
Charles University in Prague
Faculty of Mathematics and Physics

DIPLOMA THESIS

Veronika Fǐserová
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matematické analýzy, MFF UK
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Abstrakt: Uvažujeme stacionárńı prouděńı homogenńı nestlačitelné tekutiny
nenewtonovského typu. Předpokládáme, že viskozita tekutiny záviśı na
středńı hodnotě tenzoru napět́ı (na tlaku) a na rychlosti smyku. Motivaćı
pro tuto závislost může být celá řada z technologického hlediska významných
experiment̊u a studíı. Zabýváme se systémem parciálńıch diferenciálńıch
rovnic, které popisuj́ı výše zmı́něná prouděńı, doplněných zároveň o ho-
mogenńı Dirichletovu (tzv. no-slip) okrajovou podmı́nku a pro tento systém
dokážeme globálńı existenci slabého řešeńı za určitých bĺıže specifikovaných
předpoklad̊u kladených na strukturu viskozity. To je provedeno pomoćı
limitńıho přechodu od slabého řešeńı dř́ıve již zavedeného aproximativńıho
systému, pro který je existence slabého řešeńı rovněž ukázána, a sice pomoćı
Galerkinových aproximaćı. Důležitou roli při samotném limitńım přechodu
poté hraje fakt, že viskozita je v jistém smyslu monotónńı. K tomu, abychom
ukázali konvergenci tlaku a symetrické části gradientu rychlosti skoro všude,
zavedeme rozklad tlaku a použijeme lipschitzovské testovaćı funkce. Pro
tento účel využijeme tzv. Lipschitzovských aproximaćı Sobolevových funkćı.
Kĺıčová slova: existence, slabé řešeńı, nestlačitelná tekutina, viskozita závislá
na tlaku a na rychlosti smyku, Lipschitzovská aproximace funkćı z W 1,p
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Abstract: We consider a steady flow of a homogeneous incompressible non-
Newtonian fluid. We suppose that the viscosity of the fluid depends on the
mean normal stress (the pressure) and on the shear rate as this dependence
is motivated by many technologically important experiments and studies.
We study a system of partial differential equations that govern such flows
of fluids subject to the homogeneous Dirichlet (no-slip) boundary condition
and establish a global existence of a weak solution under certain specified
assumptions on the structure of the viscosity. This is carried out by pass-
ing to the limit in the weak solution of a previously introduced approximate
system, the existence of which is also shown. The fact that the viscosity is
monotone in some sense plays an important role. A decomposition of the
pressure and Lipschitz test functions as Lipschitz approximations of Sobolev
functions are incorporated in order to obtain almost everywhere convergence
of the pressure and the symmetric part of the velocity gradient.
Keywords: existence, weak solution, incompressible fluid, pressure- and shear-
dependent viscosity, Lipschitz approximation of W 1,p
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1 Introduction

The most famous model that describes a flow of an incompressible fluid is
the well-known Navier-Stokes model which considers the viscosity of the fluid
to be a constant. While this model is capable of describing a large class of
flows of fluids, it is inadequate to capture the so-called non-Newtonian behav-
ior. The typical non-Newtonian features include for example the dependence
of the viscosity on the shear rate, stress relaxation, non-linear creep, the
development of normal stress differences in a simple shear flow or yield-like
behavior (for details see [26] or [20]). An interesting naturally raised question
is whether the viscosity of an incompressible fluid could also depend on the
pressure. Such a property would then fall into the class of the non-Newtonian
responses as well.

In the year 1845 Stokes was the first to consider this possibility and in
his paper [28] he carefully delineates under which conditions the viscosity
could be assumed as pressure-independent. Since then the dependence of
the viscosity on the pressure has been proven by many experimental studies
and we briefly discuss a few of them.

In 1893 Barus in [6] proposed the following relation between the viscosity
µ and the pressure p for liquids

µ(p) = µ0 exp(αp), α > 0.

This expression has been widely used in elastohydrodynamics where the fluid
undergoes a wide range of pressures and a significant change in the viscosity
occurs (see [29]). There is a great amount of another experimental work prior
to 1930 concerning the pressure-dependence of the material coefficients and
the related discussion can be found in the book [8] by Bridgman. On the
basis of experiments with more than 40 liquids Andrade in [4] suggested the
following relationship between the viscosity µ, the pressure p, the density ρ
and the temperature θ

µ(p, ρ, θ) = Aρ1/2 exp

(
B

θ
(p+Dρ2)

)
,

where A, B and D are constants. Notice that also Andrade obtained an
exponential dependence on the pressure, however, his expression seems to be
more general. A large number of more recent studies concerning other for-
mulas for the variation of the viscosity with pressure are available as well and
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almost all of these studies more or less involve the exponential dependence.
A detailed list of references related to this topic can be found in [21]. Lately,
Bair and Kottke (see [5]) have shown that in fact the viscosity can depend
even more drastically on the pressure so that the equations above cease to
be appropriate.

While the experimential background gives clear evidence for the possible
dependence of the viscosity on the pressure, such is not the case in the clas-
sical textbooks of continuum mechanics where the models for incompressible
fluids with pressure-dependent material coefficients are completely omitted.
Let us illustrate the matter by recalling the standard derivation of constitu-
tive equations for a homogeneous compressible and incompressible Newtonian
fluid (the second one is referred to as Navier-Stokes fluid). For simplicity, we
consider three-dimensional flows.

Ignoring all temperature effects, the standard approach is based on an
assumption that the Cauchy stress depends on the density and the veloc-
ity gradient and from the so-called principle of material frame-indifference
actually only through its symmetric part DDD = DDD(v) = 1

2
(∇v + (∇v)T ), i.e.,

TTT = f(ρ,DDD).

If we require the fluid to be isotropic, then the function f has to satisfy the
restriction

f(ρ,QQQDDDQQQT ) = QQQf(ρ,DDD)QQQT for all orthogonal tensors QQQ

and the standard representation theorem for isotropic tensor functions im-
plies that the stress has the following form (for representation theorems see
for example [30])

TTT = α0III + α1DDD + α2DDD
2,

where αi = αi(ρ, IDDD, IIDDD, IIIDDD) and

IDDD = trDDD, IIDDD =
1

2
((trDDD)2 − trDDD2), IIIDDD = detDDD.

The requirement on the stress being linear in DDD then yields

TTT = −p(ρ)III + λ(ρ)(trDDD)III + 2µ(ρ)DDD,

which is the Cauchy stress for the homogeneous compressible Newtonian
fluid. The pressure p appearing in this relation is a thermodynamic pressure
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and its relationship with the density ρ is through an equation of state. If
this equation is invertible then the bulk and shear viscosities λ and µ can be
indeed expressed as functions of the pressure.

On the other hand, an application of the similar procedure to a homoge-
neous incompressible fluid, i.e., to

TTT = f(DDD) and trDDD = 0,

leads to
TTT = α̃0III + α̃1DDD + α̃2DDD

2, (1.1)

where α̃i, i = 0, 1, 2, depend on

−1

2
trDDD2 = −1

2
|DDD|2 and detDDD.

If we again require the stress to be linear in DDD, the expression (1.1) simplifies
to

TTT = −pIII + 2µDDD,

with the viscosity µ being a positive constant and the pressure p being the
mean normal stress, namely

p = −1

3
trTTT.

Evidently, the viscosity cannot be expressed in terms of the pressure as the
viscosity itself is constant. Later on, we shall present an alternative approach
that, on the contrary, is capable of describing incompressible fluids with
pressure-dependent viscosities as well.

Let us now mention another example. Note that (1.1) also involves the
incompressible non-Newtonian fluids with shear rate dependent viscosity, i.e.,

TTT = −pIII + 2µ(|DDD|2)DDD, (1.2)

which include the popular power-law fluids with the viscosity of the form
µ(|DDD|2) = µ0|DDD|r−2, where r > 1 is the power-law exponent and µ0 is a
positive constant, as a special case.

In this thesis we shall be interested in the class of homogeneous incom-
pressible fluids with the viscosity depending on the pressure and the shear
rate alike and having the Cauchy stress of the following representation

TTT = −pIII + 2µ(p, |DDD|2)DDD, (1.3)
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as this model is considered in various engineering areas, among others in
elastohydrodynamics or mechanics of granular and visco-elastic materials.

We would like to remark that we will not focus our attention on the
precise dependence of the viscosity on the pressure and the shear rate, but
only consider the viscosity to satisfy certain conditions specified later.

Though the models (1.2) and (1.3) look similar, there is a remarkable
difference between these two relations. Since the pressure p is the mean
normal stress −1

3
trTTT, it becomes obvious that the first one is an explicit

relationship between TTT and DDD whereas the second expression is an implicit one
and hence cannot be gained by the procedure described above. Nonetheless,
there are at least two other concepts that are able to capture models of
the type (1.3). The first one is a thermodynamic approach based on the
maximization of the rate of dissipation and the second one is the so-called
implicit constitutive theory, both methods developed by K.R.Rajagopal and
his co-workers (for details see [20] or [21]).

Let us consider the second approach, which shows more similarities with
the classical one, and let us start with an implicit equation having the form

f(TTT,DDD) = 0.

The demand of isotropy now means that

f(QQQTTTQQQT ,QQQDDDQQQT ) = QQQf(TTT,DDD)QQQT for all orthogonal tensors QQQ.

In this case, the representation theorem for isotropic tensor functions yields

α0III + α1TTT + α2DDD + α3TTT
2 + α4DDD

2 + α5(DDDTTT + TTTDDD) + α6(TTT
2DDD + DDDTTT2)

+ α7(TTTDDD2 + DDD2TTT) + α8(TTT
2DDD2 + DDD2TTT2) = 0,

where αi, i = 1, . . . , 8, depend on the invariants

trTTT, trDDD, trTTT2, trDDD2, trTTT3, trDDD3, tr(TTTDDD), tr(TTT2DDD), tr(DDD2TTT), tr(TTT2DDD2).

Consequently, if we choose

α0 = −1

3
trTTT,

α1 = 1,

α2 = −2µ(−1

3
trTTT, trDDD2), µ > 0,

αi = 0 for i = 3, . . . , 8
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and define p to be the mean normal stress

p = −1

3
trTTT, (1.4)

we obtain the Cauchy stress of the form

TTT = −pIII + 2µ(p, |DDD|2)DDD. (1.5)

Notice that we have derived the model (1.3), and due to (1.4) and (1.5)
we have obtained the constraint of incompressibility trDDD = div v = 0 as a
consequence, which is a very interesting feature of the implicit constitutive
theory. Thus, (1.3) indeed describes incompressible fluids.

The main aim of the thesis is the mathematical analysis of one such model.
To be more precise, we will be interested in steady flows of homogeneous
incompressible fluids that have the Cauchy stress of the form (1.3) and are
subject to the homogeneous Dirichlet (no-slip) boundary condition. With
the help of Lipschitz approximations of Sobolev functions, we shall establish
the existence of weak solutions to the system of partial differential equations
that govern such flows of fluids. We start discussing the mathematical issues
in the next section and begin with a description of the mathematical model.
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2 Mathematical model

2.1 Definition of the problem

In order to derive the governing equations, we consider that the flows take
place in an open and bounded domain Ω ⊂ Rd, d ≥ 2, with a smooth
boundary as specified later. On substituting (1.3) into the balance of linear
momentum

ρ
dv

dt
= divTTT + ρf ,

where f is the specific body force, we arrive at

ρ
dv

dt
− div(µ(p, |DDD(v)|2)DDD(v)) +∇p = ρf in Ω. (2.1)

To this equation we add the constraint of incompressibility and the boundary
condition.

It is also convenient to divide the equation (2.1) by the positive constant
value of the density ρ. Then, relabelling p

ρ
, µ

ρ
by p and ν and remembering

that we are interested only in steady flows (∂v
∂t

= 0), we can rewrite the
above-mentioned system as

div(v ⊗ v)− div(ν(p, |DDD(v)|2)DDD(v)) +∇p = f in Ω

div v = 0 in Ω

v = 0 on ∂Ω,

(2.2)

where ⊗ denotes the standard tensor product.
In addition, we shall suppose that the pressure p meets the following

condition ∫
Ω

p dx = 0. (2.3)

As it is not completely clear why we should assume such a condition, it
requires a brief explanation. The pressure in an incompressible fluid is de-
termined to within a constant. In the classical Navier-Stokes equations (or
other models with pressure-independent viscosity) only the gradient of the
pressure is met and so the choice of a constant that fixes the pressure is irrel-
evant. In our case, on the other hand, the situation is completely different.
We deal with a pressure-dependent viscosity and this means that also the
actual value of the pressure is encountered. Therefore, this constant plays
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an important role and needs to be fixed. From a physical point of view it
might be appropriate to prescribe the pressure at some point of Ω or ∂Ω.
Nevertheless, in the context of the mathematical framework, as we consider
integrable functions, it would be more preferable to consider the mean value
of the pressure over some subdomain of Ω or over some subpart of the bound-
ary ∂Ω of non-zero volume and area measure respectively. Currently, there is
a work in progress concerning the conditions decribing the normal traction,
i.e., p+ (v ·n)2 − ν(p, |DDD(v)|2)DDD(v)n ·n = g, g being a given function, on a
part of the boundary having non-zero area measure. Unfortunately, yet no
results are available and in view of this fact and for simplicity we restrict
ourselves to the condition (2.3) though it is not quite natural.

We denote the system (2.2) together with the condition (2.3) by (P0).

2.2 Structure of the viscosity and its consequences

As we already mentioned in the introduction, we will not focus our attention
on the precise relationship between the viscosity, the pressure and the shear
rate.

In the following, we assume that the viscosity ν(p, |DDD|2) is a C1-mapping
of R×R+

0 into R+ satisfying for some fixed (but arbitrary) r ∈ (1, 2) and all
DDD ∈ Rd×d

sym, BBB ∈ Rd×d
sym and p ∈ R the following two conditions

C1(1 + |DDD|2)
r−2
2 |BBB|2 ≤ ∂(ν(p, |DDD|2)DDD)

∂DDD
· (BBB⊗BBB) ≤ C2(1 + |DDD|2)

r−2
2 |BBB|2 (2.4)∣∣∣∣∂(ν(p, |DDD|2)DDD)

∂p

∣∣∣∣ ≤ γ0(1 + |DDD|2)
r−2
4 ≤ γ0, (2.5)

with positive constants C1 and C2 and a sufficiently small constant γ0 > 0
on whose value we require that

γ0 <
C1

Cdiv(Ω, 2)(C1 + C2)
, (2.6)

where the constant Cdiv(Ω, q) occurs in the problem of solvability of the
equation divu = f discussed in Appendix (see Lemma A.3).

These assumptions deserve a short comment. If ν is independent of p it is
clear that the condition (2.5) is irrelevant and (2.4) is met by the power-law
fluids. On the contrary, our assumptions do not allow us to consider any
model where the viscosity depends only on the pressure.
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For a better illustration, we mention some examples of the forms of vis-
cosities fulfilling the conditions (2.4) and (2.5).

Example 2.1. Consider for r ∈ (1, 2) and for a constant A ∈ (0, 1]

νi(p, |DDD|2) =
(
A+ γi(p) + |DDD|2

) r−2
2 , i = 1, 2,

where γi(p) have the form (q ≥ 0)

γ1(p) = (1 + α2p2)−q/2,

γ2(p) =

{
(1 + exp(αp))−q if p > 0

1 if p ≤ 0.

(Note that 0 ≤ γi(p) ≤ 1 for i = 1, 2.)

Then (2.4) holds with C1 = 2
r−2
2 (r − 1) and C2 = A

r−2
2 and (2.5) holds

with γ0 = 2−r
2
αq (see [23] and [9]).

The first very important feature of the viscosity following from the as-
sumptions (2.4) and (2.5) is a certain type of monotonicity. We will see that
this property plays a crucial role in mathematical analysis of the problem
(P0). For simplicity, we set

SSS(p,DDD) := ν(p, |DDD|2)DDD.

Lemma 2.1. Let the assumptions (2.4), (2.5) hold. For arbitrary p1, p2 ∈ R
and DDD1,DDD2 ∈ Rd×d

sym we set

I1,2 :=

∫ 1

0

(1 +
∣∣DDD2 + s(DDD1 −DDD2)

∣∣2) r−2
2

∣∣DDD1 −DDD2
∣∣2 ds.

Then

C1

2
I1,2 ≤ (SSS(p1,DDD1)− SSS(p2,DDD2)) · (DDD1 −DDD2) +

γ2
0

2C1

∣∣p1 − p2
∣∣2 . (2.7)

The condition (2.4) yields another useful properties (as coercivity and
growth) and we summarize them in the next lemma.

Lemma 2.2. Let the assumption (2.4) hold for r ∈ (1, 2). Then for all p ∈ R
and DDD ∈ Rd×d

sym

ν(p, |DDD|2)DDD ·DDD ≥ C1

2r
(|DDD|r − 1) (2.8)
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and ∣∣ν(p, |DDD|2)DDD∣∣ ≤ C2

1− (2− r)λ
(1 + |DDD|)1−(2−r)λ for all λ ∈ [0, 1]. (2.9)

For the proofs of Lemma 2.1 and Lemma 2.2 see [12] and Lemma 5.1.19
in [22], respectively.

2.3 Existence theorem and known results

Before we proceed to the formulation of the existence theorem, we first fix
the notation.

We consider that the domain Ω ⊂ Rd, d ≥ 2, has Lipschitz boundary ∂Ω
and we write Ω ∈ C0,1.

Let 1 ≤ q ≤ ∞. In the standard way we denote the Lebesgue spaces Lq(Ω)
equipped with the norm ‖ · ‖q and the Sobolev spaces W 1,q(Ω) equipped
with the norm ‖ · ‖1,q of scalar measurable functions defined on Ω ⊂ Rd.

W 1,q
0 (Ω) = C∞0 (Ω)

‖·‖1,q are Sobolev spaces of functions with zero traces on
the boundary ∂Ω. If X(Ω) is a Banach space then (X(Ω))∗ stands for its
dual space and X(Ω)d := {u : Ω → Rd;ui ∈ X(Ω), i = 1, . . . , d}, similarly
X(Ω)d×d := {AAA : Ω → Rd×d;AAAij ∈ X(Ω), i, j = 1, . . . , d}. We also introduce
the following subspaces of Lebesgue and Sobolev spaces

Lq
0(Ω) :=

{
h ∈ Lq(Ω) :

∫
Ω

h dx = 0

}
W 1,q

0,div(Ω)d := {u ∈ W 1,q
0 (Ω)d : divu = 0 a.e. in Ω}.

Let us also denote the norm of the dual space (W 1,q
0 (Ω)d)∗ = W−1,q′(Ω)d by

‖ · ‖−1,q′ and the duality pairing by 〈·, ·〉, q′ = q
q−1

. All the spaces introduced
above are Banach spaces. Moreover, if 1 < q < ∞, then they are also
reflexive and separable.

The prime motivation for the thesis was an effort to improve the below-
mentioned existence result for the system (P0) concerning the parameter r
established by Franta, Málek and Rajagopal in [12]. The authors considered
the mean value of the pressure to be fixed by an arbitrary constant p0 ∈ R.
For p0 = 0, the result can be formulated in the form of this theorem.
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Theorem 2.1. Let Ω ⊂ Rd be an open bounded domain, d = 2 or 3, and let
Ω ∈ C0,1. Let the assumptions (2.4) and (2.5) be satisfied with 3d

d+2
< r < 2

and let f ∈ (W 1,r
0 (Ω)d)∗. Then there exists a weak solution (v, p) to the

problem (P0) such that

v ∈ W 1,r
0,div(Ω)d and p ∈ Lr′

0 (Ω)

and for all ϕ ∈ W 1,r
0 (Ω)d holds∫

Ω

ν(p, |DDD(v)|2)DDD(v) ·DDD(ϕ) dx −
∫

Ω

(v ⊗ v) · ∇ϕ dx

−
∫

Ω

p divϕ dx = 〈f ,ϕ〉.

The lower bound 3d
d+2

comes from the requirement on integrability of the

term (v ⊗ v) · ∇ϕ. Therefore, we are interested in the case when r > 2d
d+2

since we want the pressure to lie at least in L1. In order to obtain this lower
bound, we have to consider test functions from W 1,∞

0 (Ω)d again to ensure
the integrability of the convective term.

The result of the thesis is the following theorem and its proof is the
content of Section 4.

Theorem 2.2. (Existence theorem) Let Ω ⊂ Rd be an open bounded
domain, d ≥ 2, and let Ω ∈ C0,1. Let the assumptions (2.4) and (2.5) be
satisfied with 2d

d+2
< r ≤ 3d

d+2
and let f ∈ (W 1,r

0 (Ω)d)∗. Then there exists a
weak solution (v, p) to the problem (P0) such that

v ∈ W 1,r
0,div(Ω)d and p ∈ L

dr
2(d−r)

0 (Ω)

and for all ϕ ∈ W 1,∞
0 (Ω)d holds∫

Ω

ν(p, |DDD(v)|2)DDD(v) ·DDD(ϕ) dx −
∫

Ω

(v ⊗ v) · ∇ϕ dx

−
∫

Ω

p divϕ dx = 〈f ,ϕ〉.

Before we draw up a survey of known mathematical results concerning
our model and related problems, we wish to remark that there is a difference
between the analysis of the models with ν = ν(p, |DDD|2) and with ν = ν(|DDD|2).
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In the latter case, the standard approach is based on dealing with spaces
of divergence-free functions from the very beginning and thus completely
eliminating the pressure from the analysis of the problem. The pressure is
afterwards reconstructed by using for example de Rham’s theorem. Unfor-
tunately, the same method cannot be applied to the problems with pressure-
dependent viscosity since we need to have knowledge of the nature of the
pressure a priori.

One of the main ingredients of the proof of Theorem 2.2 will be the
so-called Lipschitz truncations of Sobolev functions. An application of these
Lipschitz approximations can be found in [13] where Frehse, Málek and Stein-
hauer showed the existence of solutions for steady flows with shear rate de-
pendent viscosity subject to the homogeneous Dirichlet boundary condition
for the case r > 2d

d+2
. A simplified version of the proof together with an-

other interesting application of Lipschitz approximations in existence theory
of incompressible electro-rheological fluids can be found in the recent study
by Diening, Málek and Steinhauer [11]. For the case of pressure and shear
rate dependent viscosity, we have already mentioned the existence result es-
tablished in [12] for exactly our problem for r between 3d

d+2
and 2. As for

unsteady flows, Málek, Nečas and Rajagopal in [23] and Hron, Málek, Nečas
and Rajagopal in [17] showed global-in-time existence under spatially peri-
odic boundary conditions and these results were extended to flows in bounded
domains subject to the Navier’s slip by Buĺıček, Málek and Rajagopal in
[10]. On the other hand, there is no global existence theory available both
for steady and unsteady flows of fluids whose viscosity depends only on the
pressure. There are several studies, such as by Renardy [27], Gazzola [14]
or Gazzola and Secchi [15], but all of them suffer from the drawback that
either the structure of the viscosity is contradicted by experiments or only
short-in-time existence of solutions for small data is shown. Recently, some
numerical solutions for the flows of fluids with pressure-dependent viscosities
in special geometries have been obtained by Hron, Málek and Rajagopal [16].
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3 Approximate system and existence of its

solutions

3.1 Introduction of the approximate system

In order to establish the existence of a weak solution to (P0), we introduce
an approximate system of equations (Pε,η) with the help of the so-called
quasi-compressible approximation.

It is based on the fact that no fluid is perfectly incompressible. There-
fore, we replace the constraint of incompressibility div v = 0 by a Neumann
problem for the pressure and for all ε > 0 of the form

−ε4pε + εpε + div vε = 0 in Ω

∂pε

∂n
= 0 on ∂Ω.

Such an approximation also ensures that we have information about the
pressure from the very beginning, which is crucial as the viscosity depends
on it.

In order to be able to test with the solution itself, we have to make sure
that all of the terms appearing in the weak formulation will make a good
sense. The trouble arises in the convective term and hence also another level
of approximation (η−approximation) is considered by introducing an extra
term to the equation of motion, namely

η|vε,η|2r′−2vε,η,

where r′ = r
r−1

.
Since div vε,η in no longer equal to zero and we would still like to deal

easily with the convective term (for preservation of uniform estimates), we
modify it as well. For this purpose, we decompose the ”approximate” velocity
vε,η in the following way (see Lemma A.3 and below)

vε,η := Pvε,η + gvε,η

,

where gvε,η
solves the following problem

div gvε,η

= div vε,η in Ω

gvε,η

= 0 on ∂Ω.
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Notice that from the definition it is obvious that divPvε,η = 0 a.e. in Ω and
therefore considering vε,η ⊗ Pvε,η instead of vε,η ⊗ vε,η gives∫

Ω

(vε,η ⊗ Pvε,η) · ∇vε,η dx = 0. (3.1)

Later on, we will see that thanks to the additional term η|vε,η|2r′−2vε,η the
expression (vε,η ⊗ Pvε,η) · ∇vε,η is indeed an integrable function.

Moreover, from Lemma A.3 we also have the estimates (A.2) and (A.3)
for gvε,η

and for Pvε,η, respectively.
Incorporating all of the above-mentioned modifications, we obtain the

approximate system (Pε,η) of the following form

η|vε,η|2r′−2vε,η + div(vε,η ⊗ Pvε,η)

− div(ν(pε,η, |DDD(vε,η)|2)DDD(vε,η)) +∇pε,η

}
= f in Ω (3.2)

−ε4pε,η + εpε,η + div vε,η = 0 in Ω (3.3)

∂pε,η

∂n
= 0 on ∂Ω

vε,η = 0 on ∂Ω.

Note that (3.2), (3.3) and the Gauss’ theorem imply that∫
Ω

pε,η dx = 0.

First, we will prove that there exists a weak solution to (Pε,η) and then
by letting ε→ 0 and η → 0 in the weak formulation of (Pε,η), which will be
done in Section 4, we shall obtain a weak solution to (P0).

3.2 Existence of solutions

Our goal is to show that for 2d
d+2

< r ≤ 3d
d+2

and for fixed ε, η > 0 there is a
weak solution (vε,η, pε,η) to the problem (Pε,η) such that

vε,η ∈ W 1,r
0 (Ω)d ∩ L2r′(Ω)d and pε,η ∈ W 1,2(Ω) (3.4)

and for all ξ ∈ W 1,2(Ω)

ε

∫
Ω

∇pε,η · ∇ξ dx + ε

∫
Ω

pε,ηξ dx +

∫
Ω

div vε,ηξ dx = 0 (3.5)
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and for all ϕ ∈ W 1,r
0 (Ω)d ∩ L2r′(Ω)d

η

∫
Ω

|vε,η|2r′−2vε,η·ϕ dx +

∫
Ω

ν(pε,η, |DDD(vε,η)|2)DDD(vε,η) ·DDD(ϕ) dx (3.6)

−
∫

Ω

(vε,η ⊗ Pvε,η) · ∇ϕ dx −
∫

Ω

pε,η divϕ dx = 〈f ,ϕ〉.

Note that all the integrals above make sense, including
∫

Ω
div vε,ηξ dx as

W 1,2(Ω) ↪→ Lr′(Ω) for r > 2d
d+2

. The proof of the existence is via Galerkin
approximations. Since ε, η > 0 are fixed, the dependence of the quantities
on ε and η is not designated in what follows.

Since all of the considered function spaces are separable, let {ak}∞k=1 be
a basis in W 1,r

0 (Ω)d ∩ L2r′(Ω)d and {αk}∞k=1 be a basis in W 1,2(Ω). We look
for approximations pN and vN of p and v of the form

pN =
N∑

k=1

cNk α
k and vN =

N∑
k=1

dN
k a

k for N = 1, 2, . . . , (3.7)

where cN = (cN1 , . . . , c
N
N) and dN = (dN

1 , . . . , d
N
N) solve the Galerkin system

(a system of 2N non-linear algebraic equations with 2N unknowns)

ε

∫
Ω

∇pN ·∇αr dx +ε

∫
Ω

pNαr dx −
∫

Ω

vN ·∇αr dx = 0 r = 1, . . . , N, (3.8)

η

∫
Ω

|vN |2r′−2vN · as dx +

∫
Ω

ν(pN ,
∣∣DDD(vN)

∣∣2)DDD(vN) ·DDD(as) dx (3.9)

−
∫

Ω

(vN ⊗ PvN) · ∇as dx +

∫
Ω

∇pN · as dx = 〈f ,as〉 s = 1, . . . , N.

The solvability follows from Lemma A.4, the proof of which is based on
Brouwer’s fixed point theorem, and uniform estimates. At first, we recall
that

SSS(pN ,DDD(vN)) := ν(pN ,
∣∣DDD(vN)

∣∣2)DDD(vN).

We define a mapping φN : R2N → R2N for s = 1, . . . , N through

φN
s (dN ,cN) := η

∫
Ω

|vN |2r′−2vN · as dx −
∫

Ω

(vN ⊗ PvN) · ∇as dx

+

∫
Ω

SSS(pN ,DDD(vN)) ·DDD(as) dx −
∫

Ω

pN divas dx− 〈f ,as〉
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and for s = N + 1, . . . , 2N through

φN
s (dN , cN) := ε

∫
Ω

∇pN · ∇αs−N dx + ε

∫
Ω

pNαs−N dx

−
∫

Ω

vN · ∇αs−N dx.

(3.10)

Notice that φN is a continuous mapping. If (dN
l , c

N
l ) → (dN , cN) in R2N

for l→∞, then also (vN
l , p

N
l ) → (vN , pN) in W 1,r

0 (Ω)d ∩ L2r′(Ω)d ×W 1,2(Ω)
for l → ∞. Remembering the definition (3.7) of pN and vN , considering
the second property of the viscosity from Lemma 2.2 with λ = 1 and using
Lebesgue’s dominated convergence theorem (see Theorem A.4), we can verify

φN(dN
l , c

N
l ) → φN(dN , cN) in R2N for l→∞.

Furthermore, from the definitions of pN , vN and the mapping φN and with
the use of (3.1) we can write

φN(dN , cN) · (dN , cN) =
2N∑
s=1

φN
s (dN , cN)(dN , cN)s

= η‖vN‖2r′

2r′ +

∫
Ω

SSS(pN ,DDD(vN)) ·DDD(vN) dx

−
∫

Ω

pN div vN dx− 〈f ,vN〉

+

∫
Ω

pN div vN dx+ ε‖∇pN‖2
2 + ε‖pN‖2

2

= η‖vN‖2r′

2r′ + ε‖∇pN‖2
2 + ε‖pN‖2

2

+

∫
Ω

SSS(pN ,DDD(vN)) ·DDD(vN) dx− 〈f ,vN〉.

After using the growth of the viscosity (2.9) with λ = 1, Hölder’s, Korn’s
and Poincaré’s inequalities, we arrive at

φN(dN , cN) · (dN , cN) ≥ C‖vN‖r
1,r − ‖f‖−1,r′‖vN‖1,r

≥ C‖vN‖1,r(‖vN‖r−1
1,r − C).

Since r > 1, Lemma A.5 guarantees that also the second assumption of
Lemma A.4 is fulfilled. Therefore, we can apply it to obtain that

∃ (dN , cN) : φN(dN , cN) = 0.
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To derive the uniform estimates, we multiply the r-th equation in (3.8)
by cNr and sum all equations for r = 1, . . . , N and then multiply the s-th
equation in (3.9) by dN

s and sum the equations for s = 1, . . . , N . Thus,

ε‖∇pN‖2
2 + ε‖pN‖2

2 +

∫
Ω

pN div vN dx = 0,

η‖vN‖2r′

2r′ +

∫
Ω

SSS(pN ,DDD(vN)) ·DDD(vN) dx −
∫

Ω

pN div vN dx = 〈f ,vN〉,

and after summing these identities

ε‖∇pN‖2
2+ε‖pN‖2

2+η‖vN‖2r′

2r′+

∫
Ω

SSS(pN ,DDD(vN))·DDD(vN) dx = 〈f ,vN〉. (3.11)

Now, on using the property (2.8) of the viscosity, Korn’s, Young’s and
Poincaré’s inequalities, we get

ε‖∇pN‖2
2 + ε‖pN‖2

2 + C‖∇vN‖r
r + η‖vN‖2r′

2r′ ≤ C <∞

and with the help of (2.9) with λ = 1 also

‖SSS(pN ,DDD(vN))‖r′ ≤ C <∞.

Therefore, thanks to Theorem A.1 from reflexivity of the function spaces we
can find a subsequence (we denote it as the original sequence) such that

vN ⇀ v weakly in W 1,r
0 (Ω)d,

vN ⇀ v weakly in L2r′(Ω)d,

pN ⇀ p weakly in W 1,2(Ω),

SSS(pN ,DDD(vN)) ⇀ χ weakly in Lr′(Ω)d×d,

and due to the compact embedding and the interpolation inequality (see
Theorem A.3 and Lemma A.2)

vN → v strongly in Lq(Ω)d for all q : 1 ≤ q <
dr

d− r
,

vN → v strongly in Lq(Ω)d for all q : 1 ≤ q < 2r′,

vN → v almost everywhere in Ω,

pN → p strongly in L2(Ω).

(3.12)
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Owing to the estimate (A.3)2 we also have that

PvN → Pv strongly in Lq(Ω)d for all q : 1 ≤ q < 2r′.

Moreover, the estimate ‖|vN |2r′−2vN‖ 2r′
2r′−1

= ‖vN‖2r′−1
2r′ ≤ C and the fact

that |vN |2r′−2vN → |v|2r′−2v a.e. in Ω imply that

|vN |2r′−2vN ⇀ |v|2r′−2v weakly in L
2r′

2r′−1 (Ω)d. (3.13)

These convergences allow us to obtain the limit in (3.8)-(3.9). Letting N
tend to infinity, for all base functions αr and as we arrive at

ε

∫
Ω

∇p · ∇αr dx + ε

∫
Ω

pαr dx +

∫
Ω

div v αr dx = 0 for all r ∈ N

and

η

∫
Ω

|v|2r′−2v · as dx +

∫
Ω

χ ·DDD(as) dx −
∫

Ω

(v ⊗ Pv) · ∇as dx

−
∫

Ω

p divas dx = 〈f ,as〉 for all s ∈ N.

From the density of linear spans of the base functions we conclude that for
all ξ ∈ W 1,2(Ω) and all ϕ ∈ W 1,r

0 (Ω)d ∩ L2r′(Ω)d

ε

∫
Ω

∇p · ∇ξ dx + ε

∫
Ω

p ξ dx +

∫
Ω

div v ξ dx = 0

and

η

∫
Ω

|v|2r′−2v ·ϕ dx +

∫
Ω

χ ·DDD(ϕ) dx −
∫

Ω

(v ⊗ Pv) · ∇ϕ dx

−
∫

Ω

p divϕ dx = 〈f ,ϕ〉.
(3.14)

In particular, testing with ξ = p in the first identity and ϕ = v in the second
one (note that both of these functions are admissible test functions) and
summing them gives us

ε‖∇p‖2
2 + ε‖p‖2

2 + η‖v‖2r′

2r′ +

∫
Ω

χ ·DDD(ϕ) dx = 〈f ,v〉. (3.15)
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In order to finish the proof, we need to identify χ in (3.14). For this purpose,
it is enough to show that

DDD(vN) → DDD(v) strongly in Lr(Ω)d×d. (3.16)

Once we have (3.12)4 and (3.16), we can find another (again not relabelled)
subsequence such that

pN → p a.e. in Ω and DDD(vN) → DDD(v) a.e. in Ω. (3.17)

Vitali’s theorem (see Theorem A.5) then completes the proof by showing that∫
Ω

SSS(pN ,DDD(vN)) ·DDD(ϕ) dx→
∫

Ω

SSS(p,DDD(v)) ·DDD(ϕ) dx =

∫
Ω

χ ·DDD(ϕ) dx.

Indeed, knowing (3.17), we have

SSS(pN ,DDD(vN)) ·DDD(ϕ) → SSS(p,DDD(v)) ·DDD(ϕ) a.e. in Ω.

The second assumption of the theorem is then also satisfied as from (2.9)
with λ = 1 follows that∫

E

SSS(pN ,DDD(vN))·DDD(ϕ) dx ≤ C(1+‖DDD(vN)‖r,E)r−1‖∇ϕ‖r,E ≤ C‖∇ϕ‖r,E ≤ ε.

In order to show (3.16), we recall the monotonicity condition (2.7) from
Lemma 2.1. Since ‖DDD(vN)‖r ≤ C and ‖DDD(v)‖r ≤ C, we can see that

‖DDD(vN)−DDD(v)‖2
r ≤ C

∫
Ω

I vN ,v dx, (3.18)

where∫
Ω

I vN ,v dx =

=

∫
Ω

∫ 1

0

(1 +
∣∣DDD(v) + s(DDD(vN)−DDD(v))

∣∣2) r−2
2

∣∣DDD(vN)−DDD(v)
∣∣2 ds dx.
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Thus, from (3.18) and (3.11) we get

C‖DDD(vN)−DDD(v)‖2
r

≤
∫

Ω

(SSS(pN ,DDD(vN))− SSS(p,DDD(v))) · (DDD(vN)−DDD(v)) dx+
γ2

0

2C1

‖pN − p‖2
2

≤
∫

Ω

SSS(pN ,DDD(vN)) ·DDD(vN) dx−
∫

Ω

SSS(p,DDD(v)) · (DDD(vN)−DDD(v)) dx

−
∫

Ω

SSS(pN ,DDD(vN)) ·DDD(v) dx+
γ2

0

2C1

‖pN − p‖2
2

= 〈f ,vN〉 − ε‖∇pN‖2
2 − ε‖pN‖2

2 − η‖vN‖2r′

2r′ +
γ2

0

2C1

‖pN − p‖2
2

−
∫

Ω

SSS(p,DDD(v)) · (DDD(vN)−DDD(v)) dx−
∫

Ω

SSS(pN ,DDD(vN)) ·DDD(v) dx,

which can be rewritten as

ε‖∇pN‖2
2 + η‖vN‖2r′

2r′ + C‖DDD(vN)−DDD(v)‖2
r

≤ 〈f ,vN〉 − ε‖pN‖2
2 +

γ2
0

2C1

‖pN − p‖2
2

−
∫

Ω

SSS(p,DDD(v)) · (DDD(vN)−DDD(v)) dx.

−
∫

Ω

SSS(pN ,DDD(vN)) ·DDD(v) dx.

Letting N →∞ and using the weak lower semicontinuity of norms, namely

lim inf
N→∞

‖∇pN‖2
2 ≥ ‖∇p‖2

2,

lim inf
N→∞

‖vN‖2r′

2r′ ≥ ‖v‖2r′

2r′ ,

we obtain

lim sup
N→∞

‖DDD(vN)−DDD(v)‖2
r ≤ 〈f ,v〉−ε‖∇p‖2

2−ε‖p‖2
2−η‖v‖2r′

2r′−
∫

Ω

χ ·DDD(v) dx,

which together with (3.15) implies that

lim sup
N→∞

‖DDD(vN)−DDD(v)‖2
r ≤ 0,

and thus (3.16) follows. �
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4 Proof of the existence theorem

The goal of this section is to provide a proof of Theorem 2.2 and thus to
establish the desired existence result. The proof is split into several steps
that will be discussed in the following subsections. In order to obtain a weak
solution to the problem (P0), we first recall the approximate system (Pε,η)
and then let ε and η tend to 0 in its weak formulation. In both limits the
difficulty occurs in the term with the viscosity as the viscosity itself depends
on the pressure and on the shear rate. Therefore, several extra tools are
needed such as a decomposition of the pressure or the so-called Lipschitz
approximations of Sobolev functions.

4.1 Limit ε→ 0

We suppose that for all ε, η > 0 and r fulfilling 2d
d+2

< r ≤ 3d
d+2

there is
a weak solution (vε,η, pε,η) to the problem (Pε,η) satisfying (3.4)–(3.6). For
simplicity, we write (vε, pε) instead of (vε,η, pε,η).

4.1.1 Uniform estimates and their consequences

We start with the derivation of uniform estimates for vε and pε. Taking
ξ = pε in (3.5) and ϕ = vε in (3.6) leads to

η‖vε‖2r′

2r′ +

∫
Ω

ν(pε, |DDD(vε)|2) |DDD(vε)|2 dx −
∫

Ω

pε div vε dx = 〈f ,vε〉

ε‖∇pε‖2
2 + ε‖pε‖2

2 +

∫
Ω

pε div vε dx = 0.

(4.1)

On summing these identities, using (2.8), Korn’s, Young’s and Poincaré’s
inequalities, we conclude from (4.1) that

ε‖∇pε‖2
2 + ε‖pε‖2

2 + C‖∇vε‖r
r + η‖vε‖2r′

2r′ ≤ C <∞ (4.2)

and then from (2.9) with λ = 1 and (4.2) that

‖ν(pε, |DDD(vε)|2)DDD(vε)‖r′ ≤ C <∞. (4.3)
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In order to obtain an estimate for the pressure pε independent of ε, we take
ϕ = ϕε as a test function in (3.6), where ϕε solves

divϕε = |pε|s−2 pε − 1

|Ω|

∫
Ω

|pε|s−2 pε dx =: hε in Ω

ϕε = 0 on ∂Ω,

with s = 2dr
(d−2)r+d

. Note that ϕε satisfies

‖ϕε‖1,q ≤ Cdiv(Ω, q)‖hε‖q for all q : 1 < q ≤ s′ =
2dr

(d+ 2)r − d
,

and for q = s′ in particular we have

‖ϕε‖1,s′ ≤ 2Cdiv(Ω, s
′)‖pε‖s−1

s . (4.4)

We use the fact that
∫

Ω
pε dx = 0 and with the help of (2.9), (4.2), (4.4) and

Sobolev embeddings, namely W 1,s′(Ω) ↪→ L2r′(Ω), we can conclude (note
that r ≤ s′ and s ≤ r′)

‖pε‖s
s =

∫
Ω

ν(pε, |DDD(vε)|2)DDD(vε) ·DDD(ϕε) dx − 〈f ,ϕε〉

−
∫

Ω

(vε ⊗ Pvε) · ∇ϕε dx + η

∫
Ω

|vε|2r′−2vε ·ϕε dx

≤ C(1 + ‖DDD(vε)‖r)
r−1‖ϕε‖1,r + ‖f‖−1,r′‖ϕε‖1,r

+ ‖vε ⊗ Pvε‖s‖∇ϕε‖s′ + η‖vε‖2r′−1
2r′ ‖ϕε‖2r′

≤ C(η)‖ϕε‖1,s′ ≤ C(η)‖pε‖s−1
s ,

which leads to
‖pε‖ 2dr

(d−2)r+d
≤ C(η) <∞. (4.5)

According to Theorem A.1, reflexivity of the function spaces and the esti-
mates (4.2), (4.5) and (4.3) allow us to find a (not relabelled) subsequence

(vε, pε) and (v, p) ∈ W 1,r
0 (Ω)d ∩ L2r′(Ω)d × L

2dr
(d−2)r+d

0 (Ω) such that

DDD(vε) ⇀ DDD(v) weakly in Lr(Ω)d×d,

∇vε ⇀ ∇v weakly in Lr(Ω)d×d,

vε ⇀ v weakly in W 1,r
0 (Ω)d,

vε ⇀ v weakly in L2r′(Ω)d,

pε ⇀ p weakly in L
2dr

(d−2)r+d

0 (Ω),

ν(pε, |DDD(vε)|2)DDD(vε) ⇀ νDDD weakly in Lr′(Ω)d×d,

(4.6)
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and due to the compact embedding, the interpolation inequality and by using
the same arguments as for (3.13)

vε → v strongly in Lq(Ω)d for all 1 ≤ q <
dr

d− r
,

vε → v strongly in Lq(Ω)d for all 1 ≤ q < 2r′,

|vε|2r′−2vε ⇀ |v|2r′−2v weakly in L
2r′

2r′−1 (Ω)d.

(4.7)

We would like to pass to the limit in the identities (3.5) and (3.6) of the weak
formulation of (Pε,η). Doing so, it follows directly from the first identity and
from (4.2) that

div v = 0 a.e. in Ω. (4.8)

This fact helps us to treat the convective term, for (4.8) and (4.7)2 imply
that

Pvε → v strongly in Lq(Ω)d for all q : 1 ≤ q < 2r′, (4.9)

which can be gained from the definition of Pvε and gvε
and from estimates

(A.2) and (A.3). From that and from (4.7)2 we get∫
Ω

(vε ⊗ Pvε) · ∇ϕ dx→
∫

Ω

(v ⊗ v) · ∇ϕ dx ∀ϕ ∈ C∞0 (Ω)d.

We easily obtain the limit in the term involving the pressure∫
Ω

pε divϕ dx→
∫

Ω

p divϕ dx ∀ϕ ∈ C∞0 (Ω)d

and according to (4.7)3 we also have

η

∫
Ω

|vε|2r′−2vε ·ϕ dx→ η

∫
Ω

|v|2r′−2v ·ϕ dx ∀ϕ ∈ C∞0 (Ω)d.

To prove the convergence of the term with the viscosity, i.e., to show that∫
Ω

ν(pε, |DDD(vε)|2)DDD(vε) ·DDD(ϕ) dx→
∫

Ω

ν(p, |DDD(v)|2)DDD(v) ·DDD(ϕ) dx, (4.10)

we need to know that

pε → p a.e. in Ω and DDD(vε) → DDD(v) a.e. in Ω, (4.11)

at least for a subsequence. Similarly as for the existence for the Galerkin
system in Section 3.2., Vitali’s theorem (see Theorem A.5) then completes
this part of the proof.

The proof of (4.11) is contained in the next subsection.
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4.1.2 Almost everywhere convergence of pε and DDD(vε)

In order to show (4.11), we first decompose the pressure pε into two particular
pressures. The first one will converge strongly in some Lebesgue space and
the other one only weakly but in some ”better” Lebesgue space, for example
in Lr′(Ω). As a second step, we recall the monotonicity condition (2.7) for
the viscosity, with the help of which we then will be able to prove (4.11).

For the decomposition of the pressure, we consider two auxiliary Stokes
problems

−4vε
i +∇pε

i = hε
i in Ω

div vε
i = 0 in Ω

vε
i = 0 on ∂Ω, i = 1, 2,

(4.12)

where

hε
1 = div(ν(pε, |DDD(vε)|2)DDD(vε)) + f ∈ (W 1,r

0 (Ω))∗

hε
2 = − div(vε ⊗ Pvε)− η|vε|2r′−2vε ∈ (W 1,s′

0 (Ω))∗, s′ =
2dr

(d+ 2)r − d
.

The classical theory for the Stokes system (see for example [3]) implies the
existence of solutions (vε

i , p
ε
i ), i = 1, 2, with the following estimates for ∇vε

i

and for the pressures pε
i having zero mean value

‖∇vε
1‖r′ + ‖pε

1‖r′ ≤ C‖hε
1‖(W 1,r

0 (Ω))∗ ≤ C + C‖ν(pε, |DDD(vε)|2)DDD(vε)‖r′

‖∇vε
2‖s + ‖pε

2‖s ≤ C‖hε
2‖(W 1,s′

0 (Ω))∗
≤ C‖vε ⊗ Pvε‖s + Cη‖vε‖2r′−1

2r′

≤ C(η)‖vε‖2r′ .

From the continuity of the Stokes operator and owing to (4.3) and (4.7)2,
these estimates yield that

∇vε
1 ⇀ ∇v1 weakly in Lr′(Ω)d×d,

pε
1 ⇀ p1 weakly in Lr′(Ω),

∇vε
2 → ∇v2 strongly in Lq(Ω)d×d,

pε
2 → p2 strongly in Lq(Ω),

(4.13)

where q ∈ [1, 2dr
(d−2)r+d

). Moreover, from the uniqueness of solutions of the
Stokes system we have

pε = pε
1 + pε

2 and vε
1 = −vε

2 (4.14)
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and therefore also

∇vε
1 → ∇v1 strongly in Lq(Ω)d×d. (4.15)

Let us now again remind the definition of

SSS(p,DDD) := ν(p, |DDD|2)DDD

and let us integrate the monotonicity condition (2.7) from Lemma 2.1 with
DDD1 = DDD(vε), DDD2 = DDD(v), p1 = pε and p2 = p1 + pε

2 over the domain Ω. We
obtain

C1

2

∫
Ω

I vε,v dx ≤
∫

Ω

(SSS(pε,DDD(vε))− SSS(p1 + pε
2,DDD(v))) · (DDD(vε)−DDD(v)) dx

+
γ2

0

2C1

‖pε
1 − p1‖2

2, (4.16)

where∫
Ω

I vε,v dx = (4.17)

=

∫
Ω

∫ 1

0

(1 + |DDD(v) + s(DDD(vε)−DDD(v))|2)
r−2
2 |DDD(vε)−DDD(v)|2 ds dx.

Our aim is to show that∫
Ω

I vε,v dx→ 0 for ε→ 0.

Firstly, since pε
2 converges pointwisely a.e., (2.9) with λ = 1 and Lebesgue’s

dominated convergence theorem (Theorem A.4) imply that

SSS(p1 + pε
2,DDD(v)) → SSS(p,DDD(v)) strongly in Lr′(Ω)d×d. (4.18)

Therefore,∫
Ω

SSS(p1 + pε
2,DDD(v)) · (DDD(vε)−DDD(v)) dx→ 0 for ε→ 0. (4.19)

Next, considering the weak formulation (3.6) with ϕ = vε − v, we arrive at∫
Ω

SSS(pε,DDD(vε)) ·DDD(vε − v) dx =

∫
Ω

pε div(vε − v) dx+ 〈f ,vε − v〉

+

∫
Ω

(vε ⊗ Pvε) · ∇(vε − v) dx

− η

∫
Ω

|vε|2r′−2vε · (vε − v) dx.
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As div v = 0 a.e. in Ω and
∫

Ω
pε div vε dx = −ε‖∇pε‖2

2 − ε‖pε‖2
2, which

follows from (3.5) with ξ = pε, and since the terms ε‖∇pε‖2
2 + ε‖pε‖2

2 are
non-negative, we then conclude∫

Ω

SSS(pε,DDD(vε)) ·DDD(vε − v) dx ≤
∫

Ω

(vε ⊗ Pvε) · ∇(vε − v) dx

− η

∫
Ω

|vε|2r′−2vε · (vε − v) dx

+ 〈f ,vε − v〉

=

∫
Ω

(vε ⊗ Pvε) · ∇(vε − v) dx

− η‖vε‖2r′

2r′ + η

∫
Ω

|vε|2r′−2vε · v dx

+ 〈f ,vε − v〉.

Consequently,∫
Ω

SSS(pε,DDD(vε)) ·DDD(vε − v) dx+ η‖vε‖2r′

2r′ ≤
∫

Ω

(vε ⊗ Pvε) · ∇(vε − v) dx

+ η

∫
Ω

|vε|2r′−2vε · v dx (4.20)

+ 〈f ,vε − v〉.

Moreover, on letting ε tend to 0 and using the weak lower semicontinuity of
a norm, in our case

lim inf
ε→0

‖vε‖2r′

2r′ ≥ ‖v‖2r′

2r′ ,

we find that

lim sup
ε→0

∫
Ω

SSS(pε,DDD(vε)) ·DDD(vε − v) dx ≤ g(ε), (4.21)

where g(ε) → 0 as ε → 0, since it follows directly from (3.1), (4.7)2, (4.9)
and (4.7)3 that the first and the last integral on the right-hand side of (4.20)
vanish as ε→ 0 and

lim
ε→0

η

∫
Ω

|vε|2r′−2vε · v dx = η

∫
Ω

|v|2r′ dx = η‖v‖2r′

2r′ .
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In view of (4.21) together with (4.19), the condition (4.16) can be expressed
as

C1

2

∫
Ω

I vε,v dx ≤ g(ε) +
γ2

0

2C1

‖pε
1 − p1‖2

2, (4.22)

with g(ε) → 0 as ε→ 0.
In order to handle the term ‖pε

1− p1‖2
2, we consider the weak formulation

of (4.12), i = 1, with a special test function ϕε satisfying

divϕε = pε
1 − p1 in Ω

ϕε = 0 on ∂Ω (4.23)

‖ϕε‖1,q ≤ Cdiv(Ω, q)‖pε
1 − p1‖q for all q : 1 < q ≤ r′.

Note that
∫

Ω
(pε

1 − p1) dx = 0. Since pε
1 ⇀ p1 weakly in Lr′(Ω), from the

continuity and linearity of the Bogovskii operator (Lemma A.3) we see that

ϕε ⇀ 0 weakly in W 1,r′(Ω)d. (4.24)

We have

‖pε
1 − p1‖2

2 =

∫
Ω

∇vε
1 · ∇ϕε dx+

∫
Ω

SSS(pε,DDD(vε)) ·DDD(ϕε) dx

− 〈f ,ϕε〉 −
∫

Ω

p1(p
ε
1 − p1) dx

=

∫
Ω

∇vε
1 · ∇ϕε dx +

∫
Ω

SSS(p1 + pε
2,DDD(v)) ·DDD(ϕε) dx (4.25)

+

∫
Ω

(SSS(pε,DDD(vε))− SSS(p1 + pε
2,DDD(v))) ·DDD(ϕε) dx

− 〈f ,ϕε〉 −
∫

Ω

p1(p
ε
1 − p1) dx.

From (4.24) and from (4.13)2 we easily obtain

lim
ε→0

(〈f ,ϕε〉+

∫
Ω

p1(p
ε
1 − p1)dx) = 0. (4.26)

Moreover, using the same arguments as in (4.18) and (4.19), we get∫
Ω

SSS(p1 + pε
2,DDD(v)) ·DDD(ϕε) dx→ 0 for ε→ 0. (4.27)
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Since∇ϕε ⇀ 0 weakly in Lr′(Ω)d×d and r′ > 2, ∇ϕε ⇀ 0 weakly in L2(Ω)d×d

as well. ∇vε
1 ⇀ ∇v1 weakly in Lr′(Ω)d×d and according to (4.15) and q ≥ 1,

we also have ∇vε
1 → ∇v1 strongly in L1(Ω)d×d. The interpolation inequality

(Lemma A.2) with θ = 2−r
2
∈ (0, 1) yields that

∇vε
1 → ∇v1 strongly in L2(Ω)d×d.

Consequently, ∫
Ω

∇vε
1 · ∇ϕε dx→ 0 for ε→ 0. (4.28)

From (4.26), (4.27) and (4.28) we then arrive at

‖pε
1 − p1‖2

2 = g(ε) +

∫
Ω

(SSS(pε,DDD(vε))− SSS(p1 + pε
2,DDD(v))) ·DDD(ϕε) dx,

where g(ε) → 0 for ε → 0. After applying the assumptions (2.4) and (2.5)
to the integral on the right-hand side, we obtain

‖pε
1 − p1‖2

2 ≤ g(ε) + γ0

∫
Ω

|pε
1 − p1||DDD(ϕε)| dx

+ C2

∫
Ω

∫ 1

0

(1 + |DDD(v) + s(DDD(vε)−DDD(v))|2)
r−2
2 |DDD(vε)−DDD(v)| |DDD(ϕε)|ds dx.

Now, we recall the definition of
∫

Ω
I vε,v dx in (4.17) and use the fact that

r < 2. Hölder’s inequality, r′ > 2 and (4.23)3 with q = 2 then imply

‖pε
1 − p1‖2

2 ≤ g(ε) + γ0‖pε
1 − p1‖2‖∇ϕε‖2 + C2

(∫
Ω

I vε,v dx

) 1
2

‖∇ϕε‖2

≤ g(ε) + γ0Cdiv(Ω, 2)‖pε
1 − p1‖2

2

+ C2Cdiv(Ω, 2)

(∫
Ω

I vε,v dx

) 1
2

‖pε
1 − p1‖2.

Applying Young’s inequality gives

(1− γ0Cdiv(Ω, 2))‖pε
1 − p1‖2

2 ≤ g(ε) +
1− γ0Cdiv(Ω, 2)

2
‖pε

1 − p1‖2
2

+
C2

2C
2
div(Ω, 2)

2(1− γ0Cdiv(Ω, 2))

∫
Ω

I vε,v dx.
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As 1− γ0Cdiv(Ω, 2)− 1−γ0Cdiv(Ω,2)
2

> 0 due to (2.6), we then conclude

‖pε
1 − p1‖2

2 ≤ g(ε) +
C2

2C
2
div(Ω, 2)

(1− γ0Cdiv(Ω, 2))2

∫
Ω

I vε,v dx. (4.29)

Coming back to (4.22) and incorporating (4.29), we finally get

C1

2

∫
Ω

I vε,v dx ≤ g(ε) +
γ2

0

2C1

C2
2C

2
div(Ω, 2)

(1− γ0Cdiv(Ω, 2))2

∫
Ω

I vε,v dx,

with g(ε) → 0 for ε → 0. As C1

2
− γ2

0

2C1

C2
2C2

div(Ω,2)

(1−γ0Cdiv(Ω,2))2
> 0, again thanks to

(2.6), we indeed have ∫
Ω

I vε,v dx→ 0 for ε→ 0. (4.30)

The almost everywhere convergence (at least for a subsequence) of the
pressure pε in Ω then follows from (4.14) since (4.30) and (4.29) imply the
a.e. convergence of the pressure pε

1 and from (4.13)4 also the pressure pε
2

converges a.e. in Ω.
It remains to show the almost everywhere convergence of the symmetric

part of the velocity gradient DDD(vε). After using the fact that ‖∇vε‖r ≤ C,
‖∇v‖r ≤ C and r < 2 and after applying Hölder’s inequality, we arrive at∫

Ω

|DDD(vε − v)| dx

≤
∫

Ω

(I vε,v)
1
2

(∫ 1

0

(1 + |DDD(v) + s(DDD(vε − v))|2)
r−2
2 ds

)− 1
2

dx

≤ C

∫
Ω

(I vε,v)
1
2 (1 + |DDD(vε)|+ |DDD(v)|)

2−r
2 dx

≤ C

(∫
Ω

I vε,v dx

) 1
2

(1 + ‖∇vε‖r + ‖∇v‖r)
2−r
2 |Ω|

1
r′

≤ C

(∫
Ω

I vε,v dx

) 1
2 (4.30)→ 0

and at least for a subsequence we conclude that

DDD(vε) → DDD(v) a.e. in Ω. (4.31)

Using Vitali’s theorem then proves (4.10).
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4.2 Limit η → 0

We have already established the existence of a weak solution to the following
system (Pη)

η|vη|2r′−2vη + div(vη ⊗ vη)− div(ν(pη, |DDD(vη)|2)DDD(vη)) +∇pη = f in Ω

div vη = 0 in Ω

vη = 0 on ∂Ω.

In this subsection we would like to pass to the limit in η in its weak formu-
lation and obtain a weak solution to the system (P0). Similarly as in the
preceding subsection, we first derive the uniform estimates. Then in order to
be able to pass to the limit in the viscosity term, we show the almost every-
where convergence of the pressure and the symmetric part of the velocity
gradient with the help of the Lipschitz approximations.

From technical reasons, we set η := 1
n

and thus if η → 0, then n→∞.

4.2.1 Uniform estimates and their consequences

Let us consider vn ∈ W 1,r
0 (Ω)d ∩L2r′(Ω)d satisfying div vn = 0 a.e. in Ω and

1

n

∫
Ω

|vn|2r′−2vn ·ϕ dx +

∫
Ω

ν(pn, |DDD(vn)|2)DDD(vn) ·DDD(ϕ) dx (4.32)

−
∫

Ω

(vn ⊗ vn) · ∇ϕ dx −
∫

Ω

pn divϕ dx = 〈f ,ϕ〉,

for all ϕ ∈ C∞0 (Ω)d or else for all ϕ ∈ W 1,r
0 (Ω)d ∩ L2r′(Ω)d, divϕ = 0.

Taking ϕ = vn in (4.32) and using the same arguments as in (4.2), we
verify

C‖∇vn‖r
r +

1

n
‖vn‖2r′

2r′ ≤ C <∞ (4.33)

and then again from (2.9) with λ = 1 and (4.33) we have that

‖ν(pn, |DDD(vn)|2)DDD(vn)‖r′ ≤ C <∞. (4.34)

In order to obtain an estimate for the pressure pn independent of n, we apply
the same procedure as for pε, namely we take the test function ϕ = ϕn in
(4.32), where ϕn solves

divϕn = |pn|s−2 pn − 1

|Ω|

∫
Ω

|pn|s−2 pn dx =: hn in Ω

ϕn = 0 on ∂Ω,
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with s = dr
2(d−r)

. The function ϕn then fulfills

‖ϕn‖1,q ≤ Cdiv(Ω, q)‖hn‖q for all q : 1 < q ≤ s′ =
dr

(d+ 2)r − 2d

and for q = s′ we have

‖ϕn‖1,s′ ≤ 2Cdiv(Ω, s
′)‖pn‖s−1

s . (4.35)

Note that
∫

Ω
pn dx = 0. With the help of (2.9), (4.33), (4.35), the embedding

W 1,s1 ↪→ L2r′(Ω), s1 = 2dr
(d+2)r−d

, and the fact that s1 ≤ s′ and r+1
2r

≤ 1 we
conclude

‖pn‖s
s =

∫
Ω

ν(pn, |DDD(vn)|2)DDD(vn) ·DDD(ϕn) dx − 〈f ,ϕn〉

−
∫

Ω

(vn ⊗ vn) · ∇ϕn dx +
1

n

∫
Ω

|vn|2r′−2vn ·ϕn dx

≤ C(1 + ‖DDD(vn)‖r)
r−1‖ϕn‖1,r + ‖f‖−1,r′‖ϕn‖1,r

+ ‖vn ⊗ vn‖s‖∇ϕn‖s′ +
1

n
‖vn‖2r′−1

2r′ ‖ϕn‖2r′

≤ C‖ϕn‖1,s′ + C
1

n
(‖vn‖2r′

2r′)
r+1
2r ‖ϕn‖1,s1

≤ C‖ϕn‖1,s′ ≤ C‖pε‖s−1
s ,

which leads to
‖pn‖ dr

2(d−r)
≤ C <∞. (4.36)

Owing to (4.33), (4.36), (4.34) and Theorem A.1 we can again find a (not

relabelled) subsequence (vn, pn) and (v, p) ∈ W 1,r
0,div(Ω)d × L

dr
2(d−r)

0 (Ω) such
that

DDD(vn) ⇀ DDD(v) weakly in Lr(Ω)d×d,

∇vn ⇀ ∇v weakly in Lr(Ω)d×d,

vn ⇀ v weakly in W 1,r
0,div(Ω)d,

pn ⇀ p weakly in L
dr

2(d−r)

0 (Ω),

ν(pn, |DDD(vn)|2)DDD(vn) ⇀ νDDD weakly in Lr′(Ω)d×d,

(4.37)

and due to the compact embedding

vn → v strongly in Lq(Ω)d for all q : 1 ≤ q <
dr

d− r
. (4.38)
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Especially, vn → v strongly in L2(Ω)d (as r > 2d
d+2

).
Thus, after passing to the limit in (4.32), we get∫

Ω

(vn ⊗ vn) · ∇ϕ dx→
∫

Ω

(v ⊗ v) · ∇ϕ dx ∀ϕ ∈ W 1,∞
0 (Ω)d.

We can easily obtain the limit in the term involving the pressure∫
Ω

pn divϕ dx→
∫

Ω

p divϕ dx ∀ϕ ∈ W 1,∞
0 (Ω)d,

since r > 2d
d+2

, and therefore the pressure pn converges weakly also in L1(Ω).
We also have

1

n

∫
Ω

|vn|2r′−2vn ·ϕ dx→ 0 ∀ϕ ∈ L∞(Ω)d.

It remains to prove the convergence of the viscosity term, i.e., to show that
for n→∞ and for all ϕ ∈ W 1,∞

0 (Ω)d∫
Ω

ν(pn, |DDD(vn)|2)DDD(vn) ·DDD(ϕ) dx→
∫

Ω

ν(p, |DDD(v)|2)DDD(v) ·DDD(ϕ) dx.

For this purpose, we again need to know that

pn → p a.e. in Ω and DDD(vn) → DDD(v) a.e. in Ω, (4.39)

at least for a subsequence. Vitali’s theorem (Theorem A.5) then completes
the whole proof.

The proof of (4.39) is a subject of the following subsection.

4.2.2 Almost everywhere convergence of pn and DDD(vn)

In order to show (4.39), we again decompose the pressure pn into two pres-
sures and recall the monotonicity of the viscosity (2.7). However, we use
this condition in a different way as in Section 4.1.2. We apply the so-called
Lipschitz approximations of Sobolev functions that (as we are going to see)
are essential for our proof.

By an analogous procedure we deal with the decomposition of the pres-
sure. Consider again two auxiliary Stokes problems

−4vn
i +∇pn

i = hn
i in Ω

div vn
i = 0 in Ω

vn
i = 0 on ∂Ω, i = 1, 2,

(4.40)
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this time with the right-hand sides

hn
1 = div(ν(pn, |DDD(vn)|2)DDD(vn)) + f ∈ (W 1,r

0 (Ω))∗

hn
2 = − div(vn ⊗ vn)− 1

n
|vn|2r′−2vn ∈ (W 1,s′

0 (Ω))∗, s′ =
dr

(d+ 2)r − 2d
.

The existence theory for the Stokes system then yields the existence of so-
lutions (vn

i , p
n
i ), i = 1, 2, satisfying the following estimates for ∇vn

i and for
the pressures pn

i having zero mean value

‖∇vn
1‖r′ + ‖pn

1‖r′ ≤ C‖hn
1‖(W 1,r

0 (Ω))∗ ≤ C + C‖ν(pn, |DDD(vn)|2)DDD(vn)‖r′

‖∇vn
2‖s+ ‖pn

2‖s ≤ C‖hn
2‖(W 1,s′

0 (Ω))∗
≤ C‖vn ⊗ vn‖s+ C

1

n
1

2r′

(
1

n
‖vn‖2r′

2r′

) r+1
2r

.

From these inequalities thanks to (4.34), (4.33) and (4.38) we get

∇vn
1 ⇀ ∇v1 weakly in Lr′(Ω)d×d,

pn
1 ⇀ p1 weakly in Lr′(Ω),

∇vn
2 → ∇v2 strongly in Lq(Ω)d×d,

pn
2 → p2 strongly in Lq(Ω),

(4.41)

where q ∈ [1, dr
2(d−r)

). Furthermore, the uniqueness of solutions of the Stokes
problem again implies that

pn = pn
1 + pn

2 and vn
1 = −vn

2 (4.42)

and consequently

∇vn
1 → ∇v1 strongly in Lq(Ω)d×d.

Remembering again the notation SSS(p,DDD) := ν(p, |DDD|2)DDD, we now recall the
monotonicity condition (2.7) from Lemma 2.1 with DDD1 = DDD(vn), DDD2 = DDD(v),
p1 = pn and p2 = p1 + pn

2 , but this time we will not consider the integration
over the whole domain Ω. Unlike the similar situation (4.16) in Section 4.1.2,
we cannot now use ϕ = vn − v as a test function in order to treat the term∫

Ω

SSS(pn,DDD(vn)) ·DDD(vn − v) dx.
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The reason is the fact that we are interested in the case when 2d
d+2

< r ≤ 3d
d+2

and for this v is not an admissible test function anymore. The trouble is
caused by the convective term since

∫
Ω
(vn⊗vn) ·∇(vn−v) dx→ 0 provided

that r > 3d
d+2

.
Nevertheless, we notice that thanks to (4.37)3 the functions

un := vn − v

satisfy the assumptions of Theorem A.6 on Lipschitz approximations of func-
tions from W 1,r

0 (Ω)d. Therefore, there exists a sequence un,j ∈ W 1,∞
0 (Ω)d

possessing the properties (A.5)–(A.9). Of course,

Ω = {un = un,j} ∪ {un 6= un,j} := Un,j ∪ Ω\Un,j.

On returning to the monotonicity condition of the form mentioned above
and integrating it over the set of coincidence Un,j, we obtain (χ denotes the
characteristic function)

C1

2

∫
Un,j

I vn,v dx ≤
∫

Un,j

(SSS(pn,DDD(vn))− SSS(p1 + pn
2 ,DDD(v))) ·DDD(un) dx

+
γ2

0

2C1

‖(pn
1 − p1)χUn,j

‖2
2, (4.43)

where∫
Un,j

I vn,v dx =

=

∫
Un,j

∫ 1

0

(1 + |DDD(v) + s(DDD(vn)−DDD(v))|2)
r−2
2 |DDD(vn)−DDD(v)|2 ds dx.

Our goal is to show that

lim sup
n→∞

∫
Un,j

I vn,v dx→ 0 for j →∞.

Firstly, in the same manner as before we deal with the second integral on the
right-hand side, namely we have∫

Un,j

SSS(p1 + pn
2 ,DDD(v)) ·DDD(un) dx→ 0 for n→∞, (4.44)
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since Lebesgue’s dominated convergence theorem implies that

SSS(p1 + pn
2 ,DDD(v)) → SSS(p,DDD(v)) strongly in Lr′(Ω)d×d.

Secondly, as we already know that un is not a suitable test function and since
un,j is not in general divergence-free on the set of non-coincidence Ω\Un,j,
we consider the weak formulation (4.32) with a special test function

ϕ = ϕn,j := un,j −ψn,j,

where ψn,j solves the following system of equations

divψn,j = divun,j = divun,jχ
Ω\Un,j

in Ω

ψn,j = 0 on ∂Ω
(4.45)

and satisfies
‖ψn,j‖1,r ≤ Cdiv(Ω, r)‖ divun,jχ

Ω\Un,j
‖r.

In addition, the properties (A.5)–(A.9) of the sequence un,j and the con-
tinuity and linearity of the Bogovskii operator imply that for j ∈ N and
n→∞

ψn,j → 0 strongly in Lq(Ω)d ∀q ∈ (1,∞),

ψn,j ⇀ 0 weakly in W 1,q
0 (Ω)d ∀q ∈ (1,∞),

(4.46)

and

lim sup
n→∞

‖ψn,j‖1,r ≤ Cdiv(Ω, r) lim sup
n→∞

‖ divun,jχ
Ω\Un,j

‖r

≤ Cdiv(Ω, r) lim sup
n→∞

‖∇un,jχ
Ω\Un,j

‖r

≤ Cεj,

(4.47)

with εj := K 2−j/r. Note that by (4.45)1 divϕn,j = 0 and thanks to (4.46)
we also have for j ∈ N and n→∞ that

ϕn,j → 0 strongly in Lq(Ω)d ∀q ∈ (1,∞),

ϕn,j ⇀ 0 weakly in W 1,q
0 (Ω)d ∀q ∈ (1,∞).

(4.48)

Now, considering the weak formulation (4.32) of the problem (Pη) with the
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test function ϕ = ϕn,j, we can write∫
Ω

SSS(pn,DDD(vn)) ·DDD(un,j) dx = 〈f ,ϕn,j〉 − 1

n

∫
Ω

|vn|2r′−2vn ·ϕn,j dx

+

∫
Ω

(vn ⊗ vn) · ∇ϕn,j dx

+

∫
Ω

SSS(pn,DDD(vn)) ·DDD(ψn,j) dx

:= I1
n,j + I2

n,j + I3
n,j + I4

n,j.

(4.49)

Letting n→∞ and taking (4.33), (4.38) and (4.48) into account, we see that

lim
n→∞

(I1
n,j + I2

n,j + I3
n,j) = 0.

On the other hand, on using Hölder’s inequality, (4.34) and (4.47), we get

I4
n,j ≤ ‖SSS(pn,DDD(vn))‖r′‖DDD(ψn,j)‖r ≤ C

γn

θn

µj+1 + Cεj = g(n) + Cεj,

where for j ∈ N fixed the function g(n) → 0 for n→∞. Putting everything
together, we observe from (4.49) that∫

Ω

SSS(pn,DDD(vn)) ·DDD(un,j) dx ≤ g(n) + Cεj.

Moreover, Hölder’s inequality, (4.34) and (A.9) yield that also∣∣∣∣∣
∫

Ω\Un,j

SSS(pn,DDD(vn)) ·DDD(un,j) dx

∣∣∣∣∣ ≤ g(n) + Cεj,

and therefore∫
Un,j

SSS(pn,DDD(vn)) ·DDD(un,j) dx ≤
∫

Ω

SSS(pn,DDD(vn)) ·DDD(un,j) dx

+

∣∣∣∣∣
∫

Ω\Un,j

SSS(pn,DDD(vn)) ·DDD(un,j) dx

∣∣∣∣∣
≤ g(n) + Cεj, (4.50)

where g(n) → 0 as n→∞ for j ∈ N fixed and εj → 0 as j →∞.
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Coming back to the inequality (4.43), from (4.44) and (4.50) we then
conclude

C1

2

∫
Un,j

I vn,v dx ≤ g(n) + Cεj +
γ2

0

2C1

‖(pn
1 − p1)χUn,j

‖2
2

≤ g(n) + Cεj +
γ2

0

2C1

‖pn
1 − p1‖2

2.

(4.51)

Clearly, we would also like to have that

‖pn
1 − p1‖2

2 ≤ g(n) + Cεj.

For this purpose, we first look at the set Ω\Un,j = {un 6= un,j} and show
that its Lebesgue measure is sufficiently small. We recall the Theorem A.6
and since λn,j ≥ 1, according to (A.4), we observe from (A.9) that

|Ω\Un,j| = ‖χ
Ω\Un,j

‖1 ≤ cλ−1
n,j‖λn,jχΩ\Un,j

‖r

≤ c‖λn,jχΩ\Un,j
‖r ≤ g(n) + c εj.

(4.52)

Next, similarly as in Section 4.1.2, we consider the weak formulation of (4.40),
i = 1, with a test function ϕn fulfilling

divϕn = pn
1 − p1 in Ω

ϕn = 0 on ∂Ω (4.53)

‖ϕn‖1,q ≤ Cdiv(Ω, q)‖pn
1 − p1‖q for all q : 1 < q ≤ r′.

Notice that
∫

Ω
(pn

1−p1) dx = 0. From the properties of the Bogovskii operator
and from (4.41)2 we have

ϕn ⇀ 0 weakly in W 1,r′(Ω)d.

On using the same arguments as for (4.26), (4.27) and (4.28) in Section 4.1.2,
we obtain

‖pn
1 − p1‖2

2 = g(n) +

∫
Ω

(SSS(pn,DDD(vn))− SSS(p1 + pn
2 ,DDD(v))) ·DDD(ϕn) dx,

where g(n) → 0 for n→∞.
From application of (2.4) and (2.5) to the integral on the right-hand side

and Hölder’s inequality we get

‖pn
1 − p1‖2

2 ≤ g(n) + γ0Cdiv(Ω, 2)‖pn
1 − p1‖2

2 + C2

∫
Ω

J dx, (4.54)
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where

J :=

∫ 1

0

(1 + |DDD(v) + s(DDD(vn − v))|2)
r−2
2 |DDD(vn − v)| |DDD(ϕn)| ds.

We consider ∫
Ω

J dx =

∫
Un,j

J dx +

∫
Ω\Un,j

J dx

and recall the definition of I vn,v. On using Hölder’s inequality, (4.53)3 with
q = 2 and Young’s inequality, we can write∫

Un,j

J dx ≤ Cdiv(Ω, 2)

(∫
Un,j

I vn,v dx

) 1
2

‖pn
1 − p1‖2

≤ C2
div(Ω, 2)C2

2(1− γ0Cdiv(Ω, 2))

∫
Un,j

I vn,v dx

+
1− γ0Cdiv(Ω, 2)

2C2

‖pn
1 − p1‖2

2,

and with the help of Hölder’s inequality, (4.33), (4.52) and the fact that r < 2
we arrive at∫

Ω\Un,j

J dx

≤

(∫
Ω\Un,j

I vn,v dx

) 1
2
(∫

Ω\Un,j

|∇ϕn|r′ dx

) 1
r′

|Ω\Un,j|
r′−2
2r′

≤ C|Ω\Un,j|
r′−2
2r′ ≤ g(n) + C(εj)

r′−2
2r′ .

Putting these two estimates together with (4.54) gives

(1− γ0Cdiv(Ω, 2))‖pn
1 − p1‖2

2 ≤ g(n) + C(εj)
r′−2
2r′

+
C2

div(Ω, 2)C2
2

2(1− γ0Cdiv(Ω, 2))

∫
Un,j

I vn,v dx

+
1− γ0Cdiv(Ω, 2)

2
‖pn

1 − p1‖2
2.

Thanks to (2.6) is 1 − γ0Cdiv(Ω, 2) − 1−γ0Cdiv(Ω,2)
2

> 0 and we get for the
L2–norm that

‖pn
1 − p1‖2

2 ≤ g(n) + C(εj)
r′−2
2r′ +

C2
div(Ω, 2)C2

2

(1− γ0Cdiv(Ω, 2))2

∫
Un,j

I vn,v dx. (4.55)
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Furthermore, as r′ > 2 and C1

2
− γ2

0

2C1

C2
div(Ω,2)C2

2

(1−γ0Cdiv(Ω,2))2
> 0, again due to (2.6),

from (4.51) and (4.55) we indeed have

lim sup
n→∞

∫
Un,j

I vn,v dx→ 0 for j →∞. (4.56)

The almost everywhere convergence (at least for a subsequence) of the
pressure pn in Ω then follows from (4.42) as both pn

1 and pn
2 converge a.e.

owing to (4.55), (4.56) and (4.41)4.
Finally, considering (4.52) and since ‖∇vn‖r ≤ C, ‖∇v‖r ≤ C and r < 2,

we obtain (with the help of Hölder’s inequality)∫
Ω

|DDD(vn − v)| dx

=

∫
Un,j

|DDD(vn − v)| dx+

∫
Ω\Un,j

|DDD(vn − v)| dx

≤
∫

Un,j

(I vn,v)
1
2

(∫ 1

0

(1 + |DDD(v) + s(DDD(vn − v))|2)
r−2
2 ds

)− 1
2

dx

+

∫
Ω\Un,j

(|DDD(vn)|+ |DDD(v)|) dx

≤ C

∫
Un,j

(I vn,v)
1
2 (1 + |DDD(vn)|+ |DDD(v)|)

2−r
2 dx

+ (‖∇vn‖r + ‖∇v‖r)|Ω\Un,j|
1
r′

≤ C

(∫
Un,j

I vn,v dx

) 1
2

(1 + ‖∇vn‖r + ‖∇v‖r)
2−r
2 |Ω|

1
r′

+ g(n) + C(εj)
1
r′

≤ C

(∫
Un,j

I vn,v dx

) 1
2

+ g(n) + C(εj)
1
r′

(4.56)→ 0,

which yields that (at least for a subsequence)

DDD(vn) → DDD(v) a.e. in Ω.

Applying Vitali’s theorem then finishes the proof of Theorem 2.2. �
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5 Conclusion

In the preceding section we managed to establish the existence result formu-
lated in Theorem 2.2. To our knowledge, this result seems to be new.

The proof itself combines the standard approach usually applied when
dealing with mathematical analysis of similar problems with more advanced
methods such as the Lipschitz approximations of Sobolev functions, the de-
composition of the pressure or the solvability of the divergence equation
(according to Bogovskii). Although the uniform estimates give information
about the limiting velocity and the limiting pressure, the weak convergence
is not enough for passing to the limit in non-linear terms. With the help
of the compact embedding for the velocity field we are quite easily able to
treat the convective term. The crucial part of the proof then arises in the
term with the viscosity as the almost everywhere convergence of the pressure
and of the symmetric part of the velocity gradient has to be shown. At this
juncture, the importance of assumptions (2.4) and (2.5) on the viscosity is
more than obvious since these conditions provide the monotonicity of the
viscosity according to Lemma 2.1. Nevertheless, this fact itself is not suffi-
cient and we have to consider the decomposition of the pressure, since we do
not have the information about the pressure lying in L2, as well as to use
the Lipschitz approximations of the functions vn− v as test functions in the
weak formulation in the second limit procedure, for v is not an admissible
test function.

Of course, there still remains a great space for further research concerning
the flows of fluids with pressure-dependent viscosities. One possibility could
be for example an extension of the existence of weak solutions established
in this thesis to unsteady flows. A similar situation only for the case with
the viscosity depending on the shear rate is a subject of current research by
L. Diening, M. Růžička and J. Wolf and seems to be almost finished. This
result would somehow complete the existence theory for fluids with shear rate
dependent viscosity initiated by O. A. Ladyzhenskaya and J. L. Lions in the
late 1960s and further developed in the 1990s. No doubt a challenge would
be mathematical analysis of models wherein the viscosity depends only on
the pressure, namely an establishment of some global existence theory for
such problems.
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A Needful tools and theorems

In this final section we would like to mention several tools frequently used
in the thesis. Proofs of all below-stated lemmas and theorems can be found
in the appropriate literature and for this reason we leave them out in what
follows.

As we consider the reader to be familiar with the standard Hölder’s,
Young’s and Poincaré’s inequalities, we start with another inequality essential
for a derivation of uniform estimates. For the proof see for example [24].

Lemma A.1. (Korn’s inequality) Let 1 < p < ∞ and let Ω ⊂ Rd be an
open bounded domain with Lipschitz boundary. Then there exists a positive
constant C depending only on p and Ω such that for all u ∈ W 1,p

0 (Ω)d

‖∇u‖p ≤ C‖DDD(u)‖p.

In order to be able to obtain weakly converging subsequences from the
uniform estimates, we use the following theorem (see [31]).

Theorem A.1. (Eberlein-Shmulyan) A Banach space X is reflexive if and
only if every bounded sequence of X contains a subsequence which converges
weakly to an element in X.

It is well-known that the so-called embedding theorems play a crucial role
in analysis of such problems as ours and therefore we should not omit them
in here (see [18]).

Theorem A.2. (Sobolev’s embedding theorems) Let 1 ≤ p ≤ ∞ and
k ≥ 0 and let Ω ⊂ Rd be a bounded domain with Lipschitz boundary. Then

1. if k < d
p

then W k,p(Ω) ↪→ Lq(Ω) for q : 1
q

= 1
p
− k

d
,

2. if k = d
p

then W k,p(Ω) ↪→ Lq(Ω) for all q ∈ [1,∞),

3. if d
p
< k < d

p
+ 1 then W k,p(Ω) ↪→ C0,k−d/p(Ω),

4. if k = d
p

+ 1 then W k,p(Ω) ↪→ C0,α(Ω) for all α ∈ (0, 1),

5. if k > d
p

+ 1 then W k,p(Ω) ↪→ C0,1(Ω).
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Theorem A.3. (Rellich-Kondrashov’s theorems on compact embed-
ding) Let 1 ≤ p ≤ ∞ and k > 0 and let Ω ⊂ Rd be a bounded domain with
Lipschitz boundary. Then

1. if k < d
p

then W k,p(Ω) ↪→↪→ Lq(Ω) for all q ∈ [1, p∗) with 1
p∗

= 1
p
− k

d
,

2. if k = d
p

then W k,p(Ω) ↪→↪→ Lq(Ω) for all q ∈ [1,∞),

3. if k > d
p

then W k,p(Ω) ↪→↪→ C(Ω).

For completeness, we also add the following lemma concerning the inter-
polation of Lebesgue spaces. The proof is through Hölder’s inequality.

Lemma A.2. Let Ω ⊂ Rd be a measurable set, 1 ≤ p ≤ r ≤ q ≤ ∞ and
f ∈ Lp(Ω) ∩ Lq(Ω). Then f ∈ Lr(Ω) and

‖f‖r ≤ ‖f‖θ
p‖f‖1−θ

q with
1

r
=
θ

p
+

1− θ

q
.

The following two theorems tell us something about convergences in
Lebesgue spaces, namely when the limiting process in an integral is pos-
sible. First, we mention the well-known Lebesgue’s theorem (see [19]) and
then also very important Vitali’s theorem (see [2]) that helps us to prove the
convergence of the integral with the viscosity.

Theorem A.4. (Lebesgue’s dominated convergence theorem) Let fn,
n = 1, 2, . . . , be measurable functions in Ω and let lim

n→∞
fn(x) = f(x) for a.a.

x ∈ Ω. If there exists a function g ∈ L1(Ω) such that

|fn(x)| ≤ g(x) for a.a. x ∈ Ω and for all n ∈ N

then f ∈ L1(Ω) and

lim
n→∞

∫
Ω

fn(x) dx =

∫
Ω

f(x) dx.

Theorem A.5. (Vitali) Let Ω be a bounded measurable domain in Rd and
fn : Ω → R be an integrable function for every n ∈ N. Let

lim
n→∞

fn(x) exist and be finite for a.a. x ∈ Ω,
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and let there for all ε > 0 exist δ > 0 such that

sup
n∈N

∫
E

|fn(x)| dx ≤ ε for all E ⊂ Ω, |E| < δ.

Then

lim
n→∞

∫
Ω

fn(x) dx =

∫
Ω

lim
n→∞

fn(x) dx.

Very often we consider the weak formulation with a test function that
solves an equation of the type divu = f . The convenient solution in bounded
domains is given by the so-called Bogovskii operator (introduced in [7]). We
summarize the features that are important for us and refer the reader to [25],
Lemma 3.17, for further details and the proof.

Lemma A.3. (Bogovskii operator) Let Ω ⊂ Rd be a bounded domain with
Lipschitz boundary. Then there exists a continuous linear operator B such
that B : Lp

0(Ω) → W 1,p
0 (Ω)d for all 1 < p <∞ and for all f ∈ Lp

0(Ω)

div(Bf) = f in Ω

‖Bf‖1,p ≤ Cdiv(Ω, p)‖f‖p.
(A.1)

Moreover, if f = divu and u ∈ W 1,p
0 (Ω)d ∩ Lq(Ω)d with some 1 < q < ∞

then there exists a constant C(Ω, q) such that

‖Bf‖q ≤ C(Ω, q)‖u‖q.

As a certain analogy to the so-called Helmholtz decomposition we in-
troduce the following decomposition. We recall the problem (A.1) with
f := divu and let for u ∈ W 1,p

0 (Ω)d∩Lq(Ω)d be gu a solution of the problem

div gu = divu in Ω

gu = 0 on ∂Ω.

Then we set
Pu := u− gu,

which is equivalent to u:= Pu + gu. Note that from the definition of Pu
it is obvious that divPu = 0 a.e. in Ω. Furthermore, from Lemma A.3 we
have the following estimates

‖gu‖1,p ≤ Cdiv(Ω, p)‖ divu‖p ‖gu‖q ≤ C(Ω, q)‖u‖q (A.2)

‖Pu‖1,p ≤ (1 + Cdiv(Ω, p))‖u‖1,p ‖Pu‖q ≤ (1 + C(Ω, q))‖u‖q. (A.3)
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Sobolev functions from W 1,p
0 (Ω), p ≥ 1 can be approximated by Lip-

schitz functions that coincide with the originals up to sets of small Lebesgue
measures. However, such approximations are nothing new. Already in 1984
Acerbi and Fusco in [1] showed their applications in the calculus of varia-
tions and since then they have been used by many others in various areas of
analysis, for example in the existence theory of partial differential equations
or in the regularity theory.

The following theorem mentions the important properties of these ap-
proximate functions. More details and the proof can be found in [11].

Theorem A.6. (Lipschitz approximations) Let 1 < p <∞ and Ω ⊂ Rd

be an open bounded domain with Lipschitz boundary. Let un ∈ W 1,p
0 (Ω)d be

such that un ⇀ 0 weakly in W 1,p
0 (Ω)d as n→∞. We set

K := sup
n
‖un‖1,p <∞

γn := ‖un‖p → 0 (n→∞).

Let θn > 0 be such that (e.g. θn :=
√
γn)

θn → 0 and
γn

θn

→ 0 (n→∞).

Let µj := 22j
. Then there exist a sequence λn,j with

µj ≤ λn,j ≤ µj+1 (A.4)

and a sequence un,j ∈ W 1,∞
0 (Ω)d such that for all j, n ∈ N

‖un,j‖∞ ≤ θn → 0 (n→∞), (A.5)

‖∇un,j‖∞ ≤ cλn,j ≤ cµj+1 (A.6)

and up to a nullset (M denotes the Hardy-Littlewood maximal function1)

{un 6= un,j} ⊂ Ω ∩ ({M(un) > θn} ∪ {M(∇un) > 2λn,j}). (A.7)

Moreover, for all j ∈ N and n→∞

un,j → 0 strongly in Lq(Ω)d ∀q ∈ [1,∞],

un,j ⇀ 0 weakly in W 1,q
0 (Ω)d ∀q ∈ [1,∞),

∇un,j ∗
⇀ 0 weakly* in L∞(Ω)d×d

(A.8)

1For a function f ∈ L1(Rd), we define the Hardy-Littlewood maximal function through
(Mf)(x) := sup

r>0

1
|Br(x)|

∫
Br(x)

|f(y)|dy.
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and for all n, j ∈ N

‖∇un,jχ{un 6=un,j}‖p ≤ c‖λn,jχ{un 6=un,j}‖p ≤ c
γn

θn

µj+1 + c εj, (A.9)

where εj := K 2−j/p vanishes as j →∞ and the constant c depends on Ω.

Finally, we mention two lemmas that are useful for the proof of existence
of solutions to the Galerkin system.

Lemma A.4. Let (U , ·, | · |) be a finite-dimensional Hilbert space and let the
mapping φ : U → U be continuous and satisfy

∃ρ > 0 : φ(u) · u ≥ 0 ∀u ∈ ∂Bρ ⊂ U .

Then φ has at least one zero in Bρ, i.e., ∃u ∈ Bρ : φ(u) = 0.

Proof. Assume that φ has no zero in Bρ. Then the mapping

F : u 7−→ −ρ φ(u)

|φ(u)|
, u ∈ Bρ

is well-defined, continuous and F (Bρ) ⊂ ∂Bρ ⊂ Bρ. Since U is a finite-
dimensional space, then according to Brouwer’s fixed point theorem there
exists u ∈ Bρ such that F (u) = u. Therefore,

u = −ρ φ(u)

|φ(u)|
∈ ∂Bρ.

According to the assumption

0 ≤ φ(u) · u = −ρ |φ(u)|2

|φ(u)|
< 0,

which leads to a contradiction. �

Let {ak}∞k=1 be a basis in some separable space W 1,p
0 (Ω)d and let N ∈ N be

fixed. Then we can prove the following.

Lemma A.5. For every K > 0 there exists ρ > 0 such that for all |dN | = ρ

holds ‖
N∑

s=1

dN
s a

s‖1,p ≥ K.
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Proof. We denote j := inf
|dN |=1

‖
N∑

s=1

dN
s a

s‖1,p and first show that j > 0.

Considering that j = 0 yields existence of a (sub)sequence dN
k (|dN

k | = 1)
such that

lim
k→∞

N∑
s=1

dN
s,ka

s = 0 a.e. in Ω.

This, however, also means that

N∑
s=1

lim
k→∞

dN
s,ka

s = 0 a.e. in Ω.

Since {ak}∞k=1 is a basis, then necessarily lim
k→∞

dN
s,k = 0, s = 1, . . . , N , which

leads to a contradiction with |dN
k | = 1.

We set ρ := K
j

and finally conclude that

inf
|dN |=ρ

‖
N∑

s=1

dN
s a

s‖1,p = inf
|dN |=K

j

‖
N∑

s=1

dN
s a

s‖1,p = inf
|dN |=K

j

K

j
‖

N∑
s=1

j

K
dN

s a
s‖1,p

=
K

j
inf

|d̃N |=1

‖
N∑

s=1

d̃N
s a

s‖1,p = K.

�
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Partielles, pages 102–128, Les Presses de l’Université de Montréal,
Montréal, 1966.
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