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Abstract:  

Game developers often face the issue of having well balanced game in terms of 

difficulty, especially in role-playing games. Skill tree is a game element which 

contributes to solve this issue by giving the player more power in-game. Many game 

elements can be procedurally generated to save time and money to developers, but 

can skill trees be procedurally generated too? And how do we validate, that 

generated skill trees are well suited for the game? That is the goal of this work. We 

have made a simple turn-based game. Then we made several variations of generators 

of skill trees for the game. We took the best trees and validated their performance 

using artificial players based on data collected during their gameplay. Then we 

compared the trees and concluded that skill trees can be generated by our suggested 

method and their variations.  
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1. Introduction 

The goal of this work is to find out whether it is possible and useful to use PCG 

for creating skill trees for a game. There is plenty of works done on the subject of 

either PCG or skill trees, but as far as we know, there is none, which would combine 

both of the subjects. It is therefore unknown, if such use of PCG is possible and, 

more importantly, if it is as useful as using PCG for content like textures, dungeons 

or race tracks. 

1.1. Skill trees 

 

Figure 1: Example of skill tree in Incredible Adventures of Van Helsing 

(NeocoreGames, 2013). Multiple tree roots can be seen on the top of the skill tree 

window; these nodes do not need a predecessor to be obtained before they can be 

obtained themselves. 

Skill trees have become one of the basic game elements. They are widely used 

and have multiple good properties, which allow us to make a game better. Their form 

is usually some adaptation of a weighted graph, where the nodes stand for new 
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abilities or stat boosts (both seen in Figure 1) and are given to the player once he 

acquires them in-game (forms of acquisition may vary). 

The primary use of skill trees is to manage difficulty in games. Skill trees are a 

great tool to improve player’s strength and therefore make future encounters with 

enemies and obstacles more manageable. The reason, why game developers want to 

do this, is to make the experience of most players better since it is not hindered by 

the game being too difficult to play or simply boring because everything in the game 

is effortless. 

Additionally, they might also serve as additional content in the game and make 

a player interested in seeing how different combinations of choices in the skill tree 

impact the game. Some skill trees are made so that different combinations, chosen by 

the player, result in a different gaming experience. A great example of this is Path of 

Exile (Path of Exile review, 2018).  

Difficulty is a property of each game, and it tries to quantify how good 

(skilled) the player needs to be to beat the game or its parts. Different games vary in 

their difficulties. Some games have greater difficulty than others, which brings in 

different groups of players since somebody is skilled and therefore enjoys harder 

games. Difficulty as a property is relative to the player’s power in the game. 

Power of the player is an abstract value, which represents all the game 

elements, which are given to the player in order to reduce his perceptive difficulty. 

Power of the player negatively correlates with relative difficulty for the player. 

Therefore the higher the player’s power is, lower his perceived difficulty is. Game 

elements, which commonly give power to the player, are abilities, equipment, 

companions, skill trees and many more. 

The simple process of progression is closely tied with difficulty. Since the skill 

tree provides power to the player, making the future gameplay easier, it can control 

at what state of the game is the player able to beat the next part of the game and 

progress further.   

Progression is another aspect, which makes games enjoyable for plenty of 

players. Progression usually gives the player a satisfying feeling, and therefore, it is a 

wanted addition to many games by developers. For example, completing a part of 

skill tree can feel very nice in term of overall progression in the game (Figure 2), 

especially if you need the skill tree for reaching the endgame, like in Path of Exile 

(Brown, 2018). 
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Figure 2: A finished part of a skill tree, which is focused on damage dealt with bows. 

This part of the skill tree gives the player a sense of progression because of the 

finished node cluster. This cluster of nodes also gives a lot of power to the player, 

making future fights easier. (Grinding Gear Games, 2013) 

1.2. PCG in games 

Over time, content production has grown so much that nowadays, it is the main 

bottleneck of game development (Kelly & McCabe, 2007). Procedural content 

generation has been already surveyed (Hendrikx, Meijer, van der Velde, & Iosup, 

2013), and therefore, I am going to give just a brief overview related to this work. 

PCG is a development approach, which uses algorithmic generation of game content 

with little to no human contribution (Togelius, et al., 2013). There are many 

advantages to this approach, the main one being saving resources to developers, 

namely time and money. Another advantage is the scalability of the content, which is 

able to be created by PCG rather than by manual creation. This is important for large 

scale Massively Multiplayer Online Role-Playing Games (MMORPGs). According 

to Hendrikx et al. (2013) “Main disadvantages of PCG are computational overhead 

and the requirement of good judgement of cultural and technical values of generated 

instances”. This can be trivial for some game content like loot in RPGs, but can be 

quite complex when we take into an account how many skill trees can be created 

from given number of nodes, which we will discuss in Analysis chapter (2), and all 

the possible ways they impact the difficulty of the game (also discussed in Analysis), 

which makes the skill tree generation problematic to evaluate.  

PCG can be split into two major categories by their moment of happening. 

Offline (or build) PCG is when the content generation is being done on or before the 

actual build of the game. Examples of this kind of PCG is generating textures and 
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maps during development (Carli, Bevilacqua, Pozzer, & Cordeiro d‘Ornellas, 2011), 

usually together with adjusting the generating algorithm according to the generated 

content or manual adjustment of the generated content after its generation. Online (or 

runtime) PCG is when the content generation is happening in the released version of 

the game, generally multiple times. This kind of PCG helps the replayability of the 

game and its variance during the different playthroughs. Generating loot from 

monsters or generating replayable dungeon maps both fall under the online category, 

since they happen after the release of the finished product. In this thesis, we are 

going to utilise offline PCG, mostly because of computational complexity and lesser 

added value for doing the generation during runtime. 

1.3. PCG validation 

Generating any objects via PCG for games is one thing, making sure they are 

correct and will be useful once added to the game. Both of these parts are not trivial 

to perform, and we will talk about that in Analysis. Validation of PCG varies heavily 

on the type of PCG, but most PCGs can be tested by manual review (i.e. player 

testing, designer). Sometimes, the manual review can be replaced by approximating 

simulation of the game or other forms of computational approximation. Both of these 

are tightly fitted for each game-specifically. Only after validation is successful, the 

object is eligible to be added to the game. 

In order to perform validation of our PCG application, i.e., skill tree 

generation, we will need a suitable game and the validating algorithm designed for 

such a game. This game’s system must enable such validation and must use 

generated skill trees from our algorithm. Implementation of this game is also part of 

this thesis. The validating algorithm will consist of several bots, designed to play the 

implemented game. We will need to represent multiple types of players, and 

therefore, there will be several different types of bots. These bots will be used to play 

the game and estimate the difficulty of the game and suitability of the skill tree for a 

given game scenario. 

Data will be collected from the bots in order to find out if the skill tree is 

suitable for the scenario used for its generation. Data will need to confirm several 

hypotheses before we can accept the skill tree as suitable. 
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1.4. Goal of this work 

The main goal of this work is to find out whether it is possible and useful to 

generate skill trees, as they are an unusual structure, which affects game’s difficulty. 

In order to do this, we will need to do the following: 

1. Analyse the requirements of a skill tree and its impact on the game. 

2. Create generators for skill trees using different methods of generation. 

3. Validate the generated trees by a simulation using multiple different bots 

1.5. Text structure 

After this introduction, this work will be split into the following chapters: 

1. The Analysis (2) will discuss the requirements of a skill tree, what is Flow, 

and how does it apply to skill trees and games. Then we will talk about 

role-playing games and difficulty. We will also discuss what method of 

generation we will be using and why. 

2. Then, the chapter about our choice of game (3) will describe the game and 

give and give reasoning on why we chose to make this kind of game in 

particular. We will highlight the choices of a player in this game. 

3. Then we follow up by proposing the solution algorithm (4). In this chapter, 

we will discuss different methods for generating a skill tree and point out 

their differences. 

4. Then we talk about parts of the algorithm, starting with the basis of our 

solution (5). We will describe different mutation operators and their effect 

on every entity. We will also highlight the specific purpose of an operator if 

there is any. We will also explain how we are merging two different skill 

trees to create a new one. 

5. Then we talk about the other important part, the fitness function (6). This 

chapter will explain how we evaluate trees during generation and why I 

chose to implement it the way I did. This chapter will also describe the 

whole process of taking an entity and giving it ratings based on 

performance in different objectives. 

6. Then we talk about the implementation details (7). This chapter will mostly 

explain the reasoning for some choices, some specific decisions made 

during the programming of the game and the generator. 
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7. Finally, we talk about validation (8) and have a discussion about our 

results. We will talk about the design of the validation, reasoning behind it, 

and we will interpret the results of the simulation. 
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2. Analysis  

The problem of generating skill trees starts with role-playing games (RPG) as 

that is the domain we are addressing in this thesis. Every RPG has a certain 

difficulty. Difficulty of an RPG is usually formed by obstacles or enemies the player 

needs to overcome or defeat respectively in order to progress through the game. But 

to defeat enemies or overcome obstacles, the player needs some kind of powers or 

abilities, which he can use to do so. We want to let the player obtain the power using 

the skill tree we generate for him. 

Common tools, which let player obtain power, are gear such as weapons or 

armour, stats like strength or dexterity given with level ups or similar other means, 

such as giving the player points in a skill tree, which he can spend to gain available 

bonuses of his choice. Giving player power through gear and level-ups has a 

significant advantage of being almost deterministic when being designed. Only 

nondeterministic part of these tools worth mentioning, except skill trees, is whether 

the player decides to use the gear or the abilities given to him. 

The situation with skill trees is not as trivial since the bonuses given are 

determined only by player choice and amount of points the player can spend in the 

skill tree. Additionally, obtaining nodes in skill tree is to some point permanent 

(some games offer ‘reset’ of a skill tree, either at a price or at certain points of the 

game), which is very different from other means of giving the power to the player, as 

gear can be swapped at will of the player. This means that the player’s choice is 

much more important here. 

However, this raises a question. How can we know how much power can we 

give to the player? This question can be answered, thanks to the theory of Flow 

(Cziksentmihalyi, 1990). The idea of Flow, put to context with games (Chen, 2007), 

gives us a very good baseline on how to handle just how much power should be 

given to the player. Flow in games tells us that the game should neither be too easy 

nor too difficult. Otherwise, boredom or anxiety may appear. However, Flow does 

not tell us exactly how much power should we give to the player; it only gives us the 

general idea, how we should treat power in comparison to challenge. Shortly, the 

idea is to have power rise with challenge, so the player does not feel bored or 

anxious. 
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Therefore, creating a good skill tree is not a trivial task. The number of 

possible combinations of nodes that form a skill tree or a tree, in general, is very high 

(see 2.6), more so if we account for different types of nodes and scale of nodes’ 

effect values. But could we generate skill trees, which deliver just enough power to 

the player, via procedural generation, so that the player does not feel bored or 

frustrated? 

This is not an easy question to answer. Let us take a look at two examples of 

skill trees (Figure 3, Figure 4). Let P be the power given by the skill tree. And let the 

power needed to beat the next enemy between 10 and 20. Now consider following 

trees with 2 available points to be taken. 

 

Figure 3: Example of a skill tree that is giving the player too much power; with two 

nodes, a player can take either 35 or 60 power. 

 

Figure 4: Example of a skill tree that is giving the player too little power; with two 

nodes, a player can get either 2 or 3 power. 

In the first example tree (Figure 3), regardless of player choice, his final power 

P will be at least 35, which is way over the power needed to beat the encounter. This 

results in effortless gameplay, which often tends to be very boring and uninteresting. 

Given the second example (Figure 4), power P can get only up to 3, which is, on the 

other hand, way lower than the player needs. This would lead into impossible-to-beat 
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part of the game, which would lead to frustration and ultimately into the player not 

playing the game. So how can we tell, what is a good skill tree? 

Skill trees do not have only one metric, which tells us if the tree is good or not. 

Through observations of existing skill trees in existing successful games, like in 

Figure 1, Figure 2 or Figure 6, we can see that there is more than one point of view 

regarding how good a skill tree is. One point of view is how well the skill tree 

manages the difficulty of the game. In other words, it is if the tree delivers an 

appropriate amount of power to the player. Another point of view is how the skill 

tree looks. The skill tree should not look like a path of nodes, neither like a hedgehog 

of nodes with the root in the centre. The goal is to have the appropriate number of 

nodes compared to the maximum distance from the root (or roots). Last significant 

point of view is how interesting the skill tree is. A player finds a skill tree interesting 

if he is given a lot of interesting choices out of available nodes while picking new 

nodes. The fact that we have multiple points of view of a skill tree makes us focus on 

multiple things at once. Therefore, our algorithm will have multiple objectives to 

achieve while generating a skill tree. This will be described in multi-objective 

optimisation (2.8). 

In order to properly generate a good skill tree for a game, we need a couple of 

things. First, we need to be able to tell what kind of functions skill trees should have. 

This includes difficulty management, the appearance of the tree and its non-

redundancy. A player must also find the tree interesting, which can be done by 

giving player interesting choices in the tree. Secondly, we need an algorithm to 

generate it. Thirdly, we need a way to validate our results. 

In this analysis, we will first talk about Flow and Flow in games, as I believe it 

is a great stepping stone to be able to tell, what do we expect from a skill tree. Then 

we will talk about skill trees in general and explain their connection with difficulty 

and Flow. Then we will talk about skill tree space. We will explain what it is and 

follow up with a section about generating skill trees. Then we will talk about the 

generative process, how we want to generate skill trees and about multi-objective 

optimisation. Lastly, we will talk about what games are suitable for the generation of 

skill trees. 
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2.1. Flow in games 

Flow is described in the book: Flow: The Psychology of Optimal Experience 

(Cziksentmihalyi, 1990). According to Cziksentmihalyi (1990), “The state in which 

people are so involved in an activity that nothing else seems to matter; the experience 

itself is so enjoyable that people will do it even at great cost, for the sheer sake of 

doing it.“ (p. 4).  

Then Flow was used in the context of games (Chen, 2007). Flow in games 

gives us a decent baseline for what kind of difficulty management should we be 

aiming for. Difficulty of the game should not be too hard, because it induces anxiety. 

On the other hand having difficulty too low induces boredom. Therefore, for every 

difficulty, there should be some abstract range of values, representing the power of 

the player that is suitable for the current state of game. In order to combat high 

difficulty, we will need to give power to the player. We will call value, which 

represents the power of the player, Player-power. Player-power is an abstract value, 

which represents the power of the player and the obstacles and enemies he can 

overcome. Lower Player-power means tougher difficulty than higher Player-power 

while encountering the same obstacles/enemies. As the player progresses further, the 

challenge tends to increase in RPGs. In order to keep the game at a similar difficulty 

for the player all the time, the player needs to obtain Player-power.   

This Player-power will help the player stay in the Flow Zone (Chen, 2007), 

which, as seen on (Figure 5), is a hypothetical area around very optimal experience 

curve (or path). Flow in the figure stands for the experience the player has while 

playing the game. This curve is impacted by the design of the game and the player’s 

choices during his playtime. Abilities axis in the chart represents multiple values. It 

represents the skill of the player and his Player-power. 

Most, if not all, game elements have an impact on how Flow Zone is going to 

look like, and many even impact the optimal path itself, usually through the difficulty 

of the challenges or how much Player-power they give to the player.  
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Figure 5 (Chen, 2007): Simple chart of Flow Zone in relation to challenge and 

abilities of a player. When the player does not have strong enough abilities, he 

experiences anxiety. When the player has too strong abilities for the current 

challenge, he experiences boredom. 

2.2. RPGs and difficulty 

Role-playing games (RPGs) are a genre of games which let the player embody 

a character in the game and play as the said character. What is important about this 

genre of games is the difficulty and difficulty management of these games. The 

general aim of any game is, besides other things, to make players play it and enjoy it. 

Enjoyment of the game is based on many things, but we are interested in how 

enjoyment is related to the game’s difficulty. 

Difficulty of any game is usually somehow quantifiable. However, it is game-

specific. Generally, difficulty has a high correlation with the requirement of a 

player’s individual skill in a specific game needed to enjoy or even play the game. So 

the greater the difficulty of the game, the higher the skill is needed to play and enjoy 

the game. If this difficulty is too low, the player can become bored. And similarly 

vice versa, the player can become anxious if the difficulty is too great for his skill. 

Both of these states may lead to the player not playing or enjoying the game, which 

is malicious for any publisher or developer, as it influences reviews and opinion of 

the player base negatively. 

Determining difficulty of the game tends to be very difficult for real-time 

games. Even turn-based games usually have a significant branching factor. This is 
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the reason why most developers either turn to approximations or manual testing. 

Manual testing, however, is very expensive to do properly, since it needs many 

human players and their feedback, which is not affordable by smaller developer 

groups. On the other hand, approximating difficulty has computational complexity 

and is game-specific. This means that the author of the approximating algorithm 

needs to be very familiar with the game mechanics, concepts and the target player 

base. 

Difficulty management is a routine that is supposed to eliminate the problem 

mentioned above as much as possible. Some developers even introduced dynamic 

difficulty management in their games, which allows games to adjust their difficulty 

during playtime (Fallout 3, 2008) depending on player’s performance (i.e. dynamic 

enemy levels, gear requirements). Another example is the dynamic levels of 

mercenaries in Assassin’s Creed: Odyssey (Ubisoft Entertainment, 2017). Difficulty 

management usually consists of adjusting the strength of the enemies or the 

toughness of the obstacle in relation to Player-power.  

In this fashion, it is very similar to increasing challenge or abilities in the Flow 

chart (Figure 5). However, the Flow zone, in this case, would be the spectrum of 

player skill that is acceptable to play the game comfortably. Because of this, it is in 

developers’ interest, to make Flow zone as wide as possible, either through dynamic 

difficulty management or through other game elements.  

2.3. Skill trees 

 

Figure 6: Example of an undirected skill tree. Nodes highlighted are considered 

active and give power to the player. All edges have the same weight of 1, and this 

price is paid by points, which player gets by levelling up. (Path of Exile, 2013) 
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Skill trees1 (or technology trees in strategy games) are structures, which usually 

take the form of weighted graphs, where nodes represent skills (stat boosts, 

technologies) and edges represent their availability, example on (Figure 6). Every 

node has its type, which represents, what kind of effect the node will have once it is 

picked. Most common effects of nodes are unlocking ability or spell and increasing 

some stat, effectively making abilities the player already has better.  

Nodes generally have two different states, active and non-active. Active nodes 

then have some kind of effect on the gameplay, which usually is empowering the 

player or giving him additional abilities, as shown in Figure 7. Every skill tree is 

specific in terms of management, when and at what price can a player obtain nodes 

in the skill tree. For example, Path of Exile (2013) has all nodes at the same price of 

one skill point, which is given every level up and for some quests. It starts with two 

nodes available for picking and only constraint on picking nodes is to have them 

connected to the current set of obtained nodes. 

The general approach, however, is to let the player obtain nodes at some point 

in the game. This time can be a specific level, point in story or location. Every skill 

tree has a set of available nodes (nodes that can be obtained next). This set tends to 

grow over time in a game and can be managed by different game mechanics. 

Usually, however, when the player obtains a node in a skill tree, every node, which is 

connected to the obtained node, is added to available nodes. Some nodes may be 

unlocked and added to the set of available nodes at different points than just 

obtaining another node, but those events are external to the skill tree and depend 

purely on the game design. 

                                                 
1 Historically, skill trees were only in form of trees with one root and were fully connected. 

Nowadays, skill trees have adapted into simple graphs. Term skill tree is used due to historical 

reasons. 



 14 

 

Figure 7: This screenshot from Assassin’s Creed: Origins (Ubisoft Entertainment, 

2017) is an example of a node and its effect. This node gives the player additional 

ability after putting an animal to sleep. The player can tame the animal afterwards 

to gain a strong companion. 

One of the many things that skill trees let us do is manage the difficulty of the 

game. By acquiring nodes in the skill tree, the player gets Player-power. This 

acquisition usually results in the ability to acquire more nodes in the future. Every 

obtained node results in an increase of Player-power (Figure 8), which increases 

abilities in the Flow graph to push the player from anxiety to Flow zone (Figure 9). 

This supports decent Flow between anxiety and frustration from challenging 

gameplay and boredom from overly easy to overcome obstacles through different 

gameplay and discovery of different possibilities of viable skill tree choices. 

 

Figure 8: Effects of choices in a skill tree. At every state of a skill tree, there is a set 

of nodes we can choose from to obtain a new node. Depending on the choice of the 

player, the Player-power rises differently. 
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In Path of Exile (2013), you need to acquire enough power to beat late-game 

bosses or to simply be able to progress further. Even though most games have other 

mechanisms that prevent the player from progressing too quickly (see nad), skill 

trees are often part of that mechanism. 

 

Figure 9: Effect of skill tree in regards to Player-power and Flow. 

There are a couple of requirements we can have for skill trees. One of them is 

to manage the difficulty, but we will talk about that in the next part of the Analysis. 

Another one is for the skill trees to be interesting and appealing. This is meant in a 

sense that every choice from available nodes should not be obvious, but also not 

redundant.  

For a skill tree to appear interesting, it needs to provide plenty of interesting 

choices for the player. Those interesting choices must make the player think twice 

when choosing from available nodes, both by their diversity and by what they add to 

available nodes after the player obtains them. This makes the skill tree more 

interesting to use in games. 

Redundancy can be caused by two main causes. The first cause can be lack of 

possible choices. When the amount of available nodes is only 1 at a time, any user 

input is redundant, and the idea of skill trees is voided. Another cause is the 

homogeneity of available choices (both illustrated in Figure 10). When all available 

choices have the same or very similar effect, the choice may appear redundant. 

However, if there are significant differences in further choices, this redundancy may 

become harmless. 
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Figure 10: Example of redundant skill trees.  

What makes choices in skill tree obvious is a big difference in the effect of the 

available nodes. In a case, where one choice is vastly superior to the others, player’s 

choice is a mere formality, since the best choice is obvious and the others will never 

beat the best one (Figure 11). This problem is not that visible and intrusive if the 

differences in choices are small, even though there is an objectively best node. What 

mostly eliminates this problem is, having weaker nodes as an investment to get 

something better in future picks. 

 

Figure 11: Example of obvious choices in skill trees. 
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2.4. Problems with skill trees and difficulty 

We have shown the effects of a skill tree on the Flow chart; specifically, the 

effect of picking one node in the skill tree. However, if we would like to show the 

effect of picking two nodes, the number of different increases to Player-power rises. 

Let us have a very simple small 10 node skill tree in Figure 12. 

 

Figure 12: Example of a simple tree of 10 nodes. Numbers at each node represent 

their increase of Player-power when picked. 

If we would already have the root of this tree obtained and we were to pick two 

other nodes, the range of possible Player-power increase is pretty wide. Depending 

on player choice, we can get an increase of Player-power anywhere between 3 and 

13. This means that the increase of Player-power is not deterministic, and every 

increase does not necessarily need to push the player into the Flow zone. This makes 

generating skill tree complicated and opens a question if the player should be 

punished for making bad decisions. 

This question has been answered by many modern titles, but differently every 

time. In Path of Exile (Grinding Gear Games, 2013), one can easily get next to no 

Player-power even if spending over 100 points in the skill tree. On the other hand, 

The Incredible Adventures of Van Helsing (NeocoreGames, 2013) makes you get a 

new skill or skill upgrade for each skill point spent, making you noticeably more 

powerful every time. The most deciding factor of skill tree node choices in this game 

is the preference of which abilities a player wants to use. 
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Therefore, every skill tree should give the opportunity to get the player into the 

Flow zone. However, not necessarily every combination of nodes needs to push the 

player into the Flow zone. 

On top of calculating or approximating Player-power, we need to account for 

all the different combinations that can be taken at each point of the game. The 

number of different combinations of nodes rises with possible points and is highly 

dependent on the tree’s structure. In order to generate skill trees, we will need to take 

in account all possible combinations of nodes to be taken in a tree for every state of 

the game (and its respective number of skill points gained). 

2.5. Skill tree space 

Skill trees have a certain space they occupy. This space must be defined in a 

way that all possible skill trees fall into it. We cannot place a skill tree in a normal 

vector space since that would require a variable amount of dimensions, based on the 

number of total nodes. However, what we can do is to confine the skill tree to a 

certain amount of nodes N. This allows us to have different combinations of up to N 

nodes, but we also need a way to represent the parental relations. These parental 

relations can also be represented in the number without sacrificing space to invalid 

skill trees by adding information about the parent of each node (i.e. at the end of the 

number representing node). 

What we would need to represent for each node is its type, value (if any), its 

parent (in the form of id or something like this). There will be invalid entities using 

this method (disconnected trees, cycles), but we can eliminate those. 

Finally, we can tell how many (or at least upper bound) trees can be created 

using N nodes, T types and V being the max value of node effect. According to 

Cayley’s formula, there are 𝑁𝑁−2 trees over N labelled nodes. If every node has T 

possible types and value of 0 up to V, then we can have (𝑉 ∙ 𝑇)𝑁 possible 

combinations of N labelled nodes in the skill tree. This gives us the following 

number of skill trees. 

((𝑉 ∙ 𝑇)𝑁)(𝑉∙𝑇)
𝑁−2 

2.6. Generating skill trees 

Therefore, we can see that the space of all possible skill trees is very massive, 

so using any kind of enumeration to try which tree rates the best would be 
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unreasonably slow. There is also going to be a non-trivial percentage of trees, which 

will be insufficient, since plenty of trees will be too powerful in some stages and vice 

versa. Let us look at the definition of a node, which will be used in this thesis: 

Property Note 

Category Category defines the effect of a node when it is obtained 

Effect value 

(or just value) 

Specifies the strength of the effect. Usually how big boost is 

given to the player. 

Children Which nodes become available when this node is obtained 

State State of the node. Can be non-active, available or active. 

Table 1: Definition of node’s properties 

We can combat this complexity by following: 

Reducing maximum node value or number of categories usually results in 

way less optimal solution, since there are wider gaps between different tree 

instances. Therefore, the desired Player-power is harder to achieve accurately. 

Reducing the number of categories is also undesired, because it may be either 

impossible or very game impacting in a negative way by reducing content and also 

widening the gaps between achievable Player-powers. 

Reducing the number of nodes is very unwanted. It limits the space we are 

exploring in a naïve way, since we are reducing the interesting aspect of the tree, 

increasing redundancy and therefore reducing the amount of content in the game.  

The number of nodes in games ranges from just a couple of nodes (Hamilton, 

2018) to over a thousand nodes (Path of Exile review, 2018). However, removing 

any of the nodes hurts the quality of the skill tree for said reasons. This can cause the 

best part of the skill tree space to be unexplored, which results in a possibility to 

severely impact the output tree in a generation.  

A way of combating complexity, which does not impact the result too severely, 

is using some dynamic approach (local search, evolutionary/genetic algorithm). By 

dynamically searching only parts of the skill tree space, we can achieve the desired 

performance of generating skill trees. One can also see that if we change a good tree 

slightly, we should not get a completely terrible tree. A slight change is considered a 

small adjustment of value, adding a new node with small value or deleting a leaf 

node with a small value. 
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There are many algorithms that use a dynamic approach, but we are going to 

focus on algorithms with an evolutionary approach. These algorithms use fitness 

functions to evaluate fitness (goodness) of entities and apply changes to their entities 

to achieve better fitness. In this thesis, we will be using an adaptation of the Simple 

Genetic algorithm (SGA). 

2.7. Generative process 

SGA uses an iterative process, where it takes a generation of entities, 

evaluates every entity using a fitness function, selects the best individuals and 

performs mutation and crossover to create new entities with small changes compared 

to the ones from the last generation, creating a new generation (Snippet 1). Usually, 

SGA uses encoding for its individuals and applies standard operators to them to 

mutate them and then performs standard crossover. However, our algorithm will 

have a few changes. 

1: Initialize population 
2: Evaluate individual fitness of initial population 
While (not stopping criteria) do 
 3: Select best individuals for mutation and crossover based on fitness 
 4: Perform crossover and mutation to create new generation 
 5: Evaluate new individuals’ fitness 
6: Return best fit individual  

Snippet 1: The pseudo-code of classic Simple Genetic Algorithm 

Our algorithm will not have encoding into a string, because it is very 

unintuitive to do for trees and the operators would be cryptic. Therefore, we will 

have to use custom operators to mutate our entities, and the crossover will also be 

custom. Then we also have to choose our initial population and decide on the 

selection process. 

A very important part of any evolutionary algorithm is having a good fitness 

function, which is both accurate in terms of telling us, how good an entity is and fast, 

so we can evaluate as many entities as possible. We will talk about the fitness 

function of this thesis in chapter 6. 

We will talk about the operators later in detail in section 5.1. Here I want to 

talk about the initial population and then describe the selection methods used in this 

thesis.  
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The initial population is very crucial for every genetic algorithm (GA), and it 

must correspond to the design of the operators. Meaning, if the operators are 

designed to grow the individuals, it is a better idea to go for an initial population 

consisting of ‘small’ individuals to get less biased results (bias, in this case, depends 

on the creation of the individual, as it is not developed by our operators). Therefore, 

we went with the strategy of starting with ‘small’ individuals (skill trees of few 

nodes), and then we let them grow through the operators. This also follows the idea 

of Flow, since the small and weak tree will usually leave the player below the Flow 

zone and growing the tree will gradually push him upwards. 

The most basic selection method is taken from hill climbing. This local search 

based selection method only takes the best individual from a generation and then 

tries to look in its ‘local’ proximity. This local proximity is determined by the small 

changes performed in by operators. This method relies heavily on the initial 

population (in this case, only one individual). Therefore, additionally, we adapt this 

method to run it multiple different times with a random small tree as the initial 

population. 

Another selection method used in this thesis will be more like SGA, as it uses 

the crossover. In this thesis, we will call this algorithm the Evolutionary algorithm. 

This algorithm increases the size of the generation from 1 to what will be specified as 

a parameter in the input. Additionally, an adaptation of this algorithm is created to 

weight different properties of every individual differently, based on input parameters. 

This adaptation will be called the Weighted Evolutionary algorithm in this thesis. 

Finally, the last selection method is an adaptation of the Non-dominated sorted 

genetic algorithm (NSGA). This method is a form of multi-objective optimisation, 

which means we do not aggregate all ratings of the tree into one final rating and then 

sort them by this value. Rather, we form ranks of trees and calculate their crowding 

distance (more in 4.6).  

2.8. Multi-objective optimisation 

Multi-objective optimisation was mentioned in the previous section, and I 

would like to state what it is and why we need it in our algorithm. 

Multi-objective optimisation is a form of optimisation, which tries to focus on 

multiple properties or ratings at the same time. We can use this behaviour in our 

thesis because skill trees have several different ratings that can be given to it. NSGA 
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is a great example of an algorithm, which performs multi-objective optimisation and 

therefore we can use it for our purpose. 

Multiple objectives for skill trees were introduced because having only one 

objective would make the algorithm have a tendency to optimize one aspect of the 

skill tree while sacrificing the others, which would make a terrible tree. 

2.9. Validation 

An important part of every offline PCG is the validation of generated content. 

This can be done in various ways and depends heavily on the type of generated 

content. In our case, however, few options come to consideration. One is manual 

validation through player testing. Another way is to perform a much stronger 

evaluation than is being done during the generation, perhaps using bots instead of 

people to play the game with given a skill tree. 

This validation will be described and done after generation. We will need to 

represent multiple different player groups depending on skill, and therefore, multiple 

differently deciding bots will be made. This will represent different groups of players 

to more accurately reflect the actual gameplay as if we were manually testing. Bots 

will collect data, which we will use to evaluate whether the skill tree is appropriate to 

use. 

This data will mostly consist of their performance and success in the game. The 

most important information is if the bot won, how well it won, and what was the 

chosen combination of nodes in the skill tree it picked. The most important 

information we want to extract from this data is how important the skill tree is, 

whether the skill tree can make the bots win and lose based on bot’s decisions  

in-game. 

2.10. Choosing an appropriate game 

Not every game is suitable for PCG of skill trees. PCG in general needs to be 

used to generate either large scale elements or many small elements. Otherwise, it 

would be simply easier to design them manually. There are a few games, which 

make use of multiple skill trees. Example of this would be Dead by Daylight 

(Behaviour Interactive, 2016), which generates pseudo skill trees each level, where 

the player can obtain items and new perks by purchasing nodes for blood points 
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earned in matches. Using PCG to generate large scale skill tree is possible, but PCG 

should serve as a baseline, which should be manually reviewed and balanced. 

A game, which would be suitable for PCG of skill trees, requires a couple of 

properties, so the PCG is beneficial. Following features of the game are required or 

beneficial for the PCG. 

Multiple skill trees must be required either for the development of the game or 

the gameplay itself. Without this, the skill tree generating algorithm would be almost 

redundant, as only a single skill tree can be created by an experienced game designer. 

Therefore, creating a generating algorithm would very likely create an overhead, 

which would not save money or time. Additionally, it may require learning more 

about skill trees for a developer, who does not necessarily need to know, how should 

the skill tree look. 

Large scale skill tree is another feature, which enables PCG of skill trees to be 

beneficial. Designing large scale game elements, including skill trees, may be very 

time consuming for manual creation and therefore it is helpful to create at least a 

baseline using PCG. 

It is required that the game, for which is the validation done, has a system, 

which allows for the creation of a fitness function. This includes a variety of possible 

solutions. One is the ability for the game to be (at least approximately) simulated. 

Therefore, as I mentioned above, turn-based games have an advantage as they are 

usually easier to be simulated and therefore, the difficulty approximated. Another 

solution might be a simple game system. The simple game system would allow 

computing of the exact ranges of Player-power needed at different stages of the 

game. 
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3. Our game 

For the use of this thesis, I needed a turn-based game that involved skill trees 

as a part or the entirety of its difficulty management. I was directly inspired by Slay 

the Spire (Mega Crit Games, 2017) (Figure 13). I created a card game, that has a set 

of enemies in every encounter, and the cards stand for actions the player can do. 

Player’s goal is to defeat all enemies in the encounter, and then he is taken to a skill 

tree screen when he can choose one node from the tree, after which he is going to 

face a new, more difficult encounter. 

 

Figure 13: Screenshot from the game Slay the Spire (Mega Crit Games, 2017). Cards 

in this game stand for actions and spend the player’s energy. The goal is to face 

encounters and progress further while upgrading and expanding one’s deck of 

cards. 

Since we needed a simple game system to benefit better from PCG, I stuck to 

having a combination of damaging cards, which target all enemies, and cards, which 

target only a single enemy. I needed to split the cards into different categories, and 

then every node in the skill tree would buff a category-specific subset of player’s 

cards. 

In order to implement the need for multiple skill trees, the game is played in 

scenarios, and there will be a different skill tree for each scenario. This simulates the 

need for multiple skill trees while saving time of game designers. This game system 

also allows us to group any deck, any encounter and any skill tree into a scenario. 

In this game, Player-power is increased only through picking nodes in the skill 

tree, and the difficulty is defined only by the set of enemies.  
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Every playthrough of the game, the player gets to play one scenario. Player has 

50 hit points, 20 points of energy and 10 points of mana. Energy and mana refresh to 

their full values every turn. The whole state diagram is shown in Figure 16. 

 

Figure 14: Screenshot of an encounter of our game. Cards are used as actions to 

defeat enemies. Some are targeted, and some are area. 

3.1. Scenario 

Scenario is formed by a sequence of encounters, a deck and a skill tree. 

Encounters are defined as sets of enemies, which will the player be facing during the 

encounter. Deck is a set of 15 cards and skill tree is a set of nodes with defined 

connections, category and effect value. 

Card is defined by the following properties: 

Property Note 

ResourceType Type of resource to be spent when this card is played, 

so either Mana or Energy. 

Cost Amount of resource spent when this card is played. 

Category Type of card effect, in our case, only area or targeted 

damage. 

EffectValue The value of the effect representing how much damage 

is dealt. 

Table 2: Card’s definition 

Scenario starts with the first encounter with no upgrades from the skill tree. 

After each encounter, the player is taken to purchase one node from the skill tree to 
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buff his cards until the end of the scenario. The scenario ends when the last 

encounter is beaten or when the player dies in any scenario. 

3.2. Skill tree - node pick 

After every encounter, the player is taken to the skill tree view, where he will 

pick one node from the available ones in the skill tree (Figure 15). Player has visual 

assistance to see what node will upgrade what cards, and how much more damage 

will the cards do. After the player chooses a node he wants, he is taken to the next 

encounter, which is usually harder than the first one. Nodes definition is described in 

Table 1: Definition of node’s properties. 

 

Figure 15: Screenshot of skill tree view in the game. One point per encounter is 

picked, and the cards that are upgraded are highlighted. 

3.3. Encounter 

Every encounter starts with enemies and player at full hit points and the player 

having his starting 5 cards and full mana and energy. Player’s deck gets shuffled at 

the start of every encounter too. Encounter is split into turns for the player. 

Encounter ends with all enemies being dead or player’s hit points going equal or 

below 0. If the player’s deck runs out, cards in his discard pile are shuffled and 

moved to his deck (effectively cycling cards). We can see how the game looks in 

Figure 14. 
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Figure 16: State diagram of our game 

3.4. Turn 

Every turn, player starts with 5 cards that he draws from the deck. His energy 

and mana are replenished to 20 and 10 respectively. After that, the player can play 

any cards he wants as long as he has resources to play them. Cards damage enemies 

and kill them, once their hit points reach 0 or less. After the player is done with 

playing cards, he presses the end turn button. Upon ending turn, all living enemies 

damage the player for their attack value, and then the player discards remaining cards 

in his hand into the discard pile and redraws 5 cards for the start of next turn. 
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4. Proposing solution algorithm – Selection methods 

Since we have chosen to implement a GA, we are going to follow the usual GA 

steps, according to our adaptation in Figure 17. Starting with the initial population, 

we mutate the current population and create a crossover of the original population. 

After that, we run all the entities through our fitness function, and we select only top 

fitting trees, depending on the method used and input parameter. For now, the fitness 

function is going to be a method, which will take a skill tree and evaluate its 

properties into multiple ratings. Fitness function will be explained in detail in chapter 

6. 

After that, we check, if we hit the stopping criteria (which will be just the 

number of generations in our case) and either stop the iteration or start with mutation 

again. 

 

Figure 17: Our adaptation of SGA for this thesis. 
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In this chapter, we will discuss the methods of selection, and initial populations 

we used in all different implementations. We will describe the structure of the 

individual in our algorithm, and then we will start from the simple methods and get 

to the difficult ones by explaining extensions and changes of the previous methods. 

4.1. Individual 

An individual of our algorithm will be a skill tree. Since trees have a non-linear 

structure, we cannot describe the whole structure of the tree, since it will be dynamic. 

We can first describe the structure of the node used in the implementation. 

Property Note 

Depth How far is the node from the root 

EffectValue Amount of increase 

Targets What cards will the node affect 

Children What nodes become available once this is picked 

Table 3: Node’s structure in the algorithm implementation 

So our skill tree object will be defined by the following properties. 

Property Note 

Root Root of the tree 

NodeList List of all nodes, mostly for easier manipulation 

Table 4: Tree’s properties in the algorithm implementation 

4.2. Hill climbing algorithm 

The idea of the hill climbing algorithm is having the main entity, which we 

mutate every generation and look for a better one. Due to this approach, we do not do 

any crossover of trees during the generation of a new generation. 

The initial population of this algorithm is a pseudo zero-point, which is only 

a root node, which cannot be altered. It is repeatedly mutated, and the best tree out of 

the mutated is taken as the new best tree, and the process continues iterating. 

Selection is done simply by taking the best tree of the entire population. 

In the first implementation, the stopping criteria used to be only to check, 

whether we got a better tree in the generative step. However, the second 

implementation, which included the probability-based operators with random effects, 

used a new stopping criterion to be consistent with other selection methods. The 

stopping criterion is the fixed number of generations, which is part of the input, and 

therefore is also consistent with other algorithms implemented. 
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4.3. Randomized hill climbing algorithm 

This algorithm is a direct extension of the Hill climbing algorithm. The 

difference between this and its predecessor is that Randomized hill climbing 

algorithm runs several times with randomized starting points, instead of once with 

a zero-point start. After all of the runs ended, the best-rated tree out of the best trees 

is returned as the result. 

So technically speaking, the initial population is a randomized small tree. A 

randomized small tree is a tree of 5 to 10 nodes with random targets and structure. 

The number of nodes in the initial tree may vary depending on the total size of the 

tree. The selection method does not change since the previous one, and the algorithm 

is executed multiple times. 

Randomized starting points are created by taking the root node, choosing a 

small random number (in respect to the node count in input) and creating that amount 

of random nodes (random type, random effect value). After that, we sequentially 

assign these nodes one by one to the random node already in the tree as its child.  

4.4. Evolutionary algorithm 

In addition to the previous ones, this algorithm introduces multiple entities to 

carry over from the old generation, which allows us to introduce crossover (more in 

5.3) in the step that creates a new generation. The initial population of this 

algorithm is X randomized small trees of up to 10 nodes (their amount is equal to 

population size, which is part of input parameters) population, where X is specified in 

the input.  After that, at the end of every iteration, a number of trees specified in the 

input are taken to be mutated and randomly merged in order to create a new 

generation. At the end of this algorithm, the best-rated tree from the last generation is 

returned. 

Therefore, the selection is altered that it takes the best X trees from the 

population, where X is specified in the input (same as the number of trees in the 

initial population). The crossover step is not omitted anymore. The crossover step is 

explained thoroughly in section 5.3. 

During the implementation of this algorithm, the decision was made to split 

different rating categories instead of aggregating all of them into one number during 

the fitness function (detailed in chapter 6). This was made in order to prepare for 

implementation of the next algorithms.  
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4.5. Weighted evolutionary algorithm 

This algorithm is a simple direct extension of the evolutionary algorithm, and 

the only difference is that the ratings are now weighted (more about ratings in 6.5) 

instead of having fixed weights. The weights are given as input parameters. This 

allows us to focus on a certain part of the rating more than on others, which can yield 

much more different trees than before. 

So, everything besides the selection step is unchanged compared to the 

previous method. The selection step now takes a number of entities based on their 

order after multiplying their different ratings by their respective weights given in 

input. 

4.6. Non-dominated Sorting Genetic Algorithm Revisited 

(NSGA-II) 

This is another extension of previous algorithms, but this is by far the most 

complicated extension. In this method, we are performing the multi-objective 

optimisation, which was mentioned in section 2.8. Instead of sorting all trees by 

aggregating their rating either by summing or weighted summing, we create a Pareto-

optimal front by a non-dominated sort and then sort the ranks based on their distance, 

in order to promote diversity across all different objectives. This algorithm was 

proposed (Deb, Pratap, Agarwal, & Meyarivan, 2002) as an improved version of the 

Non-dominated Sorting Genetic Algorithm (NSGA) (Srinivas & Deb, 1994). 

According to NSGA-II, all entities have two properties, which provide 

complete sorting information to sort our algorithm. One is Rank; other is Crowding 

distance.  

This method changes the preference for selecting individuals. Similarly, a 

specified number of individuals are taken from the sorted list according to fitness, 

but the sorting is done differently. Sorting of the entities is done primarily by Rank 

ascending and then by Crowding distance descending. 

Definition (Domination):  Let u and v be real number vectors of the same 

dimensions. Vector u dominates v ⇔ ∀𝑖: 𝑢𝑖 ≥ 𝑣𝑖  ⋀ ∃𝑗: 𝑢𝑗 > 𝑣𝑗 .  

Rank is given to all entities based on their mutual domination. Starting the 

whole list at Rank 1, every entity is going to increase Rank of all entities, which it 

dominates. Then we do the same for the entities with higher Rank. We iterate this 

process until there are no remaining entities in the current Rank. 
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Crowding distance is computed sequentially depending on how close are the 

values of the previous and next entity for each rating. Process repeats for each rating. 

All entities are sorted by a rating. Entities with extreme values (min, max) are 

assigned positive infinity, then all entities with non-extreme values have their 

crowding distance increased based on the range of previous and next entity’s values.  

The crowding distance represents each entity’s diversity compared to others. 

For example, if there is a couple of entities with similar values for most properties, 

then their crowding distance is going to be very low, and therefore they are less 

likely to be picked if the whole Rank is not being picked. 
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5. Proposing solution algorithm – Mutation and crossover 

In this chapter, we will talk about the mutation and crossover step of the 

algorithm. All methods share these two steps in common. Mutation is performed via 

operators, which take an entity as input and output a mutated entity. Every operator 

has some form of random choice and random change of a given entity. Operators’ 

random choice is designed in a way that would support the creation of interesting 

choices. For example, an operator which increases EffectValue will be biased to pick 

a node with lower EffectValue rather than a node with a higher one. 

Crossover step will be explained, as it is not trivial to perform for skill trees. 

This step is also based on probability. 

First, we will look at mutation and describe all operators and how they mutate 

the trees. We will describe the process of every operator and its resulting effect on 

our game. After that, we will describe the way we perform crossover of skill trees 

and how we solve different structures of entities.  

The most basic operators are Strengthen and Weaken. These provide the basic 

increases and decreases in nodes’ effect values. The Split and Merge operators 

mutate the skill tree in a way that gets rid of strong obvious choices and weak 

redundant ones. Finally, the AddNode operator lets the tree grow another random leaf 

node. This operator takes care of structure growth. 

The mutation step takes all entities selected from the last generation and 

applies every operator to every entity from the selection with probability given as an 

input parameter for each operator. Each operator creates a modified (mutated) copy 

of an entity given to it. This means all entities from the selection of the last 

generation are preserved. 

5.1. Relevant input 

Relevant input for this part of the algorithm is the probabilities of operators 

modifying the entity. 

Parameter Type Note 

StrengthenOpProb Integer Probability of using Strengthen operator 

WeakenOpProb Real number Probability of using Weaken operator 

MergeOpProb Real number Probability of using Merge operator 
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SplitOpProb Real number Probability of using Split operator 

AddNodeOpProb Real number Probability of using AddNode operator 

Table 5: Relevant input for mutation 

 

5.2. Operators 

Strengthen node operator is a very simple operator, which increases the 

EffectValue of one node of the tree. This choice of the node is biased to choose 

nodes with lower EffectValue over nodes with a higher one. The choice is made 

following way. Let MaxValue be the maximum value of all nodes. Root (n0) cannot 

be picked. Node’s (ni) chance to be picked is represented by the following equation. 

𝑝𝑛𝑖 =
𝑀𝑎𝑥𝑉𝑎𝑙𝑢𝑒 + 1 − 𝑉𝑎𝑙𝑢𝑒𝑛𝑖

∑ 𝑀𝑎𝑥𝑉𝑎𝑙𝑢𝑒 + 1 − 𝑉𝑎𝑙𝑢𝑒𝑛𝑖
|𝑁|−1
𝑖=1

 

This probability model supports the creation of interesting choices, as it 

directly tackles obvious choices by creating alternatives. 

The increasing amount is random, and the range depends on the depth of the 

node from the root. This results in a bigger increase of Player-power when the player 

picks the strengthened node. In our game, it means a bigger buff for the cards the 

node would have buffed originally. Therefore, there is a bigger incentive to take this 

node when it is available. 

Weaken node operator is also a simple operator, and it is very similar to 

strengthen, but it is biased to stronger nodes instead. This node reduces the 

EffectValue of the node by a random amount. This amount also ranges higher, the 

higher the depth of the chosen node is. The chance for (ni) to be picked is: 

𝑝𝑛𝑖 =
𝑉𝑎𝑙𝑢𝑒𝑛𝑖

∑ 𝑉𝑎𝑙𝑢𝑒𝑛𝑖
|𝑁|−1
𝑖=1

 

This operator also helps create interesting choices by directly affecting obvious 

choices. However, in this case, it is done by reducing the EffectValue of a high 

EffectValue node in most cases. 

Merge node operator is way more interesting. First, it chooses a node 

randomly, more biased towards choosing the weaker nodes. Probability for (ni) to be 

picked is again the same. 

𝑝𝑛𝑖 =
𝑉𝑎𝑙𝑢𝑒𝑛𝑖

∑ 𝑉𝑎𝑙𝑢𝑒𝑛𝑖
|𝑁|−1
𝑖=1
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Then it finds its weakest sibling and merges them together. If the chosen node 

has no siblings, no modification is performed. Merging process creates a new node 

(Figure 18). New node’s type will match the type of the stronger of the original 

nodes and the effect value will be the sum of the originals’. Children of original 

nodes will be concatenated together and added as children of the new node. 

Effect of this operator in-game is to reduce the redundant choices during the 

picking of a skill tree node. Since the player is likely to choose the strongest node, 

merging two weakest together may appear as a more interesting choice. 

 

 

Figure 18: Example of Merge node operator. Children of both selected nodes are 

concatenated together and added to the merged node. The new node type that is 

matching the stronger node of the two selected and the power of the nodes is 

summed up. 

Split node operator works in a similar fashion as the merge node operator. It 

chooses a node randomly, more biased towards stronger nodes. The chance to pick 

(ni) is the same as for Strengthen operator. 

𝑝𝑛𝑖 =
𝑀𝑎𝑥𝑉𝑎𝑙𝑢𝑒 + 1 − 𝑉𝑎𝑙𝑢𝑒𝑛𝑖

∑ 𝑀𝑎𝑥𝑉𝑎𝑙𝑢𝑒 + 1 − 𝑉𝑎𝑙𝑢𝑒𝑛𝑖
|𝑁|−1
𝑖=1

 

Then it creates two new nodes (Figure 19), which will have the same parent as 

the original. Both of new nodes will have the same type. Let X be a random real 

number between 0 and 1 (inclusive), then One node’s effect value will be the original 

node’s value times X, and the other’s value will be the original’s times 1-X. Children 

of the original node will be randomly distributed between new nodes. 

This operator directly tackles both redundancy and obviousness in the skill 

tree, since the player would likely pick the strongest node. We can provide new and 

more interesting choice by splitting this strong node.  
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Figure 19: Example of Split node operator. Node chosen for split is split into two 

new. Both new nodes have the same type, and their power is split with a random 

ratio. Original node’s children are assigned randomly between the new nodes. 

Add node operator is a simple operator, which adds a new leaf node as a child 

of an existing one (Figure 20). The choice of a parent is heavily biased towards nodes 

with less than 2 children. There is a 50% probability to pick node with no children, a 

40% probability of picking node a node with 1 child and a 10% probability of 

picking node one of the others. The choice within these three groups is random. The 

type of the new node is chosen at random.  

This operator directly reduces redundancy of a skill tree, as it gives more 

choices to the player. In combination with the strengthen operator, this operator 

creates viable alternative choices to already viable choices. 

 

Figure 20: Tree with an added node (red). The new node has a random type, random 

value, and it will always be a leaf node. 

All these operators are used for creating mutation of a tree, which is one of the 

parts of creating new generations. Another part of creating new generation is 

merging two trees together to try to achieve the good properties of both. 
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5.3. Crossover - merging two trees 

The selection of entities to merge is made randomly. Let X be the number of 

trees selected from a generation in the selection step. Then we are going to take X 

random pairs of entities from the said selection of old generation and perform the 

crossover step using these pairs. All entities created by this step are added as copies 

to the next generation (original trees are preserved). 

Usually, the crossover of two entities in an evolutionary algorithm is a matter 

of averaging their numeric values or randomizing them to have a similar effect. This 

is not that simple to do with trees since we do not have a fixed tree structure. 

Merging two nodes is as simple as averaging or randomly combining their values, 

but combining their children is not trivial at all. Simply combining the nodes’ 

children is out of the question, since it would introduce just a denser tree with plenty 

of redundant choices and twice the node count. Therefore, we need a method to 

combine two sets of nodes’ children in a way, that takes a child from each node and 

then combines is, which suggests a recursive method. The recursive method would 

be solving the current node pair, and then their children would be paired and solved 

the same way as current node pair if there is the same number of children. Extra 

children, which could not have been paired, would be randomly either discarded or 

added to the solved node. 

Even with using recursion, we need a way to handle nodes, which do not have 

the same amount of children. The naïve but decent way is to have a 50% probability 

of adding the extra child to the merged node and a 50% probability to discard it (and 

its subtree). I chose to go this way since it accomplishes everything I need. Let us 

describe the crossover process step by step. 

The algorithm is recursive, which means we will handle one node pair at a time 

starting from the root. For every node pair A, we first create a new node with type 

randomly chosen between the types of the nodes in the pair A. Then we randomly 

choose between effect value of the first node (25%), effect value of the second node 

(25%) or their average (50%). After that, we create as many pairs of nodes, where 

first of the new pair B is going to be a child of first of the nodes in the pair A and the 

other of the new pair B is going to be from the other node’s children. The nodes 

which remain unpaired are the extra children (Figure 21). These extra children will 

be all the remaining children of only one of the nodes from pair A. For all new pairs 

B, there will be a recursive call of this algorithm, and each result of this call is added 
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as a child of the new node. Then the extra children are randomly discarded or 

assigned to the new node (both with 50% probability). Then the algorithm returns the 

new node. 

 

Figure 21: Example of pairing nodes during merging. Here we are merging A and C, 

and we are pairing their children. B and D get paired, as they are the first children 

of their parents. E is left as extra since there is no child of A left to be paired. 
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Node MergeNode(Node one, Node two) 
{ 
 var solvedNode = new Node 
 { 
  Children = EmptyList, 
  NodeTargets = PickRandom(one.NodeTargets,  //type of node 
     two.NodeTargets), 
  NodePower = PickRandom(    //effect value 

(one.NodePower + two.NodePower) / 2, 
    one.NodePower, 
    two.NodePower) 
 }; 
 
 var maxChildren = Max(one.Children.Count, two.Children.Count); 

var minChildren = Min(one.Children.Count, two.Children.Count); 
 
 //recursively merge common children 
 for (var i = 0; i < minChildren; i++) 
 { 
  //recursive call for pair of children 
  var mergeNode = MergeNode(one.Children[i], two.Children[i]); 
   

solvedNode.Children.Add(mergeNode); 
  mergeNode.Parent = solvedNode; 
 } 
 
 //randomly discard or assign extra children 
 for (var i = minChildren; i < maxChildren; i++) 
 { 
  if (one.Children.Count <= i) 
  { 
   if (Random.NextDouble() > 0.5) 
    solvedNode.Children.Add(two.Children[i]); 
  } 
  else 
  { 
   if (Random.NextDouble() > 0.5) 
    solvedNode.Children.Add(one.Children[i]); 
  } 
 } 
 
 return solvedNode; 
} 

 

Snippet 2: recursive node merging method, which averages current conflicting node 

and merges their children by calling itself recursively if both nodes exist, else it 

randomly adds or discards the extra nodes. 
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6. Proposing solution algorithm – Fitness function 

In this chapter, we will talk about the fitness function, which is the function 

used in the fitness step of the algorithm. The fitness function should return ratings 

for the tree for us to compare it with others. This rating will be split into different 

values based on the specific property of the tree. 

Definition: We will define our fitness function as a function 𝑓: 𝑇 → 𝑅𝑛 where 

T is space of all skill trees with structure defined in section 4.1. The returning value 

of this function is an n dimensional vector of real numbers, which represent all 

different ratings of a skill tree in our thesis. 

The perfect fitness function for our algorithm would require complete 

simulation of all cases that might happen in the game. From this information, we 

would be able to determine all the needed ratings.  

Given our game system, explained in Figure 16, we would have multiple 

branching factors. We would have the branching factor of the skill tree choice, which 

would depend on the skill tree, but it would be limited by the number of nodes in a 

tree. The worst case is to have a root with only leaf children. In that case, with N 

nodes in the tree and M being the number of obtained nodes per scenario, we would 

have (𝑁
𝑀
) possible choices. However, this needs to be multiplied by 𝑀! to account for 

the possible order of how the nodes were obtained.  

Then we need to approximate the complexity of the encounter in the 

simulation. The complexity is highly dependent on how many cards are targeted and 

how many enemies there are. Every turn we get 5 cards, and in every encounter, we 

face up to 7 enemies. This means that in the worst case, we have 75 possible plays in 

our hand. We can omit the order of the cards, as their order can be changed for the 

same effect. We still, however, need to put this number to the power of turns player 

in the encounter, since the outcomes of every turn might differ. Therefore we end up 

with encounter simulation complexity of (75)𝑇 where T is the number of turns (this 

number usually ranges between 1 and 10 because of our game design. 

Additionally, we need to account for the order of the cards in the deck, and 

there will be 
15!

5!∙5!∙5!
 possible orderings. Therefore with E being the number of 

encounters in a scenario, we end up with the following formula of complexity for 

complete simulation. 
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(
𝑁

𝑀
) ∙ 𝑀! ∙ 𝐸 ∙  (75)𝑇 ∙

15!

5! ∙ 5! ∙ 5!
 

This is the worst-case scenario, and the complexity for average scenario would 

be looking much better since there are many area cards (which do not require target) 

and there are not many encounters with 7 enemies, but the average would be between 

4 and 5. Also, the skill tree’s structure will be much different in the average case, and 

the complexity of choice would be lower. However, the complexity of such 

simulation is still too large to be used in the fitness function, especially because it 

covers only one skill tree and only one deck. Therefore, we have to make 

compromises and rely on approximations.  

Given our changing environment (different scenario every generator run) and 

the variety of combinations, best-proposed fitness function was approximating 

simulation on all possible choices in the tree and aggregating them to a single value 

(fixed amount of values).  

To simplify the simulation, I still decided to run all possible tree combinations, 

but in terms of simulating the encounter, we have simplified the simulation greatly. 

Instead of searching all possible cases and tracking every choice and variable 

element, we average the targeted and area damage of the deck every turn. Doing this 

while running a simple greedy heuristics, that puts the average targeted damage on 

the minion, which has the highest attack to health ratio, makes the simulation 

performance much better and enables its use in repeated skill tree evaluation. 

Definition: Approximating simulation is a function 𝑓: (𝐷, 𝐸) → 𝑍 where D is a 

set of cards (Table 2: Card’s definition), which are already buffed by a combination 

of nodes, E is a set of enemies where enemy is defined by attack value and health 

value. E effectively means (𝑍, 𝑅)𝑛, where n is a number of enemies. Returning value 

of this function would be the turn number if the simulation succeeded in beating the 

encounter. Otherwise, it will return the sum of remaining hit points of the enemies, 

which are still alive (hit points above 0). 

On top of that, we can use reference decks instead of all possible decks and 

also average the turns instead of having a huge branching factor during the encounter 

because of the number of possible decks. Both of these increase the algorithm 

performance greatly. We have chosen this kind of function because it is close to the 

perfect simulation, but it is not as complex. Therefore, it can be used in the fitness 

function.  
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We will need to select a few representative ratings, which will make the skill 

tree viable to use and which will make it interesting to the player. In order to make a 

skill tree viable to use, we will need to control the win ratio of all combinations in 

every given state of the game. This raises the need for WinRateRating which will 

represent, how well does the skill tree do against the specific encounter over all of 

the possible combinations of nodes achievable in that state of the game. This will 

only make sure not to fall under the Flow zone into anxiety, but will not give us 

upper bounds. That is why we introduce a few ratings, which control the length of 

the encounter since the length of the encounter represents its challenge well. These 

will be looking for average, median, and most frequent case (MFC) of the winning 

turn. Their matching ratings are called AverageWinTurnRating, MFCWinTurnRating 

and MedianWinTurnRating. In order to control the amount of redundancy in the tree, 

we introduce the BalanceRating, which will check the sizes of subtrees of children of 

nodes to rate more balanced trees better than unbalanced ones. Finally, we introduce 

the GraciousLossRating to combat obviousness in the tree. This rating will rate trees, 

which will have closer losses higher than a tree with total losses, which were not 

close to winning at all. Ratings will be explained in detail in section 6.5.  

The approximate simulation gives us the result for each deck, each encounter 

of a scenario and each combination of nodes for a given encounter. This gives us a 

three-dimensional array of results from the approximate simulation. For every 

combination of nodes for given deck and encounter, we will convert the one-

dimensional array into chosen ratings. Then we will be left with a two-dimensional 

array of ratings (per deck and encounter), and these ratings will need to be 

aggregated into a single set of ratings, which we will finally return as a result of the 

fitness function. 

First, we will need some reference decks to cover most of the likely deck types 

that can be in the game. We will also need to represent the choices a player can make 

in the skill tree for proper fitting and how we address the combinations of choices 

any player can make. After addressing that, we will describe the approximating 

simulation. Then, we will talk about extracting the results and splitting them into 

different ratings and how these results will be aggregated over all decks and choice 

combinations. 
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6.1. Relevant input 

For this part of the algorithm, the relevant input of fitness function is the data 

about encounters and weights given to our ratings.  

Property Type Note 

Encounters Set of pairs 

(Integer; Encounter) 

What encounters will the game contain 

at what numbers of nodes available 

WinRateWeight Real number Weight of the WinRate rating 

AverageWinTurnWeight Real number Weight of the AverageWinTurn rating 

MedianWinTurnWeight Real number Weight of the MedianWinTurn rating 

BalanceWeight Real number Weight of the Balance rating 

MfcWeight Real number Weight of the MFCWinTurn rating 

GraciousLossWeight Real number Weight of the GraciousLoss rating 

Table 6: Relevant input for the fitness function 

Encounters are an ordered set of pairs of a set of enemies and the number of 

available nodes for that encounter. 

6.2. Reference decks 

Since the deck of cards is not in our input, we have to account for different 

deck types, which would reflect most of the possible decks that could play the 

encounter. Therefore, I created a set of reference decks, some determined, some 

random based on the possible cards that might appear in the deck (all of them listed 

at Appendix A – Reference Decks). There will be few decks filled with only one card 

type, few decks with 5 non-targeted cards and 10 single target cards and few 

completely randomly made up of 15 cards from 8 possible card types. The evaluation 

will be done for each deck and then aggregated (more on rating aggregation of data 

pod). 

6.3. Choices 

There are two types of choices to reflect in our simulation. One type of choice 

is picking a node in the skill tree. Another type is the choice of cards to play every 

turn. First, I will describe the choices of the tree and the important details that relate 

to it. After that, I will describe how the choices of playing cards are handled during 

the encounter. 
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The tree’s evaluation must represent the choices that the player can make (i.e. 

in the form of having a method to return picked nodes). Therefore, all the possible 

choices and combinations of choices should be evaluated to make an accurate 

evaluation of a tree. This is because if the player chooses a different combination of 

nodes than we evaluated, he might end up with experience significantly worse 

because the Player-power given to him is too low or too high to contrast the 

challenge properly. Additionally, we might miss some cases of redundancy or 

obviousness in the skill tree, if we do not evaluate all combinations. 

Another aspect of the tree we must reflect is the continuity of choices. If there 

is a node, that makes the player very strong, he needs to have a way to reach it in 

order to pick it without losing the game beforehand. Therefore, only winning choice 

combinations can be developed further, since losing combinations would not 

progress further in the game. This means we can cut these choices from our 

calculations. This prevents good rating of all combinations with an incredibly 

powerful node, which has no way of reaching it because the player fails before he 

can. 

Reflecting player choice of cards played during an encounter can be tricky 

since you need to approximate the behaviour of the player. Great players will beat 

significantly harder encounter than a bad player. However, as we have discussed in 

section 2.2, the difficulty is relative to the player. Therefore we can choose what kind 

of players we want to have the most optimal experience. We have gone with 

targeting the decent players to have the optimal experience and therefore, we have 

chosen to simulate the player choices in encounters with greedy strategy heuristics. 

We might end up in a situation, where the results of choices are succeeding 

only in part of the cases (not all combinations of nodes beat the encounter). In that 

case, it would be a good idea to ensure that some amount of combinations succeeds. 

This amount depends on whether we have multiple tries or whether the failure is 

permanent. If the loss is permanent, then we should aim for higher odds of success in 

an encounter so that most decent or better players succeed. Otherwise, we can get 

away with a lower chance of success, as the player can try repeatedly. Since our loss 

is permanent and the player would have to start the scenario over if he failed during 

any of its encounters, we will aim for a higher success percentage. 
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6.4. Approximating simulation of encounter 

For our evaluation, we went with an approximating simulation, as it seemed the 

best compromise between accuracy and speed. Before the simulation, we take the 

deck and upgrade it based on the combination of nodes that was chosen. 

Since the deck gets shuffled every start of an encounter, it is better to, instead 

of running multiple times for different card orders, average the damage player can 

deal every turn. Then we iterate player damage during turns and enemy damage at 

the end of every turn until player died or defeated the encounter. Average area 

damage is done to enemies every turn, while average targeted damage is done to the 

enemy with the highest attack to health left ratio. Reason for the targeted damage 

heuristics is described in the previous section. If the simulation failed, negative of the 

sum of remaining health of enemies was returned to represent, how close, was the 

lost encounter. If the simulation succeeded in beating the encounter, the number of 

the turn, in which the simulation was able to defeat said encounter, was returned.  

Costs of the cards were taken in account and if the cost would surpass the 

resources of the player, effect of all cards of that resource type would be reduced to 

compensate the inability to play all of them in one turn. 

6.5. Rating types 

There are a couple of different ratings, which I have defined for each tree. 

These ratings represent the performance of a tree well because what we need from a 

tree is to provide enough power to beat the encounter, not to have redundant choices, 

and not to give too much power. 

All ratings are designed to range between negative infinity and 1 with negative 

values representing very likely unusable trees. Such values can be achieved by 

having a tree that fails at all encounters. The way these ratings are calculated is 

described in the next section. 

Average, Median and MFC win turn ratings all contribute to a reasonable 

game length. The number of turns in a winning game was estimated to be between 3-

5 to be reasonable in length and difficulty. The rating is then given based on 

following formula for each of said ratings. 

𝑓(𝑥) = {
−𝑥, 𝑥 > 5
𝑥, 𝑥 ≤ 5 ∧ 𝑥 ≥ 3
𝑥, 𝑥 < 3
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WinRateRating is by far the most important rating of a tree. It represents, how 

much is the desired win ratio of the combinations (for each deck and encounter) of 

the actual win ratio. This rating should always be at a high weight, as it ensures a 

baseline performance of our tree.  

Let W be the win ratio of all possible combinations of nodes in a skill tree for 

given deck and encounter and let Ri be the total remaining hit points of all enemies 

where I is the set of indexes of combinations and 𝑖 ∈ 𝐼 is the index of combinations. 

Finally, let T be the target win ratio. Then WinRateRating is computed with the 

following formula. 

𝑓(𝑥) =

{
 
 

 
 
1 −𝑊

𝑇
, 𝑊 > 𝑇

𝑊

𝑇
, 𝑊 ≤ 𝑇 ⋀𝑊 > 0

1

∑𝑅𝑖
, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The target of this function will be 70% in this thesis. This was decided after 

manual development testing and will be validated in chapter 8. 

BalanceRating was introduced after a couple of unwanted artefacts were 

discovered in generated trees. Trees that were generated were significantly 

unbalanced, with cases that contained nodes with children that had subtrees of sizes 1 

and 7 and similar cases. This rating is based on sizes of subtrees of nodes’ children 

and weighted more if the node is closer to the root. 

GraciousLossRating was introduced to balance the outcomes of the different 

encounters. Before introducing this rating, part of the tree was basically designed to 

be ‘losing’ and therefore had very little to no power. To change this, I have 

introduced GraciousLossRating to make the losses as close as possible. The closer 

the loss was, better the rating. Results of the generation were surprisingly much 

better than I originally expected, especially in combination with a higher target of 

win ratio. 

6.6. Aggregating results 

Another secondary goal is to minimize outliers. This means to value trees with 

more consistent performance better than a tree, which has a perfect performance in 

most cases but fails completely at few. We can tackle this problem by choosing a 



 47 

proper aggregation method, which would highlight these outliers and reflect them in 

the aggregated rating more than just a plain averaging. 

Therefore, for aggregation of ratings of all encounters for each deck, each 

encounter and each choice combination, I chose root mean square distance from 

number 1. The choice fit with the range of different ratings and the aggregation 

method is biased against outliers more than just an averaging the results. 

I have experimented with different combinations of aggregations, like median 

values, maximums, averages and their use to determine the performance of the skill 

tree. However, the results were only marginally better and only in specific cases. 

Because of this, I have chosen to stick with root mean square as the only aggregation 

function. 
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7. Implementation  

This chapter will talk about the implementation of the game and the generator 

for it. I will explain the reasons behind my choices of implementation and give 

examples and snippets of the code. 

The game was done using Unity with C# as its scripting language. This choice 

was made out of simplicity and licensing. The generator was also implemented in C# 

using .NET Framework 4.6.1. This was more of a pragmatic choice. 

Generator used following NuGet packages: 

Name Note 

morelinq More advanced LINQ methods 

Newtonsoft.Json Json serialization and deserialization 

System.ValueTuple Dependency of morelinq 

Table 7: List of NuGet packages used in the solution 

The goal was to make an implementation, which would be able to work in 

parallel, in order to maximize performance, while preserving sequential approach 

concerning generations. Therefore I wanted to parallelize as much as possible 

without too much overhead.  

Since the first implementations were consistently returning artefacts, which 

were fixable very quickly and obviously, therefore I decided to implement one last 

part of the generation, the post processing. In this post processing method, I would 

delete and replace the obvious redundancies. I will talk about this method later in this 

chapter. 

First, I will talk about the generator. I will explain how I formed the input 

model and how did I decide to store data (both input and results). Then I will take a 

look at the whole algorithm, and after that, I will explain parts of it in detail. After 

that, I will address the thread safety across the implementation. Finally, I will 

mention the post processing of a tree. 

7.1. Relevant input model and data storage 

The rest of the relevant input for our algorithm is the number of generations to 

be run in addition to how many nodes the final tree can have. Reference decks, which 
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we talked about in the previous chapter, are a fixed part of the algorithm and thus are 

not part of the input. 

Parameter Type Note 

Generations int Number of generations to run 

NodeCount int Maximum number of nodes 

Table 8: InputModel’s properties. 

To address storing input and result data, we have chosen the JSON format. 

This allows us to simply deserialize data into our objects directly and makes loading 

and saving data very simple. 

7.2. Whole algorithm  

Before I go into details about parts of the algorithm, I wanted to have a quick 

overview, how does my algorithm look like. As seen in (Snippet 3), the core of my 

algorithm follows the Flow diagram of our GA introduced in chapter 4. The stopping 

criterion, as mentioned before, is the only number of generations, which is why the 

main part of the algorithm is in for cycle. 

NodeTree Generate(InputModel inputModel) 
{ 
 var currentGeneration = GetRandomTrees(); 
 // perform number of generations specified 
 for (var i = 0; i < inputModel.Generations; i++) 
 { 
  var newGeneration = EvolveTree(currentGeneration); 
  // perform fitting 
  var rated = newGeneration.Rate(); 
  // adds old generation to new one for selection 
  rated.Add(currentGeneration); 
  // sorts trees by fitness descending 
  rated = new List<RatedTree>(NonDominatedSorter.NonDominatedSort(rated)); 
  // take only specified number of trees 
  currentGeneration = rated.Take(inputModel.GenerationSize); 
 } 
 // choose final entity to return 
 var final = WeightedMax(currentGeneration); 
 // post process final entity before returning 
 PostProcess(final, inputModel.PowerMarks.Keys.Max()); 
 return final; 
} 

 

Snippet 3: Overview of the algorithm in pseudo code.  

7.3. Mutation + crossover step 

In the mutation and crossover steps of the algorithm, we take the list of entities, 

which were selected from the last generation, and apply all operators to all entities 

and then performs crossover on random pairs of the entities from the last generation.  
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All operators are under the IOperator interface, which has one method. This 

method is called mutate and takes an entity and input model as its parameters. All the 

operators always create a copy of the entity given to it and then perform mutation 

with probability given in the InputModel. If there is no mutation to be performed 

(mutation does not happen due to probability, or no other suitable part of the tree was 

found to be modified), null is returned and removed from the list of new entities after 

all operators are applied. 

During the crossover, the amount of random pairs of entities is taken from the 

selected generation. This amount is equal to generation size after selection. After 

pairs are selected, copies of entities in every pair are given as arguments to the merge 

method.  

NodeTree Crossover(NodeTree one, NodeTree two) 
{ 
 // merge roots of two trees 
 var mergeNode = MergeNode(one.Clone().Root, two.Clone().Root); 

// create a new tree object and initialize it 
 var newTree = new NodeTree(mergeNode); 
 newTree.InitTree(); 
 return newTree; 
} 

 

Snippet 4: Method for crossover. The main process is done in the MergeNode 

method, which recursively merges nodes together. After the merging is done, a new 

tree object is created and initialized. 

Crossover method calls the MergeNode method, which recursively merges 

nodes together starting from the root. This method was described in subchapter 5.3.  

7.4. Fitness step 

The fitness step is being done using a RateTree method. This method is split 

into two main parts. The first part consists of performing the approximating 

simulation of the game and saving results into a three-dimensional array. One 

dimension is for different reference decks, one is for all different game encounters, 

and the last one is for all possible combinations, which can be picked in the skill tree 

with a specified number of available points for each encounter. The second part is 

focusing on extracting the results from the array and rating the tree based on those 

results. 

For every deck in the reference decks and every encounter in InputModel all 

possible combinations of chosen nodes are found. Since the encounters are sorted in 

their chronological order, only combinations that succeeded in all previous 
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encounters are developed to be simulated in following encounters. Then, for every 

combination, the deck is upgraded by the chosen combination of nodes and the 

approximating simulation with the upgraded deck and the corresponding set of 

enemies is started. 

In order to keep the simulation as fast as possible, we calculate average damage 

per turn for both single target cards and non-targeted cards before the simulation 

begins. We account for the player not having enough resource by reducing the 

average damage by the ratio of used resource and resource available (if above 1). 

Then the turn iteration begins. Simulation damages all the monsters by average non-

targeted damage and damages a living enemy with the highest attack to health ratio. 

This heuristic provides a balanced approach when simulating the result of an 

encounter. 

The second part of the fitness step is to extract results from the three-

dimensional array. For every deck and encounter, we have an array of combinations’ 

performance in the simulation. After manual review of the game, we have decided to 

aim for 3-5 turn encounters, as shorter felt very simple and longer felt tedious. 

7.5. Thread safety 

To improve the performance of the algorithm, I decided to do the most 

performance heavy task in parallel to greatly improve the execution time. This is the 

reason why most of the objects that are used and changed in each generation have a 

definition of a Clone method, which creates a deep copy of itself. This method is 

used during every potential place that could cause inconsistency and during 

modifications like operations and crossover (since we are creating new objects). 

7.6. Post processing 

After the best entity is chosen, post processing is done to prevent easy to spot 

and easy to fix artefacts, which are unwanted. Such easy to spot artefacts are nodes 

with 0 value or cases with obvious choices, which, as a result, will never get picked. 

Every node gets its children searched for subtrees consisting only of one type of 

node, and if there is a subtree, which cannot be fully selected, it is converted into a 

path which is cut off at the maximum depth reachable in-game. 
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8. Validation 

In this chapter, we will talk about the validation of our skill trees. In order to 

validate generated skill trees, we need to choose a way to validate them. As 

mentioned before in Analysis, validation can be done either automatically or 

manually. We have chosen to go with automatic validation for the sake of time and 

resources. 

That means we will need an algorithmic solution to trying the game and to see 

if a player would be able to play it comfortably. To do just that, we have chosen to 

implement bots to play our game. However, we needed our bots to represent the 

players that would be playing the game, which raised a need to have multiple 

different types of bots that would play our game to cover most of the spectrum of 

players. 

We needed bots that would be objectively good and bad at the game, but we 

needed to give them the same environment as the players would have. Therefore, the 

only information for the bot to decide would be cards in hand and enemies against 

him. However, there will be one exception with a bot, which is called Lucky. This bot 

will have information of his next hand and greedily decide based on next hand’s best 

play as if a player would be able to correctly guess what cards he will draw, hence 

the name. 

First, we will talk about our expectations of the results and form a hypothesis. 

Then we talk about the design of the validation. We will describe all different bot 

types and their purpose in the validation. We will also describe how different bots 

reflect player’s choices in both encounters and skill tree picks. After that, we will 

address collecting and storing data from the validation. This includes talking about 

what data we collect and what format did we choose for the data manipulation and 

interpretation. 

8.1. Hypothesis, expectations 

In order to reflect different players playing the game, we needed multiple 

different bots to play the game. Some need to be better and reflect players who think 

about every turn. Some bots need to be dumb to reflect players who either cannot 

play the game or are just simply bad at it. Some bots need to be somewhere in the 

middle to reflect a player who thinks about what he is doing but not too deeply. 
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Therefore, the first and the simplest kind of bot will be the RandomBot. This 

bot, as its name suggests, will play cards randomly and will randomly end the turn, 

sometimes even before it played all the cards in its hand, if less than 3 cards are 

playable in his hand. Targets of targeted cards will also be chosen randomly. 

Another bot will represent the decent player, who thinks about what he is doing 

but is not looking for all possible outcomes and combinations in the game. This bot 

is called GreedyBot. GreedyBot always looks for the card, which will have the 

biggest impact on the game, killing most enemies or damaging enemies the most out 

of all cards in its hand. This bot represents the players, who read every card and find 

the one that does the most and play it. 

Even this kind of decent player may not succeed in finding the best card. That 

is why we introduce RouletteBot. This bot will play the best card with 50% 

probability, second best with 25% probability, third with 12.5% probability and both 

fourth and fifth with 6.25% probability. A similar approach is when there are fewer 

cards in its hand. Best card will be played with 50% probability, reducing this chance 

by a factor of 2 every worse choice. 

To represent the good players, BestTurnBot was implemented. As the name 

suggests, this bot will look for the best possible outcome of the current turn. The 

search of best play is done via depth first search (DFS) of game states. Additionally, 

another similar bot was implemented called the LuckyBot. This bot searches game 

states similarly, but this bot will also look at the hand, which it would draw next turn, 

and greedily selects the best card to play and choose the best outcome after this one 

card is played. 

Next, we needed a way to reflect player’s choices in the skill tree, but given 

our size of a skill tree, we did not need to make specific bots for choosing the skill 

tree, but rather we covered all possible choices during the scenario. 

There are few expectations we have from the validation of the skill tree. First 

and foremost, it needs to allow players (bots) to beat the game. The better bots 

should almost always beat the encounter, and generally, they should have lower turns 

to win than worse bots. Also, the win ratio of all bots should not be 100% to prove 

there is a possibility to lose. The average turns to win should fall between 2 and 6, 

preferably between 3 and 5, since that is what we aimed for during the generation. 

Therefore, the hypothesis consists of the following statements: 

 Bots will be able to lose the game 
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 Bots will be able to beat the game 

 Average turns to win will be between 2 and 6 

 Win ratio will be higher for ‘better’ bots 

 ‘Better’ bots will average lower turns to win than worse bots 

These statements all speak of the viability of the skill tree, the fact that bots 

will be able to beat the game means the skill tree can give enough Player-power to 

the player to beat the game and not feel frustrated and anxious. The fact that bot can 

lose a game means that the skill tree is not redundant and the choices in the skill tree 

matter (at least to some extent). 

If the bots were able to beat the encounter in 1 turn, it would mean that the 

game is too easy and will tend to be boring. Therefore another statement will be that 

the average turns to win will be between 2 and 6. Win ratio will be higher for 

‘better’ bots means that we have implemented the bots correctly and that the game 

will reward the skill level of the player. The same reason goes for the last statement 

as well. 

8.2. Design of the validation 

We will take one of each deterministic bots and 10 of each non-deterministic 

bots and let them play each encounter for all possible choice combinations in the 

skill tree. 

For each bot run, copy of the deck is made and then buffed by the node 

combination. Then set of corresponding enemies from the encounter is taken and put 

up for the bot to play the encounter using a simplified game interface. 

When each bot is done playing the encounter (lost, won), it returns a result 

row, which gives us all the information about the result of the encounter. This 

includes how many cards were played, starting and ending attack and health of all 

enemies, seed if relevant, corresponding node combination and bot’s type. 

After all the bots are done playing all cases, all result rows are written in a csv 

file to be manually validated later. 

This validation algorithm will be run for skill trees from all variations of our 

selection method to compare differences between them. The skill trees used in the 

validation are shown in Figure 22, Figure 23, Figure 24, Figure 25, and Figure 26. 
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Figure 22: NSGA skill tree 

 

Figure 23: Weighted Evolutionary skill tree 

 

Figure 24: Evolutionary skill tree 
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Figure 25: Randomized Hill Climbing skill tree 

 

Figure 26: Hill Climbing skill tree 

  



 57 

 

8.3. Result model 

Data from bots will be gathered per encounter. Every encounter will create one 

record of data. In one record of data, multiple values are included. 

Name Note 

ScenarioID Identification of a scenario 

EncounterNumber Number of an encounter in sequence 

BotType Type of bot, which played the encounter 

AISeed Seed of AI choices for reproduction 

CardOrderSeed Seed of card order for reproduction 

TreeId Identification of tree used for validation 

NodeIds Ids of nodes chosen at the time of playing encounter 

Won 0 if loss 1 if win 

RemainingHp Remaining hit points at the end of the encounter 

Turns During which turn did the encounter end 

CardsPlayed Number of played cards in total 

EncounterEnemies Attack and Health of enemies before and after the encounter 

Table 9: Format of the data record of validation 

All played encounters are stored in a CSV format for easy data manipulation 

since the size allows us to have redundant data. This data format also lets us interpret 

all results of validations we need as well as confirm or deny statements from the 

hypothesis. 

8.4. Result interpretation + results for hypothesis 

Results of the simulation turned out as expected in hypotheses. The bots’ win 

ratio looks like about as we would expect compared with each other, and bots 

achieved following win ratios across all variations (Figure 27, Figure 28, Figure 29, 

Figure 30, and Figure 31). As seen on the plots, the win ratio of the bots was very 

similar between skill tree variations, with all following the same order. 

1. LuckyBot 

2. BestTurnBot 
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3. GreedyBot 

4. RouletteBot 

5. RandomBot 

 

Figure 27: Win ratios of bots with NSGA skill tree 

 

Figure 28: Win ratios of bots with Weighted Evolutionary skill tree 
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Figure 29: Win ratios of bots with Evolutionary skill tree 

 

Figure 30: Win ratios of bots with Random Hill Climbing skill tree 
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Figure 31: Win ratios of bots with Hill Climbing skill tree 

The only interesting observations are NSGA and HillClimbing having higher 

win ratio for all bots and HillClimbing having very little difference between 

GreedyBot and BestTurnBot. Another thing was that RandomBot was significantly 

lower than other bots in terms of win ratio in all cases. 

Another thing to look at was the turns to win in won encounters (Figure 32, 

Figure 33, Figure 34, Figure 35, and Figure 36). The hypothesis stated that the 

average turns of won encounter should be between 2 and 6. Let us take a look at the 

average turns to win for all bots. The turn to win was lower than expected, but for all 

the bots within the range of hypothesis. Additionally, an average turn to win was 

lower for ‘better’ bots than for the ‘worse’ ones. 

Sample standard deviations were 0.681;  0.596;  0.631;  0.576;  0.615 for 

NSGA, Weighted Evolutionary, Evolutionary, Random Hill Climbing and Hill 

Climbing respectively.  
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Figure 32: Average turns to win for different bots for NSGA trees 

 

Figure 33: Average turns to win for different bots for Weighted Evolutionary trees 
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Figure 34: Average turns to win for different bots for Evolutionary trees 

 

Figure 35: Average turns to win for different bots for Random Hill Climbing trees 
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Figure 36: Average turns to win for different bots for Hill Climbing trees 
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9. Discussion 

The data that we collected fully confirm the hypotheses for all variations of the 

skill tree generation algorithm. In all cases, all the bots were able to both win and 

lose the game. Bots had different win rates, which were better for the better playing 

bots like the BestTurnBot and LuckyBot. The RandomBot had significantly worse 

performance, which is good because it was designed to be a bad player, but the game 

environment still let it win. This means that the skill tree and game environment 

reflect the skill of the player, letting him win in fewer cases than the better players. 

Both Evolutionary and Weighted Evolutionary had the same artefacts of 

obviousness (redundant branch of the skill tree). This could be solved by adding 

another rating to the algorithm in the future that would be ranking trees, which used 

all nodes at least a few times to win the approximate simulation, higher than others. 

The win ratios of Lucky, BestTurn, Greedy and Roulette bot were very close to 

each other. This was probably caused by the simplicity of the encounters since it is 

obvious the superior strategy won in very few extra encounters over a very simple 

but effective one. It is also likely that the difficulty of the encounters was not very 

hard and therefore was not rewarding the player for the higher skill in the game. The 

encounters were designed manually, and it is possible that they are not optimal for 

the validation. 

The standard deviation of win ratio of choice combinations in the skill tree is 

decently big (0.379;  0.395; 0.367; 0.386; 0.348), which suggests that the outcome 

of every encounter is highly influenced by the choices in the skill tree. This is good 

because the redundancy of the skill tree, in that case, is very minimal. This also 

means that being able to pick the correct combination in the skill tree is as important 

as having high skill in the rest of the game.  

Additionally, this means that a skill tree can be used as the only means of 

difficulty management for some game designs. A direction of future work could be 

to define at what conditions the game can be difficulty managed only via a skill tree. 

Data, I was lacking and which would be important, is how many trees that 

underwent crossover operation were selected afterwards and if the crossover function 

contributed in any way to the final skill tree creation. Data from the validation 

suggest that the use of the crossover function in Evolutionary and higher algorithms 

had little impact, but we cannot say that for sure. 
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9.1. Conclusions of validation 

Given the results of the validation process, we can conclude that PCG of skill 

trees is possible and viable to do using GAs since all of the selection method variants 

performed rather well during the validation. This also means that the impact of the 

crossover function, which was used during the Evolutionary, Weighted Evolutionary 

and NSGA variants, was not that impactful to search the skill tree space. 
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10. Conclusion 

The goal of this thesis was to explore methods of PCG of skill trees in games, 

first by analysing the requirements of skill trees and their impact on the game, 

secondly by using the conclusion of analysis to create a generator, which would 

generate skill trees for our game and finally by validating the generated skill trees.  

In this thesis, we have described what a skill tree is and how does it impact 

games. We have talked about the connection of Flow with difficulty and skill trees 

with difficulty and Flow. We have analysed, what problems does generating a skill 

tree bring and what are the requirements we have for a skill tree. We have also 

analysed multiple bad artefacts that can come up in a skill tree, like redundancy and 

obviousness. 

We have created a couple of variations of generators based on what we have 

learned during analysis. These generators are based on an adaptation of SGA. There 

are 5 variations of selection steps introduced in this thesis, which, sorted from 

simplest to the most complex, are hill climbing, randomised hill climbing, classic 

evolutionary, weighted evolutionary and finally the NSGA-II.  

We have described all mutation operators and the specific way we did 

crossover with skill trees. After that, we have described the most important part of 

the generating algorithm, which is its fitness function. Validation of trees during the 

generation is hard to design because we need both as much accuracy and as much 

performance to try as many generations as possible in a given time. 

After that, we validated our generated skill trees using multiple bots that 

represent different skill level in our game. We had the bots play the game for all 

possible combinations in the skill tree and report the result for all encounters, 

multiple times for non-deterministic bots. This validation returned data, which 

confirmed our hypotheses for the validation. 

10.1. Remarks 

At first, during the implementation of the generating algorithm, the approach 

was very simplistic. I started with only the Hill Climbing method with only the 

Strengthen and AddNode operators. This proved to be very unwanted as it offered 

very little control during the generation. The probability of artefacts appearing in the 

skill tree was also very high. Reason for this was that the skill tree always chose the 
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best out of the current generation and therefore threw away all the potential skill 

trees. 

That is when I implemented the randomised hill climbing and evolutionary 

approach. This offered a better result, but I felt that the fitness function should be 

refined, and I split the rating to different sub ratings and introduced weights to these 

sub ratings. This improved the playability of the skill tree, but the redundancy and 

obviousness were still a large factor. At the same, time I decided to refine the 

operators to include larger variability to the mutation and created the crossover 

function. 

At that moment, I introduced the gracious loss rating, which significantly 

reduced the obviousness of the tree and balance rating, which made the skill tree look 

way more appealing. These two ratings heavily improved the skill tree. 

After that, we decided to focus more on multi-objective approach and decided 

to implement the NSGA variant, which did not offer more control, but it offered 

more consistent results because of the way it selected the individuals for next 

generation.  

10.2. Future work 

From this thesis, we have concluded that GAs are a viable way to perform PCG 

of skill trees for games. However, the game should meet some specific requirements, 

which were stated in section 2.10, and the performance will go down with the size of 

the skill tree and its branching factor greatly. 

Ideas for future work could be, for example, defining the games, which can use 

PCG of skill trees formally, based on what we talked about in Analysis. This could 

bring more insight into what is the PCG of skill trees capable of covering and how it 

is able to help the development of games. 

It is also needed to define a good crossover operation for skill trees since a skill 

tree is not a binary tree and swapping subtrees of different skill trees has a very 

uncontrolled effect on the skill tree performance. The crossover function should take 

advantage of what skill trees do well and try to combine it in a non-trivial way. 

Maybe it would be a good idea to consider following good combinations on the skill 

tree and base the crossover on preserving these combinations. 

Another aspect of skill trees is the correct presentation to the player. This 

consists of using patterns and pictures to show the player immediately what the 
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nodes in the skill tree are doing. A great example of such presentation is seen well in 

Path of Exile (Grinding Gear Games, 2013) in Figure 2. There is a couple of 

interesting patterns, which can be done in a skill tree, like node ‘clusters’ or subtree 

specialisations. These patterns and other forms of visualisation could be explored to 

decide, which patterns are good and under which conditions are they to be used. 

Examples of these patterns can be seen in Figure 37 and Figure 38. 

 

Figure 37: Cluster pattern 

 

Figure 38: Subtree specialisation 
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Another topic that would be interesting to look at would be exploring the 

possibilities, methods and usefulness of online PCG of skill trees. This likely has 

very narrow use in games, but it is already used in Dead by Daylight (Behaviour 

Interactive, 2016), which means that it has its place in the gaming environment. 
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Appendix A – Reference Decks 

 

Deck number: 1 

15x - Type: Area; Energy; Damage: 2 

Deck number: 2 

15x - Type: Area; Energy; Damage: 6 

Deck number: 3 

15x - Type: Area; Mana; Damage: 4 

Deck number: 4 

15x - Type: Area; Mana; Damage: 4 

Deck number: 5 

15x - Type: Targeted; Energy; Damage: 6 

Deck number: 6 

15x - Type: Targeted; Energy; Damage: 9 

Deck number: 7 

15x - Type: Targeted; Mana; Damage: 5 

Deck number: 8 

15x - Type: Targeted; Mana; Damage: 20 

Deck number: 9 

5x - Type: Targeted; Mana; Damage: 20 

5x - Type: Targeted; Mana; Damage: 5 

5x - Type: Area; Mana; Damage: 4 

Deck number: 10 

5x - Type: Targeted; Mana; Damage: 5 

5x - Type: Targeted; Mana; Damage: 20 

5x - Type: Area; Energy; Damage: 6 

Deck number: 11 

5x - Type: Targeted; Energy; Damage: 9 

5x - Type: Targeted; Energy; Damage: 6 

5x - Type: Area; Energy; Damage: 2 

Deck number: 12 

5x - Type: Targeted; Mana; Damage: 5 

5x - Type: Targeted; Mana; Damage: 20 

5x - Type: Area; Mana; Damage: 4 

Deck number: 13 

5x - Type: Targeted; Energy; Damage: 9 

5x - Type: Targeted; Energy; Damage: 6 

5x - Type: Area; Mana; Damage: 4 

Deck number: 14 

1x - Type: Targeted; Mana; Damage: 20 

1x - Type: Targeted; Energy; Damage: 9 

2x - Type: Area; Energy; Damage: 6 

1x - Type: Targeted; Energy; Damage: 6 

2x - Type: Targeted; Mana; Damage: 5 

8x - Type: Area; Mana; Damage: 4 

Deck number: 15 

3x - Type: Area; Energy; Damage: 2 

2x - Type: Area; Mana; Damage: 4 
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1x - Type: Targeted; Mana; Damage: 20 

1x - Type: Targeted; Energy; Damage: 6 

2x - Type: Area; Energy; Damage: 6 

4x - Type: Targeted; Mana; Damage: 5 

2x - Type: Targeted; Energy; Damage: 9 

Deck number: 16 

1x - Type: Area; Energy; Damage: 2 

5x - Type: Area; Mana; Damage: 4 

5x - Type: Targeted; Mana; Damage: 5 

4x - Type: Targeted; Energy; Damage: 9 

Deck number: 17 

1x - Type: Area; Energy; Damage: 6 

3x - Type: Targeted; Energy; Damage: 9 

1x - Type: Area; Energy; Damage: 2 

2x - Type: Targeted; Mana; Damage: 5 

2x - Type: Area; Mana; Damage: 4 

6x - Type: Targeted; Energy; Damage: 6 

Deck number: 18 

1x - Type: Targeted; Mana; Damage: 5 

1x - Type: Area; Energy; Damage: 6 

1x - Type: Area; Energy; Damage: 2 

3x - Type: Targeted; Energy; Damage: 6 

1x - Type: Targeted; Mana; Damage: 20 

4x - Type: Targeted; Energy; Damage: 9 

4x - Type: Area; Mana; Damage: 4 

Deck number: 19 

1x - Type: Targeted; Mana; Damage: 5 

2x - Type: Targeted; Mana; Damage: 20 

2x - Type: Targeted; Energy; Damage: 6 

5x - Type: Area; Mana; Damage: 4 

2x - Type: Area; Energy; Damage: 2 

1x - Type: Area; Energy; Damage: 6 

2x - Type: Targeted; Energy; Damage: 9 

Deck number: 20 

1x - Type: Targeted; Energy; Damage: 9 

2x - Type: Targeted; Mana; Damage: 20 

3x - Type: Area; Energy; Damage: 6 

4x - Type: Targeted; Energy; Damage: 6 

5x - Type: Area; Mana; Damage: 4 

Deck number: 21 

1x - Type: Area; Energy; Damage: 2 

2x - Type: Targeted; Mana; Damage: 20 

4x - Type: Targeted; Energy; Damage: 9 

2x - Type: Area; Energy; Damage: 6 

2x - Type: Targeted; Mana; Damage: 5 

4x - Type: Area; Mana; Damage: 4 

Deck number: 22 

2x - Type: Targeted; Energy; Damage: 9 

2x - Type: Targeted; Mana; Damage: 20 

4x - Type: Area; Mana; Damage: 4 
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2x - Type: Targeted; Mana; Damage: 5 

2x - Type: Targeted; Energy; Damage: 6 

3x - Type: Area; Energy; Damage: 2 

Deck number: 23 

2x - Type: Area; Mana; Damage: 4 

3x - Type: Area; Energy; Damage: 2 

2x - Type: Area; Energy; Damage: 6 

1x - Type: Targeted; Mana; Damage: 5 

2x - Type: Targeted; Mana; Damage: 20 

1x - Type: Targeted; Energy; Damage: 6 

4x - Type: Targeted; Energy; Damage: 9 

Deck number: 24 

2x - Type: Targeted; Energy; Damage: 9 

1x - Type: Area; Mana; Damage: 4 

4x - Type: Area; Energy; Damage: 2 

1x - Type: Targeted; Energy; Damage: 6 

4x - Type: Targeted; Mana; Damage: 20 

3x - Type: Area; Energy; Damage: 6 

Deck number: 25 

4x - Type: Targeted; Mana; Damage: 5 

1x - Type: Targeted; Energy; Damage: 6 

3x - Type: Targeted; Energy; Damage: 9 

2x - Type: Area; Energy; Damage: 6 

4x - Type: Area; Mana; Damage: 4 

1x - Type: Targeted; Mana; Damage: 20 

Deck number: 26 

1x - Type: Targeted; Energy; Damage: 9 

1x - Type: Targeted; Energy; Damage: 6 

3x - Type: Targeted; Mana; Damage: 5 

1x - Type: Targeted; Mana; Damage: 20 

2x - Type: Area; Energy; Damage: 6 

4x - Type: Area; Mana; Damage: 4 

3x - Type: Area; Energy; Damage: 2 

Deck number: 27 

1x - Type: Targeted; Energy; Damage: 9 

1x - Type: Targeted; Mana; Damage: 5 

3x - Type: Area; Mana; Damage: 4 

1x - Type: Targeted; Energy; Damage: 6 

2x - Type: Targeted; Mana; Damage: 20 

1x - Type: Area; Energy; Damage: 2 

6x - Type: Area; Energy; Damage: 6 

Deck number: 28 

1x - Type: Area; Energy; Damage: 2 

1x - Type: Targeted; Energy; Damage: 6 

2x - Type: Targeted; Energy; Damage: 9 

1x - Type: Targeted; Mana; Damage: 5 

2x - Type: Targeted; Mana; Damage: 20 

4x - Type: Area; Mana; Damage: 4 

4x - Type: Area; Energy; Damage: 6 

Deck number: 29 
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1x - Type: Targeted; Energy; Damage: 9 

2x - Type: Area; Energy; Damage: 6 

3x - Type: Area; Mana; Damage: 4 

3x - Type: Area; Energy; Damage: 2 

1x - Type: Targeted; Mana; Damage: 20 

3x - Type: Targeted; Energy; Damage: 6 

2x - Type: Targeted; Mana; Damage: 5 

Deck number: 30 

2x - Type: Targeted; Energy; Damage: 6 

4x - Type: Area; Mana; Damage: 4 

2x - Type: Area; Energy; Damage: 2 

3x - Type: Targeted; Energy; Damage: 9 

1x - Type: Area; Energy; Damage: 6 

3x - Type: Targeted; Mana; Damage: 5 

Deck number: 31 

2x - Type: Targeted; Energy; Damage: 9 

1x - Type: Area; Energy; Damage: 6 

1x - Type: Targeted; Mana; Damage: 5 

1x - Type: Targeted; Energy; Damage: 6 

3x - Type: Area; Energy; Damage: 2 

2x - Type: Targeted; Mana; Damage: 20 

5x - Type: Area; Mana; Damage: 4 

Deck number: 32 

1x - Type: Area; Mana; Damage: 4 

2x - Type: Targeted; Mana; Damage: 20 

3x - Type: Targeted; Mana; Damage: 5 

3x - Type: Targeted; Energy; Damage: 6 

2x - Type: Area; Energy; Damage: 2 

2x - Type: Targeted; Energy; Damage: 9 

2x - Type: Area; Energy; Damage: 6 

Deck number: 33 

2x - Type: Targeted; Energy; Damage: 6 

1x - Type: Targeted; Mana; Damage: 20 

3x - Type: Targeted; Mana; Damage: 5 

7x - Type: Area; Mana; Damage: 4 

2x - Type: Area; Energy; Damage: 6 


