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Introduction
In today’s highly interconnected world users are faced with an endless number
of various products (generally referred to as items). Be it electronics, home
appliances, clothing, books, vacation destinations, . . . Not only that, but video
on demand services, music streaming services, news organizations, and social
networks are also competing for the time and attention of users.

While trying to make sense of such a vast landscape of possibilities, it be-
comes impossible for any person to keep up. Getting familiar with all of the
items is too time-consuming and thus, the user might miss some items that would
be important or interesting to them. This is where recommender systems (here-
after also referred to as RSs) come in. They aim to address this issue by learning
about users and their preferences and then try to find items that match these
tastes.

Goals
In this work, we aim to familiarize the reader with basic concepts behind rec-
ommender systems with special emphasis on their evaluation. We highlight the
importance of online evaluation as the most reliable but often overlooked way
of estimating RS performance. We wish to encourage wider adoption of online
evaluation especially for academic research by making it easy to compare recom-
mender systems regardless of the used domain.

It is our task to create a .NET framework that allows deployment and con-
current use of different RSs. The ultimate purpose being the comparison of their
quality in online use. This framework has to be able to deal with a diverse
range of recommendation approaches and different types of feedback data avail-
able across domains. The framework will automatically keep track of recommen-
dations provided by each system and will be able to recall them for evaluation.
Common evaluation metrics will be provided for system evaluation.

Furthermore, we aim to make this framework lightweight and easy to use.
We require the implementer to add only domain-specific functionality that can-
not be generalized. This way, they can focus as much of their time and effort
as possible on the system development itself. To showcase the usability of this
framework, we present a web application built over the MovieLens dataset [1]
with recommender systems provided by the MyMediaLite library [2].

Chapters overview
In chapter 1 we introduce recommender systems. We look at different types
of recommender systems and how they operate. The feedback that systems receive
from users is discussed right after. Lastly, we will show different approaches used
to gather feedback and how we can measure performance from this feedback.

In chapter 2 we formulate our task of trying to create a framework capable
of tracking recommender systems and users’ interactions with items. We discuss
the properties this framework should exhibit and how we can achieve them.
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Chapter 3 describes which steps need to be taken by someone who wishes
to implement our framework. In this part, we also detail the intended way of using
this framework.

Chapter 4 describes how we used the framework, MovieLens dataset, and
MyMediaLite library to create a mock-up of a movie database web application.

Finally, in chapter 5 we describe how the application from chapter 4 could be
reused and adapted to a different (but similar) dataset.
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1. About recommender systems
This chapter serves as a brief introduction to recommender systems. It describes
issues RSs try to address, how they might be able to address them and how we can
compare their performance.

1.1 What are recommender systems?
Before we try to explain how recommender systems function, it will be helpful
to define the recommendation task more precisely.

We can imagine that we have a matrix M that represents preferences. More
specifically, the matrix cell Mu,i contains user u’s preference of item i. This
preference might be know from the user’s previous interactions with this item
(i.e. the user has rated the item). But since there is usually a low number
of interactions between users and items, this value is most likely unknown and
the resulting matrix M tends to be sparse.

The task of an RS is therefore clear: to fill in the missing matrix cells and
predict users’ preferences for each item. Once we can predict the ratings at least
for some items, we can take the items with the highest predicted rating and
present them to the user as potential items of interest.

If done correctly, these systems can introduce to users a wider range of items
than the users might initially consider. They make it easier to find items a user
is looking for, but cannot exactly identify. Most importantly of all, they can show
items, which the user would find interesting, but isn’t aware of their existence
and therefore would never try to actively look for them.

Utilization of recommender systems can also be beneficial for companies and
various service providers (most commonly e-commerce, social networks, news
organizations, ...). If a user sees an interesting item, they are more likely to make
a purchase. It is also because providing users with interesting items increases
their trust towards the system and the service as a whole. If they find more value
in the system, they are more likely to use it again.

For a comprehensive introduction recommender systems see [3].

1.1.1 Desirable traits of recommender systems
Let us have a closer look at some specific characteristics we would like a given RS
to exhibit. It is important to note that in real-world situations not all of the listed
traits are equally important (some might not be needed at all) [4]. Therefore the
RS has to be chosen and adapted for a given domain.

Apart from prediction accuracy (described in section 1.5), the following prop-
erties might also be of interest to the RS provider [5] [6].

• Coverage is the basic ability to provide a recommendation. When we speak
of item-space coverage, we mean the proportion of all items that can be
recommended (to any user). User-space coverage, on the other hand, tells
us for what proportion of users can the system provide a recommendation.
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• Novelty/Serendipity: Novelty is the ability to recommend items that the
user has not seen before. As serendipitous are considered those recommen-
dations that are both novel and surprising (if the user is a fan of a certain
director, recommending a movie by the same director is hardly surprising).

• Risk management can be an important factor with recommendations.
One area where we can see this clearly is, if we’re recommending a possible
avenue of investment. Although to a lesser degree, we are undertaking risk
with each recommendation we provide. If a user is exposed to items they
don’t like, it might lead to loss of trust in the system and user’s alienation.

• Diversity is the ability to recommend a set of items that are not too similar
(if someone likes the first Harry Potter book, recommending the other books
in the series might be a safe bet, but exposing them to something different
could lead to them discovering new interesting books). Besides, we can
draw more useful information if the user interacts with dissimilar items.

• Robustness means that the system is not vulnerable towards outside at-
tacks that try to influence which items get recommended (i.e. review bomb-
ing).

• Adaptivity is the ability to take in new information and use it for future
recommendations. This is predominantly important in dynamic domains,
for instance, the recommendation of news articles, where there are new
items with short ”shelf life” being added daily.

• Scalability means that the RS is able to deal well with growing datasets.

• Privacy: Users’ data privacy plays a major role in determining their level
of trust towards the system. Even after the user data has been anonymized,
it might be possible to link a set of preferences to the real person they belong
to. This famously led to the cancellation of the second Netflix Prize [7].

• Fast response is important since recommender systems have to be able
to provide recommendations in real time (while the user is browsing the
available catalog of items).

• Interpretability of the recommendation can help users understand how
the system works and why it is that these particular items are being recom-
mended to them. This can change how users feel about the recommended
items and the system as a whole [8]. In reality, this can look like a note
next to the recommendation saying: ”Because you liked books in the genre
of fantasy, you may like . . . ” or ”Because your friend Terrance likes . . . ”.

• Contextual awareness is the ability to take the current context of the
user into consideration. This could mean recommending only restaurants
that are nearby user’s location, only stores that are currently open, recom-
mending based on user’s search history, based on whether the user is alone
or with a group of friends, . . . . This feature is becoming increasingly im-
portant as users spend more and more time on mobile devices.
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1.1.2 Common challenges
Cold start

Among the most widely encountered obstacles when building recommender sys-
tems are so-called cold start issues. These arise when new users or items are
introduced into the system. Since the user hasn’t interacted with any items yet
(or the item has not been interacted with), it becomes difficult to draw meaningful
assumptions about preference [9].

To alleviate this problem, the system might at first recommend only the most
popular items to new users, or ask them explicitly to share their preference to-
wards some items. This is done in order to provide the system with at least some
information about the user’s tastes. Content-based recommender systems, which
provide a natural remedy for cold start issues (from the perspective of items), are
discussed later in this chapter (section 1.2.1).

Sparsity

Dealing with data sparsity is another common challenge. It is the result of large
numbers of users and items as compared to the volume of available feedback.
At this scale, it becomes unfeasible for every user to state how they feel about
each item. In fact, quite the opposite tends to be true. The vast majority of users
interact with a small subset of items (in the tens or even single digits). The
MovieLens dataset (which we use for our framework’s demonstration in section
4.1) has an average of 145 ratings per user. Since it contains more than 27,000
movies, this means that only about 0.5% of the rating matrix is filled. This
dataset contains only users that rated at least 20 movies, so in reality the matrix
would be even sparser.

This problem is most apparent in e-commerce websites, for which the only
way to identify users is IP tracking or the use of cookies (if we’re lucky, the user
might register an account and be a returning customer).

Now combine this knowledge with the fact that most users (as far as they can
be identified) visit a given website only once. This leaves recommender systems
without a sufficient user profile.

Training

Training of recommender systems becomes an issue, particularly in online use.
To take into account new information received while the system is operational,
we have to retrain the model. Training the model from scratch usually takes too
long and thus cannot be performed often.

One common approach is that the system performs a lot of small iterative
retraining steps as it receives new feedback. This provides a fast way to adjust
to new information. Over long periods of time, after many such small iterations
have been performed, the predictive power of an RS starts to suffer. Therefore
at some point, the entire system has to be retrained from scratch, with the data
gathered since the last training. When the process is finished the older iterative
version gets replaced with the newly trained system.
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1.2 Types of recommender systems
In this section, we look at some currently used algorithms for providing recom-
mendations. There are 3 main approaches to creating recommender systems:
content-based, collaborative filtering, and hybrid.

1.2.1 Content-based
The working hypothesis of content-based recommendation is: if a user likes
an item, then they will probably like other items similar to it.

To be able to recommend based on content, all we need is a way to describe
some concrete properties of items (movie’s genre, phone’s screen size, . . . ) and
a way to tell, which items are similar. We include a brief overview of cosine
similarity and tf-idf as two methods for finding similar items.

This approach is mostly used for items since it is difficult to gain explicit char-
acteristics of users (like age, socioeconomic status, . . . ) and these characteristics
are likely to change with time.

Cosine similarity

Each item is represented as a vector of n features. The value at position i describes
to what extent the item exemplifies the i-th feature. We consider two items similar
if the cosine of their vectors is ”close” to 1.

sim = cos(θ) = A · B

∥A∥∥B∥
=

∑n
i=1 AiBi√∑n

i=1 A2
i

√∑n
i=1 B2

i

where A, B are feature vectors of the 2 items, θ is the angle between the two
vectors

TF-IDF

Term Frequency-Inverse Document Frequency is a way to find frequently used
words in a document while ignoring words that are commonly found across many
documents.

tf-idf can be used for recommendation by, for instance, finding similar news
articles or by comparing verbal descriptions of items.

tf(t, d) = f(t, d)
|d|

idf(t, D) = log |D|
|{d ∈ D : t ∈ d}|

tf-idf(t, d, D) = tf(t, d) · idf(t, D)

where f(t, d) is the number of occurrences of term t in document d, D is the
set of all documents
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1.2.2 Collaborative filtering
The category of collaborative filtering includes all methods that try to look not
only at the items and their similarity but also at broader sets of interactions be-
tween users and items. They look for patterns in user behavior and try to emulate
them and recommend items based on them. This way we can find other users
with similar tastes, or other items that are complementary to a given item.

Matrix factorization

As has been discussed before (section 1.1), we can represent the recommendation
problem as a user-to-item preference matrix some of whose values are missing.
We then try to fill in these missing values and show the items with the highest
predicted ratings to users.

MF does this [10] by imagining the matrix of known preferences M as the
combination of two other matrices U · I ≈ M . Each column of I represents
some latent features the item exhibits and each row of U represents a user and
their preferences for each feature. Once we have obtained U and I that ”fit” the
known values of M, we can get an estimate of the unknown preference simply
by multiplying the vectors for given user and item.

The main parameter that has to be optimized for matrix factorization training
is the number of latent features (number of columns of U / rows of I). Training
is usually done by gradient descent or some better-optimized version of it.

K-NN

Another popular method for finding similarities is the so-called k-nearest neigh-
bors algorithm. We represent users or items as n-dimensional vectors of ratings
(that the user has given each item or that the item has received from each user).
Each of these vectors marks a point in n-dimensional space. For a given point
(a user in user-based k-NN), we then look for other points that are nearby with
the assumption that these points represent users with comparable tastes.

Which points should be considered ”close” to each other is not clearly set.
Among the most used distance metrics are the aforementioned cosine similarity
(see section 1.2.1), Pearson correlation, the Euclidean distance, and the Manhat-
tan distance.

As the number of objects increases, so does the number of features. The near-
est neighbor algorithm doesn’t scale well into highly dimensional vector spaces.
This is because finding similar points becomes too computationally expensive.
Some precomputation in the form of clustering can reduce the vector space
of possible similar points and in turn shorten search times [11].

1.2.3 Hybrid
Hybrid recommender systems work by using multiple different approaches (such
as collaborative filtering, content-based, knowledge-based, . . . ) within one recom-
mender system. By combining different kinds of recommender systems we might
be able to alleviate some of their individual shortcomings [12].

9



For example, using content-based algorithms can provide a good starting point
for new items and users. Once the objects have been interacted with and enough
relationships have been revealed, we can use more powerful collaborative filtering
methods. This way, it is possible to avoid the cold start problems for new items,
while not being limited only to the knowledge we have about each item.

Hybridization can also be used to enhance the performance of one type of RS.
Convolutional neural networks have been used as a way to provide additional item
features [13]. More specifically, by using user-provided pictures about restaurants
(of the building, location, food, and drinks) we are able to extract visual features
representing a given restaurant. These features can then be added into item
vectors for matrix factorization.

The potential usefulness of this approach is even more clear when we look
at the world of online apparel shopping. Physical characteristics alone (size,
materials, . . . ) aren’t enough to distinguish between relevant and irrelevant items.
Since no person buys a piece of clothing without seeing it first, exploiting visual
features becomes necessary for providing optimal recommendations [14].

1.3 Feedback
Before we can start to compare, which recommender system is the best, we need
to know, what kind of information about their performance we are working with.
This information (from now on referred to as feedback) is limited by the domain
but also depends on how the user interacts with the system.

1.3.1 Explicit
The most valuable type of feedback is the so-called explicit feedback. It can
be obtained, when a user consciously states their feelings about an item (giving
it thumbs up/down or rating it on a scale of 1 to 10, . . . ).

We can be reasonably sure that this method provides an accurate measure
of user’s sentiment at the time. But we should keep in mind that users’ tastes
change with time.

1.3.2 Implicit
In the majority of cases, we can only obtain implicit feedback. This term de-
scribes a broad range of data that can be used to estimate how the user feels
about an item. In most cases, this data has to be aggregated and converted
to a numerical value, which is easier for the RS to interpret.

Implicit feedback could be observations like:

• user clicked on an item

• user spend long time looking at the item’s page (dwell time)

• user put a book in the ”want to read” category

• user went back to the item’s page later

• user bought the item

10



During this process, we have to keep in mind that users have different moti-
vations. Even something that seems like a clear sign of user’s preference might
not be useful. For instance, a user can purchase an item as a gift for someone
else. We may then assume that the user was personally interested in the item,
even though that might not be the case.

1.4 Methods of evaluation
In this section we present the 3 main approaches to RS evaluation.

1.4.1 User studies
The most direct way to gauge user’s response towards recommendations is simply
to ask. This is usually done by performing user studies, where volunteers are asked
to interact with the system and try to emulate their real-world behavior. At the
end of this process, participants are asked to fill in a questionnaire.

The advantage of this approach is that we’re able to ask users about specific
features of an RS. Since user studies are performed in a controlled environment,
we can also measure physical responses that the user might not even be aware of.
For instance, tracking where they look and for how long.

With this approach, on the other hand, we can never be sure about the in-
tentions of users (what is their motivation for participating in the study) and
how this affects their behavior. The main drawback is the time and effort neces-
sary to execute these studies. It can also be difficult to convince a representative
sample of users to participate.

1.4.2 Offline evaluation
This form of evaluation is performed on historical data. The data consists
of information about how users interacted with the system, especially in terms
of showing a preference towards given items (how they rated items, . . . ). Some
part of this data is then used to train the recommendation algorithm. The rest
of the data is saved for later evaluation.

The main advantage of this method of testing is that it can be performed
cheaply and is easy to repeat.

1.4.3 Online evaluation
For the purposes of this work, we will mainly be focusing on online evaluation.
This method involves testing recommender systems against real users in a realistic
environment.

This is usually achieved by A/B testing, where users get split into groups.
Traffic from users of one group gets diverted to a given RS for some period
of time (i.e. a session, a certain number of weeks/months, . . . ). Some other set
of users gets diverted to another system. Data is then collected over a long period
of time. At the end of a given period (or during), the performance is compared
among the various systems.

11



If our RS is working properly, we would expect it to influence user behavior.
Online evaluation allows us to ask important questions not possible with the
offline method like:

• did the user respond to the recommendation at all?

• did the user click on the recommendation?

• did the recommendation lead to a purchase?

We can also allow users to explicitly state how they feel about the recommen-
dation (rate it, hide it, . . . ).

One added bonus is that the online setting allows us to test other aspects
connected to recommendation that affect the behavior of users but aren’t the
responsibility of the RS directly. This includes deciding when is the appropriate
time to show a recommendation, how it should be presented and so on.

The main issue associated with online evaluation comes from the fact that they
can be expensive. Both in terms of time and effort of implementation. Online
evaluation has to be long-running so that a sufficiently large sample of feedback
can be collected. Because these systems do not work with the same subset of users,
small sample sizes may not accurately estimate the performance of the system.

Poorly performing RS could lead to the user developing distrust in the system,
which in turn could lead to them using a given service less. One clear example
of this would be an RS that recommends only those items that are outside of the
user’s price range.

Why online evaluation in particular

Offline experiments are the preferred choice for RS evaluation in academia. This
is because of their ease and speed of execution, repeatability, negligible cost (com-
pared to other methods). It may also be difficult to build an online service that
enough people would use or obtain access to an existing one. Historical datasets,
on the other hand, are publicly available for different domains. Under all of these
criteria, offline beats online evaluation. The issue with offline evaluation is that
it might not provide an accurate estimation of real-world performance [15].

The importance of online evaluation cannot be overstated, as it can help
us measure one of the key aspects of recommendation performance; real human
response. While user studies provide an insight into the reasoning behind users’
actions, the mere fact that the users know they’re being watched influences their
behavior.

Thus, online evaluation becomes the best tool to approximate the real-world
performance of recommender systems. Due to some of the associated drawbacks,
care should still be taken in choosing online evaluation over its alternatives.

The resulting approach usually comes down to trying out a wide range of
recommender systems using offline evaluation. This phase will weed out the worst
performing systems. Once we have reduced the pool of candidates to a handful
of comparable systems, they can be tested in the online setting, where the best
one can be decided.
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1.5 Common metrics
Now that we are familiar with how we can obtain the data for evaluation, let
us look at specific measures of RS quality [6].

1.5.1 Rating based
Rating based methods require us to know user’s preference towards an item ex-
pressed as a number. If we don’t know user’s actual preference, we have to be able
to estimate it from implicit feedback. We also need RS to provide an estimated
preference for each recommended item, instead of just a list of potentially inter-
esting items.

This method is popular in settings, where we can gauge user’s preference easily
(i.e. from explicit ratings) and for performing offline evaluation.

Mean Absolute Error and Root Mean Square Error are among the most widely
used metrics in this category.

MAE =
∑

(u,i)∈F |ru,i − r̂u,i|
|F |

RMSE =

√∑
(u,i)∈F (ru,i − r̂u,i)2

|F |

where F = {(u, i) | user u’s preference for item i is known}, ru,i is user’s actual
preference for item, r̂u,i is user’s preference for item as expected by the RS

1.5.2 Ranking based
Modern services using recommender systems usually display recommendations
as a list of items in a vertically or horizontally oriented banner at the edge of the
screen. For these purposes, it is desirable to display the most interesting items
in a place where the user is most likely to see them.

For this type of evaluation, we require an RS that returns items ordered
according to expected preference.

When it comes to evaluation, some difficulty is also posed by trying to de-
cide, what the ”correct” ordering of items is. This is because the only practical
way of finding out about user’s preference is by gathering and interpreting their
interactions with the items (gathering of feedback). Problems arise when the
user does not interact with any item on the recommended list and simply ignores
the recommendations altogether. Thus, getting to know the actual preference
towards these items might not be possible.

For items that are not interacted with at all, we are not able to draw mean-
ingful conclusions. They might have been ignored either because the user doesn’t
find them interesting or simply didn’t even look at them. The following metrics
are calculated only for the first p items, where we can be reasonably sure that
the user saw them all.
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Commonly used metrics in this category are Mean Reciprocal Rank (measures
performance across all recommendation lists), Discounted Cumulative Gain, and
Normalized Discounted Cumulative Gain (measure performance within one rec-
ommendation list).

MRR = 1
|R|

|R|∑
i=1

1
ranki

where R is the set of all lists that were recommended, each list ordered based
on the expected preference of its items, ranki is the position of the first relevant
item in the i-th list

DCGp =
p∑

i=1

reli
log2(i + 1)

where reli is the relevance of the item at position i

IDCGp =
|REL|∑

i=1

reli
log2(i + 1)

NDCGp = DCGp

IDCGp

where REL are the items ordered in decreasing relevance up to position p

1.5.3 Binary classification
This set of metrics categorizes items either as interesting or uninteresting for each
user. Unlike with some previously mentioned metrics, the extent of the interest
is not considered. Simply said, binary classification makes no distinction between
items that just barely interest the user and highly interesting items.

In the case of recommender systems, we receive predicted ratings for recom-
mended items and showcase only the items we consider most relevant to the user
(items with the highest predicted rating). Since the user cannot see all the items
and showcase their interest in them, these metrics are usually evaluated only for
the top k items that were presented to the user. These variations of classification
metrics are commonly marked with ’@k’ (i.e. as Accuracy@k, Recall@k, . . . ).

Accuracy, Recall, Precision, and F-measure are the most popular metrics.

Accuracy = TP + TN

TP + FP + TN + FN

Recall = TP

TP + FN

Precision = TP

TP + FP

F-measure = 2 · Precision · Recall

Precision + Recall
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where TP : true positives are relevant items that were predicted as being
relevant, FP : false positives are items that were wrongly predicted as being
relevant, TN : true negatives are irrelevant items that were predicted as being
irrelevant, FN : false negatives are items that were wrongly predicted as being
irrelevant

1.5.4 Other
• CTR: The so-called click-through rate is a measure of user engagement with

recommendations. It counts the proportion of displayed recommendations
that were clicked on by the user (suggesting the user is interested in the
recommended item)

• Latency says how fast an RS is able to provide a recommendation for
a user. It is an important measure since we want to be able to provide
recommendations in real time.

• Diversity of recommendations describes how different recommended items
are from each other. If we have a way to measure the difference between
two items, the diversity of a set can be computed as the average difference
of all pairs within this set.

• Provider’s Utility can differ wildly based on the intentions and goals
of the recommendation provider. It can be defined as added profit, time
spent using the service, conversion rate, . . .
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2. Framework architecture
In this section, we aim to take our previously gathered knowledge of recommender
systems to create a framework capable of providing the necessary tools for online
evaluation.

In this chapter class and property names are highlighted in bold.

2.1 Objectives
First and for most, our framework has to be able to deal with a wide range
of domains, where recommender systems can be used. We achieve this by placing
minimal requirements on how objects and items are should (section 2.3.1).

Adding to the idea of versatility, many of the classes are free to be extended
to better suit domain needs. Our framework must also be prepared to handle
different kinds of domain-specific feedback (section 2.3.4).

We also include an abstract idea of what a recommender system is and what
it should be capable of. We try to take advantage of the online setting which
allows us to pass the feedback back to the recommender so it can improve its
future recommendations (sections 2.3.2, 2.4).

If we wish to evaluate recommender systems, we must retain some knowledge
about their activity, about the recommendations they provide, and how users re-
spond to these recommended items. This data collection process has to be simple
in order to not slow down the recommendation process (section 2.5).

All of this data should be automatically stored to be available for future
evaluation. We showcase how this can be done even for types unknown to us at the
time of this framework’s creation. Our method requires minimal effort from the
implementer to achieve this (section 2.6).

We have to do all of the above in order to achieve our set out goal. The goal
being the evaluation of the different recommender systems. We include several
of the most popular evaluation metrics for recommender system performance.
We make sure to include CTR measurement as a basic online-only evaluation
metric (section 2.9).

Finally, to allow users and system administrator access to the recommendation
service and data, we create a centralized point from which they can communicate
with the RSs. We also take into account that recommender systems can evolve,
be improved over time or their use can be discontinued (section 2.8).
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2.2 Architecture overview

Figure 2.1: Framework architecture overview

This diagram shows what main objects and relations can be found within the
framework. The system manager serves as a central point for communication
with the ”outside world”. The manager has access to all of the recommender
systems and the recommendation database. This database contains data about
users, items, system parameters, and feedback. The last major section of the
framework is the evaluation class. The system trackers, as their name suggests,
are used to track recommender systems. They must reference the database and
evaluation class for the purpose of recommender system evaluation.

Before we get to these important classes, let us start with the basics.

2.3 Data objects
This section describes the public data objects used by the framework.

2.3.1 User and Item
Our User and Item classes have a simple form. All they contain is a unique
identification number.
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We do not know before-hand which types of data about users and items the
implementer has access to. These additional properties are dependent on the
domain. It is required that the implementation derives its own user and item
objects from these base classes.

The Id property (and by extension the class itself) is marked abstract as
a reminder to the implementer that this property has to be specified.

2.3.2 Recommendation
Recommendation represents items that the system thinks will be interesting
to a given user and were recommended to them.

Apart from the list of recommended items itself, this class also contains the
time at which this recommendation was provided, how long did it take for the
RS to provide it, and the identification of the user it belongs to.

We do not keep the information about which system provided this recommen-
dation in the object itself. This is because recommendations are handled inter-
nally by the tracker RS (see 2.5). The tracker knows which system it belongs to.
Meaning that we only need to connect recommendation to system identification
when we wish to store recommendations in the database.

2.3.3 RecommendedItem
RecommendedItem is a class that contains the item itself and the expected
preference provided by the RS.

An interesting problem is posed by deciding if the RecommendedItem
should store a reference to the Item object or just its Id. For the purposes
of recommendation it would be beneficial to have the reference to the item itself.
This is because the implementer will most likely wish to showcase the recom-
mended item to the user. To present it in an interesting way, we have to know
something about the item. Thus, if we provide only the ID number, the next step
would be recalling of the whole item object anyway.

While this logic is sound when it comes to recommendation, it only causes
unnecessary overhead when it comes to evaluation. During evaluation we aren’t
interested in the actual properties of items, knowing their IDs is satisfactory.
If we were to store the whole Item in the RecommendedItem, then requesting
all system recommendations would also cause all items to be downloaded from
the database, many of which multiple times (as they were recommended multiple
times). As an example: we conducted a simple test, where we evaluated RS
performance on about 220 recommendation lists containing about 2100 items.
Removing the need to download the whole items individually made the calculation
faster by a factor of 5.

The implementer may choose to add some information about each recom-
mended item (maybe the RS provides some reasoning behind the recommenda-
tion or confidence). If they do, it is advised that they implement their own version
of IDatabase (see 2.6.2) that is capable of saving and loading of this information.
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2.3.4 Feedback
When it comes to Feedback, we are interested in 3 common properties for each
type:

• Which user provided the feedback

• For which item they provided this feedback

• At what point in time was this feedback provided
This will allow us to include temporal dynamics. For instance, we can filter
out older feedback conflicting with more recent feedback (i.e. user changes
a rating).

Each type of feedback is expected to derive from this class.
In addition, the classes for ClickOnRecommendation and ExplicitFeed-

back are provided. We can include these types in our framework because their
form is uniform across domains. Even then, we do not seal these classes in case
the implementer wishes to extend them with some additional information (i.e. the
context of the feedback).

There are 2 approaches we consider for the form of implicit feedback. One
would be to have only one implicit feedback class that would have some ”type”
property, through which we would decide what kind of feedback it is. But then
we would also need a place to store some value of the feedback (i.e. the length
of dwell time).

This would have to be an object. Such an approach would allow us to auto-
matically store the feedback by serializing the object to a string. But it would
then have to be parsed back by the implementer.

But this wouldn’t make for good code practice. We instead choose to have
Feedback split into multiple classes with one common ancestor. It is even possible
for us to automatically store this kind of feedback in the database (see 2.7).

2.3.5 Helper objects
NameVersionPair

Used for identification of RSs and, by extension, of their trackers.

UserItemPair

Used as keys during evaluation. This struct serves mostly as an index of user’s
preference for an item. We choose to define it as a struct because we need
to reference it only locally. Since we create many of these pairs during the eval-
uation, making UserItemPair a class instead would only result in unnecessary
overhead.

UserItemPreference

Just like UserItemPair, UserItemPreference is used in evaluation. It stores
the expected preference from a recommendation for a given UserItemPair.
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2.4 Recommender interfaces
We look at the recommender system from 2 main points of view. As something
that is capable of providing recommendations and as something that we want
to manipulate and whose functionality we want to be able to tweak.

2.4.1 IRecommenderSystem
This interface provides all that is associated with the actual recommendation and
thus would be expected of an RS.

This includes the ability to tell, whether the system can with confidence
recommend a specific item or recommend something to a given user (allowing
us to measure coverage).

Most importantly we want the system to be able to provide recommendations,
these can come in 2 forms. We can either ask to explicitly sort a set of items
according to the given user’s expected preference. Or we can ask the system
to recommend a list of items for a given user, be it from all items or some smaller
prefiltered subset.

One other advantageous feature of an RS in the online setting is the ability
to handle feedback and adapt its recommendations. This is something we cannot
measure in offline evaluation and due to the small scale nature of them, probably
not even in user studies. Therefore being able to handle user feedback is of the
expected abilities.

We also include the NameVersionPair of the recommender system in this
interface, as this allows us to identify a given recommender (and by proxy its
tracker).

2.4.2 IManagedRecommenderSystem
Through this interface we can manipulate an RS.

IManagedRecommenderSystem expects a basic ability to load and save
recommender system and its parameters, and to be able to change some of these
parameters. This allows for continuous development and tweaking of various
recommender systems and to be able to deactivate and replace systems altogether.

The clone option provides a way to easily adjust and test different versions
of one RS simultaneously. This is another important feature used in the process
of hyperparameter optimization.

2.5 RecommenderSystemTracker
Recording the activity of a recommender systems and being able to recall it for
evaluation is the task of the RecommenderSystemTracker class (or RST for
short). It serves as a wrapper for the recommender system.

When a user requests recommendation it goes through the RST first. The
tracker calls the corresponding function of the RS contained within (to get the
actual recommendation). This class measures the response time, saves the rec-
ommendation to the database and passes it back to the user.
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When the tracker, on the other hand, receives some feedback from the user,
it saves it into the database and passes it to the RS for handling.

The recommendation data is saved along with the name and the version of the
RS, which allows us to easily retrieve it when we wish to evaluate the performance
of this tracked system.

We do not save the feedback data along with the identification of the system.
We don’t do this because we want to use all of the available feedback for given
user-item pair. Some of this feedback might have been obtained even before the
current RS was in operation, or a different RS might have served the user in the
past. Thus, we cannot tie the feedback to any given RS.

Evaluation methods contained within the tracker work by calling their equiv-
alent counterparts in the Evaluation class (see 2.9). If it is required for the
evaluation, we pull the recommendations of this RS from the database.

If the system consists of large amounts of data, or we wish to perform eval-
uation with multiple metrics at once, it might be advantageous to first retrieve
the relevant recommendation data and feedback manually, and call the evalua-
tion methods of the Evaluation class directly. This is because, for some RST
methods, each time they are called, the recommendation data has to be pulled
and converted to objects. Needless to say, this may become computationally
expensive if repeated frequently.

2.6 Database
Creation of the database system proved to be one of the more challenging parts
of the framework design.

Since we wish to make data querying as simple as possible, we use inbuilt ORM
techniques. While ORM is easy enough for known types, it proves to be more
of a challenge for classes we do not know at the time of this framework’s creation.

Before we try to tackle these issues, let us have a look at how a database in the
framework looks and how it is supposed to operate.

2.6.1 Why do we need a centralized database?
One straight forward approach to storing data would be to keep all recommenda-
tions and feedback in the RST they pass through. We wouldn’t need to filter data
based on which system it belongs to. This is because each system tracker would
keep its own data and evaluation happens in the context of a single recommender
system anyway.

This would pose a problem if we changed which RS serves a given user.
We would then need to keep the provided recommendations in one RST, but
copy the feedback we have obtained so far to the new RST. Since we want to use
as much feedback for evaluation as possible we would also need to provide all new
feedback for this user to the old RST.

Another advantage of having a database is that the data can be accessed
easily by other interested parties. For example, the marketing department may
wish to have access to the feedback data to see which items become more popular
during the holiday season.
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2.6.2 IDatabase
IDatabase represents the functionality expected of a recommender database. Its
methods can be divided into 4 main areas. These allow for the saving and re-
trieving of:

• users and items

• feedback

• recommendation lists

• system parameters
These parameters are added when the system is added to the manager

2.7 Default database implementation
Default implementation expects that the recommendation service is a part of
a larger system that uses an SQL database for data storage.

For the object-relational mapping of recommendations, we have created sepa-
rate mapped classes. For other data types (User, Item, Feedback, . . . ), we use
exactly those classes for the mapping.

When it comes to the Recommendation class, we keep the list of items
directly in it as a property. Due to this immediate one-to-many nature of recom-
mendations, we split this data into 2 tables to avoid redundancy in the database
and join them again when we need to retrieve the full recommendations from the
database.

2.7.1 DbRecommendation and DbRecommendedItem
These classes represent a database mapping of the Recommendation and the
RecommendedItem classes. DbRecommendation is different from its non-
database version in the fact that it has a unique ID number and doesn’t directly
contain the recommended items. DbRecommendedItem is for the table con-
taining recommended items. It contains an ID number that serves as a foreign
key that links it to the recommendation it belongs to.

2.7.2 DbSystemParameters
This class stores parameters of a recommender system at the time it was added
to the system manager.

Storing of parameters is important since we expect multiple RSs of the same
type with different parameters to operate concurrently.

We can also use the database to recall the parameters of inactive systems.
Knowing the performance of a system that hasn’t been used for a long time
is useless if we do not know under which parameters it operated.
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2.7.3 ORM
In order to make data querying as simple as possible for the implementer, we wish
to use one of the object-to-database mapping frameworks inbuilt into C#. For
this purpose we use System.Data.Linq.Mapping which allows us to write SQL-like
queries right in the C# source code.

Other methods are, of course, possible. But those usually require the program-
mer to write/build a query/command string explicitly using the SQL syntax. The
query is then sent to the database. With this method, we’re prone to making
syntax errors. Linq queries, on the other hand, are compiled and syntactically
checked together with C# code compilation.

For a more comprehensive overview of the Data.Linq.Mapping framework see
the official documentation [16].

How Linq.Mapping works

Mapping is done simply by annotating classes and their properties.
The object gets mapped to a table of the same name (unless it is explic-

itly stated otherwise by the annotation). Annotated properties represent some
attribute of the table.

To connect to the database one simply needs to create a class that contains
properties of type Table<T>, where T is a type representing a mapped object
(table row). This class also needs to inherit from the DataContext class. We can
then simply query or add C# objects of type T to these Table<T> properties.
The conversion to database types is handled by the framework.

For our framework to be able to save and retrieve implementer-created classes,
all we need is for the new types to be properly annotated. There too need
to be tables corresponding to these annotated classes in the database.

Ideally, we would be able to create the tables just from the annotations
too. Unfortunately, this is not possible within the Linq.Mapping framework it-
self. It might be possible for us to create a custom solution on these new types
by reading the annotations ourselves. But the creation of such a tool is beyond
the scope of this work.

Linq mapping advantages

Linq mapping has several implementation perks.
The main advantage is being able to refer to database tables and their rows

as C# objects. The actual communication when retrieving or inserting data
is handled by the framework.

If we have a database property that is auto-generated by the database (i.e. an
ID number), then this value is not known before insertion. This mapping frame-
work ensures that after such object is inserted (and property generated) the cor-
responding property is also set in our C# object. We use this when we want
to insert a recommendation list into the database. We first insert a DbRecom-
mendation object, whose ID is auto-generated. After the insertion, we can also
insert all the recommended items from this recommendation as they refer to the
generated ID.
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Linq mapping issues and solutions

For the above-described process to work, we need to know the object type T
at compile time in order to create a property of type Table<T>. This works
well for the types we define ourselves in the framework (DbRecommendation,
DbRecommendedItem, ExplicitFeedback, . . . ). For user and item objects,
we do not know their exact form. But by making our database generic (for the
user and item type), we can ensure that we know their types and we can create
these tables for them.

Problems come when we want to be able to save and load domain-specific
feedback. All we know about it is that it derives our Feedback class. Linq
mapping doesn’t allow us to use a parent table to query a child (i.e. table of type
Feedback cannot be used to retrieve or save DwellTime).

We also cannot make our database generic when it comes to feedback. Having
a variable number of generic class parameters is not possible. This means that
we would have to create a generic database with many different type parameters
for each feedback type. Since there could be dozens of types of feedback that are
being collected in a given domain, this solution would be impractical.

We could also make it a requirement that the implementer of the framework
has to take care of the saving process when it comes to feedback. But this would
go against our philosophy of trying to handle most of the grunt work for the
implementer.

FeedbackType

To resolve this we will introduce a new generic class called FeedbackType<T>.
Each instance of this class will store one type of domain-specific feedback. This
means that at compile time we have an instance of FeedbackType<T>, which
means we know the type 0T and can create a property of type Table<T>.
Thus, we were able to solve the issue of how to store types unknown to us.

GenericContext

We use the generic context for retrieval of data from the database. Given a con-
nections string, this class lets us query a table of a given type. It is used mainly
for feedback retrieval since we do not know all the feedback classes before-hand
and cannot create a specific context like in the case of DbRecommendation-
Context.

2.8 SystemManager
SystemManager serves as a way to keep track of all the active recommender
systems within the service.

When a system is added, it gets wrapped in a tracker and saved, so it can
be accessed later for manipulation or evaluation. During this process, the system
parameters are stored in the database along with the system identification.

Its other main task is in knowing which systems is currently serving which
user. Before a user requests a recommendation (i.e. at the start of a session),
it is expected that the user is registered to the SystemManager. As a result,
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the manager returns a (tracked) system that will be providing the user with
recommendations. This system is decided by a method we call assigner. When
the session ends, the user should be de-registered from the system.

In some settings, the user’s assigned system may change for another system
within one session. In these cases, it is advised that each time a recommendation
is about to be requested the manager is asked for the current providing system.
This way we avoid situations, where an old system that has been removed is still
providing recommendations.

Deactivating system with active users could lead to the above-mentioned prob-
lem as well. It is desirable to assign these users to a different system before deac-
tivation. The proper way of doing this is to first move all of the users currently
served by the system (be it manually or with the provided method) to a new
system. The second part is ensuring that no new users will be assigned to the
old system after deactivation. The latter is automatically handled by the default
assigner because it selects a random system only from the currently active sys-
tems. For a custom assigner with a more sophisticated assignment policy, this
has to be ensured by the implementer.

Assigning of recommender systems to users is by default random, with equal
probability distribution across all systems in the manager. This behavior can
be customized by providing own assigner implementation at the time of manager
creation or at some point later during its use.

The manager performs the above-mentioned tasks in a thread-safe manner.

2.9 Evaluation
Evaluation contains static methods for estimating recommender performance.

Some of these methods require the use of additional functionality added by the
implementer of this framework. This includes methods that are meant to answer
questions such as ”given this feedback, does the user find this item relevant?”.
Since this question is highly dependent on the type of feedback collected, it cannot
be answered by us and is left to somebody with domain-specific knowledge (i.e. the
implementer of this framework)

Formal definitions of some of these metrics can be found in section 1.5. For
easier orientation, we split evaluation methods into several categories.

We also note that unit tests of these evaluation methods are provided in the
RecommenderFramework solution.

2.9.1 Rating based
The two metrics implemented in this category are Mean Absolute Error and Root
Mean Square Error. They take a list of recommendations and known preferences
for the user-item pairs in the recommendations.

These metrics are computed over all recommended items for which we know
the actual user preference (or for which the preference can be inferred from feed-
back). Ergo we treat recommended items with unknown preference as if they
weren’t recommended at all.
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2.9.2 Ranking based
The metrics implemented in this category are Mean Reciprocal Rank, Average
Discounted Cumulative Gain, and Average Normalized Discounted Cumulative
Gain. All of them work with an ordered list of recommended items. We calculate
these metrics for each one of the recommended lists and average the results.

For MRR we also need to be able to tell which item is interesting for the user.
If no item on the list is interesting to the user, we award this list a score of 0.

For Average DCG and Average NDCG, we require a set of actual preferences
and a rank at which they should be calculated. The result is the average over
DCGs (NDCGs) of all recommendations.

If no feedback is gathered about a certain item recommended to a user, we give
this item the relevance score of 0. For the calculation of Normalized DCG, we need
to know the score of an ideally ordered list of items (so-called IDCG). If no item
on this list has feedback from which we can draw preference, this IDCG score
is equal to zero and the normalized score DCG / IDCG equal to infinity. Therefore
we have to leave out those lists of recommended items whose IDCG is zero.

2.9.3 Latency
When it comes to latency, we measure the mean and the median response time
of a set of recommendations.

2.9.4 Binary classification
The metrics implemented in this category are Recall, Accuracy, Precision, and
Mean Average Precision.

Apart from recommendations, recall and accuracy require a way to tell which
items the user finds relevant. Both are calculated for each user and then averaged.

Precision and mean average precision instead just require a way to say whether
a given item is relevant to the user. Precision is calculated simply as a proportion
of relevant recommended items over the total number of recommended items.
Mean average precision is the precision for each user averaged.

2.9.5 Other
The metrics implemented in this category are Click-Through Rate, User Coverage,
Item Coverage, and Diversity.

CTR is calculated from recommendations and relevant feedback simply by
comparing the sizes of two sets. One set are the user-item pairs, where the user
clicked on the recommended item. The other set contains user-item pairs, where
the item was recommended to the user.

User (item) coverage is calculated as the proportion of users (items) for which
the system can recommend an item (which the system can recommend to a user).

For diversity calculation, we need a set of recommendations and a way to tell
just how dissimilar two items are. Diversity of one recommendation list is the
average diversity of each pair of items in the list. The total diversity is calculated
as the average of each list’s diversity.
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3. Usage requirements
This chapter lists the requirements and steps needed to complete for proper im-
plementation of this framework.

3.1 Definition and loading of data objects
Users in the framework implementation must derive from the prepared User class,
items must derive from the Item class. These classes implicitly contain only
identification number.

Similarly, domain-specific feedback types must also inherit from the prepared
abstract class Feedback. All feedback contains user and item identification, and
the time at which this feedback was collected.

For the default database implementation, user ID, item ID and the timestamp
together form the identification within the feedback table. Meaning if a user gave
feedback to some item, all other feedback of the same type between these two
must have a different timestamp.

3.2 Database setup
The implementer may choose to utilize our default database implementation
or to create their own implementation of the IDatabase interface. The following
paragraphs apply only to the default implementation.

For the purposes of data storage, it is required that all of the newly de-
fined classes (User, Item and Feedback types) are correctly annotated using
Data.Linq.Mapping tags. For details, see the official documentation [16].

Apart from the connection string, our database implementation takes a list
of generic FeedbackType<T> classes. Their type argument is a newly defined
feedback class that the system will be using.

It must be also ensured that these classes (for users, items, and feedback)
have tables corresponding to the annotations in the SQL database.

3.3 Implementation of recommender systems
Once these data objects have been specified, recommender systems can be added.
This simply requires that the used RSs implements the IManagedRecommender-
System interface.

3.4 Creation of system manager
Next step is creating an instance of the SystemManager. Its constructor requires
only some database implementation and a function that aggregates user-item
feedback into numerical preference.
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Optionally, a custom system assigner can be provided to the manager.
The Recommender systems that are ready for use can be added to the manager

next. These systems will be wrapped in a tracker that will follow their activity.

3.5 Usage
The basic workflow of the framework is as follows: Once the system manager has
been set up and the RSs added, we can ask the system for recommendations.
This is done by registering the user at the manager.

The manager will then return a (tracked) system that will perform the recom-
mendations. This system is decided by the assigner (implicitly random). On this
system, we may call methods for retrieving recommendations. If it is possible for
the user to have their system changed during one session, we should always ask
the manager for the user’s current recommender before getting the recommenda-
tion. Inactive users should be de-registered from the manager (for instance when
their session expires).

For the purposes of RS development, it is possible to create and add new
systems, change the existing ones or remove them entirely during the use of the
framework. If the implementer wishes to test another version of the same system,
we advise that they clone this system and either change its name or its version
before adding it to the manager. Not doing so would cause confusion about which
parameters belong to which version and the recommendations of the old system
would be attributed to the new system.

Finally, the process of RS evaluation is described in the next section.

3.6 Evaluation
Evaluation can be done by a calling given evaluation function on the system’s
tracker. This approach automatically pulls the required data from the database
and passes it to the corresponding Evaluation function. By required data, we
usually mean a set of all the recommendation lists the system provided during
its use. If necessary, the framework will also pull all feedback the user provided
to the recommended items.

For large datasets, this can be a lengthy process. So if we wish to evalu-
ate along multiple metrics with the same input data. Getting the data explic-
itly and calling these methods directly on the Evaluation class might be prefer-
able. This can also be useful when we wish to evaluate the system on a subset
of recommendations it provided (i.e. for a certain time period, certain demo-
graphic of users, . . . )

For the complete list of evaluation methods, see the Evaluation chapter in the
framework architecture part of this work (section 2.9).
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3.7 Further customization of functionality
New users will be assigned to systems randomly, although we may wish to im-
plement a more sophisticated policy. For instance, we may want the probability
distribution to be uneven across systems. Furthermore, we may wish to change
this probability or to cut off some system from being assigned entirely.

Another big part of functionality that can be customized is the creation of own
IDatabase implementation better suited for a given use case. The public methods
in our default implementation are all virtual, so extending of our implementations
is also possible.

Other customization methods are used for evaluation. Like methods for de-
ciding whether a user finds a given item relevant based on feedback or retrieval
of user’s relevant items. Another method is used to tell to what extent 2 items
are different. These allow us to calculate metrics such as Precision, Diversity, . . .
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4. Framework instance
To showcase the framework and its capabilities we’ve built a web application that
will serve as a mock-up of a movie database website. This website will be using
our default database implementation and will be storing the data in a local SQL
database.

4.1 Data and setting
Data for the training of our RSs will be obtained from the MovieLens dataset
[1]. More specifically, we will be using the ”MovieLens 20M Dataset” described
by the authors as:

”Stable benchmark dataset. 20 million ratings and 465,000 tag applications
applied to 27,000 movies by 138,000 users. Includes tag genome data with 12
million relevance scores across 1,100 tags. Released 4/2015; updated 10/2016
to update links.csv and add tag genome data.”

For demonstration purposes and in order to save on storage, we will reduce the
number of ratings we use to about 4 million. This is done by randomly sampling
users, selecting only 1 in 5. These 4 million ratings span ∼ 27,000 movies (some
of which are actually TV shows) in the original data. If required, it is possible
to use the whole dataset. All of the data preprocessing code used is also provided
alongside this work.

To make the website more ”life-like” we will also need some additional infor-
mation about these movies. For this, we will be using the TMDb API [17].

4.1.1 User and Item objects

Figure 4.1: TMDb logo

The MovieLens dataset anonymizes user data for the
sake of privacy. Therefore all we know about our users
is their identification number.

For movies, on the other hand, the dataset provides
their IMDb [18] and TMDb [17] IDs. We will be us-
ing the TMDb API to get additional information about
movies (see 4.1.3). This data will be displayed to the
users of our application.

4.1.2 Feedback objects
When it comes to feedback, we will be using ratings obtained from the Movie-
Lens dataset. We will also be measuring 2 online-only types of feedback: how
long the user spends looking at each movie’s page and whether they clicked
on a recommended movie.
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We will not be using MovieLens tags given by the users. We mention their
availability here nonetheless in case the implementer wishes to make use of them.
The source code provided also contains methods used to filter tag feedback and
to load it into the database. These methods are not used by default during the
preprocessing phase.

4.1.3 Data preprocessing

Figure 4.2: Diagram of the data preprocessing pipeline

Downloading of movie data

After we have obtained the MovieLens dataset, the first step in the preprocessing
is the downloading of movie data. This is done by using TMDb API. To com-
municate with this API we will be using the ”TMDbLib” library [19]. Data that
is saved for each movie consist of the titles, overviews, genres, runtimes, release
dates, rating counts, and rating averages.

We leave out those movies (and TV shows), whose TMDb ID is not known.
We also leave out those that don’t have a name or don’t have an overview. This
data is then stored in a CSV file.

User sampling

Next step is the sampling of users. As a first step, we load all of the user IDs
found in the ratings file. Then we keep each user with the probability of 1/5.

Once we have the list of sampled users, we can filter the ratings. We keep
only those ratings whose user ID is within the sampled users and whose movie
ID is within the filtered movies (downloaded in the previous step).

Optionally, if we wish to include tag feedback, we can filter it in the same way
as the ratings.

Downloading of posters

Movie posters are not included in the data provided with this work as they would
take up too much disk space. The code to download the movie posters is provided
with this work. Its use is encouraged for demonstration purposes.
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4.2 Used recommenders
For the implementation of RSs, we will be using the MyMediaLite .NET library
[2]. It provides the implementation for several popular recommendation algo-
rithms.

We create classes that serve as wrappers of MyMediaLite classes. These wrap-
pers implement the IManagedRecommenderSystem interface (see section 2.4.2).
Wrapping them in this way is necessary in order to allow us to add these systems
to the manager. The algorithms we use are User Average, Item Average, Global
Average, Matrix Factorization, Biased Matrix Factorization, and User-Item Base-
line.

All of these systems have been trained on our filtered rating data. The applica-
tion is set up to start only with one version of Biased Matrix Factorization and one
version of User-Item Baseline. The number and types of systems on application
startup can be configured if desired.

4.3 RecommenderService
RecommenderService functions as a central point for our application.

It defines user, item, and feedback objects in the forms of Viewer, Movie and
DwellTime classes respectively. It implements wrappers for the above-mentioned
6 recommender systems from the MyMediaLite library. The service sets up
an instance of our recommender framework and uses it to provide users with
recommendations.

The system users can use the service to look up movies, their viewing history,
and statistics about their rating habits. The administrator can use the service
to evaluate, add, and remove recommenders.

Recommendations are provided to users according to the following policy:
Implicitly the user is in anonymous mode, where the recommended items are just
a randomly sampled list of popular movies.

If the user decides to ”sign in” they will be assigned a recommender and
a recommendation will be displayed to them. We keep recommendations persis-
tent using RecommendationManager. This manager stores the user’s recommen-
dation until the end of the session. A user session, by default, lasts 30 minutes
from the time the recommendation was provided. If we receive noteworthy feed-
back (a rating) we update the recommender and request a new recommendation.

DwellTimeTracker serves as a way for us to keep track of how long users spend
looking at a given movie. For more information about how we track dwell time
see section 4.5.2.

4.4 Web application
This section serves as a brief overview of our web application, of the individual
pages, and of what they allow us to do.
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4.4.1 User side
The application landing page allows users to search for movies based on criteria
we think they might find relevant. These being the title of the movie, its genre,
and the year of release.

By default, the movies displayed in the search list and in the recommendation
section on the right are randomly sampled from movies with at least 3000 ratings.

If the user wishes, they may ”sign in” by using their unique ID number. A new
user can also be added by using the register option. Once the user is signed in,
the recommendation banner will start showing a personalized list of recommended
items. They also get access to the ”My Profile” section, where they can see the
movies they have rated in the past and some statistics about their ratings.

Figure 4.3: Application landing page

Figure 4.4: Detailed view of a movie
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Figure 4.5: Page containing user’s rating statistics

4.4.2 Administrator side

Figure 4.6: System upload sec-
tion of the admin page

Now let’s shift our focus to the ”Admin” side
of the web application.

This page allows the administrator to see
the currently operational systems. It is pos-
sible for them to clone a given recommender
system and change its parameters. For this
process to complete either the systems name
or (more likely) the version has to be changed.
This has to be done in order for us to be able
to distinguish these 2 systems and their recom-
mendations.

It is also possible for the admin to download
a given system serialized in the form of a text
file. If desired, they may also upload a new
recommender system. This system’s type has
to be one of the 6 implemented in the recommendation service (see 4.2). They
require the administrator to give the system a unique identification and to up-
load 2 files. One containing the serialized recommender system and the other
containing the ratings on which the system trained.

The administrator can perform evaluation of the systems to see their perfor-
mance up to this point. The evaluation shows how many recommendations the
system provided, to how many different users it provided those recommendations,
and how many different items were recommended. We are also interested in how
likely users are to click on system’s recommendation and how much time they
spend on looking at the recommended movies.
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The administrator may wish to perform their own evaluation or use the data
for a different purpose. It is possible to download the recommendations of each
system and all feedback stored in the database by type. This data is downloaded
in the form of a CSV files.

Figure 4.7: System evaluation section of the admin page

4.5 Feedback tracking
We track 3 different types of user feedback: ratings, clicks on recommended items,
and dwell time. When we record some type of feedback, it gets added to our
database and passed to the recommender via a RecommenderSystemTracker (see
2.5). When our RS receives information about a new rating, it performs an incre-
mental training step to take into account this new rating for future recommen-
dations.

4.5.1 Ratings and clicks
Rating and click on recommendation measurements are simple. When they hap-
pen, they trigger a server-side handler method. This method can then parse the
feedback and submit it to the service.

Our aggregation function used for evaluation works simply by looking at
whether the user rated a given item. If so, the most recent rating is returned.

4.5.2 Dwell time
For measuring dwell time we create a timer running on the client-side web browser
when they open any movie’s page. This timer periodically (every 5 seconds) pings
the server telling us ”this user is still looking at the page of this movie”.

We then keep track of such events on the server-side. More specifically,
we know when the first ping and when the last ping (up until now) were sent.
If it’s been more than 15 seconds since the last ping, we assume that the user
closed the movie’s page. At this point, the dwell time feedback gets sent back
to the RS.
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4.6 How to run the applications
The application is built for the .NET Framework version 4.6.1.

4.6.1 Project structure
Data

The data section contains 3 main parts. These are the sampled MovieLens data
(subfolder: MovieLens), trained and serialized recommender systems (subfolder:
Systems), and TMDb movie data (subfolder: TMDb).

Code

Code section contains 3 main project solutions. First one is the recommender
framework itself (subfolder: RecommenderFramework). The second one con-
tains projects for data preprocessing (subfolder: DataPreprocessing). Finally,
the third solution contains program used for loading data into the database, the
recommendation service using our framework, and the web application (subfolder:
FrameworkInstance).

The individual projects (programs) include a windows compatible .exe build
located in ProjectName/bin/Release/ folder. They allow for configuration
through their respective config files named ProjectName.exe.config. These
files mostly allow to configure file locations but differ for each project. We en-
courage the user of this project to have a look at the configuration options for
themselves.

Since the web application is not a standard console application but is built
in ASP.NET, its folder structure is slightly different. The build and the configu-
ration file (Web.config) of the web application can be found within a subfolder
named FrameworkInstance/WebApplication/bin/Release/Publish/.

4.6.2 The necessary
There are 2 main steps needed to run the web application.

Loading of the database

Since we are using our default database implementation, we have to load the users,
items, and feedback into the database. These classes include Data.Linq.Mapping
annotations. Instantiating of the default database takes in a connection string
of the database. This connection string must be specified in the DatabaseLoader
configuration file.

If the tables for recommendations, recommended items, and system parame-
ters aren’t yet present in the database, the default database constructor creates
them automatically. Similarly, the application itself sets up the tables for users,
items, and feedback.
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Starting the application

The web application can be started using IIS. In the Internet Information Services
(IIS) Manager open you local machine in the connections tab and right click
on ”Sites” then ”Add Website...”. In the set up form, at least the port and the
”Physical Path” need to be specified. This path should lead to the published app
folder FrameworkInstance/WebApplication/bin/Release/Publish/. For
a more detailed startup guide see [20].

The application also requires a connection string to the database (the same
one as was used during data loading). This string should be provided in the
publish folder in the file named Web.config.

4.6.3 The optional
The user of this project may wish to run the whole preprocessing pipeline again
(maybe because a new version of MovieLens dataset is released). The intended
order of the projects in which they should be run is: 1. MovieDataDownload,
2. Sampling, 3. SystemTraining (4. MoviePosterDownload).

The configuration files specify the file locations for these steps. Implicitly the
pipeline expects the MovieLens raw data in the data/MovieLens folder. If the
user wishes to download the TMDb movie data, they need to obtain an API key
and provide it in the appropriate config file.

The most likely optional step the user of this project may wish to perform is the
downloading of movie posters. The application that does this is located in the
DataPreprocessing/MoviePosterDownload project. The configuration file
for this project contains locations of the file where we can find movie data (con-
taining the poster paths) and of the folder where the posters should be saved.
The web application expects to find these poster images in the subfolder which
is named WebApplication/bin/Release/Publish/Images/Posters/. The
configuration file also specifies the resulting size of the images.
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5. Instance adaptation to a
different dataset
This chapter describes how it would be possible to adapt the application to
a different (but similar enough) dataset. As an example, let’s imagine that we wish
to create a similar application, but instead of movies, it would show books to our
users.

Many of the steps described here are similar to steps that have already been
presented in chapter 4. We will also leave out the data preprocessing stage as that
has to be handled by the implementer.

5.1 Data preparation
We shall start again with the definition (or in this case re-definition) of what our
items are.

We would first rename our Movie class to Book and then decide which proper-
ties we wish to keep. The title, overview, genres, and release date seem like useful
properties we should keep alongside the number of ratings the book received and
the rating average. One important property we need to add is the author of the
book. Another might be the book’s ISBN number and the publisher.

Feedback types we have used for the previous dataset (ratings, clicks on rec-
ommendation, dwell time) seem appropriate for this dataset too, therefore we will
not be changing them. Recommender systems used in the last chapter are quite
versatile since they don’t take any content data as input, so we can reuse them
as well.

5.2 Application functionality
Most of the work needed to adapt our application will be required in the service
section.

First off, let’s start with the parts of the service we don’t need to change.
Thanks to the abstraction of what an item actually is, we are able to have recom-
mender systems that are not dependent on item types. This means that all ma-
nipulation with recommender systems (their adding, removing, saving, cloning,
and evaluation) can stay unchanged. Same goes for the downloading of system
recommendations.

We also don’t need to change the methods used to measure feedback (unless
some feedback type was added). This also means that downloading of feedback
as a CSV file can stay the same.

Where we do need to perform changes is the area of movie (now to be book)
browsing. For instance, before we had the option of looking up movies by the year
of their release, but this might not be as relevant for books. Instead, we could
replace this option and allow users to look for books based on the author. Simi-
larly, we may wish to refactor the rest of the methods in the ”Movie Browsing”
source code region.
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Same goes for the user’s profile page (source code region named ”My Profile”).
We don’t need to change methods for the calculation of user’s rating distribution
and favorite book genres. What we need to change is the part where we retrieve
user’s recently, highest, and lowest rated books. Even though we don’t look at any
movie properties directly, we do keep some of them for display purposes in the
RatedMovie class.

5.3 Web presentation
Another big change needed when going from movies to books is in the form
we wish to present them. As has been mentioned before, the date of the book’s
release is probably not that important. On the other hand, we should always
display the book’s author close to the title.

To achieve this, we need to change the way the web application displays items.
Where possible, we try to use markup to specify display templates. More specif-
ically, we are talking about ItemTemplates for the DataList ASP.NET element.
These templates can be divided into 3 categories.

The first category is the search. This one is used on the landing page when
a user searches for movies (books).

The second one is the recommendation template. This one is used to display
the recommendations on the right side of the page. This template has to be copied
to all the pages where it is used. These are the landing page (called Main), the
MovieDetail page, and MyProfile page.

The third template we need is used 3 times on the user’s profile page (named
MyProfile). It is used to display user’s recently, highest, and lowest rated items.
Again, this template has to be copied between all 3 location.

To display these items properly, the DataLists need to have a bound data
source from which they can pull item data. In the case of the item’s own page
(MovieDetail), we aren’t able to use a markup template and thus, binding has to
be done manually for each of the page’s display elements.
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Conclusion
In this work, we have been able to showcase how modern recommender systems
operate, what requirements are placed on them, what might be their desired
properties, and how their developers may try to satisfy these requirements and
what problems they usually encounter.

We have also discussed possible ways of gathering data about systems’ per-
formance and how this data can be used for their evaluation. We have placed
a special emphasis on online evaluation and clarified why we hope for wider adop-
tion of this evaluation method.

We have been able to take this knowledge to design and implement a frame-
work that would allow us to track and manipulate these various recommender
systems in online use. We have designed this framework in a way that is easy
to use and requires minimal effort on the side of the implementer.

To showcase the possible usage of this framework we have built a movie
database website where users could rate movies and in turn receive recommen-
dations. We have shown how our framework allows the implementer to change
the application’s recommender systems during use, how they can add or remove
systems, and made it possible to save these systems, their recommendations and
received feedback.

Lastly, we have also shown how our web service and application could be used
as a base for a more sophisticated system or be repurposed for another dataset.

Future work
During the development, we’ve encountered some areas where this framework
could be further improved.

One of these areas would be the ability to extract SQL table definitions from
Data.Linq.Mapping annotations. This table data could then be used to cre-
ate/delete tables. This way, the implementer wouldn’t need to perform the table
creation themself.

Another area of improvement is feedback aggregation. Currently, we query all
feedback for each interesting user-item pair. But as we have found out in chapter
4, sometimes we only need one type of feedback (explicit). Thus, we might
be querying the database when not necessary. A better aggregator would be one
that checks whether an explicit rating exists before retrieving more data. Another
possibility is allowing the aggregator to download the data itself.
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Attachments
Included as attachments are the following:

• Data folder:
This folder contains sampled MovieLens rating data, additional data about
these movies obtained from TMDb, and a set of serialized recommender
systems.

• Code folder:
This folder contains source projects and builds of our data preprocessing
applications, the recommender framework itself, and a web application used
to showcase the framework’s functionality.
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