

BACHELOR THESIS

Petr Jaroschy

Methods for Procedural Generation of Skill Trees for

Computer Games

Department of Software and Computer Science Education

Supervisor of the bachelor thesis: Mgr. Jakub Gemrot, Ph.D.

Study programme: Computer Science

Specialization: General Computer Science

Prague 2019

I declare that I carried out this bachelor thesis independently, and only with the

cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act

No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that the

Charles University has the right to conclude a license agreement on the use of this

work as a school work pursuant to Section 60 paragraph 1 of the Copyright Act.

In…...... date............

 signature

I would like to thank my supervisor Mgr. Jakub Gemrot, Ph.D. for all the

motivation he has given me, for all the constructive criticism and for all guidance he

has given me during the writing of the thesis as well as the development of the

software. He has given me precious ideas to consider and develop.

Title: Methods for Procedural Generation of Skill Trees for

Computer Games

Author: Petr Jaroschy

Department: Department of Software and Computer Science Education

Supervisor of the

bachelor thesis:

Mgr. Jakub Gemrot, Ph.D., Department of Software and

Computer Science Education

Abstract:

Game developers often face the issue of having well balanced game in terms of

difficulty, especially in role-playing games. Skill tree is a game element which

contributes to solve this issue by giving the player more power in-game. Many game

elements can be procedurally generated to save time and money to developers, but

can skill trees be procedurally generated too? And how do we validate, that

generated skill trees are well suited for the game? That is the goal of this work. We

have made a simple turn-based game. Then we made several variations of generators

of skill trees for the game. We took the best trees and validated their performance

using artificial players based on data collected during their gameplay. Then we

compared the trees and concluded that skill trees can be generated by our suggested

method and their variations.

Keywords:
Procedural content generation, skill tree, role play games,

evolutionary algorithms

 2

Contents
1. Introduction .. 1

1.1. Skill trees .. 1

1.2. PCG in games ... 3

1.3. PCG validation ... 4

1.4. Goal of this work .. 5

1.5. Text structure .. 5

2. Analysis ... 7

2.1. Flow in games .. 10

2.2. RPGs and difficulty .. 11

2.3. Skill trees .. 12

2.4. Problems with skill trees and difficulty .. 17

2.5. Skill tree space .. 18

2.6. Generating skill trees .. 18

2.7. Generative process ... 20

2.8. Multi-objective optimisation .. 21

2.9. Validation ... 22

2.10. Choosing appropriate game .. 22

3. Our game.. 24

3.1. Scenario .. 25

3.2. Skill tree - node pick .. 26

3.3. Encounter .. 26

3.4. Turn .. 27

4. Proposing solution algorithm – Selection methods 28

4.1. Individual .. 29

4.2. Hill climbing algorithm .. 29

4.3. Randomized hill climbing algorithm .. 30

4.4. Evolutionary algorithm ... 30

4.5. Weighted evolutionary algorithm ... 31

4.6. Non-dominated Sorting Genetic Algorithm Revisited (NSGA-II) .. 31

5. Creating new generation – mutation and crossover 33

5.1. Relevant input ... 33

5.2. Operators .. 34

5.3. Crossover - merging two trees .. 37

 3

6. Fitness function .. 40

6.1. Relevant input ... 43

6.2. Reference decks .. 43

6.3. Choices ... 43

6.4. Approximating simulation of encounter ... 45

6.5. Rating types .. 45

6.6. Aggregating results ... 46

7. Implementation .. 48

7.1. Relevant input model and data storage ... 48

7.2. Whole algorithm ... 49

7.3. Mutation + crossover step .. 49

7.4. Fitness step ... 50

7.5. Thread safety .. 51

7.6. Post processing ... 51

8. Validation... 52

8.1. Hypothesis, expectations .. 52

8.2. Design of the validation ... 54

8.3. Result model ... 57

8.4. Result interpretation + results for hypothesis 57

9. Discussion .. 64

9.1. Conclusions of validation ... 65

10. Conclusion ... 66

10.1. Remarks .. 66

10.2. Future work .. 67

Bibliography ... 70

List of Figures .. 72

List of Tables.. 75

List of Abbreviations.. 76

Appendix A – Reference Decks ... 77

1. Introduction

The goal of this work is to find out whether it is possible and useful to use PCG

for creating skill trees for a game. There is plenty of works done on the subject of

either PCG or skill trees, but as far as we know, there is none, which would combine

both of the subjects. It is therefore unknown, if such use of PCG is possible and,

more importantly, if it is as useful as using PCG for content like textures, dungeons

or race tracks.

1.1. Skill trees

Figure 1: Example of skill tree in Incredible Adventures of Van Helsing

(NeocoreGames, 2013). Multiple tree roots can be seen on the top of the skill tree

window; these nodes do not need a predecessor to be obtained before they can be

obtained themselves.

Skill trees have become one of the basic game elements. They are widely used

and have multiple good properties, which allow us to make a game better. Their form

is usually some adaptation of a weighted graph, where the nodes stand for new

 2

abilities or stat boosts (both seen in Figure 1) and are given to the player once he

acquires them in-game (forms of acquisition may vary).

The primary use of skill trees is to manage difficulty in games. Skill trees are a

great tool to improve player’s strength and therefore make future encounters with

enemies and obstacles more manageable. The reason, why game developers want to

do this, is to make the experience of most players better since it is not hindered by

the game being too difficult to play or simply boring because everything in the game

is effortless.

Additionally, they might also serve as additional content in the game and make

a player interested in seeing how different combinations of choices in the skill tree

impact the game. Some skill trees are made so that different combinations, chosen by

the player, result in a different gaming experience. A great example of this is Path of

Exile (Path of Exile review, 2018).

Difficulty is a property of each game, and it tries to quantify how good

(skilled) the player needs to be to beat the game or its parts. Different games vary in

their difficulties. Some games have greater difficulty than others, which brings in

different groups of players since somebody is skilled and therefore enjoys harder

games. Difficulty as a property is relative to the player’s power in the game.

Power of the player is an abstract value, which represents all the game

elements, which are given to the player in order to reduce his perceptive difficulty.

Power of the player negatively correlates with relative difficulty for the player.

Therefore the higher the player’s power is, lower his perceived difficulty is. Game

elements, which commonly give power to the player, are abilities, equipment,

companions, skill trees and many more.

The simple process of progression is closely tied with difficulty. Since the skill

tree provides power to the player, making the future gameplay easier, it can control

at what state of the game is the player able to beat the next part of the game and

progress further.

Progression is another aspect, which makes games enjoyable for plenty of

players. Progression usually gives the player a satisfying feeling, and therefore, it is a

wanted addition to many games by developers. For example, completing a part of

skill tree can feel very nice in term of overall progression in the game (Figure 2),

especially if you need the skill tree for reaching the endgame, like in Path of Exile

(Brown, 2018).

 3

Figure 2: A finished part of a skill tree, which is focused on damage dealt with bows.

This part of the skill tree gives the player a sense of progression because of the

finished node cluster. This cluster of nodes also gives a lot of power to the player,

making future fights easier. (Grinding Gear Games, 2013)

1.2. PCG in games

Over time, content production has grown so much that nowadays, it is the main

bottleneck of game development (Kelly & McCabe, 2007). Procedural content

generation has been already surveyed (Hendrikx, Meijer, van der Velde, & Iosup,

2013), and therefore, I am going to give just a brief overview related to this work.

PCG is a development approach, which uses algorithmic generation of game content

with little to no human contribution (Togelius, et al., 2013). There are many

advantages to this approach, the main one being saving resources to developers,

namely time and money. Another advantage is the scalability of the content, which is

able to be created by PCG rather than by manual creation. This is important for large

scale Massively Multiplayer Online Role-Playing Games (MMORPGs). According

to Hendrikx et al. (2013) “Main disadvantages of PCG are computational overhead

and the requirement of good judgement of cultural and technical values of generated

instances”. This can be trivial for some game content like loot in RPGs, but can be

quite complex when we take into an account how many skill trees can be created

from given number of nodes, which we will discuss in Analysis chapter (2), and all

the possible ways they impact the difficulty of the game (also discussed in Analysis),

which makes the skill tree generation problematic to evaluate.

PCG can be split into two major categories by their moment of happening.

Offline (or build) PCG is when the content generation is being done on or before the

actual build of the game. Examples of this kind of PCG is generating textures and

 4

maps during development (Carli, Bevilacqua, Pozzer, & Cordeiro d‘Ornellas, 2011),

usually together with adjusting the generating algorithm according to the generated

content or manual adjustment of the generated content after its generation. Online (or

runtime) PCG is when the content generation is happening in the released version of

the game, generally multiple times. This kind of PCG helps the replayability of the

game and its variance during the different playthroughs. Generating loot from

monsters or generating replayable dungeon maps both fall under the online category,

since they happen after the release of the finished product. In this thesis, we are

going to utilise offline PCG, mostly because of computational complexity and lesser

added value for doing the generation during runtime.

1.3. PCG validation

Generating any objects via PCG for games is one thing, making sure they are

correct and will be useful once added to the game. Both of these parts are not trivial

to perform, and we will talk about that in Analysis. Validation of PCG varies heavily

on the type of PCG, but most PCGs can be tested by manual review (i.e. player

testing, designer). Sometimes, the manual review can be replaced by approximating

simulation of the game or other forms of computational approximation. Both of these

are tightly fitted for each game-specifically. Only after validation is successful, the

object is eligible to be added to the game.

In order to perform validation of our PCG application, i.e., skill tree

generation, we will need a suitable game and the validating algorithm designed for

such a game. This game’s system must enable such validation and must use

generated skill trees from our algorithm. Implementation of this game is also part of

this thesis. The validating algorithm will consist of several bots, designed to play the

implemented game. We will need to represent multiple types of players, and

therefore, there will be several different types of bots. These bots will be used to play

the game and estimate the difficulty of the game and suitability of the skill tree for a

given game scenario.

Data will be collected from the bots in order to find out if the skill tree is

suitable for the scenario used for its generation. Data will need to confirm several

hypotheses before we can accept the skill tree as suitable.

 5

1.4. Goal of this work

The main goal of this work is to find out whether it is possible and useful to

generate skill trees, as they are an unusual structure, which affects game’s difficulty.

In order to do this, we will need to do the following:

1. Analyse the requirements of a skill tree and its impact on the game.

2. Create generators for skill trees using different methods of generation.

3. Validate the generated trees by a simulation using multiple different bots

1.5. Text structure

After this introduction, this work will be split into the following chapters:

1. The Analysis (2) will discuss the requirements of a skill tree, what is Flow,

and how does it apply to skill trees and games. Then we will talk about

role-playing games and difficulty. We will also discuss what method of

generation we will be using and why.

2. Then, the chapter about our choice of game (3) will describe the game and

give and give reasoning on why we chose to make this kind of game in

particular. We will highlight the choices of a player in this game.

3. Then we follow up by proposing the solution algorithm (4). In this chapter,

we will discuss different methods for generating a skill tree and point out

their differences.

4. Then we talk about parts of the algorithm, starting with the basis of our

solution (5). We will describe different mutation operators and their effect

on every entity. We will also highlight the specific purpose of an operator if

there is any. We will also explain how we are merging two different skill

trees to create a new one.

5. Then we talk about the other important part, the fitness function (6). This

chapter will explain how we evaluate trees during generation and why I

chose to implement it the way I did. This chapter will also describe the

whole process of taking an entity and giving it ratings based on

performance in different objectives.

6. Then we talk about the implementation details (7). This chapter will mostly

explain the reasoning for some choices, some specific decisions made

during the programming of the game and the generator.

 6

7. Finally, we talk about validation (8) and have a discussion about our

results. We will talk about the design of the validation, reasoning behind it,

and we will interpret the results of the simulation.

 7

2. Analysis

The problem of generating skill trees starts with role-playing games (RPG) as

that is the domain we are addressing in this thesis. Every RPG has a certain

difficulty. Difficulty of an RPG is usually formed by obstacles or enemies the player

needs to overcome or defeat respectively in order to progress through the game. But

to defeat enemies or overcome obstacles, the player needs some kind of powers or

abilities, which he can use to do so. We want to let the player obtain the power using

the skill tree we generate for him.

Common tools, which let player obtain power, are gear such as weapons or

armour, stats like strength or dexterity given with level ups or similar other means,

such as giving the player points in a skill tree, which he can spend to gain available

bonuses of his choice. Giving player power through gear and level-ups has a

significant advantage of being almost deterministic when being designed. Only

nondeterministic part of these tools worth mentioning, except skill trees, is whether

the player decides to use the gear or the abilities given to him.

The situation with skill trees is not as trivial since the bonuses given are

determined only by player choice and amount of points the player can spend in the

skill tree. Additionally, obtaining nodes in skill tree is to some point permanent

(some games offer ‘reset’ of a skill tree, either at a price or at certain points of the

game), which is very different from other means of giving the power to the player, as

gear can be swapped at will of the player. This means that the player’s choice is

much more important here.

However, this raises a question. How can we know how much power can we

give to the player? This question can be answered, thanks to the theory of Flow

(Cziksentmihalyi, 1990). The idea of Flow, put to context with games (Chen, 2007),

gives us a very good baseline on how to handle just how much power should be

given to the player. Flow in games tells us that the game should neither be too easy

nor too difficult. Otherwise, boredom or anxiety may appear. However, Flow does

not tell us exactly how much power should we give to the player; it only gives us the

general idea, how we should treat power in comparison to challenge. Shortly, the

idea is to have power rise with challenge, so the player does not feel bored or

anxious.

 8

Therefore, creating a good skill tree is not a trivial task. The number of

possible combinations of nodes that form a skill tree or a tree, in general, is very high

(see 2.6), more so if we account for different types of nodes and scale of nodes’

effect values. But could we generate skill trees, which deliver just enough power to

the player, via procedural generation, so that the player does not feel bored or

frustrated?

This is not an easy question to answer. Let us take a look at two examples of

skill trees (Figure 3, Figure 4). Let P be the power given by the skill tree. And let the

power needed to beat the next enemy between 10 and 20. Now consider following

trees with 2 available points to be taken.

Figure 3: Example of a skill tree that is giving the player too much power; with two

nodes, a player can take either 35 or 60 power.

Figure 4: Example of a skill tree that is giving the player too little power; with two

nodes, a player can get either 2 or 3 power.

In the first example tree (Figure 3), regardless of player choice, his final power

P will be at least 35, which is way over the power needed to beat the encounter. This

results in effortless gameplay, which often tends to be very boring and uninteresting.

Given the second example (Figure 4), power P can get only up to 3, which is, on the

other hand, way lower than the player needs. This would lead into impossible-to-beat

 9

part of the game, which would lead to frustration and ultimately into the player not

playing the game. So how can we tell, what is a good skill tree?

Skill trees do not have only one metric, which tells us if the tree is good or not.

Through observations of existing skill trees in existing successful games, like in

Figure 1, Figure 2 or Figure 6, we can see that there is more than one point of view

regarding how good a skill tree is. One point of view is how well the skill tree

manages the difficulty of the game. In other words, it is if the tree delivers an

appropriate amount of power to the player. Another point of view is how the skill

tree looks. The skill tree should not look like a path of nodes, neither like a hedgehog

of nodes with the root in the centre. The goal is to have the appropriate number of

nodes compared to the maximum distance from the root (or roots). Last significant

point of view is how interesting the skill tree is. A player finds a skill tree interesting

if he is given a lot of interesting choices out of available nodes while picking new

nodes. The fact that we have multiple points of view of a skill tree makes us focus on

multiple things at once. Therefore, our algorithm will have multiple objectives to

achieve while generating a skill tree. This will be described in multi-objective

optimisation (2.8).

In order to properly generate a good skill tree for a game, we need a couple of

things. First, we need to be able to tell what kind of functions skill trees should have.

This includes difficulty management, the appearance of the tree and its non-

redundancy. A player must also find the tree interesting, which can be done by

giving player interesting choices in the tree. Secondly, we need an algorithm to

generate it. Thirdly, we need a way to validate our results.

In this analysis, we will first talk about Flow and Flow in games, as I believe it

is a great stepping stone to be able to tell, what do we expect from a skill tree. Then

we will talk about skill trees in general and explain their connection with difficulty

and Flow. Then we will talk about skill tree space. We will explain what it is and

follow up with a section about generating skill trees. Then we will talk about the

generative process, how we want to generate skill trees and about multi-objective

optimisation. Lastly, we will talk about what games are suitable for the generation of

skill trees.

 10

2.1. Flow in games

Flow is described in the book: Flow: The Psychology of Optimal Experience

(Cziksentmihalyi, 1990). According to Cziksentmihalyi (1990), “The state in which

people are so involved in an activity that nothing else seems to matter; the experience

itself is so enjoyable that people will do it even at great cost, for the sheer sake of

doing it.“ (p. 4).

Then Flow was used in the context of games (Chen, 2007). Flow in games

gives us a decent baseline for what kind of difficulty management should we be

aiming for. Difficulty of the game should not be too hard, because it induces anxiety.

On the other hand having difficulty too low induces boredom. Therefore, for every

difficulty, there should be some abstract range of values, representing the power of

the player that is suitable for the current state of game. In order to combat high

difficulty, we will need to give power to the player. We will call value, which

represents the power of the player, Player-power. Player-power is an abstract value,

which represents the power of the player and the obstacles and enemies he can

overcome. Lower Player-power means tougher difficulty than higher Player-power

while encountering the same obstacles/enemies. As the player progresses further, the

challenge tends to increase in RPGs. In order to keep the game at a similar difficulty

for the player all the time, the player needs to obtain Player-power.

This Player-power will help the player stay in the Flow Zone (Chen, 2007),

which, as seen on (Figure 5), is a hypothetical area around very optimal experience

curve (or path). Flow in the figure stands for the experience the player has while

playing the game. This curve is impacted by the design of the game and the player’s

choices during his playtime. Abilities axis in the chart represents multiple values. It

represents the skill of the player and his Player-power.

Most, if not all, game elements have an impact on how Flow Zone is going to

look like, and many even impact the optimal path itself, usually through the difficulty

of the challenges or how much Player-power they give to the player.

 11

Figure 5 (Chen, 2007): Simple chart of Flow Zone in relation to challenge and

abilities of a player. When the player does not have strong enough abilities, he

experiences anxiety. When the player has too strong abilities for the current

challenge, he experiences boredom.

2.2. RPGs and difficulty

Role-playing games (RPGs) are a genre of games which let the player embody

a character in the game and play as the said character. What is important about this

genre of games is the difficulty and difficulty management of these games. The

general aim of any game is, besides other things, to make players play it and enjoy it.

Enjoyment of the game is based on many things, but we are interested in how

enjoyment is related to the game’s difficulty.

Difficulty of any game is usually somehow quantifiable. However, it is game-

specific. Generally, difficulty has a high correlation with the requirement of a

player’s individual skill in a specific game needed to enjoy or even play the game. So

the greater the difficulty of the game, the higher the skill is needed to play and enjoy

the game. If this difficulty is too low, the player can become bored. And similarly

vice versa, the player can become anxious if the difficulty is too great for his skill.

Both of these states may lead to the player not playing or enjoying the game, which

is malicious for any publisher or developer, as it influences reviews and opinion of

the player base negatively.

Determining difficulty of the game tends to be very difficult for real-time

games. Even turn-based games usually have a significant branching factor. This is

 12

the reason why most developers either turn to approximations or manual testing.

Manual testing, however, is very expensive to do properly, since it needs many

human players and their feedback, which is not affordable by smaller developer

groups. On the other hand, approximating difficulty has computational complexity

and is game-specific. This means that the author of the approximating algorithm

needs to be very familiar with the game mechanics, concepts and the target player

base.

Difficulty management is a routine that is supposed to eliminate the problem

mentioned above as much as possible. Some developers even introduced dynamic

difficulty management in their games, which allows games to adjust their difficulty

during playtime (Fallout 3, 2008) depending on player’s performance (i.e. dynamic

enemy levels, gear requirements). Another example is the dynamic levels of

mercenaries in Assassin’s Creed: Odyssey (Ubisoft Entertainment, 2017). Difficulty

management usually consists of adjusting the strength of the enemies or the

toughness of the obstacle in relation to Player-power.

In this fashion, it is very similar to increasing challenge or abilities in the Flow

chart (Figure 5). However, the Flow zone, in this case, would be the spectrum of

player skill that is acceptable to play the game comfortably. Because of this, it is in

developers’ interest, to make Flow zone as wide as possible, either through dynamic

difficulty management or through other game elements.

2.3. Skill trees

Figure 6: Example of an undirected skill tree. Nodes highlighted are considered

active and give power to the player. All edges have the same weight of 1, and this

price is paid by points, which player gets by levelling up. (Path of Exile, 2013)

 13

Skill trees1 (or technology trees in strategy games) are structures, which usually

take the form of weighted graphs, where nodes represent skills (stat boosts,

technologies) and edges represent their availability, example on (Figure 6). Every

node has its type, which represents, what kind of effect the node will have once it is

picked. Most common effects of nodes are unlocking ability or spell and increasing

some stat, effectively making abilities the player already has better.

Nodes generally have two different states, active and non-active. Active nodes

then have some kind of effect on the gameplay, which usually is empowering the

player or giving him additional abilities, as shown in Figure 7. Every skill tree is

specific in terms of management, when and at what price can a player obtain nodes

in the skill tree. For example, Path of Exile (2013) has all nodes at the same price of

one skill point, which is given every level up and for some quests. It starts with two

nodes available for picking and only constraint on picking nodes is to have them

connected to the current set of obtained nodes.

The general approach, however, is to let the player obtain nodes at some point

in the game. This time can be a specific level, point in story or location. Every skill

tree has a set of available nodes (nodes that can be obtained next). This set tends to

grow over time in a game and can be managed by different game mechanics.

Usually, however, when the player obtains a node in a skill tree, every node, which is

connected to the obtained node, is added to available nodes. Some nodes may be

unlocked and added to the set of available nodes at different points than just

obtaining another node, but those events are external to the skill tree and depend

purely on the game design.

1 Historically, skill trees were only in form of trees with one root and were fully connected.

Nowadays, skill trees have adapted into simple graphs. Term skill tree is used due to historical

reasons.

 14

Figure 7: This screenshot from Assassin’s Creed: Origins (Ubisoft Entertainment,

2017) is an example of a node and its effect. This node gives the player additional

ability after putting an animal to sleep. The player can tame the animal afterwards

to gain a strong companion.

One of the many things that skill trees let us do is manage the difficulty of the

game. By acquiring nodes in the skill tree, the player gets Player-power. This

acquisition usually results in the ability to acquire more nodes in the future. Every

obtained node results in an increase of Player-power (Figure 8), which increases

abilities in the Flow graph to push the player from anxiety to Flow zone (Figure 9).

This supports decent Flow between anxiety and frustration from challenging

gameplay and boredom from overly easy to overcome obstacles through different

gameplay and discovery of different possibilities of viable skill tree choices.

Figure 8: Effects of choices in a skill tree. At every state of a skill tree, there is a set

of nodes we can choose from to obtain a new node. Depending on the choice of the

player, the Player-power rises differently.

 15

In Path of Exile (2013), you need to acquire enough power to beat late-game

bosses or to simply be able to progress further. Even though most games have other

mechanisms that prevent the player from progressing too quickly (see nad), skill

trees are often part of that mechanism.

Figure 9: Effect of skill tree in regards to Player-power and Flow.

There are a couple of requirements we can have for skill trees. One of them is

to manage the difficulty, but we will talk about that in the next part of the Analysis.

Another one is for the skill trees to be interesting and appealing. This is meant in a

sense that every choice from available nodes should not be obvious, but also not

redundant.

For a skill tree to appear interesting, it needs to provide plenty of interesting

choices for the player. Those interesting choices must make the player think twice

when choosing from available nodes, both by their diversity and by what they add to

available nodes after the player obtains them. This makes the skill tree more

interesting to use in games.

Redundancy can be caused by two main causes. The first cause can be lack of

possible choices. When the amount of available nodes is only 1 at a time, any user

input is redundant, and the idea of skill trees is voided. Another cause is the

homogeneity of available choices (both illustrated in Figure 10). When all available

choices have the same or very similar effect, the choice may appear redundant.

However, if there are significant differences in further choices, this redundancy may

become harmless.

 16

Figure 10: Example of redundant skill trees.

What makes choices in skill tree obvious is a big difference in the effect of the

available nodes. In a case, where one choice is vastly superior to the others, player’s

choice is a mere formality, since the best choice is obvious and the others will never

beat the best one (Figure 11). This problem is not that visible and intrusive if the

differences in choices are small, even though there is an objectively best node. What

mostly eliminates this problem is, having weaker nodes as an investment to get

something better in future picks.

Figure 11: Example of obvious choices in skill trees.

 17

2.4. Problems with skill trees and difficulty

We have shown the effects of a skill tree on the Flow chart; specifically, the

effect of picking one node in the skill tree. However, if we would like to show the

effect of picking two nodes, the number of different increases to Player-power rises.

Let us have a very simple small 10 node skill tree in Figure 12.

Figure 12: Example of a simple tree of 10 nodes. Numbers at each node represent

their increase of Player-power when picked.

If we would already have the root of this tree obtained and we were to pick two

other nodes, the range of possible Player-power increase is pretty wide. Depending

on player choice, we can get an increase of Player-power anywhere between 3 and

13. This means that the increase of Player-power is not deterministic, and every

increase does not necessarily need to push the player into the Flow zone. This makes

generating skill tree complicated and opens a question if the player should be

punished for making bad decisions.

This question has been answered by many modern titles, but differently every

time. In Path of Exile (Grinding Gear Games, 2013), one can easily get next to no

Player-power even if spending over 100 points in the skill tree. On the other hand,

The Incredible Adventures of Van Helsing (NeocoreGames, 2013) makes you get a

new skill or skill upgrade for each skill point spent, making you noticeably more

powerful every time. The most deciding factor of skill tree node choices in this game

is the preference of which abilities a player wants to use.

 18

Therefore, every skill tree should give the opportunity to get the player into the

Flow zone. However, not necessarily every combination of nodes needs to push the

player into the Flow zone.

On top of calculating or approximating Player-power, we need to account for

all the different combinations that can be taken at each point of the game. The

number of different combinations of nodes rises with possible points and is highly

dependent on the tree’s structure. In order to generate skill trees, we will need to take

in account all possible combinations of nodes to be taken in a tree for every state of

the game (and its respective number of skill points gained).

2.5. Skill tree space

Skill trees have a certain space they occupy. This space must be defined in a

way that all possible skill trees fall into it. We cannot place a skill tree in a normal

vector space since that would require a variable amount of dimensions, based on the

number of total nodes. However, what we can do is to confine the skill tree to a

certain amount of nodes N. This allows us to have different combinations of up to N

nodes, but we also need a way to represent the parental relations. These parental

relations can also be represented in the number without sacrificing space to invalid

skill trees by adding information about the parent of each node (i.e. at the end of the

number representing node).

What we would need to represent for each node is its type, value (if any), its

parent (in the form of id or something like this). There will be invalid entities using

this method (disconnected trees, cycles), but we can eliminate those.

Finally, we can tell how many (or at least upper bound) trees can be created

using N nodes, T types and V being the max value of node effect. According to

Cayley’s formula, there are 𝑁𝑁−2 trees over N labelled nodes. If every node has T

possible types and value of 0 up to V, then we can have (𝑉 ∙ 𝑇)𝑁 possible

combinations of N labelled nodes in the skill tree. This gives us the following

number of skill trees.

((𝑉 ∙ 𝑇)𝑁)(𝑉∙𝑇)
𝑁−2

2.6. Generating skill trees

Therefore, we can see that the space of all possible skill trees is very massive,

so using any kind of enumeration to try which tree rates the best would be

 19

unreasonably slow. There is also going to be a non-trivial percentage of trees, which

will be insufficient, since plenty of trees will be too powerful in some stages and vice

versa. Let us look at the definition of a node, which will be used in this thesis:

Property Note

Category Category defines the effect of a node when it is obtained

Effect value

(or just value)

Specifies the strength of the effect. Usually how big boost is

given to the player.

Children Which nodes become available when this node is obtained

State State of the node. Can be non-active, available or active.

Table 1: Definition of node’s properties

We can combat this complexity by following:

Reducing maximum node value or number of categories usually results in

way less optimal solution, since there are wider gaps between different tree

instances. Therefore, the desired Player-power is harder to achieve accurately.

Reducing the number of categories is also undesired, because it may be either

impossible or very game impacting in a negative way by reducing content and also

widening the gaps between achievable Player-powers.

Reducing the number of nodes is very unwanted. It limits the space we are

exploring in a naïve way, since we are reducing the interesting aspect of the tree,

increasing redundancy and therefore reducing the amount of content in the game.

The number of nodes in games ranges from just a couple of nodes (Hamilton,

2018) to over a thousand nodes (Path of Exile review, 2018). However, removing

any of the nodes hurts the quality of the skill tree for said reasons. This can cause the

best part of the skill tree space to be unexplored, which results in a possibility to

severely impact the output tree in a generation.

A way of combating complexity, which does not impact the result too severely,

is using some dynamic approach (local search, evolutionary/genetic algorithm). By

dynamically searching only parts of the skill tree space, we can achieve the desired

performance of generating skill trees. One can also see that if we change a good tree

slightly, we should not get a completely terrible tree. A slight change is considered a

small adjustment of value, adding a new node with small value or deleting a leaf

node with a small value.

 20

There are many algorithms that use a dynamic approach, but we are going to

focus on algorithms with an evolutionary approach. These algorithms use fitness

functions to evaluate fitness (goodness) of entities and apply changes to their entities

to achieve better fitness. In this thesis, we will be using an adaptation of the Simple

Genetic algorithm (SGA).

2.7. Generative process

SGA uses an iterative process, where it takes a generation of entities,

evaluates every entity using a fitness function, selects the best individuals and

performs mutation and crossover to create new entities with small changes compared

to the ones from the last generation, creating a new generation (Snippet 1). Usually,

SGA uses encoding for its individuals and applies standard operators to them to

mutate them and then performs standard crossover. However, our algorithm will

have a few changes.

1: Initialize population
2: Evaluate individual fitness of initial population
While (not stopping criteria) do
 3: Select best individuals for mutation and crossover based on fitness
 4: Perform crossover and mutation to create new generation
 5: Evaluate new individuals’ fitness
6: Return best fit individual

Snippet 1: The pseudo-code of classic Simple Genetic Algorithm

Our algorithm will not have encoding into a string, because it is very

unintuitive to do for trees and the operators would be cryptic. Therefore, we will

have to use custom operators to mutate our entities, and the crossover will also be

custom. Then we also have to choose our initial population and decide on the

selection process.

A very important part of any evolutionary algorithm is having a good fitness

function, which is both accurate in terms of telling us, how good an entity is and fast,

so we can evaluate as many entities as possible. We will talk about the fitness

function of this thesis in chapter 6.

We will talk about the operators later in detail in section 5.1. Here I want to

talk about the initial population and then describe the selection methods used in this

thesis.

 21

The initial population is very crucial for every genetic algorithm (GA), and it

must correspond to the design of the operators. Meaning, if the operators are

designed to grow the individuals, it is a better idea to go for an initial population

consisting of ‘small’ individuals to get less biased results (bias, in this case, depends

on the creation of the individual, as it is not developed by our operators). Therefore,

we went with the strategy of starting with ‘small’ individuals (skill trees of few

nodes), and then we let them grow through the operators. This also follows the idea

of Flow, since the small and weak tree will usually leave the player below the Flow

zone and growing the tree will gradually push him upwards.

The most basic selection method is taken from hill climbing. This local search

based selection method only takes the best individual from a generation and then

tries to look in its ‘local’ proximity. This local proximity is determined by the small

changes performed in by operators. This method relies heavily on the initial

population (in this case, only one individual). Therefore, additionally, we adapt this

method to run it multiple different times with a random small tree as the initial

population.

Another selection method used in this thesis will be more like SGA, as it uses

the crossover. In this thesis, we will call this algorithm the Evolutionary algorithm.

This algorithm increases the size of the generation from 1 to what will be specified as

a parameter in the input. Additionally, an adaptation of this algorithm is created to

weight different properties of every individual differently, based on input parameters.

This adaptation will be called the Weighted Evolutionary algorithm in this thesis.

Finally, the last selection method is an adaptation of the Non-dominated sorted

genetic algorithm (NSGA). This method is a form of multi-objective optimisation,

which means we do not aggregate all ratings of the tree into one final rating and then

sort them by this value. Rather, we form ranks of trees and calculate their crowding

distance (more in 4.6).

2.8. Multi-objective optimisation

Multi-objective optimisation was mentioned in the previous section, and I

would like to state what it is and why we need it in our algorithm.

Multi-objective optimisation is a form of optimisation, which tries to focus on

multiple properties or ratings at the same time. We can use this behaviour in our

thesis because skill trees have several different ratings that can be given to it. NSGA

 22

is a great example of an algorithm, which performs multi-objective optimisation and

therefore we can use it for our purpose.

Multiple objectives for skill trees were introduced because having only one

objective would make the algorithm have a tendency to optimize one aspect of the

skill tree while sacrificing the others, which would make a terrible tree.

2.9. Validation

An important part of every offline PCG is the validation of generated content.

This can be done in various ways and depends heavily on the type of generated

content. In our case, however, few options come to consideration. One is manual

validation through player testing. Another way is to perform a much stronger

evaluation than is being done during the generation, perhaps using bots instead of

people to play the game with given a skill tree.

This validation will be described and done after generation. We will need to

represent multiple different player groups depending on skill, and therefore, multiple

differently deciding bots will be made. This will represent different groups of players

to more accurately reflect the actual gameplay as if we were manually testing. Bots

will collect data, which we will use to evaluate whether the skill tree is appropriate to

use.

This data will mostly consist of their performance and success in the game. The

most important information is if the bot won, how well it won, and what was the

chosen combination of nodes in the skill tree it picked. The most important

information we want to extract from this data is how important the skill tree is,

whether the skill tree can make the bots win and lose based on bot’s decisions

in-game.

2.10. Choosing an appropriate game

Not every game is suitable for PCG of skill trees. PCG in general needs to be

used to generate either large scale elements or many small elements. Otherwise, it

would be simply easier to design them manually. There are a few games, which

make use of multiple skill trees. Example of this would be Dead by Daylight

(Behaviour Interactive, 2016), which generates pseudo skill trees each level, where

the player can obtain items and new perks by purchasing nodes for blood points

 23

earned in matches. Using PCG to generate large scale skill tree is possible, but PCG

should serve as a baseline, which should be manually reviewed and balanced.

A game, which would be suitable for PCG of skill trees, requires a couple of

properties, so the PCG is beneficial. Following features of the game are required or

beneficial for the PCG.

Multiple skill trees must be required either for the development of the game or

the gameplay itself. Without this, the skill tree generating algorithm would be almost

redundant, as only a single skill tree can be created by an experienced game designer.

Therefore, creating a generating algorithm would very likely create an overhead,

which would not save money or time. Additionally, it may require learning more

about skill trees for a developer, who does not necessarily need to know, how should

the skill tree look.

Large scale skill tree is another feature, which enables PCG of skill trees to be

beneficial. Designing large scale game elements, including skill trees, may be very

time consuming for manual creation and therefore it is helpful to create at least a

baseline using PCG.

It is required that the game, for which is the validation done, has a system,

which allows for the creation of a fitness function. This includes a variety of possible

solutions. One is the ability for the game to be (at least approximately) simulated.

Therefore, as I mentioned above, turn-based games have an advantage as they are

usually easier to be simulated and therefore, the difficulty approximated. Another

solution might be a simple game system. The simple game system would allow

computing of the exact ranges of Player-power needed at different stages of the

game.

 24

3. Our game

For the use of this thesis, I needed a turn-based game that involved skill trees

as a part or the entirety of its difficulty management. I was directly inspired by Slay

the Spire (Mega Crit Games, 2017) (Figure 13). I created a card game, that has a set

of enemies in every encounter, and the cards stand for actions the player can do.

Player’s goal is to defeat all enemies in the encounter, and then he is taken to a skill

tree screen when he can choose one node from the tree, after which he is going to

face a new, more difficult encounter.

Figure 13: Screenshot from the game Slay the Spire (Mega Crit Games, 2017). Cards

in this game stand for actions and spend the player’s energy. The goal is to face

encounters and progress further while upgrading and expanding one’s deck of

cards.

Since we needed a simple game system to benefit better from PCG, I stuck to

having a combination of damaging cards, which target all enemies, and cards, which

target only a single enemy. I needed to split the cards into different categories, and

then every node in the skill tree would buff a category-specific subset of player’s

cards.

In order to implement the need for multiple skill trees, the game is played in

scenarios, and there will be a different skill tree for each scenario. This simulates the

need for multiple skill trees while saving time of game designers. This game system

also allows us to group any deck, any encounter and any skill tree into a scenario.

In this game, Player-power is increased only through picking nodes in the skill

tree, and the difficulty is defined only by the set of enemies.

 25

Every playthrough of the game, the player gets to play one scenario. Player has

50 hit points, 20 points of energy and 10 points of mana. Energy and mana refresh to

their full values every turn. The whole state diagram is shown in Figure 16.

Figure 14: Screenshot of an encounter of our game. Cards are used as actions to

defeat enemies. Some are targeted, and some are area.

3.1. Scenario

Scenario is formed by a sequence of encounters, a deck and a skill tree.

Encounters are defined as sets of enemies, which will the player be facing during the

encounter. Deck is a set of 15 cards and skill tree is a set of nodes with defined

connections, category and effect value.

Card is defined by the following properties:

Property Note

ResourceType Type of resource to be spent when this card is played,

so either Mana or Energy.

Cost Amount of resource spent when this card is played.

Category Type of card effect, in our case, only area or targeted

damage.

EffectValue The value of the effect representing how much damage

is dealt.

Table 2: Card’s definition

Scenario starts with the first encounter with no upgrades from the skill tree.

After each encounter, the player is taken to purchase one node from the skill tree to

 26

buff his cards until the end of the scenario. The scenario ends when the last

encounter is beaten or when the player dies in any scenario.

3.2. Skill tree - node pick

After every encounter, the player is taken to the skill tree view, where he will

pick one node from the available ones in the skill tree (Figure 15). Player has visual

assistance to see what node will upgrade what cards, and how much more damage

will the cards do. After the player chooses a node he wants, he is taken to the next

encounter, which is usually harder than the first one. Nodes definition is described in

Table 1: Definition of node’s properties.

Figure 15: Screenshot of skill tree view in the game. One point per encounter is

picked, and the cards that are upgraded are highlighted.

3.3. Encounter

Every encounter starts with enemies and player at full hit points and the player

having his starting 5 cards and full mana and energy. Player’s deck gets shuffled at

the start of every encounter too. Encounter is split into turns for the player.

Encounter ends with all enemies being dead or player’s hit points going equal or

below 0. If the player’s deck runs out, cards in his discard pile are shuffled and

moved to his deck (effectively cycling cards). We can see how the game looks in

Figure 14.

 27

Figure 16: State diagram of our game

3.4. Turn

Every turn, player starts with 5 cards that he draws from the deck. His energy

and mana are replenished to 20 and 10 respectively. After that, the player can play

any cards he wants as long as he has resources to play them. Cards damage enemies

and kill them, once their hit points reach 0 or less. After the player is done with

playing cards, he presses the end turn button. Upon ending turn, all living enemies

damage the player for their attack value, and then the player discards remaining cards

in his hand into the discard pile and redraws 5 cards for the start of next turn.

 28

4. Proposing solution algorithm – Selection methods

Since we have chosen to implement a GA, we are going to follow the usual GA

steps, according to our adaptation in Figure 17. Starting with the initial population,

we mutate the current population and create a crossover of the original population.

After that, we run all the entities through our fitness function, and we select only top

fitting trees, depending on the method used and input parameter. For now, the fitness

function is going to be a method, which will take a skill tree and evaluate its

properties into multiple ratings. Fitness function will be explained in detail in chapter

6.

After that, we check, if we hit the stopping criteria (which will be just the

number of generations in our case) and either stop the iteration or start with mutation

again.

Figure 17: Our adaptation of SGA for this thesis.

 29

In this chapter, we will discuss the methods of selection, and initial populations

we used in all different implementations. We will describe the structure of the

individual in our algorithm, and then we will start from the simple methods and get

to the difficult ones by explaining extensions and changes of the previous methods.

4.1. Individual

An individual of our algorithm will be a skill tree. Since trees have a non-linear

structure, we cannot describe the whole structure of the tree, since it will be dynamic.

We can first describe the structure of the node used in the implementation.

Property Note

Depth How far is the node from the root

EffectValue Amount of increase

Targets What cards will the node affect

Children What nodes become available once this is picked

Table 3: Node’s structure in the algorithm implementation

So our skill tree object will be defined by the following properties.

Property Note

Root Root of the tree

NodeList List of all nodes, mostly for easier manipulation

Table 4: Tree’s properties in the algorithm implementation

4.2. Hill climbing algorithm

The idea of the hill climbing algorithm is having the main entity, which we

mutate every generation and look for a better one. Due to this approach, we do not do

any crossover of trees during the generation of a new generation.

The initial population of this algorithm is a pseudo zero-point, which is only

a root node, which cannot be altered. It is repeatedly mutated, and the best tree out of

the mutated is taken as the new best tree, and the process continues iterating.

Selection is done simply by taking the best tree of the entire population.

In the first implementation, the stopping criteria used to be only to check,

whether we got a better tree in the generative step. However, the second

implementation, which included the probability-based operators with random effects,

used a new stopping criterion to be consistent with other selection methods. The

stopping criterion is the fixed number of generations, which is part of the input, and

therefore is also consistent with other algorithms implemented.

 30

4.3. Randomized hill climbing algorithm

This algorithm is a direct extension of the Hill climbing algorithm. The

difference between this and its predecessor is that Randomized hill climbing

algorithm runs several times with randomized starting points, instead of once with

a zero-point start. After all of the runs ended, the best-rated tree out of the best trees

is returned as the result.

So technically speaking, the initial population is a randomized small tree. A

randomized small tree is a tree of 5 to 10 nodes with random targets and structure.

The number of nodes in the initial tree may vary depending on the total size of the

tree. The selection method does not change since the previous one, and the algorithm

is executed multiple times.

Randomized starting points are created by taking the root node, choosing a

small random number (in respect to the node count in input) and creating that amount

of random nodes (random type, random effect value). After that, we sequentially

assign these nodes one by one to the random node already in the tree as its child.

4.4. Evolutionary algorithm

In addition to the previous ones, this algorithm introduces multiple entities to

carry over from the old generation, which allows us to introduce crossover (more in

5.3) in the step that creates a new generation. The initial population of this

algorithm is X randomized small trees of up to 10 nodes (their amount is equal to

population size, which is part of input parameters) population, where X is specified in

the input. After that, at the end of every iteration, a number of trees specified in the

input are taken to be mutated and randomly merged in order to create a new

generation. At the end of this algorithm, the best-rated tree from the last generation is

returned.

Therefore, the selection is altered that it takes the best X trees from the

population, where X is specified in the input (same as the number of trees in the

initial population). The crossover step is not omitted anymore. The crossover step is

explained thoroughly in section 5.3.

During the implementation of this algorithm, the decision was made to split

different rating categories instead of aggregating all of them into one number during

the fitness function (detailed in chapter 6). This was made in order to prepare for

implementation of the next algorithms.

 31

4.5. Weighted evolutionary algorithm

This algorithm is a simple direct extension of the evolutionary algorithm, and

the only difference is that the ratings are now weighted (more about ratings in 6.5)

instead of having fixed weights. The weights are given as input parameters. This

allows us to focus on a certain part of the rating more than on others, which can yield

much more different trees than before.

So, everything besides the selection step is unchanged compared to the

previous method. The selection step now takes a number of entities based on their

order after multiplying their different ratings by their respective weights given in

input.

4.6. Non-dominated Sorting Genetic Algorithm Revisited

(NSGA-II)

This is another extension of previous algorithms, but this is by far the most

complicated extension. In this method, we are performing the multi-objective

optimisation, which was mentioned in section 2.8. Instead of sorting all trees by

aggregating their rating either by summing or weighted summing, we create a Pareto-

optimal front by a non-dominated sort and then sort the ranks based on their distance,

in order to promote diversity across all different objectives. This algorithm was

proposed (Deb, Pratap, Agarwal, & Meyarivan, 2002) as an improved version of the

Non-dominated Sorting Genetic Algorithm (NSGA) (Srinivas & Deb, 1994).

According to NSGA-II, all entities have two properties, which provide

complete sorting information to sort our algorithm. One is Rank; other is Crowding

distance.

This method changes the preference for selecting individuals. Similarly, a

specified number of individuals are taken from the sorted list according to fitness,

but the sorting is done differently. Sorting of the entities is done primarily by Rank

ascending and then by Crowding distance descending.

Definition (Domination): Let u and v be real number vectors of the same

dimensions. Vector u dominates v ⇔ ∀𝑖: 𝑢𝑖 ≥ 𝑣𝑖 ⋀ ∃𝑗: 𝑢𝑗 > 𝑣𝑗 .

Rank is given to all entities based on their mutual domination. Starting the

whole list at Rank 1, every entity is going to increase Rank of all entities, which it

dominates. Then we do the same for the entities with higher Rank. We iterate this

process until there are no remaining entities in the current Rank.

 32

Crowding distance is computed sequentially depending on how close are the

values of the previous and next entity for each rating. Process repeats for each rating.

All entities are sorted by a rating. Entities with extreme values (min, max) are

assigned positive infinity, then all entities with non-extreme values have their

crowding distance increased based on the range of previous and next entity’s values.

The crowding distance represents each entity’s diversity compared to others.

For example, if there is a couple of entities with similar values for most properties,

then their crowding distance is going to be very low, and therefore they are less

likely to be picked if the whole Rank is not being picked.

 33

5. Proposing solution algorithm – Mutation and crossover

In this chapter, we will talk about the mutation and crossover step of the

algorithm. All methods share these two steps in common. Mutation is performed via

operators, which take an entity as input and output a mutated entity. Every operator

has some form of random choice and random change of a given entity. Operators’

random choice is designed in a way that would support the creation of interesting

choices. For example, an operator which increases EffectValue will be biased to pick

a node with lower EffectValue rather than a node with a higher one.

Crossover step will be explained, as it is not trivial to perform for skill trees.

This step is also based on probability.

First, we will look at mutation and describe all operators and how they mutate

the trees. We will describe the process of every operator and its resulting effect on

our game. After that, we will describe the way we perform crossover of skill trees

and how we solve different structures of entities.

The most basic operators are Strengthen and Weaken. These provide the basic

increases and decreases in nodes’ effect values. The Split and Merge operators

mutate the skill tree in a way that gets rid of strong obvious choices and weak

redundant ones. Finally, the AddNode operator lets the tree grow another random leaf

node. This operator takes care of structure growth.

The mutation step takes all entities selected from the last generation and

applies every operator to every entity from the selection with probability given as an

input parameter for each operator. Each operator creates a modified (mutated) copy

of an entity given to it. This means all entities from the selection of the last

generation are preserved.

5.1. Relevant input

Relevant input for this part of the algorithm is the probabilities of operators

modifying the entity.

Parameter Type Note

StrengthenOpProb Integer Probability of using Strengthen operator

WeakenOpProb Real number Probability of using Weaken operator

MergeOpProb Real number Probability of using Merge operator

 34

SplitOpProb Real number Probability of using Split operator

AddNodeOpProb Real number Probability of using AddNode operator

Table 5: Relevant input for mutation

5.2. Operators

Strengthen node operator is a very simple operator, which increases the

EffectValue of one node of the tree. This choice of the node is biased to choose

nodes with lower EffectValue over nodes with a higher one. The choice is made

following way. Let MaxValue be the maximum value of all nodes. Root (n0) cannot

be picked. Node’s (ni) chance to be picked is represented by the following equation.

𝑝𝑛𝑖 =
𝑀𝑎𝑥𝑉𝑎𝑙𝑢𝑒 + 1 − 𝑉𝑎𝑙𝑢𝑒𝑛𝑖

∑ 𝑀𝑎𝑥𝑉𝑎𝑙𝑢𝑒 + 1 − 𝑉𝑎𝑙𝑢𝑒𝑛𝑖
|𝑁|−1
𝑖=1

This probability model supports the creation of interesting choices, as it

directly tackles obvious choices by creating alternatives.

The increasing amount is random, and the range depends on the depth of the

node from the root. This results in a bigger increase of Player-power when the player

picks the strengthened node. In our game, it means a bigger buff for the cards the

node would have buffed originally. Therefore, there is a bigger incentive to take this

node when it is available.

Weaken node operator is also a simple operator, and it is very similar to

strengthen, but it is biased to stronger nodes instead. This node reduces the

EffectValue of the node by a random amount. This amount also ranges higher, the

higher the depth of the chosen node is. The chance for (ni) to be picked is:

𝑝𝑛𝑖 =
𝑉𝑎𝑙𝑢𝑒𝑛𝑖

∑ 𝑉𝑎𝑙𝑢𝑒𝑛𝑖
|𝑁|−1
𝑖=1

This operator also helps create interesting choices by directly affecting obvious

choices. However, in this case, it is done by reducing the EffectValue of a high

EffectValue node in most cases.

Merge node operator is way more interesting. First, it chooses a node

randomly, more biased towards choosing the weaker nodes. Probability for (ni) to be

picked is again the same.

𝑝𝑛𝑖 =
𝑉𝑎𝑙𝑢𝑒𝑛𝑖

∑ 𝑉𝑎𝑙𝑢𝑒𝑛𝑖
|𝑁|−1
𝑖=1

 35

Then it finds its weakest sibling and merges them together. If the chosen node

has no siblings, no modification is performed. Merging process creates a new node

(Figure 18). New node’s type will match the type of the stronger of the original

nodes and the effect value will be the sum of the originals’. Children of original

nodes will be concatenated together and added as children of the new node.

Effect of this operator in-game is to reduce the redundant choices during the

picking of a skill tree node. Since the player is likely to choose the strongest node,

merging two weakest together may appear as a more interesting choice.

Figure 18: Example of Merge node operator. Children of both selected nodes are

concatenated together and added to the merged node. The new node type that is

matching the stronger node of the two selected and the power of the nodes is

summed up.

Split node operator works in a similar fashion as the merge node operator. It

chooses a node randomly, more biased towards stronger nodes. The chance to pick

(ni) is the same as for Strengthen operator.

𝑝𝑛𝑖 =
𝑀𝑎𝑥𝑉𝑎𝑙𝑢𝑒 + 1 − 𝑉𝑎𝑙𝑢𝑒𝑛𝑖

∑ 𝑀𝑎𝑥𝑉𝑎𝑙𝑢𝑒 + 1 − 𝑉𝑎𝑙𝑢𝑒𝑛𝑖
|𝑁|−1
𝑖=1

Then it creates two new nodes (Figure 19), which will have the same parent as

the original. Both of new nodes will have the same type. Let X be a random real

number between 0 and 1 (inclusive), then One node’s effect value will be the original

node’s value times X, and the other’s value will be the original’s times 1-X. Children

of the original node will be randomly distributed between new nodes.

This operator directly tackles both redundancy and obviousness in the skill

tree, since the player would likely pick the strongest node. We can provide new and

more interesting choice by splitting this strong node.

 36

Figure 19: Example of Split node operator. Node chosen for split is split into two

new. Both new nodes have the same type, and their power is split with a random

ratio. Original node’s children are assigned randomly between the new nodes.

Add node operator is a simple operator, which adds a new leaf node as a child

of an existing one (Figure 20). The choice of a parent is heavily biased towards nodes

with less than 2 children. There is a 50% probability to pick node with no children, a

40% probability of picking node a node with 1 child and a 10% probability of

picking node one of the others. The choice within these three groups is random. The

type of the new node is chosen at random.

This operator directly reduces redundancy of a skill tree, as it gives more

choices to the player. In combination with the strengthen operator, this operator

creates viable alternative choices to already viable choices.

Figure 20: Tree with an added node (red). The new node has a random type, random

value, and it will always be a leaf node.

All these operators are used for creating mutation of a tree, which is one of the

parts of creating new generations. Another part of creating new generation is

merging two trees together to try to achieve the good properties of both.

 37

5.3. Crossover - merging two trees

The selection of entities to merge is made randomly. Let X be the number of

trees selected from a generation in the selection step. Then we are going to take X

random pairs of entities from the said selection of old generation and perform the

crossover step using these pairs. All entities created by this step are added as copies

to the next generation (original trees are preserved).

Usually, the crossover of two entities in an evolutionary algorithm is a matter

of averaging their numeric values or randomizing them to have a similar effect. This

is not that simple to do with trees since we do not have a fixed tree structure.

Merging two nodes is as simple as averaging or randomly combining their values,

but combining their children is not trivial at all. Simply combining the nodes’

children is out of the question, since it would introduce just a denser tree with plenty

of redundant choices and twice the node count. Therefore, we need a method to

combine two sets of nodes’ children in a way, that takes a child from each node and

then combines is, which suggests a recursive method. The recursive method would

be solving the current node pair, and then their children would be paired and solved

the same way as current node pair if there is the same number of children. Extra

children, which could not have been paired, would be randomly either discarded or

added to the solved node.

Even with using recursion, we need a way to handle nodes, which do not have

the same amount of children. The naïve but decent way is to have a 50% probability

of adding the extra child to the merged node and a 50% probability to discard it (and

its subtree). I chose to go this way since it accomplishes everything I need. Let us

describe the crossover process step by step.

The algorithm is recursive, which means we will handle one node pair at a time

starting from the root. For every node pair A, we first create a new node with type

randomly chosen between the types of the nodes in the pair A. Then we randomly

choose between effect value of the first node (25%), effect value of the second node

(25%) or their average (50%). After that, we create as many pairs of nodes, where

first of the new pair B is going to be a child of first of the nodes in the pair A and the

other of the new pair B is going to be from the other node’s children. The nodes

which remain unpaired are the extra children (Figure 21). These extra children will

be all the remaining children of only one of the nodes from pair A. For all new pairs

B, there will be a recursive call of this algorithm, and each result of this call is added

 38

as a child of the new node. Then the extra children are randomly discarded or

assigned to the new node (both with 50% probability). Then the algorithm returns the

new node.

Figure 21: Example of pairing nodes during merging. Here we are merging A and C,

and we are pairing their children. B and D get paired, as they are the first children

of their parents. E is left as extra since there is no child of A left to be paired.

 39

Node MergeNode(Node one, Node two)
{
 var solvedNode = new Node
 {
 Children = EmptyList,
 NodeTargets = PickRandom(one.NodeTargets, //type of node
 two.NodeTargets),
 NodePower = PickRandom(//effect value

(one.NodePower + two.NodePower) / 2,
 one.NodePower,
 two.NodePower)
 };

 var maxChildren = Max(one.Children.Count, two.Children.Count);

var minChildren = Min(one.Children.Count, two.Children.Count);

 //recursively merge common children
 for (var i = 0; i < minChildren; i++)
 {
 //recursive call for pair of children
 var mergeNode = MergeNode(one.Children[i], two.Children[i]);

solvedNode.Children.Add(mergeNode);
 mergeNode.Parent = solvedNode;
 }

 //randomly discard or assign extra children
 for (var i = minChildren; i < maxChildren; i++)
 {
 if (one.Children.Count <= i)
 {
 if (Random.NextDouble() > 0.5)
 solvedNode.Children.Add(two.Children[i]);
 }
 else
 {
 if (Random.NextDouble() > 0.5)
 solvedNode.Children.Add(one.Children[i]);
 }
 }

 return solvedNode;
}

Snippet 2: recursive node merging method, which averages current conflicting node

and merges their children by calling itself recursively if both nodes exist, else it

randomly adds or discards the extra nodes.

 40

6. Proposing solution algorithm – Fitness function

In this chapter, we will talk about the fitness function, which is the function

used in the fitness step of the algorithm. The fitness function should return ratings

for the tree for us to compare it with others. This rating will be split into different

values based on the specific property of the tree.

Definition: We will define our fitness function as a function 𝑓: 𝑇 → 𝑅𝑛 where

T is space of all skill trees with structure defined in section 4.1. The returning value

of this function is an n dimensional vector of real numbers, which represent all

different ratings of a skill tree in our thesis.

The perfect fitness function for our algorithm would require complete

simulation of all cases that might happen in the game. From this information, we

would be able to determine all the needed ratings.

Given our game system, explained in Figure 16, we would have multiple

branching factors. We would have the branching factor of the skill tree choice, which

would depend on the skill tree, but it would be limited by the number of nodes in a

tree. The worst case is to have a root with only leaf children. In that case, with N

nodes in the tree and M being the number of obtained nodes per scenario, we would

have (𝑁
𝑀
) possible choices. However, this needs to be multiplied by 𝑀! to account for

the possible order of how the nodes were obtained.

Then we need to approximate the complexity of the encounter in the

simulation. The complexity is highly dependent on how many cards are targeted and

how many enemies there are. Every turn we get 5 cards, and in every encounter, we

face up to 7 enemies. This means that in the worst case, we have 75 possible plays in

our hand. We can omit the order of the cards, as their order can be changed for the

same effect. We still, however, need to put this number to the power of turns player

in the encounter, since the outcomes of every turn might differ. Therefore we end up

with encounter simulation complexity of (75)𝑇 where T is the number of turns (this

number usually ranges between 1 and 10 because of our game design.

Additionally, we need to account for the order of the cards in the deck, and

there will be
15!

5!∙5!∙5!
 possible orderings. Therefore with E being the number of

encounters in a scenario, we end up with the following formula of complexity for

complete simulation.

 41

(
𝑁

𝑀
) ∙ 𝑀! ∙ 𝐸 ∙ (75)𝑇 ∙

15!

5! ∙ 5! ∙ 5!

This is the worst-case scenario, and the complexity for average scenario would

be looking much better since there are many area cards (which do not require target)

and there are not many encounters with 7 enemies, but the average would be between

4 and 5. Also, the skill tree’s structure will be much different in the average case, and

the complexity of choice would be lower. However, the complexity of such

simulation is still too large to be used in the fitness function, especially because it

covers only one skill tree and only one deck. Therefore, we have to make

compromises and rely on approximations.

Given our changing environment (different scenario every generator run) and

the variety of combinations, best-proposed fitness function was approximating

simulation on all possible choices in the tree and aggregating them to a single value

(fixed amount of values).

To simplify the simulation, I still decided to run all possible tree combinations,

but in terms of simulating the encounter, we have simplified the simulation greatly.

Instead of searching all possible cases and tracking every choice and variable

element, we average the targeted and area damage of the deck every turn. Doing this

while running a simple greedy heuristics, that puts the average targeted damage on

the minion, which has the highest attack to health ratio, makes the simulation

performance much better and enables its use in repeated skill tree evaluation.

Definition: Approximating simulation is a function 𝑓: (𝐷, 𝐸) → 𝑍 where D is a

set of cards (Table 2: Card’s definition), which are already buffed by a combination

of nodes, E is a set of enemies where enemy is defined by attack value and health

value. E effectively means (𝑍, 𝑅)𝑛, where n is a number of enemies. Returning value

of this function would be the turn number if the simulation succeeded in beating the

encounter. Otherwise, it will return the sum of remaining hit points of the enemies,

which are still alive (hit points above 0).

On top of that, we can use reference decks instead of all possible decks and

also average the turns instead of having a huge branching factor during the encounter

because of the number of possible decks. Both of these increase the algorithm

performance greatly. We have chosen this kind of function because it is close to the

perfect simulation, but it is not as complex. Therefore, it can be used in the fitness

function.

 42

We will need to select a few representative ratings, which will make the skill

tree viable to use and which will make it interesting to the player. In order to make a

skill tree viable to use, we will need to control the win ratio of all combinations in

every given state of the game. This raises the need for WinRateRating which will

represent, how well does the skill tree do against the specific encounter over all of

the possible combinations of nodes achievable in that state of the game. This will

only make sure not to fall under the Flow zone into anxiety, but will not give us

upper bounds. That is why we introduce a few ratings, which control the length of

the encounter since the length of the encounter represents its challenge well. These

will be looking for average, median, and most frequent case (MFC) of the winning

turn. Their matching ratings are called AverageWinTurnRating, MFCWinTurnRating

and MedianWinTurnRating. In order to control the amount of redundancy in the tree,

we introduce the BalanceRating, which will check the sizes of subtrees of children of

nodes to rate more balanced trees better than unbalanced ones. Finally, we introduce

the GraciousLossRating to combat obviousness in the tree. This rating will rate trees,

which will have closer losses higher than a tree with total losses, which were not

close to winning at all. Ratings will be explained in detail in section 6.5.

The approximate simulation gives us the result for each deck, each encounter

of a scenario and each combination of nodes for a given encounter. This gives us a

three-dimensional array of results from the approximate simulation. For every

combination of nodes for given deck and encounter, we will convert the one-

dimensional array into chosen ratings. Then we will be left with a two-dimensional

array of ratings (per deck and encounter), and these ratings will need to be

aggregated into a single set of ratings, which we will finally return as a result of the

fitness function.

First, we will need some reference decks to cover most of the likely deck types

that can be in the game. We will also need to represent the choices a player can make

in the skill tree for proper fitting and how we address the combinations of choices

any player can make. After addressing that, we will describe the approximating

simulation. Then, we will talk about extracting the results and splitting them into

different ratings and how these results will be aggregated over all decks and choice

combinations.

 43

6.1. Relevant input

For this part of the algorithm, the relevant input of fitness function is the data

about encounters and weights given to our ratings.

Property Type Note

Encounters Set of pairs

(Integer; Encounter)

What encounters will the game contain

at what numbers of nodes available

WinRateWeight Real number Weight of the WinRate rating

AverageWinTurnWeight Real number Weight of the AverageWinTurn rating

MedianWinTurnWeight Real number Weight of the MedianWinTurn rating

BalanceWeight Real number Weight of the Balance rating

MfcWeight Real number Weight of the MFCWinTurn rating

GraciousLossWeight Real number Weight of the GraciousLoss rating

Table 6: Relevant input for the fitness function

Encounters are an ordered set of pairs of a set of enemies and the number of

available nodes for that encounter.

6.2. Reference decks

Since the deck of cards is not in our input, we have to account for different

deck types, which would reflect most of the possible decks that could play the

encounter. Therefore, I created a set of reference decks, some determined, some

random based on the possible cards that might appear in the deck (all of them listed

at Appendix A – Reference Decks). There will be few decks filled with only one card

type, few decks with 5 non-targeted cards and 10 single target cards and few

completely randomly made up of 15 cards from 8 possible card types. The evaluation

will be done for each deck and then aggregated (more on rating aggregation of data

pod).

6.3. Choices

There are two types of choices to reflect in our simulation. One type of choice

is picking a node in the skill tree. Another type is the choice of cards to play every

turn. First, I will describe the choices of the tree and the important details that relate

to it. After that, I will describe how the choices of playing cards are handled during

the encounter.

 44

The tree’s evaluation must represent the choices that the player can make (i.e.

in the form of having a method to return picked nodes). Therefore, all the possible

choices and combinations of choices should be evaluated to make an accurate

evaluation of a tree. This is because if the player chooses a different combination of

nodes than we evaluated, he might end up with experience significantly worse

because the Player-power given to him is too low or too high to contrast the

challenge properly. Additionally, we might miss some cases of redundancy or

obviousness in the skill tree, if we do not evaluate all combinations.

Another aspect of the tree we must reflect is the continuity of choices. If there

is a node, that makes the player very strong, he needs to have a way to reach it in

order to pick it without losing the game beforehand. Therefore, only winning choice

combinations can be developed further, since losing combinations would not

progress further in the game. This means we can cut these choices from our

calculations. This prevents good rating of all combinations with an incredibly

powerful node, which has no way of reaching it because the player fails before he

can.

Reflecting player choice of cards played during an encounter can be tricky

since you need to approximate the behaviour of the player. Great players will beat

significantly harder encounter than a bad player. However, as we have discussed in

section 2.2, the difficulty is relative to the player. Therefore we can choose what kind

of players we want to have the most optimal experience. We have gone with

targeting the decent players to have the optimal experience and therefore, we have

chosen to simulate the player choices in encounters with greedy strategy heuristics.

We might end up in a situation, where the results of choices are succeeding

only in part of the cases (not all combinations of nodes beat the encounter). In that

case, it would be a good idea to ensure that some amount of combinations succeeds.

This amount depends on whether we have multiple tries or whether the failure is

permanent. If the loss is permanent, then we should aim for higher odds of success in

an encounter so that most decent or better players succeed. Otherwise, we can get

away with a lower chance of success, as the player can try repeatedly. Since our loss

is permanent and the player would have to start the scenario over if he failed during

any of its encounters, we will aim for a higher success percentage.

 45

6.4. Approximating simulation of encounter

For our evaluation, we went with an approximating simulation, as it seemed the

best compromise between accuracy and speed. Before the simulation, we take the

deck and upgrade it based on the combination of nodes that was chosen.

Since the deck gets shuffled every start of an encounter, it is better to, instead

of running multiple times for different card orders, average the damage player can

deal every turn. Then we iterate player damage during turns and enemy damage at

the end of every turn until player died or defeated the encounter. Average area

damage is done to enemies every turn, while average targeted damage is done to the

enemy with the highest attack to health left ratio. Reason for the targeted damage

heuristics is described in the previous section. If the simulation failed, negative of the

sum of remaining health of enemies was returned to represent, how close, was the

lost encounter. If the simulation succeeded in beating the encounter, the number of

the turn, in which the simulation was able to defeat said encounter, was returned.

Costs of the cards were taken in account and if the cost would surpass the

resources of the player, effect of all cards of that resource type would be reduced to

compensate the inability to play all of them in one turn.

6.5. Rating types

There are a couple of different ratings, which I have defined for each tree.

These ratings represent the performance of a tree well because what we need from a

tree is to provide enough power to beat the encounter, not to have redundant choices,

and not to give too much power.

All ratings are designed to range between negative infinity and 1 with negative

values representing very likely unusable trees. Such values can be achieved by

having a tree that fails at all encounters. The way these ratings are calculated is

described in the next section.

Average, Median and MFC win turn ratings all contribute to a reasonable

game length. The number of turns in a winning game was estimated to be between 3-

5 to be reasonable in length and difficulty. The rating is then given based on

following formula for each of said ratings.

𝑓(𝑥) = {
−𝑥, 𝑥 > 5
𝑥, 𝑥 ≤ 5 ∧ 𝑥 ≥ 3
𝑥, 𝑥 < 3

 46

WinRateRating is by far the most important rating of a tree. It represents, how

much is the desired win ratio of the combinations (for each deck and encounter) of

the actual win ratio. This rating should always be at a high weight, as it ensures a

baseline performance of our tree.

Let W be the win ratio of all possible combinations of nodes in a skill tree for

given deck and encounter and let Ri be the total remaining hit points of all enemies

where I is the set of indexes of combinations and 𝑖 ∈ 𝐼 is the index of combinations.

Finally, let T be the target win ratio. Then WinRateRating is computed with the

following formula.

𝑓(𝑥) =

{

1 −𝑊

𝑇
, 𝑊 > 𝑇

𝑊

𝑇
, 𝑊 ≤ 𝑇 ⋀𝑊 > 0

1

∑𝑅𝑖
, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The target of this function will be 70% in this thesis. This was decided after

manual development testing and will be validated in chapter 8.

BalanceRating was introduced after a couple of unwanted artefacts were

discovered in generated trees. Trees that were generated were significantly

unbalanced, with cases that contained nodes with children that had subtrees of sizes 1

and 7 and similar cases. This rating is based on sizes of subtrees of nodes’ children

and weighted more if the node is closer to the root.

GraciousLossRating was introduced to balance the outcomes of the different

encounters. Before introducing this rating, part of the tree was basically designed to

be ‘losing’ and therefore had very little to no power. To change this, I have

introduced GraciousLossRating to make the losses as close as possible. The closer

the loss was, better the rating. Results of the generation were surprisingly much

better than I originally expected, especially in combination with a higher target of

win ratio.

6.6. Aggregating results

Another secondary goal is to minimize outliers. This means to value trees with

more consistent performance better than a tree, which has a perfect performance in

most cases but fails completely at few. We can tackle this problem by choosing a

 47

proper aggregation method, which would highlight these outliers and reflect them in

the aggregated rating more than just a plain averaging.

Therefore, for aggregation of ratings of all encounters for each deck, each

encounter and each choice combination, I chose root mean square distance from

number 1. The choice fit with the range of different ratings and the aggregation

method is biased against outliers more than just an averaging the results.

I have experimented with different combinations of aggregations, like median

values, maximums, averages and their use to determine the performance of the skill

tree. However, the results were only marginally better and only in specific cases.

Because of this, I have chosen to stick with root mean square as the only aggregation

function.

 48

7. Implementation

This chapter will talk about the implementation of the game and the generator

for it. I will explain the reasons behind my choices of implementation and give

examples and snippets of the code.

The game was done using Unity with C# as its scripting language. This choice

was made out of simplicity and licensing. The generator was also implemented in C#

using .NET Framework 4.6.1. This was more of a pragmatic choice.

Generator used following NuGet packages:

Name Note

morelinq More advanced LINQ methods

Newtonsoft.Json Json serialization and deserialization

System.ValueTuple Dependency of morelinq

Table 7: List of NuGet packages used in the solution

The goal was to make an implementation, which would be able to work in

parallel, in order to maximize performance, while preserving sequential approach

concerning generations. Therefore I wanted to parallelize as much as possible

without too much overhead.

Since the first implementations were consistently returning artefacts, which

were fixable very quickly and obviously, therefore I decided to implement one last

part of the generation, the post processing. In this post processing method, I would

delete and replace the obvious redundancies. I will talk about this method later in this

chapter.

First, I will talk about the generator. I will explain how I formed the input

model and how did I decide to store data (both input and results). Then I will take a

look at the whole algorithm, and after that, I will explain parts of it in detail. After

that, I will address the thread safety across the implementation. Finally, I will

mention the post processing of a tree.

7.1. Relevant input model and data storage

The rest of the relevant input for our algorithm is the number of generations to

be run in addition to how many nodes the final tree can have. Reference decks, which

 49

we talked about in the previous chapter, are a fixed part of the algorithm and thus are

not part of the input.

Parameter Type Note

Generations int Number of generations to run

NodeCount int Maximum number of nodes

Table 8: InputModel’s properties.

To address storing input and result data, we have chosen the JSON format.

This allows us to simply deserialize data into our objects directly and makes loading

and saving data very simple.

7.2. Whole algorithm

Before I go into details about parts of the algorithm, I wanted to have a quick

overview, how does my algorithm look like. As seen in (Snippet 3), the core of my

algorithm follows the Flow diagram of our GA introduced in chapter 4. The stopping

criterion, as mentioned before, is the only number of generations, which is why the

main part of the algorithm is in for cycle.

NodeTree Generate(InputModel inputModel)
{
 var currentGeneration = GetRandomTrees();
 // perform number of generations specified
 for (var i = 0; i < inputModel.Generations; i++)
 {
 var newGeneration = EvolveTree(currentGeneration);
 // perform fitting
 var rated = newGeneration.Rate();
 // adds old generation to new one for selection
 rated.Add(currentGeneration);
 // sorts trees by fitness descending
 rated = new List<RatedTree>(NonDominatedSorter.NonDominatedSort(rated));
 // take only specified number of trees
 currentGeneration = rated.Take(inputModel.GenerationSize);
 }
 // choose final entity to return
 var final = WeightedMax(currentGeneration);
 // post process final entity before returning
 PostProcess(final, inputModel.PowerMarks.Keys.Max());
 return final;
}

Snippet 3: Overview of the algorithm in pseudo code.

7.3. Mutation + crossover step

In the mutation and crossover steps of the algorithm, we take the list of entities,

which were selected from the last generation, and apply all operators to all entities

and then performs crossover on random pairs of the entities from the last generation.

 50

All operators are under the IOperator interface, which has one method. This

method is called mutate and takes an entity and input model as its parameters. All the

operators always create a copy of the entity given to it and then perform mutation

with probability given in the InputModel. If there is no mutation to be performed

(mutation does not happen due to probability, or no other suitable part of the tree was

found to be modified), null is returned and removed from the list of new entities after

all operators are applied.

During the crossover, the amount of random pairs of entities is taken from the

selected generation. This amount is equal to generation size after selection. After

pairs are selected, copies of entities in every pair are given as arguments to the merge

method.

NodeTree Crossover(NodeTree one, NodeTree two)
{
 // merge roots of two trees
 var mergeNode = MergeNode(one.Clone().Root, two.Clone().Root);

// create a new tree object and initialize it
 var newTree = new NodeTree(mergeNode);
 newTree.InitTree();
 return newTree;
}

Snippet 4: Method for crossover. The main process is done in the MergeNode

method, which recursively merges nodes together. After the merging is done, a new

tree object is created and initialized.

Crossover method calls the MergeNode method, which recursively merges

nodes together starting from the root. This method was described in subchapter 5.3.

7.4. Fitness step

The fitness step is being done using a RateTree method. This method is split

into two main parts. The first part consists of performing the approximating

simulation of the game and saving results into a three-dimensional array. One

dimension is for different reference decks, one is for all different game encounters,

and the last one is for all possible combinations, which can be picked in the skill tree

with a specified number of available points for each encounter. The second part is

focusing on extracting the results from the array and rating the tree based on those

results.

For every deck in the reference decks and every encounter in InputModel all

possible combinations of chosen nodes are found. Since the encounters are sorted in

their chronological order, only combinations that succeeded in all previous

 51

encounters are developed to be simulated in following encounters. Then, for every

combination, the deck is upgraded by the chosen combination of nodes and the

approximating simulation with the upgraded deck and the corresponding set of

enemies is started.

In order to keep the simulation as fast as possible, we calculate average damage

per turn for both single target cards and non-targeted cards before the simulation

begins. We account for the player not having enough resource by reducing the

average damage by the ratio of used resource and resource available (if above 1).

Then the turn iteration begins. Simulation damages all the monsters by average non-

targeted damage and damages a living enemy with the highest attack to health ratio.

This heuristic provides a balanced approach when simulating the result of an

encounter.

The second part of the fitness step is to extract results from the three-

dimensional array. For every deck and encounter, we have an array of combinations’

performance in the simulation. After manual review of the game, we have decided to

aim for 3-5 turn encounters, as shorter felt very simple and longer felt tedious.

7.5. Thread safety

To improve the performance of the algorithm, I decided to do the most

performance heavy task in parallel to greatly improve the execution time. This is the

reason why most of the objects that are used and changed in each generation have a

definition of a Clone method, which creates a deep copy of itself. This method is

used during every potential place that could cause inconsistency and during

modifications like operations and crossover (since we are creating new objects).

7.6. Post processing

After the best entity is chosen, post processing is done to prevent easy to spot

and easy to fix artefacts, which are unwanted. Such easy to spot artefacts are nodes

with 0 value or cases with obvious choices, which, as a result, will never get picked.

Every node gets its children searched for subtrees consisting only of one type of

node, and if there is a subtree, which cannot be fully selected, it is converted into a

path which is cut off at the maximum depth reachable in-game.

 52

8. Validation

In this chapter, we will talk about the validation of our skill trees. In order to

validate generated skill trees, we need to choose a way to validate them. As

mentioned before in Analysis, validation can be done either automatically or

manually. We have chosen to go with automatic validation for the sake of time and

resources.

That means we will need an algorithmic solution to trying the game and to see

if a player would be able to play it comfortably. To do just that, we have chosen to

implement bots to play our game. However, we needed our bots to represent the

players that would be playing the game, which raised a need to have multiple

different types of bots that would play our game to cover most of the spectrum of

players.

We needed bots that would be objectively good and bad at the game, but we

needed to give them the same environment as the players would have. Therefore, the

only information for the bot to decide would be cards in hand and enemies against

him. However, there will be one exception with a bot, which is called Lucky. This bot

will have information of his next hand and greedily decide based on next hand’s best

play as if a player would be able to correctly guess what cards he will draw, hence

the name.

First, we will talk about our expectations of the results and form a hypothesis.

Then we talk about the design of the validation. We will describe all different bot

types and their purpose in the validation. We will also describe how different bots

reflect player’s choices in both encounters and skill tree picks. After that, we will

address collecting and storing data from the validation. This includes talking about

what data we collect and what format did we choose for the data manipulation and

interpretation.

8.1. Hypothesis, expectations

In order to reflect different players playing the game, we needed multiple

different bots to play the game. Some need to be better and reflect players who think

about every turn. Some bots need to be dumb to reflect players who either cannot

play the game or are just simply bad at it. Some bots need to be somewhere in the

middle to reflect a player who thinks about what he is doing but not too deeply.

 53

Therefore, the first and the simplest kind of bot will be the RandomBot. This

bot, as its name suggests, will play cards randomly and will randomly end the turn,

sometimes even before it played all the cards in its hand, if less than 3 cards are

playable in his hand. Targets of targeted cards will also be chosen randomly.

Another bot will represent the decent player, who thinks about what he is doing

but is not looking for all possible outcomes and combinations in the game. This bot

is called GreedyBot. GreedyBot always looks for the card, which will have the

biggest impact on the game, killing most enemies or damaging enemies the most out

of all cards in its hand. This bot represents the players, who read every card and find

the one that does the most and play it.

Even this kind of decent player may not succeed in finding the best card. That

is why we introduce RouletteBot. This bot will play the best card with 50%

probability, second best with 25% probability, third with 12.5% probability and both

fourth and fifth with 6.25% probability. A similar approach is when there are fewer

cards in its hand. Best card will be played with 50% probability, reducing this chance

by a factor of 2 every worse choice.

To represent the good players, BestTurnBot was implemented. As the name

suggests, this bot will look for the best possible outcome of the current turn. The

search of best play is done via depth first search (DFS) of game states. Additionally,

another similar bot was implemented called the LuckyBot. This bot searches game

states similarly, but this bot will also look at the hand, which it would draw next turn,

and greedily selects the best card to play and choose the best outcome after this one

card is played.

Next, we needed a way to reflect player’s choices in the skill tree, but given

our size of a skill tree, we did not need to make specific bots for choosing the skill

tree, but rather we covered all possible choices during the scenario.

There are few expectations we have from the validation of the skill tree. First

and foremost, it needs to allow players (bots) to beat the game. The better bots

should almost always beat the encounter, and generally, they should have lower turns

to win than worse bots. Also, the win ratio of all bots should not be 100% to prove

there is a possibility to lose. The average turns to win should fall between 2 and 6,

preferably between 3 and 5, since that is what we aimed for during the generation.

Therefore, the hypothesis consists of the following statements:

 Bots will be able to lose the game

 54

 Bots will be able to beat the game

 Average turns to win will be between 2 and 6

 Win ratio will be higher for ‘better’ bots

 ‘Better’ bots will average lower turns to win than worse bots

These statements all speak of the viability of the skill tree, the fact that bots

will be able to beat the game means the skill tree can give enough Player-power to

the player to beat the game and not feel frustrated and anxious. The fact that bot can

lose a game means that the skill tree is not redundant and the choices in the skill tree

matter (at least to some extent).

If the bots were able to beat the encounter in 1 turn, it would mean that the

game is too easy and will tend to be boring. Therefore another statement will be that

the average turns to win will be between 2 and 6. Win ratio will be higher for

‘better’ bots means that we have implemented the bots correctly and that the game

will reward the skill level of the player. The same reason goes for the last statement

as well.

8.2. Design of the validation

We will take one of each deterministic bots and 10 of each non-deterministic

bots and let them play each encounter for all possible choice combinations in the

skill tree.

For each bot run, copy of the deck is made and then buffed by the node

combination. Then set of corresponding enemies from the encounter is taken and put

up for the bot to play the encounter using a simplified game interface.

When each bot is done playing the encounter (lost, won), it returns a result

row, which gives us all the information about the result of the encounter. This

includes how many cards were played, starting and ending attack and health of all

enemies, seed if relevant, corresponding node combination and bot’s type.

After all the bots are done playing all cases, all result rows are written in a csv

file to be manually validated later.

This validation algorithm will be run for skill trees from all variations of our

selection method to compare differences between them. The skill trees used in the

validation are shown in Figure 22, Figure 23, Figure 24, Figure 25, and Figure 26.

 55

Figure 22: NSGA skill tree

Figure 23: Weighted Evolutionary skill tree

Figure 24: Evolutionary skill tree

 56

Figure 25: Randomized Hill Climbing skill tree

Figure 26: Hill Climbing skill tree

 57

8.3. Result model

Data from bots will be gathered per encounter. Every encounter will create one

record of data. In one record of data, multiple values are included.

Name Note

ScenarioID Identification of a scenario

EncounterNumber Number of an encounter in sequence

BotType Type of bot, which played the encounter

AISeed Seed of AI choices for reproduction

CardOrderSeed Seed of card order for reproduction

TreeId Identification of tree used for validation

NodeIds Ids of nodes chosen at the time of playing encounter

Won 0 if loss 1 if win

RemainingHp Remaining hit points at the end of the encounter

Turns During which turn did the encounter end

CardsPlayed Number of played cards in total

EncounterEnemies Attack and Health of enemies before and after the encounter

Table 9: Format of the data record of validation

All played encounters are stored in a CSV format for easy data manipulation

since the size allows us to have redundant data. This data format also lets us interpret

all results of validations we need as well as confirm or deny statements from the

hypothesis.

8.4. Result interpretation + results for hypothesis

Results of the simulation turned out as expected in hypotheses. The bots’ win

ratio looks like about as we would expect compared with each other, and bots

achieved following win ratios across all variations (Figure 27, Figure 28, Figure 29,

Figure 30, and Figure 31). As seen on the plots, the win ratio of the bots was very

similar between skill tree variations, with all following the same order.

1. LuckyBot

2. BestTurnBot

 58

3. GreedyBot

4. RouletteBot

5. RandomBot

Figure 27: Win ratios of bots with NSGA skill tree

Figure 28: Win ratios of bots with Weighted Evolutionary skill tree

 59

Figure 29: Win ratios of bots with Evolutionary skill tree

Figure 30: Win ratios of bots with Random Hill Climbing skill tree

 60

Figure 31: Win ratios of bots with Hill Climbing skill tree

The only interesting observations are NSGA and HillClimbing having higher

win ratio for all bots and HillClimbing having very little difference between

GreedyBot and BestTurnBot. Another thing was that RandomBot was significantly

lower than other bots in terms of win ratio in all cases.

Another thing to look at was the turns to win in won encounters (Figure 32,

Figure 33, Figure 34, Figure 35, and Figure 36). The hypothesis stated that the

average turns of won encounter should be between 2 and 6. Let us take a look at the

average turns to win for all bots. The turn to win was lower than expected, but for all

the bots within the range of hypothesis. Additionally, an average turn to win was

lower for ‘better’ bots than for the ‘worse’ ones.

Sample standard deviations were 0.681; 0.596; 0.631; 0.576; 0.615 for

NSGA, Weighted Evolutionary, Evolutionary, Random Hill Climbing and Hill

Climbing respectively.

 61

Figure 32: Average turns to win for different bots for NSGA trees

Figure 33: Average turns to win for different bots for Weighted Evolutionary trees

 62

Figure 34: Average turns to win for different bots for Evolutionary trees

Figure 35: Average turns to win for different bots for Random Hill Climbing trees

 63

Figure 36: Average turns to win for different bots for Hill Climbing trees

 64

9. Discussion

The data that we collected fully confirm the hypotheses for all variations of the

skill tree generation algorithm. In all cases, all the bots were able to both win and

lose the game. Bots had different win rates, which were better for the better playing

bots like the BestTurnBot and LuckyBot. The RandomBot had significantly worse

performance, which is good because it was designed to be a bad player, but the game

environment still let it win. This means that the skill tree and game environment

reflect the skill of the player, letting him win in fewer cases than the better players.

Both Evolutionary and Weighted Evolutionary had the same artefacts of

obviousness (redundant branch of the skill tree). This could be solved by adding

another rating to the algorithm in the future that would be ranking trees, which used

all nodes at least a few times to win the approximate simulation, higher than others.

The win ratios of Lucky, BestTurn, Greedy and Roulette bot were very close to

each other. This was probably caused by the simplicity of the encounters since it is

obvious the superior strategy won in very few extra encounters over a very simple

but effective one. It is also likely that the difficulty of the encounters was not very

hard and therefore was not rewarding the player for the higher skill in the game. The

encounters were designed manually, and it is possible that they are not optimal for

the validation.

The standard deviation of win ratio of choice combinations in the skill tree is

decently big (0.379; 0.395; 0.367; 0.386; 0.348), which suggests that the outcome

of every encounter is highly influenced by the choices in the skill tree. This is good

because the redundancy of the skill tree, in that case, is very minimal. This also

means that being able to pick the correct combination in the skill tree is as important

as having high skill in the rest of the game.

Additionally, this means that a skill tree can be used as the only means of

difficulty management for some game designs. A direction of future work could be

to define at what conditions the game can be difficulty managed only via a skill tree.

Data, I was lacking and which would be important, is how many trees that

underwent crossover operation were selected afterwards and if the crossover function

contributed in any way to the final skill tree creation. Data from the validation

suggest that the use of the crossover function in Evolutionary and higher algorithms

had little impact, but we cannot say that for sure.

 65

9.1. Conclusions of validation

Given the results of the validation process, we can conclude that PCG of skill

trees is possible and viable to do using GAs since all of the selection method variants

performed rather well during the validation. This also means that the impact of the

crossover function, which was used during the Evolutionary, Weighted Evolutionary

and NSGA variants, was not that impactful to search the skill tree space.

 66

10. Conclusion

The goal of this thesis was to explore methods of PCG of skill trees in games,

first by analysing the requirements of skill trees and their impact on the game,

secondly by using the conclusion of analysis to create a generator, which would

generate skill trees for our game and finally by validating the generated skill trees.

In this thesis, we have described what a skill tree is and how does it impact

games. We have talked about the connection of Flow with difficulty and skill trees

with difficulty and Flow. We have analysed, what problems does generating a skill

tree bring and what are the requirements we have for a skill tree. We have also

analysed multiple bad artefacts that can come up in a skill tree, like redundancy and

obviousness.

We have created a couple of variations of generators based on what we have

learned during analysis. These generators are based on an adaptation of SGA. There

are 5 variations of selection steps introduced in this thesis, which, sorted from

simplest to the most complex, are hill climbing, randomised hill climbing, classic

evolutionary, weighted evolutionary and finally the NSGA-II.

We have described all mutation operators and the specific way we did

crossover with skill trees. After that, we have described the most important part of

the generating algorithm, which is its fitness function. Validation of trees during the

generation is hard to design because we need both as much accuracy and as much

performance to try as many generations as possible in a given time.

After that, we validated our generated skill trees using multiple bots that

represent different skill level in our game. We had the bots play the game for all

possible combinations in the skill tree and report the result for all encounters,

multiple times for non-deterministic bots. This validation returned data, which

confirmed our hypotheses for the validation.

10.1. Remarks

At first, during the implementation of the generating algorithm, the approach

was very simplistic. I started with only the Hill Climbing method with only the

Strengthen and AddNode operators. This proved to be very unwanted as it offered

very little control during the generation. The probability of artefacts appearing in the

skill tree was also very high. Reason for this was that the skill tree always chose the

 67

best out of the current generation and therefore threw away all the potential skill

trees.

That is when I implemented the randomised hill climbing and evolutionary

approach. This offered a better result, but I felt that the fitness function should be

refined, and I split the rating to different sub ratings and introduced weights to these

sub ratings. This improved the playability of the skill tree, but the redundancy and

obviousness were still a large factor. At the same, time I decided to refine the

operators to include larger variability to the mutation and created the crossover

function.

At that moment, I introduced the gracious loss rating, which significantly

reduced the obviousness of the tree and balance rating, which made the skill tree look

way more appealing. These two ratings heavily improved the skill tree.

After that, we decided to focus more on multi-objective approach and decided

to implement the NSGA variant, which did not offer more control, but it offered

more consistent results because of the way it selected the individuals for next

generation.

10.2. Future work

From this thesis, we have concluded that GAs are a viable way to perform PCG

of skill trees for games. However, the game should meet some specific requirements,

which were stated in section 2.10, and the performance will go down with the size of

the skill tree and its branching factor greatly.

Ideas for future work could be, for example, defining the games, which can use

PCG of skill trees formally, based on what we talked about in Analysis. This could

bring more insight into what is the PCG of skill trees capable of covering and how it

is able to help the development of games.

It is also needed to define a good crossover operation for skill trees since a skill

tree is not a binary tree and swapping subtrees of different skill trees has a very

uncontrolled effect on the skill tree performance. The crossover function should take

advantage of what skill trees do well and try to combine it in a non-trivial way.

Maybe it would be a good idea to consider following good combinations on the skill

tree and base the crossover on preserving these combinations.

Another aspect of skill trees is the correct presentation to the player. This

consists of using patterns and pictures to show the player immediately what the

 68

nodes in the skill tree are doing. A great example of such presentation is seen well in

Path of Exile (Grinding Gear Games, 2013) in Figure 2. There is a couple of

interesting patterns, which can be done in a skill tree, like node ‘clusters’ or subtree

specialisations. These patterns and other forms of visualisation could be explored to

decide, which patterns are good and under which conditions are they to be used.

Examples of these patterns can be seen in Figure 37 and Figure 38.

Figure 37: Cluster pattern

Figure 38: Subtree specialisation

 69

Another topic that would be interesting to look at would be exploring the

possibilities, methods and usefulness of online PCG of skill trees. This likely has

very narrow use in games, but it is already used in Dead by Daylight (Behaviour

Interactive, 2016), which means that it has its place in the gaming environment.

 70

Bibliography

Behaviour Interactive. (2016, June 14). Dead by Daylight. Retrieved June 21, 2019,

from http://www.deadbydaylight.com/en

Bethesda Softworks. (2008, October 28). Fallout 3. Retrieved June 19, 2019, from

https://fallout.bethesda.net/en/games/fallout-3

Brown, F. (2018, May 25). Path of Exile review. Retrieved April 4, 2019, from PC

Gamer: https://www.pcgamer.com/path-of-exile-review/

Carli, D. M., Bevilacqua, F., Pozzer, C. T., & Cordeiro d‘Ornellas, M. (2011). A

survey of procedural content generation techniques suitable to game

development. 2011 Brazilian Symposium on Games and Digital

Entertainment. Salvador: IEEE.

Chen, J. (2007, April). Flow in Games. New York, NY, USA: ACM.

Cziksentmihalyi, M. (1990). Flow – The Psychology of optimal experience. Harper.

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002, April). A Fast and Elitist

Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on

Evolutionary Computation.

Grinding Gear Games. (2013, October 23). Path of Exile. Retrieved from

https://www.pathofexile.com

Hamilton, K. (2018, October 16). Assassin’s Creed Odyssey Smartly Refines The

Origins Skill Tree. Retrieved April 25, 2019, from Kotaku:

https://kotaku.com/assassin-s-creed-odyssey-smartly-refines-the-origins-sk-

1829791194

Hendrikx, M., Meijer, S., van der Velde, J., & Iosup, A. (2013). Procedural Content

Generation for Games: A Survey. Multimedia Computing, Communications,

and Applications .

Kelly, G., & McCabe, H. (2007). Citygen: An interactive system for procedural city

generation. Proceedings of the 5th International Conference on Game Design

and Technology, (pp. 8-16).

Mega Crit Games. (2017, November 15). Slay the Spire. Retrieved June 21, 2019,

from https://www.megacrit.com/

 71

NeocoreGames. (2013, May 22). The Incredible Adventures of Van Helsing.

Retrieved June 19, 2019, from https://neocoregames.com/en/games/the-

incredible-adventures-of-van-helsing/overview

Srinivas, N., & Deb, K. (1994). Muiltiobjective Optimisation Using Nondominated

Sorting in Genetic Algorithms. Evolutionary Computation.

Togelius, J., Champandard, A. J., Luca, P. L., Mateas, M., Paiva, A., Preuss, M., et

al. (2013). Procedural Content Generation: Goals, Challenges and Actionable

Steps. Artificial and Computational Intelligence in Games. Wadern: Schloss

Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing,

Saarbrücken/Wadern, Germany. Online available at

http://www.dagstuhl.de/dagpub/978-3-939897-62-0.

Ubisoft Entertainment. (2017). Retrieved from https://www.ubisoft.com/en-

gb/game/assassins-creed-origins/

 72

List of Figures

Figure 1: Example of skill tree in Incredible Adventures of Van Helsing

(NeocoreGames, 2013). Multiple tree roots can be seen on the top of the skill

tree window; these nodes do not need a predecessor to be obtained before they

can be obtained themselves. ... 1

Figure 2: Part of finished skill tree, which is focused on damage dealt with bows.

This part of skill tree gives player sense of progression because of the finished

node cluster. This cluster of nodes also gives a lot of power to the player,

making future fights easier. (Grinding Gear Games, 2013) 3

Figure 3: Example of a skill tree that is giving the player too much power; with two

nodes, player can take either 35 or 60 power. ... 8

Figure 4: Example of a skill tree that is giving the player too little power; with two

nodes, player can get either 2 or 3 power. ... 8

Figure 5 (Chen, 2007): Simple chart of Flow Zone in relation to challenge and

abilities of a player. When the player does not have strong enough abilities, he

experiences anxiety. When the player has too strong abilities for current

challenge, he experiences boredom. .. 11

Figure 6: Example of an undirected skill tree. Nodes highlighted are considered

active and give power to the player. All edges have the same weight of 1 and

this price is paid by points, which a player gets by levelling up. (Path of Exile,

2013) .. 12

Figure 7: This screenshot from Assassin’s Creed: Origins (Ubisoft Entertainment,

2017) is an example of node and its effect. This node gives the player additional

ability on putting an animal to sleep. Player can tame the animal after to gain a

strong companion. .. 14

Figure 8: Effects of choices in skill tree. At every state of skill tree, there is a set of

nodes we can choose from to obtain a new node. Depending on the choice of the

player, the Player-power rises differently. ... 14

Figure 9: Effect of skill tree in regards to Player-power and flow. 15

Figure 10: Example of redundant skill trees.. 16

Figure 11: Example of obvious choices in skill trees. ... 16

 73

Figure 12: Example of a simple tree of 10 nodes. Numbers at each node represent

their increase of Player-power when picked. ... 17

Figure 13: Screenshot from the game Slay the Spire (Mega Crit Games, 2017).

Cards in this game stand for actions and spend player’s energy. Goal is to face

encounters and progress further, while upgrading and expanding one’s deck of

cards. .. 24

Figure 14: Screenshot of encounter of our game. Cards are used as actions to defeat

enemies. Some are targeted and some are area. .. 25

Figure 15: Screenshot of skill tree view in the game. One point per encounter is

picked and the cards that are upgraded are highlighted. 26

Figure 16: State diagram of our game ... 27

Figure 17: Our adaptation of SGA for this thesis. ... 28

Figure 18: Example of Merge node operator. Children of both selected nodes are

concatenated together and added to the merged node. The new node type that is

matching the stronger node of the two selected and the power of the nodes is

summed up. ... 35

Figure 19: Example of Split node operator. Node chosen for split is split into two

new. Both new nodes have the same type and their power is split with random

ratio. Original node’s children are assigned randomly between the new nodes.

 .. 36

Figure 20: Tree with added node (red). The new node has a random type, random

value and it will always be a leaf node. ... 36

Figure 21: Example of pairing nodes during merging. Here we are merging A and C

and we are pairing their children. B and D get paired, as they are the first

children of their parents. E is left as extra, since there is no child of A left to be

paired. .. 38

Figure 22: NSGA skill tree ... 55

Figure 23: Weighted Evolutionary skill tree .. 55

Figure 24: Evolutionary skill tree .. 55

Figure 25: Randomized Hill Climbing skill tree .. 56

Figure 26: Hill Climbing skill tree... 56

Figure 27: Win ratios of bots with NSGA skill tree ... 58

Figure 28: Win ratios of bots with Weighted Evolutionary skill tree 58

Figure 29: Win ratios of bots with Evolutionary skill tree .. 59

 74

Figure 30: Win ratios of bots with Random Hill Climbing skill tree 59

Figure 31: Win ratios of bots with Hill Climbing skill tree 60

Figure 32: Average turns to win for different bots for NSGA trees 61

Figure 33: Average turns to win for different bots for Weighted Evolutionary trees 61

Figure 34: Average turns to win for different bots for Evolutionary trees 62

Figure 35: Average turns to win for different bots for Random Hill Climbing trees 62

Figure 36: Average turns to win for different bots for Hill Climbing trees 63

Figure 37: Cluster pattern ... 68

Figure 38: Subtree specialization .. 68

 75

List of Tables

Table 1: Definition of node’s properties 19

Table 2: Card’s definition 25

Table 3: Node’s structure in the algorithm implementation 29

Table 4: Tree’s properties in the algorithm implementation 29

Table 5: Relevant input for mutation 34

Table 6: Relevant input for fitness function 43

Table 7: List of NuGet packages used in the solution 48

Table 8: InputModel’s properties. 49

Table 9: Format of data record of validation 57

 76

List of Abbreviations

Abbreviation Explanation

RPG Role-playing games, game genre, which focuses on

having the player play as a character in-game.

NSGA Non-dominated Sorting Genetic Algorithm

PCG Procedural Content Generation

MFC Most Frequent Case

SGA Simple Genetic Algorithm

GA Genetic algorithm

 77

Appendix A – Reference Decks

Deck number: 1

15x - Type: Area; Energy; Damage: 2

Deck number: 2

15x - Type: Area; Energy; Damage: 6

Deck number: 3

15x - Type: Area; Mana; Damage: 4

Deck number: 4

15x - Type: Area; Mana; Damage: 4

Deck number: 5

15x - Type: Targeted; Energy; Damage: 6

Deck number: 6

15x - Type: Targeted; Energy; Damage: 9

Deck number: 7

15x - Type: Targeted; Mana; Damage: 5

Deck number: 8

15x - Type: Targeted; Mana; Damage: 20

Deck number: 9

5x - Type: Targeted; Mana; Damage: 20

5x - Type: Targeted; Mana; Damage: 5

5x - Type: Area; Mana; Damage: 4

Deck number: 10

5x - Type: Targeted; Mana; Damage: 5

5x - Type: Targeted; Mana; Damage: 20

5x - Type: Area; Energy; Damage: 6

Deck number: 11

5x - Type: Targeted; Energy; Damage: 9

5x - Type: Targeted; Energy; Damage: 6

5x - Type: Area; Energy; Damage: 2

Deck number: 12

5x - Type: Targeted; Mana; Damage: 5

5x - Type: Targeted; Mana; Damage: 20

5x - Type: Area; Mana; Damage: 4

Deck number: 13

5x - Type: Targeted; Energy; Damage: 9

5x - Type: Targeted; Energy; Damage: 6

5x - Type: Area; Mana; Damage: 4

Deck number: 14

1x - Type: Targeted; Mana; Damage: 20

1x - Type: Targeted; Energy; Damage: 9

2x - Type: Area; Energy; Damage: 6

1x - Type: Targeted; Energy; Damage: 6

2x - Type: Targeted; Mana; Damage: 5

8x - Type: Area; Mana; Damage: 4

Deck number: 15

3x - Type: Area; Energy; Damage: 2

2x - Type: Area; Mana; Damage: 4

 78

1x - Type: Targeted; Mana; Damage: 20

1x - Type: Targeted; Energy; Damage: 6

2x - Type: Area; Energy; Damage: 6

4x - Type: Targeted; Mana; Damage: 5

2x - Type: Targeted; Energy; Damage: 9

Deck number: 16

1x - Type: Area; Energy; Damage: 2

5x - Type: Area; Mana; Damage: 4

5x - Type: Targeted; Mana; Damage: 5

4x - Type: Targeted; Energy; Damage: 9

Deck number: 17

1x - Type: Area; Energy; Damage: 6

3x - Type: Targeted; Energy; Damage: 9

1x - Type: Area; Energy; Damage: 2

2x - Type: Targeted; Mana; Damage: 5

2x - Type: Area; Mana; Damage: 4

6x - Type: Targeted; Energy; Damage: 6

Deck number: 18

1x - Type: Targeted; Mana; Damage: 5

1x - Type: Area; Energy; Damage: 6

1x - Type: Area; Energy; Damage: 2

3x - Type: Targeted; Energy; Damage: 6

1x - Type: Targeted; Mana; Damage: 20

4x - Type: Targeted; Energy; Damage: 9

4x - Type: Area; Mana; Damage: 4

Deck number: 19

1x - Type: Targeted; Mana; Damage: 5

2x - Type: Targeted; Mana; Damage: 20

2x - Type: Targeted; Energy; Damage: 6

5x - Type: Area; Mana; Damage: 4

2x - Type: Area; Energy; Damage: 2

1x - Type: Area; Energy; Damage: 6

2x - Type: Targeted; Energy; Damage: 9

Deck number: 20

1x - Type: Targeted; Energy; Damage: 9

2x - Type: Targeted; Mana; Damage: 20

3x - Type: Area; Energy; Damage: 6

4x - Type: Targeted; Energy; Damage: 6

5x - Type: Area; Mana; Damage: 4

Deck number: 21

1x - Type: Area; Energy; Damage: 2

2x - Type: Targeted; Mana; Damage: 20

4x - Type: Targeted; Energy; Damage: 9

2x - Type: Area; Energy; Damage: 6

2x - Type: Targeted; Mana; Damage: 5

4x - Type: Area; Mana; Damage: 4

Deck number: 22

2x - Type: Targeted; Energy; Damage: 9

2x - Type: Targeted; Mana; Damage: 20

4x - Type: Area; Mana; Damage: 4

 79

2x - Type: Targeted; Mana; Damage: 5

2x - Type: Targeted; Energy; Damage: 6

3x - Type: Area; Energy; Damage: 2

Deck number: 23

2x - Type: Area; Mana; Damage: 4

3x - Type: Area; Energy; Damage: 2

2x - Type: Area; Energy; Damage: 6

1x - Type: Targeted; Mana; Damage: 5

2x - Type: Targeted; Mana; Damage: 20

1x - Type: Targeted; Energy; Damage: 6

4x - Type: Targeted; Energy; Damage: 9

Deck number: 24

2x - Type: Targeted; Energy; Damage: 9

1x - Type: Area; Mana; Damage: 4

4x - Type: Area; Energy; Damage: 2

1x - Type: Targeted; Energy; Damage: 6

4x - Type: Targeted; Mana; Damage: 20

3x - Type: Area; Energy; Damage: 6

Deck number: 25

4x - Type: Targeted; Mana; Damage: 5

1x - Type: Targeted; Energy; Damage: 6

3x - Type: Targeted; Energy; Damage: 9

2x - Type: Area; Energy; Damage: 6

4x - Type: Area; Mana; Damage: 4

1x - Type: Targeted; Mana; Damage: 20

Deck number: 26

1x - Type: Targeted; Energy; Damage: 9

1x - Type: Targeted; Energy; Damage: 6

3x - Type: Targeted; Mana; Damage: 5

1x - Type: Targeted; Mana; Damage: 20

2x - Type: Area; Energy; Damage: 6

4x - Type: Area; Mana; Damage: 4

3x - Type: Area; Energy; Damage: 2

Deck number: 27

1x - Type: Targeted; Energy; Damage: 9

1x - Type: Targeted; Mana; Damage: 5

3x - Type: Area; Mana; Damage: 4

1x - Type: Targeted; Energy; Damage: 6

2x - Type: Targeted; Mana; Damage: 20

1x - Type: Area; Energy; Damage: 2

6x - Type: Area; Energy; Damage: 6

Deck number: 28

1x - Type: Area; Energy; Damage: 2

1x - Type: Targeted; Energy; Damage: 6

2x - Type: Targeted; Energy; Damage: 9

1x - Type: Targeted; Mana; Damage: 5

2x - Type: Targeted; Mana; Damage: 20

4x - Type: Area; Mana; Damage: 4

4x - Type: Area; Energy; Damage: 6

Deck number: 29

 80

1x - Type: Targeted; Energy; Damage: 9

2x - Type: Area; Energy; Damage: 6

3x - Type: Area; Mana; Damage: 4

3x - Type: Area; Energy; Damage: 2

1x - Type: Targeted; Mana; Damage: 20

3x - Type: Targeted; Energy; Damage: 6

2x - Type: Targeted; Mana; Damage: 5

Deck number: 30

2x - Type: Targeted; Energy; Damage: 6

4x - Type: Area; Mana; Damage: 4

2x - Type: Area; Energy; Damage: 2

3x - Type: Targeted; Energy; Damage: 9

1x - Type: Area; Energy; Damage: 6

3x - Type: Targeted; Mana; Damage: 5

Deck number: 31

2x - Type: Targeted; Energy; Damage: 9

1x - Type: Area; Energy; Damage: 6

1x - Type: Targeted; Mana; Damage: 5

1x - Type: Targeted; Energy; Damage: 6

3x - Type: Area; Energy; Damage: 2

2x - Type: Targeted; Mana; Damage: 20

5x - Type: Area; Mana; Damage: 4

Deck number: 32

1x - Type: Area; Mana; Damage: 4

2x - Type: Targeted; Mana; Damage: 20

3x - Type: Targeted; Mana; Damage: 5

3x - Type: Targeted; Energy; Damage: 6

2x - Type: Area; Energy; Damage: 2

2x - Type: Targeted; Energy; Damage: 9

2x - Type: Area; Energy; Damage: 6

Deck number: 33

2x - Type: Targeted; Energy; Damage: 6

1x - Type: Targeted; Mana; Damage: 20

3x - Type: Targeted; Mana; Damage: 5

7x - Type: Area; Mana; Damage: 4

2x - Type: Area; Energy; Damage: 6

