need to have a special variant for Int, because implicit conversion won’t help
us here: “someInteger.==(5)” can use the default implementation for type Int.

The problem with this is that the integration is not seamless. If the Int value
appears on the right-hand side, it will always be able to use the built-in “==”.
This is made worse by the fact that both of the following will compile:

val l1: Logical = someInteger == 5
val l2: Logical = 5 == someInteger

The type of “5 == someInteger” is Boolean, which has an implicit conversion to
Logical, and so it is valid in every context that requires a Logical type. But
the result of the comparison is always false, because we are comparing unequal
types.

The Integer trait uses a triple-equals “===” operator for comparing equality
in the desired way. This is a convention used by many other Scala-based DSLs
and language customizations. Scala compiler will emit a warning whenever two
unrelated types are compared with “==”, which should notify the user that they
made a mistake.

We considered raising an exception in an overridden equals method, but that
would silence this warning, and would not work when Int is the left-hand operand
anyway.

6.2.5 Type Bounds
One of the features required from the DSL is seamless working with different
ensemble and component types. Consider the following code:

1 class Worker(val rank: String) extends Component
2 val workers: Iterable[Worker] = /* ... */
3 class Root extends Ensemble {
4 val supervisor = oneOf(workers)
5 constraint { supervisor.all(_.rank == "supervisor") }
6 allow(supervisor, "supervise", workers)
7 }

The “supervisor.all()” call must accept a function whose argument is of
type Worker — otherwise, it would be impossible to access the rank attribute.
That means that supervisor must carry the information that its member type
is Worker, not just a generic Component. At the same time, the allow call must
accept supervisor as its argument.
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Roles are of type MemberGroup, which is generic over its member type. The
signature looks like this:

class MemberGroup[+MemberType]

The “+” symbol indicates that the class is covariant in the MemberType ar-
gument. That means that for superclass A and its subclass B, MemberType[B] is
considered a subclass of MemberType[A].

Method MemberGroup.all accepts functions of type MemberType => Boolean.
In our example, member type is Worker.

Method accept takes an argument of type MemberGroup[Component], so it
accepts a MemberGroup[Worker] object.

The type signature of oneOf looks like this:
def oneOf[C <: Component](items: Iterable[C]): MemberGroup[C]

The method takes an iterable of objects of concrete type C, which is a subtype of
Component, as indicated by the “<:” symbol. It returns a MemberGroup paramet-
erized by the appropriate concrete type. Scala’s type inference makes sure that
when passing an iterable of Workers, the returned MemberGroup will have Worker
as its member type.

Ensemble groups work in a similar way, except that EnsembleGroup is a sub-
class of MemberGroup specialized so that its member type must be a subtype of
Ensemble. This is the signature:

class EnsembleGroup[+EnsembleType <: Ensemble]
extends MemberGroup[EnsembleType]

The “+” symbol indicates type covariance: an EnsembleGroup of a concrete
type of ensemble is a subclass of EnsembleGroup[Ensemble]. The “<:” symbol
indicates a type bound: the member type must be a subtype of Ensemble.

Similar to role functions, rules and ensembles must be defined with appropri-
ate type signatures, so that they return the appropriate variant of EnsembleGroup.

6.2.6 Initialization
Every ensemble and group object requires an instance of the solver, through
which variables and constraints are constructed. This is not available at ensemble
definition time.

In terms of Scala, the whole policy is a series of instances of nested classes.
In order to propagate a solver object, the user of the DSL would be required
to add parameters to their ensemble class definitions and manually propagate
them when instantiating sub-ensembles. This violates separation of concerns:
the solver object is an implementation detail of the framework, not something
the users should care or even know about.

Instead, the ensemble tree is constructed without access to the solver, and the
solver object is passed to it in a separate initialization step. The Initializable
trait defines a method _init, which allows classes and traits to hook into the
initialization process. The Policy object calls _init on the root ensemble, and
the Ensemble class is responsible for propagating the call to its ensemble groups
and role objects. Ensemble groups are in turn responsible for propagating the
call to sub-ensembles. This way it is ensured that every part of the policy tree is
initialized.
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The initialization runs in three phases:

1. ConfigPropagation propagates a Config object, which contains the newly
created instance of the solver.

2. VarsCreation is the phase where solver variable objects are created. The
class MemberGroup initializes its set and activation variables, and Ensemble
initializes its selection variable.

3. RulesCreation can use variables created in the previous step to generate
and post solver constraints.

While it might be possible to perform the initialization in a single pass, it
would make it more difficult to implement properly. Developers would need to be
extra careful about initialization order, e.g., make sure that an initialization step
is not using variables from a child (or parent) object whose initialization isn’t
finished yet. Multi-phase initialization removes this source of fragility. Phase (1)
can be done by every object individually. Phase (2) only requires that the solver
is available, i.e., that phase (1) has finished everywhere, and phase (3) can rely on
the fact that all variables across all objects have been generated in the previous
phase.

Several component traits of Ensemble implement their own _init steps. This
is possible because Scala has a well-defined trait linearization order, and calling
super._init() within a trait will invoke the _init implementation in the next
trait up.

6.2.7 By-Name Parameters
As stated in section 6.2.6, the solver object is not available at ensemble definition
time — or, more precisely, at ensemble instantiation time. Most of constraint
definition and role creation is done in class body, and this code actually runs when
the corresponding instance is constructed. This poses two related but distinct
problems.

First, consider a role that relies on external data:
1 class Scenario(val workers: mutable.ArrayBuffer[Worker]) {
2 class Root extends Ensemble {
3 val role = subsetOf(workers)
4 constraint { role.cardinality > 5 }
5 }
6 val policy = Policy.root(new Root)
7 }
8
9 object Scenario {

10 def main() {
11 val scenario = new Scenario(/* ... */)
12 scenario.policy.resolve()
13 scenario.workers.append(new Worker(/* ... */))
14 scenario.policy.resolve()
15 }
16 }

One would expect the second resolve call to use the newly added Worker
instance. However, at that point, the ensemble seems to already exist, and the
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old value of workers was used to construct role. Groups register their members
at construction time (see section 6.1.7), so the original argument no longer affects
the set of role members.

It would be useful if the framework could somehow “refresh” the policy defin-
ition using new data.

Second, the constraint statement works with role.cardinality. We expect
the result to be a Logical object referencing an underlying BoolVar. But as stated
above, at this point the solver instance is not available, so a BoolVar cannot be
created.

Both of those issues are solved using by-name parameters.
In Scala, functions are first-class objects, so naturally it is possible to pass

them as arguments explicitly. That is what happens in this statement:
val role = subsetOf(members, _ > 1)

The expression “_ > 1” is a shortcut for “x => x > 1”. This is a function of type
“Integer => Logical”, i.e., takes an Integer argument and returns a Logical.

By-name parameters are basically parameters that are passed as functions
implicitly. The signature of a constraint verb is:

def constraint(clause: => Logical): Unit

clause is a by-name parameter, and its type is “expression of type Logical”. The
important point is that unlike normal parameters, the expression is not evaluated
until actually used in the constraint method body. Furthermore, the following
works:

val clauseFun: () => Logical = clause _

Using the above syntax, the “expression” parameter is converted to a normal
function with no arguments. The constraint method stores all such functions in
a collection and only runs them in the RulesCreation initialization phase, when
the solver is available and all variables are already created.

The verbs situation and utility also take by-name parameters and call
them at appropriate times.

Section 5.4.7 specifies that the root ensemble must be instantiated in the
Policy.root method. The reason is that the argument of this method is actually
a by-name parameter too. The policy object does not store the instantiated policy
tree, it stores a builder function which constructs it. On every call to init() or
resolve(), the policy tree is instantiated from scratch, and so it reflects the
current values of all external variables.

6.2.8 Variadic arguments
Many functions that accept iterables also accept variadic arguments. For ex-
ample, it is possible to call oneOf in two ways:

val a = oneOf(listOfMembers)
val b = oneOf(memberA, memberB, memberC)

Scala natively supports variadic arguments. For the following two signatures,
the type of items is the same:

def oneOf(items: Seq[Component])
def oneOf(items: Component*)

57



One minor issue with the second signature is that it allows the list of argu-
ments to be empty. This does not cause any problems in practice — after all,
the user could as well pass an empty list of components — but still, it would be
cleaner to disallow code like “val x = oneOf()”.

To achieve this, all variadic functions actually have two arguments: one is
mandatory, the other is variadic. This is the definition of oneOf:

1 def oneOf[C <: Component](itemFirst: C, itemRest: C*): Role[C] =
2 oneOf(itemFirst +: itemRest)

Type of itemFirst is C, and type of itemRest is Seq[C]. The code prepends the
first item to the list and calls the other overload of oneOf. It is possible to call
oneOf with one or more arguments; calling with no arguments is illegal.
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7. Evaluation
To evaluate practicality and performance characteristics of our approach, we have
designed a number of testing scenarios. Each tests a particular aspect or feature
of the DSL.

7.1 Methodology
In this chapter, we take scenario to mean a particular situation or task with
possible variables. A configuration is an instance of the scenario, where the
variables are bound to particular values. A test case is a set of configurations to
be evaluated. In a test case, each configuration is usually tested many times, and
each attempt is called a test run.

E.g., a scenario can be described as: “pick several Workers and one Leader
from a pool of Persons”. A configuration of that scenario can be “pick one Worker
and one Leader from a pool of 15 Persons”. One test case involving this scenario
can be a set of configurations “pick three Workers and one Leader from a pool
of N Persons”, with N ← 10, 15, 20...100. Another test case would be “pick N
Workers and one Leader from a pool of 100 Persons”, with N ← 1, 2...20

Each scenario is represented by a class containing the necessary objects and
a definition of the associated ensemble(s). A companion Spec subclass is a con-
cise description of scenario parameters and an interface for the test runner. It
generates appropriate instances of the scenario class on which each test run is
performed.

Because Scala runs in a Java Virtual Machine (JVM) with Just-in-Time com-
pilation, it is necessary to “warm up” for the given scenario. Otherwise, earlier
test runs would be slower than the later ones, where the JIT has had time to
catch up and pre-compile hot paths. To prevent this, the smallest configuration
is run repeatedly for 10 seconds of wall-clock time.

We run each configuration a specified number of times and record the time
to find a solution, utility (if specified), and peak memory usage for each run.
Raw data from the results can be found in the accompanying archive in results
directory, organized by test case name. Graphs are generated with Python, using
scipy [5], pandas [22], and matplotlib [6]. It is possible to regenerate them by
executing the script python/all.sh.

All results are generated on an Intel® Core™ i5-6600K CPU, running on a
single core at 3.90 GHz.

7.1.1 Time Limits
In most scenarios, we set a solver time limit to 30 seconds per test run. This
number was chosen as an arbitrary cut-off point. Preliminary experiments showed
that observed trends are robust even below 30 seconds, and increasing the time
limit has diminishing returns in terms of solution quality (see also section 7.3.4).
Setting a higher time limit would significantly prolong test times while providing
very little additional useful data.
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Moreover, 30 seconds seem like a reasonable real-world time limit. The frame-
work is designed for highly dynamic scenarios and needs to be able to respond
to changing conditions as they happen. Waiting more than a couple seconds for
access control decisions is not acceptable in terms of user experience, and could
possibly even endanger the security goals of the system. Taken in this context,
even 30 seconds is possibly too long. Our results show that in real-world scenarios
it might be possible to lower the time limit further.

7.1.2 Memory Usage
The JVM provides a memory-managed environment with asynchronous garbage
collection, which makes it difficult to obtain reliable memory usage information.
As a rough measure, our test runner uses garbage collector notifications from the
Java Management Extensions API [21] to record peak memory usage during each
test run. We trigger a GC cycle between test runs, and attempt to wait until the
cycle is complete. This is inherently unreliable, however, and there is no way to
ensure that all unreachable objects have been released.

As measured with this method, most scenarios use less than 200 MB of
memory. These results cannot be used to draw any conclusions: any trends
are lost in the variance, allocator granularity, and general overhead of the JVM
runtime.

In section 7.2, we test relatively large configurations where memory consump-
tion is significant. Although the data about memory usage is still very noisy,
it provides some useful insights. We note that the measured data does not re-
flect true memory requirements; many scenarios can run with much less memory
available, by doing garbage collection as needed during the computation.

We have configured the JVM to use a maximum of 10 GB of RAM for its
heap. This ensures that our chosen test configurations never need to deal with
memory pressure, which considerably reduces timing jitter.

7.2 Basic Benchmarks
To evaluate performance of the basic building blocks, we have designed a scenario
that selects one of a list of 100 000 members. With the oneOf function, there is
already a constraint specifying that the cardinality of the selection is 1. From
there, we generate large numbers of additional meaningless constraints. Given
that finding a valid solution is trivial, results of this test provide information
about per-constraint processing time and memory consumption.

To evaluate simple constraints, we generate a number of constraint state-
ments specifying that selection cardinality must be smaller than i for an increasing
i. In the constraints test case, the total number of constraints N goes from 50 000
to 1 000 000.

To evaluate Logical expressions, we generate the following expression:
val condition: LogicalBoolVar = role.cardinality === 1
condition && condition && condition && /* ... repeated N times */
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Figure 7.1: Computation times for basic building blocks

condition creates a single BoolVar in the solver, and the repeated use of the
“&&” operator constructs an unbalanced tree of LogOp operations of a specified
length. In this test case, N goes from 500 to 10 000.

To evaluate Integer expressions, we generate IntVars by repeating idem-
potent arithmetic operations. As explained in section 6.1.6, every arithmetic
operation creates a new IntVar. As the starting value, we use the selection
cardinality, and repeatedly add 15 to it and then subtract 15 from it N times.
Finally, we post a constraint that the selection cardinality must be equal to the
new value, so that the solver is forced to propagate the results of all the individual
calculations. In this test case, N also goes from 500 to 10 000.

Every configuration of every test case runs 100 times.
Figure 7.1 shows timing results. Each point represents median time to solve

a configuration of a given size. Standard deviation across runs was under 150 ms
in most cases, so we choose not to display it in the graph.

Computation time for constraints grows linearly with the total number of
constraints, and 750 000 constraints can be processed in about 5 seconds. This
would match the intuition that the solver needs to evaluate each constraint once
to ensure that the tested solution is valid.

An interesting point is the discontinuity around the 750 000 mark. This
is most likely caused by the corresponding discontinuity in memory usage, as
discussed below.

Computation time for integers also grows linearly, which matches the intuition
that the sequence of arithmetic operations must be propagated in linear time.
The results also closely follow the time measured for simple constraints. Each
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Figure 7.2: Memory consumption for basic building blocks

point represents two arithmetic operations per element, so we can conclude that
each arithmetic operation takes roughly as much processing time as 50 simple
constraints.

Computation time for logical operations grows quadratically and runs out of
the allotted 30-second time limit at 8 000 operations. A Logical operation does
not create new variables in the solver, and the full expression is posted as a single
constraint. The quadratic behavior comes from an inefficiency in Choco’s CNF
normalization, which does not deal well with the unbalanced expression we are
submitting. Still, 4 000 logical operations can be done under 5 seconds.

Figure 7.2 shows peak memory usages. Each point represents a maximum
over the configuration runs. Memory usage data has an extremely high variance,
sometimes on the order of hundreds of megabytes, which we chalk up to the
unreliability of our measurements. Nevertheless, the maxima paint a clear picture.

Memory usage for constraints grows linearly, but shows a distinct discontinuity
between 400 000 and 700 000 elements. As noted above, this corresponds to a
discontinuity in processing time. We do not have an explanation for this behavior.
However, the discontinuity starts before memory usage reaches 4 GB and returns
to original projection at around 8 GB. We therefore hypothesize that this could
be an artifact of JVM memory allocator behavior, or perhaps a custom allocator
in Choco.

Memory usage for integers also grows linearly, in a much more predictable
manner. We note that in this test case, the recorded peak usage resembles the
actual usage more closely than in other tests. In previous experiments, when
only 4 GB were allocated to the JVM, the integer test case ran out of memory
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at around 7 500 elements, and computation time started to rise sharply around
the 4 500 mark — presumably due to memory pressure and the need to run GC
during the computation. The other test cases did not run into similar problems;
GC runs were causing timing jitter, but other than that, the constraint test case
continued linearly until 950 000 elements, and the logical operation test case was
unaffected.

The logical operation test case reaches a plateau at the 1 500 mark, rising
only very slowly in subsequent configurations. We expect that this corresponds to
some pre-allocated internal array whose size is sufficient for all our configurations;
given that the first jump is from 2 GB to 4 GB, it is possible that at some larger
configuration the pre-allocated array would grow twice as large again. The LogOp
tree and associated data is very small in comparison.

7.3 Evaluating the Running Example
The security policy from the running example contains both static and dynamic
elements, and showcases all major features of the framework. It is therefore
a good starting point for evaluation. We have designed a number of testing
scenarios based on it.

To quickly summarize, the security policy manages a building with workrooms,
which are statically assigned to projects, and lunchrooms, which are unassigned
and limited by capacity. At lunch time, workers can request seats in lunchrooms
and the policy should grant them access as soon as a seat becomes available,
while upholding the overall security goal: workers from different projects must
not use the same room.

There are two main types of sub-ensembles in the policy. WorkroomAssignment
is registered for each project and allows workers of the project to enter all work-
rooms of that project. LunchroomAssignment is registered for each lunchroom
and ensures that seats in that lunchroom are allocated as appropriate.

7.3.1 Static Assignments
The first scenario is in the morning, when workrooms are already open, but
lunchrooms are closed. Per the situation predicate, LunchroomAssignments are
inactive, so only statically-assigning WorkroomAssignments will be in play. Meas-
uring their behavior should give us a performance baseline.

There are 100 workrooms that are assigned in a round-robin fashion to the
configured number of projects. We have set up three test cases, for 5, 15, and
50 projects. In each case, we vary the number of workers from 500 to 10 000 in
increments of 500. Each configuration is tested 500 times.

Figure 7.3 shows the results of measurements. Vertical lines from the points
represent error bars of one standard deviation; in many cases, too small to be
visible over the point marker.

Computation time grows linearly with the total number of access grants. For
this reason, times for the 5-project test case are larger: the number of workrooms
is fixed, so each project gets more rooms and each worker gets an access grant to
each of the rooms.
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Figure 7.3: Static assignment to workrooms

The measurements are in the millisecond range, and it is possible to process
10 000 workers in 80 ms. Most of the time is actually spent pre-generating a
lookup table for the allows() method; when this feature is disabled, computation
times drop as much as 4x for the largest configuration.

7.3.2 Empty Lunchrooms
At lunch time, LunchroomAssignment ensembles are activated, and workers can
request seats by setting their hungry attribute to true. In the second scenario,
we assume that all available lunchrooms are empty, and the solver is attempting
to seat an increasing number of hungry workers.

From the outset, it is clear that the problem has an exponentially large solu-
tion space. The solver is attempting to maximize a utility expression: ∑︁ |si|2,
where si is the set of occupied seats in i-th lunchroom. Even with the knowledge
that only the cardinality of seatings matters, the search still needs to implicitly
consider all possible assignments of projects to lunchrooms, and all possible dis-
tributions of workers between the available rooms.

The test case in figure 7.4 has 4 lunchrooms with 10 seats each, and 3 available
projects. Individual configurations then specify a total number of hungry workers,
which are selected from the projects in a round-robin fashion.

The Y axis represents time to find an optimal solution. Each configuration
is rendered as a box plot over the test runs, with whiskers representing 1.5 IQR,
and outliers removed. The blue line is an exponential curve fitted to the medians.

Even in this very small test case, computation times are unacceptably slow.
Seating 12 workers takes 5 seconds, and the solver crosses the 30 second time
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Figure 7.4: Dynamic assignment with more rooms than projects

limit at the 16 worker mark1.
The situation with more available lunchrooms than projects represents the

worst case for the solver: it is certain that at least one project will be able to use
more than one room, so workers from that project can be distributed among the
available rooms.

This factor is removed in the next scenario. Number of lunchrooms is fixed
to 3, each with 5 seats, and number of projects varies from 5 to 9. Same as in
previous scenario, the lunchrooms are empty and we are seating an increasing
number of hungry workers.

The search is simplified by the fact that in terms of utility, distributing workers
from the same project across rooms is always worse than putting them together
and using workers from a different project for the other rooms. Although the
number of solutions is still exponential, computation times are much lower.

Figure 7.5 shows the results. Variance in computation times is comparable to
the previous scenario, so we are only showing median times to optimal solution.
Two outlier configurations have been omitted: 6 projects with 35 workers, and 8
projects with 39 workers. See section 7.3.3 for discussion. After that, the longest
time recorded is approx. 9 seconds, for 27 workers in 9 projects.

An interesting property is visible here. The peak times correspond to multiples
of the number of projects, and after 4p + 1 workers, computation times sharply
drop to ~10 ms. This point corresponds to the moment when the round-robin
algorithm first picks 5 hungry workers (same as lunchroom capacity) from the

1The solver was able to find the optimal solution under 30 seconds in several cases, but it
timed out in most of the 100 test runs. For this reason, we have excluded this data entirely.
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Figure 7.5: Dynamic assignment with more projects than rooms

same project. As soon as a lunchroom can be filled to capacity by a single
project, the solver seems to be able to use this fact to optimize the search.

Similarly, multiples of number of projects are the points when the same num-
ber of workers is picked from every project. At that point, all projects are equally
good candidates for seating, and so the number of solutions rises; after the peak,
it is possible to quickly exclude the projects with fewer hungry workers.

Although the computation is still relatively slow, we are now within realistic
problem sizes. In a real-world deployment, seating 30 workers in 5 seconds might
be acceptable.

7.3.3 Probabilistic Search Anomalies
In the previous scenario, we observed that when a trivial solution of a certain type
exists, the solver converges on that solution very quickly. In particular, when it
is possible to fill a room to capacity, an optimal solution is found in milliseconds.
This result was stable across runs and not affected by the number of “overflow”
workers who are hungry but could not be seated.

However, in some cases, the optimization seems to fail. This often appears in
the form of outliers — in a particular configuration, most attempts take 20 ms,
but some can take several seconds. For some configurations, the short times are
actually the outliers: most attempts take several seconds, and the occasional
“good try” completes immediately.

We have not found a pattern in the bad configurations. The outliers in good
configurations behave probabilistically and appear more frequently as configura-
tion size grows.
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To measure this behavior, we have set up the following scenario: the number
of projects is the same as the number of lunchrooms, each lunchroom has a
capacity of 5, and there are 5 hungry workers per project. The trivial solution
is apparent: each lunchroom is filled to capacity with workers from one project,
and the remaining search space is only as big as the number of project-lunchroom
permutations.
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Figure 7.6: Frequency of search anomalies

We created configurations of 1 to 30 projects, and ran 500 tests of each,
with a time limit of 3 seconds. The expected solving time of one run is below
100 ms, so this time limit was deemed sufficient. Results are shown as a percentile
graph in figure 7.6. We arbitrarily chose to plot multiples of 4. Showing more
configurations does not bring any additional insights and makes the graph less
clear.

For 4 projects, all tests finished under 500 ms. At 12 projects, 60 % of tests fin-
ished under 500 ms, and 25 % of tests timed out. 28 projects is large enough that
no test finished under 500 ms, but the curve still has a similar shape; presumably,
the likelihood of finding the good solution is too low.

The configuration with 20 projects is a “bad” one, as all of the 500 attempts
have timed out.

7.3.4 Solver Time Limits
In all previous scenarios, we measured time to find an optimal solution. When
the search timed out before declaring a solution optimal, it was counted as a
failure. However, that does not mean that no solutions were found.

67



Choco’s optimization process works by finding a satisfying solution for the
problem and then posting an additional constraint that the next solution must
have a strictly higher utility. Most of the time this means iterating over several
successively better solutions. If an optimal solution is not required, it is possible
to either switch the behavior of the solver, or to accept the best solution found
when the time limit is reached.

To test the trade-off between speed and solution quality, a scenario was set
up with 3 projects, 5 lunchrooms with 20 seats each, and 21 hungry workers, 7
per project. In this scenario, the optimal solution is seating all of the workers
from a single project in one of the available lunchrooms, and keeping two rooms
empty. The total utility of this solution is 72 · 3 + 0 · 2 = 147.
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Figure 7.7: Utility of solutions found before time limit

We created configurations with a successively higher time limit from 1 to 30
seconds, and measured them over 100 runs. Figure 7.7 shows each configuration as
a box plot over successful tests, with whiskers representing 1.5 IQR, and outliers
removed. A relatively large amount of tests have failed to find a solution within
the time limit. The red dashed line shows the amount for each configuration. Over
50 attempts were successful in every case, which gives us a sufficient number of
samples.

The data has high variance, but the successful runs copy a logarithmic curve
(shown in blue). That is the expected behavior. On an exponential problem,
linear increase in computation time should provide logarithmic benefits.

None of the test runs get close to the optimal utility of 147. In preliminary
experiments, even tests with a time limit of 5 minutes did not converge on the
optimal solution. These results also retroactively show that our choice of 30
seconds as the default time limit was reasonable.
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7.3.5 Practical Situations
Previous scenarios were testing the solver on arbitrary configurations in isolation.
In a real-world deployment, however, the situation would look very different.

First thing to note is that in practice, it is almost impossible for dozens of
workers to request lunch at exactly the same time. We have experimented with a
“one-by-one” solving method, where instead of submitting all hungry workers to
the solver at once, we incrementally submit one worker at a time. This converts
the O(kN) problem of seating N workers to N separate O(1) problems of seating
one worker. In most cases, this approach will achieve the same utility, because
workers from the same project are preferentially seated together. Computation
time grows linearly with the number of workers.
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Figure 7.8: Time to seating one worker

Figure 7.8 shows computation times for seating one worker in an increasing
number of lunchrooms. Each case was measured 100 times. Blue dots represent
median times, vertical lines are error bars of one standard deviation.

The number of projects is irrelevant, as the worker being seated can only be-
long to one, and lunchrooms are only tied to projects through their occupants.
Lunchroom capacity is also irrelevant, as long as it is 1 or more. At 200 lunch-
rooms, one worker can be seated in one second, which is probably good enough
for any reasonable real-world deployment.

Solving time is perfectly quadratic (shown in orange) in the number of lunch-
rooms. The source of the quadratic behavior is most likely the allDisjoint
constraint: a worker can be seated in any of the N rooms, and for each variant,
N rooms must be checked to ensure disjointness.
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7.3.6 Simulation
In practical situations, it is also very rare for all lunchrooms to be empty at the
same time. When the first worker is seated in a lunchroom, the choice locks the
worker’s project to that room. All subsequent requesters from the same project
will be preferentially seated there. This effectively splits the problem in two:
workers from a chosen project will only be seated to that project’s rooms, while
these are excluded from the possibilities for workers of other projects.

In order to examine this behavior, and to test the solver in more real-world-
like conditions, we have created a simulation of worker behavior at lunch time.
The basis of the simulation is a building with 500 workers working on 10 projects,
which is realistic for a modern office building. On each of the 5 floors there is a
lunchroom with 40 seats.

At every step of the simulation, every worker that hasn’t eaten yet has a
0,5 % chance of becoming hungry and requesting a seat. Once a worker receives
a seating notification, they take up to 5 simulation steps to reach the lunchroom,
and then 5 to 20 steps to eat, before leaving the lunchroom and getting back to
work.

In a typical simulation run, all workers can have lunch in about 2 000 steps.
We are not particularly interested in the tail end of the simulation, because
it mostly involves waiting for workers to finish eating. Therefore, we stop the
simulation after 1 500 steps, and run the first 1 500 steps 100 times, for a total
of 150 000 steps.

101 102 103 104

Computation time (ms)

100

101

102

103

104

105

Nu
m

be
r o

f s
am

pl
es

Figure 7.9: Histogram of computation times per simulation step

Figure 7.9 is a histogram of computation times per one simulation step, with
both axes logarithmic. The median step time is 6.4 ms, and mean step time is
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10.7 ms. Out of the 150 000 measurements, only 285 took more than 100 ms.
There is a small number of outliers that do not find the optimal solution

within the 30 second time limit. However, an important feature of this kind of
setup is that it can recover very fast from such failure. In the rare case where
a difficult configuration arises, such as when two lunchrooms become available
in the same simulation step, a sub-optimal seating solution will still place some
workers in at least one of the rooms. Subsequent solver runs can continue off this
result and place the remaining workers. We have never observed more than one
failure in a row.

From these results, we conclude that the performance of the framework is
suitable for real-world deployment.
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8. Conclusion
In this work we have presented an ensemble-based approach to defining access
control policies. Security situations are specified in terms of ensembles and their
roles, and access control decisions are attached to the ensembles. This allows the
policy to follow the evolution of a dynamic system as its shape and composition
changes over time.

We introduced a framework, TCOOF-Trust, which consists of two parts:
a policy specification language, implemented as an internal DSL in Scala, and
a runtime environment for resolving the policies. The DSL can be used to spe-
cify ensembles, roles, constraints on their membership, and attached security de-
cisions. The runtime environment processes the policy specification in the DSL,
converts the problem to an input for its internal CSP solver, and uses the results
to determine ensemble membership. Based on the solution and the rules attached
to it, the framework can respond to access control queries.

We have designed and specified detailed semantics for the behavior of the
framework, and extended the existing TCOOF-Trust prototype implementation
to properly support them. A clean API for embedding the framework in ex-
ternal projects is provided, and detailed documentation was created for the CSP
conversion process and for the implementation details of the framework.

An example security scenario with dynamic access control requirements was
used to evaluate performance of the framework, both in synthetic and real-world-
like configurations. While the underlying problem is exponential by nature, res-
ults show that the framework is capable of dealing with the complexity in a
reasonable manner, and scales well in practical deployments.
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A. Data Archive Contents
The data archive accompanying this work is a copy of the tcoof-trust GitHub
repository. Its up-to-date version can always be found at the following URL:
https://github.com/matejcik/tcoof-trust

The code uses the Scala Build Tool (SBT) for building, running, and gener-
ating documentation. Please refer to README.md for details.

To run the example code, use sbt run.
To build the API documentation in HTML format, use sbt doc. The resulting

documentation will be stored in target/scala-2.12/api.
To run the unit test suite, use sbt test.
The following is a list of paths in the archive and descriptions of their contents.

README.md

Markdown-formatted README for the Git repository. Please refer to this
file for requirements to run the TCOOF-Trust framework and basic usage
examples.

build.sbt
project/

SBT build script and build properties. These files are required for building
the project with sbt, and for importing into IntelliJ IDEA, the preferred
Scala IDE.

python/all.sh

Shell script that installs the Python environment and regenerates graphs
used in this work.

python/Pipfile
python/Pipfile.lock

pipenv configuration files. Contain list of Python package dependencies
required for generating graphs.

python/lunch.py
python/other.py
python/resultlib.py
python/variables.py

Individual Python scripts that generate the graphs. variables.py gener-
ates graphs from section 7.2, other.py generates the simulation histogram
and the timeout graph, lunch.py generates all the rest. resultlib is a
small library of common functions.

results/final/badsolver-growingprojects.log

Source data for figure 7.6.
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results/final/booleans.log
results/final/constraints.log
results/final/integers.log

Source data for figures 7.1 and 7.2

results/final/moreprojects.log

Source data for figure 7.5.

results/final/morerooms-optimizing.log

Source data for figure 7.4.

results/final/oneworker-params.log

Source data for figure 7.8.

results/final/simulated.log

Source data for figure 7.9.

results/final/timelimits.log

Source data for figure 7.7.

results/final/workercount-simple.log

Source data for figure 7.3.

src/main/scala/cz/

Scala source files for the TCOOF-Trust framework, specifically the package
cz.cuni.mff.d3s.trust.

src/main/scala/scenario/

Scala source files for the test measurement scenarios.

src/test/scala/

Scala source files for the unit test suite.
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