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Abstract: Psychophysics offers a wide range of experimental techniques to study
human perception and often uses mathematical models to do so. Psychometrical
function is a formal model of the relationship between intensity of stimulus and
perception, that is used by psychophysics to model experimental data. There are
various types of psychometric functions used in psychophysical practice. So far it
is unknown whether use of different psychometric functions in model experiment
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differences are big enough so that researchers should pay attention to choice of
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Introduction
Every science relies on development in it’s research. Unfortunately psychological
research has been struck by replication crisis several year ago and this situation
has shaken the confidence in the whole field. The review of the crisis was sum up
in Rouder and Morey [2009]. In response research community is looking for more
rigorous and reliable research approaches. Example of some of these approaches
can founc in Smith and Little [2018]. Fortunately psychology has entire branch
of study that has developed it’s experimental designs for more than a century -
psychophysics.

Psychophysical experiments are based on simple concept. They consists of
stimulus that is presented to the participant and simple, quick and repeatable
task, that tests, how is participant able to perceive stimulus. Participant per-
forms the task many times with various intensities of stimulus. Thanks to this
straightforward approach, psychophysics can offer experimental designs that are
robust, self-replicating, and as simple as possible. With such properties can psy-
chophysical experimental designs produce reliable data even with small number
of participants. Psychophysics is not probably only possible remedy for replica-
tion crisis, but it is definitely a cheaper and more practical alternative compared
to present drastical enlargment of number of participants.

As it was mentioned above psychophysics has developed it’s experimental
designs for more than century, but that does not mean that such designs are in-
variable and perfect. There are lots of questions considering experimental design
that remain unanswered. We have chosen to tackle the question about role of
psychometric functions in experimental design. Psychometric function is used to
model the relationship between participant’s response and quantified quality of
stimulus. It is used as a key model in several experimental designs (methods)
of psychophysics. There exist many psychometrical functions, but there is no
key or guideline which psychometric function is suitable for which task. There
are many questions concerning abilities of psychometric functions, like following.
Do particular psychometric functions differ in modeling noised, sparse, or dif-
ferently imperfect data? Which functions can more easily approximate specific
parameters? Or is choice of psychometric functions irrelevant? Answers to these
questions are important to every researcher, who has devises his own experiment
modeled by psychometric function. Unfortunately today researcher has no assur-
ance, whether the choice of psychometric function is important for experiment
or irrelevant. Therefore particular function is chosen by convention, compatibil-
ity to other experiments, or personal preference and instinct. These reasons are
definitely important and some are very reasonable. But unfortunately this blind
spot can still weaken any experiment design using psychometric function and so
it is important to this problem to be resolved.

Following thesis is a brief summary of basic psychophysical theory, methodol-
ogy and describing experiment examining following example of Felix Wichman,
Jeremy Hill and other researchers.
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0.1 Illustrations
All illustrations and graphics are created in R environment using package gglot2
and in case of additional graphic augmentation are made in io [2017].

0.2 Software
A part of the work contains a simulation experiment conducted in R environment.
The experiment uses R package PsyFuns and scripts defining the experiment.
Package PsyFuns and all accompanying scripts can be found in osf.io repository.
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1. Psychophysics and
Psychophysical experiments
Psychophysics is originally science studying relation between physical stimulus
and it’s psychological perception. During many years it has created compre-
hensive methodology to measure this relationship. Rather confusingly is this
methodology today also referred to as psychophysics, though it is used to study
various phenomena beside psychophysic’s original field of study. In all respects
psychophysics remains interesting field of study and moreover it offers valuable
methods and insights to psychology and neuroscience in general Read [2015].

1.1 What is psychophysics
The term psychophysics was used by Gustav Theodor Fechner in book Elemente
der Psychofyzik. In this book he has introduced basic principles and methods
how to measure mental events and helped to establish psychology as standalone
science.

Psychophysics is decribed by Fechner [1860] in his book
Psychophysics studies the properties of sensory apparatus (system). The fun-

damental characteristics of sensory system according to classical psychophysics
are how intense stimuli it can detect and differentiate between stimuli of various
qualities like intensity, quality, duration, or combination of all above.

The psychophysics is science field that has evolved since 1880 as described in
overview article from Read [2015]. The modern and classical psychophysics view
sensory system differently and ask different questions about it. Main concern
of classical psychophysics is the scale of sensation, which is translation between
physical stimulus intensity and level of arousal that this stimulus produces. On
the other hand modern psychophysics tends to ask how particular sensory system
encodes physical intensity of the stimulus. If we compare these approaches we can
see, that modern psychophysics has generalized the subject of it’s studies. That
means that interpretation of data is now more open towards various models and
mechanisms, other than comparing scales of sensation and physical stimulus. But
that does not mean that modern psychophysics cannot learn and take inspiration
from it’s classical counterpart Falmagne [2002].

1.2 Psychophysical experiment
Psychophysical experiment was constructed as a central tool of psychophysics to
measure characteristics of sensory systems. It has evolved along psychophysics
and today it measures various participant’s sensory characteristics using even
more various range of techniques. As was mentioned in the introduction - psy-
chophysical experiment consists of stimuli that are presented to the participant
and task, that tests participant’s ability to perceive stimulus. Participant is pre-
sented with various intensities of stimulus and tested by the task multiple times.
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The more general overview of psychophysical experiment can be found in Prins
et al. [2016].

Researchers have developed various techniques that determine how stimuli
will be presented, how will participant will be tested or how resulting data will
be processed. Substantial proportion of these techniques uses psychometric
function as key concept for estimation of characteristics. Remaining techniques
generally use averaging of experiment results to estimate resulting characteristics.

As was already mentioned richness and variety of experiment designs in psy-
chophysics is vast.

1.3 Psychophysical experiment example
As an example of psychophysical experiment we will use measuring hearing -
threshold, that is quite common experiment. It can be conducted for various
reasons from purely medical or scientific to commercial. Our hypothetical ex-
ample of such reason can be a toy factory trying to make children toys that are
”adult-friendly”. We all know how annoying can a child with a loud toy be, but
what if the toy factory found a way how to make products that are still popular
with children and less irritating for adults. We know that children have generally
better hearing than adults. So what if toy factory made toys loud enough so
toys would be still interesting for children but not yet irritating for adults? To
research this option, we need to be able to precisely measure how both children’s
and adults ability to hear develops with increasing sound intensity. Then we can
compare resulting hearing ranges with each other and find optimal intensity of
toy sound. Fortunately psychophysics offers us many techniques how to measure
hearing ability.

So we conduct an experiment in order to extrapolate children and adult ability
to hear sound based on it’s intensity. We sample several intensities of sound, let
participants listen to them. We would ask participants whether they have heard
the sound and calculate their average success rate (performance) per one sound
intensity. We can see the performances recorded on particular stimuli intensities
as the circles in 1.1.

Data resulting from the experiment are the sets of stimulus intensities and
their corresponding performances for each individual - red for an adult and green
for a child. It is an example of concept known as small-N design often used in
psychophysics Smith and Little [2018]. To represent trend in more general fashion
we use the psychometric function to model the data. Psychometric function is
a formula that associates intensity of stimulus and performance based on several
parameters. By modeling data with psychometric function we have acquired
a notion how participants ability to perceive stimulus develops with stimulus
intensity.

In next step we have to find way how to compare participants between each
other. We can simply compare function’s parameters or we can extrapolate more
abstract characteristics of participant’s performance. These characteristics are
called threshold, slope, etc. and they help to quantify differences between
performances of different participants. In case of our hypothetical experiment
we can say that child has a better hearing, because it’s hearing threshold is
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Figure 1.1: In this picture we can see data of two participants of your hypothetical
experiment. Participants are divided by color - green are data of child red data of
adult. Circles show the performances measured from hypothetical participants.
Participants were presented with stimuli of 6 intensities from 0 (no stimulus) to
maximal intensity. Each level have been presented 80 times. The lines show
the psychometric functions that fit the data and the triangles mark participant’s
thresholds.

about 15 dB lower, than adult’s threshold. Generally have characteristics of
psychometric function to be derived from psychometric function parameters, but
several functions are designed in such way that particular function characteristics
are described by function parameters. We will describe common characteristics
of psychometric function in more detail in the next chapter.

1.4 Experiment types and dichotomies
Preceding experiment description and example offer just a small glimpse into the
the rich world of psychophysical experiment domain. There are many interesting
dichotomies of psychophysical experiment, that provide many nuances to research
process. However majority of them does not influence role of psychometric func-
tion in the experiment in any significant way. From the experiment properties
that effect role of psychometric function in experiment we will name two.
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Firstly we will divided experiments to family of Method of constant stim-
uli or Adaptive methods. Second division that is important is division to
forced-choice Yes-No or Alternative choice design. This Yes-No and Alternative
choice design heavily influences sampling scheme used in experiment and therefore
is important for psychometric function.

1.5 Method of constant stimuli
Experiment from Method of constant stimuli family share approach towards dis-
tribution of stimulus and task. This approach is plain and simple - constant
stimuli experiments fix the stimuli intensities and number of tasks. Both distri-
bution of stimuli intensities and number of tasks are fixed before the beginning
of experiment and are the same for all participants. Only parameter that can
vary is order of tasks, that is often randomized. The example from the beginning
of the chapter is typical experiment of Constant stimuli method. In case of this
experiment researcher decided to use 6 levels of stimuli and also assigned the
number of tasks 80 per one level. The set of chosen stimuli levels and the number
of observations/samples per level is also called sampling scheme and it is an
important property of experiment. Results obtained from constant stimuli ex-
periment are predominantly simulated by psychometric function. Because of this
close connection is this experimental approach implemented in our simulations.

1.6 Adaptive methods
Adaptive methods are an alternative to Method of constant stimuli. It is a group
of experiment methods, that do not fix the intensities of presented stimuli or num-
ber of tasks used. Instead they adapt these properties during experiment based
on participants responses. Most of these methods are very suitable and effective
for measuring single characteristics like hearing threshold Leek [2001]. Only a few
can estimate several characteristics at the same time, or approach more complex
characteristics. Psychometric functions are used only by a few of adaptive meth-
ods. Such methods fit psychometric function with every new response and set
stimulus intensity of next task so that they can achieve most information gain.
Psi-method is a typical example Prins [2013]. Adaptive methods are not used in
our simulations.

1.7 Yes-No / AFC designs
The other parameter of experiment that influences the choice between Yes-No
or AFC (Alternative forced-choice) design of task. Yes-No design is older and
suitable for measuring detection threshold. That task in Yes-No design is simply
to answer whether participant perceived the stimulus - ”Yes” or ”No”. Such
approach is simple, but it is hardly applicable for measuring difference thresholds.
It is also prone to bias, because participant can incline to answering specifically
”Yes” or ”No” when unsure. The experiment used as example in beginning of the
chapter is typical example of Yes-No design.
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Alternative to Yes-No design is Alternative forced-choice (AFC). In experi-
ment using this design is participant given several (usually two) alternatives to
choose from. According to principles of psychophysics this task is ought to be
simple like choosing which of presented pictures contains specific object, which
two pictures if is brighter, or which of two beeps is has higher pitch. AFC design
experiments can be used for measuring both absolute and difference thresholds.
AFC is told to have an advantage to Yes-No design in being bias free. Bias in this
context mean a participant’s tendency to answer in some specific fashion when
unsure. In Yes-No design can participant answer any he wants, when unsure.
But actually being unsure means that stimulus was near threshold. If participant
decides always to answer no, when unsure, measured data will be skewed upwards
from actual threshold. But in AFC design has participant is chance of answering
correctly is still 1

Numberofalternatives
even if participant is prone to choose specific

alternative. Though validity of this statement has been argued Klein [2001].
The difference between Yes-No and AFC design is introduced because it can

influence the sampling of stimulus intensities that will be presented to the partic-
ipant. Yes-No design sampling schemes are meant to be symmetrical and widely
spread out. In contrast to that sampling schemes used for AFC experiments are
rarely symmetrical and are usually skewed towards high performance values.

1.8 Other dichotomies
There are many types of psychophysical experiments, that can be divided into
many categories. Experiments can be Bias-free or Bias-dependent, Forced-choice
or Nonforced-choice, etc. However we must refrain from more detailed description
of psychophysical experiments and their properties, because as can be seen they
have only limited influence of way psychometric functions and for purpose of this
work they would act as distraction. In case of interest more detailed description
of psychophysical experiments can be found in the textbook Prins et al. [2016].
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2. Properties of psychometric
function
Psychometric function is a common way to model and examine relation between
stimulus and participant’s response and it yields general characteristics of par-
ticipants performance based on overall results of experiment session. Concept
of psychometric function is quite general and it can be applied to many experi-
ment types without any significant alterations. Following chapter should provide
the overview over all basic functions properties and some of typically measured
characteristics.

2.1 Psychometric function structure
As mentioned above psychometric function is a model of relation between ob-
served participant’s performance and power of stimuli presented to observer. Do-
main of psychometric function depends on nature of stimulus, so generally it is
unrestricted, but range of the function is usually the proportion of successfully
completed tasks among all tasks therefore it is defined within the interval (0, 1).
Psychometric function is assumed to be to be monotonic and increasing. This
function properties result in typical ”S”-shape of function and such functions are
known as sigmoids. Generic formula of psychometric function can be described
by following equation.

ψ(x, γ, λ, θ) = γ + (1 − γ − λ)f(x, ϕ) (2.1)

In following paragraphs we will describe every component psychometric func-
tion resulting form previous equation. Scheme of psychometric function structure
can be seen in 2.1.

2.1.1 Guess rate γ

Gamma parameter is a lower boundary of observer’s performance. Observer can-
not detect the signal at this level of performance and is guessing. It is observer’s
worst possible performance. Example can be 2-AFC design where participant is
given two alternatives to choose from. If they guess they have 50% chance of
choose correct answer. Similarly in 3-AFC design, where participant is given 3
options, chance of correct guess is 33% and so on. We can see that γ parameter
is dependent on experiment design and that it is constant during the experi-
ment and among observers. Though observer should not usually score lower than
γ, these cases sometimes occur, when observer does not understand task prop-
erly, or was insufficiently instructedKlein [2001]. During estimation of parameters
guess rate is usually fixed. Estimation of guess rate is conducted only in several
experimental designs that can be found in Prins et al. [2016].
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Figure 2.1: In this visualization you can see structure of typical psychometric
function. Guess rate γ is a lower boundary of function values. Lapse rate λ is a
higher boundary of function values. In between you can see several versions of
inner function f based on inner parameters θ.

2.1.2 Lapse rate λ

Lambda parameter determines the upper boundary of performance. This param-
eter does not depend on experiment design as severely as γ. The most influence is
brought by participant and their lapse rate. Lapse rate is essentially a number
off error observer makes even if he is physically able to detect the signal due to
mistake, inattentiveness or lack of motivation. Lapse can vary from observer to
observer. Very high lapse rate can damage accuracy of other parameters measure-
ments, so if it exceeds level acceptable by the researcher participant results ought
to be removed from experiment data Wichmann and Hill [2001]. Value of high
lapse rate can vary by experiment. For 2AFC experiment it are lambda values
exceeding 5% considered high lapse rate at which point is participant inattentive
every 10th trial.

2.1.3 Inner psychometric function f

Inner function controls the development of performance within the boundaries
of guess and lapse rate. Their ability to approximate development of cognitive
process is essential to good estimation of threshold and slope parameters.The role
of function type in model accuracy is the main concern of this paper. The role of
inner psychometric function function have further explained Strasburger [2001],
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Prins et al. [2016]

Inner function parameters θ

Inner function parameters are unique to any inner function and determine shape
of such function. In widely used notation notation they are represented as vec-
tor θ and usually no more than two parameter are used. This consensus is kept
throughout the range of works Prins et al. [2016], Strasburger [2001], Wichmann
and Hill [2001], Klein [2001]. These parameters are not generally interchangeable
among different inner functions. Experimenter can calculate measures as thresh-
old and slope on basis of these parameters or he can define function descriptors
based on function parameters. There are also many inner functions designed
in such way their parameters represent specific kind of function descriptors as
threshold. For this reasons θ1 parameter is often referred to as threshold, be-
cause is generally meant to control position of function on abscissa and compared
to θ2 that often influences function’s shape and is referred to as slope. In many
experiments researchers fix slope parameter for all participants and measure only
threshold parameter in order to simplify the experiment example of such experi-
ment can be this work Peng et al. [2013].

2.1.4 Abscissa and ordinate
Abscissa arrangement can also influence shape of psychometric function. There
are two widely used arrangements of psychometric functions abscissa - linear
an logarithmic. Both stimulus and logarithmic scaling are commonly used and
there are no massive differences between their features. Only some measurements
of slope have to be adjusting when rescaling. Ordinate is not transformed for
classical types of analysis.

In our work we will use term data point of describing a point on abscissa.
In experiment using constant stimuli there is clearly defined number and plac-

ing of all data points. This arrangement is commmonly called sampling scheme
and it has been proven to have significant influence on good estimation of psy-
chometric function in several works Lam et al. [1996], Wichmann and Hill [2001].

2.2 Descriptors of psychometric function
Before we start to describe function characteristics we would like to draw readers
attention towards difference between function parameters and function charac-
teristics. In overall literature terms threshold and slope refer both to function
parameters and to more abstract concepts, that describe properties of sensory
systems psychometric functions model. We decided to use term parameters for θ
and term function descriptors for more abstract concepts of threshold and slope
that will be described further. Other research that have been conducted in this
area have had not needed to clarify this division, because it has not needed to
compare results of fits between different functions. In situation of experiment-
ing with single function it is completely legitimate to not differentiate between
terms descriptors and parameter. However in context of using several psychome-
tric functions at once it is this quite important to mind such division, because
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parameters are not transferable and comparable among different functions, but
descriptors are.

2.2.1 Threshold
Term threshold in this context has a weak or no connection to the term threshold
used by classical psychophysics mentioned in first chapter. Threshold is merely a
well defined point of psychometric function, so the participants can be compared
with each other by single figure. Many psychometric functions are devised in such
way so the threshold corresponds with the first of inner parameters θ1. Literature
has so far introduced many types of thresholds and we will list only a most know
ones for reference.

Fixed threshold (µfixed)

Fixed threshold is the simplest of kind of threshold. It is merely the defined level
of percentage that has to be reached. This type of threshold is not much used as
a measure among methods using psychometric functions and it is more popular
with adaptive methods not using psychometric functions. The review of such
methods can be found in Leek [2001].

Performance threshold (µperf)

Performance threshold is most widely used threshold and most easy to interpret.
It is a halfway point of psychometric curve x = f−1(0.5, θ). This kind of threshold
is independent to γ and λ parameter. For many commonly psychometric function
(Weibull, Gaussian, Logistic, Cauchy,...) it corresponds with parameter α this
fact is also mentioned by Prins et al. [2016].

Improvement threshold (µimp)

Improvement threshold is not as widely used. It is defined as point, where Psy-
chometric function has most rapid growth. Leek [2001]

2.2.2 Slope measurements
The second of inner function parameters is harder to define. The definition of
slope is that it should represent steepness of the function. Slope also hints re-
liability of threshold estimates according to Prins et al. [2016]. Again for the
most functions slope is the other parameter of inner function. Slope can be
also interpreted as a derivation of psychometric function at threshold Strasburger
[2001],Wichmann and Hill [2001]. We have decided to list measurements of thresh-
old that by their definition least closely dependent on function type. They by
definition do not use derivations, but quantile distances between function values.

Interquartile range (IQR)

The IQR is defined as the distance of the abscissa between 1st and 3rd quartile
of inner psychometric function f . It was introduced as one of measuerements of
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threshold by Strasburger [2001].

IQR = f−1(0.75, θ) − f−1(0.25, θ) (2.2)

Interquantile range has been proposed as a measure of function steepness
along slope, because it can be better compared among different psychometric
functions.

Width (w)

The similar term to interquartile range is width. It is based on the same idea but
using quantiles 0.95 and 0.05. Schütt et al. [2016]

w = f−1(0.95, θ) − f−1(0.05, θ) (2.3)

Figure 2.2: In this visualization you can see examples of some psychometric
function descriptors. Namely are shown two types of threshold - performance
and improvement, and two measures of slope - IQR and width.

2.3 Types of Inner psychometric functions
As was already mentioned psychometric functions are defined on domain in range
(0, inf), or (− inf, inf). Ordinate of such function is strictly [0, 1] this has opened
the way for all cumulative distribution functions to be used as inner functions of
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psychometric functions. On the other hand researchers prefer functions with typ-
ical ”S”-shape to comply with the convention (hence the name sigmoid). Follow
examples of typical inner psychometric functions.

2.3.1 Cumulative normal distribution
Cumulative normal is very commonly used probability distribution function with
expected value α and variance β. Cumulative normal distribution function can
be expressed in an following equation.

fgauss(x, µ, σ) = 1
β

√
2π

∫ x

− inf
e

− x−α

2β)2 (2.4)

In this case is α also value of performance threshold µperf = α and β is in
this case slope parameter.

2.3.2 Logistic function
Logistic is another common inner psychometric function. It can provide good
approximation of Cumulative Normal distribution according to Prins et al. [2016]
and more so it has closed integral form.

flogis(x) = 1
1 + e−β(x−α) (2.5)

In this arrangement α represents performance threshold µperf and β slope of
the function.

2.3.3 Weibull function
Weibull function is one of several functions belongs to the most notoriously known
and used functions.. It has been argued by Quick [1974] to be a good approxi-
mation for specific types of data.

fweibull(x, λ) = 1 − e−( x
α

)β (2.6)

It is not symmetric like latter functions and interpretaion of it’s parameters
is more complicated. Strasburger [2001]. Both function’s shape and thresholds
are determined by combination of parameters α and β. Therefore conversion is
between function parametrs and descriptors of psychometricfunction more com-
plicated than among other functions. Even the simplest traits of function like
performance threshold are harder to access µperf = α β

√
log(2). This makes func-

tion’s characteristics less clear and accesible.

2.3.4 Left and right Gumbel function
Gumbel function comes from a formula Gumbel distribution used in statistics
where it models maximum (minimum) of various distribution samples. This func-
tion is also known as Log-Weibull. It was formally introduced among psychome-
tric function by Quick [1974]. Gumbel function is asymmetrical and therefore it
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can be used in two distinct forms Left Gumbel and Right Gumbel with following
equation forms:

fgumbel−l(x, α, β) = 1 − e−eβ(x−α) (2.7)

fgumbel−r(x, α, β) = e−e−β(x−α) (2.8)

Right gumbel is in derived from original ”Left gumbel” according to formula
fgumbelright(x, α, β) = 1 − fgumbelleft(−x,−α, β).

Interpretation of parameters is alike to other functions. α is in this case repre-
senting threshold and β represents slope. Only in this case performace threshold
is acquired by conversion µperf = α + log(log(2))

β
for Left gumbel function and

µperf = α− log(log(2))
β

for Right gumbel function.

2.3.5 Quick function
Quick function is closely related to Weibull function and these two functions
differ only by base of exponent. However this modification means much more
user friendly interpretation of parameters namely performance threshold.

fquick(x, λ) = 1 − 2−( x
α

)β (2.9)

As in Weibull function both shape and threshold of function are determined
by combination of inner parameters. However thanks to modification of exponent
base is this version of Weibull function performance threshold is always equals to
threshold parameter µperf = α. Prins et al. [2016]

2.3.6 Cauchy function and Hyperbolic Tangent function
As mentioned above any function with sigmoid shape can be used as inner func-
tion. The function listed above are among most used and most important. Both
following functions are used quite rarely and are listed to demonstrate other pos-
sibilities of psychometric function shapes.

Cauchy function is defined as cumulative distribution of the cauchy distri-
bution. Sourceforge in their guidelines suggests, that Cauchy function is more
robust towards lapses at high stimulus levels. This idea seems reasonable consid-
ering function’s shape in high stimulus levels, however we have not been able to
find any literature supporting this claim. Strasburger [2001]

fcauchy(x, λ) =
atan(x−a

b
)

π
+ 0.5 (2.10)

Hyperbolic tangent is also quite sparsely used. This function is equivalent to
Logistic function with after several conversions, however the relationship between
hyperbolic tangent function parameters are similar to Weibull function. The
similar shape to Logistic function and it’s complicated use of parameters are also
the reason of it’s rare usage. Strasburger [2001]

fhtan(x, λ) = 1
2(1 + eβ(log(x)−log(a) − e−β(log(x)−log(a)

eβ(log(x)−log(a) − e−β(log(x)+log(a) (2.11)
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2.4 Research of psychometric functions
As was already mentioned research in psychophysics has a long tradition. Re-
searchers have developed improved and compared many techniques of psychophys-
ical experiments. Psychometric function being a key concept for many experi-
mental techniques have also been a subject of many research papers. Reseach con-
cerning psychometric functions has comprised of various topics including anything
from theoretical problems like converting between measures of different psycho-
metric measurements Strasburger [2001], or necessary theoretical overviews Klein
[2001]. Other theoretical articles tried like Treisman [1999], Green et al. [1966],
Garcia-Perez and Alcala-Quintana [2007] try to explain psychometric functions
properties according to various theoretical backgrounds and put it in perspective
of more complex theories of perception. Other works have focused on practical
guidelines concerning methodology of psychometric function usage. One of the
most popular and influential paper is the article of Wichman and Hill. It tries to
answer the question whether fixing lapse rate is advisable step and under which
circumstances it should be used Wichmann and Hill [2001]. There have also been
the works that took interest into exploring sampling scheme influence on good
estimates of the data Lam et al. [1996]. Unfortunately their results have been ar-
gued recently by Prins Prins [2012]. Other works have focused on measurements
of goodness of fit Pitt and Myung [2002] or on estimating confidence intervals
for function parameters Yi and Merfeld [2016],Schütt et al. [2016] or introduced
alternatives to psychometric functions like Model-free estimations Zchaluk and
Foster [2009], or further investigation of common practice of fixing psychometric
function slope parameter Peng et al. [2013]. However we have not been able to
find any work that would concern itself with influence of psychometric function
type of function’s ability to fit psychophysical data.

2.5 Goals of thesis
Goal of this work and the simulation experiment in chapter 4 is to examine the dif-
ferences between psychometric functions and their ability to estimate psychophys-
ical data. The experiment is especially dedicated into examining psychometric
functions ability to estimate descriptors of psychometric functions as threshold
and slope, because these estimates are of most practical use in psychophysical
research. The influence of psychometric function will be also studied in relation
to used sampling schemes and level of noise added to data.
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3. R package PsyFuns
The simulations we are about to perform in this experiment are quite complex
and therefore requires tools, that would manage this simulation in such way so
it is easy to control and modify. We have decided to execute the simulation in R
software environment, because it is widely used by many researchers. However R
packages do not provide the support for simulating psychophysical experiment in
a way we need. For that reason we have decided to implement our own R package,
that would be equally suitable for both simulating and fitting experiment data.
The package is called PsyFuns and in following chapter we will try to highlight
key ideas behind this package.

3.1 Basic description
PsyFuns R-package was designed in such way so it can both simulate and fit
data of psychometric function model. It also implements functions to compute
typical descriptors of psychometric functions, like various thresholds and basic
measurements assessing goodness of fit. (It contains classes for representation of
psychometric function and psychometric function model, which.)

3.2 Representation of psychometric function
The primal purpose for this package is to work with psychometric function there-
fore the representation of psychometric function in the package are very impor-
tant. We have decided to follow the model of Python package Psignifit 3.0, that
divides representation of psychometric function into sigmoid and core function.
This arrangement helps with construction of various psychometric functions and
helps to create several variants of the same function. In such arrangement of psy-
chometric function sigmoid function provides typical S shape and core func-
tion scales input parameters. The whole concept is partially resembling structure
of generalized linear models as described in McCullagh and Nelder [1989].

Sigmoid

Sigmoid part of inner function is more simple in respect of parameters. It has no
parameters adjusting the function shape. Though it has impact on threshold -
for instance conversions between some types of thresholds. It provides the typical
S-shape. Follows the list sigmoids implemented in PsyFuns.

List of sigmoids

• gauss FS(x) =
∫ 1√

2π
e− 1

2 x2

• logistic FS(x) = 1
1+e−x

• cauchy FS(x) = tan(x)
π

+ 0.5

• exponential FS(x) = 1 − e−x
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• gumbel l FS(x) = 1 − e−ex

• gumbel r FS(x) = e−e−x

• quick FS(x) = 1 − e−x

• htan FS(x) = tanh(x)
2 + 1

2

Core

Parameters that can specify inner function’s shape apply to core. The structure
is somewhat similar to generalized linear models. In following list you can find
core functions implemented in PsyFuns.

List of cores

• ab Fc(x, a, b) = x−a
b

• linear Fc(x, a, b) = ax− b

• al Fc(x, a, b) = (x− a)b

• logy Fc(x, a, b) = alog(x) + b

• polynom Fc(x, a, b) = x
a

b

• weibull Fc(x, a, b) = 2as log(x)−log(a)
log(2) + log(log(2))

3.3 Psychometric function model
Psychometric function model is an construct used in PsyFuns package. It is
created as a representation of psychometric function, it’s parameters, descprip-
tors of particular psychometric function and table of experiment data in form
of data.frame or tibble. Experiment data in form of a table must contain three
columns first of them is contains levels of stimuli used in experiment and other
two mark number of observations and participant’s performance. Alongside com-
pulsory information can table contain any additional information added by user.
Psychometric function model can be created by simulation experiment data from
a psychometric function, or fitting experiment data.

3.4 Data generation
Simulation of psychophysical experiment data is one of the key parts of Psy-
Funs package functionality. Therefore package contains class PFm (Psychomet-
ric function model) that is designed in such way so that it can create artificial
experiemental data based psychometric function is created over and type of noise
and noise parameters it is given.
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3.4.1 Noise
Package is designed in such way so various types of noise can be used to simulate
the data. Current version contains tools to create both additive and multiplicative
noise. There are several types of additive noise several from them listed in Petrou
and Petrou [2010].

As the additive noise we use symmetrical distributions represented by logistic,
normal and uniform distributions. This added by creating noise samples of given
mean and standard deviation (in case of uniform distribution it’s boundaries) and
adding them to previously computed values of psychometric functions. The dis-
tribution of noise and value of psychometric function are completely independent
of each other resulting in additive noise. On the other hand this can result in
combination of psychometric function value and noise fall out of the range [0,1],
this is corrected simply by rounding exceeding values to 0, or 1.

3.5 Estimation of psychometric function’s pa-
rameters

Package was created in such a way so that it is able to both simulate data of
psychophysical experiment and estimate psychometric function parameters based
on given data. Package uses log-likelihood function and several heuristic in order
to estimate goodness of fit of psychometric function parameters on given data and
several algorithms to estimate parameters. In following section we will introduce
all main components the PsyFuns package uses in order to estimate psychometric
data.

3.5.1 Method of maximum likelihood
For estimation of psychometric parameters is generally used method of maximum
likelihood. The likelihood function used for psychometrical function has following
form.

L(θ, y) =
N∏

i=1

⎡⎣( ni

yini

)
ψ(xi, θ)yini(1 − ψ(xi, θ))ni(1−yi)

⎤⎦ (3.1)

To estimate θ (function parameters), xi is the stimulus level, ni is number of
observations and yi is proportion correct. Product yini gives number of partici-
pant’s ”Yes” answers and vice versa.

Problem of this form of psychometric function is small range of values [0.1] it
can reach and therefore simple likelihood limits the precision of algorithms using
such values. But logarithm of likelihood can offer much wider range of values
(− inf, 0]. Logarithmic function is also monotone and increasing, that means that
it can be used instead of simple likelihood function and because of this reason is
log-likelihood (logarithmic value of likelihood) much better alternative to plain
likelihood function.

l(θ, y) =
N∑

i=1

⎡⎣log( ni

yini

)
+ yinilogψ(xi, θ) + ni(1 − yi)log(1 − ψ(xi, θ))

⎤⎦ (3.2)
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Likelihood function that is used for optimizing in the practice slightly modi-
fied from the theoretically likelihood. For constant stimuli method the binomial
coefficient of likelihood function is always constant and therefore it can be left
out. This modification increases precision of computation. This adjustment is
also implemented in PsyFuns and other packages working with psychometrical
functions like Quickpsy and psyphy. Definite formula of log-likelihood used in
package PsyFuns is:

l(θ, y) =
N∑

i=1

⎡⎣yinilogψ(xi, θ) + ni(1 − yi)log(1 − ψ(xi, θ))
⎤⎦ (3.3)

3.5.2 Heuristics
In during the estimation of correct parameters few heuristics are used in order
to achieve better parameter convergence. These heuristics come directly from
definition of psychometric function and prevent algorithm to pursue estimates
that do not comply with this definition. Follows the list of used heuristics and
their explanations.

Negative guess or lapse rate Guess and lapse rate cannot be cannot fall un-
der 0, because it would create invalid model. Model constructed with such
parameters would assume that participant exceeded 100% or fallen under
0% performance at some point. Therefore are negative guess and lapse rates
excluded.

Sum of lapse and guess rate exceeding 1 Such combination of guess and lapse
rate is dismissed for same reasons as above.

Decreasing function Inner psychometric function should not be by definition
decreasing. If it happens that stimulus decreases the participant’s ability to
perform given tasks it surely acts as an distractor. Such situation does not
occur among usually used experiments designs and therefore it is excluded.

Function midpoint outside the range of sampling scheme Function mid-
point is the data point where f (−1)(0.5). It is also the location of per-
formance threshold (2.2.1). Combinations of parameters leading towards
this condition are excluded, because there are no commonly used sampling
schemes, that would exclude inner function halfway point from their range
of values. Therefore such combination of parameters suggests algorithm is
converging towards undesired local minimum.

3.5.3 Algorithms
In PsyFuns we have implemented three algorithms for estimating psychometric
function parameters.

Default algorithm It the simplest and primal implementation of algorithm for
estimating psychometric function parameters. It uses optim function for
parameter estimation. Parameters of optim function can be adjusted if
needed.
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Heuristic algorithm Second of implemented algorithms also uses optim func-
tion as sub algortihms. However this algorithm estimates psychometric
function parameters repeatedly and in each iteration improves chances to
find best fit by eliminating local minima. Inner optim function can be also
adjusted in case of need.

Evolution algorithm Uses Mullen et al. [2011] implementation of evolution
algorithm to find best fit. However this algorithm uses optim function to
estimate initial parameters from the data. Yields the stable results but is
most time consuming.

We have implemented first two algorithms in such way so they are able to work
with multiple version of optim function optimizing algorithms. For simulations
used in this work we have chosen Nelder-Mead algorithm, because it has proven
most stable in combination with used heuristics. The third algorithm uses De-
optim versions of evolutionary algorithms, but in current implementation it uses
Nelder-Mead algorithm for estimating initial parameter if they are not specified.

3.6 Basic package validation
To check basic validity of algorithms for estimating psychometric functions we
have conducted several simple tests. We will introduce two of them. In order for
our algorithms to be valid they have to yield better fits if presented with data
that are more accurate. In case of data from psychophysical experiment this
means that algorithms have to estimate underlying psychometric function better
once presented with data of better quality (the data that measure performance of
participant more precisely). In following simulations we will use two experiments
with different accuracy of measuring performance and different levels of noise.
We will estimate psychometric functions by all previously mentioned algorithms
and measure if they estimate parameters more precisely if given objectively better
data set.

3.6.1 Precision of data measurement
In this experiment we want to show that the algorithms are able to estimate pa-
rameters from the data more precisely if data are more precisely measured. To do
so we have created set of data simulated by closed set of psychometric functions.
This set we have sampled with single sampling scheme but with different number
of observations per single data point. In this condition better data sets are means
data with more observations.

Method

For this simulation we have chosen single inner function. We used Gauss function
with parameters α = 3.5, β = 1.3. From one inner function and one set of inner
parameters we have created 7 versions of psychometric functions with different
lapse rates that has varied between values 0.0, 0.01, 0.02, 0.25, 0.05, 0.075, and
0.1. Guess rate have been kept the same at level 0.5 for all instances of created
psychometric functions.
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We use one sampling scheme with 320 data points. Sampling scheme is located
on interval (0.5, 6.5) and the data points of function are evenly distributed on the
interval. For this one sampling scheme we use different number of observations
(10,20,40,80,160,320,640,1280,2056,5120,10240,20480,40960). By combining sam-
pling scheme with numbers of observations and psychometric functions we have
created set of psychometric function models that we will use to simulate the
experimental data. In this instance we will not we will not add any noise to
simulated experimental data.

We estimate function’s inner parameters and lapse rate based on data for
each experiment. Guess rate is kept fixed at 0.5. For estimation of psychometric
function we use the same inner function type as was used in data creation.

After estimation of psychometric function parameters we compare goodness
of fit of all estimated paramters by comparing all resulting psychometric function
with the experiment data and measure their Mean square error.

Results

We compare the resulted MSE measures among all estimated models. The models
are divided into groups according to number of observations it was estimated on.
The MSE of estimated model should decrease with increasing precision of data
values. Number of observations clearly had a positive effect on MSE of estimated
psychometric models as we can clearly see in 3.2. And if we conduct ANOVA
test for this values we acquire a significant result at the level of significance 0.001
F(1,271)= 12.99, p<0.001 - full ANOVA results can be assesed in A.1.

Figure 3.1: In the graph you can see means for values of Mean square errors. The
values are divided into groups based on the number of observations original data
were conducted over.
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3.6.2 Level of noise in the data
In the following experiment is goal to show show that the implemented algorithms
are able to fit data more precisely if data contain lower level of noise. To do so we
have created set of data simulated by closed set of psychometric function again.
This set we have sampled with single sampling scheme and with two different
numbers of observations per single data point. Under these condition better data
mean data sets with lower noise level.

Method

We used the same function and sampling scheme as used in 3.6.1.
For this one sampling scheme we use two different number of observations

80 and 160. By combining sampling scheme with numbers of observations and
psychometric functions we have created set of psychometric function models that
we will use to simulate the experimental data. When simulating experiment data
we add noise that is normally distributed around original function value. We use
5 different noise distribution with 5 levels of noise deviation 0.01, 0.02, 0.03, 0.04
and 0.05.

The estimation of psychometric function parameters and measures of goodness
of fit is again the same as in 3.6.1.

Results

Again we measure MSE of estimated psychometric models. This time resulting
MSE is compared based on noise deviation. The higher the noise deviation the
worse would lead to higher MSE of estimated model. Noise level had clearly
negative effect on mse of estimated psychometric models at significance level
0.001 for five levels of noise F(1,748)=11809, p<0.001 - full anova results can be
assesed in A.1. Also we can clearly see this trend in 3.2

3.7 Future development of PsyFuns package
As was already mentioned PsyFuns package was created so that it could offer
tools for both fitting and simulating psychometric function models. So far it
has implemented several ways hot to represent values of psychophysical experi-
ment, ways to add different types of noise to values of psychometric function and
algorithms that estimate function parameters.

This thesis has been first time the package was used in practice. The findings
about it’s practical use have provided us with many ideas about implementing
new and more user friendly functionalities. Moreover we would like to implement
wider range of algorithms so we could provide more swift and efficient estimation
of psychometric function parameters in the future.
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Figure 3.2: In the graph you can see means for values of Mean square errors. The
values are divided into groups based on the level of noise that has been added to
data.
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4. Robustness of usually used
psychometric functions
Study of psychometric functions properties is complicated though important part
of improving methodology of psychophysics. The easiest and most demonstrative
way how to study this property is simulation. Simulation is also easiest and most
practical proof of any hypothesis about function’s properties. It is not caused by
lack of theoretical background, but rather by sole number of influences that can
effect the function’s ability to deliver desired result.

On the other hand influence of psychometric function on estimates retrieved
from the experiment data is rarely mentioned in literature. Even if it is mentioned
in any article it does not provide comparison between several functions [Quick,
1974].

The testing of robustness of various psychometric functions is a very complex
subject. In order to examine it we will run several simulation experiment to
study robustness psychometric function of five different function and analyse the
results.

4.1 Method
Simulation experiment concerning psychometrical functions we are about to per-
form can be divided into two phases - simulation of psychophysical experiments
and estimation of psychometric function parameters over simulated data.

First step of experiment is data generation. In this phase are chosen psycho-
metric functions with their parameters. Based on these functions, parameters
is simulated a number of artificial experiments. In the following phase of data
estimation are these artificial experiments fitted with same functions.

4.1.1 Generation
To generate the data in the first phase of experiment we need to specify types
of functions and their parameters. Then we create psychometric function models
by combining psychometric functions with sampling schemes and numbers of
observations. In the last step of data generation we simulate multiple artificial
experiments based on given psychometric function models and noise parameters.

As generating function for final experiment we have chosen 5 typical psycho-
metric functions. We have chosen Weibull function with same parameters as it is
used in Wichman-Hill article [Wichmann and Hill, 2001]. Weibull function also
served as a specimen and parameters of all other functions were chosen in such
a way so all function had alike descriptors. Then we have chosen cumulative
normal function and Logistic function as other two commonly used psychometric
functions. To accompany the big trio we have chosen Cauchy function. It was
chosen from pair of Cauchy and hyperbolic tangent function because hyperbolic
tangent’s shape is identical with Logistic functions curve and therefore it would
not bring any new information. Last of the five function is Left gumbel func-
tion. It was chosen from two variants of Gumbel function because it is far more
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Figure 4.1:

common version of the function. Because there is no need to distinquis it from
the Right gumbel function for the rest of the chapter it will only reffered to as
Gumbel function.

All inner function parameters are chosen in such way so µperf = 8.85 and
so that IQR approaches value 4.5. Following tables contain the summary of
generating functions, their parameters and their characteristics.

To create complete psychometric function from above declared inner functions
have to add guess and lapse rates. We set guess rate at level 0.5 for all instances
of psychometric functions, but use three different lapse rates 0.03, 0.05, 0.07.

4.1.2 Sampling schemes and observations
Sampling schemes can differ in number and placing of stimulus levels, number
of observations per individual level. Wichman has chosen to use 6 samples of

psychometric function sigmoid core a b

Weibull exponential polynom 10 3
Cumulative normal gauss ab 8.85 3.34
Logistic logistic ab 8.85 2.05
Cauchy cauchy al 8.85 0.44
Gumbel gumbel l al 9.9 0.35

Table 4.1: Table of used psychometric functions, their components and parame-
ters.
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stimulus levels and same number of observations, only characteristic that varies
is placing of individual levels. Sampling schemes in of psychometric function
are chosen based on expected ordinate value of underlying function. This has
brought a few complications in our implementation of simulation. In principle it
would require each function to have distinct sampling scheme set in the generation
process. It would bring another layer of unnecessary complexity to the simulation
so we have not decided not to obey this principle and use singular set of sampling
schemes for all functions. This set of sampling schemes is prepared for Weibull
function used as an example in [Wichmann and Hill, 2001]. The set includes
schemes that are located among low (s4) or high (s3,s7) performance values, also
distribution contracted around the threshold (s1), or widely dispersed (s5,s2). All
sampling schemes are distributed in logarithmic scaling.

Figure 4.2: Visualization of sampling schemes used in the experiment. Psycho-
metric function above them is Weibull function that shows which values are to
be expected on each data point.

Also we have to specify sets observation numbers. We use commonly known
numbers of observations - 20, 40, 80, 160 and 240. These are the number of
observations that are reasonable to be used in real experiment. The total num-
ber of observations per such experiments would be 120, 240, 480, 960 and 1440.
Based on given psychometric functions, sampling schemes and numbers of obser-
vations we construct set of psychometric functions models that are then used for
simulating experiment data.

As function we estimate data from simulated experiments we use again all
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function types used in generations of data. If we apply these functions on defined
sampling schemes, we acquire original psychometric function model. This model
yields the same results as would perfect sensory system behaving according to
it’s associated psychometric function.

4.1.3 Noise
Once we acquire psychometric function models, we can simulate multiple ex-
periments based on these models. However we have to add variability to the
simulation in the form of noise. We have decided to use add simple normally
distributed noise over the Wichman and Hill version because it can be modulated
in easy and understandable way.

4.1.4 Parameter estimation
In second phase we estimate psychometric function parameters form data of sim-
ulated experiments with same types of functions as used while generation. We
assumed that experiments are conducted in 2-AFC fashion. In such conditions
we can fix guess rate at level 0.5. Lapse rate is left as free parameter. For
parameter estimation is used PsyFuns heuristic algorithm with optim’s Nelder-
Mead algorithm [Nelder and Mead, 1965] for inner parameter estimation within
individual algorithm steps. After optimal parameters are estimated means of as-
sessing goodness of fit and basic psychometric function descriptors are computed
for later analysis.

4.1.5 Descriptors of psychometric function observed in
simulation

We have considered several measurements of goodness of fit (AIC, likelihood ratio,
MSE, Pearson 2) and descriptors of psychometric functions (µperf ,µimp, IQR, w)
to quantify differences between estimations of psychometric functions. Eventually
we have chosen estimators over goodness of fit measurements, because they are
more interesting from the point of practical use.

Descriptors had to be representing both measures of threshold and slope to
describe functions abilities to approximate both these parameters of psychometric
function. We have decided to use performance threshold because it is the most
used, known and widely understood concept of threshold used in current practice.
As a measure of slope we have decided to use interquartile range. We have chosen
it over width measure because many functions differ in slope and shape mostly
in quite close area around threshold. Therefore IQR represents shape of specific
psychometric function more precisely.

In order to analyse functions ability to estimate psychometric function de-
scriptors we have to compute a difference between the original descriptors and
descriptors estimated by psychometric functions. We compute Once we compute
the difference between original and estimated descriptors and these differences
and try to prove if types of psychometric functions have different abilities to do
so.
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4.1.6 Data analysis
For analysis of our simulation experiment results we use classical statistical meth-
ods used in such instance. To find out if there are any significant results within
and in between analysed conditions we use two-way ANOVA. If ANOVA shows
us sign of difference between psychometric functions ability to estimate descrip-
tors, we quantify the effect sizes with Cohen’s d. For classification of Cohen’s
effect sizes we use rule of thumb suggested in [Cohen, 2013]. The significance
of effect sizes is computed by pairwise t-tests using holm method described in
[Holm, 1979].

4.2 Results
In following part we will analyse which how do functions differ in ability to fit
the data especially what is their ability to to estimate specific descriptors, in this
case performance threshold and IQR.

4.2.1 Performance threshold
The performance threshold is one of the most commonly used measures among
psychometric functions. Therefore we will analyse it’s estimates first. First
ANOVA we conduct with factors psychometric function and noise deviance, sec-
ond with psychometric function and sampling scheme. We will conduct all tests
on variable representing performance threshold estimate error so that we can
compare functions abilities to estimate performance threshold later.

We conducted two-way analysis of variance on the influence of two indepen-
dent variables (function, noise deviance) on the performance threshold estimate
error. Function type included five levels (Weibull, Cumulative normal, Logistic,
Cauchy, Gumbel) and noise deviance consisted of 4 levels (0.1, 0.2, 0.3, 0.4). All
effects were statistically significant at the 0.001 significance level for all gener-
ating functions, F(4, 20990) = 89, p<0.001, and for all values of noise deviance
F(1, 20990) = 652, p<0.001. The interaction effect was significant, F(4, 20990)
= 9.70, p<0.001. In A.2 can be found complete data of preceding analysis of
variance and in the 4.3 is visualized relationship between psychometric function,
noise distribution and goodness of threshold estimation.

Next we wanted to measure interaction between estimating psychometric func-
tion and used sampling scheme. Similar ANOVA test we applied to set of factors
function and sampling schemes. Function factor included same five types of func-
tion and sampling scheme consisted of 7 levels (s1, s2, s3, s4, s5, s6, s7). All
effects were statistically significant at same significance level for all psychometric
functions, F(4, 20990) = 86.7, p<0.001, and for all sampling schemes F(1, 20990)
= 19, p<0.001. The interaction effect between sampling schemes and psychome-
tric functions was significant, F(4, 20990) = 28, p <0.001. Complete analysis of
variance results can be found in A.2 and interaction between factors is visualized
in 4.4.

Now we can quantify differences between psychometric functions abilities to
estimate the data. To do that we have computed effect sizes pairwise between
all functions and the results can be found in 4.2 along with their p-value. Differ-

30



ences between individual function are small according to effect sizes. The only
interesting differences are among Gumbel function and the rest. Gumbel function
looks that it has no estimated any data well even the data that it has simulated
itself. Other differences between psychometric functions are of small effect size
or insignificant. We can see that three mostly used psychometric functions Cu-
mulative normal, Logistic and Weibull do not differ among them selves in any
interestig way. Other two functions Cauchy and Gumbel yield worse estimates.
Cauchy estimates worse than all other functions, but the difference of effect size
is fairly small. On the other hand Gumbel function estimates are significantly
worse with medium effect size for all other functions.

Cauchy Cumulative normal Gumbel Logistic
Cumulative normal 0.04***

Gumbel −0.43*** −0.46***
Logistic 0.06*** 0.02 0.48***
Weibull 0.03*** −0.01 0.45*** −0.02

Table 4.2: The table contains pairwise computed differences. The positive value
in a row means that function has performed better than one in the column and
vice versa. (*** - p <0.001, ** - p <0.01, * - p <0.05, - p <0.05)

4.2.2 IQR
IQR is the second descriptor of psychometric function we want to analyse. How-
ever the results are spoiled by Cauchy estimates, that have degenerated and
deliver extremely bad estimates for data with noise deviation 0.04. We had to
eliminate the data with noise deviance over 0.04 in order to be able to continue
with analysis of interquartile range. We again conduct two-way ANOVA’s on
pairs of factors (psychometric function, noise deviation) and (psychometric func-
tion, sampling schemes) and again we use variable interquartile range error in
order to be to quantify these differences further.

Two-way ANOVA on the influence of two independent variables (function,
noise deviance) on dependent variable interquartile estimate error. Function type
included five levels (Weibull, Cumulative normal, Logistic, Cauchy, Gumbel) and
noise deviance consisted of 4 levels (0.1, 0.2, 0.3, 0.4). Only the effect of psycho-
metric function was statistically significant at the level 0.001. The main effect for
psychometric function yielded an F ratio F(4, 15740)=715, p<0.001. The main
effect for noise deviation resulted in F(1, 15740)=715, p=0.237. The interaction
effect was not significant, F(4, 15740)=9.70, p=0.0804.

If we apply analysis of variance to pair of psychometric functions and sam-
pling schemes, we obtain more positive results. Effects of both factors are sig-
nificant. For psychometric function it is F(4, 15740)=744, p<0.001 and for sam-
pling scheme F(1, 15740)=42.6, p<0.001. The interaction between variables is
also significant F(4, 15740)=76.3, p <0.001. The full results of ANOVA for both
computations can be found in A.2 and A.2. All described relations that influence
error of IQR estimate are visualized in 4.5 and 4.6.

According to ANOVA psychometric functions had influence on precision of
estimation of interqurartile range. Therefore we can try to compare them and
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compute effect sizes of these differences. The effect sizes are displayed in 4.3. We
can see that results are quite similar. Again Cumulative normal, Logistic and
Weibull functions yield better results than other two. Cauchy function has for
some reason estimated extremely bad fits for highest level of noise deviation. But
for many noise levels below 0.04 it does not seem to give highly worse estimates
than other functions. On the other hand Gumbel function has proven to estimate
iqr even worse than performance threshold. It significantly worse performance
with high effect sizes.

Cauchy Cumulative normal Gumbel Logistic
Cumulative normal 0.08***

Gumbel −0.74*** −0.78***
Logistic 0.12*** 0.02 0.82***
Weibull 0.02 −0.06*** 0.73*** −0.09***

Table 4.3: The table contains pairwise computed differences. The positive value
in a row means that function has performed better than one in the column and
vice versa. (*** - p <0.001, ** - p <0.01, * - p <0.05, - p <0.05)

4.3 Discussion
From results of ANOVA’s and posthoc tests we have obtained an rough image
about influence that psychometric functions have on estimating psychometric de-
scriptors. We have proven that there are differences among various psychometric
functions in their ability to estimate data of psychophysical experiment at least
for this form of simulated data. We have also proven influence of different sam-
pling schemes on both performance threshold and iqr estimates. Wichmann and
Hill [2001], Lam et al. [1996]. The influence of noise has been proven only for
estimating performance threshold.

The main question that of the whole simulation was if there is a difference
between abilities of psychometric functions to fit various data, but the answer is
yet ambiguous. In the results we can see that Cumulative normal, Logistic and
Weibull functions do not differ in their abilities and always yielded alike results.
Therefore these functions seem equally suitable for estimating psychometric data
and probably are interchangeable. On the other hand there are Cauchy and
Gumbel that have varied form other function in more or less significant way. An
important question to answer is what traits shape of psychometric function lead
them to yield similar results. This issue might an interesting subject of further
work.

But the very important piece of information are results of Gumbel function.
In all figures 4.3, 4.4, 4.5, 4.6 it can be seen that is has fitted worse of all functions
even for data that were simulated from Gumbel function itself.

We know that there is a significant relation between type of psychometric
function, sampling scheme and functions ability to fit both performance thresh-
old and interquartile range. From look at 4.4 we can see that trio of functions
Cumulative normal, Logistic, Weibull behave in same way also towards all sam-
pling schemes. They produce best estimates of threshold for sampling schemes

32



s7, s6 and worst for s4 and s1. Sampling schemes s7, s6 have data points in quite
long ranges and skewed towards area of high performance compared to sampling
schemes s4 and s1. From this two s4 is sampled mainly in low performance data
points and s1 has the smallest range of all sampling schemes. So we can probably
suppose that trio of functions performs better on spread out sampling schemes
that are skewed towards high performance data points. These effects seem to
show for both thresholds and iqr estimation.

Cauchy function seems to behave towards sampling schemes in similar way as
previous functions, but Gumbel function does not share this tendencies. It’s esti-
mates of threshold do deteriorate for sampling schemes s6, s5 and partially for s3.
All three sampling schemes contain data points that are among four highest for all
sampling schemes. On the other hand does Gumbel function return fairly stable
results for sampling scheme s4, that does not contain any high performance data
points. This would suggest that Weibull function’s ability to estimate thresholds
does deteriorate once the sampling scheme contains certain data points in high
performance range.

This work is ought to offer guidelines concerning choice of psychometric func-
tions in psychophysical experiments. There are only a few guideline we can give
based on our simulation experiment. First advice we can give to researchers that
use Cumulative normal, Weibull, or Logistic function in their experiments and are
concerned with performance of their functions. We can quite confidently assure
them, that they probably do not need to worry about choosing any of these func-
tions. We have proven that Cumulative normal, Weibull and Logistic functions
do not differ in their ability to estimate thresholds and slopes in any meaning-
ful way. It is also a positive information for all previous research, because the
trio are to most know and used psychometric functions and there interchange-
ability means that any research done by any of these functions is comparable to
any other research done using other two. The second advice we can give to for
researchers that for some reason do not use different function than the trio of
Weibull, Cumulative normal and Logistic. We can advice to try compare their
function to Weibull, Cumulative normal or Logistic function for reference using
some standard available tools or package PsyFuns. Because once the function
they use proves to be interchangeable with any of the three, it proves that results
will be comparable with other research without conversion.
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Figure 4.3: In this graph you can see means of differences between original and
estimated intequartile range. Results are divided into separated graphs according
to functions that have generated the data. The estimating functions can be found
on the x-axis and data are further divided by noise deviation level. Every level
of noise is assigned a colour.
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Figure 4.4: In this graph you can see means of differences between original and
estimated threshold. Results are divided into separated graphs according to func-
tions that have generated the data. The estimating functions can be found on the
x-axis and data are further divided by type of sampling schemes. Every sampling
scheme is assigned a colour.
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Figure 4.5: In this graph you can see means of differences between original and
estimated threshold. Results are divided into separated graphs according to func-
tions that have generated the data. The estimating functions can be found on
the x-axis and data are further divided by noise deviation level. Every level of
noise is assigned a colour.

36



Figure 4.6: In this graph you can see means of differences between original and
estimated interquartal range. Results are divided into separated graphs according
to functions that have generated the data. The estimating functions can be found
on the x-axis and data are further divided by type of sampling schemes. Every
sampling scheme is assigned a colour.
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Conclusion
In this work we examined psychometric functions, their properties, abilities and
role in psychophysical research. The main goal of this work was answering the
question whether a type of psychometric function might play a significant role
role in functions estimation of psychometric function descriptors as thresholds
and slopes.

In first half of the work we have explained the role of psychometric function
in the psychophysical research, we have explained a concept of psychometric
function and introduced basic function properties and descriptors.

In the second half of the work we have described the package PsyFuns, that
was created as a tool for simulating of psychophysical experiments as well as for
estimating psychometric function parameters based on these experiments data.
Using this tool we have conducted the simulation experiment in order to ex-
amine how does the choice of psychometric function influence the estimates of
experimental data and how it can estimate psychometric function descriptors as
threshold and slope.

We have analysed the data and found significant differences between some
functions. These results suggest that choice of psychometric function can have
some influence on estimation of descriptors over psychophysical data. However
this finding was not found among all studied functions. So far five functions
have been examined and only two have differed in any significant way from the
group. More so the three functions that were found equivalent are the most used
functions of the five that were examined. This leaves the message of our work
little ambiguous. On one side it suggests that there might be differences between
psychometric functions ability on the other it delivers proof that the most used
psychometric functions do not differ in this respect in any meaningful way.

This work has provided only a brief glimpse into issue of psychometric func-
tion’s role in psychophysical experiment and it has explored this subject only in
a fraction of it’s complexity. Certainly there is a lot of questions that ought to
be answered next including What other factors beside level of noise and sampling
scheme influence psychometric function’s ability to estimate the descriptors? Are
there any rules that could predict functions ability to estimate particular data?
How can be psychometric functions compared on real experiment data and can
be determined which of them is more suitable? If some of these questions will
be answered positively in the future, it could lead the psychophysics to being
able to understand this phenomenon and exploit it in order to improve present
psychophysical research methods.
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A. Attachments

A.1 Full ANOVA tables for tests run on package
PsyFuns

Table A.1: Results of single-way ANOVA of MSE and number of observations.
Df Sum Sq Mean Sq F value Pr(>F)

observations 1 0.05 0.05 12.99 0.0004
Residuals 271 1.09 0.00

Table A.2: Results of single-way ANOVA of MSE and noise deviation.
Df Sum Sq Mean Sq F value Pr(>F)

noise sd 1 49.22 49.22 11808.76 0.0000
Residuals 748 3.12 0.00

A.2 Full ANOVA tables for simulation experi-
ment results

Results of two-way analysis of variance used in chapter 4 in full extend.
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Table A.3: Results of two-way ANOVA for factors of psychometric functions,
noise deviance and dependent variable of measuring distance between estimated
and performance threshold.

sigmoid gen Sum Sq Df F value Pr(>F)
1 cauchy 350.88 4.00 416.35 0.00
2 cauchy 163.06 1.00 773.94 0.00
3 cauchy 16.56 4.00 19.65 0.00
4 cauchy 4422.32 20990.00
5 gauss 204.71 4.00 214.81 0.00
6 gauss 173.07 1.00 726.42 0.00
7 gauss 22.47 4.00 23.58 0.00
8 gauss 5000.87 20990.00
9 gumbel 71.26 4.00 89.04 0.00

10 gumbel 168.02 1.00 839.78 0.00
11 gumbel 7.76 4.00 9.70 0.00
12 gumbel 4199.55 20990.00
13 logistic 249.70 4.00 287.82 0.00
14 logistic 198.08 1.00 913.28 0.00
15 logistic 11.75 4.00 13.54 0.00
16 logistic 4552.58 20990.00
17 weibull 209.27 4.00 208.32 0.00
18 weibull 163.64 1.00 651.60 0.00
19 weibull 18.16 4.00 18.08 0.00
20 weibull 5271.29 20990.00
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Table A.4: Results of two-way ANOVA for factors of psychometric functions,
noise deviance and dependent variable of measuring distance between estimated
and performance threshold.

sigmoid gen Sum Sq Df F value Pr(>F)
1 cauchy 350.88 4.00 405.71 0.00
2 cauchy 4.11 1.00 19.02 0.00
3 cauchy 59.49 4.00 68.79 0.00
4 cauchy 4538.33 20990.00
5 gauss 204.71 4.00 211.03 0.00
6 gauss 57.74 1.00 238.07 0.00
7 gauss 48.27 4.00 49.76 0.00
8 gauss 5090.40 20990.00
9 gumbel 71.26 4.00 86.75 0.00

10 gumbel 41.73 1.00 203.21 0.00
11 gumbel 22.97 4.00 27.97 0.00
12 gumbel 4310.63 20990.00
13 logistic 249.70 4.00 280.13 0.00
14 logistic 42.76 1.00 191.86 0.00
15 logistic 42.02 4.00 47.14 0.00
16 logistic 4677.64 20990.00
17 weibull 209.27 4.00 205.84 0.00
18 weibull 63.86 1.00 251.23 0.00
19 weibull 54.30 4.00 53.41 0.00
20 weibull 5334.94 20990.00
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Table A.5: Results of two-way analysis of variance for factors of psychometric
functions and noise deviance and dependent variable of measuring error in esti-
mating IQR.

sigmoid gen Sum Sq Df F value Pr(>F)
1 cauchy 15528.55 4.00 1104.37 0.00
2 cauchy 4.92 1.00 1.40 0.24
3 cauchy 53.54 4.00 3.81 0.00
4 cauchy 55330.21 15740.00
5 gauss 6204.63 4.00 849.33 0.00
6 gauss 60.20 1.00 32.96 0.00
7 gauss 48.54 4.00 6.64 0.00
8 gauss 28746.49 15740.00
9 gumbel 5016.02 4.00 715.00 0.00

10 gumbel 101.66 1.00 57.96 0.00
11 gumbel 26.35 4.00 3.76 0.00
12 gumbel 27605.73 15740.00
13 logistic 7053.18 4.00 908.22 0.00
14 logistic 10.82 1.00 5.57 0.02
15 logistic 16.16 4.00 2.08 0.08
16 logistic 30559.08 15740.00
17 weibull 6345.33 4.00 896.08 0.00
18 weibull 109.01 1.00 61.58 0.00
19 weibull 33.11 4.00 4.68 0.00
20 weibull 27864.57 15740.00
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Table A.6: Results of two-way analysis of variance for factors of psychometric
functions and noise deviance and dependent variable of measuring error in esti-
mating IQR.

sigmoid gen Sum Sq Df F value Pr(>F)
1 cauchy 15528.55 4.00 1170.58 0.00
2 cauchy 1229.66 1.00 370.78 0.00
3 cauchy 1958.30 4.00 147.62 0.00
4 cauchy 52200.70 15740.00
5 gauss 6204.63 4.00 877.99 0.00
6 gauss 493.95 1.00 279.59 0.00
7 gauss 553.05 4.00 78.26 0.00
8 gauss 27808.24 15740.00
9 gumbel 5016.02 4.00 743.63 0.00

10 gumbel 71.79 1.00 42.57 0.00
11 gumbel 1119.25 4.00 165.93 0.00
12 gumbel 26542.71 15740.00
13 logistic 7053.18 4.00 944.54 0.00
14 logistic 422.55 1.00 226.35 0.00
15 logistic 779.65 4.00 104.41 0.00
16 logistic 29383.87 15740.00
17 weibull 6345.33 4.00 928.06 0.00
18 weibull 580.59 1.00 339.66 0.00
19 weibull 521.81 4.00 76.32 0.00
20 weibull 26904.30 15740.00
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