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Notation Index

N The set of all natural numbers (not including 0)
R The set of all non-negative real numbers
𝑑 A fixed natural number

(Ω, 𝒜,P) A fixed complete probability space
ℬ(R𝑑) The Borel 𝜎-algebra on R𝑑

ℳ The set of all Lebesgue classes of sets in ℬ(R𝑑)
[𝐴] The Lebesgue class of a measurable set 𝐴 ∈ ℬ(R𝑑)
𝜆𝑑 The 𝑑-dimensional Lebesgue measure
ℱ The set of all closed subsets of R𝑑

𝐴 The closure of a set 𝐴
𝐴△𝐵 The symmetric difference of sets 𝐴 and 𝐵

1𝐴 The indicator function of a set 𝐴
𝐵(𝑥, 𝜀) The 𝑑-dimensional open ball centered at 𝑥 ∈ R𝑑 with radius 𝜀 > 0

𝑓 [𝐴] The image of a set 𝐴 under a function 𝑓
𝑓−1[𝐴] The preimage of a set 𝐴 under a function 𝑓

𝐴𝑛 ↗ 𝐴 The sequence (𝐴𝑛)∞
𝑛=1 is nondecreasing in ⊆ and 𝐴 = ⋃︀∞

𝑛=1 𝐴𝑛
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Introduction
While we have many tools for working with random variables and vectors, in many
contexts it is be useful to model entire random sets. Originally, the concept of
a random set was used in stochastic geometry, but it has found applications in
several fields since then.

We mention a few examples from the book Goutsias et al. [2012]. In image
processing and analysis, images, as well as clutter, can be modeled as random
sets, using algorithms based on the theory of random sets to recover the original
image. This has been used to prove that there exists an optimal algorithm for
recovering an image from certain types of noise processes.

In artificial intelligence, random sets can be used to model imprecise or vague
information. For example, the phrase ”near the tower” can be interpreted as a
random disk centered at the tower with probabilities distributed so that disks with
smaller radii are more probable. Other applications include theoretical statistics,
data fusion and mathematical finance.

Traditionally, random sets are modeled as random closed sets (RACS) and
the theory of RACS is well developed. However, in recent years a new framework
of random measurable sets (RAMS) has emerged, allowing the manipulation of
more irregular functionals. In this thesis, we study the relationship between the
two models.

In Chapter 1 we introduce the underlying topologies of both models and pro-
vide a few examples. Chapter 2 summarizes results about their relationships and
supplies further theory. In Chapter 3 we provide examples of RAMS that do not
generate RACS, focusing particularly on stationary sets, an important class of
random sets.
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1. Preliminaries
The aim of this chapter is to define and compare the topologies underlying RAMS
and RACS. First, however, we recall a special case of the Besicovitch derivative
theorem (see [Ambrosio et al., 2000, Theorem 2.22]).

Theorem 1. Let 𝜇 be a measure on (R𝑑, ℬ(R𝑑)) absolutely continuous with respect
to 𝜆𝑑. Then the limit

lim
𝑟→0+

𝜇(𝐵(𝑥, 𝑟))
𝜆𝑑(𝐵(𝑥, 𝑟))

exists for 𝜆𝑑-almost all 𝑥 ∈ R𝑑, is in 𝐿1(R𝑑) and is a Radon–Nikodym derivative
of 𝜇.

1.1 𝜆-inner sets
In this section we introduce 𝜆-inner sets. We came up with the notion when
trying to find examples of RAMS that do not generate RACS and we also used it
for comparing topologies, so we apply it in Chapter 2 (particularly in the proof
of Theorem 11), as well as later in this chapter.

Definition 1. Let 𝐴 ∈ ℬ(R𝑑) be a measurable set, then the 𝜆-inner set of 𝐴 is

̃︀𝐴 = {𝑥 ∈ R𝑑 | ∀𝜀 > 0 : 𝜆𝑑(𝐴 ∩ 𝐵(𝑥, 𝜀)) > 0}.

Remark. The 𝜆-inner set of 𝐴 is actually the support of the restriction of 𝜆𝑑 to
𝐴, that is, ̃︀𝐴 = R𝑑 ∖

⋃︁
{𝐺 ⊆ R𝑑 open | 𝜆𝑑(𝐺 ∩ 𝐴) = 0}.

Theorem 2. Let 𝐹 be a closed subset of R𝑑, 𝐹 ∈ ℱ . Then, ̃︀𝐹 is Lebesgue
equivalent to 𝐹 ,

𝜆𝑑(𝐹△ ̃︀𝐹 ) = 0.

Proof. Let 𝑥 ∈ ̃︀𝐹 , then for all 𝑛 ∈ N: 𝜆𝑑(𝐹 ∩ 𝐵(𝑥, 1
𝑛
)) > 0, and therefore

𝐹 ∩ 𝐵(𝑥, 1
𝑛
) is non-empty. By the axiom of choice there exists some sequence

(𝑥𝑛)∞
𝑛=1 of members of 𝐹 such that for all 𝑛: 𝑥𝑛 ∈ 𝐵(𝑥, 1

𝑛
), so we get 𝑥 ∈ 𝐹 = 𝐹 .

Hence, ̃︀𝐹 ⊆ 𝐹 .
To prove the converse, let us consider a measure 𝜇 on R𝑑 defined as the

restriction of 𝜆𝑑 to 𝐹 , that is, for all 𝐵 ∈ ℬ(R𝑑)

𝜇(𝐵) = 𝜆𝑑(𝐹 ∩ 𝐵).

𝜇 is clearly absolutely continuous with respect to 𝜆𝑑, 𝜇 ≪ 𝜆𝑑. By the Besicovitch
derivative theorem (Theorem 1), the function ℎ : R𝑑 → R defined as

ℎ(𝑥) = lim
𝜀→0+

𝜇(𝐵(𝑥, 𝜀))
𝜆𝑑(𝐵(𝑥, 𝜀))
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exists for 𝜆𝑑-almost all 𝑥 ∈ R𝑑 and is a Radon–Nikodym derivative of 𝜇 with
respect to 𝜆𝑑, ℎ(𝑥) = 𝑑𝜇

𝑑𝜆𝑑 . Therefore,

𝜆𝑑(𝐹 ∖ ̃︀𝐹 ) = 𝜆𝑑(𝐹 ∩ (R𝑑 ∖ ̃︀𝐹 ))
= 𝜇(R𝑑 ∖ ̃︀𝐹 )

=
∫︁
R𝑑∖̃︀𝐹 lim

𝜀→0+

𝜆𝑑(𝐹 ∩ 𝐵(𝑥, 𝜀))
𝜆𝑑(𝐵(𝑥, 𝜀)) 𝑑𝜆𝑑(𝑥)

=
∫︁

lim
𝜀→0+

(︃
𝜆𝑑(𝐹 ∩ 𝐵(𝑥, 𝜀))

𝜆𝑑(𝐵(𝑥, 𝜀)) 1[𝑥 | ∃𝜀>0:𝜆𝑑(𝐹 ∩𝐵(𝑥,𝜖))=0])
)︃

𝑑𝜆𝑑(𝑥)

=
∫︁

0 𝑑𝜆𝑑(𝑥).

Altogether, we get
𝜆𝑑(𝐹△ ̃︀𝐹 ) = 0.

Example 1. Even though the 𝜆-inner set can be defined for all 𝐴 ∈ ℬ(R𝑑), Theo-
rem 2 does not necessarily hold for non-closed sets. For example, let 𝑑 = 1 and
let Q = {𝑞1, 𝑞2, . . . } be some ordering of the rational numbers. Define

𝑀 =
∞⋃︁

𝑛=1
𝐵(𝑞𝑛,

1
2𝑛

).

Then,
𝜆(𝑀) ≤

∞∑︁
𝑛=1

𝜆(𝐵(𝑞𝑛,
1
2𝑛

)) = 2
∞∑︁

𝑛=1

1
2𝑛

< ∞.

This means that 𝑀 is not Lebesgue equivalent to R. Furthermore, for all 𝑥 ∈ R
and all 𝜀 > 0 there exists some 𝑞𝑛 in 𝐵(𝑥, 𝜀). Therefore,

0 < 𝜆(𝐵(𝑞𝑛,
1
2𝑛

) ∩ 𝐵(𝑥, 𝜀)) ≤ 𝜆(𝑀 ∩ 𝐵(𝑥, 𝜀))

Consequently, ̃︁𝑀 = R and 𝜆(𝑀△̃︁𝑀) = 𝜆(𝑀△R) > 0.

Theorem 3. For all 𝐹 closed
≈
𝐹 = ̃︀𝐹 .

Proof. By Theorem 2, for all 𝑥 ∈ R𝑑 and all 𝜀 > 0, 𝜆𝑑( ̃︀𝐹 ∩ 𝐵(𝑥, 𝜀)) = 𝜆𝑑(𝐹 ∩
𝐵(𝑥, 𝜀)). Therefore,

≈
𝐹 = {𝑥 ∈ R𝑑 | ∀𝜀 > 0 : 𝜆𝑑( ̃︀𝐹 ∩ 𝐵(𝑥, 𝜀)) > 0}

= {𝑥 ∈ R𝑑 | ∀𝜀 > 0 : 𝜆𝑑(𝐹 ∩ 𝐵(𝑥, 𝜀)) > 0}
= ̃︀𝐹 .

Theorem 4. For all 𝐴 ∈ ℬ(R𝑑): ̃︀𝐴 is closed.
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Proof. Let (𝑥𝑛)∞
𝑛=1 be a sequence in ̃︀𝐴 such that 𝑥𝑛 → 𝑥 for some 𝑥 ∈ R𝑑. For all

𝑛 ∈ N and all 𝜀 > 0: 𝜆𝑑(𝐴 ∩ 𝐵(𝑥𝑛, 𝜀)) > 0. Let us fix some 𝜀 > 0. There exists
𝑛0 ∈ N such that for all 𝑛 ≥ 𝑛0: 𝑥𝑛 ∈ 𝐵(𝑥, 𝜀

2). Because 𝐵(𝑥𝑛, 𝜀
2) ⊆ 𝐵(𝑥, 𝜀) and

𝜆𝑑(𝐴 ∩ 𝐵(𝑥𝑛, 𝜀
2)) > 0, we get

0 < 𝜆𝑑
(︂

𝐴 ∩ 𝐵(𝑥𝑛,
𝜀

2)
)︂

≤ 𝜆𝑑(𝐴 ∩ 𝐵(𝑥, 𝜀)).

Therefore, 𝑥 ∈ ̃︀𝐴.

1.2 The topologies of random sets
In this section we define the topologies of RACS and RAMS, that is, the Fell
topology on the space of closed sets and the 𝐿1

𝑙𝑜𝑐 topology on Lebesgue classes of
measurable sets, respectively. In the first case we use the definition and results
from Matheron [1975], in the second case we follow Galerne and Lachieze-Rey
[2015] and Kiderlen and Rataj [2018].
Definition 2. By ℱ we denote the set of all closed subsets of R𝑑. For any set
𝐴 ⊆ R𝑑, define the sets

ℱ𝐴 = {𝐹 ∈ ℱ | 𝐹 ∩ 𝐴 ̸= ∅}

and
ℱ𝐴 = {𝐹 ∈ ℱ | 𝐹 ∩ 𝐴 = ∅}.

The Fell (or hit-or-miss) topology on ℱ , 𝜏ℱ , is the topology generated by

{ℱ𝐾 | 𝐾 ∈ 𝒦} ∪ {ℱ𝐺 | 𝐺 ∈ 𝒢},

where 𝒦 and 𝒢 denote the set of all compact and open subsets of R𝑑, respectively.
Remark. Clearly, the set

ℱ0 = {ℱ𝐾 ∩
𝑛⋂︁

𝑖=1
ℱ𝐺𝑖

| 𝐾 ∈ 𝒦, 𝑛 ∈ N, 𝐺1, . . . , 𝐺𝑛 ∈ 𝒢}

forms a base of 𝜏ℱ .
Theorem 5 ([Matheron, 1975, Theorem 1-2-2.]). Let (𝐹𝑛)∞

𝑛=1 be a sequence in
ℱ and let 𝐹 ∈ ℱ . Then, 𝐹𝑛 → 𝐹 in 𝜏ℱ , if and only if:

(i) For all 𝑥 ∈ 𝐹 there exists a sequence (𝑥𝑛)∞
𝑛=1 in R𝑑 such that 𝑥𝑛 → 𝑥 and

for all 𝑛 ∈ N: 𝑥𝑛 ∈ 𝐹𝑛, that is,

(∀𝑥 ∈ 𝐹 )(∃(𝑥𝑛)∞
𝑛=1 ⊆ R𝑑)(𝑥𝑛 → 𝑥 & (∀𝑛 ∈ N)(𝑥𝑛 ∈ 𝐹𝑛)),

and

(ii) For all increasing sequences (𝑛𝑘)∞
𝑘=1 in N, all (𝑥𝑛𝑘

)∞
𝑘=1 in R𝑑 and all 𝑥 ∈ R𝑑,

if for all 𝑘 ∈ N: 𝑥𝑛𝑘
∈ 𝐹𝑛𝑘

, and (𝑥𝑛𝑘
)∞

𝑘=1 converges, then its limit is in 𝐹 ,
that is,

(∀(𝑛𝑘)∞
𝑘=1 ⊆ N incresing)(∀(𝑥𝑛𝑘

)∞
𝑘=1 ⊆ R𝑑)(∀𝑥 ∈ R𝑑)

(𝑥𝑛 → 𝑥 & (∀𝑘 ∈ N)(𝑥𝑛𝑘
∈ 𝐹𝑛𝑘

) ⇒ 𝑥 ∈ 𝐹 ).
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Example 2. Let 𝐹𝑛 = 𝐵(0, 1
𝑛
). We will show that the sequence (𝐹𝑛)∞

𝑛=1 converges
towards the singleton of zero, 𝐹𝑛 → {0}, in 𝜏ℱ .

As for condition (i) of Theorem 5, we can set (𝑥𝑛)∞
𝑛=1 as (0)∞

𝑛=1. Then, 0 → 0
and for all 𝑛: 0 ∈ 𝐹𝑛.

On the other hand, let (𝑥𝑛𝑘
)∞

𝑘=1 be a sequence such that for all 𝑘: 𝑥𝑛𝑘
∈ 𝐹𝑛𝑘

.
For any 𝜀 > 0 there exists some 𝑘0 such that for all 𝑘 ≥ 𝑘0

𝐵(0, 𝜀) ⊇ 𝐵(0,
1
𝑛𝑘

) = 𝐹𝑛𝑘
∋ 𝑥𝑛𝑘

.

Therefore, by Theorem 5 we get 𝐹𝑛 → {0} in 𝜏ℱ .
Example 3. We will show that the mapping 𝑓 : 𝐹 ↦→ ̃︀𝐹 on ℱ is not continuous
in the Fell topology. Again, let 𝐹𝑛 = 𝐵(0, 1

𝑛
) and let 𝐹0 = {0}. From Example 2

we know that 𝐹𝑛 → 𝐹0, so the set 𝒱 = {𝐹0, 𝐹1, 𝐹2, . . . } is clearly closed.
Since ̃︁𝐹0 = ∅ ̸= 𝐹0, by Theorem 3 there is no closed set 𝐹 such that ̃︀𝐹 = 𝐹0.

Therefore, 𝑓−1[{𝐹0}] = ∅. For 𝑛 ∈ N, 𝑓−1[{𝐹𝑛}] is exactly the Lebesgue class
[𝐹𝑛] of 𝐹𝑛 by Theorems 2 and 3. 1 We get

𝑓−1[𝒱 ] =
∞⋃︁

𝑛=0
𝑓−1[𝐹𝑛] =

∞⋃︁
𝑛=1

[𝐹𝑛].

Therefore, (𝐹𝑛)∞
𝑛=1 is a sequence in 𝑓−1[𝒱 ] that converges toward 𝐹0 /∈ 𝑓−1[𝒱 ], so

𝑓−1[𝒱 ] is not closed and 𝑓 is not continuous.

Definition 3. By ℳ we denote the set of Lebesgue classes of all measurable
subsets of R𝑑. We define the 𝐿1

𝑙𝑜𝑐 topology, 𝜏ℳ, as the topology characterized by
the convergence of indicator functions in the space of locally integrable functions
𝐿1

𝑙𝑜𝑐(R𝑑). That is, for all sequences (𝐴𝑛)∞
𝑛=1 in ℳ and all 𝐴 ∈ ℳ

𝐴𝑛 → 𝐴 in 𝜏ℳ ⇔ 1𝐴𝑛 → 1𝐴 in 𝐿1
𝑙𝑜𝑐(R𝑑)

⇔
∫︁

𝑈
(1𝐴𝑛 − 1𝐴) 𝑑𝜆 → 0 for all 𝑈 ⊆ R𝑑 open and bounded.

Remark. Clearly, 𝐴𝑛 → 𝐴 in 𝜏ℳ if and only if for all 𝑈 ⊆ R𝑑 open and bounded

𝜆𝑑((𝐴𝑛△𝐴) ∩ 𝑈) → 0.

Also, we only need to verify the condition for a countable number of sets 𝑈 ⊆ R𝑑

(take for example all open balls in R𝑑 with rational centers and radii).

Theorem 6. For any 𝐴 ∈ ℳ, 𝑈 ⊆ R𝑑 open and bounded and 𝜀 > 0 denote

𝐵(𝐴, 𝑈, 𝜀) = {𝑀 ∈ ℳ | 𝜆𝑑((𝑀△𝐴) ∩ 𝑈) < 𝜀}

and let

ℳ0 = {𝐵(𝐴, 𝑈, 𝜀) | 𝐴 ∈ ℳ, 𝑈 ⊆ R𝑑 open and bounded, 𝜀 > 0}.

Then, ℳ0 is a base of 𝜏ℳ.
1Here, the notation could be somewhat confusing—while [𝐹𝑛] denotes the Lebesgue class of

𝐹𝑛, 𝑓−1[{𝐹𝑛}] is simply the preimage of the set 𝐹𝑛 and is unrelated to Lebesgue classes.
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Proof. First let us show that all 𝐵(𝐴, 𝑈, 𝜀) are open. Let (𝑀𝑛) be a sequence in
ℳ∖𝐵(𝐴, 𝑈, 𝜀) that converges to some 𝑀 ∈ 𝐵(𝐴, 𝑈, 𝜀) in 𝜏ℳ. Then, 𝜆𝑑((𝑀△𝐴)∩
𝑈) < 𝜀 and for all 𝑛 ∈ N larger than some 𝑛0: 𝜆𝑑((𝑀△𝑀𝑛) ∩ 𝑈) < 𝜀 −
𝜆𝑑((𝑀△𝐴) ∩ 𝑈), so

𝜆𝑑((𝑀𝑛△𝐴) ∩ 𝑈) ≤ 𝜆𝑑((𝑀△𝐴) ∩ 𝑈) + 𝜆𝑑((𝑀△𝑀𝑛) ∩ 𝑈) < 𝜀.

Therefore, 𝑀𝑛 ∈ 𝐵(𝐴, 𝑈, 𝜀), which is a contradiction.
Let 𝒢 ⊆ ℳ be open. We will show that, for all 𝐴 ∈ 𝒢 there exists some

𝑈 ⊆ R𝑑 open and bounded and some 𝜀 > 0 such that 𝐵(𝐴, 𝑈, 𝜀) ⊆ 𝒢, implying
that ℳ0 is a base of 𝜏ℳ. Otherwise it would hold that for all 𝑈 and all 𝜀:
𝐵(𝐴, 𝑈, 𝜀) ∖ 𝒢 ≠ ∅. Let {𝑈1, 𝑈2, . . . } be some countable set of open bounded sets
sufficient in the definition of 𝐿1

𝑙𝑜𝑐 convergence (see the remark after Definition 3).
For all 𝑛 ∈ N choose some element

𝑀𝑛 ∈ 𝐵

(︃
𝐴,

𝑛⋃︁
𝑖=1

𝑈𝑖,
1
𝑛

)︃
∖ 𝒢

by the axiom of choice. Then, for any 𝑈𝑘 and any 𝜀, if 1
𝑛0

< 𝜀 and 𝑛1 = max(𝑛0, 𝑘),
then for all 𝑛 ≥ 𝑛1

𝜆𝑑((𝑀𝑛△𝐴) ∩ 𝑈𝑘) ≤ 𝜆𝑑

(︃
(𝑀𝑛△𝐴) ∩

𝑛⋃︁
𝑖=1

𝑈𝑖

)︃
<

1
𝑛

< 𝜀.

Therefore, 𝑀𝑛 → 𝐴 ∈ 𝒢, which, since 𝒢 is open, is a contradiction.

1.3 Comparing the topologies
Here we try to illustrate that the two topologies are very different, showing several
negative results about the relationship of their convergences.
Example 4. It does not hold that if for a sequence (𝐹𝑛)∞

𝑛=1 in ℱ and 𝐹 ∈ ℱ

𝐹𝑛 → 𝐹 in 𝜏ℱ ,

then
[𝐹𝑛] → [𝐹 ] in 𝜏ℳ

([𝐴] denotes the Lebesgue class of 𝐴). For 𝑑 = 1, let {𝑞1, 𝑞2, . . . } be some ordering
of the rational numbers and let 𝐹𝑛 = {𝑞𝑖 | 𝑖 ≤ 𝑛}, 𝐹 = R. Clearly, [𝐹𝑛] = [∅] for
all 𝑛, and [∅] does not converge toward [R] in 𝜏ℳ. We will show that 𝐹𝑛 → 𝐹 in
𝜏ℱ .

For all 𝑛, 𝐹𝑛 is finite and therefore closed. For any 𝑥 in R there exists some
sequence (𝑥𝑛) such that 𝑥𝑛 ∈ 𝐹𝑛 and 𝑥𝑛 → 𝑥. Furthermore, any convergent
sequence converges to an element of R. By Theorem 5, 𝐹𝑛 → 𝐹 in 𝜏ℱ .
Example 5. It does not hold that if for a sequence (𝐹𝑛)∞

𝑛=1 in ℱ and 𝐹 ∈ ℱ :

[𝐹𝑛] → [𝐹 ] in 𝜏ℳ,

then
𝐹𝑛 → 𝐹 in 𝜏ℱ .
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Let 𝐹𝑛 = 𝐵(0, 1
𝑛
) and 𝐹 = ∅. We know from Example 2 that 𝐹𝑛 → {0} ̸= ∅. On

the other hand, for any 𝑈 open and bounded

𝜆𝑑((𝐹𝑛△∅) ∩ 𝑈) ≤ 𝜆𝑑(𝐵(0,
1
𝑛

)) → 0,

so [𝐹𝑛] → [𝐹 ] in 𝜏ℳ.
Remark. The propositions negated by Examples 4 and 5 can be seen as too
strong—the proposition from Example 4 states that the convergence of any se-
quence in the particular classes is a sufficient condition for the convergence of the
classes, while in Example 5 we have that the convergence of the classes ensures
the convergence of all sequences in the classes. We can try using 𝜆-inner sets to
weaken the propositions to a particular sequence in the classes.

However, Example 5 also shows that it does not hold that if [𝐹𝑛] → [𝐹 ] in
𝜏ℳ, then ̃︀𝐹𝑛 → ̃︀𝐹 in 𝜏ℱ .

Furthermore, Example 4 is a counterexample even for a weaker version of
both of the original propositions: If [𝐹𝑛] → [𝐹 ] in 𝜏ℳ and 𝐹𝑛 → 𝐹0 in 𝜏ℱ , then
𝐹0 ∈ [𝐹 ].
Example 6. It does not hold that if for a sequence (𝐹𝑛)∞

𝑛=1 in ℱ and 𝐹 ∈ ℱ :

[𝐹𝑛] → [𝐹 ] in 𝜏ℳ,

then there exists some 𝐹0 ∈ [𝐹 ] such that

̃︀𝐹𝑛 → 𝐹0 in 𝜏ℱ .

For 𝑑 = 2 let
𝐺𝑘 = {(𝑥, 𝑦) ∈ [0, 1]2 | 𝑦 ≤ 𝑥2}

and let 𝐹2𝑘 = 𝐺𝑘, 𝐹2𝑘−1 = ∅. Clearly, [𝐹𝑛] → [∅] in 𝜏ℳ, since 𝜆2(𝐹𝑛) → 0.
On the other hand, 𝐹2𝑘−1 → ∅ and 𝐹2𝑘 → {0} × [0, 1] ∪ [0, 1] × {1} in 𝜏ℱ by

Theorem 5. Neither of those sets is the limit of the whole sequence: As for ∅, there
exists a subsequence 𝑥𝑛𝑘

∈ 𝐹𝑛𝑘
converging to a point outside ∅ (take for example

𝑥2𝑘 = (0, 0)), contradicting part ii of Theorem 5. For {0} × [0, 1] ∪ [0, 1] × {1},
there exists no sequence 𝑥𝑛 ∈ 𝐹𝑛 such that 𝑥𝑛 → (0, 0). Clearly, 𝐹𝑛 does not
converge in 𝜏ℱ .
Example 7. It does not hold that if for a sequence (𝐹𝑛)∞

𝑛=1 in ℱ and 𝐹 ∈ ℱ :

̃︀𝐹𝑛 → 𝐹 in 𝜏ℱ ,

then
[𝐹𝑛] → [𝐹 ] in 𝜏ℳ.

Similarly as in Example 1, for 𝑑 = 1 take

𝐹𝑛 =
𝑛⋃︁

𝑖=1
𝐵(𝑞𝑖,

1
2𝑖+2 ),

where {𝑞1, 𝑞2, . . . } is some ordering of the rational numbers. Clearly, ̃︀𝐹𝑛 = 𝐹𝑛 for
all 𝑛. Let

𝑀 =
∞⋃︁

𝑛=1
𝐹𝑛.
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Because 𝑀 is dense in R and 𝐹𝑛 ↗ 𝑀 , for any 𝑥 ∈ R there exists a sequence
𝑥𝑛 ∈ 𝐹𝑛 such that 𝑥𝑛 → 𝑥. Also, any convergent sequence converges to a point
in R, so, by Theorem 5, ̃︀𝐹𝑛 → R in 𝜏ℱ .

On the other hand,

𝜆((𝐹𝑛△R) ∩ (0, 1)) = 𝜆((R ∖ 𝐹𝑛) ∩ (0, 1))

≥ 1 −
𝑛∑︁

𝑖=1
𝜆(𝐵(𝑞𝑖,

1
2𝑖+2 ))

= 1 − 1
2

𝑛∑︁
𝑖=1

1
2𝑖

→ 1
2 ,

so [𝐹𝑛] does not converge to R in 𝜏ℳ.
Remark. In Example 7 it can easily be shown that [𝐹𝑛] → [𝑀 ] in 𝜏ℳ. Therefore,
it is also a counterexample for a weaker proposition: If ̃︀𝐹𝑛 → 𝐹 in 𝜏ℱ and
[𝐹𝑛] → [𝑀 ] in 𝜏ℳ, then 𝐹 ∈ [𝑀 ].

Consequently, the set [ℱ ] of all Lebesgue classes containing a closed set, [ℱ ] =
{[𝐹 ] | 𝐹 ∈ ℱ}, is not closed in 𝜏ℳ.
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2. Random closed sets and
random measurable sets
In this chapter we define random closed and measurable sets and try to compare
the two models.

Definition 4. Let (Ω, 𝒜,P) be a complete probability space. A random closed set
(RACS) is a measurable mapping 𝑍 : (Ω, 𝒜) → (ℱ , ℬ(ℱ)), where ℬ(ℱ) is the
Borel 𝜎-algebra of the topological space (ℱ , 𝜏ℱ).

A random measurable set (RAMS) is a measurable mapping 𝑋 : (Ω, 𝒜) →
(ℳ, ℬ(ℳ)), where ℬ(ℳ) is the Borel 𝜎-algebra of the topological space (ℳ, 𝜏ℳ).

2.1 Relating RAMS and RACS
In this section we review the results of Galerne and Lachieze-Rey [2015], though
the relationship between RAMS and RACS is not the main target of study of
the article. We relate RAMS and RACS using the notion of a measurable graph
representative.

Definition 5. A set 𝑌 ⊆ Ω × R𝑑 is a measurable graph, if it is a measurable
subset of Ω × R𝑑, that is, if 𝑌 ∈ 𝒜 ⊗ ℬ(R𝑑).

A measurable graph 𝑌 is closed, if for all 𝜔 ∈ Ω the 𝜔-section of 𝑌 , 𝑌𝜔 =
{𝑥 ∈ R𝑑 | (𝜔, 𝑥) ∈ 𝑌 }, is a closed subset of R𝑑.

A measurable graph 𝑌 is a measurable graph representative of a RAMS 𝑋, if
for almost every 𝜔 ∈ Ω, the 𝜔-section of 𝑌 is Lebesgue equivalent to 𝑋(𝜔), that
is, if for a.e. 𝜔 ∈ Ω,

𝜆𝑑(𝑌𝜔△𝑋(𝜔)) = 0.

The following is a theorem by Himmelberg and Parthasarathy [1975] rephrased
in terms of random sets by Galerne and Lachieze-Rey [2015]. It states that there
is a one to one correspondence between RACS and closed measurable graphs.

Theorem 7 (Himmelberg and Parthasarathy [1975]). (i) Let 𝑍 be a RACS.
Then the graph of 𝑍, defined as {(𝜔, 𝑥) ∈ Ω × R𝑑 | 𝑥 ∈ 𝑍(𝜔)}, is a closed
measurable graph.

(ii) For any closed measurable graph 𝑌 , the map 𝑍 : 𝜔 ↦→ 𝑌𝜔 is a RACS.

Remark. Part (ii) of Theorem 7 requires the probability space (Ω, 𝒜,P) to be com-
plete. All other propositions in this section would hold without the completeness
assumption.

The proof of the following theorem by Galerne and Lachieze-Rey [2015] uses
the Radon–Nikodym derivation theorem for random measures ([Galerne and
Lachieze-Rey, 2015, Appendix A]). Here we reformulated the proof, including
a proof of a special case of the Radon–Nikodym theorem, as we use its variation
in Section 2.2.

Theorem 8 (Galerne and Lachieze-Rey [2015]). For all RAMS 𝑋, there exists
a measurable graph representative of 𝑋.
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Proof. Let us consider the random Radon measure 𝜇 on R𝑑 defined for all 𝜔 ∈ Ω
and all 𝐴 ∈ ℬ(R𝑑) as

𝜇(𝜔, 𝐴) = 𝜆𝑑(𝑋(𝜔) ∩ 𝐴) =
∫︁

1𝑋(𝜔) 𝑑𝜆𝑑(𝑥).

For all 𝑛 ∈ N, 𝜔 ∈ Ω and 𝑥 ∈ R𝑑, define

𝑓𝑛(𝜔, 𝑥) =
𝜇(𝜔, 𝐵(𝑥, 1

𝑛
))

𝜆𝑑(𝐵(𝑥, 1
𝑛
)) =

𝜆𝑑(𝑋(𝜔) ∩ 𝐵(𝑥, 1
𝑛
))

𝜆𝑑(𝐵(𝑥, 1
𝑛
)) .

For all 𝑛 ∈ N it holds that 𝑓𝑛(·, ·) is 𝒜 ⊗ ℬ(R𝑑)-measurable—the proof of this
fact is complicated and not relevant to our interests. It is shown that 𝑓𝑛(·, 𝑥) is
𝒜-measurable for all 𝑥 ∈ R𝑑 and 𝑓𝑛(𝜔, ·) is continuous for all 𝜔 ∈ Ω, meaning
𝑓𝑛(·, ·) is a Carathéodory function and therefore is, since R𝑑 is separable, jointly
measurable. For more details, see [Galerne and Lachieze-Rey, 2015, Appendix A]
and [Aliprantis and Border, 2006, 1, Section 4.10].

Clearly, for all 𝜔 ∈ Ω the measure 𝜇(𝜔, ·), being a restriction of 𝜆𝑑, is ab-
solutely continuous with respect to 𝜆𝑑. By the Besicovitch derivative theorem
(Theorem 1), the derivative of 𝜇(𝜔, ·), defined as

lim
𝜀→0+

𝜇(𝜔, 𝐵(𝑥, 𝜀))
𝜆𝑑(𝐵(𝑥, 𝜀)) = lim

𝜀→0+

𝜆𝑑(𝑋(𝜔) ∩ 𝐵(𝑥, 𝜀))
𝜆𝑑(𝐵(𝑥, 𝜀)) ,

exists for 𝜆𝑑-almost all 𝑥 ∈ R𝑑 and is a Radon–Nikodym derivative of 𝜇(𝜔, ·).
Consequently, the function 𝑓 defined for all 𝜔 ∈ Ω and 𝑥 ∈ R𝑑 as

𝑓(𝜔, 𝑥) = lim sup
𝑛→+∞

𝑓𝑛(𝜔, 𝑥)1[lim sup𝑛→+∞ 𝑓𝑛(𝜔,𝑥)=lim inf𝑛→+∞ 𝑓𝑛(𝜔,𝑥)]

= lim sup
𝑛→+∞

𝜆𝑑(𝑋(𝜔) ∩ 𝐵(𝑥, 1
𝑛
))

𝜆𝑑(𝐵(𝑥, 1
𝑛
)) 1[lim sup𝑛→+∞ 𝑓𝑛(𝜔,𝑥)=lim inf𝑛→+∞ 𝑓𝑛(𝜔,𝑥)],

is for all 𝜔 ∈ Ω a Radon–Nikodym derivative of 𝜇(𝜔, ·). Since the lim sup of
a sequence of measurable functions is measurable, 𝑓 is 𝒜 ⊗ ℬ(R𝑑)-measurable.
Define

𝑌 = {(𝜔, 𝑥) ∈ Ω × R𝑑 | 𝑓(𝜔, 𝑥) = 1}.

As 𝑌 = 𝑓−1[{1}] is the preimage of a measurable set under an 𝒜 ⊗ ℬ(R𝑑)-
measurable function, it is 𝒜 ⊗ ℬ(R𝑑)-measurable, 𝑌 ∈ 𝒜 ⊗ ℬ(R𝑑). Therefore, 𝑌
is a measurable graph.

For any 𝜔 ∈ Ω, since 𝑓(𝜔, ·) and 1𝑋(𝜔)(·) are both Radon–Nikodym derivatives
of 𝜇(𝜔, ·), they are equal for 𝜆𝑑-almost all 𝑥 ∈ R𝑑. Hence,

𝜆𝑑(𝑌𝜔△𝑋(𝜔)) ≤ 𝜆𝑑({𝑥 ∈ R𝑑 | 𝑓(𝜔, 𝑥) ̸= 1𝑋(𝜔)(𝑥)}) = 0,

that is, 𝑌 is a measurable graph representative of 𝑋.

The following theorem was presented by Galerne and Lachieze-Rey [2015] as
trivial. Here we supply a proof.

Theorem 9. For all measurable graphs 𝑌 , the map 𝑋 : Ω → ℳ, defined for all
𝜔 ∈ Ω as

𝑋(𝜔) = [𝑌𝜔],
where [𝑌𝜔] denotes the Lebesgue class of the 𝜔-section of 𝑌 , is a RAMS.
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Proof. First, let us show that the mapping 𝑓 : 𝜔 ↦→ 𝜆𝑑(𝑌𝜔) is 𝒜-measurable. Let
(𝑈𝑛) ⊆ ℬ(R𝑑) be a sequence of measurable sets such that 𝑈𝑛 ↗ R𝑑 and for all 𝑛:
𝜆𝑑(𝑈𝑛) < ∞ and define 𝒱𝑛 as the set of all measurable graphs 𝑊 such that the
mapping 𝜔 ↦→ 𝜆𝑑(𝑊𝜔 ∩ 𝑈𝑛) is measurable,

𝒱𝑛 = {𝑊 ∈ 𝒜 ⊗ ℬ(R𝑑) | 𝜔 ↦→ 𝜆𝑑(𝑊𝜔 ∩ 𝑈𝑛) is measurable}.

We will show that 𝒱𝑛 = 𝒜 ⊗ ℬ(R𝑑). For all 𝐴 ∈ 𝒜 and 𝐵 ∈ ℬ(R𝑑), 𝐴 × 𝐵 ∈ 𝒱𝑛

and it can be shown that 𝒱𝑛 is a Dynkin system. Therefore, 𝒱𝑛 contains the
Dynkin system generated by the set of all measurable rectangles, which is, since
that set is closed under finite intersections, equal to the 𝜎-algebra generated by
the set, i.e. 𝒜 ⊗ ℬ(R𝑑).

Because 𝜔 ↦→ 𝜆𝑑(𝑌𝜔 ∩𝑈𝑛) is measurable for all 𝑛 and 𝜆𝑑(𝑌𝜔 ∩𝑈𝑛) → 𝜆𝑑(𝑌𝜔) =
𝑓(𝜔), 𝑓 is measurable.

We will verify the measurability for elements 𝐵(𝐴, 𝑈, 𝜀) of the base ℳ0 from
Theorem 6. For any 𝐴 ∈ ℳ, 𝑈 ⊆ R𝑑 open and bounded and 𝜀 > 0

𝑋−1[𝐵(𝐴, 𝑈, 𝜀)] = {𝜔 | 𝜆𝑑((𝑌𝜔△𝐴) ∩ 𝑈) < 𝜀}.

Define 𝑌 = {(𝜔, 𝑥) | 𝑥 ∈ (𝑌𝜔△𝐴) ∩ 𝑈}. 𝑌 is also a measurable graph and

𝑋−1[𝐵(𝐴, 𝑈, 𝜀)] = {𝜔 | 𝜆𝑑(𝑌 ) < 𝜀} = 𝑓−1[[0, 𝜀)].

Since 𝑓 is measurable, 𝑋−1[𝐵(𝐴, 𝑈, 𝜀)] and therefore 𝑋 are also measurable.

Corollary 10. For all RACS 𝑍, the map 𝑋 : Ω → ℳ, defined for all 𝜔 ∈ Ω as

𝑋(𝜔) = [𝑍(𝜔)],

is a RAMS.

Remark. Corollary 10 states that any RACS naturally induces a RAMS. However,
many RACS induce the same RAMS—namely all RACS whose Lebesgue classes
coincide for all 𝜔.

2.2 Closed RAMS
In this section we study conditions under which a RAMS induces a RACS.
Namely, we define closed RAMS and subsequently show that any closed RAMS
defines a RACS.

Definition 6. A RAMS 𝑋 is closed if for almost every 𝜔 ∈ Ω there exists a
closed set in the Lebesgue class of 𝑋(𝜔).

A RAMS 𝑋 is surely closed if for all 𝜔 ∈ Ω there exists a closed set in the
Lebesgue class of 𝑋(𝜔).

Remark. Examples of non-closed RAMS can be found in Chapter 3.
The following theorem states that all closed RAMS admit a closed measurable

graph representative. In the proof, we build on the proof by Galerne and Lachieze-
Rey [2015] of Theorem 8.
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Theorem 11. For all closed RAMS 𝑋, there exists a closed measurable graph
representative of 𝑋.

Proof. As in the proof of Theorem 8 we define for all 𝑛 ∈ N, 𝜔 ∈ Ω and 𝑥 ∈ R𝑑

𝑓𝑛(𝜔, 𝑥) =
𝜆𝑑(𝑋(𝜔) ∩ 𝐵(𝑥, 1

𝑛
))

𝜆𝑑(𝐵(𝑥, 1
𝑛
)) .

Again, for all 𝑛 ∈ N, 𝑓𝑛 is 𝒜 ⊗ ℬ(R𝑑)-measurable. Let us now define

𝑔𝑛(𝜔, 𝑥) = 1[𝑓𝑛(𝜔,𝑥)>0].

Then, all 𝑔𝑛 are also 𝒜 ⊗ ℬ(R𝑑)-measurable: 𝑔−1
𝑛 [{0}] is equal to 𝑓−1

𝑛 [{0}] and
𝑔−1

𝑛 [{1}] is equal to 𝑓−1
𝑛 [(0, ∞)], which are both measurable sets due to the mea-

surability of 𝑓𝑛.
We will show that for all 𝜔 ∈ Ω and all 𝑥 ∈ R𝑑,

lim
𝑛→∞

𝑔𝑛(𝜔, 𝑥) = 1 ̃︀𝑋(𝜔)(𝑥),

where ̃︁𝑋(𝜔) denotes the 𝜆-inner set of 𝑋(𝜔) (see Chapter 1).
Let 𝜔 ∈ Ω be fixed and first let 𝑥 /∈ ̃︁𝑋(𝜔). Then, there exists 𝜀 > 0 such that

𝜆𝑑(𝑋(𝜔)∩𝐵(𝑥, 𝜀)) = 0. For 𝑛0 ∈ N such that 1
𝑛0

< 𝜀 we get 𝜆𝑑(𝑋(𝜔)∩𝐵(𝑥, 1
𝑛0

)) =
0, so, by the definition of 𝑓𝑛, 𝑓𝑛0(𝜔, 𝑥) = 0. Since 𝑓𝑛 are non-increasing in 𝑛, for
all 𝑛 ≥ 𝑛0: 𝑓𝑛(𝜔, 𝑥) = 0 = 𝑔𝑛(𝜔, 𝑥).

Now let 𝑥 ∈ ̃︁𝑋(𝜔). This means that for all 𝜀 > 0: 𝜆𝑑(𝑋(𝜔) ∩ 𝐵(𝑥, 𝜀)) > 0,
so, for all 𝑛 ∈ N, 𝜆𝑑(𝑋(𝜔) ∩ 𝐵(𝑥, 1

𝑛
)) > 0 and therefore 𝑓𝑛(𝜔, 𝑥) > 0. Hence, for

all 𝑛 ∈ N: 𝑔𝑛(𝜔, 𝑥) = 1.
Since 1 ̃︀𝑋(·)(·) is the (pointwise) limit of a sequence of 𝒜 ⊗ ℬ(R𝑑)-measurable

functions, it is 𝒜 ⊗ ℬ(R𝑑)-measurable and also

̃︁𝑋 = {(𝜔, 𝑥) ∈ Ω × R𝑑 | 𝑥 ∈ ̃︁𝑋(𝜔)} = 1 ̃︀𝑋(·)(·)
−1[{1}]

is an 𝒜 ⊗ ℬ(R𝑑)-measurable set, that is, a measurable graph.
By Theorem 4, ̃︁𝑋𝜔 = ̃︁𝑋(𝜔) is closed for all 𝜔 ∈ Ω. Therefore, ̃︁𝑋 is a closed

measurable graph.
For any 𝜔 ∈ Ω such that there exists a closed set 𝐹 ∈ ℱ Lebesgue equiv-

alent to 𝑋(𝜔), by Theorem 2 𝐹 is Lebesgue equivalent to ̃︀𝐹 = ̃︁𝑋(𝜔). Hence,
𝜆𝑑(̃︁𝑋(𝜔)△𝑋(𝜔)) = 𝜆𝑑(𝐹△𝑋(𝜔)) = 0. Since the assumption holds for almost all
𝑥 ∈ R𝑑, ̃︁𝑋 is a representative of 𝑋. Altogether, ̃︁𝑋 is a closed measurable graph
representative of 𝑋.

Corollary 12. For all closed RAMS 𝑋 there exists a RACS 𝑍 such that for
almost all 𝜔 ∈ Ω: 𝑍(𝜔) is Lebesgue equivalent to 𝑋(𝜔).

Remark. Unlike Theorem 8, the proof of Theorem 11 also gives us a clear way of
constructing the RACS in Corrolary 12, that is, 𝑍 : 𝜔 ↦→ ̃︁𝑋(𝜔).
Remark. If a RAMS 𝑋 is surely closed, ̃︁𝑋(𝜔) is Lebesgue equivalent to 𝑋(𝜔)
for all 𝜔 ∈ Ω. Then, the RAMS induced by the graph ̃︁𝑋 by way of Theorem 9
is clearly the original RAMS 𝑋. From this we get a one to one correspondence
between surely closed RAMS and RACS with codomain in ̃︀ℱ = { ̃︀𝐹 | 𝐹 ∈ ℱ}.
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More precisely, if we define an equivalence ∼ on the set of all RACS as

𝑍1 ∼ 𝑍2 ⇔ ∀𝜔 ∈ Ω : 𝜆𝑑(𝑍1(𝜔)△𝑍2(𝜔)) = 0,

we get a one to one correspondence between the class of surely closed RAMS and
equivalence classes of ∼, each class [𝑍] being represented by its member ̃︀𝑍.

For a general RAMS 𝑋, the RAMS defined as 𝜔 ↦→ [̃︁𝑋(𝜔)] is surely closed
and coincides with 𝑋 on all 𝜔 ∈ Ω such that 𝑋(𝜔) contains a closed set.

Corollary 13. A RAMS 𝑋 admits a closed measurable graph representative (and
induces a RACS) if and only if 𝑋 is closed.

Proof. One implication has already been proved as Theorem 11 and the other is
trivial: Let 𝑌 be a closed representative of 𝑋. Then, for almost all 𝜔 ∈ Ω: 𝑋(𝜔)
contains 𝑌𝜔 and 𝑌𝜔 is closed.
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3. RAMS not generating RACS
As a result of Corrolary 12, finding examples of RAMS that do not induce a
RACS reduces to finding examples of measurable sets containing no closed sets
in their Lebesgue class. We have already used a canonical example of such a set
as Example 1. Let us restate it in a general dimension.
Example 8. Let {𝑠1, 𝑠2, . . . } be some ordering of a countable dense set 𝑆 in R𝑑.
Define

𝑀 =
∞⋃︁

𝑛=1
𝐵(𝑠𝑛,

1
2𝑛

).

Then,
𝜆𝑑(𝑀) ≤

∞∑︁
𝑛=1

𝜆𝑑(𝐵(𝑠𝑛,
1
2𝑛

)) = 𝜅𝑑

∞∑︁
𝑛=1

1
2𝑑𝑛

< ∞,

where 𝜅𝑑 is the volume of the 𝑑-dimensional unit sphere. Therefore, 𝑀 is not
Lebesgue equivalent to R𝑑.

For any open set 𝐺 ⊆ R𝑑: 𝜆𝑑(𝐺∩𝑀) > 0, since 𝐺 contains some 𝑠𝑘. Therefore,
if 𝑀 were Lebesgue equivalent to a closed set 𝐹 ∈ ℱ , then for all 𝐺 open:
𝜆𝑑(𝐺 ∩ 𝐹 ) = 𝜆𝑑(𝐺 ∩ 𝑀) > 0. 𝐹 would have a non-empty intersection with all
open sets, meaning 𝐹 would be dense in R𝑑. Since 𝐹 is closed, it would have to
be equal to R𝑑.

3.1 Stationary RAMS
In this section we introduce stationary RAMS and extend Example 8 to this
notion, showing that even stationary RAMS can induce no RACS.
Definition 7. A RAMS 𝑋 is stationary, if its distribution is translation invari-
ant, that is, if for all 𝑟 ∈ R𝑑 and all 𝒱 ⊆ ℳ measurable in 𝐿1

𝑙𝑜𝑐:

P({𝜔 ∈ Ω | 𝑋(𝜔) ∈ 𝒱}) = P({𝜔 ∈ Ω | 𝑋(𝜔) ∈ 𝒱 + 𝑟}), (3.1)

where 𝒱 + 𝑟 = {𝑉 + 𝑟 | 𝑉 ∈ 𝒱} and 𝑉 + 𝑟 = {𝑣 + 𝑟 | 𝑣 ∈ 𝑉 }.
Remark. Condition (3.1) is equivalent to P𝑋 = P𝑋+𝑟 for all 𝑟 ∈ R𝑑, where P𝑋 is
the probability distribution measure of 𝑋.

Stationary RAMS are useful due to some of their nice properties. For example,
while for a RACS 𝑍 we can study the probability of some 𝑥 ∈ R𝑑 belonging to
𝑍, P(𝑥 ∈ 𝑍), this does not make sense for a general RAMS 𝑋, since ”𝑥 ∈ 𝑋” is
undefined. However, if 𝑋 is stationary we can define the volume fraction of 𝑋,
which can be interpreted as the probability of any fixed 𝑥 being a member of 𝑋
(see Kiderlen and Rataj [2018] for more details).

Let us now construct an example of a stationary RAMS that does not admit
a closed measurable graph representative.
Example 9. Let {𝑠1, 𝑠2, . . . } be some ordering of a countable dense set 𝑆 in (0, 1)𝑑

such that for all 𝑛 ∈ N: 𝐵(𝑠𝑛, 1
2𝑛(𝜅𝑑+1)) ⊆ (0, 1)𝑑, where 𝜅𝑑 is the volume of the

𝑑-dimensional unit ball, and define

𝑀0 =
⋃︁

𝑧∈Z𝑑

(︃ ∞⋃︁
𝑛=1

𝐵(𝑠𝑛 + 𝑧,
1

2𝑛(𝜅𝑑 + 1))
)︃

,
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that is, 𝑀0 consists of copies of ⋃︀∞
𝑛=1 𝐵(𝑠𝑛, 1

2𝑛(𝜅𝑑+1)) in every hypercube of volume
1 with integer vertices. Again, 𝑀0 is not Lebesgue equivalent to R𝑑, since

𝜆𝑑(𝑀0 ∩ (0, 1)𝑑) = 𝜆𝑑(
∞⋃︁

𝑛=1
𝐵(𝑠𝑛,

1
2𝑛(𝜅𝑑 + 1)))

≤
∞∑︁

𝑛=1
𝜆𝑑(𝐵(𝑠𝑛,

1
2𝑛(𝜅𝑑 + 1)))

= 𝜅𝑑

𝜅𝑑 + 1

∞∑︁
𝑛=1

1
2𝑑𝑛

< 1
= 𝜆𝑑(R𝑑 ∩ (0, 1)𝑑).

By a similar argument as in Example 8, 𝑀0 contains no closed set in its Lebesgue
class. We will define 𝑋 as 𝑀0 + 𝑅, where 𝑅 is a random 𝑑-vector distributed
uniformly on (0, 1)𝑑, 𝑅 ∼ 𝑈((0, 1)𝑑). In more detail, let us define

ℋ = {𝑀0 + 𝑟 | 𝑟 ∈ (0, 1)𝑑},

where 𝑀0 + 𝑟 = {𝑚 + 𝑟 | 𝑚 ∈ 𝑀0}. Notice that for 𝑟1 ̸= 𝑟2, 𝑀0 + 𝑟1 is not
Lebesgue equivalent to 𝑀0 + 𝑟2. Therefore, elements of ℋ correspond precisely
to elements of (0, 1)𝑑, that is, 𝑔 : (0, 1)𝑑 → ℋ, defined for all 𝑟 ∈ (0, 1)𝑑 as

𝑔(𝑟) = 𝑀0 + 𝑟,

is bijective (even with respect to Lebesgue classes). Next, define a 𝜎-algebra 𝒱
on ℋ as

𝒱 = {𝑔[𝐵] | 𝐵 ∈ ℬ((0, 1)𝑑)} = {{𝑀0 + 𝑏 | 𝑏 ∈ 𝐵} | 𝐵 ∈ ℬ((0, 1)𝑑)}
and a probability measure 𝜇 on (ℋ, 𝒱) such that for all 𝐵 ∈ ℬ((0, 1)𝑑)

𝜇(𝑔[𝐵]) = 𝜆𝑑(𝐵).
Clearly, 𝑔 : ((0, 1)𝑑, ℬ((0, 1)𝑑)) → (ℋ, 𝒱) is a strict isomorphism and 𝜇 is the
pushforward of 𝜆𝑑 via 𝑔, 𝜇 = 𝜆𝑑 ∘ 𝑔−1[·].

Finally, define 𝑋 as identity on ℋ. We will show that 𝑋 is a RAMS using
the base ℳ0 of 𝜏ℳ from Theorem 6. For fixed 𝐴 ∈ ℳ and 𝑈 ⊆ R𝑑 open and
bounded, the map 𝑓 : 𝑟 ∈ (0, 1)𝑑 ↦→ 𝜆𝑑(((𝑀0 + 𝑟)△𝐴) ∩ 𝑈) is measurable. For
any 𝐵(𝐴, 𝑈, 𝜀) ∈ ℳ0

𝑋−1[𝐵(𝐴, 𝑈, 𝜀)] = 𝐵(𝐴, 𝑈, 𝜀) ∩ ℋ = {𝑀0 + 𝑟 | 𝜆𝑑(((𝑀0 + 𝑟)△𝐴) ∩ 𝑈) < 𝜀}.

Then,
𝑔−1[𝐵(𝐴, 𝑈, 𝜀) ∩ ℋ] = {𝑟 | 𝜆𝑑(((𝑀0 + 𝑟)△𝐴) ∩ 𝑈) < 𝜀} = 𝑓−1[[0, 𝜀)].

Since 𝑓 is measurable, so is 𝑔−1[𝐵(𝐴, 𝑈, 𝜀) ∩ ℋ] and therefore also 𝑋.
𝑋 is stationary: For any 𝑔[𝐵] ∈ 𝒱 , where 𝐵 ∈ ℬ((0, 1)𝑑), and 𝑟 ∈ R𝑑, definê︁𝐵𝑟 = 𝐵 + 𝑟 and

𝐵𝑟 = {𝑏 − ⌊𝑏⌋ | 𝑏 ∈ ̂︁𝐵𝑟},

where ⌊𝑏⌋ is the floor function applied to every coordinate of 𝑏. Because 𝑀0 is
1-periodic along the 𝑑 canonical directions, 𝑔[𝐵] + 𝑟 = 𝑀0 + (𝐵 + 𝑟) = 𝑔[𝐵𝑟].
Furthermore, 𝜆𝑑(𝐵𝑟) = 𝜆𝑑(𝐵), since 𝜆𝑑 is translation-invariant. Therefore,

𝜇(𝑔[𝐵] + 𝑟) = 𝜇(𝑔[𝐵𝑟]) = 𝜆𝑑(𝐵𝑟) = 𝜆𝑑(𝐵) = 𝜇(𝑔[𝐵]).
Thus, 𝑋 is a stationary RAMS that does not induce a RACS.
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Conclusion
We have given an overview of the relationship between the two most common
models of random sets. We introduced the notion of 𝜆-inner sets, proving they
can be consistently chosen as a representative of any Lebesgue class containing
a closed set. Thereafter, we defined the topologies underlying random sets, il-
lustrated them on some examples and showed counterexamples for propositions
about the relationship of their convergences.

Then, we defined RACS, RAMS, and measurable graphs and recapitulated
prior results, reformulating one proof and supplying a missing one. The main
theorems stated that RACS correspond to measurable graphs, that all RAMS
induce a measurable graph and that all measurable graphs induce a RAMS. The
main result of this thesis is that every RAMS that is almost surely Lebesgue
equivalent to a closed set induces a closed measurable graph. The proof consists
of a more careful reinterpretation of the proof that RAMS induce measurable
graphs, along with an application of 𝜆-inner sets, which were introduced mainly
for this reason. Consequently, RAMS that induce a RACS can be characterized
precisely as closed RAMS.

Finally, we presented some examples of RAMS that do not induce RACS,
including a construction of such a RAMS that is also translation invariant, where
we used a random shift of a set periodic along all canonical directions.
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