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Abstract:

Geometrically representable graphs are extensively studied area of research in
contemporary literature due to their structural characterizations and efficient
algorithms. The most frequently studied class of such graphs is the class of
interval graphs. In this thesis we focus on two problems, generalizing the problem
of recognition, for classes related to interval graphs.

In the first part, we are concerned with adjusted interval graphs. This class
has been studied as the right digraph analogue of interval graphs. For interval
graphs, there are polynomial algorithms to extend a partial representation by
given intervals into a full interval representation. We will introduce a similar
problem — the partial ordering extension — and we will provide a polynomial
algorithm to extend a partial ordering of adjusted interval digraphs.

In the second part, we show two NP-completeness results regarding the simul-
taneous representation problem, introduced by Lubiw and Jampani. The simul-
taneous representation problem for a given class of intersection graphs asks if
some k graphs can be represented so that every vertex is represented by the same
object in each representation. We prove that it is NP-complete to decide this for
the class of interval and circular-arc graphs in the case when k is a part of the
input and graphs are not in sunflower position.
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Abstrakt:

Geometricky reprezentovatělné triedy grafov sú intenźıvne študovanou oblasťou
výskumu v súčasnej literatúre, a to kvôli ich štrukturálnym charakterizáciám a
efekt́ıvnym algoritmom. Naǰstudovaneǰsou triedou takých grafov je trieda inter-
valových grafov. V tejto práci sa zameriame na dva problémy, zovšeobecňujúce
problém rozpoznávania, pre triedy súvisiace s triedou intervalových grafov.

V prvej časti sa zaoberáme tzv. zarovnanými intervalovými digrafmi. Táto
trieda bola skúmaná ako správna analógia intervalových grafov. Pre intervalové
grafy sú známe algoritmy pre rozširovanie čiastočných reprezentácíı daných in-
tervalov na úplnú intervalovú reprezentáciu. My predstav́ıme podobný problém
— rozširovanie čiastočných usporiadańı a ukážeme polynomiálny algoritmus pre
rozširovanie čiastočných usporiadańı zarovnaných intervalových digrafov.

V druhej časti práce dokážeme NP-úplnosť pre dva špeciálne pŕıpady problému
simultánnych reprezentácíı grafov, ktorý predstavil Jampani a Lubiw. Problém
simultánnych reprezentácíı pre danú triedu grafov sa pýta, či k grafov môže
byť reprezentovaných tak, že každý vrchol je reprezentovaný rovnakým objek-
tom v každej reprezentácii. Dokázali sme, že tento problém je NP-úplný pre
triedu intervalových grafov a prienikových grafov oblúkov na kružnici, kde k je
súčasťou vstupu a grafy nie sú v tzv. slnečnicovej poźıcii.
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Chapter 1

Introduction

Geometrically represented graphs have been extensively studied in the past few
decades. There are two main reasons for that and they are inseparable. The
reasons are nice structural characterizations and efficient algorithms for otherwise
hard problems. The core of this thesis is to study several algorithmic questions
on different classes of geometrically representable graphs. More specifically, we
shall make use of existing structural results for these classes to design efficient
algorithms or to show that the problem is still hard, despite these elegant and
strong characterizations.

The central and unifying notion of this thesis is the notion of intersection graph.

Definition 1.1. [62] A graph G = (V, E) has an intersection representation by
the sets from a family of sets F if there exists a function f : V (G) → F such
that two vertices from V (G) are adjacent if and only if their corresponding sets
have a non-empty intersection. The function f is called an F-representation of
the graph G.

A graph G is an intersection graph if it has an intersection representation. The
class of all graphs with F -representations is called an intersection class. In our
case, F is a family of geometric objects. These graphs are known as geometric
intersection graphs.

Basic structures. In this thesis we will use different generalizations of the usual
definition of an undirected graph and so we need to carefully distinguish between
them. We will use the notation described in the introduction of the book of Hell
and Nešetřil [34]. The following definitions are taken from the book.

A graph is an ordered pair (V, E), where V is a set of vertices and E is a set of
edges, where edges are two-element sets of vertices. We often write uv instead of
{u, v} for an edge {u, v} ∈ E.

A digraph is an ordered pair (V, E), where V is a set of vertices together with a
binary relation E on V . We call the elements (u, v) ∈ E arcs or directed edges.
We often write u→ v for a directed edge (u, v) in a digraph.

A loop in a graph is an edge consisting of only one vertex, i.e. {v} for some vertex
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v ∈ V . By a loop in a digraph we mean an arc (v, v) for a vertex v ∈ V . We say
that a graph (or digraph) is reflexive if every vertex has a loop. If both (u, v) and
(v, u) are arcs, then we say that there is a double edge between u and v. In each
digraph, we allow at most one arc in the same direction between two vertices and
every vertex has at most one loop.

All graphs and digraphs considered in this thesis are finite. By a simple graph we
mean an undirected graph without loops and multiple edges.

There is a correspondence between graphs and digraphs. For each graph G =
(V, E), we can obtain a corresponding symmetric digraph by replacing each edge
uv ∈ E by arcs (u, v) and (v, u) and each loop {v} by an arc (v, v). Due to this
transformation, we can view graphs as symmetric digraphs. See Figure 1.1 for an
example.

Figure 1.1: Two examples of a graph and its corresponding symmetric digraph.

We usually denote by n the number of vertices, and by m the number of edges,
of the graph (resp. digraph) under consideration.

If we do not specify otherwise, we use the notation of West [71].

Structure of this thesis. This thesis is structured as follows.

• In the first chapter, we give an introduction to the theory and algorithmic
aspects of geometric intersections graphs and digraphs. More specifically,
we are mainly interested in interval graphs, interval digraphs, and classes
related to them.

• The second chapter is about extending partial orderings and representa-
tions. We briefly summarize the results about extending partial represen-
tations, we define the problem of extending partial orderings and we show
polynomial time algorithms for solving this problem for proper interval
graphs and adjusted interval digraphs. Also, we briefly show a relation to
other problems.

• The third chapter is about the simultaneous representation problem. First,
we give a summary of recent results and we describe a relation to other
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known problems. We prove NP-completeness of the problem for interval
and circular-arc graphs in some special cases.

1.1 Interval graphs

Let us start with a mystery story of Claude Berge (written by Golumbic [25]).

Six professors had been to the library on the day that the rare tractate
was stolen. Each had entered once, stayed for some time and then left.
If two were in the library at the same time, then at least one of them
saw the other. Detectives questioned the professors and gathered the
following testimony: Abe said that he saw Burt and Eddie in the
library; Burt said that he saw Abe and Ida; Charlotte claimed to
have seen Desmond and Ida; Desmond said that he saw Abe and Ida;
Eddie testified to seeing Burt and Charlotte; Ida said that she saw
Charlotte and Eddie. One of the professors lied!! Who was it?

We know that every professor entered once and stayed for some interval of time.
If he saw someone, then in that time they must have been in the library together.
Thus, their intervals have to intersect. Before solving this mystery, let us translate
it into the language of graph theory. The key to the solution is the definition of
an interval graph.

One of the most extensively studied classes of intersection graphs are interval
graphs. Interval graphs were independently discovered in two completely sepa-
rate research areas – in combinatorics by Hajos [30] in 1957 and in genetics by
Benzer [4] in 1959.

Definition 1.2. A graph G is an interval graph if there exists a family of closed
intervals on the real line {Iv| v ∈ V (G)} such that Iu and Iv intersect if and only
if uv is an edge in G.

This assignment of intervals to the vertices is called an interval representation.
See Figure 1.2 for an example.

a
a

b

b

c

c

d

d

e

e

f

f

g

g

Figure 1.2: An example of an interval graph and its interval representation.

We usually treat interval graphs as simple graphs. However, observe that im-
plicitly every vertex has a loop because it intersects itself. It follows from this
observation that every interval graph is reflexive.
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Booth and Lueker [8] introduced in 1976 the first linear time algorithm for recog-
nition of interval graphs using PQ-trees. Since then, many algorithms for recog-
nizing interval graphs in linear time were found [10, 20, 46].

Characterizations of interval graphs. Also, several nice structural characteri-
zation of interval graphs were proved.

We will need the following definitions. A graph is a chordal graph if it does not
contain a cycle of length at least four as an induced subgraph. A graph is a
comparability graph if its edges can be directed such that if u → v and v → w,
then u→ w.

We say that three distinct vertices create an asteroidal triple, if they are pairwise
non-adjacent and for any two of them, there exists a path between them which
does not intersect the neighborhood of the third vertex. See Figure 1.3 for an
example.

a

b c

a

b c

Figure 1.3: Two examples of an asteroidal triple denoted by a, b, c.

The clique matrix of an undirected graph G is the incidence matrix in which rows
correspond to the maximal cliques of G and columns correspond to the vertices
of G. We say that the clique matrix of G satisfies the consecutive ones property
if the rows can be permuted such that ones appear consecutively in each column.

Theorem 1.1. The following statements are equivalent for an undirected graph
G.

• The graph G is an interval graph.

• The graph G is a chordal graph and G does not contain an asteroidal triple
(Boland and Lekkerkerker, [48]).

• The graph G does not contain any graph from Figure 1.4 as an induced
subgraph (Boland and Lekkerkerker, [48]).

• The graph G does not contain a cycle of length four as an induced subgraph
and its complement is a comparability graph. (Gilmore and Hoffman, [22])

• There exists a linear ordering of the maximal cliques of G such that for
every vertex v of G, the maximal cliques containing v occur consecutively
(Gilmore and Hoffman, [22]).

• The clique matrix of G has the consecutive ones property for columns (Fulk-
erson and Gross, [19]).
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• There exists a linear ordering of the vertices of G such that for every three
vertices u < v < w, uw ∈ E(G) implies uv ∈ E(G) [55, 58]. In other
words, there exists a linear ordering of the vertices avoiding the patterns
from Figure 1.5.

n ≥ 4

n

1 2

3

1 2 3 n 1 2 3 n

n+ 4 vertices, n ≥ 2 n+ 5 vertices, n ≥ 1

Figure 1.4: Forbidden induced subgraphs for interval graphs.

u v w u v w

Figure 1.5: Forbidden patterns from Theorem 1.1. Edges which are not shown
are absent.

Some problems which are NP-complete for graphs in general can be solved in
polynomial time for the class of interval graphs, for example the maximum in-
dependent set, the minimum covering by disjoint completely connected sets or
cliques, and the maximum clique (see [29]). Also, some algorithmic results about
interval graphs can be found in [53].

For more information about interval graphs, we refer the reader to surveys [23, 25]
or books [24, 65].

Solution of the mystery story. Let us recapitulate the story. Each professor
entered once and stayed for an interval of time. If he saw someone, then their
intervals intersect. By representing each entrance to the library by an interval,
we should get an interval graph. However, that is not the case and therefore,
someone lies.
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Let us represent each professor by a vertex denoted by initials of his name. If
professor X saw professor Y , then we add an arc X → Y . The resulting graph G is
depicted in Figure 1.6. If there are arcs in both directions between two professors,
then, since at least one of them tells the truth, their intervals intersect. However,
if there is only a single arc between two professors, then it does not have to be the
truth. It follows from Theorem 1.1, that every interval graph is a chordal graph.
The graph G has three induced cycles of length four — ABID, AEID, AECD.
The liar has to be in all these cycles. Otherwise, everyone tells the truth and we
still do not have an interval graph. Thus, we have two candidates — Abe and
Desmond. If Abe is the liar, then there still remains the cycle ABID because
Burt was telling the truth. We conclude that Desmond is the liar!

A B I C

E

D

Figure 1.6: A graph of testimonies in Berge’s mystery story.

Subclasses of interval graphs. Well known subclasses of interval graphs are
unit interval graphs and proper interval graphs.

Definition 1.3. An interval graph is a unit interval graph if there exists an
interval representation such that each interval has the same length.

Definition 1.4. An interval graph is a proper interval graph if there exists an
interval representation such that no interval properly contains another interval.

Roberts [60] proved that these classes are equivalent. Particularly, he showed the
following characterization.

Theorem 1.2. [60] Let G be a simple graph. Then the following statements are
equivalent.

• The graph G is a unit interval graph.

• The graph G is a proper interval graph.

• The graph G is an interval graph such that it does not contain a complete
bipartite graph K1,3 as an induced subgraph.

A very short and elegant proof of this theorem was given by Bogart and West [7].

Generalization of intervals graphs and related classes. There is another pos-
sibility for defining a class of graphs represented by closed intervals on the real
line. We can use the relation of containment instead of intersections between
intervals.
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Definition 1.5. [65] A graph G is an interval containment graph if there exists
a family of intervals {Iv| v ∈ V (G)} such that uv is an edge in G if and only if
Iu ⊂ Iv or Iv ⊂ Iu.

Interval containment graphs are in a very close relationship with the class of
permutation graphs and comparability graphs.

Definition 1.6. A graph G is a permutation graph if there exists a family of line
segments {Lv| v ∈ V (G)} between two fixed parallel lines such that uv is an edge
of G if and only if Lu and Lv intersect.

The connection with the notion of permutation is that the vertices of the per-
mutation graph can be viewed as the elements of the ground set of permutation
and intersection occurs if and only if the permutation reverses the relative order
of the corresponding elements.

Theorem 1.3. [65] Let G be a graph. The following statements are equivalent.

• The graph G is an interval containment graph.

• The graph G and its complement are comparability graphs.

• The graph G is a permutation graph.

1

1

1

1

4

4

4

4

2

2

2

2

3

3

3
3

Figure 1.7: An example of a graph with an interval containment representation
and a permutation representation.

We can easily see that every permutation graph is a circle graph. See Figure 1.8
for an example of a circle graph.

Definition 1.7. A graph G is a circle graph if there exists a family of chords
{Cv| v ∈ V (G)} of a fixed circle such that two chords Cu and Cv intersect if and
only if uv is an edge in G.

11

2
2

3

3

4

4
55

6

6

Figure 1.8: An example of a circle graph and its circle representation.

One of the well known superclasses of interval graphs which will be discussed
later in this thesis is the class of circular arc graphs.
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Definition 1.8. A graph G is a circular arc graph if there exists a family of arcs
{Av| v ∈ V (G)} on a fixed circle such that two arcs Au and Av intersect if and
only if uv is an edge in G.

1

12
2 3

34

4

5
5

6 6 7

7

Figure 1.9: An example of a circular arc graph and its circular arc representation.

An example of a circular arc graph is depicted in Figure 1.9. Circular arc graphs
were intensively studied, see for example [69, 21, 24]. They can be recognized
in linear time as was shown by McConnell [51]. However, before that, some
polynomial time algorithms were known [70, 13].

Similarly, as for the interval graphs before, we define two subclasses — unit
circular arc graphs and proper circular arc graphs.

Definition 1.9. A circular arc graph is a unit circular arc graph if there exists
a circular arc representation such that each arc has the same length.

Definition 1.10. A circular arc graph is a proper circular arc graph if there
exists a circular arc representation such that no arc properly contains another
arc.

For characterizations and recognition algorithms for these subclasses, we refer the
reader to survey [50].

1.2 Interval digraphs

Intersection digraphs as an analogue of intersection graphs were first introduced
by Beineke and Zamfirescu [3] under the name connection digraphs. Interval
digraphs were introduced by Das et al. [11] in 1989 as an analogue of interval
graphs.

Definition 1.11. A digraph H is an interval digraph if there exists a family of
source intervals {Iv| v ∈ V (H)} and a family of sink intervals {Jv| v ∈ V (H)}
such that the source interval Iu intersects the sink interval Jv if and only if (u, v)
is an arc in H.

An example of an interval digraph is depicted in Figure 1.10.

Also, Das et al. obtained a similar characterization for interval digraphs as in [19].
They defined the notion of a zero-partition for matrices. A binary matrix has a
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Ja

a
Ia

b
Ib

Jb

Ic
Jc

c

Figure 1.10: An example of an interval digraph.

zero-partition if there exists a permutation of its rows and columns and a labeling
of zeros by labels R and C such that every entry to the right of an R is an R and
every entry below a C is a C.

Theorem 1.4. [11] A digraph is an interval digraph if and only if its adjacency
matrix has a zero-partition.

Sen et al. [63] found a characterization of unit interval digraphs using the following
definition.

A binary matrix has a monotone consecutive arrangement (MCA) if there exists
a permutation of its rows, a permutation of its columns, and a labeling of zeros
by labels R and C such that every entry to the right or above of an R is labeled
R and every entry to the left or below a C is labeled C.

Observe, that if a binary matrix has an MCA then it has also a zero-partition.

Theorem 1.5. [63] A digraph is a unit interval digraph if and only if its adjacency
matrix has an MCA.

In [49], authors describe a hierarchy of classes of interval digraphs characterized
by a certain property of adjacency matrices. The largest considered class is the
class of interval digraphs and the smallest considered class is the class of unit
interval digraphs. Some of the proofs of the adjacency matrix characterizations
of interval digraphs, in a simplified form, can be also found in [72].

A representation of an interval digraph is also called a bi-interval representation.
Observe, that for every two vertices, only the intersection of the source intervals
and the sink intervals is important. The intersection of two source intervals or
two sink intervals does not matter.

Independently on that, Harary et al. [31] defined a bipartite version of the notion
of intersection graphs.

Definition 1.12. A bipartite graph G with parts A and B is called an interval
bigraph if there exists a family of intervals {Iv| v ∈ V (G)} such that for every
a ∈ A and every b ∈ B, it holds ab is an edge in G if and only if Ia and Ib

intersect.

Müller [54] proved that there is a strong connection between interval digraphs
defined by Das et al. [11] and interval bigraphs defined by Harary [31]. He further
showed the following transformation between digraphs and bigraphs and he also
found a polynomial recognition algorithm for both of these classes running in
time O(nm6(n + m) log n).
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Let G = (X ∪ Y, E) be an interval bigraph with a representation ({Sx| x ∈
X}, {Sy| y ∈ Y }). We define Tx = ∅ for every x ∈ X and Sy = ∅ for every y ∈ Y .
By directing all edges from X to Y , we obtain a representation of interval digraph
G′ = (X ∪ Y, E ′), where E ′ = {(x, y)| {x, y} ∈ E, x ∈ X, y ∈ Y }.

Let G′ = (V, E) be an interval digraph with a representation by a family of source
intervals {Sv| v ∈ V } and a family of sink intervals {Tv| v ∈ V }. We split every
vertex v ∈ V into two vertices s, t such that s is represented by the interval Sv

and t is represented by the interval Tv and we replace every arc v1v2 in G′ by an
edge s1t2. By this transformation we obtained an interval bigraph G.

It is clear from this reduction that G is an interval bigraph if and only if G′ is an
interval digraph.

Interval bigraphs were characterized by Hell and Huang [32].

Theorem 1.6. [32] Let H be a bipartite graph with bipartition (X, Y ). Then the
following statements are equivalent.

• The graph H is an interval bigraph.

• There exists a linear ordering v1, v2, . . . , vn of the vertices of H such that
for every three vertices va < vb < vc, the patterns from Figure 1.11 are
forbidden. In the figure, the black vertices are from one part and the white
vertices are from the other part. The edges which are not shown are absent.

• The complement of H is a circular arc graph with a circular arc represen-
tation such that no two arcs cover the whole circle.

va vb vc va vb vc

Figure 1.11: The forbidden patterns for interval bigraphs. The edges which are
not shown are absent.

Recently, Rafiey [57] found an algorithm for recognizing interval bigraphs in time
O(nm) based on this linear ordering characterization and he showed that this
algorithm can be also used for recognizing interval digraphs in time O(nm).

Some subclasses of interval bigraphs can be also characterized by a property of
their adjacency matrices. The bipartite adjacency matrix of a bipartite graph
with parts X and Y is the submatrix of its adjacency matrix consisting of the
rows for X and the columns for Y .

Theorem 1.7. [72, 63] The following statements are equivalent for a binary
matrix A.

• The matrix A is the bipartite adjacency matrix of a unit interval bigraph.

• The matrix A is the bipartite adjacency matrix of a proper interval bigraph.
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d
d

c

ca

a
b b

Figure 1.12: An example of an adjusted interval digraph.

• The matrix A has a monotone consecutive arrangement.

Some generalizations of both interval graphs and digraphs can be found in [33].
As authors said, they unified several seemingly different graph and digraph classes
under one umbrella.

1.3 Adjusted interval digraphs

A more restrictive definition of interval digraphs was given by Feder et al. [17]
in 2009 (the full version [18]). This class of digraphs is known under the name
adjusted interval digraphs.

Definition 1.13. An adjusted interval digraph H is an interval digraph such
that the intervals Iv and Jv can be chosen to have the same left endpoint for each
vertex v ∈ V (H).

See Figure 1.12 for an example of an adjusted interval digraph. Note that an
interval digraph does not have to be reflexive — if Iv and Jv do not intersect,
then v does not have a loop. However, adjusted interval digraphs are always
reflexive because Iv and Jv always intersect in their common left endpoint.

Characterizations of adjusted interval digraphs. Several structural charac-
terizations of adjusted interval digraphs are known. In this paragraph, we will
explain two of them.

We say that two walks P = p1, p2, . . . pk and Q = q1, q2, . . . qk in a digraph H are
congruent if for every pipi+1, it holds that:

• pi → pi+1 if and only if qi → qi+1, and

• pi ← pi+1 if and only if qi ← qi+1.

Let P, Q be two congruent walks. Then P avoids Q if there is no edge between
pi and qi+1 in the same direction as between pi and pi+1.

Definition 1.14. [18] Two distinct vertices u, v ∈ V (H) create an invertible pair
in H if

• there exist congruent walks P from u to v and Q from v to u such that P
avoids Q, and
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a c f b

b d e a

b f c c a a

a a a e d b

a

b

c e

f d

Figure 1.13: An example of an invertible pair a, b.

Figure 1.14: Forbidden submatrices in the adjacency matrix of a graph with a
min ordering.

• there exist congruent walks P ′ from v to u and Q′ from u to v such that P ′

avoids Q′.

Theorem 1.8. [18] Let H be a reflexive digraph. Then H is an adjusted interval
digraph if and only if H does not contain an invertible pair.

In Figure 1.13, there is an example of a digraph containing an invertible pair
a, b. Also, there are depicted two pairs of congruent walks between a, b. Thus, it
follows from Theorem 1.8 that this digraph is not an adjusted interval digraph.

There is another characterization of adjusted interval digraphs using the so called
min ordering.

Definition 1.15. A min ordering of H is a linear ordering < of V (H) that
satisfies the following property. If (u, v) ∈ E(H), (u′, v′) ∈ E(H), u < u′, and
v′ < v, then uv′ ∈ E(H).

Hell et al. [33] rephrase this definition in the following way. A digraph H has a
min ordering if there exists a linear ordering < of its vertices such that if we order
rows and columns in the adjacency matrix with respect to <, then the adjacency
matrix does not contain a submatrix with rows 01, 11 and a submatrix with rows
01, 10 (see Figure 1.14).

Also, several nice characterizations of a min ordering are known.

Lemma 1.1. [18] Let H be a reflexive digraph. Then a linear ordering < of
V (H) is a min ordering if and only if for any three vertices i < j < k, we have
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i j k i j k

Figure 1.15: The forbidden patterns for a min ordering (dashed arcs are absent,
arcs not shown can be arbitrary).

dca

b

dca b

Figure 1.16: An example of an adjusted interval digraph with min a ordering.

• if i→ k then i→ j, and

• if k → i then j → i.

This lemma characterizes forbidden patterns for a min ordering (see Figure 1.15).

Lemma 1.2. [18] Let H be a reflexive digraph. Then H has a min ordering if
and only if there exists a linear ordering of vertices such that the vertices that
follow v in that ordering can be divided into three consecutive groups:

1. vertices connected with v by a double edge,

2. vertices connected with v by a single edge, and

3. vertices not connected with v.

Theorem 1.9. [18] A reflexive digraph H is an adjusted interval digraph if and
only if H has a min ordering.

See Figure 1.16 for an example of a min ordering.

Detour for a motivation. Adjusted interval digraphs were defined in the context
of studying the list homomorphism problem.

Problem: LHOM(H) – List homomorphism problem for a fixed
target graph H.

Input: A graph G with lists L(v) ⊆ V (H) for every v ∈ V (G).
Question: Does there exists a mapping f : V (G)→ V (H) such that

f(u)f(v) ∈ E(H) whenever uv ∈ E(G) and f(v) ∈ L(v)
for every v ∈ V (G)?

The full dichotomy of LHOM(H) was proved [14, 15, 16] for an undirected graph
H. For reflexive undirected graphs, the following classification holds.
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Theorem 1.10. [14] Let H be a reflexive graph. If H is an interval graph,
then the problem LHOM(H) is polynomial-time solvable. Otherwise, the problem
LHOM(H) is NP-complete.

A dichotomy for digraphs is also known [35]. We will need the following definitions
for stating the theorem.

Definition 1.16. [35] A permutable triple in a digraph H is a triple of vertices
u, v, w and six vertices s(u), b(u), s(v), b(v), s(w), b(w) such that the following
condition holds. For any vertex x ∈ {u, v, w} (we denote the other two vertices
by y and z), there exists a walk P1 from x to s(x) and two walks — P2 from y to
b(x) and P3 from z to b(x), such that both of them are congruent to P1 and P1
avoids P2 and P3.

Definition 1.17. [35] A digraph asteroidal triple (DAT) in a digraph H is a
permutable triple in H such that each of (s(u), b(u)), (s(v), b(v)), (s(w), b(w)) is
an invertible pair in H.

Theorem 1.11. [35] Let H be any digraph. If H is a DAT-free graph, then
the problem LHOM(H) is polynomial-time solvable. Otherwise, LHOM(H) is
NP-complete.

Feder et al. were trying to find a combinatorial characterization of DAT-free
graphs and they managed to show the following theorem.

Theorem 1.12. [18] If H is an adjusted interval digraph, then LHOM(H) is
polynomial-time solvable.

They also posed the following conjecture and they proved that it holds if H is a
tree.

Conjecture 1. [18] Let H be a reflexive digraph. If H is not an adjusted interval
digraph then the problem LHOM(H) is NP-complete.

Recognition of adjusted interval digraphs. Adjusted interval digraphs can be
recognized in polynomial time. Feder, Hell, Huang and Rafiey showed the first
certifying recognition algorithm running in time O(m2 + n2). Subsequently, the
algorithm was improved by Takaoka [66] to cubic time – O(n3).

Both of these algorithms give a certificate whether a digraph is an adjusted in-
terval digraph. Particularly, both of them return a min ordering in case that the
answer is positive or return an invertible pair in case that the answer is negative.
A decision without a certificate whether a digraph is an adjusted interval digraph
can be made in O(nm). We will argue that in Section 2.2.

We will continue in studying adjusted interval digraphs in Section 2.2. We will
show some other related results and, most importantly, we will introduce our
problem and results for adjusted interval digraphs.



Chapter 2

Extending partial orderings and
representations

We study two natural generalizations of the recognition problem — the problem
of extending partial representations and the problem of simultaneous represen-
tations. A recognition algorithm gives a representation of the input graph, but
sometimes we may want to find a representation with some additional properties.

2.1 Extending partial representations

The partial representation extension problem was introduced by Klav́ık, Kra-
tochv́ıl and Vyskočil [45] in 2011 (journal version appeared in Algorithmica in
2017 [44]).

A partial representation R′ of a graph G is a representation of an induced sub-
graph G′ of G. The vertices of G′ and the sets of R′ are called pre-drawn. A
representation R of G extends a partial representation R′ if for every v ∈ V (G′) :
R(v) = R′(v). The partial representation extension problem for a fixed class of
intersection graphs C is defined as follows.

Problem: RepExt(C) – Partial representation extension of C.
Input: A graph G and its partial C-representation R′.

Question: Is there a C-representation R of G extending R′?

An instance of the problem RepExt(INT) with pre-drawn intervals for vertices
a, b, e and one of the possible extending representations is shown in Figure 2.1.

The partial representation extension problem was intensively studied and also,
there are some very recent results. All results relevant to this problem are com-
prehensively summarized in PhD thesis of Pavel Klav́ık from 2017 [40]. We refer
the reader to that thesis for further details, explanations and references. In order
to avoid duplication, we picked only the results for the graph classes related to
this thesis and we summarize them in Table 2.1.
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class of graphs C time complexity of RepExt(C)
interval graphs

O(n + m) [45, 44, 6]
unit interval graphs

O(n2) [42, 64]
proper interval graphs

O(n + m) [42]
circular arc graphs

open
proper circular arc graphs

polynomial time [2]
circle graphs

polynomial time [9]
permutation graphs

O(nm) [41]
chordal graphs

NP-complete [43]

Table 2.1: A summary of results about RepExt for selected graph classes.
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Figure 2.1: An example of an instance of the problem RepExt(INT).

2.2 Extending partial orderings

Several classes of intersection graphs can be characterized by a linear ordering of
vertices satisfying some conditions. Also, we can often derive a lot of information
about a possible representation from such orderings which further underlines the
importance of studying such orderings.

As for extension of partial representation, we may want to find not an arbitrary
linear ordering, but a special ordering where some pairs of vertices are pre-ordered.
In the following two sections, we will define a new problem for proper interval
graphs and adjusted interval digraphs and we will also present our results related
to these problems.

2.2.1 Extending partial orderings of proper interval graphs

As the first case, we consider the class of proper interval graphs. This is mainly
because of the theorems of Roberts [59] and Deng et al. [12] which describe
nicely the structure of possible left endpoint orderings and which basically say
that these orderings are very simple.

Let G be an undirected graph. For any vertex u of G, the neighborhood of vertex
u, denoted by N(u), is defined as the set of vertices adjacent to u in G. A set
N [u] := N(u) ∪ {u} is called the closed neighborhood of the vertex u.

Proper interval graphs can be characterized as follows.

Theorem 2.1. [59] A graph is a proper interval graph if and only if there exists
a linear ordering of its vertices such that the closed neighbourhood of each vertex
is consecutive.

With this characterization in hand, we can state our problem.
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Problem: RepOrd(PROPER INT) – Extending partial orderings of
proper interval graphs.

Input: A graph G, a set of pre-ordered pairs of vertices P ⊆
{(u, v)| u, v ∈ V (G), u ̸= v}.

Question: Does there exist a linear ordering of vertices < satisfying
conditions from Theorem 2.1 such that u < v whenever
(u, v) ∈ P?

The following theorem by Deng et al. [12] will be a key part of our algorithm.
We will use a simpler reformulation of this theorem and related definitions by
Klav́ık et al. [42].

Let G be an undirected graph. We say that vertices u and v of G are indistin-
guishable if N [u] = N [v] in G. The vertex set of a graph G can be partitioned
into groups of pairwise indistinguishable vertices. Note that indistinguishability
is an equivalence relation and the groups are the equivalence classes.

Theorem 2.2. [12] For a connected proper interval graph, the ordering ▹ satis-
fying conditions from Theorem 2.1 is uniquely determined up to local reordering
of groups of indistinguishable vertices and complete reversal. This ordering can
be found in time O(n + m).

Algorithm for extending partial ordering of proper interval graphs.

In the following algorithm, we assume that the graph G on the input is connected.

1. Find a linear ordering ▹ of the vertices of G as in Theorem 2.2.

2. Find a pair (u, v) ∈ P such that u and v are in different groups.

(a) If there is no such pair, set <:= ▹.

(b) If there is such pair and u ▹ v, set <:= ▹.

(c) If there is such pair and v ▹ u, set < to be reversal of ▹.

3. For every group B of G, we define a graph GB with V (GB) := B and
E(GB) := ∅.

4. For each pair (u, v) ∈ P , do the following steps.

(a) If u and v are in different groups and v > u, then return that P cannot
be extended.

(b) If u and v are in the same group B, insert the edge u → v into GB.
If there already was v → u in GB, then return that P cannot be
extended.

5. For each group B of indistinguishable vertices, do the following steps.

(a) Find a linear ordering <B of V (GB) using a topological sort algorithm
such that u <B v whenever u → v. If it does not exist return that P
cannot be extended.
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(b) For each u, v ∈ B, define u < v whenever u <B v.

6. Return the ordering <.

In the case where we have a graph with at least two connected components,
we can argue in a very similar way. Indeed, it suffices to further distinguish
pre-ordered pairs consisting of vertices from two different components and insert
these pair in form of directed edges into an auxiliary graph. Again, as for the
graphs for groups of indistinguishable vertices, we need to topologically sort this
graph. Furthermore, the fixation of the linear ordering we get from Theorem 2.2
needs to be done for each connected component separately. We observe that the
computational complexity remains the same.

Theorem 2.3. RepOrd(PROPER INT) can be solved in time O(n + m + |P |),
i.e. the problem can be solved in time linear to the size of the input.

Steps 2 and 4 of this algorithm can be made in linear time with regards to the
size of the input set P . Clearly, all other steps can be done in O(n + m). Thus,
the theorem follows.

Note that the algorithm can get as its input P which is not a partially order set.
However, even in this case, our algorithm correctly detects that and outputs that
P is not extendable.

Finally, we note that we are aware of the algorithm for RepExt(PROPER INT)
from [42]. The problem RepOrd(PROPER INT) shares some similarities due to
the structural characterizations of the class of proper interval graphs. However,
none of the two algorithms can be directly translated to the other and thus our
solution and its analysis is not redundant.

A related problem: Allen’s interval algebra. Allen introduced the so-called in-
terval algebra in [1]. The problem asks if there is an interval representation which
satisfies given constraints having a form of one of thirteen primitive relations be-
tween pairs of intervals. A complete complexity classification of the problem
was given by Krokhin et al. in [47]. All of the problems Recog(PROPER INT),
RepExt(PROPER INT), and RepOrd(PROPER INT) can be reformulated as a
special case of these problems. However, the corresponding general problems
are NP-complete in case of RepOrd(PROPER INT) and thus the dichotomy of
Krokhin et al. does not imply the polynomial result we obtained.

2.2.2 Extending partial orderings of adjusted interval digraphs

In this section, we introduce the problem of extending partial orderings of ad-
justed interval digraphs and we will show a polynomial time algorithm for it.

Problem: Extending partial orderings of adjusted interval digraphs.
Input: A reflexive digraph H, a set of pre-ordered pairs of ver-

tices P ⊆ {(u, v)| u, v ∈ V (H), u ̸= v}.
Question: Does there exist a min ordering < of vertices of H such

that u < v whenever (u, v) ∈ P?
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Figure 2.2: An illustration of Definition 2.1. Dashed arcs are absent, arcs which
are not shown can be arbitrary.

u v w u v w
or

H H∗

(u, v) (w, v)

(v, w) (v, u)

Figure 2.3: An illustration of Definition 2.2. Dashed arcs are absent, arcs which
are not shown can be arbitrary.

We say that a min ordering satisfying the above condition is extending P . We
need to define two auxiliary graphs for our algorithm — a pair digraph by Feder
et al. [18] and an implication digraph by Takaoka [66].

Definition 2.1. [18] Let H be a reflexive digraph. The pair digraph H+ asso-
ciated with H is defined as V (H+) = {(u, v)| u, v ∈ V (H), u ̸= v} and for any
vertices u, v, u′, v′ of H, (u, v)→ (u′, v′) and (v′, u′)→ (v, u) in H+ if and only if

• (u, u′), (v, v′) ∈ E(H) and (u, v′) ̸∈ E(H), or

• (u′, u), (v′, v) ∈ E(H) and (v′, u) ̸∈ E(H).

Observe, that for a directed walk from (u, v) to (v, u) in H+, there are congruent
walks P (from u to v) and Q (from v to u) such that P avoids Q. Also, for two
such paths, there exists a directed walk from (u, v) to (v, u) in H+.

Theorem 2.4. [18] Let H and H+ be a reflexive digraph and its pair digraph,
respectively. A pair of two vertices u, v ∈ V (H) is an invertible pair if and only
if the vertices (u, v) and (v, u) are in the same strong component of H+.

Definition 2.2. [66] Let H be a reflexive digraph. The implication graph H∗ of
H is a digraph such that V (H∗) = {(u, v)|u, v ∈ V (H), u ̸= v} and for any three
vertices u, v, w of H, (u, v)→ (w, v) and (v, w)→ (v, u) in H∗ if and only if

• (u, w) ∈ E(H) and (u, v) ̸∈ E(H), or

• (w, u) ∈ E(H) and (v, u) ̸∈ E(H).

Note that H∗ is a subgraph of H+. Moreover, H∗ contains exactly these edges
(a, b)→ (c, d) from H+, where either a = c or b = d. For every edge (a, b)→ (c, d)
in H+ where a, b, c, d are distinct, there is a directed path (a, b)→ (a, d)→ (c, d)
in H∗.
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Finally, observe that if there is a directed path from (u, v) to (w, z) in H∗ then
there is also a directed path from (z, w) to (v, u) in H∗. Also, the same holds for
H+. It follows from these observations that the reachability in H+ and H∗ is the
same.

Similarly as for H+, there is a characterization of invertible pairs in H∗.

Lemma 2.1. [66] Let H and H∗ be a reflexive digraph and its implication graph,
respectively. A pair of two vertices u, v ∈ V (H) is an invertible pair if and only
if the vertices (u, v) and (v, u) are in the same strong component of H∗.

Theorem 2.5. [18] Let H+ be the pair digraph associated with a reflexive digraph
H. Then the following statements are equivalent.

1. The digraph H is an adjusted interval digraph.

2. The digraph H has a min ordering.

3. The digraph H has no invertible pairs.

4. The vertices of H+ can be partitioned into two sets D, D′ such that

(a) (x, y) ∈ D if and only if (y, x) ∈ D′,

(b) if (x, y) ∈ D and (x, y)→ (w, z) ∈ H+ then (w, z) ∈ D,

(c) if (x, y), (y, z) ∈ D then (x, z) ∈ D.

We will prove the same result for an implication digraph H∗.

Theorem 2.6. Let H∗ be an implication graph of a reflexive digraph H. Then H
is an adjusted interval digraph if and only if the vertices of H∗ can be partitioned
into two sets D, D′ such that the following properties hold.

1. (x, y) ∈ D if and only if (y, x) ∈ D′,

2. if (x, y) ∈ D and (x, y)→ (w, z) ∈ H∗ then (w, z) ∈ D,

3. if (x, y), (y, z) ∈ D then (x, z) ∈ D.

Proof. Assume that H is an adjusted interval digraph. Then V (H+) can be
partitioned into two sets D, D′ as in Theorem 2.5. We will prove that D, D′ is
the desired partition for V (H∗). The properties (1) and (3) of Theorem 2.6 hold
because H+ and H∗ have precisely the same vertex set. Property (2) also holds,
since H∗ is a subgraph of H+ and thus there cannot be an edge beginning in D
and ending in D′.

For the second part, assume that there exists a partition of V (H∗) into D and D′

as in the claim. For a contradiction, we assume that this is not a right partition
for H+. Again, it is easy to see that the properties (1) and (3) of the partition
from Theorem 2.5 hold. Thus, property (2) of Theorem 2.5 has to be violated. Let
(a, b)→ (c, d) be an edge in H+ such that (a, b) ∈ D a (c, d) ̸∈ D. Then, a, b, c, d
are four distinct vertices. Otherwise, this edge would violate the properties of
partition D, D′ for H∗.

Now, there always exists a path (a, b)→ (a, d)→ (c, d) in H∗, whenever (a, b)→
(c, d) is in H+. Therefore, one of the edges on the path has to go between a
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vertex in D and a vertex in D′. This is a contradiction, since we assumed D, D′

is a right partition of V (H∗).

We conclude that D, D′ is the right partition for H+ and by Theorem 2.5, H is
an adjusted interval digraph. This finishes our proof.

For a reflexive digraph H, the implication graph H∗ can be constructed in
time O(nm). Searching for strongly connected components in H∗ takes also
O(nm) [68]. Thus, it follows from Lemma 2.1 and Theorem 2.6 that a decision
whether a digraph is an adjusted interval digraph can be made in O(nm) time if
a certificate is not required.

We showed that H∗ has the same properties as H+. This will be much needed
in the next part. Since H∗ has a simpler structure, we will use H∗ in the rest of
the thesis.

We use an auxiliary complete graph K with the vertex set V (H) for a digraph
H. We obtain an orientation of K by replacing each edge uv in E(K) with either
(u, v) or (v, u). An orientation of K is acyclic if it contains no directed cycles.

An orientation of a complete graph is called tournament. We say that an orien-
tation T of tournament K is consistent with H if for each vertex (u, v) of H∗, it
holds that if u → v in T then u′ → v′ in T for each (u′, v′) such that there is a
directed path from (u, v) to (u′, v′) in H∗.

Lemma 2.2. [66] Let T be an orientation of K consistent with H. Suppose that
T has three vertices u, v, w such that u→ v, v → w, w → u in T . If v′ → w′ in T
and (v′, w′)→ (v, w) in H∗, then u→ v′, v′ → w′, w′ → u in T .

Let T be an orientation of the complete graph K. For each vertex u ∈ V (H), we
define sets

• Eu := {(v, w) ∈ E(T )| u→ v, v → w, w → u ∈ T}, and

• E−
u := {(w, v)| (v, w) ∈ Eu}.

For a given set S ⊆ {(u, v)| u, v ∈ V (H), u ̸= v} and an orientation T of K, we
define a set

Fs = {x ∈ V (H)| ∃y, z ∈ V (H)∧x→ y ∈ T∧y → z ∈ T∧z → x ∈ T∧(y, z) ∈ S}.

Algorithm for extending partial ordering of adjusted interval digraphs.

1. Let D := P and D′ := {(y, x)| (x, y) ∈ P}.

2. Construct the implication graph H∗ of H.

3. Repeat until there is no new vertex added to D:

(a) (Implication closure.) While there exists an edge in H∗ from any vertex
(x, y) ∈ D to a vertex (w, z) ∈ H∗ \ (D∪D′) then add (w, z) to D and
(z, w) to D′. If there is an edge from a vertex in D to a vertex in D′,
then P is not extendable.
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(b) (Transitive closure.) If there are (u, v), (v, w) ∈ D and (u, w) ∈ D′,
stop the algorithm and output that P is not extendable. Otherwise,
while there exist (u, v), (v, w) ∈ D and (u, w) ̸∈ D, add (u, w) to D
and (w, u) to D′.

4. Define P := D.

5. Define a 2CNF formula φH consisting of the following clauses:

• xvu for every (u, v) ∈ P , and

• (xuv∨xvw) for every u, v, w such that (u, w) ∈ E(H) and (u, v) ̸∈ E(H)
or (w, u) ∈ E(H) and (v, u) ̸∈ E(H).

6. If φH is satisfiable, then find a satisfying truth assignment τ . Otherwise,
output that P is not extendable.

7. Define an orientation T of K such that u→ v in T if and only if τ(xuv) = 0.

8. While there is a directed triangle in T :

(a) For the orientation T and the set P , find the set FP .

(b) Find a vertex u ∈ V (H) \ FP with Eu non-empty and replace Eu by
E−

u in T .

(c) If there is no u ∈ V (H) \ FP with Eu non-empty, then P is not ex-
tendable.

9. Return the orientation T extending P .

Correctness. It is easy to see that if the algorithm fails in Step 3a or 3b, then
P is not extendable. Otherwise, the properties of sets D and D′ from Theorem
2.6 would be violated.

Let φH be the formula from Step 5. There is a clause (xuv ∨ xvw) in φH if and
only if (u, v) → (w, v) is an edge in H∗. Observe that the consistency of some
orientation T is violated, i.e. u → v and v → w are present in T if and only
if xuv = 0 and xvw = 0. Thus φH is satisfiable if and only if there exists an
orientation T of tournament K such that T is consistent with H and for every
(u, v) ∈ P , there is u→ v in T .

Now suppose that our algorithm constructed an orientation T in Step 7. It follows
from constructing this orientation and from the previous observation that T is
consistent. However, there is a possibility that it contains a directed cycle. It
is a classical result that if a tournament contains a directed cycle, then it must
contain a directed triangle.

Lemma 2.3. A tournament is acyclic if and only if it does not contain a directed
triangle.

Proof. Clearly, a tournament with a directed triangle is not acyclic.

Now suppose that we have a cyclic tournament with a directed cycle C of the
shortest length. If the length is 3, we are done. Otherwise, there is a chord in
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the cycle which, depending on its orientation, completes a directed cycle C ′ with
one of the parts of C which has fewer edges than C, a contradiction with C being
minimal.

We conclude that T is not transitive if and only if it contains a directed triangle.

The algorithm tries to modify the orientation T in Step 8b in order to make it
acyclic while still consistent. Two following lemmata will complete the proof of
correctness. First, we prove that any failure of the algorithm after the initial
successful construction of T means that the given pre-ordering is not extendable.
After that, we show that if the algorithm reaches Step 9, we get a consistent
acyclic orientation from which we can construct the sought min ordering of H.

Lemma 2.4. If the algorithm fails in Step 8c, then P is not extendable.

Proof. If the algorithm fails in Step 8c, then there is no vertex u ∈ V (H) \ FP

with Eu non-empty and there is still a directed triangle in T . This means that for
each of the vertices of the triangle, the edge consisting of the other two vertices
of the triangle is in P . Thus, all the edges of the triangle are in P and there
cannot exist any orientation T extending P without that triangle. Hence, P is
not extendable.

We prove the following claim similarly to the proof of Lemma 4 in [66].

Lemma 2.5. If the algorithm outputs an orientation T , then it is acyclic and
consistent.

Proof. In other words, we claim that the algorithm does not make a new directed
triangle in any iteration of Step 8b and the resulting orientation is still consistent.

No new triangles. Suppose for a contradiction that there is a new directed
triangle x→ y, y → z, z → x in T after replacing Eu by E−

u in some iteration of
Step 8b for some vertex u. Clearly, the triangle does not contain the vertex u.

It is easy to see that there cannot be more than one arc from x→ y, y → z, z → x
in E−

u . Thus, assume that one of the arcs x→ y, y → z, z → x is in E−
u . Without

loss of generality, let (x, y) ∈ E−
u and (y, z), (z, x) ̸∈ E−

u . Then there was a
directed triangle u→ y, y → x, x→ u before replacing Eu by E−

u . We distinguish
two cases.

• If u → z then there is a directed triangle u → z, z → x, x → u and thus
(z, x) ∈ E−

u , a contradiction.

• If z → u then there is a directed triangle u → y, y → z, z → u and thus
(y, z) ∈ E−

u , a contradiction.

Consistency preservation. Again, suppose for a contradiction that T is not
consistent after some iteration of Step 8b. We choose the first such iteration.
Then there exist x→ y, y → z in T such that there is (x, y)→ (z, y) in H∗.

Since T was consistent before the iteration of Step 8b, there exists a vertex u
such that (x, y) ∈ E−

u or (y, z) ∈ E−
u .
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We distinguish three cases.

• If (x, y) ∈ E−
u and (y, z) ̸∈ E−

u , then there was a directed triangle u →
y, y → x, x → u in T before replacing Eu by E−

u and there is an edge
(y, z) → (y, x) in H∗. It follows from Lemma 2.2 that there is also a
triangle u→ y, y → z, z → u in T and thus (y, z) ∈ E−

u , a contradiction.

• If (x, y) ̸∈ E−
u and (y, z) ∈ E−

u , then we can argue analogously to the
previous case, we just use the edge (x, y) → (z, y) instead of the edge
(y, z)→ (y, x) in H∗ in assumptions of Lemma 2.2.

• If (x, y) ∈ E−
u and (y, z) ∈ E−

u , then there was a directed triangle u →
y, y → x, x → u and also a directed triangle u → z, z → y, y → u before
replacing Eu by E−

u which is not possible because the edge between u and
y cannot be directed in both ways.

This concludes the proof.

We showed that the orientation T returned by the algorithm is acyclic and consis-
tent. Note that an acyclic orientation of a tournament directly translates into a
linear ordering of its vertices and this linear ordering is a min ordering of vertices
of H.

Corollary 2.1. The algorithm outputs an orientation T extending P if and only
if P is extendable.

Time complexity. We now analyze the time complexity of our algorithm.

Theorem 2.7. Extending partial ordering of adjusted interval digraph can be
made in time O(n5).

Proof. Recall that the number of vertices in H∗ is O(n2) and the number of edges
is O(nm), with n being the number of vertices in H and m being the number of
edges in H.

Complexity of computing all implication closures in Step 3a is O(nm). For tran-
sitive closures (Step 3b) we need, in the worst case, run a transitive closure
algorithm for every vertex of H∗. If we use repeated depth-first search approach
for that, we end up with total time complexity of O(n5) for this step.

Finding a satisfying assignment of the 2CNF formula takes O(nm) time. The
modification of the orientation then takes O(n2m) time in total. We conclude
that the final complexity of the algorithm is O(n5).



Chapter 3

Simultaneous representation
problem

If we have several related graphs sharing some vertices, we may want to find some
way how to represent them simultaneously. For example, graphs can represent
a different relation on the same set of vertices or changes in time in case we are
considering overlap between an old and a new relation.

The first question of this flavor was how to draw a series of planar graphs sharing
some vertices. This problem is well known under the name simultaneous embed-
ding of planar graphs. It gained a lot of attention in the literature, see survey [5]
for more references.

Motivated by this line of research, Jampani and Lubiw [37] in 2009 introduced
and studied a very similar problem, defined for any intersection class of graphs,
which they called the simultaneous representation problem.

Definition 3.1. Let C be a class of intersection graphs. Graphs G1, . . . , Gk ∈ C
are simultaneously representable (or simultaneous) if there exist representations
R1, . . . , Rk of G1, . . . , Gk such that

∀i, j ∈ {1, . . . , k} ∀v ∈ Gi ∩Gj : Ri(v) = Rj(v).

The simultaneous representation problem for a class C (SimRep(C)) asks if given
k graphs G1, . . . , Gk ∈ C are simultaneous.

We distinguish whether k is fixed or if it is a part of the input. The problem can
be further divided into two cases, depending on whether the graphs on the input
are in sunflower position or not.

Definition 3.2. We say that graphs G1, . . . , Gk are in sunflower position if there
exists a set of vertices I such that Gi∩Gj = I for every i ̸= j. Otherwise, we say
that these graphs are in non-sunflower position.

Figures 3.1 and 3.2 show some examples of simultaneous and non-simultaneous
graphs, respectively.
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Figure 3.1: An example of two simultaneous interval graphs.
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Figure 3.2: An example of two non-simultaneous interval graphs.

3.1 Related problems

The simultaneous representation problem is strongly related to two other prob-
lems — recognizing of probe graphs and the graph sandwich problem.

Graph sandwich problem. The graph sandwich problem was defined by Golum-
bic and Shamir [28] in 1991.

Definition 3.3. Let G1 = (V, E1) and G2 = (V, E2) be two graphs such that
E1 ⊆ E2. We say that G = (V, E) is a sandwich graph for G1, G2 if for its set of
edges, it holds E1 ⊆ E ⊆ E2.

Problem: Graph sandwich problem for a property Γ.
Input: Two graphs G1 = (V, E1) and G2 = (V, E2) such that

E1 ⊆ E2.
Question: Does there exists a sandwich graph G for G1 and G2 such

that G satisfies the property Γ?

The property is often inclusion into some class of graphs. This problem was
first defined for the property ”being an interval graph” under the name interval
graph sandwich problem. It was shown that the interval sandwich problem is
NP-complete [28]. Subsequently, the complexity was settled for some other graph
classes, for example for unit interval graphs in [26] and for permutation graphs,
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Figure 3.3: An example of a probe interval graph where probes are colored red.

comparability graphs, threshold graphs, split graphs and several other classes in
[27].

The graph sandwich problem plays an important role in molecular biology in the
problem called the physical mapping problem of DNA. For further details and
explanation, see [26].

The interval graph sandwich problem is a generalization of the problem Sim-
Rep(INT). For given graphs H1 and H2 from an instance of SimRep(INT), we
define an instance of the graph sandwich problem as follows. Let G1 := H1 ∪H2
and G2 := G1 ∪E ′ where E ′ = {{u, v}| u ∈ V (H1) \ V (H2), v ∈ V (H2) \ V (H1)}.
Then H1 and H2 are simultaneously representable if and only if there exists an
interval sandwich graph for G1 and G2.

However, the interval sandwich problem is NP-complete, so this reduction does
not say anything about the complexity of SimRep(INT).

Probe graphs. Probe graphs as a new class of graphs were introduced by
Zhang [73] in 1994. Similarly as the graph sandwich problem, probe graphs
are also connected to molecular biology.

Definition 3.4. Let G = (V, E) be a graph, P ⊆ V be a set of his probes. Then
G is a probe interval graph if there exists a family of intervals {Iv| v ∈ V } such
that uv is an edge if u ∈ P or v ∈ P and Iu and Iv intersect.

Probe graphs can be analogously defined for other graph classes. We call the
vertices of V \ P non-probes. An interval probe graph is a generalization of an
interval graph in the sense that we do not have information about intersections
of non-probes. The problem of recognizing interval probe graphs can be reformu-
lated as follows. For a given graph G = (V, E) with a set of probes P , we ask if
there exists a set of edges E ′ ⊆ {{u, v}| u, v ∈ V \P} such that G′ = (V, E ∪E ′)
is an interval graph.

The first polynomial time algorithm for recognizing probe interval graphs was
presented by Johnson and Spinrad [39]. A few years later, McConnell and Nuss-
baum [52] provided a linear time algorithm.

Also, the interval graph sandwich problem is a generalization of the problem of
recognizing interval probe graphs. Let a graph G = (V, E) with a set of probes
P be an instance of the problem of recognizing interval probe graphs. We define
graphs G1 := (V, E) and G2 := (V, E ∪ E ′), where E ′ = {{u, v}| u, v ∈ V \ P}.
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class of graphs two graphs k graphs, k not fixed
chordal graphs O(n3) NP-hard
comparability graphs O(nm) O(nm)
permutation graphs O(n3) O(n3)

Table 3.1: A summary of results for SimRep for graphs in sunflower position
from paper [37].

Subsequently, G is an interval probe graph if and only if there exists an interval
sandwich graph for G1 and G2.

It follows from this reduction that the interval graph sandwich problem can be
solved efficiently (using the algorithm for recognizing probe interval graphs) in
case that edges E(G2) \ E(G1) form a complete graph.

3.2 Recent work

The first paper about the simultaneous representation problem for intersection
classes of graphs was by Jampani and Lubiw [37]. They solved the simultaneous
representation problem for chordal, comparability and permutation graphs in
sunflower position for both k fixed and k as a part of the input.

As comparability graphs do not have an implicit intersection representation, let
us explain the definition of the problem. Let G1, G2 be two comparability graphs
such that G1∩G2 = I. Then G1 and G2 are simultaneously representable if there
exists a transitive orientation T1 of G1 and a transitive orientation T2 of G2 such
that the orientation of the edges of I is the same in T1 and T2.

Chordal graphs are intersection graphs of subtrees of some fixed tree. Two chordal
graphs G1, G2 are simultaneously representable if there exists a set of augmentable
edges A ⊆ {{u, v}| u ∈ V (G1)\V (G2), v ∈ V (G2)\V (G1)} such that G1∪G2∪A
is a chordal graph.

For k chordal graphs where k is a part of the input, the problem is NP-complete.
However, the time complexity of SimRep(CHOR) for fixed k ≥ 3 is an open
problem, even if k = 3.

We summarize the results from this paper in Table 3.1.

Subsequently, Jampani and Lubiw [38] found an algorithm for SimRep(INT) for
k = 2 running in time O(n2 log n). This algorithm uses PQ-trees. Later, Bläsius
and Rutter [6] found a faster algorithm running in linear time, again using the
PQ-tree approach.

Very recently, Rutter et al. [61] gave a linear time algorithm for the simultaneous
representation problem for k proper interval graphs in sunflower position where
k is a part of the input. They also provided a polynomial time algorithm for
the simultaneous representation problem for k unit interval graphs G1, . . . , Gk in
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sunflower position where k is a part of the input, running in time O(|V (G1) ∪
. . . ∪ V (Gk)| · |E(G1) ∪ . . . ∪ E(Gk)|).

Finally, they proved NP-completeness of the problems SimRep(UNIT INT) and
SimRep(PROPER INT) for the case of k graphs in non-sunflower position where
k is a part of the input. Independently on us, they used very similar reductions
as our reductions in the next section.

We point the reader to the PhD thesis of Jampani [36] for a broader introduction
to the simultaneous representation problem. A short summary can be also found
in [67].

3.3 Our results

One of the interesting open problems is determining the complexity of Sim-
Rep(INT) for k graphs in sunflower position where k ≥ 3 is fixed or it is a
part of the input.

There are no results even for the case where k = 3 is fixed. We found examples
of interval graphs G1, G2, G3 such that each two of them are simultaneously rep-
resentable, but all three of them together are not simultaneously representable.
An example of such graphs G1, G2, G3 is shown in Figure 3.4, together with a
simultaneous representation for each pair of them.

Let us explain the situation in the figure. We denote the union of G1, G2, G3 by G.
Clearly, G is not an interval graph, since it contains an asteroidal triple on vertices
5, 6, 7. Now, if there is a subset of all possible edges going between vertices of
different non-black colors, then all three graphs are simultaneous. However, by
adding any such subset of edges into G, we see that the resulting graph has an
induced cycle on at least 4 vertices, which is again a forbidden induced subgraph
of interval graphs. We conclude that G1, G2, G3 are non-simultaneous.

Note, that there are a lot of such examples. See Figure 3.5 for some of them. In
each of them, the black part is the common part for all of them and non-black
vertices and edges always belong to exactly one of the input graphs. We shall not
describe what makes these instances non-simultaneous — the principle is very
similar to the one in Figure 3.4.

In the rest of this section, we will show that the simultaneous representation
problem for k interval or k circular-arc graphs in non-sunflower position where k
is a part of the input is NP-complete.

For both NP-completeness results, we use a reduction from the problem called
total ordering. Opatrny proved that TotalOrdering is NP-complete [56].

Problem: TotalOrdering – Total Ordering Problem
Input: A finite set S and a finite set T of triples from S.

Question: Does there exist a total ordering < of S such that for all
triples (x, y, z) ∈ T , either x < y < z or x > y > z?
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Figure 3.4: An example of pairwise simultaneous interval graphs, but all three of
them together are not simultaneous.

3.3.1 Interval graphs

Firstly, we give a precise formulation of the problem.

Problem: SimRep(INT) – Simultaneous representation problem for
interval graphs

Input: Interval graphs G1, . . . , Gk.
Question: Do there exist interval representations R1, . . . , Rk of

G1, . . . , Gk such that

∀i, j ∈ {1, . . . , k} ∀v ∈ Gi ∩Gj : Ri(v) = Rj(v)?

We are now ready to state and prove the main theorem of this section.

Theorem 3.1. The problem SimRep(INT) for k interval graphs in non-sunflower
position where k is not fixed is NP-complete.

Proof. The problem is clearly in NP as we can easily check in polynomial time if
given representations are simultaneous.

Now, let ITO be an instance of TotalOrdering. Let us set s to be |S| and t to
be |T |. We denote by (xi, yi, zi) each triple for i ∈ {1, . . . , t}. We will construct
an instance IS of SimRep(INT).

We define graphs G0, G1, . . . , Gt in the following way.

• G0 := (S, ∅),

• Gi := (Vi, Ei) for each 0 < i ≤ t, where

– Vi := {xi, yi, zi, ai, bi, ci},
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Figure 3.5: Six examples of union of three non-simultaneous graphs which are
pairwise simultaneous.

– Ei := {xibi, yibi, zibi, xiai, zici}.

We observe that graphs Gk, k = 0, . . . , t are interval graphs and thus this is indeed
an instance of SimRep(INT). See Example 1 and Figure 3.6 for an illustration
of this construction.

In every representation of the graph Gi, where i ∈ {1, . . . , t}, vertices xi, yi, zi are
represented by disjoint intervals, since these three vertices form an independent
set. Furthermore, the vertex yi is always completely to the right of either xi or
zi and completely to the left of zi or xi, respectively.

Now, we can check that the following properties hold.

• G0 ∩Gi = {xi, yi, zi} for each 1 ≤ i ≤ t,

• Gi ∩Gj = Gi ∩Gj ∩G0 = {v ∈ S|v ∈ (xi, yi, zi) ∧ v ∈ (xj, yj, zj)} for each
1 ≤ i < j ≤ t.

We observe that these t + 1 graphs are simultaneous if and only if the original
instance of TotalOrdering has a solution. Since vertices of G0 form an inde-
pendent set, we can read the linear ordering < of S from the representation of
its corresponding vertices in G0 by sweeping their left endpoints from the left to
the right.

Thus, NP-completeness is established.

Example 1. For an instance IT O of TotalOrdering, where

S = {1, 2, 3, 4, 5},
T = {(5, 1, 2), (2, 4, 3), (1, 4, 3)},

we build an instance IS of SimRep(INT) as in Figure 3.6.
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5 1 2 4 3
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Figure 3.6: In the top: A union of graphs for triples from Example 1. In the
bottom: Their simultaneous interval representation.

3.3.2 Circular-arc graphs

Problem: SimRep(CA) – Simultaneous representation problem for
circular-arc graphs

Input: Circular-arc graphs G1, . . . , Gk.
Question: Do there exist circular-arc representations R1, . . . , Rk of

G1, . . . , Gk such that

∀i, j ∈ {1, . . . , k} ∀v ∈ Gi ∩Gj : Ri(v) = Rj(v)?

Theorem 3.2. The problem SimRep(CA) for k graphs in non-sunflower position
where k is not fixed is NP-complete.

Proof. Again, the problem is in NP from obvious reasons.

We will proceed in a similar way as in the proof of previous theorem. We define
graphs G0, G1, . . . , Gt in the same way as before and we add one common isolated
vertex x to every graph, i.e. x ∈ ⋂t

i=0 V (Gi). The vertex x takes the role of
breaking the cycle into a segment. Thus the circular arc representation of G\{x}
is an interval representation and we can argue the rest as for interval graphs.



Chapter 4

Conclusion

Geometrically representable graphs are a very active and dynamic area of re-
search. There are a lot of open problems as well. Let us summarize our results,
emphasize some interesting open problems and present new problems which have
arisen during the writing of this thesis.

Extending partial orderings. We defined and studied a new problem — the
extension of partial orderings — motivated by the partial representation extension
problem. We have reached the following results.

• We showed an algorithm for solving extending partial ordering of proper
interval graphs running in time O(n + m + |P |), where P is the set of
pre-ordered pairs on the input.

• We managed to solve the extending partial ordering problem of adjusted
interval digraphs in O(n5) time.

This is the first step to solve the extending partial representation problem of
adjusted interval digraphs, which is the current work in progress.

The simultaneous representation problem. We continued in the study of the
simultaneous representation problem and we contributed by the following results.

• We showed that SimRep(INT) for k interval graphs in non-sunflower posi-
tion where k is not fixed is NP-complete.

• Using similar techniques, we proved that SimRep(CA) for k circular arc
graphs in non-sunflower position where k is a part of the input is also NP-
complete.

Rutter et al. [61] provided polynomial time algorithms for the simultaneous
representation problem for k proper interval graphs and for k unit interval graphs
in sunflower position where k is a part of the input. However, the problem is still
open for k interval graphs in sunflower position for both cases — k fixed (and
k > 2) and k being a part of the input.
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