
MASTER THESIS

Bc. Miroslav Krabec

3D Object Classification Using Neural
Networks

Department of Software and Computer Science Education

Supervisor of the master thesis: doc. Ing. Jaroslav Křivánek, Ph.D.
Study programme: Computer Science

Study branch: Artificial Intelligence

Prague 2019

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In date signature of the author

i

This thesis is dedicated to everyone who supported me during the writing process
of the thesis. Especially, I would like to thank my supervisor doc. Ing. Jaroslav
Křivánek, Ph.D. for his thorough counseling and also the whole research group
for their time and insights.

ii

Title: 3D Object Classification Using Neural Networks

Author: Bc. Miroslav Krabec

Department: Department of Software and Computer Science Education

Supervisor: doc. Ing. Jaroslav Křivánek, Ph.D., Department of Software and
Computer Science Education

Abstract: Classification of 3D objects is of great interest in the field of artificial
intelligence. There are numerous approaches using artificial neural networks to
address this problem. They differ mainly in the representation of the 3D model
used as input and the network architecture. The goal of this thesis is to explore
and test these approaches on publicly available datasets and subject them to in-
dependent comparison, which has not so far appeared in the literature. We pro-
vide a unified framework allowing to convert the data from common 3D formats.
We train and test ten different network on the ModelNet40 and ShapeNetCore
datasets. All the networks performed reasonably well in our tests, but we were
generally unable to achieve the accuracies reported in the original papers. We
suspect this could be due to extensive, albeit unreported, hyperparameter tuning
by the authors of the original papers, suggesting this issue would benefit from
further research.

Keywords: deep learning, classification, neural networks, 3D

iii

Contents

1 Introduction 3
1.1 Motivation and Goals . 3
1.2 Problem Statement . 3
1.3 Scope of the Thesis . 3
1.4 Thesis Outline . 4

2 Theoretical Background 5
2.1 Artificial Neural Networks . 5

2.1.1 Feedforward Neural Networks 5
2.1.2 Convolutional Neural Networks 7
2.1.3 Recurrent Neural Networks 8
2.1.4 Classification . 8
2.1.5 Regularization . 9
2.1.6 Training . 9

2.2 Deep Learning Frameworks . 10

3 Survey of 3D Classification Methods 12
3.1 Voxel-based Neural Networks . 12

3.1.1 VoxNet . 12
3.1.2 Voxception Residual Network 14
3.1.3 Octree and Adaptive Octree Networks 15

3.2 Multi-view-based Neural Networks 17
3.2.1 Multi-view Convolutional Networks 17
3.2.2 RotationNet . 18
3.2.3 Sequential Views to Sequential Labels 19

3.3 Point-cloud-based Neural Networks 19
3.3.1 PointNet and PointNet++ 19
3.3.2 Self-Organizing Network 20
3.3.3 KD-Network . 20
3.3.4 Graph Based Convolutional Network 20

4 Methods 22
4.1 Datasets . 22

4.1.1 ModelNet40 . 22
4.1.2 ShapeNetCore . 22
4.1.3 Other 3D Datasets . 27

4.2 Data Conversion . 27
4.2.1 Mesh to Voxels . 27
4.2.2 Mesh to Images . 27
4.2.3 Mesh to Point Cloud . 28

4.3 Technical Setup . 29

1

5 Experiments and Results 31
5.1 Hardware . 31
5.2 Accuracy . 31
5.3 Testing on the Artificial Datasets 31

5.3.1 Time and Memory Requirements 32
5.3.2 Results on ModelNet40 . 33
5.3.3 Difficult Categories . 37

5.4 ShapeNetCore Results . 39

6 Conclusions 41
6.1 Summary . 41
6.2 Future Work . 41

Bibliography 43

List of Figures 49

List of Tables 50

List of Abbreviations 51

A Training parameters 52

B Detailed results 54

C Manual 57
C.1 Requirements . 57
C.2 Datasets Setup . 57
C.3 General Setup . 57
C.4 Data conversion . 58
C.5 Neural Networks . 59

D List of electronic attachments 60

2

1. Introduction
In this chapter we provide reasons and motivation for working on the problem of
3D classification, define the problem, and give a quick outline of the thesis.

1.1 Motivation and Goals
Recognition and generation of 3D shapes is quickly becoming one of the widely
researched topics in the field of artificial intelligence. It can be applied in a vast
number of fields such as driving of autonomous cars, analysis of medical scans
as well as various fields of computer graphics. We approach this problem from
the standpoint of computer graphics as we are interested in developing tools for
content creators, architects and interior designers. In order to develop such tools
it is necessary to start with the simplest problem – classification. There are many
more or less successful approaches to 3D classification, most of them employing
some kind of artificial neural network. However their relative performance has
never been objectively evaluated.

Therefore, the goal of this thesis is to test existing techniques for 3D classifi-
cation, find out how difficult it is to replicate their reported results, and finally
to compare and evaluate them on publicly available datasets.

1.2 Problem Statement
As we intend to develop tools for computer graphics, our input is in the form
of a 3D mesh. A 3D mesh is usually supplied as a list of vertices – triplets of
coordinates in euclidean space and a list of faces – usually three vertices each
forming a triangle. 3D mesh files can contain other information such as texture
coordinates and materials, but we will be ignoring these. Our goal is to classify
mesh files into several given categories (classes such as “car”, “chair”, “sofa”, etc.)
using methods of supervised learning.

We can define the problem formally as follows: we are given a set of training
examples {(x1, y1), (x2, y2), . . . , (xn, yn)} where, in our case, xi is a 3D shape
representation and yi is a numerical encoding of corresponding label. Each shape
belongs to exactly one class. The goal of classification can be formulated as
learning a parametric model P : X → Y , where X is a space of possible 3D
shapes and Y is a space of labels. This model should be able to predict the
correct class label for each model from X.

As the mesh format is not suitable for direct use with neural networks, we
have to be able to convert meshes to other representations: voxel grids, images
or point clouds.

1.3 Scope of the Thesis
We limit the scope of this thesis in the following ways: we will perform clas-
sification only on aligned 3D shapes, as not all networks can easily cope with
arbitrary rotations. We will only consider simple classification, although most of

3

the networks can be extended to perform part segmentation as well as new shape
generation. We will not test any large ensembles of networks: although they pro-
duce better results, they are usually big and cumbersome to use, while achieving
only marginal improvements. We also consider only networks with publicly avail-
able code as implementing all the different techniques is far beyond the scope of
this work.

1.4 Thesis Outline
In Chapter 1 we present the basics of the problem as well as our motivation
for this work. In Chapter 2 we provide a brief introduction to artificial neural
networks. In Chapter 3 we introduce different approaches to 3D classification
and their implementations. In Chapter 4 we discuss chosen methods, describe
datasets, procedures of data conversion and the technical setup of our framework.
In Chapter 5 we present the setup and results of our experiments, comparison
of tested the networks and an analysis of the dataset. In the final Chapter 6 we
summarize our findings and suggest possible directions for future work.

4

2. Theoretical Background
This chapter contains a general overview of artificial neural networks as well as
a quick description of software frameworks for machine learning.

2.1 Artificial Neural Networks
Artificial neural networks are widely successful in a great number of areas of
computer science, often achieving better than human efficiency. This section
offers a brief introduction to the principles of artificial neural networks. For more
in depth information we recommend Goodfellow et al. [2016].

2.1.1 Feedforward Neural Networks
Artificial neural networks are computing systems inspired by the structure of
central nervous system of animals and humans. A basic computing unit of the
network is called a neuron, which performs some simple computations on its
inputs and produces its output. Neurons are connected by weighted connections
creating a network.

Artificial neural networks are parametric models – parameters are usually
called weights and are learned during the training of the network. On the other
hand hyperparameters are parameters whose values are set before the learning
process begins. Artificial neural networks can be trained for a variety of tasks
by minimizing some objective function, called loss function in this context. In
the case of classification a cross-entropy loss is commonly used (Goodfellow et al.
[2016]). The networks are trained by some variant of gradient descent algorithm
– backpropagating the error of the trained task through the network in direction
from outputs to inputs.

Feedforward Neural Networks are networks where the information is passed
only in one direction, so the graph of the network is an directed acyclic graph.
The simplest network architecture is the so called Single-layer perceptron. It
consists of a single layer of output neurons; the inputs are fed directly to the
outputs via a series of weights. Figure 2.1 shows a diagram of a small single-layer
perceptron. Each neuron can also have a bias value and an activation function.
Then the output of a neuron is computed:

outputj = f(
∑︂

i

wij × inputsi + bj)

Where f is an activation function, wij is a weight of the connection from i-
th input neuron to j-th output neuron and bj is its bias value. This notation
assumes that the activation function accepts a full vector of input values and
outputs a corresponding value at each vector component.

The activation function can be an arbitrary function but is required to be non-
linear and differentiable. Most commonly used are the sigmoid function, hyper-
bolic tangent and rectified linear unit (ReLU), defined as ReLU(x) = max(0, x).
ReLU is not a differentiable function in x = 0, but in practice this usually does not

5

Input #1

Input #2

Input #3

Input #4

Input #5

Output #1

Output #2

Output #3

Output #4

Output #5

Output
layer

Input
layer

Figure 2.1: Single-layer perceptron

Input #1

Input #2

Input #3

Input #4

Input #5

Output #1

Output #2

Output #3

Output #4

Output #5

Output
layer

Input
layer

Hidden
layer 1

Hidden
layer 2

Figure 2.2: Multi-layer perceptron

matter and software frameworks implementing artificial neural networks handle
this by returning one of the one-sided derivatives.

We can insert one or more layers of neurons between input and output ob-
taining a Multi-layer perceptron. A neuron from layer k gets its input from all
neurons from layer (k−1) and passes its output to all neurons in the layer (k+1).
Therefore this type of layer is called fully connected layer or dense layer. We can
also rewrite all the weights to a matrix form and obtain the so called weight
matrix. For dense layer k we get one matrix W k, where W k

ij is weight of the
connection from neuron i to neuron j. Using the matrix notation, output of a
fully connected layer k can be expressed as follows:

outputk = f(W k × outputk−1 + bk)

Where f is an activation function, W k is the weight matrix for layer k and bk is
a corresponding vector of biases.

Multi-layer perceptrons, despite being old (first appearing in Rosenblatt [1961]),
still create the basis in modern systems as fully connected layers are used in al-
most all other types of neural networks especially as last layers in the network,
producing feature vectors or classification distributions. Figure 2.2 shows a dia-
gram of a multi-layer perceptron.

6

0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0

I

∗
1 0 1
0 1 0
1 0 1

K

=

1 4 3 4 1
1 2 4 3 3
1 2 3 4 1
1 3 3 1 1
3 3 1 1 0

I ∗ K

1 0 1
0 1 0
1 0 1

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

Figure 2.3: Illustration of 2D convolution with one 3 × 3 filter and valid padding.

2.1.2 Convolutional Neural Networks
Convolutional Neural Networks, first introduced in LeCun et al. [1989], are de-
signed to capture the spatio-temporal data better than the standard fully con-
nected layers. They are most successful in processing two-dimensional images
therefore we will describe this case. However, also one-dimensional and three
dimensional convolutions are used as shall be described later.

Weights of the convolutional layers are connected to only a small region of the
data and shared across the spatio-temporal dimensions. In the case of images this
means that the convolutional layer is connected to only small patches of the image
and weights are shared among these patches. Weights of the convolutional layers
are typically called filters or kernels. A common approach is to slide the filter
across the whole image, computing local features for each pixel. Two-dimensional
convolution can be defined in a following way:

Conv(i, j) =
∑︂
m

∑︂
n

I(i − m, j − n)K(m, n)

where I is the input image and K represents the weights of the kernel. Figure 2.3
shows an illustration of 2D convolution.

The speed of the sliding window is a parameter called stride. By having a
stride greater than one, we skip some pixels in the input, and obtain an image
with lesser width and height.

We also need to take care of how the convolution behaves on the borders of
the input images. These behaviors are called padding schemes. The most usual
type of padding is zero padding, which counts areas outside of the picture as
having value of zero and preserves original dimensions. Another approach, valid
padding, ignores the edge pixels of the input image altogether, sliding the filter
only across valid positions – this produces a smaller output image.

By stacking more convolutional layers atop each other and creating a deep
convolutional network, global features of the image can be extracted.

Another important type of layer used in the convolutional neural networks
is a pooling layer. It is usually used on feature maps obtained by convolutional
layers. The goal of the pooling is to get some translation invariance in produced
features. Similarly to the convolution, pooling also scans the entire input feature
map in a sliding-window fashion. However it does not perform convolution but
maximum, average or a similar aggregating function. Unlike with convolution,
stride bigger than one is used when using pooling in order to reduce the size of the

7

1 2 3 0
1 1 1 0
0 1 1 0
2 5 0 0

I

2 3 3
1 1 1
5 5 0

maxpool(I)

Figure 2.4: Illustration of 2 × 2 2D maximum pooling with valid padding.

output features. The most commonly used type of pooling – maximum pooling
– can be described by the following formula:

maxpool(I)[x, y] = max
0≤i<dh
0≤j<dw

I[x + i − ⌊dh

2 ⌋, y + j − ⌊dw

2 ⌋]

where x and y are coordinates of a pixel in the picture, dh and dw are sizes of
the sliding window. Figure 2.4 shows a diagram illustrating maximum pooling in
two dimensions.

Convolutional layers are much more efficient than fully connected layers as
they share their parameters across the input and have been very successful in
a variety of image, video, and natural language processing tasks. This can be
transferred to our 3D classification task as several networks use rendered images
of 3D models, employing 2D convolutions, with great success.

2.1.3 Recurrent Neural Networks
Another widely used class of artificial neural networks are recurrent neural net-
works (RNNs). In contrast to the previously described networks, they take also
their previous state as their input, representing a kind of memory. Recurrent
neural networks are well suited for processing of sequential data, such as video,
text or speech. A typical architecture of an RNN is the encoder-decoder archi-
tecture. Encoder produces a feature vector by processing the input sequence.
Decoder then constructs an output sequence from the feature vector. To give the
network control over its memory, two types of cells were devised: long short-term
memory unit (LSTM) (Hochreiter and Schmidhuber [1997]) and gated recurrent
unit (GRU) (Cho et al. [2014]). An important concept, which leads to better per-
formance, is attention (Bahdanau et al. [2014]) – it allows the network to learn
which parts of the input sequence are important and how they correspond to the
output sequence.

Only one of the networks tested uses the RNN architecture and techniques
described in this section, and so we refer to Goodfellow et al. [2016] for further
information.

2.1.4 Classification
This section describes a general scheme of solving the problem of classification,
as defined in Section 1.2, using an artificial neural network. The architecture of

8

the network can be generally split into two parts. Firstly, some kind of network is
employed which produces a one-dimensional feature vector, usually an output of a
dense layer. This part varies across the different systems and can be implemented
using 3D convolutions, 2D convolutions, or dense layers in some hierarchical struc-
ture. The second part is formed by a dense layer with the number of neurons
equal to the number of categories of classified data. This last layer uses the iden-
tity function as its activation function and its output is used for computing the
loss function and for classification. The output of i-th neuron can be thought of
as the weight of the belief of the network that the classified model belongs to the
category with index i. For inference the argmax function (returns the index of
the highest value) is used on the output of the last dense layer. To transform the
output of the last dense layer to a probability distribution, the softmax function,
defined as σ(x)i = exi∑︁N

j=1 exj
, is used. The loss function used for training is usually

the cross entropy between the correct category probability distribution (vector of
zeros with a one at the index of the correct class) and the softmax of the out-
put of the last dense layer. The cross entropy of two probability distributions is
computed according to the following formula: H(p, q) = − ∑︁

∀x p(x) log(q(x)).

2.1.5 Regularization
Overfitting is a common problem in machine learning. It is a phenomenon when
a model represents the training set too well, memorizing individual training ex-
amples, and fails to generalize. To avoid this problem several regularization
techniques are employed. We can add regularization directly to the optimized
loss function. This is usually implemented by adding a term, which keeps the
weights of the network in low absolute values.

Dropout (Srivastava et al. [2014]) is a stochastic regularization technique;
during training, at every iteration, it randomly selects some nodes and ignores
them along with all of their incoming and outgoing connections. Therefore each
iteration has a different set of nodes and this results in a different set of outputs. It
is a very effective technique which can be thought of as training a whole ensemble
of networks at once. Dropout is usually applied after each fully connected layer.

Another common way how to avoid overfitting is by increasing the size of the
training set by data augmentation. Specifics of data augmentation depend on
the kind of data we are working with, but in general the dataset is increased by
creating new instances from the training dataset. For example, with image data,
we can use geometric transformations such as mirroring, rotating, translating or
scaling.

These techniques are standard when training neural networks and are em-
ployed in one form or another in all the networks we tested.

2.1.6 Training
In recent years very deep (tens of layers) neural networks are used. To train such
networks several improvements were developed. Mini-batch training is used in
almost all cases. The training dataset is divided into small chunks (typically 32
or 64 examples) and one batch is presented, gradient is computed and weights are
updated correspondingly in each step of the training. This is much more efficient

9

than computing the gradient of the whole dataset, and it additionally has some
positive regularization effects.

For deep networks it is no longer sufficient to use a simple gradient descent
algorithm. To speed up and stabilize the training process, algorithms with mo-
mentum, such as Nesterov momentum (Sutskever et al. [2013]), have been used.
An important hyperparameter of the network is the learning rate, which controls
the speed of training. Set the learning rate too small and the network can not
learn at all, too big and the weights may diverge. To solve this problem, algo-
rithms with adaptive learning rates, such as RMSProp (Hinton et al. [2012]) or
ADAM (Kingma and Ba [2014]), are used.

Another obstacle in training is that the information contained in the gradient
gets lost in deep neural networks during the backpropagation phase of the algo-
rithm. It either diminishes to zero or grows rapidly and diverges. This can be
avoided by a good choice of the activation function (in modern networks mainly
ReLU is used) or by some normalization technique. A prime example of this is
batch normalization (Ioffe and Szegedy [2015]), which normalizes the inputs of
the layer by subtracting the mean of the batch and dividing by its standard de-
viation. These changes would be discarded by the learning algorithm, so we add
two learnable parameters representing the mean and standard deviation, and the
output of the layer is again denormalized using these parameters. This effectively
allows the network to learn the correct scaling of the weights using only two pa-
rameters instead of changing the whole network, which leads to a much greater
stability of the training.

Another widely used technique allowing training of very deep networks are
residual connections (Szegedy et al. [2016]). A residual connection allows the
network to skip the layer and choose to work with the input instead. This makes
copying the information through the network possible and helps reduce the van-
ishing gradient problem.

The above described techniques are used in several neural networks for 3D
classification we tested, as some of them use very deep 2D or 3D convolutional
networks.

2.2 Deep Learning Frameworks
In recent years several software frameworks for machine learning in general and for
deep learning in particular have been developed. They are usually implemented
in C++ for performance reasons but provide a Python API for more convenient
use. All of the following libraries are open-source and publicly available. They
also implement support for running the machine learning algorithms on the GPU
– a key feature for fast training of deep neural networks.

One of the most widely used deep learning frameworks is TensorFlow (Mart́ın
Abadi et al. [2015]) developed by a team at Google. It is a symbolic math
library and implements all the standard neural layers as well as many of the
latest developments in the area of deep learning.

PyTorch (Paszke et al. [2017]) is a Python extension of the Torch machine
learning library. It is primarily developed by Facebook. It focuses on simple
usage and Python integration and implements all the standard functions as well
as extended tools for various areas of machine learning.

10

Caffe (Jia et al. [2014]) is a deep learning framework originally developed
at University of California, Berkeley. It offers good speed and training models
without the need to write any code, just network definitions have to be provided.
It does not seem to be developing as quickly as the aforementioned frameworks.
There was also Caffe2 developed by Facebook, but it was merged into PyTorch.

Theano (Theano Development Team [2016]) is a Python library for manipu-
lating and evaluating mathematical expressions, primarily developed by the Mon-
treal Institute for Learning Algorithms at the Université de Montréal. Lasagne
(Dieleman et al. [2015]) is a lightweight library which uses Theano for machine
learning computations. It also does not seem to be developing quickly enough at
present.

Other popular deep learning frameworks, which we do not use in our work,
include Microsoft Cognitive Toolkit (Seide and Agarwal [2016]) developed by
Microsoft as well as Keras (Chollet and others [2015]) which is a high-level API
focusing on user friendliness and uses TensorFlow as its backend, but is modifiable
to work with other frameworks as well.

11

3. Survey of 3D Classification
Methods
In recent years many techniques for classifying 3D shapes by means of artificial
neural networks have been devised. In this chapter we present most of the com-
monly used and successful of them. As mentioned in previous chapters the usual
mesh format is not suitable for processing by a neural network directly so we
divide the networks according to the format they use as their input: voxel-based,
multi-view, and point-cloud-based. Table 3.1 shows a list of neural networks
described in this chapter.

3.1 Voxel-based Neural Networks
As 2D convolutional neural networks were a great breakthrough in image recogni-
tion, it is natural to try to generalize this approach to three dimensions. Instead
of pixels we use 3D occupancy grid of volume elements, or voxels. Convolutions
can be easily extended to work in three dimensions. Convolutions seem to be
suitable for the task as they can make use of the spatial structure of the problem.
However in 3D, they are computationally demanding and voxel grids have high
memory requirements as their size grows with the cube of the resolution. For this
reason only relatively small resolutions can be used, the most usual being 323.

3.1.1 VoxNet
First of the successful systems applying 3D convolutions to occupancy grids is
VoxNet (Maturana and Scherer [2015]), which we use as an example of a net-
work using a shallow convolutional architecture. In VoxNet, the occupancy grid
is processed by 3D convolutions which extract local features and lower the reso-
lution. The convolution result is passed to a ReLU layer to achieve nonlinearity.
Maximum pooling is then performed in order to get better representation and to
further lower the number of parameters needed. Finally the occupancy grid is
flattened and passed to a fully connected layer which outputs resulting feature
vector. Figure 3.1 shows a diagram of the VoxNet architecture.

As is common with the neural networks, data augmentation is a very impor-
tant part of the training process. VoxNet uses rotation along the vertical axis as
its main augmentation technique. During training it creates n copies of each input
instance, each rotated by 360/n degrees. Typical values of n range from 8 to 24.
At evaluation time it presents all rotations of the input object to the network and
then uses pooling across the rotations to get the class prediction. A TensorFlow
implementation of VoxNet (Maturana and Scherer [2016]) is available.

Results of VoxNet were improved by Orientation boosted voxel nets for 3D
Object Recognition (Sedaghat et al. [2016a]), wherein the classification task was
augmented with an orientation estimation task. An implementation in Caffe is
available (Sedaghat et al. [2016b]). FusionNet (Hegde and Zadeh [2016]) combines
a 3D convolutions on voxel representation with a multi-view approach.

12

Network Reference Framework In

Voxel
VoxNet Maturana and Scherer [2015] TensorFlow No
ORION Sedaghat et al. [2016a] Caffe No
FusionNet Hegde and Zadeh [2016] Not available No
VRN Brock et al. [2016] Theano Yes
O-CNN Wang et al. [2017] Caffe Yes
AO-CNN Wang et al. [2018a] Caffe Yes

Multi-view
VGG-voting Simonyan and Zisserman [2014] TensorFlow Yes
MVCNN Su et al. [2015] TensorFlow Yes
MVCNN2 Su et al. [2018b] PyTorch Yes
RotationNet Kanezaki et al. [2018] Caffe Yes
Seq2Seq Zhizhong et al. [2018b] TensorFlow Yes

Point cloud
PointNet Qi et al. [2016a] TensorFlow Yes
PointNet++ Qi et al. [2017b] TensorFlow Yes
SO-Net Li et al. [2018] PyTorch Yes
KD-Net Klokov and Lempitsky [2017a] Theano Yes
GraphNet Dominguez et al. [2018] TensorFlow No

Table 3.1: List of the examined neural networks. The table gives a reference to
the original paper, the framework used in publicly available code and whether or
not we included the network in our testing.

13

https://github.com/Durant35/VoxNet
https://github.com/lmb-freiburg/orion
https://github.com/ajbrock/Generative-and-Discriminative-Voxel-Modeling
https://github.com/Microsoft/O-CNN
https://github.com/Microsoft/O-CNN
https://github.com/machrisaa/tensorflow-vgg
https://github.com/WeiTang114/MVCNN-TensorFlow
https://github.com/jongchyisu/mvcnn_pytorch
https://github.com/kanezaki/rotationnet
https://github.com/mingyangShang/SeqViews2SeqLabels
https://github.com/charlesq34/pointnet
https://github.com/charlesq34/pointnet2
https://github.com/lijx10/SO-Net
https://github.com/Regenerator/kdnets
https://github.com/WDot/G3DNet

Voxel Grid Input

3D convolution (5 × 5 × 5, 32 filters, stride 2)

3D convolution (3 × 3 × 3), 32 filters

MaxPooling (2 × 2 × 2)

Flatten + Dense (128)

Dense (Number of categories)

32 × 32 × 32

32 × 14 × 14 × 14

32 × 14 × 14 × 14

32 × 6 × 6 × 6

128

Figure 3.1: VoxNet architecture

3.1.2 Voxception Residual Network
Voxception Residual Network (Brock et al. [2016]) is inspired by deep residual
convolutional networks for image recognition which are the state of the art ap-
proach for this task. It uses Inception-style modules (Szegedy et al. [2016]), batch
normalization (Section 2.1.5), residual connections (Section 2.1.6) and stochastic
network depth (Huang et al. [2016]). The Voxception network consists of several
sequential voxception modules. These modules should enable for information to
propagate through the network through many possible “pathways”, while still
maintaining simplicity and efficiency.

For example, one of the basic blocks concatenates the result of a 3 × 3 × 3
and the a 1 × 1 × 1 convolution, so the network can learn which of these filters
to apply. A diagram of this block with added residual connection is shown in
Figure 3.2. There are several types of the so called Voxception blocks with residual
connections with pre-activation1 employed in the network.

The best performing architecture consists of Voxception blocks as well as
downsampling blocks which enable the network to choose the best downsampling
methods (e.g. convolutions with stride bigger than one, or pooling). The deepest
path through the network is 45 layers, and the shallowest path (assuming all
droppable non-residual paths are dropped) is 8 layers deep. Figure 3.3 shows a
diagram illustrating the Voxception Residual Network architecture. The model is
quite big and slow to train, authors report one epoch taking around six hours on
a single Titan X GPU for ten thousand training examples, which is in line with
our results. Voxel grid resolution of 323 is used. The network is trained using
24 rotations of each input instance along the vertical axis and using binary voxel

1Nonlinearity is used before the addition.

14

Block Input

3D Convolution
3 × 3 × 3 sized filters

3D Convolution
1 × 1 × 1 sized filters

Concatenate

Addition

R
esidualconnection

Figure 3.2: Example of a simple residual block

representation but with binary voxel range {−1, 5} instead {0, 1} to encourage
the network to pay more attention to positive entries.

As there is not much new research done in the area of voxel based classification
we chose a single Voxel Residual Network as a representative of this category.
It still achieves accuracy comparable to the latest networks and has publicly
available code. It is implemented in Theano with Lasagne (Brock [2016]) and
offers several models to train and make ensemble from. We opted for only one
of these models as it is very time demanding to train even a single network. The
model chosen is the model reported by authors as the best one and described in
detail in the original paper. This approach still represents the state of the art in
voxel based classification as ensemble of similar models reports 95.54% accuracy
on ModelNet40 dataset which remains one of the highest reported.

3.1.3 Octree and Adaptive Octree Networks
The Octree-based Convolutional Neural Network (Wang et al. [2017]) uses an-
other data structure for representing 3D data – an octree (Meagher [1980]). An
octree is a tree where each node has exactly eight children, partitioning the space
into finer and finer cubes. This basically means voxelization of the 3D model,
but in this case only voxels on the object boundaries are considered. This can
be implemented efficiently and represented in a format suitable for GPU com-
putation. In each leaf node a normal vector of the surface is stored. Authors
then present an efficient way of performing convolutions on octrees and construct
a hierarchical structure of shared layers for individual levels of the tree. The
computation proceeds from the finest leaf octants and continues upwards to the
root of the tree. This approach gives good results but the octrees are of a fixed
maximum depth and therefore can waste memory on flat regions where a simple
planar approximation would be sufficient. This problem is solved by Adaptive
Octree (Wang et al. [2018a]) representation which uses such planar patches as a
representation in leaf nodes. Therefore flat areas of the original mesh can be rep-
resented by a simple leaf on a higher level of a tree, while more complex areas are
subdivided into finer details. Several (12 in our case) rotations of the 3D model
are used during both training and evaluation to achieve better results. Authors

15

Voxel Grid Input

3D Convolution (3 × 3 × 3, 32 filters)

3x Voxception Residual Block (32 filters)

Downsampling Block (64 filters)

3x Voxception Residual Block (64 filters)

Downsampling Block (128 filters)

3x Voxception Residual Block (128 filters)

Downsampling Block (256 filters)

3x Voxception Residual Block (256 filters)

Downsampling Block (512 filters)

3D Convolution (3 × 3 × 3 filter, 512 filters)

Global Pooling (Flatten)

Dense (512)

Dense (Number of categories)

32 × 32 × 32

32 × 32 × 32 × 32

32 × 32 × 32 × 32

64 × 16 × 16 × 16

64 × 16 × 16 × 16

128 × 8 × 8 × 8

128 × 8 × 8 × 8

256 × 4 × 4 × 4

256 × 4 × 4 × 4

512 × 2 × 2 × 2

512 × 2 × 2 × 2

512

512

Figure 3.3: The Voxception Residual Network (VRN) architecture.

16

offer an implementation of both networks in Caffe as well as tools for converting
mesh data to octrees and adaptive octrees (Wang et al. [2018b]).

3.2 Multi-view-based Neural Networks
Another approach, harnessing the power of 2D convolutions and huge image
datasets, are the so called multi-view neural networks. A general setup of multi-
view networks is as follows: they use rendered images of the 3D model from
different angles as an input, these views are then passed to some pre-trained im-
age processing network, and finally some technique for combining features from
different views is employed. Such techniques range from simple pooling across
the views to employing recurrent neural network to process them as a sequence.

Multi-view approaches can be considered the state of the art in this area as
they achieve excellent results. For a fair comparison of these methods we use
the same sets of images and twelve views of each 3D model rotated around the
vertical axis.

3.2.1 Multi-view Convolutional Networks
For training a multi-view based network we need to fine-tune some already pre-
trained image recognition network. We use two different networks: the smaller
and older AlexNet (Krizhevsky et al. [2012]) and the state of the art deep network
VGG (Simonyan and Zisserman [2014]).

A simple method of 3D classification can be devised using 2D convolutional
image classification network; we train the image network on the views of a rotated
3D model without any regard for the multi-view nature of the dataset. During
evaluation we perform voting across the views. We chose VGG for this task
as it performs better on image recognition tasks. We use a publicly available
implementation of VGG (machrisaa [2017]) with 19 weighted layers in Tensorflow.
As we shall see later, even this simple approach yields results comparable with
the most sophisticated networks.

The first multi-view approach to appear (Su et al. [2015]) uses shared convolu-
tional layers individual views, then uses max pooling across the views to combine
the features. Resulting features are fed to another convolutional network and
then classified. We chose to test this approach as it is the first multi-view ap-
proach to achieve good results and it is simple enough to serve as a baseline
for similar approaches. From several available implementations of this network
we have chosen a Tensorflow implementation (Lee [2016]). In this case, we use
AlexNet as the pre-trained image network, which is recommended by the authors
of the code and supported in the code structure. Figure 3.4 shows a diagram
illustrating the multi-view architecture.

The revisited but similar approach is used by Su et al. [2018b], which divides
the training phase into two stages. In the first stage the network is trained
only using one view at a time and later, during the second phase, pooling across
the views is employed. Authors also explore different pre-trained image network
architectures and different image rendering techniques, significantly improving
accuracy of this method. It uses a pre-trained VGG convolutional network as its
base. It offers a publicly available implementation in PyTorch (Su et al. [2018a])

17

3D model

View 1 View N
...View 2 View N − 1

AlexNet AlexNetAlexNet AlexNetAlexNet

View Pooling

Dense with dropout (4096)

Dense with dropout (4096)

Dense (Number of categories)

224 × 224 224 × 224 224 × 224 224 × 224224 × 224

9216

4096

4096

9216

9216 921
6

92
16

9216

Figure 3.4: Multi-view architecture, as used in Lee [2016]

which we have chosen to test as it promises some of the best accuracies achieved
on ModelNet40 so far.

3.2.2 RotationNet
RotationNet (Kanezaki et al. [2018]) reports the highest achieved accuracy on
the ModelNet40 dataset so it is of particular interest to us. It combines the
multi-view classification with an unsupervised pose estimation task. Unlike other
multi-view networks, it does not provide information about the position of the
viewpoints to the network, i.e., they can be rotated arbitrarily, hence the name
of the network. To achieve this, a new category is added to the set of original
classification categories. The meaning of this category is “this is not the cor-
rect viewpoint”. All the possible rotations of the viewpoints are tried and the
most probable (one with the least probability of being in “incorrect viewpoint”
category) according to predicted categories is chosen. Authors offer two imple-
mentations, one in Caffe (Kanezaki [2018]), and another one in PyTorch. We
have chosen to test this network as it reports very high accuracy on ModelNet40
and inherently contains pose estimation, which can be useful for future work.

18

3.2.3 Sequential Views to Sequential Labels
Sequential Views to Sequential Labels network (Zhizhong et al. [2018b]) employs
recurrent neural networks and treats multiple views as a sequence of images. It
uses a classic encoder-decoder architecture. In order to do this it does not treat
its output as a single vector but as a sequence of labels. It uses a pre-trained
convolutional network, fine-tuned on the single-image classification task. We
opted for the VGG network described above. The last fully connected layer of
size 4096 is used as a feature vector for single views and is fed into the encoder
as a sequence. Both the encoder and decoder consist of GRU cells (Section 2.1.3)
and attention is used. An implementation in TensorFlow is available (Zhizhong
et al. [2018a]) and we used it to test this network.

3.3 Point-cloud-based Neural Networks
An altogether different representation of spatial data is a point cloud. A point
cloud is an unordered set of points in Euclidean space, representing the surface of
the object. It is a natural output format of laser scanning devices used by robots
or autonomous cars and also in medical scanning. We can easily construct a point
cloud from a mesh by sampling its faces. Point clouds are neither structured nor
ordered as voxels or images are, which poses a problem to neural networks.

3.3.1 PointNet and PointNet++
The first network to successfully overcome all the difficulties of processing un-
ordered point clouds was PointNet (Qi et al. [2016a]). Its main idea lies in using
only symmetric functions, i.e., functions for which the order of arguments does
not matter. Each point is processed independently by a series of multi-layer per-
ceptrons sharing their weights. Then a global feature vector is constructed using
maximum pooling, which is a symmetric function. Another important feature
of PointNet are learn-able geometric transformations which ensure some invari-
ance to rotation or jittering (random small translations) of the input point cloud.
Rotation and jittering are also used as data augmentation during the training.
Figure 3.5 shows a diagram of the PointNet architecture. Although PointNet
achieves reasonable results it does not provide any mechanism for learning local
features.

PointNet++ (Qi et al. [2017b]) presents a hierarchical structure inspired by
convolutional neural networks which solves the problem of extracting local fea-
tures. It clusters close sets of points together and runs the original PointNet
on such neighborhoods. For this purpose iterative farthest point sampling and
multi-resolution grouping (which ensures good representation for regions with
different density) are used. Thusly obtained local features are represented by the
centroid of the original neighborhood and clustered again in a hierarchical man-
ner. Finally, a classic fully connected layer is employed to extract global features
and classification. Several (12 in our case) rotations of the 3D model are used
during both training and evaluation to achieve better results. An implementation
of both PointNet and PointNet++ is available in TensorFlow (Qi et al. [2016b,

19

2017a]) and we tested both of them, as they achieve reasonable accuracy, promise
better scalability, and are considerably faster than some other methods.

3.3.2 Self-Organizing Network
The PointNet++ architecture lacks the ability to reveal the spatial distribution of
the input point cloud during the hierarchical feature extraction. Self-Organizing
Network (Li et al. [2018]) solves this problem by constructing a self organizing
map (SOM) which represents the point cloud better than simple centroids used in
PointNet++. Each point of the original point cloud is associated with k nearest
SOM nodes and for each such node a mini point cloud is constructed. This also
ensures that the mini point clouds are overlapping which was shown to be a key
feature. These mini point clouds are processed by a series of fully connected layers
similar to the original PointNet. This process yields a local feature vector for each
of the original SOM nodes, which are then used for constructing a global feature
vector by means of max pooling across the nodes. An implementation in PyTorch
(Li [2018]) is available, which contains also code for creating self organizing maps
from point clouds. We have chosen to test this network as it seems to offer a
significant improvement for a cost of only quick data preprocessing.

3.3.3 KD-Network
A kd-tree (Bentley [1975]) is a data structure suitable for storing and searching
in a set of points of higher dimension. Its 3D variant is used as an input format
for KD-Network (Klokov and Lempitsky [2017a]). First a kd-tree is constructed
over a point cloud. The tree is then fed to a series of fully connected layers in
a recursive manner starting in the leaf nodes and continuing to the root, where
the global feature vector is extracted and used for classification. Weights of the
fully connected layers are shared by nodes on the same level of the tree, where
the tree is split according the same coordinate (for example weights are shared
for all nodes at the third level of the tree, where the it splits the points according
to the x coordinate).

During training it uses several geometric perturbations as data augmentation
as well as randomized kd-tree construction. This approach can process raw point
clouds but requires heavy preprocessing when constructing the kd-trees. An im-
plementation in Theano with Lasagne (Klokov and Lempitsky [2017b]) is supplied
by the authors, which also provides a framework for kd-tree construction from a
point cloud.

3.3.4 Graph Based Convolutional Network
For the completeness’ sake we mention a graph based approach by Dominguez
et al. [2018], which constructs a graph from a point cloud. Vertices of the graph
are the original points and edges are constructed to the six nearest neighbors and
sorted by their direction by an arbitrary sorting. Then special graph convolutions
are applied repeatedly simplifying the structure of the graph and extracting local
features. This approach is interesting from the theoretical standpoint but the
training is very slow and it does not achieve state of the art results. A TensorFlow
implementation of this network is available (Dominguez [2018]).

20

Point Cloud Input

Input Transform

Dense (64, for each point)

Dense (64, for each point)

Feature Transform

Dense (64, for each point)

Dense (128, for each point)

Dense (1024, for each point)

Max pooling across points

Dense (512)

Dense (256)

Dense (Number of categories)

n × 3

n × 3

n × 64

n × 64

n × 64

n × 64

n × 128

n × 1024

1024

512

256

Dense (64, for each point)

Dense (128, for each point)

Dense (1024, for each point)

Max pooling across points

Dense (9)

Transform matrix (for each point)

Dense (64, for each point)

Dense (128, for each point)

Dense (1024, for each point)

Max pooling across points

Dense (4096)

Transform matrix (for each point)

n × 64

n × 128

n × 1024

1024

3 × 3

n × 64

n × 128

n × 1024

1024

64 × 64

Figure 3.5: PointNet architecture. Layers labeled “for each point” are applied for
each point separatly with same weights. n is number of input points.

21

4. Methods
We begin this chapter by introducing the data used for our experiments as well
as some additional sources for further research. We continue by briefly discussing
the methods of converting 3D meshes to various other representations and we end
with presenting our choice of software.

4.1 Datasets
In this section we introduce the datasets of 3D models which we used or considered
to use for training and testing.

4.1.1 ModelNet40
ModelNet (Wu et al. [2014]) is one of the most well-known and commonly used
datasets containing annotated 3D models in a mesh format. It was developed
by a team at Princeton University. Its subset, called ModelNet40, is used as
a benchmark for testing different approaches. We therefore decided to use this
dataset as a main focus for our evaluations. ModelNet40 contains forty different
categories and 12,311 individual models. The dataset has an official split to
training and testing subsets, which we adhere to in all cases. The test set contains
2,648 models and is never used for training. Figure 4.1 shows examples of models
in ModelNet40.

The models in original ModelNet40 are not aligned and have widely different
scales. Therefore, when preprocessing the data for neural networks, we rescale all
models to fit a unit sphere and we use a manually aligned version of the dataset
(Sedaghat et al. [2016a]). Also the categories are not equally populated. For
example there are over 700 airplane models and only over 100 wardrobe models.
The exact numbers of models in particular categories can be found in Table 4.1.
ModelNet40 contains files in .off format so our scripts have to be able to read this
particular format. The dataset is available to download for academic purposes.

4.1.2 ShapeNetCore
ShapeNet (Chang et al. [2015]) is an ongoing effort to establish a richly-annotated,
large-scale dataset of 3D shapes. ShapeNet is a collaborative effort between re-
searchers at Princeton, Stanford, and Toyota Technological Institute at Chicago.
We used its subset called ShapeNetCore, which contains 51,209 individual models
in 55 categories. There is also an official split to training, test, and validation
sets. However, this split does not contain all models and is not divided uniformly.
We therefore decided to construct our own split – 80% of models in each category
is assigned to the training set and the rest to the test set. By doing this we
obtained a training set with 40,939 models and a test set with 10,270 models.

Table 4.2 lists the exact numbers of models in particular categories. During
our exploration of the dataset we noticed that some models are assigned to more
than one category so we were forced to choose one of them somewhat arbitrarily.

22

Category Train Test
airplane 626 100
bathtub 106 50
bed 515 100
bench 173 20
bookshelf 572 100
bottle 335 100
bowl 64 20
car 197 100
chair 889 100
cone 167 20
cup 79 20
curtain 138 20
desk 200 86
door 109 20
dresser 200 86
flower pot 149 20
glass box 171 100
guitar 155 100
keyboard 145 20
lamp 124 20

Category Train Test
laptop 149 20
mantel 284 100
monitor 465 100
night stand 200 86
person 88 20
piano 231 100
plant 240 100
radio 104 20
range hood 115 100
sink 128 20
sofa 680 100
stairs 124 20
stool 90 20
table 392 100
tent 163 20
toilet 344 100
tv stand 267 100
vase 475 100
wardrobe 87 20
xbox 103 20
Total 9843 2468

Table 4.1: List of ModelNet40 categories and the number of training and test
models in each category.

23

Figure 4.1: Illustration of models in ModelNet40 (bathtub, bed, flower pot, lamp,
radio and sofa)

Our final split into sets and categories can be found in the shapenetsplit.csv file
in the electronic attachments.

All models in ShapeNetCore are already aligned and scaled to fit a unit sphere.
The categories are not distributed equally at all as you can see from the table.

24

Figure 4.2: Illustration of models in ShapeNetCore (bag, birdhouse, cellular tele-
phone, microwave, rifle, tower)

The dataset is also freely available to download for academic purposes. Figure 4.2
shows examples of models in ShapeNetCore.

25

Category Train Test
airplane 3235 810
ashcan 275 68
bag 66 17
basket 82 21
bathtub 684 172
bed 184 49
bench 1451 362
birdhouse 58 15
bookshelf 362 90
bottle 395 102
bowl 146 39
bus 751 188
cabinet 1247 315
camera 90 23
can 84 21
cap 44 12
car 2811 703
cellular telephone 665 166
chair 5391 1354
clock 521 130
computer keyboard 51 13
dishwasher 74 19
display 874 218
earphone 58 15
faucet 593 149
file 230 59
guitar 637 160
helmet 129 33

Category Train Test
jar 466 114
knife 339 85
lamp 1853 464
laptop 360 91
loudspeaker 1274 319
mailbox 74 19
microphone 53 14
microwave 122 30
motorcycle 269 68
mug 171 43
piano 191 48
pillow 76 20
pistol 247 60
pot 439 110
printer 132 33
remote control 52 14
rifle 1864 467
rocket 68 17
skateboard 121 31
sofa 2406 603
stove 174 44
table 6702 1676
telephone 206 52
tower 98 25
train 311 78
vessel 1550 388
washer 133 34
Total 40939 10270

Table 4.2: List of ShapeNetCore categories and the number of training and test
models in each category.

26

4.1.3 Other 3D Datasets
In this section we mention several publicly available datasets containing 3D mod-
els which can be used for further research.

Both ModelNet and ShapeNet contain many more models than the standard-
ized subsets we used for our evaluation. Therefore there is an option to download
the whole datasets or to construct custom subsets.

A Large Dataset of Object Scans (Choi et al. [2016]) is a dataset focusing on
video scan to 3D model reconstruction but we suppose it can be used for learning
classification as well.

ObjectNet3D (Xiang et al. [2016]) focuses on image to 3D model reconstruc-
tion and contains a large number of 3D models that can be used for classification
training.

SUNCG dataset (Song et al. [2017]) contains entire indoor scenes but is an-
notated on the level of single objects and therefore can be parsed and used for
classification.

SceneNN (Hua et al. [2016]) dataset contains a large number of scenes which
are richly annotated and can be split into single objects.

4.2 Data Conversion
As mentioned in previous chapters, mesh files, in which most existing 3D models
are saved, are not suitable for direct processing by neural networks. Therefore
we have to be able to convert meshes to voxels, images, and point clouds.

4.2.1 Mesh to Voxels
In order to use voxel-based systems we need to convert mesh files to voxel occu-
pancy grids. For this purpose we have chosen the OpenVDB library (Museth et al.
[2013]), which is free, open-source and offers Python scripting. OpenVDB pro-
vides voxelization as one of its core functions, implemented in C++. We supply
Python scripts for voxelization of ModelNet40 and ShapeNetCore datasets using
Python multiprocessing to parallelize the computation. Still, it can take several
hours to process the whole dataset as we need to voxelize multiple rotations for
each model.

4.2.2 Mesh to Images
For multi-view-based neural network, we have to be able to render images taken
from arbitrary viewpoints of a 3D mesh. First, we tried to replicate results used
by Su et al. [2015] and we used PBRT (Pharr and Humphreys [2010]), physically
based rendering software with publicly available code. This turned out to be
a plausible approach. We also used the original scripts using Phong shading
(Bishop and Weimer [1986]) implemented in Blender to render the images. Later
in our research we found Blender scripts from Su et al. [2018b]. They provide
two different rendering options – shaded images and depth images. These achieve
better accuracy than both ours and Phong shaded images and the rendering is
considerably faster. In our framework we provide all four approaches implemented

27

(a) Original voxel representation provided
by authors of VRN

(b) Our voxelization using OpenVDB

Figure 4.3: Illustration of voxel representation

with Python scripts and multiprocessing support. Figure 4.4 shows one of the
airplane models rendered by the four different scripts.

4.2.3 Mesh to Point Cloud
For the use of point-cloud-based neural networks we have to construct a point
cloud from a 3D mesh. This is a much more straightforward problem than the
conversions described above. A point cloud is created by random sampling from
the polygons forming the mesh. First, a polygon is selected with a probability
proportional to the area of that polygon. Then a random point is sampled within
the selected polygon by generating random barycentric coordinates. We provide a
Python script with support for multiprocessing and this is sufficiently fast for our
purposes. When we failed to achieve the reported results of the original papers,
we inspected the data provided by Qi et al. [2016b] and it seemed to be more
regular than our uniformly sampled points. Authors comment on their sampling
method in the following way: “We uniformly sample 1024 points on mesh faces
according to face area and normalize them into a unit sphere.” Therefore we tried
two more sampling methods to replicate the original PointNet data. We employed
Lloyd’s algorithm (Lloyd [1982]) which samples the mesh very regularly using
the Point Cloud Utils library (Williams [2019]). We also tried to use a low-
discrepancy sequence sampling which should give more regular but seemingly
random samples. For this we used a Sobol sequence (Sobol’ [1967]). Figure 4.5
shows a visual comparison of our methods as well as original PointNet point cloud,
as can be seen we did not manage to replicate the desired look of the point cloud.
Nonetheless as discussed later, the sampling method did not have a significant
impact on the classification accuracy.

28

(a) Phong shading in Blender (b) Our PBRT rendering

(c) Depth image in Blender (d) Shaded image in Blender

Figure 4.4: Illustration of different image representations

4.3 Technical Setup
This section provides a brief summary of software choices we made. For informa-
tion about the prerequisites and structure of our framework, please consult the
manual (Appendix C).

As one of our main goals is to provide the academic community with easy-
to-run code, we opted for a solution using Docker (Merkel [2014]). Docker is a
program used to run software packages called containers. Containers are isolated
bundles of software, libraries, and configurations. The specification of a container
is called an image. An image is defined by a Dockerfile which is a text file, allowing
automatic installation of all dependencies, setting up configurations, etc. Every
neural network and data conversion package is thus a completely independent
piece of software, which can be run almost without any prerequisites. We consider
this to be one of the main contributions of our work.

As all the machine learning frameworks we encountered support handling by
Python scripts and Python is the most commonly used programming language
in machine learning and artificial intelligence, we naturally use it for most of

29

(a) Original point cloud provided by the
authors of PointNet (2048 points)

(b) Uniform sampling (2048 points)

(c) Lloyd sampling (2048 points) (d) Sobol sequence sampling (2048 points)

Figure 4.5: Illustration of point cloud representations

our code. We also preferred libraries for data conversion which support Python.
Some of the neural networks are implemented in such a way that they accept
a purely pythonic file format as their input. A library not supporting Python
would require one more data conversion step.

We currently support only Linux, but Docker can be run on Windows as well
and we believe that our framework can be extended to run on Windows without
great difficulties.

30

5. Experiments and Results
In this chapter we describe the setup and results of our experiments. We introduce
the hardware, methods of training and discuss our results.

5.1 Hardware
We conducted all our experiments on the same machine running Linux operating
system. It was equipped with two AMD RYZEN Threadripper 1950X CPU units
(16 cores each) and 128 GB of RAM. However, we did not use this directly
as it is much more efficient to train neural networks on GPUs. We had four
NVIDIA GeForce GTX 1080 Ti GPUs at our disposal, however we conducted
our experiments only using one of them. We opted for this as we wanted to have
some fair comparison of training time and not all the frameworks support running
on multiple GPUs, or at least not without some heavy modifications of the code.

5.2 Accuracy
Accuracy is a simple metric computed as the number of correctly classified exam-
ples divided by the total number of all examples. It is usually given in percents
and is a standard for classification task evaluation. As is the case with our
datasets, when the examples are not distributed equally, accuracy can be skewed
by categories containing more examples. Therefore we additionally compute av-
erage class accuracy, which is computed as 1

N

∑︁N
i=1

correctly classified in category i
total in category i , where

N is the number of categories. We believe that this number is somewhat more
descriptive.

5.3 Testing on the Artificial Datasets
To compare the performance of various methods, it is necessary to use some
standardized datasets. We chose ModelNet40 and ShapeNetCore for this purpose;
their description can be found in Section 4.1.

As the main goal of this thesis is to explore the possibilities of using the pre-
viously introduced neural networks in practice, we are not interested in chasing
couple of percents on artificial datasets. Rather we focus on general performance
and convenience of use. Thus we did not spend huge amounts of time on hyperpa-
rameter tuning in order to increase the accuracy as this would lead to overtraining
of hyperparameters on the test set. Although this problem could be solved by em-
ploying a validation set, standard ModelNet40 split does not support this option
and hyperparameter tuning would be cumbersome to do in a real-world setting.
So we opted for using the hyperparameters described in the original papers if
available or used the default setting in the original code. More information about
the hyperparameter setting can be found in Appendix A.

Another important decision was to choose the stopping condition of training.
As each of the networks takes different time to complete one training epoch
(a period during which each training example is presented once) it would not

31

Network Reported Reported Measured Measured
Accuracy Class Acc. Accuracy Class Acc.

Voxel
VoxNet 83.00 % – – –
ORION 89.70 % – – –
FusionNet 90.80 % – – –
VRN 91.33 % – 90.32 % 88.00 %
O-CNN 90.60 % – 88.29 % 83.09 %
AO-CNN 90.50 % – 91.08 % 87.97 %

Multi-view
VGG – – 90.86 % 88.00 %
MVCNN 90.10 % – 88.83 % 86.24 %
MVCNN2 95.00 % 92.40 % 90.64 % 89.13 %
RotationNet 97.37 % – 92.12 % 89.86 %
Seq2Seq 93.31 % – 91.26 % 88.54 %

Point cloud
PointNet 89.20 % 86.20 % 86.60 % 84.00 %
PointNet++ 91.90 % – 89.00 % 85.28 %
SO-Net 93.40 % 87.30 % 89.00 % 85.50 %
KD-Net 91.80 % 88.50 % 88.10 % 83.90 %
GraphNet 91.13 % – – –

Table 5.1: List of ModelNet40 accuracies. The first two columns give reported
accuracy and reported average class accuracy, if available. The last two columns
present our results.

be fair to set some fixed number of epochs. Therefore we stop the training
after convergence, i.e., when the value of the loss function on the test set is not
improving for several epochs. Some of the networks do not really stabilize in test
set, so we wait for the stabilization of the training loss and report the accuracy
of the test set averaged over the last ten epochs. More detailed statistics can be
found in Table B.1 and Table B.2 for ModelNet40 and ShapenetCore respectively.

5.3.1 Time and Memory Requirements
Table 5.2 shows approximate times of training. These times are not conclusive, as
training time depends on the used hardware. However, the differences among the
types of networks are considerable. In general we can say that the point-cloud-
based networks are quite fast, processing tens of examples each second. Octree
and Adaptive-octree networks proved to be the most efficient – processing hundred
and two hundred examples per second, respectively. Although multi-view-based
networks achieve better accuracies, they are considerably slower. Depending on
the network, the simplest architecture can process tens of examples per second,

32

Network Epochs Total One epoch Examples
(hours) (minutes) per second

Voxel
VRN 20 120 394 0.5
O-CNN 200 4 1.15 140
AO-CNN 200 2 0.65 250

Multi-view
VGG 60 20 25 6
MVCNN 200 8 2.33 70
MVCNN2 60 14 13.33 12
RotationNet 200 8 2.73 60
Seq2Seq 300 1 0.25 650

Point cloud
PointNet 200 10 2.22 70
PointNet++ 200 4 1.07 150
SO-Net 400 6 0.9 180
KD-Net 200 8 2.61 60

Table 5.2: Table of approximate training times on ModelNet40.

deeper networks require more time, processing around ten examples per second.
The Seq2Seq network seems very fast and it indeed is, but the fact that the
separate fine-tuning of VGG is required to use this network, must be considered.
The slowest by far is voxel-based VRN which needs two seconds for a single
training example and requires approximately a week to train.

As for the memory requirements, Table 5.3 shows approximate sizes of the
neural networks, which roughly correspond to the number of trainable parameters
of the networks and also memory requirements during inference. Memory usage
during training depends on the batch size of the network and size of the input.

5.3.2 Results on ModelNet40
We trained and tested all the networks introduced previously and all the input
data variants on the ModelNet40 dataset (described in Section 4.1.1). The results
we achieved with comparison to reported accuracies are listed in Table 5.1.

We present the detailed results of individual networks below. In this section
by “parameters” we mean non-trainable hyperparameters such as learning rates,
momentum value, number of training epochs, etc.

• VRN (Voxception Residual Network)
The authors report an accuracy of 91.33% and we were able to achieve
90.32%. The original paper does not provide exact training parameters, so
we used the default parameters of the code. Our lower accuracy be caused
by using our own data, created by our own script which can be inferior

33

Network Size of the model (MB)

Voxel
VRN 50
O-CNN 2
AO-CNN 2

Multi-view
VGG 500
MVCNN 800
MVCNN2 500
RotationNet 230
Seq2Seq 30

Point cloud
PointNet 40
PointNet++ 18
SO-Net 10
KD-Net 8

Table 5.3: Approximate sizes of saved models, roughly corresponding to the num-
ber of trainable parameters of the model.

to original voxelization. The authors provide some example data but not
complete ModelNet40. We did not perform additional experiments because
of the long training time of this network.

• O-CNN and AO-CNN (Octree and Adaptive Octree convolutional
neural networks)
The authors report accuracy of 90.6% and 90.5% for O-CNN and AO-CNN,
respectively. We were able to achieve 88.29% and 91.08%. To prepare the
data, we used scripts provided by the authors and they also state the exact
training parameters.

• Multi-view convolutional neural networks
According to Su et al. [2018b] the quality of the input images is not negligi-
ble in the case of multi-view-based approaches to 3D classification. We have
tested these networks on four different sets of images. First, the original
images provided by Su et al. [2015], then our own images rendered in PBRT
and two variants of images rendered by scripts provided by Su et al. [2018b].
Detailed results can be found in Table 5.4. The technique of rendering the
images is discussed in Section 4.2.2.

• MVCNN (Multi-view Convolutional Neural Network)
The authors report accuracy of 90.1% on images rendered using Phong
shading, but we achieved accuracy of only 83.99%. We were able to get
higher accuracy of 88.83% on newer shaded images. However the authors

34

Network Accuracy Class Accuracy

VGG (PBRT) 87.93 % 84.99 %
VGG (Phong) 90.78 % 83.21 %
VGG (depth) 89.14 % 85.75 %
VGG (shaded) 90.78 % 88.00 %

MVCNN (PBRT) 87.62 % 85.54 %
MVCNN (Phong) 83.99 % 79.60 %
MVCNN (depth) 87.83 % 85.07 %
MVCNN (shaded) 88.83 % 86.24 %

MVCNN2 (PBRT) 90.26 % 88.44 %
MVCNN2 (Phong) 88.97 % 87.32 %
MVCNN2 (depth) 90.52 % 89.13 %
MVCNN2 (shaded) 90.64 % 88.38 %

RotationNet (PBRT) 91.09 % 87.78 %
RotationNet (Phong) 89.22 % 86.85 %
RotationNet (depth) 91.46 % 88.62 %
RotationNet (shaded) 92.12 % 89.86 %

Seq2Seq (PBRT) 88.10 % 84.47 %
Seq2Seq (Phong) 89.09 % 82.78 %
Seq2Seq (depth) 89.08 % 85.97 %
Seq2Seq (shaded) 91.26 % 87.07 %

Table 5.4: Comparison of multi-view methods.

35

do not provide the training parameters in the paper so we had to default
to parameters used in the code.

• MVCNN2 (Multi-view Convolutional Neural Network 2)
The authors report the highest achieved accuracy of 95% on the shaded
variant of the images. We achieved only 90.64% on the shaded images and
90.52% on the depth images. The training parameters are not provided in
the paper, so we used the default values from the code.

• RotationNet
The authors report accuracy of 97.37% using original Phong shaded images
by Su et al. [2015] but we have been able to achieve only 92.12%. The
reported value of 97.37% is however a maximum achieved over more training
sessions. The authors report average accuracy of 93.70% using AlexNet as
the pretrained image network, which is much closer to our result. They do
not give all the training parameters in the paper but most of the important
ones are mentioned.

• SEQ2SEQ (Sequential Views to Sequential Labels)
The authors claim that they achieved accuracy of 92.5% only with VGG and
voting across twelve views. We failed to replicate this and and achieved only
90.86%. Therefore we could not achieve the reported 93.31% accuracy of
the Seq2Seq network but only maeasured 91.26%. However this means that
the single view VGG with voting performed better than most of the more
complex networks and the recurrent Seq2Seq did not bring any significant
improvement.

• PointNet and PointNet++
The authors report accuracy of 89.2% and 91.9% for PointNet and Point-
Net++ respectively. We were able to achieve only 86.60% and 89.00%. The
authors provide most of the training parameters in their papers, so we use
them along with the default values given in the code. We trained with
point cloud data provided by the authors as well as our own converted data
(sampling techniques are described in Section 4.2.3) . Full results of these
tests are given in Table 5.5.

• SO-NET (Self-Organizing Network for Point Cloud Analysis)
The authors report the highest achieved accuracy of 93.4% on an experiment
with 5,000 input points. They also provide most of the training parameters
in their paper. We were able to achieve only 88.90%. We used our own
sampling of point cloud which can be the source of the discrepancy.

• KD Network
The authors report the highest achieved accuracy of 91.8% and we have
achieved only 88.10%. The authors do not provide all the training parame-
ters so we defaulted to the values used in code. All the code to sample point
clouds and construct the trees we used is supplied by the authors so this
could not be the source of the disparity between the reported and measured
accuracy.

36

Network Accuracy Class Accuracy

PointNet (original) 86.60 % 84.00 %
PointNet (uniform) 82.65 % 81.00 %
PointNet (lloyd) 85.25 % 78.97 %
PointNet (sobol) 85.87 % 80.92 %

PointNet++ (original) 89.00 % 85.28 %
PointNet++ (uniform) 87.57 % 85.30 %
PointNet++ (lloyd) 88.53 % 85.13 %
PointNet++ (sobol) 88.54 % 84.54 %

Table 5.5: Comparison of differently sampled point clouds in PointNet architec-
tures.

5.3.3 Difficult Categories
In this section we explore the results in more detail – we discuss the accuracies
on individual categories of ModelNet40. We show which categories are generally
hard to recognize and which, on the other hand, did not cause any problems.
We also give a brief account about pairs of categories which were mistaken most
often and their illustrations. We believe that this information can be useful when
designing custom category hierarchies.

We compute the accuracies per class and average these across all the trained
networks. There are several categories which were almost always correctly classi-
fied and all the networks learned to recognize them fairly quickly. These categories
are “airplane”, “laptop”, “guitar” and “keyboard”, which all achieved more than
99.00% average accuracy, 100% for most of the networks. Another successfully
recognized categories are ‘car”, “bed”, “chair”, “monitor”, “person”, “bottle” and
”sofa”, all achieving more than 95% average accuracy. On the other hand the
most difficult category by far was a “flower pot”, which was recognized only in
14.6 percent of cases. This is probably caused by the small number of examples of
this category as well as very similar categories of “flower” and “vase”. Other gen-
erally difficult categories include “wardrobe”, “cup”, “night stand”, “bench” and
“radio”, achieving no more than 75% accuracy. You can find average accuracies
per category in Table 5.6

When we take a look at the pairs of categories most often mistaken one for the
other, we find out that besides the above mentioned “flower pot”, the most mis-
takes were made classifying a “table” as a “desk”. This sounds quite reasonable,
as the borderline between these categories is blurry even by human standards.
The same applies for the category of “wardrobe”, which was commonly mistaken
for “bookshelf”, “dresser” or even an “xbox”. The most commonly made mistakes
can be found in Table 5.7.

37

Category Accuracy Cases
flower pot 14.60% 20
wardrobe 63.00% 20
cup 68.00% 20
night stand 70.14% 86
bench 73.20% 20
radio 73.20% 20
xbox 75.40% 20
stool 76.40% 20
table 76.44% 100
dresser 76.70% 86
vase 77.08% 100
desk 79.35% 86
sink 80.00% 20
tv stand 82.04% 100
bathtub 83.68% 50
plant 83.68% 100
lamp 83.80% 20
stairs 87.00% 20
bowl 88.40% 20
curtain 88.80% 20

Category Accuracy Cases
door 90.40% 20
piano 90.96% 100
range hood 91.00% 100
tent 92.60% 20
bookshelf 93.04% 100
cone 93.60% 20
glass box 93.92% 100
mantel 94.92% 100
sofa 95.24% 100
bottle 95.32% 100
person 96.20% 20
monitor 96.44% 100
chair 97.00% 100
bed 97.64% 100
car 98.56% 100
toilet 98.72% 100
keyboard 99.00% 20
guitar 99.48% 100
laptop 99.60% 20
airplane 99.72% 100

Table 5.6: Average accuracies per category of ModelNet40, sorted from worst
to best. The column “Cases” gives the number of test models of corresponding
category.

Category Mistaken For Percentage
flower pot plant 54.40%
flower pot vase 22.60%
table desk 18.92%
cup vase 18.40%
night stand dresser 14.60%
stool chair 14.20%
wardrobe bookshelf 14.00%
plant flower pot 10.52%
dresser night stand 10.42%
wardrobe dresser 8.00%
bench table 8.00%
desk table 6.37%
wardrobe xbox 6.20%
vase cup 6.12%
cup bowl 5.60%

Table 5.7: List of the most commonly made mistakes made by all the networks
on ModelNet40.

38

Network Accuracy Class Accuracy

Voxel
VRN 88.98 % 76.71 %
O-CNN 90.75 % 75.48 %
AO-CNN 91.33 % 77.14 %

Multi-view
VGG (shaded) 91.90 % 81.00 %
MVCNN (shaded) 89.26 % 77.23 %
MVCNN2 (shaded) 92.22 % 85.56 %
RotationNet(shaded) 93.08 % 80.52 %
Seq2Seq (shaded) 92.35 % 81.77 %

Point cloud
PointNet (uniform) 82.53 % 64.51 %
PointNet++ (uniform) 83.67 % 67.68 %
SO-Net (uniform) 87.87 % 73.36 %
KD-Net 81.23 % 53.84 %

Table 5.8: List of ShapeNetCore accuracies.

5.4 ShapeNetCore Results
We conducted several experiments on the ShapeNetCore dataset (Section 4.1.2).
It is about five times bigger than the ModelNet40 and has 55 categories. The
training of the networks therefore takes five times longer, therefore we did not
train on all variants of inputs as with ModelNet40, but chose only those which
were most successful previously. Table 5.8 shows the achieved accuracies on
ShapeNetCore dataset. As can be seen from the table, the differences in measured
accuracies across the networks are greater than in the case of ModelNet40, so the
comparisons are clearer. The Multi-view networks, achieving around 92%, are
performing much better than the point-cloud-based networks. Voxel-based VRN
achieves reasonable accuracy of 88.98%, but one training epoch takes about 30
hours. It is possible that this result can be improved by training for longer time as
we managed to train the network only for ten epochs. The octree-based networks
are reasonably fast and achieve accuracy comparable to multi-view networks.

Also the differences between the accuracy and the average class accuracy is
much higher. This is probably caused by the fact that the categories in ShapeNet-
Core dataset are not populated equally at all.

The detailed per category accuracies are given in Table 5.9. Categories “tele-
phone” and “cellular phone” are mixed together, so models of cellular phones are
to be found in “telephone” category and vice versa. This is the reason of 28%
accuracy achieved in classifying the “telephone” category.

39

Category Accuracy Cases
microphone 20.00% 14
telephone 28.37% 52
tower 28.92% 25
camera 46.09% 23
basket 46.42% 21
file 48.08% 59
remote 48.57% 14
stove 53.41% 44
rocket 54.71% 17
mailbox 58.82% 19
jar 59.60% 114
birdhouse 64.00% 15
washer 64.41% 34
clock 64.49% 130
pot 65.78% 110
bag 67.06% 17
bookshelf 68.42% 90
dishwasher 68.95% 19
microwave 71.00% 30
bowl 73.37% 39
printer 73.57% 33
ashcan 74.40% 68
bed 74.52% 49
earphone 74.67% 15
cellular 75.48% 166
piano 78.75% 48
bottle 79.48% 102
loudspeaker 79.65% 319

Category Accuracy Cases
bench 82.14% 362
train 82.95% 78
can 85.30% 21
bathtub 86.16% 172
display 86.18% 218
cabinet 86.58% 315
cap 86.67% 12
pistol 86.93% 60
helmet 89.09% 33
keyboard 90.77% 13
lamp 90.86% 464
faucet 92.00% 149
mug 92.09% 43
sofa 93.82% 603
pillow 94.00% 20
bus 94.36% 188
table 95.29% 1676
laptop 95.75% 91
skateboard 96.45% 31
chair 96.49% 1354
knife 96.82% 85
rifle 96.94% 467
vessel 97.24% 388
airplane 97.56% 810
guitar 98.94% 160
car 98.98% 703
motorcycle 99.12% 68

Table 5.9: Average accuracies per category of ShapeNetCore, sorted from worst
to best. The column “Cases” gives the number of test models of corresponding
category.

40

6. Conclusions
In this section we give a brief summary of our work, discuss our results and offer
some ideas for further research in the area of 3D classification.

6.1 Summary
In this work we explored different artificial neural-network-based systems for clas-
sification of 3D models. We performed a broad survey and gave a brief description
of the individual systems. We also used the code published by the authors of the
original publications and used it to successfully train and test several of these
networks. In order to achieve this, we constructed a reasonably independent
framework which enables to run and compare networks implemented in differ-
ent machine learning frameworks. The conversions of 3D meshes to point clouds,
voxel grids and multi-view images are also part of our framework. We have tested
all the networks and data conversion on ModelNet40 and ShapeNetCore datasets
so our framework is ready to be used on these and we believe it can be extended
on similarly structured datasets without much difficulties.

As for our results, we generally failed to replicate the original results on Mod-
elNet40. All the networks performed reasonably well, but we have achieved a
couple percent less than the reported accuracy. This can be caused by the sensi-
tivity of neural networks to hyperparameter tuning. We suppose that the authors
of the original papers spent a considerable amount of time on making their net-
works achieve the best results possible. In general they do not describe the exact
training setup in their publications and we did not have enough resources to
perform an exhaustive hyperparameter search for all the networks. The relative
performance of the networks was confirmed by our results; networks with higher
reported accuracy generally performed better in our experiments as well. The
differences are more significant with ShapeNetCore, multi-view networks outper-
forming the point-cloud-based networks.

The networks also differ greatly in the required training time, from weeks to
several hours, and this can be a very important fact to consider when choosing an
approach in practice. The voxel-based neural networks are very slow, multi-view-
based networks are considerably faster and point-cloud-based and octree-based
networks are the fastest.

6.2 Future Work
The research in the field of artificial intelligence in general and in the area of
neural networks in particular is progressing very quickly. As we were working
on this thesis there already appeared some new publications (Yu et al. [2018],
You et al. [2018], Feng et al. [2018]) improving multi-view approaches to 3D
classification which seem to be the most promising approach. It would be worth
including these new systems to our framework.

Almost all of the networks we have tested describe in the papers and imple-
ment in the code a version for part segmentation of the 3D models. This is a

41

problem of dividing a 3D model to logical parts such as dividing the model of a
table to the top desk and the legs. It would be worth comparing all the different
networks as well.

We hope that this work will lead to some practical improvements in the fields
such as interior design, where artificial intelligence can solve menial tasks cur-
rently solved by experts.

42

Bibliography
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Trans-

lation by Jointly Learning to Align and Translate. arXiv:1409.0473 [cs, stat],
September 2014. URL http://arxiv.org/abs/1409.0473. arXiv: 1409.0473.

Jon Louis Bentley. Multidimensional binary search trees used for associative
searching. Communications of the ACM, 18(9):509–517, September 1975.
ISSN 00010782. doi: 10.1145/361002.361007. URL http://portal.acm.org/
citation.cfm?doid=361002.361007.

Bishop and Weimer. Fast Phong Shading. Computer Graphics (20) 4 pp. 103-106,
20, 1986. doi: 10.1145/15886.15897.

Andrew Brock. VRN in Theano with lasagne, 2016. URL https://github.com/
ajbrock/Generative-and-Discriminative-Voxel-Modeling.

Andrew Brock, Theodore Lim, J. M. Ritchie, and Nick Weston. Genera-
tive and Discriminative Voxel Modeling with Convolutional Neural Networks.
arXiv:1608.04236 [cs, stat], August 2016. URL http://arxiv.org/abs/1608.
04236. arXiv: 1608.04236.

Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing
Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianx-
iong Xiao, Li Yi, and Fisher Yu. ShapeNet: An Information-Rich 3d Model
Repository. Technical Report arXiv:1512.03012 [cs.GR], Stanford University
— Princeton University — Toyota Technological Institute at Chicago, 2015.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning Phrase Rep-
resentations using RNN Encoder-Decoder for Statistical Machine Translation.
arXiv:1406.1078 [cs, stat], June 2014. URL http://arxiv.org/abs/1406.
1078. arXiv: 1406.1078.

Sungjoon Choi, Qian-Yi Zhou, Stephen Miller, and Vladlen Koltun. A
Large Dataset of Object Scans. arXiv:1602.02481, 2016. URL http://
redwood-data.org/3dscan/index.html.

François Chollet and others. Keras. 2015. URL https://keras.io.

Sander Dieleman, Jan Schlüter, Colin Raffel, Eben Olson, Søren Kaae Sønderby,
Daniel Nouri, Daniel Maturana, Martin Thoma, Eric Battenberg, Jack Kelly,
Jeffrey De Fauw, Michael Heilman, Diogo Moitinho de Almeida, Brian McFee,
Hendrik Weideman, Gábor Takács, Peter de Rivaz, Jon Crall, Gregory Sanders,
Kashif Rasul, Cong Liu, Geoffrey French, and Jonas Degrave. Lasagne: First
release. August 2015. doi: 10.5281/zenodo.27878. URL http://dx.doi.org/
10.5281/zenodo.27878.

Miguel Dominguez. G3dnet in Tensorflow, 2018. URL https://github.com/
WDot/G3DNet.

43

http://arxiv.org/abs/1409.0473
http://portal.acm.org/citation.cfm?doid=361002.361007
http://portal.acm.org/citation.cfm?doid=361002.361007
https://github.com/ajbrock/Generative-and-Discriminative-Voxel-Modeling
https://github.com/ajbrock/Generative-and-Discriminative-Voxel-Modeling
http://arxiv.org/abs/1608.04236
http://arxiv.org/abs/1608.04236
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://redwood-data.org/3dscan/index.html
http://redwood-data.org/3dscan/index.html
https://keras.io
http://dx.doi.org/10.5281/zenodo.27878
http://dx.doi.org/10.5281/zenodo.27878
https://github.com/WDot/G3DNet
https://github.com/WDot/G3DNet

Miguel Dominguez, Rohan Dhamdhere, Atir Petkar, Saloni Jain, Shagan Sah,
and Raymond Ptucha. General-Purpose Deep Point Cloud Feature Extractor.
March 2018. doi: 10.1109/WACV.2018.00218.

Yifan Feng, Zizhao Zhang, Xibin Zhao, Rongrong Ji, and Yue Gao. GVCNN:
Group-View Convolutional Neural Networks for 3d Shape Recognition. In The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June
2018.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. URL https://www.deeplearningbook.org/.

Vishakh Hegde and Reza Zadeh. FusionNet: 3d Object Classification Using
Multiple Data Representations. arXiv:1607.05695 [cs], July 2016. URL http:
//arxiv.org/abs/1607.05695. arXiv: 1607.05695.

Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural Networks
for Machine Learning: Lecture 6a Overview of mini-batch gradient de-
scent, 2012. URL http://www.cs.toronto.edu/˜tijmen/csc321/slides/
lecture_slides_lec6.pdf.

Sepp Hochreiter and Jürgen Schmidhuber. Long Short-term Memory. Neural
computation, 9:1735–80, 1997. doi: 10.1162/neco.1997.9.8.1735.

Binh-Son Hua, Quang-Hieu Pham, Duc Thanh Nguyen, Minh-Khoi Tran, Lap-Fai
Yu, and Sai-Kit Yeung. SceneNN: A Scene Meshes Dataset with aNNotations.
In International Conference on 3D Vision (3DV), 2016. URL http://www.
scenenn.net/.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Weinberger. Deep
Networks with Stochastic Depth. arXiv:1603.09382 [cs], March 2016. URL
http://arxiv.org/abs/1603.09382. arXiv: 1603.09382.

Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. arXiv:1502.03167 [cs],
February 2015. URL http://arxiv.org/abs/1502.03167. arXiv: 1502.03167.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional
Architecture for Fast Feature Embedding. In Proceedings of the 22Nd ACM In-
ternational Conference on Multimedia, MM ’14, pages 675–678, New York, NY,
USA, 2014. ACM. ISBN 978-1-4503-3063-3. doi: 10.1145/2647868.2654889.
URL http://doi.acm.org/10.1145/2647868.2654889. event-place: Or-
lando, Florida, USA.

Asako Kanezaki. RotationNet in Caffe, 2018. URL https://github.com/
kanezaki/rotationnet.

Asako Kanezaki, Yasuyuki Matsushita, and Yoshifumi Nishida. RotationNet:
Joint Object Categorization and Pose Estimation Using Multiviews from Un-
supervised Viewpoints. arXiv:1603.06208 [cs], March 2018. URL http:
//arxiv.org/abs/1603.06208. arXiv: 1603.06208.

44

https://www.deeplearningbook.org/
http://arxiv.org/abs/1607.05695
http://arxiv.org/abs/1607.05695
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.scenenn.net/
http://www.scenenn.net/
http://arxiv.org/abs/1603.09382
http://arxiv.org/abs/1502.03167
http://doi.acm.org/10.1145/2647868.2654889
https://github.com/kanezaki/rotationnet
https://github.com/kanezaki/rotationnet
http://arxiv.org/abs/1603.06208
http://arxiv.org/abs/1603.06208

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimiza-
tion. arXiv:1412.6980 [cs], December 2014. URL http://arxiv.org/abs/
1412.6980. arXiv: 1412.6980.

Roman Klokov and Victor Lempitsky. Escape from Cells: Deep Kd-Networks for
the Recognition of 3d Point Cloud Models. arXiv:1704.01222 [cs], April 2017a.
URL http://arxiv.org/abs/1704.01222. arXiv: 1704.01222.

Roman Klokov and Victor Lempitsky. KD-Net in Theano and Lasagne, 2017b.
URL https://github.com/Regenerator/kdnets.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet Classifica-
tion with Deep Convolutional Neural Networks. In Proceedings of the 25th
International Conference on Neural Information Processing Systems - Vol-
ume 1, NIPS’12, pages 1097–1105, USA, 2012. Curran Associates Inc. URL
http://dl.acm.org/citation.cfm?id=2999134.2999257. event-place: Lake
Tahoe, Nevada.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L. D. Jackel. Backpropagation Applied to Handwritten Zip Code Recognition.
Neural Computation, 1(4):541–551, 1989.

Tang Lee. Multi-View CNN in Tensorflow, 2016. URL https://github.com/
WeiTang114/MVCNN-TensorFlow.

Jiaxin Li. SONET in TensorFlow, 2018. URL https://github.com/lijx10/
SO-Net.

Jiaxin Li, Ben M. Chen, and Gim Hee Lee. SO-Net: Self-Organizing Network
for Point Cloud Analysis. arXiv:1803.04249 [cs], March 2018. URL http:
//arxiv.org/abs/1803.04249. arXiv: 1803.04249.

S. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information
Theory, 28(2):129–137, March 1982. ISSN 0018-9448. doi: 10.1109/TIT.1982.
1056489.

machrisaa. VGG in Tensorflow, 2017. URL https://github.com/machrisaa/
tensorflow-vgg.

Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Is-
ard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar,
Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xi-
aoqiang Zheng. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. 2015. URL http://tensorflow.org/.

D. Maturana and S. Scherer. Voxnet: A 3d convolutional neural network for
real-time object recognition. In IROS 2015, 2015.

45

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1704.01222
https://github.com/Regenerator/kdnets
http://dl.acm.org/citation.cfm?id=2999134.2999257
https://github.com/WeiTang114/MVCNN-TensorFlow
https://github.com/WeiTang114/MVCNN-TensorFlow
https://github.com/lijx10/SO-Net
https://github.com/lijx10/SO-Net
http://arxiv.org/abs/1803.04249
http://arxiv.org/abs/1803.04249
https://github.com/machrisaa/tensorflow-vgg
https://github.com/machrisaa/tensorflow-vgg
http://tensorflow.org/

Daniel Maturana and Sebastian Scherer. VoxNet in TensorFlow, 2016. URL
https://github.com/Durant35/VoxNet.

Donald Meagher. Octree Encoding: A New Technique for the Representation,
Manipulation and Display of Arbitrary 3-D Objects by Computer. October
1980.

Dirk Merkel. Docker: Lightweight Linux Containers for Consistent Development
and Deployment. Linux J., 2014(239), March 2014. ISSN 1075-3583. URL
http://dl.acm.org/citation.cfm?id=2600239.2600241.

Ken Museth, Jeff Lait, John Johanson, Jeff Budsberg, Ron Henderson, Mihai
Alden, Peter Cucka, David Hill, and Andrew Pearce. OpenVDB: An Open-
source Data Structure and Toolkit for High-resolution Volumes. In ACM
SIGGRAPH 2013 Courses, SIGGRAPH ’13, pages 19:1–19:1, New York, NY,
USA, 2013. ACM. ISBN 978-1-4503-2339-0. doi: 10.1145/2504435.2504454.
URL http://doi.acm.org/10.1145/2504435.2504454. event-place: Ana-
heim, California.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
Automatic differentiation in PyTorch. In NIPS-W, 2017.

Matt Pharr and Greg Humphreys. Physically Based Rendering, Second Edition:
From Theory To Implementation. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 2nd edition, 2010. ISBN 0-12-375079-2 978-0-12-375079-2.

Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Point-
Net: Deep Learning on Point Sets for 3d Classification and Segmentation.
arXiv:1612.00593 [cs], December 2016a. URL http://arxiv.org/abs/1612.
00593. arXiv: 1612.00593.

Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. PointNet Tensor-
Flow, 2016b. URL https://github.com/charlesq34/pointnet.

Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. PointNet++
TensorFlow, 2017a. URL https://github.com/charlesq34/pointnet2.

Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. PointNet++: Deep Hierar-
chical Feature Learning on Point Sets in a Metric Space. arXiv:1706.02413 [cs],
June 2017b. URL http://arxiv.org/abs/1706.02413. arXiv: 1706.02413.

Frank Rosenblatt. Principles of Neurodynamics: Perceptrons and the Theory of
Brain Mechanisms. Spartan Books, Washington DC, 1961.

Nima Sedaghat, Mohammadreza Zolfaghari, Ehsan Amiri, and Thomas Brox.
Orientation-boosted Voxel Nets for 3d Object Recognition. arXiv:1604.03351
[cs], April 2016a. URL http://arxiv.org/abs/1604.03351. arXiv:
1604.03351.

Nima Sedaghat, Mohammadreza Zolfaghari, Ehsan Amiri, and Thomas Brox.
ORION in Caffe, 2016b. URL https://github.com/lmb-freiburg/orion.

46

https://github.com/Durant35/VoxNet
http://dl.acm.org/citation.cfm?id=2600239.2600241
http://doi.acm.org/10.1145/2504435.2504454
http://arxiv.org/abs/1612.00593
http://arxiv.org/abs/1612.00593
https://github.com/charlesq34/pointnet
https://github.com/charlesq34/pointnet2
http://arxiv.org/abs/1706.02413
http://arxiv.org/abs/1604.03351
https://github.com/lmb-freiburg/orion

Frank Seide and Amit Agarwal. CNTK: Microsoft’s Open-Source Deep-Learning
Toolkit. In Proceedings of the 22Nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’16, pages 2135–2135, New
York, NY, USA, 2016. ACM. ISBN 978-1-4503-4232-2. doi: 10.1145/2939672.
2945397. URL http://doi.acm.org/10.1145/2939672.2945397. event-
place: San Francisco, California, USA.

K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-
Scale Image Recognition. CoRR, abs/1409.1556, 2014.

I. M. Sobol’. On the distribution of points in a cube and the approxi-
mate evaluation of integrals. USSR Computational Mathematics and Math-
ematical Physics, 7(4):86 – 112, 1967. ISSN 0041-5553. doi: https://doi.
org/10.1016/0041-5553(67)90144-9. URL http://www.sciencedirect.com/
science/article/pii/0041555367901449.

Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Manolis Savva, and Thomas
Funkhouser. Semantic Scene Completion from a Single Depth Image. Proceed-
ings of 29th IEEE Conference on Computer Vision and Pattern Recognition,
2017.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A Simple Way to Prevent Neural Networks from
Overfitting. Journal of Machine Learning Research, 15:1929–1958, 2014. URL
http://jmlr.org/papers/v15/srivastava14a.html.

Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller.
Multi-view Convolutional Neural Networks for 3d Shape Recognition.
arXiv:1505.00880 [cs], May 2015. URL http://arxiv.org/abs/1505.00880.
arXiv: 1505.00880.

Jong-Chyi Su, Matheus Gadelha, and Rui Wang. Multi-view CNN in Pytorch,
2018a. URL https://github.com/jongchyisu/mvcnn_pytorch.

Jong-Chyi Su, Matheus Gadelha, Rui Wang, and Subhransu Maji. A Deeper
Look at 3d Shape Classifiers. arXiv:1809.02560 [cs], September 2018b. URL
http://arxiv.org/abs/1809.02560. arXiv: 1809.02560.

I Sutskever, J Martens, G Dahl, and G Hinton. On the importance of initialization
and momentum in deep learning. 30th International Conference on Machine
Learning, ICML 2013, pages 1139–1147, 2013.

Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alex Alemi. Inception-
v4, Inception-ResNet and the Impact of Residual Connections on Learning.
arXiv:1602.07261 [cs], February 2016. URL http://arxiv.org/abs/1602.
07261. arXiv: 1602.07261.

Theano Development Team. Theano: A Python framework for fast computation
of mathematical expressions. arXiv e-prints, abs/1605.02688, May 2016. URL
http://arxiv.org/abs/1605.02688.

47

http://doi.acm.org/10.1145/2939672.2945397
http://www.sciencedirect.com/science/article/pii/0041555367901449
http://www.sciencedirect.com/science/article/pii/0041555367901449
http://jmlr.org/papers/v15/srivastava14a.html
http://arxiv.org/abs/1505.00880
https://github.com/jongchyisu/mvcnn_pytorch
http://arxiv.org/abs/1809.02560
http://arxiv.org/abs/1602.07261
http://arxiv.org/abs/1602.07261
http://arxiv.org/abs/1605.02688

Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, and Xin Tong. O-CNN:
Octree-based Convolutional Neural Networks for 3d Shape Analysis. ACM
Transactions on Graphics (SIGGRAPH), 36(4), 2017.

Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, and Xin Tong. Adap-
tive O-CNN: A Patch-based Deep Representation of 3d Shapes. ACM Trans-
actions on Graphics (SIGGRAPH Asia), 37(6), 2018a.

Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, and Xin Tong. O-CNN
in Caffe, 2018b. URL https://github.com/Microsoft/O-CNN.

Francis Williams. Point Cloud Utils, 2019.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou
Tang, and Jianxiong Xiao. 3d ShapeNets: A Deep Representation for Volumet-
ric Shapes. arXiv:1406.5670 [cs], June 2014. URL http://arxiv.org/abs/
1406.5670. arXiv: 1406.5670.

Yu Xiang, Wonhui Kim, Wei Chen, Jingwei Ji, Christopher Choy, Hao Su,
Roozbeh Mottaghi, Leonidas Guibas, and Silvio Savarese. ObjectNet3d: A
Large Scale Database for 3d Object Recognition. In European Conference Com-
puter Vision (ECCV), 2016. URL http://cvgl.stanford.edu/projects/
objectnet3d/.

Haoxuan You, Yifan Feng, Rongrong Ji, and Yue Gao. PVNet: A Joint Con-
volutional Network of Point Cloud and Multi-View for 3d Shape Recogni-
tion. arXiv:1808.07659 [cs], August 2018. URL http://arxiv.org/abs/1808.
07659. arXiv: 1808.07659.

Tan Yu, Jingjing Meng, and Junsong Yuan. Multi-view Harmonized Bilinear
Network for 3d Object Recognition. 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 186–194, 2018.

Han Zhizhong, Shang Mingyang, and Liu Zhenbao. SEQ2seq in Tensorflow,
2018a. URL https://github.com/mingyangShang/SeqViews2SeqLabels.

Han Zhizhong, Shang Mingyang, and Liu Zhenbao. SeqViews2seqlabels: Learning
3d Global Features via Aggregating Sequential Views by RNN With Attention.
IEEE Transactions on Image Processing, 28(2):658 – 672, September 2018b.

48

https://github.com/Microsoft/O-CNN
http://arxiv.org/abs/1406.5670
http://arxiv.org/abs/1406.5670
http://cvgl.stanford.edu/projects/objectnet3d/
http://cvgl.stanford.edu/projects/objectnet3d/
http://arxiv.org/abs/1808.07659
http://arxiv.org/abs/1808.07659
https://github.com/mingyangShang/SeqViews2SeqLabels

List of Figures

2.1 Single-layer perceptron . 6
2.2 Multi-layer perceptron . 6
2.3 Illustration of 2D convolution with one 3×3 filter and valid padding. 7
2.4 Illustration of 2 × 2 2D maximum pooling with valid padding. . . 8

3.1 VoxNet architecture . 14
3.2 Example of a simple residual block 15
3.3 The Voxception Residual Network (VRN) architecture. 16
3.4 Multi-view architecture, as used in Lee [2016] 18
3.5 PointNet architecture. Layers labeled “for each point” are applied

for each point separatly with same weights. n is number of input
points. 21

4.1 Illustration of models in ModelNet40 (bathtub, bed, flower pot,
lamp, radio and sofa) . 24

4.2 Illustration of models in ShapeNetCore (bag, birdhouse, cellular
telephone, microwave, rifle, tower) 25

4.3 Illustration of voxel representation 28
4.4 Illustration of different image representations 29
4.5 Illustration of point cloud representations 30

49

List of Tables

3.1 List of the examined neural networks. The table gives a reference
to the original paper, the framework used in publicly available code
and whether or not we included the network in our testing. 13

4.1 List of ModelNet40 categories and the number of training and test
models in each category. 23

4.2 List of ShapeNetCore categories and the number of training and
test models in each category. 26

5.1 List of ModelNet40 accuracies. The first two columns give reported
accuracy and reported average class accuracy, if available. The last
two columns present our results. 32

5.2 Table of approximate training times on ModelNet40. 33
5.3 Approximate sizes of saved models, roughly corresponding to the

number of trainable parameters of the model. 34
5.4 Comparison of multi-view methods. 35
5.5 Comparison of differently sampled point clouds in PointNet archi-

tectures. 37
5.6 Average accuracies per category of ModelNet40, sorted from worst

to best. The column “Cases” gives the number of test models of
corresponding category. 38

5.7 List of the most commonly made mistakes made by all the networks
on ModelNet40. 38

5.8 List of ShapeNetCore accuracies. 39
5.9 Average accuracies per category of ShapeNetCore, sorted from

worst to best. The column “Cases” gives the number of test models
of corresponding category. 40

B.1 Detailed statistics of ModelNet40 experiments. The statistics are
computed over the last 10 training epochs. 55

B.2 Detailed statistics of ShapeNetCore experiments. The statistics
are computed over the last 10 training epochs. 56

50

List of Abbreviations
AO-CNN adaptive octree neural network
API application programming interface
CPU central processing unit
GRU gated recurrent unit
GPU graphics processing unit
LSTM long short-term memory unit
MVCNN multi-view convolutional neural network
O-CNN octree convolutional neural network
RAM random access memory
ReLU rectified linear unit
RNN recurrent neural network
Seq2Seq sequence to sequence
SOM self-organizing map
VGG visual geometry group network
VRN voxel residual network

51

A. Training parameters
In this attachment we present some of the most important parameters we used
to train the neural networks.

• VRN
training epochs: 20
batch size: 24
learning rate: 0.002 for 10 epochs and then 0.0002
number of rotations: 24

• O-CNN
training epochs: 50
batch size: 64
learning rate: 0.1, divided by ten every ten epochs
number of rotations: 12

• AO-CNN
training epochs: 50
batch size: 64
learning rate: 0.1, divided by ten every ten epochs
number of rotations: 12

• VGG
training epochs: 20
batch size: 60
learning rate: 0.0001, multiplied by 0.75 every three epochs
number of views: 12

• MVCNN
training epochs: 200
batch size: 64
learning rate: 0.0001
number of views: 12

• MVCNN2
training epochs: 30+30
batch size: 64
learning rate: 0.00005
number of views: 12

52

• RotationNet
training epochs: 200
batch size: 40
learning rate: 0.0001 divided by ten every fifty epochs
number of views: 12

• Seq2Seq
training epochs: 200
batch size: 32
learning rate: 0.0002
number of views: 12

• PointNet
training epochs: 200
batch size: 64
number of points: 2048
learning rate: 0.0001 multiplied by 0.8 every 20 epochs
number of rotations: 12

• PointNet++
training epochs: 200
batch size: 32
number of points: 2048
learning rate: 0.0001 multiplied by 0.7 every 20 epochs
number of rotations: 12

• SO-Net
training epochs: 400
batch size: 8
number of points: 5000
learning rate: 0.001 divided by two every 40 epochs
number of rotations: 1

• KD-Net
training epochs: 200
batch size: 16
number of points: 2048
learning rate: 0.001
number of rotations: 12

53

B. Detailed results
The tables above (Table B.1 and Table B.2) show more detailed results of our
experiments.

54

Network Mean Max Min

Voxel
VRN 90.32 90.84 88.82
OCTREE 88.29 91.25 82.37
OCTREE ADAPTIVE 91.08 93.68 86.59

Multi-view
MVCNN (depth) 87.83 88.94 87.07
MVCNN (PBRT) 87.62 89.10 86.35
MVCNN (Phong) 84.00 84.76 83.06
MVCNN (shaded) 88.83 89.79 88.09
MVCNN2 (depth) 90.52 91.65 89.55
MVCNN2 (PBRT) 90.26 91.21 88.57
MVCNN2 (Phong) 88.97 89.79 88.13
MVCNN2 (shaded) 90.64 91.77 89.34
VGG (depth) 89.27 89.65 88.88
VGG (PBRT) 87.80 88.63 87.25
VGG (Phong) 87.69 87.90 87.41
VGG (shaded) 90.86 91.11 90.66
ROTNET (depth) 91.46 91.65 91.25
ROTNET (PBRT) 91.09 91.17 91.00
ROTNET (Phong) 89.22 94.59 85.71
ROTNET (shaded) 92.12 92.22 91.94
SEQ2SEQ (depth) 89.08 89.14 88.94
SEQ2SEQ (PBRT) 88.10 88.21 88.05
SEQ2SEQ (Phong) 87.09 87.24 86.95
SEQ2SEQ (shaded) 91.26 91.41 91.13

Point cloud
KDNET 88.10 88.65 87.64
POINTNET (lloyd) 85.25 85.66 84.85
POINTNET (uniform) 82.65 83.67 81.60
POINTNET (original) 86.60 87.60 85.78
POINTNET (sobol) 85.87 86.18 85.17
POINTNET++ (lloyd) 88.36 88.78 87.84
POINTNET++ (uniform) 87.57 88.13 86.99
POINTNET++ (original) 89.00 89.42 88.86
POINTNET++ (sobol) 88.54 88.74 88.21
SONET (2048 points) 85.23 85.53 85.01
SONET (5000 points) 89.00 89.42 88.45

Table B.1: Detailed statistics of ModelNet40 experiments. The statistics are
computed over the last 10 training epochs.

55

Network Mean Max Min

Voxel
VRN 88.98 89.62 88.36
OCTREE 90.75 92.69 86.76
OCTREE ADAPTIVE 91.33 93.26 87.67

Multi-view
MVCNN (shaded) 89.23 89.54 88.65
MVCNN2 (shaded) 92.22 92.51 91.92
VGG (shaded) 91.90 92.43 89.80
ROTNET (shaded) 93.09 98.83 70.70
SEQ2SEQ (shaded) 92.35 92.47 92.10

Point cloud
KDNET 81.23 81.92 80.75
POINTNET (uniform) 82.53 82.89 82.24
POINTNET++ (uniform) 83.67 83.80 83.48
SONET (5000 points) 87.87 88.23 87.47

Table B.2: Detailed statistics of ShapeNetCore experiments. The statistics are
computed over the last 10 training epochs.

56

C. Manual
This section contains instructions how to use the code we used to conduct our
experiments.

C.1 Requirements
To run the code you will need a computer with Linux-based operating system
and NVIDIA GPU.

You will need to install the following:

• NVIDIA drivers
(Installation guide here: https://docs.nvidia.com/cuda/cuda-installation-
guide-linux/)

• Docker version 1.12 or higher
(Installation guide here: https://docs.docker.com/install/)

• NVIDIA Container Runtime for Docker
(Installation guide here: https://github.com/NVIDIA/nvidia-docker)

Each neural network is an independent Docker image and all its dependencies are
installed when building the image. All code is written in python.

C.2 Datasets Setup
The code is made to work with ModelNet40 and ShapeNetCore datasets. The
easiest way to run it with custom dataset is to restructure your data so it resembles
the structure of one of these datasets.
Modelnet40

• Download the dataset (http://modelnet.cs.princeton.edu/). For experi-
ments we used manually aligned version of the dataset.

• Unpack the downloaded archive.

ShapeNetCore

• Dowload the dataset (https://www.shapenet.org/download/shapenetcore).
You need to register and wait for a confirmation email.

• Unpack the downloaded archive.

C.3 General Setup
Each network is implemented as a separate Docker image. To learn more about
Docker, images and containers visit https://docs.docker.com.

57

Each neural network is contained in one directory in /dockers. None of the
networks accepts mesh files as their input directly, so some data conversion is
required. All data conversion is implemented in Docker with the same structure
as neural networks themselves. The code for data conversion is located in /dock-
ers/data conversion. More details on the structure of the electronic attachments
is given in Appendix D.

Each directory contains two important files: config.ini and run.sh, which you
will need to open and edit. Another important file is Dockerfile which contains
the definition of the Docker image. Remaining files contain the code which differ
from the original network implementation. Original network code is downloaded
automatically when building the image and you can find the download link below.

run.sh is a runnable script which builds the Docker image, runs the Docker
container and executes the data conversion or neural network training and eval-
uation. You will need to setup a couple of variables here:

• name – will be used as a name of the Docker image and Docker container.
You can leave this at default value unless it is in conflict with some already
existing image or you want to run more instances of this image at once.
With data conversion scripts the name is the name of the converted dataset
and directory of the same name will be created. The name of the image
can be changed by changing variable image name in this case.

• dataset path – contains the path to the root directory of the dataset on
your filesystem. (Used as input.)

• out path – contains the path to the directory where training logs and net-
work weights will be saved. This directory will be created automatically.

• GPU – index of the GPU which will be visible to Docker container. Have
to be a single integer. We currently do not support multiple GPUs.

• docker hidden – Must be one of “t” or “d”. With “t” the container will be
run in interactive mode, meaning it will run in your console. With “d” it
will in detached mode i.e. in the background. For more information check
Docker documentation.

config.ini contains most of the relevant parameters of the network or data con-
version. The file is split to sections where each section is started by [SECTION]
statement. Then on each line a parameter in format key = value. Explanation
of network parameters is located in later sections.

C.4 Data conversion
To convert your dataset you need to set the parameters described above and then
simply run the run.sh script in your shell console. This will convert the dataset
to various formats directly readable by the neural networks.
Parameters for data conversion in config.ini file:

• data – path to the dataset inside the container. Does not have to be
changed.

58

• output – path to the directory inside the container where converted dataset
will be saved. Does not have to be changed.

• log file – path and name of the file where progress of the data conversion
will be written. By default its located in the output directory and called
log.txt.

• num threads – maximum number of threads to use.

• dataset type – The type of dataset being converted. Must be one of “mod-
elnet” or “shapenet” currently.

C.5 Neural Networks
Each of the neural networks is implemented in python but in different framework.
That is why we used the Docker infrastructure. We try to present a unified frame-
work to easily test and train the networks without changing the code. This section
will briefly introduce used networks and some of their most important parameters.

Parameters common to all neural networks:

• name – will be used as the name of the experiment used in log files.

• data – path to the dataset inside the container. Does not have to be
changed.

• log dir – path to the directory inside the container where logs and weights
will be saved. Does not have to be changed.

• num classes – the number of classes in the dataset. (40 for ModelNet40 and
55 for ShapeNetCore)

• batch size – size of the batch for training and testing neural networks.

• weights – if you want to test or fine-tune already trained network, this
should be the number of this model. If you want to train from scratch, this
should be -1.

• snapshot prefix – name of the file where weights will be saved. The number
of the training epoch when these weights are saved will be added to this.

• max epoch – number of epochs to train for. One epoch means one pass
through the training part of the dataset.

• save period – the trained network will be saved every epoch divisible by
save period.

• train log frq – frequency of logging during training. It is roughly the number
of examples seen by network.

• test – if you want to only test an already trained network, set this to
“True”. weights parameter has to have a valid value bigger than -1. Should
be “False” for training.

59

D. List of electronic attachments
The following diagram shows the directory structure of the electronic attachment
to this thesis:

materials
papers

dockers
data conversion

kdnet data
mvcnn data blender
mvcnn data pbrt
octree data
pnet data
vrnens data

kdnet
mvcnn
mvcnn2
octree
octree adaptive
pointnet
pointnet2
rotnet
seq2seq
sonet
vgg
vrnens

For further research convenience we enclose original papers describing tested
neural networks in materials/papers. Also extended manual in .md format is
provided in this folder.

60

	Introduction
	Motivation and Goals
	Problem Statement
	Scope of the Thesis
	Thesis Outline

	Theoretical Background
	Artificial Neural Networks
	Feedforward Neural Networks
	Convolutional Neural Networks
	Recurrent Neural Networks
	Classification
	Regularization
	Training

	Deep Learning Frameworks

	Survey of 3D Classification Methods
	Voxel-based Neural Networks
	VoxNet
	Voxception Residual Network
	Octree and Adaptive Octree Networks

	Multi-view-based Neural Networks
	Multi-view Convolutional Networks
	RotationNet
	Sequential Views to Sequential Labels

	Point-cloud-based Neural Networks
	PointNet and PointNet++
	Self-Organizing Network
	KD-Network
	Graph Based Convolutional Network

	Methods
	Datasets
	ModelNet40
	ShapeNetCore
	Other 3D Datasets

	Data Conversion
	Mesh to Voxels
	Mesh to Images
	Mesh to Point Cloud

	Technical Setup

	Experiments and Results
	Hardware
	Accuracy
	Testing on the Artificial Datasets
	Time and Memory Requirements
	Results on ModelNet40
	Difficult Categories

	ShapeNetCore Results

	Conclusions
	Summary
	Future Work

	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	Training parameters
	Detailed results
	Manual
	Requirements
	Datasets Setup
	General Setup
	Data conversion
	Neural Networks

	List of electronic attachments

