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Abstract: The aim of the thesis is to implement a procedural method which
transfers a natural image into a pencil drawing-like style. Our project is writ-
ten in C++. It uses libraries like OpenCV for image processing and Eigen for
linear algebra computations. Since neural networks are frequently questioned,
as to whether or not they are better than procedural methods for artistic style
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the method with a recently released code for neural network-based drawing gen-
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duce shading. On the other hand, the procedurally generated outlined produced
by the implemented approach provide more natural renderings.
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1. Introduction
Our work deal with the problem of turning an image into a pencil drawing. Similar
methods, which are concerned with converting an image into a painting, animated
cartoon or technical illustration are part of the Non-photorealistic rendering area.
NPR has wide application in the movie industry, game development, architectural
illustrations or scientific visualizations.

Since the development of computers has significantly moved forward over the
last two decades, it enabled scientists from the computer graphic area to produce
more impresive results. We have been overwhelmed by the works of Picasso,
Da Vinci or Michelangelo. However, it is really challenging for us to teach the
computer to imitate the style of a well-known artist. In addition, it would be very
interesting, if the computer could produce its unique painting or drawing style.
In our thesis, we present the computer-generated pencil drawing algorithms

We are going to describe in more details a method designed by Lu et al. [2012]
which we also implemented. Their method is based on line and tone extraction
which processes these two parts of the image independently. They attempt to
simulate that lines are drawn several times, inconsistently and in small parts.
Futhermore, they divide tones into three tonal layers based on the amount of
light that each pixel carries. We discuss how to adjust the tones of the images
so the images correspond more to pencil drawings, how to generate outlines and
how to make pencil texture fit the image.

More recently, neural networks were applied even in NPR and produced im-
pressive results. There have been several researches which attempt to develop
these methods and probably we are going to hear more about them.

The thesis is structured as follows: The second chapter provides the reader
with a general overview of the existing methods in NPR, and computer-assisted
pencil drawing generation in particular. Then, we discuss the algorithm design.
Afterwards, we describe more the implementation details. Our motivation to
use certain data structures, libraries, methods and parameters. Thereafter, we
present our results. We also compare the results with another project that at-
tempted to achieve the same goal, which is based on neural networks. In the last
chapter, we make a conclusion.
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2. Related work
Numerous methods have been developed to transfer an image into a pencil draw-
ing. The most common approach is to process the outlines and tones of the image
independently. But some of these methods concentrate only at one area. Still, it
is important to mentioned them, because they could be probably combined in the
future experiments. In the first section we present several procedural methods
and in the second section we describe the methods based on neural networks.

2.1 Procedural methods
The first algorithm worth mentioning is the Jin Zhou and Baoxin Li [2005] method
for automatically generating pencil-sketch like drawings from personal photos.
Their approach is quite different from the others. Instead of using the popular
Sobel operator as well as other conventional edge detectors, they propose the
algorithm for gradient estimation. They claim that one of the drawbacks of the
detectors is that only a small neighborhood is used to compute the gradient.
This has the effect that the operators extract even the noisy segments. Their
method produces probably the most visually appealing pencil-like lines from the
methods we studied. Other methods generate unnecessarily too many edges for
very detailed structures which significantly worsens the overall impression of the
drawing.

On the other hand, Kang et al. [2007] propose a method that produces the
Edge Tangent Flow field that preserves the flow of the salient image features.
They then introduce the notion of flow-guided anisotropic filtering for detecting
highly coherent, smooth and stylistic lines while suppressing noise. Even if the
lines represent the shapes quite accurately, they are solid which is unnatural for
pencil drawings because lines are usually drawn with small strokes.

Moreover, pencil drawing-like transfer can be applied even in real-time. Lee
et al. [2006] designed the real-time technique for rendering 3D meshes in the
pencil drawing style. They analyze the characteristics of pencil drawing and
incorporate them into the rendering process. For object contours, they propose
a multiple contour drawing technique that imitates trial-and-errors of human
in contour drawing. For interior shading, they present a simple approach for
mapping oriented textures onto an object surface. To improve the quality of
pencil rendering, they generate and map pencil textures that reflect the properties
of graphite pencils and paper.

Recently, Sun and Huang [2019] propose an extension to the existing auto-
matic pencil drawing generation technique based on Line Integral Convolution.
LIC is a texture based vector field visualization method. It takes a 2D vector field
and a white noise image as the input, and generates an image which has been
smeared out in the direction of the vector field throught the convolution of the
white noise and the low-pass filter kernels defined on the local streamline of the
vector field Sun and Huang [2019]. Futhermore, they improve the LIC method
with more accurate and rapid graph-based image segmentation method to divide
the image into different regions.

Wen et al. [2006] introduce an NPR system to generate color sketches in a free-
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hand drawing style. They use interactive segmentation algorithm. In addition,
they apply two operations. First, they shrink the boundary of the color regions
with a luminance-based algorithm emphasizing the highlights part, which enforces
consistency with free-hand artist style of the sketch. Second, they propose color
shift algorithm which is applied to image regions emphasize the main content of
the sketch and acquires a visually pleasing combination of color. They choose
the optimal combination by minimizing the energy function based on an artist
drawn color database, artistic drawing rules and input image colors.

Our implementation is inspired by the work of Lu et al. [2012]. They combine
the tone and stroke structures. First, they take eight directional line kernels and
convolve them with gradient map. At last, they adjust the tone of the image and
map texture on it.

More recently, Okawa et al. [2017] referred to the work of Lu et al. [2012].
Instead of using the Sobel operator they extracts the edges with the Canny oper-
ator. Moreover, they propose to distort the main edges strongly and the texture
edges weakly because the main countours are drawn several times, but texture
countours are drawn only once. Outlines of their images seem to be quite im-
pressing. Their lines did not overlap the boundaries of the shapes as it was in
Lu et al. [2012] case and it seems as the lines depict the objects more accurately.
Still we cannot claim which results of which method resemble more to a pencil
drawing. Some of the drawing style count with overlaping the objects.

2.2 Neural Style transfer methods
Gatys et al. [2015] were inspired by the power of Convolutional Neural Networks.
It was the first work indicating that neural networks could be capable of extracting
content information from an arbitrary photograph and style information from an
artwork. They opened up a new field called Neural Style Transfer Jing et al.
[2017].

Zhu et al. [2017] propose image-to-image translation method. Their goal is to
learn the mapping between an input image and an output image using a training
set of aligned image pairs. However, for many tasks, paired training data will
not be available. They present an approach for learning to translate an image
from a source domain X to a target domain Y in the absence of paired examples.
Their goal is to learn a mapping G : X → Y such that the distribution of images
from G(X) is indistinguishable from the distribution Y using an adversarial loss.
Because this mapping is highly under-constrained, they couple it with an inverse
mapping F : Y → X and introduce a cycle consistency loss to push F (G(X)) ≈ X
(and vice versa).

Recently Li et al. [2019] presented a method similar to that of Gatys et al.
[2015] and even to Lu et al. [2012]. They train deep neural networks on outlines
and tones. The model is trained on a dataset from pinterest. In addition, their
framework allows to produce several styles.

Gao et al. [2018] present a framework named as PencilArt for the chromatic
penciling style generation from wild photographs. The structural outline and
textured map for composing the chromatic pencil drawing are generated, respec-
tively. First, they take advantage of deep neural network to produce the structural
outline with proper intensity variation and conciseness. Next, for the textured
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map, they follow the painting process of artists to adjust the tone of input images
to match the luminance histogram and pencil textures of real drawings.
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3. Algorithm description
From all of the mentioned procedural methods, we concluded that it would be
most suitable to implement the algorithm proposed by Lu et al. [2012]. They
take into consideration several factors which are line extraction, tone adjustment
and pencil texture mapping. Some of these approaches also took these points
into account but they seemed to us clearly inferior to Lu et al. [2012] approach
or they concentrate at only one characteristic of pencil drawings.

The technical description in this chapter follows the algorithm design proposed
by Lu et al. [2012]. Moreover, we made some minor modifications which we will
highlight.

Their overall framework consists of two main steps: pencil stroke generation
and pencil tone drawing. Their effect complement each other. Specifically, stroke
drawing aims at expressing general structures of the scene, while the tone drawing
focuses more on shapes, shadow and shading than on the use of lines. These two
steps are processed separately. It is noteworthy that there exist several pencil
drawing styles but their framework produces only one.

3.1 Line Drawing
An important observation is that artists cannot always draw very long curves
without any break. Strokes end often at points of curvature and junctions. In
addition, there might be crosses at the junction of two lines in pencil drawing.
These are critical evidences for human-drawn strokes Lu et al. [2012].

(a) Gradient (b) Line image

Figure 3.1

First, they detect the edges of the image. As we know, edges are places of the
image where the pixel intensity changes rapidly. From a mathematical point of
view, we can imagine that the image is a two dimensional continuous function.
Therefore, the derivatives can compute local difference of some neighborhood.
We can use similar approach as approximations to the true spatial derivatives in
image processing.

For edge detection, we use the Scharr operator Levkine [2011]. It uses two
gradient matrices that detect edges in horizontal and vertical direction. It is
expressed as:

G =
√︂

(GxI)2 + (GyI)2 (3.1)
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where I is the grayscale input. Gx and Gy are gradient operators in two
directions. Usually the gradient maps are typically noisy and do not contain
continuous edges immediately ready for stroke generation.

One issue of generating short lines for sketch is the estimation of line direction
for each pixel. Naive classification to this end uses the gradient direction, which
is sensitive to noise and thus is unstable. They propose a more robust strategy
using local information Lu et al. [2012].

Figure 3.2

First, they choose eight reference line directions. Each of them represents
directions at 45 degrees apart and denote the line segments as {Li},∈ {1..8}.
The response map for a certain direction is computed as:

Gi = Li ∗G (3.2)
where Li is a line segment at the ith direction. ∗ is the convolution operator,

which groups gradient magnitudes along direction i to form the filter response
map Gi.

Then, the classification is performed by selecting the maximum value among
the responses in all directions and is denoted as

Gi(p) =

⎧⎨⎩G(p) if argmini{Gi(p)} = i.

0 otherwise.
(3.3)

where p is a pixel and Ci is the magnitude map for direction i. Their rela-
tionship with G is expressed as ∑︁8

i=1 Ci = G.
Line shaping Given the map set Ci, we generate lines at each pixel also by

convolution. It is expressed as

S
′ =

8∑︂
i=1

(Li ∗ Ci). (3.4)

Convolution aggregates nearby pixels along direction Li, which links the edge
pixels that are not even connected in the original gradient map. This process is
also very robust to noise and other image visual artifacts. Finally, we invert the
pixel values and map them to [0, 1].
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3.2 Tone Drawing
Artists also use several styles of dense strokes such as hatching, stippling, blending
or crosshatching. Many methods use image tones to generate hatching patterns.
They propose that this process is not optimal because the image tones are usually
significantly different from that of pencil sketch Lu et al. [2012].

(a) Grayscale (b) Tonal layers

(c) Tone map

Figure 3.3

We have a grayscale image whose tone values are in range 0 to 255. We divide
these values in three layers: bright, mid-tonal and dark layer. They propose a
parametric model which is written as:

p(v) = 1
Z

3∑︂
i=1

wipi(v), (3.5)

where v is the tonal value and p(v) is the probability that the tonal value
occurs in the pencil drawing. ws are the weights coarsely corresponding to the
number of pixels in each tonal layer. Z is the normalization factor to make∫︁ 1

0 p(v)dv = 1.
We set boundaries of tonal layers as follows: brightest from 225 to 255, mid-

tonal values from 105 to 225 and dark values from 0 to 105. For very bright
regions we apply Laplacian distribution, that is written as:

p1(v) =

⎧⎨⎩ 1
σb
e

− 1−v
σb if v ≤ 1.

0 otherwise.
(3.6)

As a result, Laplacian distribution makes the brightest layer even brighter.
This causes that it resemble more to the paper. On the other hand, we want
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mid tonal layer to capture all important details in the image. We apply uniform
distribution so the gray values mostly stay unmodified. It is expressed as:

p2(v) =

⎧⎨⎩
1

µb−µa
if µa ≤ v ≤ µb.

0 otherwise.
(3.7)

Finally, we use normal distribution on dark strokes. It is denoted as:

p3(v) = 1√
2πσd

e
− (v−µd)2

2σ2
d (3.8)

Lu et al. [2012] claim that usually variation of pixel values in the dark layer
is in general much larger than that in the bright layer. After we compute distri-
bution for each tonal layer, we superpose them.

Our resulting tonal image is computed with histogram matching between the
tonal distribution defined in eq. 3.5 and the tonal distribution of the grayscale
image. Therefore, we need to compute a probability density function from the
histogram of the grayscale image. The pdf is written as

pr(rj) = nj

n
(3.9)

where nj is the frequency of the grayscale value rj and n is the total number of
pixels in the image. Afterwards, we map each pdf to its cumulative distribution
function which are denoted as:

S(rk) =
k∑︂

j=0
pr(rj), k = 0, 1, 2, 3, ... (3.10)

G(zk) =
k∑︂

j=0
pz(zj), k = 0, 1, 2, 3, ..., L (3.11)

where L is the total number of gray levels. The idea is to map each r value in
X to the z value that has the same probability in the desired pdf: S(rj) = G(zi)
or z = G−1(S(r)). Besides, there might be a case where we will not get exactly
an equality. We find the smallest absolute difference between S(x1) and G(x2).
In other words, for a mapping function M , for each entry x1, we must find an
intesity x2 such that:

M(x1) = arg min
x2∈[0,255]

|F1(x1) − F2(x2)| ∀x1 ∈ [0, 255] (3.12)

Once, we receive the mapping function, we apply it on the grayscale image.

I(x) = M(x) (3.13)
where I is our grayscale image, x tonal value and M the mapping function.

3.3 Pencil Texture Rendering
Generating suitable pencil textures for image is difficult. Texture refers to pencil
patterns without obvious direction which reveal only tone information Lu et al.
[2012].
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(a)

Figure 3.4

Our input image only needs one pencil pattern. We will denote the pencil
pattern by P and the tonal image by J . Human drawing is generated by repeat-
edly drawing at the same place. They simulate the process using multiplication
of strokes, which results in an exponential combination P (x)β(x) ≈ J(x) or in
the logarithm domain β(x)lnP (x) ≈ ln(x) corresponding to drawing pattern Pβ
times to approximate the local tone in J .

First, we need to find appropriate β which optimizes our texture so it can be
used in our image. It is computed by solving

β∗ = arg min
β

∥βlnP − lnJ∥2
2 + λ∥∇β∥2

2 (3.14)

where λ is the weight with value 0.2. We transfer the equation to the system
of linear equations with these steps:

We can make
∥β∥2

2 = ∥Dxβ∥2
2 + ∥Dyβ∥2

2 (1)

Then the optimization meet the following condition:

(β lnP − lnJ)T lnP + λ (β DT
x Dx + βT Dy Dy) = 0 (2)

Furthermore, both sides take the transpose

β lnP 2 − lnJ lnP + λ(DT
x Dx +Dy Dy) β = 0 (3)

Thus solvable

[ λ (DT
x Dx +DT

y Dy) + lnP T lnP ]β = lnP T lnJ (4)

Transformation form

[ diag(lnP 2) + λ(DT
x Dx +DT

y Dy) ] β = lnJlnP (5)

because [ diag(lnP 2) +λ(DT
x Dx +DT

y Dy) ] is symmetric positive definite ma-
trix, it can be solved by using the Conjugate gradient method.
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The final pencil texture map T is computed through an exponential operation
which is denoted as:

T = P β∗ (3.15)

(a) Pencil Texture (b) Texture image

Figure 3.5

At last, we calculate the product of the line map and the texture map to
receive the pencil drawing. It is written as:

R = S ∗ T (3.16)

(a) (b)

Figure 3.6: Pencil drawings

11



4. Implementation details
We developed our project in the C++ language on Windows platform. Further-
more, we included also a CMakeList, which makes our project portable even to
UNIX-like systems.

For image manipulation, we use the OpenCV. OpenCV is cross-platform and
open-source library mainly for image processing and computer vision. It contains
many useful algorithms, for example, for edge detection or object recognition. In
addition, we also use the Eigen library. It has methods for linear algebra, matrix
and vector operations, geometrical transformations and numerical solvers. We
especially use it to solve some difficult optimization problems.

Our project takes five input parameters. Path to image, path to specific pencil
texture and three weights which control brightness in three tonal layers, which
are passed to the eq. 3.5.

We have divided our project into four seperate parts. One is the main function
and other three parts are line, tone and texture method.

// Sketches.h
void generate_lines(Mat gray, Mat& grad, Mat& dst);
void generate_tones(Mat src, Mat& dst, int w1, int w2, int w3);
void generate_texture(Mat tones, Mat texture, Mat& dst);

4.1 Line method
Before an image is passed to the line generation function, it is converted into
grayscale. Each pixel is then represented with tonal value ranges from 0 to 255.
Then, we apply a Gaussian blur to reduce the noise.

We made a minor change in the method proposed by Lu et al. [2012]. For
edge detection, we use the Scharr operator instead of the Sobel operator. Edge
detector consists of directional kernels. We wanted the kernels size to be 3x3. But
in the OpenCV documentation of Sobel operator is written that if kernels have
size 3x3, so Sobel produces some inaccuracies. The Scharr operator is almost the
same, but it has different kernels that are written as follows:

Gx =

⎡⎢⎣ −3 0 +3
−10 0 +10
−3 0 +3

⎤⎥⎦ , Gy =

⎡⎢⎣−3 −10 −3
0 0 0

+3 +10 +3

⎤⎥⎦
We use these kernels in eq. 3.1 where we use addWeighted func-

tion for the sum of both directional gradients, because we followed
implementation of the Scharr operator from OpenCV official example
https://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/sobel_
derivatives/sobel_derivatives.html

Lu et al. [2012] propose line kernels representing each line segment in 45
degrees direction apart. Then, they sum of LiG as i goes from 1 to 8, as it is
written in eq. 3.2. It is confusing that mentioned formula counts with eight
kernels. If we represented eight directions with 45 degrees apart, we will need
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only four kernels. We suggest a little modification that consider eight kernels
which each of them represents direction of 22.5 degrees apart.

They also suggest that size of the line kernel should be 1/30 of input image.
Our kernels has 5x5 size for all the input images.

4.2 Tone method
In our tone generation fuction, we produce histograms of input image, tonal layers
and result. For study reasons, we also generate colored layer image. We want to
see which pixels fell into which layer.

Before we compute the PDF of each layer, we normalize the values to [0, 1].
We use OpenCV function normalize, that is defined as:

normalize(Mat InputMat, Mat& InputOutputMat, double alpha, double
beta, int norm_type);

Lu et al. [2012] propose three sets of weights that they used for generating
the tonal images.

11 : 37 : 52, 29 : 29 : 42, 2 : 22 : 76 (4.1)
For study purposes, we created a function that takes arbitrary weights. More-

over, we use mean values of probability distributions which were also suggested
by Lu et al. [2012] which can be seen in fig. 4.1.

Figure 4.1: Parameters.

Firstly, we thought the weights can be evaluated from the number of pixels
of each tonal layer of certain pencil drawing. Afterwards, we would estimate the
mean values of each probability distribution function. But, unfortunately, our
project did not produce any visually appealing results.

(a) Drawing (b) Grayscale (c) Tone map

Figure 4.2

In fig. 4.2 is the pencil drawing which we used for the estimation of the
parameters and weights. We can notice that there is a small difference between
the grayscale image and tonal image.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.3: Histograms - blue: input, green: tonal image

In fig. 4.3 after applying probability distributions we can see how the his-
togram of our input image has changed. In this example we used the weights
mentioned in the fig. 4.1.

In the fig. 4.4 we also present set of tone images. Each of them were generated
with different weight values.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.4: Tones.

4.3 Texture method
In our texture generation function, tonal image and pencil texture are taken as
the input parameters.

First, we set the pencil texture image size to the size of the tonal image. If the
pencil texture fits several times in the tonal image, we repeat the pencil texture.
Then, we make one column vectors from both of our images.

Lu et al. [2012] propose to solve the system of linear equations with conjugate
gradient method. It is recommended to transfer the matrices into sparse matrices,
because CG is usually extremely efficient on normal equations. In addition, CG
is especially useful for matrices that are symmetric and positive-definite.

Eigen implements sparse matrices with Compressed Column or row storage
scheme. It is represented with three one-dimensional arrays. First contains all
non-zeros values of the matrix. Second has column indices of the values of the
matrix. Third contains indices of the first array of non-zero values that appeared
first on the matrix row.

14



⎡⎢⎣a 0 b
c d e
0 0 f

⎤⎥⎦
values

[︂
a b c d e f

]︂
columns

[︂
0 2 0 1 2 1

]︂
rowptr

[︂
0 2 5

]︂
For CG, it is also convenient to use some sort of preconditioner so that the

algorithm is more effective. We diagonalize our directional kernels. Furthermore
the diagonalization, our Dx kernel has minus ones on main diagonal and plus
ones on tone map height diagonal. Dy also has minus ones on the main diagonal
but it has plus ones on the plus one diagonal.

We make little optimization, when we compute natural logarithm of texture
image and tone image. Both of our images contain zero values. Computing the
natural logarithm of zero is infinity, which is not appropriate for our computa-
tions. We set zero values to 0.001f.

We also set the tolerance threshold of CG to 1e− 6 and maximum number of
iterations to 60.

OpenCV has, unfortunately, poor documentation about conjugate gradient
method solver. We could look at the source code of the solver, but it seemed to
us too complicated. We decided that we are going to rely on other library. There
are several libraries which have proper implementation of this method. We use
library Eigen.

It is convenient that Eigen and OpenCV are compatible libraries. They have
a method which can convert OpenCV matrices to Eigen matrices and otherwise.

By this approach, we solve the system of linear equations and transfer it back
to OpenCV matrix data types. After that, we compute texture image power to
β.

Finally, we calculate the product of the line map and the texture map to
receive pencil drawing.
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5. Results

(a) Input (b) Ours (c) Im2Pencil

(d) Input (e) Ours (f) Im2Pencil

Figure 5.1: Comparison of both methods.

Generating pencil drawings for images that we utilized in our project and
Im2Pencil, we can see significant differences between the results. If we look at
image (d), there is noise around domes. Testing the other images, we did not
notice this kind of effect. We used pretrained model which was stored in the
project. Perhaps if the model was trained differently, this effect would disappear.

On the other hand, our program does not produce this noise-like effect in any
case. If we look at the images, Im2Pencil produces much more credible texture
maps. It seems as if the texture is directly mapped on the surface of building.

If we compare the outlines, we have rather opposite opinion. Im2Pencil of-
fers to select clean and rough style for the outlines. The outlines produced from
Im2pencil do not really seem to us accurate and we are convinced that our im-
plementation can produce better outlines.

(a) Ours (b) Im2Pencil

Figure 5.2: Textures

On the contrary, Lu et al. [2012] method extends the texture over the size
of the image and adjusting the proper tone of the texture so it can be applied
into the certain place of the target image. It does not seem that the texture is
directly mapped at the surface of a particular shape. Next disadvantage is that
we use only one texture pattern for one image. We are convinced that artists use
more than one pattern to create a pencil drawing and they apply it in several
directions.
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We tested the Im2Pencil even for high resolution images. Unfortunately, our
machine was not able to produce any pencil drawing, because it could not have
allocated enough memory on the GPU. We ran the project on Nvidia Geforce
860M with 2 GB of memory. Our implementation does not crash on runtime
exception due to lack of memory even for big images. Moreover, it produces the
results even faster.

In summary, based on our results and our research, we assume that neural
networks have still a long way to go. Their results did not seem to us so much
better than ours. In addition, their time and memory complexity is very high.
We do not really see such a big advantage in collection a large amount of data for
this purpose. We think that transfering an image to a sketch can be done with
much more elegant way.

(a) Ours (b) Im2Pencil

Figure 5.3: Lines

If we look at line images in the fig. 5.2, we will see one significant difference.
Li et al. [2019] method did not see that it handled thick lines in any case. They
uses eXtended Difference of Gaussians to detect the edges.

xDoG is a feature enchancement algorithm that involves the subtraction of
one blurred version of an original image from another Winnemöller [2011]. It is
written as:

G(x̂, σ, I) = 1
2πσ2

∫︂
I(x)e− ∥x̂−x∥2

2σ2 dx (1)

Dx(x̂, σ, k, τ, I) = G(x̂, σ, I) − τ G(x̂, k ∗ σ, I) (2)

Ex(x̂, σ, k, τ, e, ψ, I) =

⎧⎪⎪⎨⎪⎪⎩
1, if Dx(x̂, σ, k, τ, I) < e

1 + tanh(ψ ∗ (Dx(x̂, σ, k, τ, I))),
otherwise.

(3)

where x̂ is a two-valued coordinate, σ is the standard deviation of distribution,
I is the source image, e shifts the detection threshold, τ changes the relative
weighting between the larger and smaller Gaussians.

They even present their motivation using this kind of detector. They prepared
a test, where they compare xDoG against boundary detector based on structured
random forests and against the method for sketch simplification. As their research
shows, xDoG is able to handle line thickness and smooth non-outline regions well.
From all of the images we had tested on Im2Pencil, we did not see in any case
that it handled thick lines properly Winnemöller [2011].
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We used the Sobel operator and modified the edges with line kernels. Our
implementation can handle even thick lines. But if we have more detailed struc-
ture, line kernels produce too many edges. One of these effects can be seen at fig.
5.2 (a), if we look at the pavement of the street.

Both of these methods generate tone images. Even if we show the results in
fig. 5.3, we cannot really compare the images. There are applied operations which
have completely different goal. We are adjusting tones in three tonal layers, but
Im2Pencil uses Guided filter to remove details and smooth the image.

The Guided filter uses the content of a second image, called a guidance image,
to influence the filtering. The guidance image can be the source image itself, a
different version of the source image, or a completely different image He et al.
[2013]. It is denoted as:

qi =
∑︂

j

Wij(I)pj (5.1)

where i and j are pixel indexes. The filter kernel Wij is a function of the
guidance image I and independent of p.

(a) Grayscale (b) Ours (c) Im2Pencil

Figure 5.4: Tones

We mentioned that we were not very satisfied with the outlines. We thought
that the results would be more impressive, if we superposed the line images from
our project with texture images of Im2Pencil. In the fig. 6.5 we can see the
results. We used weighted sum to superpose images of Im2Pencil and images
from our project. Unfortunately, in the fig. 5.5 we do not see any significant
improvements.
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(a) (b) (c) (d)

Figure 5.5: Combined

(a) (b) (c) (d)

(e) (f) (g) (h)

(a) (b) (c) (d)
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(a) (b) (c)

(d) (e) (f)

(g) (h)
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Conclusion
The goal of the thesis was to implement a program that procedurally generates a
pencil drawing from a natural image. We attempted to describe each step of the
algorithm used in our implementation. Then, we introduced how our project is
structured and how it works in general.

We presented other possible approaches which are, for example, based on
neural networks. In the discussion chapter, we showed several results of both of
these projects. We described how these both methods differ.

There are more recent works which propose more advanced algorithms for
pencil drawing-like line generation. We could probably combine Lu et al. [2012]
method for tone extraction, texture optimalization with some of the line genera-
tion algorithms like xDog Winnemöller [2011] or with estimated gradient method
proposed by Okawa et al. [2017].

Finally, we have suggested possible improvements of our implementation.
Therefore, we described the reader what are the limitations of both of these
methods.
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Programmer’s manual
In this chapter we describe the steps necessary to compile and run all programs
mentioned in the attachments part. We include two projects. One is the Pencil-
Drawing which is our core C++ program that transforms an input image into a
pencil drawing style, and HtmlGenerator which is C# console application. For
both of these projects we generated executables on the Windows platform.

PencilDrawing
As we have mentioned in the Implementation chapter, PencilDrawing takes five
input parameters. Path to image, path to pencil texture and three weights, which
adjust brightness in three tonal layers. We prepared one example image and pencil
texture in the Data folder. Futhermore, our project contains a Visual Studio
2019 solution file, project file with .vcxproj extension and CMakeLists.txt. If the
user attempts to start the project, first, he has to set correct paths to OpenCV
and Eigen libraries. On the Windows platform these paths usually differ. For
linux the CMakeLists contains the environment variables holding the path to all
the necessary libraries. If the environment variables are set correctly, program
compiles. Finally, if the project is executed succesfully, it will create the Results
folder.

HtmlGenerator
For study purposes we designed the HtmlGenerator project to generate a HTML
file in which we can find all the results of the PencilDrawing project. It is neces-
sary to include PencilDrawing.exe file, the generated dependencies of the project
and opencv world410.dll to run the program. Futhermore, a file is taken as the
input parameter where we specify on each line call arguments of our C++ pro-
gram. After the HtmlGenerator ran succesfully, it creates folders with the results
and the html file. The Application is, unfortunately, not portable to Unix-like
systems, because it executes the program with .exe extension which is specific to
windows. But HtmlGenerator was developed with the .netcore framework so if
we make a little modification to our program, it can be executed with binaries
for Unix environment.
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A. Attachments

Source code
A folder with the source code written in Visual Studio 2019. It contains a solution
with all the files necessary for compilation and also a CMakeLists to build the
project on UNIX-like platforms.

Executables
A folder with executables including other files needed to run them.

Examples
A folder with some images and pencil textures ready to be executed with the
project.

The thesis
An electronic version of the thesis as .pdf.
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