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Title: A link between lattice models and models of continuum mechanics

Author: Vı́t Gottwald

Department: Mathematical institute of the Charles University

Supervisor: Prof. RNDr. Roman Kotecký, DrSc.
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Chapter 1

Introduction

The aim of this thesis is to broaden the understanding of the connection be-
tween the discrete theory (statistical mechanics) which studies the microscopical
behaviour of systems to a “continuous” theory (van der Waals) describing averages
of microscopical values at the mesoscopic level. The text is based on the Section
3.4 of [Pr] and extends its validity to the case of a general r-model which is defined
in the second chapter of this thesis.

The outline of the proof of the main Theorem 4.1.4 is adopted from [Pr].
However, the whole prove including all lemmas is done from scratch and all bounds
are explicitly calculated. The only thing we need from the statistical physics of
lattice models is the Lemma 2.1.1 which gives us the existence of free energy, a
fundamental thermodynamical quantity.

In the next chapter we give a short introduction to the statistical physics of lat-
tice models, define the extended Blume-Capel model (r-model), discuss its mean-
field approximation, and formulate an equivalent model. Further, we introduce
the notion of phase transition and illustrate it on the mean-field approximation of
the classical Blume-Capel model.

Next, in the third chapter, we make several observations concerning discrete
and continuous entropies (especially inequalities among them) which will be used
later and which are necessary to correctly perform the transition from discrete
variables to their continuous counterparts. The basic tool here is the Stirling’s
formula.

Then, in the fourth chapter, we introduce Kac potentials and prove the Lebowitz-
Penrose theorem for the r-model. Throughout the proof we introduce the free en-
ergy functional and discuss the transition from discrete to continuous description.

Finally, in the last chapter we introduce the van der Waals mesoscopic theory
and provide the excess free energy functional for the r-model rounding off the link
between the statistical mechanics and the van der Waals theory.
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Chapter 2

Extended Blume-Capel model

2.1 Introduction to lattice models

In the first section of this chapter we present the basic abstract formalism of
statistical mechanics for lattice models.

During the evolution of statistical mechanics, a discipline which investigates
macroscopic behaviour of physical systems using the knowledge of their internal
microscopic characteristics, it proved to be useful to study systems with configu-
rations residing on discrete subsets of R

d. The set is usually taken to be a periodic
lattice and hence the name statistical mechanics of lattice models. We will take
our underlying lattice to be Z

d, the set of d-tuples (x1, x2, . . . , xd) of integers.
Given a site x ∈ Z

d we choose a set of allowed “values” of the spin at x. We
use Ωx to denote the set and we assume it to be a compact metric space. For the
sake of simplicity we also assume that Ωx are the same at each site in the lattice
and we use Ω0 to denote it. Next we define P(Zd) and Pf (Zd), the sets of all and
all finite subsets of Z

d, respectively . Given a Λ ∈ P(Zd), configurations on Λ
are mappings Λ → Ω0. The set of configurations on Λ is then a Cartesian product
ΩΛ

0 . We use Ω instead of ΩZ
d

0 , the set of all configurations of the whole system.

For Λ′ ⊂ Λ and s ∈ ΩΛ′

0 ,t ∈ Ω
Λ\Λ′

0 , we use s × t for the obvious element of ΩΛ
0

(s × t)(x) =

{

s(x) x ∈ Λ′

t(x) x ∈ Λ\Λ′ . (2.1)

Now we consider ΩΛ
0 with product topology and define the set CΛ of all continuous

functions f : ΩΛ
0 → R. For Λ′ ⊂ Λ there exists a natural map iΛ′,Λ from CΛ′ into

CΛ defined by
(iΛ′,Λf)(s × t) = f(s), s ∈ ΩΛ′

0 , t ∈ ΩΛ\Λ′
. (2.2)

We drop the i’s from the notation and regard CΛ′ as a subset of CΛ. Especially, we
consider any CΛ as a subset of CZd . Accepting this agreement we can define the
interaction potential and the Hamiltonian.
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The interaction potential is a map Φ from Pf (Zd) into CZd such that Φ(X) ∈
CX . Φ(X) describes the interaction among the spins inside X by assigning a value
to each configuration σ ∈ ΩX

0 . The assigned value is referred to as energy of the
mutual interaction among spins in X. In physics it is the Hamilton function which
has the meaning of energy and which determines the dynamics of physical models.
The Hamiltonian of a lattice model is defined by

HΛ(Φ) =
∑

X∈Pf (Zd)

X
T

Λ 6=∅

Φ(X). (2.3)

The sum is in general case infinite and so as to converge we would have to state
assumptions on Φ. Here we restrict ourselves to the case of a finite range Φ, i.e.
∃k ∈ N : |X| ≥ k ⇒ Φ(X) ≡ 0. Then the sum is finite and Hamiltonian is a
continuous function on Ω.

In the sequel we will be interested only in translational invariant potentials
Φ, which is a natural assumption. We say that an interaction potential Φ is
translational invariant if Φ

(

τy(X)
)

= Φ(X) ◦ τ∗
y for any y ∈ Z

d, where τy(X) =

{x ∈ Z
d : ∃x̃ ∈ X, such that x = x̃ + y} and τ∗

y is a map Ω → Ω defined by
[τ∗

y (σ)](x) = σ(x + y).
We are interested in the macroscopic behavior of our models, especially in ther-

modynamics and phase transitions. These can be obtained from thermodynamical
potentials for large |Λ|. To introduce the thermodynamical potential we first de-
fine a partition function, then a free energy in a finite volume, and finally take a
limit |Λ| → ∞. In order to define the partition function we recall and equip Ω0

with Borel σ-algebra A0 and a non-negative finite measure µ0 on (Ω0,A0) called
“a priori measure”. If Ω0 is finite we usually use the counting measure.

Let β = 1
kBT be the inverse temperature (kB is the Boltzmann’s constant and

T the thermodynamical temperature ). We define the partition function on Λ with
a boundary condition σ̃ ∈ Ω

Z(Φ, β |σ̃)Λ =

∫

ΩΛ
0

e−βH(Φ)Λ(σ̃)
∏

x∈Λ

dµ0(σ̃(x)). (2.4)

Because µ0 is non-negative and the Hamiltonian is real valued we can take a log-
arithm of the partition function and define the free energy in a finite volume Λ

f(Φ, β |σ̃)Λ = − 1

β|Λ| log Z(Φ, β |σ̃)Λ. (2.5)

Finally, we take the limit |Λn| → ∞. However, we must be careful about the choice
of the sets Λn.

For Λ ⊂ Z
d we define ∂Λ = {x ∈ Λc : ∃y ∈ Λ |x − y| = 1}. We call a sequence

{Λn}∞n=1 ⊂ Pf (Zd) a van Hove sequence if

lim
n→∞

|∂Λn|
|Λn|

= 0. (2.6)
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The free energy is then defined for a van Hove sequences by the limit

f(Φ, β |σ̃) = lim
n→∞

− 1

β|Λn|
f(Φ, β |σ̃)Λn , (2.7)

if it exists.
The free energy is a thermodynamic potential used for investigating the lattice

models. However, it depends on the interpretation of a particular model whether
it corresponds to the Helmholtz free energy (for example in magnetic systems) or
to the density of the grand canonical potential (lattice gas).

Now we state sufficient assumptions on Φ so that the free energy exists and does
not depend on the choice of the boundary condition and the sequence {Λn}∞n=1.

Lemma 2.1.1 Let Φ : Pf (Zd) → CZd be a uniformly bounded, translational in-
variant, finite range interaction potential:

1. ∃K ∈ R : ∀X ∈ Pf (Zd) |Φ(X)| ≤ K,

2. ∃k ∈ N : |X| ≥ k ⇒ Φ(X) ≡ 0,

3. Φ(τy

(

X)
)

= Φ(X) ◦ τ∗
y for any y ∈ Z

d.

Further let σ̃ ∈ Ω be a fixed configuration and {Λn}∞n=1 ⊂ Pf (Zd) a van Hove
sequence. Then the free energy exists,

f(Φ, β, σ̃) = lim
n→∞

− 1

β|Λn|
log Z(Φ, β |σ̃)Λn , (2.8)

and is independent of the choice of the sequence {Λn}∞n=1. Moreover, for any other
σ ∈ Ω holds true

f(Φ, β, σ) = f(Φ, β, σ̃). (2.9)

Proof. The lemma is a consequence of the subadditivity of the partition function.
It can be proved in many ways. One of them is demonstrated in [BK] in Section
2.A for the Ising model. However, the method is general enough to be used for
this lemma without modification. �

2.2 r-model

Now we give an example of lattice model. We define the extended Blume-Capel
model and formulate its mean-field approximation. Then we show an explicit
formula for the mean-field free energy and further we formulate an equivalent
model. Finally, as an illustration of the obtained results, we plot the phase diagram
of the mean-field approximation of the standard Blume-Capel model.

When we investigate a particular model, we usually skip the interaction po-
tential Φ from the notation and write down directly the Hamiltonian H(σ) =
H(Φ)(σ).
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Definition 2.2.1 (Extended Blume-Capel model) Let r ∈ N, h ∈ R
r−1, Ω0 =

{ω1, ω2, . . . , ωr} ⊂ R. 1 We consider Ω0 equipped with discrete topology and count-
ing measure and we will use Ω0 both for the set, the topological space, and the mea-
surable space. We define the configuration space Ω = ΩZ

d

0 with product topology
(and the Borel σ-algebra). Let σ ∈ Ω and Λ ∈ Pf (Zd). Then the Hamiltonian of
the extended Blume-Capel model is given by

Ho
h(σ)Λ =

1

4

∑

x∈Λ

∑

y∈Λ

|x−y|=1

(

σ(x)−σ(y)
)2−

r−1
∑

i=1

hi

∑

x∈Λ

σi(x)+
1

2

∑

x∈Λ

∑

y∈Λc

|x−y|=1

(

σ(x)−σ(y)
)2

,

(2.10)
where σi is the i’th power of σ.

In the sequel we will refer to this model simply as to an r-model. For r = 1 this
is a trivial model, for r = 2 and Ω0 = {−1, 1} it is the Ising spin model, and for
r = 3 with Ω0 = {−1, 0, 1} it is the standard Blume-Capel model. The definition
is thus a straightforward generalization of Ising and Blume-Capel models.

Now we define the configuration space with boundary condition:

Definition 2.2.2 (Configuration space with boundary condition) For Λ ⊂
Z

d and σ̃ ∈ Ω we define

ΩΛ(σ̃)
df
=

{

σ ∈ Ω, σ(y) = σ̃(y) for all y ∈ Λc
}

. (2.11)

Here σ̃ stands for boundary condition as only the values outside Λ are considered.
We will say that Ω(σ̃)Λ is the configuration space on Λ with boundary condition
σ̃. Notice that we use the elements of Ω both for configurations σ and for the
boundary conditions σ̃.

The partition function for the r-model is then

Z(β, h|σ̃)Λ =
∑

σ∈Ω(σ̃)Λ

e−βHh(σ)Λ . (2.12)

Unfortunately, except the case d = 1, we are not able to compute the free energy
explicitly.

2.3 Mean-field approximation

The first thing we can try to get some information about the phase transitions in
such a model is the mean-field approximation. First of all we replace the Hamil-
tonian (2.10) with a more suitable one.

Hh(σ)Λ = −1

2

∑

x∈Λ

∑

y∈Λ

|x−y|=1

σ(x)σ(y)−
r−1
∑

i=1

hi

∑

x∈Λ

σi(x)−
∑

x∈Λ

∑

y∈Λc

|x−y|=1

σ(x)σ(y), (2.13)

1We assume i 6= j ⇒ ωi 6= ωj .

5



This Hamiltonian slightly differs from the r-model Hamiltonian:

|H0
h1,h2,h3,...,hr

(σ)Λ − Hh1,h2−d,h3,...,hr
| ≤ dω2

max|∂Λ|, (2.14)

where ωmax = maxω∈Ω0 |ω|. We can see from the inequality that for van Hove
sequences of sets the difference is small in comparison to the volume |Λ| and for
the free energies of both models we have

f0(β, h1, h2, h3, . . . , hr|σ̃) = f(β, h1, h2 − d, h3, . . . , hr|σ̃). (2.15)

Now we look at the Hamiltonian (2.13) and identify the interaction potential
Φ. There are only two types of interaction: one-site

Φ{x}(σ) = −
r−1
∑

i=1

hiσ
i(x) (2.16)

and two site

Φ{x,y}(σ) =

{

−σ(x)σ(y) if |x − y| = 1
0 otherwise

. (2.17)

The two site interaction is the problematic one in the computation of the partition
function. It relates the sites in Λ with its nearest neighbours only and does not
allow to simplify the first sum in (2.13).

The idea of the mean-field approximation is to replace the two site nearest
neighbour interaction with a one-site interaction of spins with an external “mean”
field generated by the surrounding spins

Φ{x} = −σ(x)

(

1

|Λ|
∑

y∈Λ

σ(y)

)

. (2.18)

It is an intuitive guess to make the situation easier. Even though the mean-field
approximation has some unphysical properties (e.g. it predicts phase transitions
for models even in d = 1) its main advantage is a possibility to calculate the free
energy more explicitly. We use it and get the mean-field Hamiltonian

Hh(σ)Λ = − 1

2|Λ|
∑

x∈Λ

∑

y∈Λ

σ(x)σ(y) −
r−1
∑

i=1

hi

∑

x∈Λ

σi(x). (2.19)

In the following theorem we present an explicit formula for the free energy in
terms of the entropy Sr, defined in previous chapter. First, let us introduce some
notation.

Definition 2.3.1 We define a mapping L : R
r → R

r−1 given by the matrix Lij

with respect to the canonical bases

Lij =











ω1 ω2 . . . ωr

ω2
1 ω2

2 . . . ω2
r

...
...

. . .
...

ωr−1
1 ωr−1

2 . . . ωr−1
r











. (2.20)
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Next, we define a set Mr = L(Pr), where Pr was defined in the previous chapter.
Finally, we notice that we use ‖L‖ to denote the norm of L in the space of linear
maps R

r → R
r induced by the ℓ∞ norm in R

r, ‖L‖ = maxi∈{1,...,r−1}

∑

j∈{1,...,r} |Lij |.
Then, for any x ∈ R

d, we have |Lx| ≤ ‖L‖|x|.

Theorem 2.3.2 Let r ∈ N, h ∈ R
r−1, Ω = ΩZ

d

0 be the configuration space, σ̃ ∈ Ω,
Λ ∈ Pf (Zd), and Hh(·)Λ be the mean-field Hamiltonian. The partition function
of the mean-field model is

Z(β, h|σ̃)Λ =
∑

σ∈Ω(σ̃)Λ

e−βHh(σ)Λ , (2.21)

the free energy exists, and for any sequence {Λn}∞n=1 ⊂ Pf (Zd) such that |Λn| →
∞ for n → ∞ one has

lim
n→∞

− 1

β|Λn|
logZ(β, h|σ̃)Λn = min

m∈Mr

Ψβ,h(m), (2.22)

where

Ψβ,h(m) = −m2
1

2
−

r−1
∑

i=1

hi mi − 1

β
Sr(L

−1(m)). (2.23)

Proof. Introducing

m1 =
1

|Λ|
∑

x∈Λ

σ(x),m2 =
1

|Λ|
∑

x∈Λ

σ2(x), . . . ,mr−1 =
1

|Λ|
∑

x∈Λ

σr−1(x), (2.24)

and using Mr,|Λ| for the set of all such possible vectors m = (m1,m2, . . . ,mr),
2

we can rewrite the Hamiltonian

Hh(σ)Λ = −|Λ|
(

m2
1

2
+

r
∑

i=1

hi mi

)

(2.25)

and consequently, the partition function

Z =
∑

m∈Mr,|Λ|

|Ωm(σ̃)Λ| e−β|Λ|(−
m2

1
2

+
Pr−1

i=1 hi mi). (2.26)

Here,

Ωm(σ̃)Λ =
{

σ ∈ Ω(σ̃)Λ : 1
|Λ|

∑

x∈Λ
σi(x) = mi, i = 1, . . . , r

}

. (2.27)

Before we compute |Ωm(σ̃)Λ|, we notice that

|Λ|mi =
∑

x∈Λ

σi(x) =
r

∑

j=1

(ωj)
i|{x ∈ Λ : σ(x) = ωj}| =

r
∑

j=1

LijPj , (2.28)

2The coordinates mi depend on Λ only through its volume |Λ|
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where Pj is the number of ωj’s in Λ for the configuration σ. Hence, Pj ∈
{0, 1, . . . , |Λ|} and

∑r
j=1 Pj = |Λ|. If we define pj = 1

|Λ|Pj , then (p1, p2, . . . , pr) ∈
Pr,|Λ| and

Mr,|Λ| = L(Pr,|Λ|). (2.29)

Now, let us assume that the restriction of L to Pr is a one to one map from

Pr into Mr
df
= L(Pr). Then, for each m ∈ Mr,|Λ| ⊂ Mr there is one and only one

p ∈ Pr,|Λ| such that m = L(p). Moreover, if we define

Ωp(σ̃)Λ =
{

σ ∈ Ω(σ̃)Λ : |{x ∈ Λ : σ(x) = ωi}| = |Λ|pi, i = 1, . . . , r
}

(2.30)

and consider (2.28), we find out that Ωm(σ̃)Λ = Ωp(σ̃)Λ. It is easy to observe that

|Ωp(σ̃)Λ| =
|Λ|!

(|Λ|p1)! (|Λ|p2)! . . . (|Λ|pr)!
= e|Λ|Sr,|Λ|(p1,p2,...,pr). (2.31)

With the help of equation above we can write down the partition function

Z(β, h |σ̃) =
∑

m∈Mr,|Λ|

e−β|Λ|Ψβ,h(m)|Λ| , (2.32)

where

Ψβ,h(m)n
df
= −m2

1

2
−

r−1
∑

i=1

himi −
1

β
Sr,n(L−1(m)). (2.33)

Even though we cannot simplify Z(β, h |σ̃)Λ any further, we are able to compute
the limit free energy.

The summands in (2.32) are positive and we can use the maximal summand
as lower bound and the maximal summand multiplied by the cardinality of he set
Mr,|Λ| as the upper bound:

− β|Λ| min
m∈Mr,|Λ|

Ψβ,h(m)|Λ| ≤ logZ(β, h |σ̃)Λ ≤−β|Λ| min
m∈Mr,|Λ|

Ψβ,h(m)|Λ| + log |Mr,|Λ||.

(2.34)
Now, we recall lemma 3.3.2 and get

min
m∈Mr,n

Ψβ,h(m)n → min
m∈Mr

Ψβ,h(m) for n → ∞. (2.35)

Earlier in the proof, we assumed that L restricted to Pr is a one to one map
into L(Pr). We use this fact once again:

|Mr,n| = |L(Pr,n)| = |Pr,n| ≤ (n + 1)r−1. (2.36)

In the last but one step we collect the previous (in)equalities for the sets Λn to
produce the final claim

f(β, h |σ̃) = lim
n→∞

− 1

β|Λn|
log Z(β, h, |σ̃)Λn = min

m∈Mr

Ψβ,h(m). (2.37)
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Finally, we show that L restricted to Pr is one to one. Let us define L̃: R
r → R

r

given by the matrix

L̃ij =















1 1 . . . 1
ω1 ω2 . . . ωr

ω2
1 ω2

2 . . . ω2
r

...
...

. . .
...

ωr−1
1 ωr−1

2 . . . ωr−1
r















. (2.38)

This is the Vandermond matrix with a non-vanishing det(L̃) =
∏

i<j(ωj − ωi).

This implies that L̃ is a one to one map R
d → R

d and the restriction L̃ ↾Pr is then
a one to one map Pr → L̃(Pr). Consequently, x, y ∈ Pr, x 6= y ⇒ L̃x 6= L̃y. But
from the definition of Pr, it follows that (L̃x)1 = (L̃y)1. Hence, there must exist
j ∈ {2, . . . , r} such that (L̃x)j 6= (L̃y)j . Because (Lx)i = (L̃x)i+1, i = 1, . . . , r − 1,
it follows that Lx 6= Ly and L Pr → L(Pr) is a one to one map. �

2.4 An equivalent model

In this section we introduce a slight modification or another point of view to the
r-model. We start by discussing the sets Pr,n and Mr,n.

To each configuration σ ∈ ΩΛ(σ̃) we can assign a characteristic property
P = (P1, P2, . . . , Pr) bearing the information how many spins in Λ are equal to
(ω1, ω2, . . . , ω3). Another characteristic property of σ can be the “magnetization”
M = (M1,M1, . . . ,M

r−1) counting the “moments” of σ in Λ, Mi =
∑

x∈Λ σ̃i(x),
i = 1, . . . , r−1. These two properties are equivalent and from (2.29) we know that
P = L(M).

We use this fact to transform the r-model which concerns M into another
model, called a Spin r-model which concern P instead of M .

Definition 2.4.1 (Spin r-model) Let r ∈ N, h̃ ∈ R
r−1, Λ ∈ Pf (Zd), Ω0 =

{ω1, ω2, . . . , ωr} ⊂ R
r, Ω = ΩZ

d

0 , and σ ∈ Ω. We define

H h̃(σ)Λ =
1

4

∑

x∈Λ

∑

y∈Λ

|x−y|=1

(

σ(x) − σ(y)
)2 −

r−1
∑

i=1

h̃i|{x ∈ Λ : σ(x) = ωi}|

+
1

2

∑

x∈Λ

∑

y∈Λc

|x−y|=1

(

σ(x) − σ(y)
)2

. (2.39)

Let us observe that
HLT (h)(σ)Λ = H0

h(σ)Λ, (2.40)

where LT
ij = Lji. This tells us that these two models are completely equivalent,

concerning the transformation between h and h̃ given by the map LT .
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Figure 2.1: Profiles of the free energy of the Blume-Capel model for β = 4.13,
h ∈ [−0.8, 0.8], and l ∈ {−1, 0}

2.5 Mean-field phase diagram of Blume-Capel

model

In the section before the last section we proved that the free energy of mean-field
r-model equals to minimum of Ψβ,h over Mr. Here, as a concrete illustration of this
result for the (classical) Blume-Capel we show the function Ψβ,h,l (h, l ∈ R), free
energy f(β, h, l), their relation to phase transitions and finally the phase diagram
of the Blume-Capel model.

First of all, we introduce the notion of phase transition. We say that a model
described by the free energy f(β, h, l, . . .) has a phase transition in the point of the
parameters plain h, l, . . . if f is not an analytical function of these parameters at the
concerned point. In particular, we say that there is a first-order phase transition
if the first derivatives of f with respect to the parameters are not continuous.

This happens in the case of our mean-field Blume-Capel model. In Figure 2.1
we can see the profile of the free energy for the inverse temperature β = 4.13 and
the values of the external field l = −1, 0 and h ∈ [−0.8, 0.8]. In the first one we can
see that there is a phase transition near h = ±0.5 and in the other one for h = 0.
In Figure 2.6 we plotted and numerically computed free energy f(4.13, h, l).

Now, we take a look how phase transitions can be revealed directly from the
function Ψβ,h,l. For the sake of simplicity we illustrate this in the case of zero
temperature (i.e. the limit β → ∞). Figures 2.2 and 2.3 show the function
Ψβ,h,l for several values of h and l. We can see that the external field h tilts
the function up and lowers or raises the two local minima in (m,w) = (1, 1) and
(m,w) = (−1, 1), while the external field w raises or lowers both of them and
hence “preferring” or “punishing” the local minimum at (m,w) = (0, 1). The
three minima correspond to the three phases {−1, 0, 1} which we have in the
Blume-Capel. The global minimum chooses the “superior” phase presented in
the model, while the coexistence of two or more minima determines the phase
transition between the corresponding phases. Thus we can see, that for h = 0
and l = −0.25, there is a triple point. For nonzero temperature the graph of the
function Ψβ,h,l deforms and becomes more complicated. However, there are still
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three local minima (for sufficiently small temperature, off course) which swap by
the change of the external fields. In Figure 2.4 we plot the function Ψ2.5,0,−0.25 for
illustration.

Finally we present a schematic picture of the phase diagram for zero and one
nonzero temperature in Figure 2.5. The areas separated by bold lines correspond
to the regions with dominant phases −1, 0, or 1 and the lines themselves to the
phase transitions among the phases. For zero temperature, there is a triple point
at h = 0, l = −0.5. For nonzero temperature the phase transition curves move
towards bigger values of l.
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Figure 2.2: The function Ψβ,h,l for l = −0.5 and h ∈ {−0.5, 0, 0.5}.
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Chapter 3

Discrete entropy and its
continuous approximation

In this chapter we present technical details concerning one part of the transition
from discrete to continuous description. An important role is here played by the
discrete entropy Sr,n and a lot boils down to its estimate by the continuous entropy
Sr defined bellow.

Definition 3.0.1 (Discrete entropy) Let r, n ∈ N, then we define the set

Pr,n =
{

p = (p1, p2, . . . , pr) : pi ∈ 1
n{0, 1, . . . , n}, i = 1, 2, . . . , r ,

r
∑

i=1

pi = 1
}

(3.1)
and the discrete entropy Sr,n : Pr,n → R by the formula

Sr,n(p1, p2, . . . , pr) =
1

n
log

n!

(p1n)! (p2n)! · · · (prn)!
. (3.2)

Definition 3.0.2 (Continuous entropy) Let r ∈ N, then we define the contin-
uous entropy Sr : [0, 1]r → R

Sr(p1, p2, . . . , pr)
df
=

{ ∑r
i=1 −pi log pi 0 < pi < 1, i = 1, .., r

0 elsewhere.
(3.3)

3.1 Stirling’s formula

To get our desired estimate between the discrete and continuous entropy, we adopt
the Stirling’s formula from [Ro]. For the sake of this thesis we use N to denote the
set of natural numbers excluding zero.

Theorem 3.1.1 (Stirling’s formula) Let n ∈ N, then

n! =
√

2πn nn e−n ern , (3.4)

where rn satisfies double inequality 1
12n+1 ≤ rn ≤ 1

12n .
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Lemma 3.1.2 Let r, n ∈ N, r ≥ 2, n ≥ 8, and p = (p1, p2, . . . , pr) ∈ Pr,n, then

|n Sr,n(p) − n Sr(p)| ≤ r log n (3.5)

Proof. First let pi 6= 0. Then we can simply plug Stirling’s formula (3.4) into the
definition of Sr,n and we get

nSr,n(p) = nSr(p) − r − 1

2
log 2π − 1

2

r
∑

i=1

log pin +
1

2
log n + rn −

r
∑

i=1

rpin. (3.6)

Then we use |rk| ≤ 1
12k and |log pin| ≤ log n to get

|nSr,n(p) − nSr(p)| ≤ r − 1

2
log 2π +

r + 1

12
+

r + 1

2
log n. (3.7)

For n ≥ 8 we can use a more rough estimate |nSr,n(p) − nSr(p)| ≤ r log n, which
is easier to handle.

Now if there are any pi = 0, let us define r̃ = r − j, where j is the number
of pi’s which are zero. Then directly from the definition Sr,n(p1, p2, . . . , pr) =
Sr̃,n(pi1, pi2 , . . . , pir̃), where we just omitted the zero variables. The same holds
true for Sr. Thus we can use the estimates above and get r̃ log n which is still
smaller than r log n. In the case when all but one pi are zero, Sr,n(p) = Sr(p) = 0.
�

Now we would like to say that the functions Sr,n converge uniformly to Sr.
To be able to talk about convergence, we have define them on the same set. It is
natural to choose

Pr
df
= {p ∈ [0, 1]r,

r
∑

i=1

pi = 1} (3.8)

and extend the definition of Sr,n to Pr. This can be done, off course, in many
ways. For example, by taking gamma functions instead of factorials in the original
definition. However, it will be useful to keep the range of Sr,n to equal Sr,n(Pr,n).
For p ∈ Pr we define Sr,n as a step function Sr,n(p) = Sr,n(κr,n(p)), where κr,n is
a map from Pr into Pr,n such that

|κr,n(p) − p| = min
q∈Pr,n

|q − p|. (3.9)

Here as well as in the further text |q| = maxi∈{1,...,r} |qi| is the ℓ∞ norm from R
r.

In case, there are several q’s minimizing the RHS above, we choose the smallest
one in the lexicographic order. The important and easily verified property of the
function κr,n is that

|κr,n(p) − p| ≤ 1

n
. (3.10)
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3.2 Uniform bound

Now, let us pay attention to function α(t) = −t log t, t ∈ [0, 1], 0 · log 0
df
= 0.

The function α(·) is continuous, concave and non-negative in the whole domain,
differentiable in (0, 1), strictly increasing in [0, 1

e ], and α′(·) is strictly decreasing
in (0, 1). Moreover, Sr(p) =

∑r
i=1 α(pi).

Lemma 3.2.1 Let x, y ∈ [0, 1], |x − y| ≤ a ≤ 1
e , then |α(x) − α(y)| ≤ α(a) =

−a log a.

Proof. Suppose x < y. We divide the proof into three cases: a ≤ x < y, x < a < y,
and x < y ≤ a. In the first case there exist ξ > a and ξ̃ ∈ (0, a) such that
|α(y) − α(x)| = α′(ξ)|x − y| ≤ α′(ξ̃)|x − y| = α(a) − α(0) = α(a). This is due to
the Lagrange mean value theorem and the property of α′ that it is decreasing.

When x < y ≤ a ≤ 1
e , then from the positivity of α and the monotonicity of α

in [0, 1
e ] we have 0 < α(y) − α(x) ≤ α(y) ≤ α(a).

In the last case x < a < y we divide [x, y] into [x, a] and [a, y]. Then we
use both of the previous ideas. First we take |α(y) − α(a)| = α′(ξ)|y − a| ≤
α′(ξ̃)|(x − (y − a)) − x| = α(x) − α(x − y + a), where x − y + a ≥ 0, ξ ∈ (a, y),
ξ̃ ∈ (x−y +a, x). Now simply using the triangle inequality we get |α(y) − α(x)| ≤
|α(y) − α(a)|+α(a)−α(x) ≤ α(a)−α(x−y +a) ≤ α(a), which finishes the proof.
�

A direct consequence of this lemma is that for n ≥ 3 and p, q ∈ [0, 1]r such
that |p − q| ≤ 1

n one has

|nSr(p) − nSr(q)| ≤ r log n. (3.11)

Finally, we have

|nSr,n(p)−nSr(p)| ≤ |nSr,n

(

κ(p)
)

−nSr

(

κ(p)
)

| + |nSr

(

κ(p)
)

−nSr(p)| ≤ 2 r log n,

(3.12)

which gives us a uniform convergence n → ∞ ⇒ Sr,n ⇉ Sr on Pr.
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3.3 Exchanging limit and minimum in a se-

quence of functions

Lemma 3.3.1 Let K be an arbitrary set and let f : K → R be such that there
exists x0 ∈ K satisfying

f(x0) = min
x∈K

f(x). (3.13)

Further, let {fn}∞n=1 be a sequence of functions fn : K → R and let there exist a
sequence of points {xn}∞n=1 ⊂ K such that

fn(xn) = min
x∈K

fn(x). (3.14)

If fn ⇉ f then there exists the limit limn→∞ fn(xn) and it equals f(x0).

Proof. We start with the upper bound. Uniform convergence implies point-wise
convergence, ∀ε > 0 ∃n1 ∈ N : n > n1 ⇒ f(x0) > fn(x0) − ε ≥ fn(xn) − ε. The
second inequality is a direct consequence of the assumption (3.14).

The lower bound will be obtained in a similar way. The only difference is that
here we really need the uniform convergence. From fn ⇉ f we have ∀ε > 0 ∃n2 ∈
N : n > n2 ⇒ fn(xn) > f(xn) − ε ≥ f(x0) − ε. The second inequality is again a
direct consequence of our assumption, this time (3.13). The claim is now obtained
by setting n0 = max{n1, n2}. �

This lemma tells us that for reasonable sequences of functions we can swap the
limit operation and the operation of taking the minimum. We will use it to prove
the following useful lemma.

Lemma 3.3.2 Let r ∈ N. Then the following limit exists and

lim
n→∞

min
p∈Pr,n

−Sr,n(p) = min
p∈Pr

−Sr(p) (3.15)

Proof. For r = 1, we have P1,n = P1 = {1} and S1,n(1) = S1(1) = 0. For r ≥ 2
we use the fact that minp∈Pr,n −Sr,n(p) = minp∈Pr −Sr(p). It follows from the
definition of the extension of Sr,n to Pr. Further, we use the uniform convergence
−Sr,n ⇉ −Sr on Pr, combined with the previous lemma. �
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Chapter 4

Lebowitz-Penrose theorem for
the extended Blume-Capel
model

In the second chapter we discussed the r-model in the case of the meanfield ap-
proximation and we showed that the free energy of the meanfield model is equal
to the minimum of Ψβ,h over the compact set Mr.

Now, we consider Kac r-models. These are models based on r-models but with
slowly decaying and finite range interaction potentials. An interesting behaviour
can be observed if we decrease the interaction strength while extending the range
of interaction and simultaneously keeping the total energy per one site fixed. Then
we will show that the free energy is as close as desired to the minimum of Ψβ,h

over Mr.

4.1 Kac potentials

Definition 4.1.1 (Kac potentials) Let J : R
d → R be a twice differentiable

real-valued function such that

• J is supported on the unite ball in R
d,1 i.e. |u| ≥ 1 ⇒ J(u) = 0

•
∫

Rd J(u)du = 1.

For γ > 0 we define the Kac potential Jγ : R
d × R

d → R setting

Jγ(u, v)
df
= γdJ

(

γ (v − u)
)

.

Remark 4.1.2 From the definition above we get

1Since we consider consider the space R
d to be equipped with the ℓ∞ norm |u|=

maxi∈{1,...,d}|ui|, the unit ball is actually the set [−1, 1]d.
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1. translation invariance
Jγ(u + t, v + t) = Jγ(u, v) for all u, v, t ∈ R

d,

2. normalization condition
∫

Rd Jγ(u, v) dv =
∫

Rd J(t) dt = 1 for all u ∈ R
d,

3. Jγ(u, ·) is supported on a ball with the center at u and a radius γ.

Notice that the parameter γ controls both the strength and the range of the
interaction.

Before we proceed, let us recall that configuration σ ∈ Ω is a mapping Z
d →

Ω0 = {ω1, ω2, . . . , ωr}. When computing the partition function, we always consider
a finite Λ ⊂ Z

d and talk about configurations on Λ and boundary conditions on
Λc. These are respectively restrictions of σ to Λ and σ̃ to Λc.

Now, we define the Kac r-models.

Definition 4.1.3 (Kac r-model Hamiltonian) Let γ > 0, r ∈ N, h ∈ R
r−1,

Λ ∈ Pf (Zd), and σ ∈ Ω. The Hamiltonian of the Kac r-model with a parameter
γ is defined by

Hh(σ)γ,Λ = −1

2

∑

x∈Λ

∑

y∈Λ

Ix 6=yJγ(x, y)σ(x)σ(y)

−
r−1
∑

i=1

hi

∑

x∈Λ

σi(x) −
∑

x∈Λ

∑

y∈Λc

Jγ(x, y)σ(x)σ(y), (4.1)

where Ix 6=y is the characteristic function of the set {(x, y) ∈ R
d ×R

d : x 6= y}. For
β > 0 and σ̃ ∈ Ω we have the partition function of the Kac r-model with boundary
condition σ̃

Z(β, h |σ̃)γ,Λ =
∑

σ∈Ω(σ̃)Λ

e−βHh(σ)γ,Λ . (4.2)

We will show, that in the limit γ → 0, the free energy of the Kac r-model converges
to the free energy of meanfield approximation. Such a statement is called the
Lebowitz-Penrose theorem according to its original version for the Ising model.

Theorem 4.1.4 (The Lebowitz-Penrose theorem for the Kac r-model) Let
β > 0, r ∈ N, h ∈ R

r−1, σ̃ ∈ Ω, and {Λn}∞i=1 ⊂ Pf (Zd) be a van Hove sequence.
Further, let Ψβ,h be the function defined in (2.23) and Z(β, h |σ̃)γ,Λ be the partition
function of the Kac r-model. Then

lim
γ→0

lim
n→∞

− 1

β|Λn|
log Z(β, h |σ̃)γ,Λn = min

m∈Mr

Ψβ,h(m). (4.3)

The proof consist of several steps. First we introduce the free energy functional
to approximate both the RHS and LHS of 4.3. Then we sketch the approximation
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steps and formulate theorems, each one in a stand-alone section. In the following
section we will connect these two approximations together using the lower bound
on the free energy functional and in the last section we complete the proof of the
Lebowitz-Penrose theorem. Finally the next to last section is devoted to technical
lemmas used throughout the proof.

4.2 Free energy functional

Introducing the free energy functional involves a transition form the lattice vari-
ables (x, y ∈ Z

d) to real variables (u, v ∈ R
d). We need a symbol to denote the

subsets of R
d, which would fulfil a similar role as the set Λ ⊂ Z

d in the lattice
description. With a small abuse of notation we choose Λ for this purpose and from
now on, if not explicitly specified otherwise, Λ will be a Borel subset of R

d. Never-
theless, in the context of Hamiltonian H(σ)γ,Λ, the partition function Z(β, h | σ̃)γ,Λ

and configuration space Ω(σ̃)Λ we keep Λ which stands for Λ∩Z
d. We will strictly

use u, v ∈ R
d and x, y ∈ Z

d.
By introducing the free energy function we reach out from the microscopical

scale of statistical mechanics to the mesoscopic sale of a continuous description.
There a configuration at each point is considered to be a local average of underlying
microscopical configurations and hence we get functions of real variables which
can attain any (but usually we restrict to bounded) real values. More details are
included in the last but one chapter in the context of the van der Waals theory.
Here it suffices to say that the free energy functional will be defined on a suitable
set of measurable functions:

Definition 4.2.1 Let r and d be fixed positive integers. Then we define

M = {m : R
d → Mr; mi ∈ L∞(Rd), i = 1, . . . , r − 1}. (4.4)

Definition 4.2.2 (Energy, Entropy and Free energy functionals) Let γ, β >

0, h ∈ R
r−1, Λ ⊂ R

d be a Borel set with a finite Lebesgue measure. We introduce
functionals Uh(·)γ,Λ, S(·)γ,Λ, and Fβ,h(·)γ,Λ: M → R. They are defined, for any
m ∈ M as follows,

Energy functional

Uh(m)γ,Λ
df
= −1

2

∫

Λ

∫

Λ
Jγ(u, v)m1(u)m1(v)dudv

−
r−1
∑

i=1

hi

∫

Λ
mi(u)du −

∫

Λ

∫

Λc

Jγ(u, v)m1(u)m1(v)dudv, (4.5)

Entropy functional

S(m)Λ
df
=

∫

Λ
Sr(L

−1(m(u)))du, (4.6)
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Free energy functional

Fβ,h(m)γ,Λ
df
= Uh(m)γ,Λ − 1

β
S(m)Λ. (4.7)

Now, let us point out the relation between Fβ,h and Ψβ,h.

Remark 4.2.3 (Relation between Fβ,h and Ψβ,h) Let γ, β > 0, h ∈ R
r−1,

Λ ⊂ R
d be a Borel set with a finite Lebesgue measure, and m ∈ M. Then,

Fβ,h(m)γ,Λ =

∫

Λ
Ψβ,h(m(u))du +

1

4

∫

Λ

∫

Λ
Jγ(u, v)[m1(u) − m1(v)]2dvdu

+
1

2

∫

Λ

∫

Λc

Jγ(u, v)[m1(u) − m1(v)]2dvdu − 1

2

∫

Λ

∫

Λc

Jγ(u, v)m2
1(v)dvdu. (4.8)

Proof. Expanding [m1(u)−m1(v)]2 on the RHS and using the Fubini theorem, we
get

∫

Λ
Ψβ,h(m(u))du +

1

2

∫

Λ
m

2
1(u)

∫

Λ
Jγ(u, v)dvdu

− 1

2

∫

Λ

∫

Λ
Jγ(u, v)m1(u)m1(v)dvdu −

∫

Λ

∫

Λc

Jγ(u, v)m1(u)m1(v)dvdu

1

2

∫

Λ
m

2
1(u)

∫

Λc

Jγ(u, v)dvdu +
1

2

∫

Λ

∫

Λc

Jγ(u, v)m2
1(v)dvdu

− 1

2

∫

Λ

∫

Λc

Jγ(u, v)m2
1(v)dvdu. (4.9)

The last two terms cancel. The second term and first term on the third line
produce 1

2

∫

Λ m
2
1(u)du which cancels the same term in

∫

Λ Ψβ,h(m(u))du. Only
terms containing the external fields and entropy survive and together with the
second line it yields exactly the definition of Fβ,h(m). �

The next definition is analogous to the definition of configuration space with
boundary condition.

Definition 4.2.4 Let m̃ ∈ M and Λ be a subset of R
d. Then we define

MΛ(m̃) = {m ∈ M;x ∈ Λc ⇒ m(x) = m̃(x)}. (4.10)

Now we approximate the RHS of (4.3) by the free energy functional.

Theorem 4.2.5 Let γ, β > 0, h ∈ R
r−1, m̃ ∈ M, and let Λ ⊂ R

d be a cube with
the length of the edge d

√

|Λ| ≥ 2γ−1. Then,

∣

∣

∣
inf

m∈MΛ(m̃)
Fβ,h(m)γ,Λ − |Λ| min

m∈Mr

Ψβ,h(m)
∣

∣

∣
≤ 2 ‖L‖2 γ−1 |∂Λ|. (4.11)

21



Proof. Let m ∈ MΛ(m̃). We will use the evaluation of Fβ,h via the function Ψβ,h

from the previous remark. Denoting I =
∫

Λ

∫

Λc Jγ(u, v)dudv, we get

Fβ,h(m)γ,Λ ≥ min
m∈Mr

Ψβ,h(m)|Λ| − 1

2
‖L‖2I, (4.12)

Fβ,h(m∗)γ,Λ ≤ min
m∈Mr

Ψβ,h(m)|Λ| + 2‖L‖2I, (4.13)

where m∗ ∈ Mr is any minimizer of Ψβ,h and m
∗(u) = m∗ for u ∈ Λ, m

∗(u) = m̃(u)
for u ∈ Λc. Finally, if the length of the edge of Λ is bigger than 2γ−1 we have

I =

∫

Λ

∫

Λc

Jγ(u, v)dudv ≤ γ−1|∂Λ|, (4.14)

which is easy to verify. �

4.3 Coarse graining

Our aim in this section will be to approximate log Z on the LHS of (4.3) by the
free energy functional. As a preparatory step we will discuss the coarse graining
procedure. Before we do so, we introduce several notions.

Definition 4.3.1 (Elementary ℓ-cube) Let ℓ ∈ N and x ∈ (ℓ · Z)d, then

C(ℓ)
x

df
=

{

u ∈ R
d, xj ≤ uj < xj + ℓ, j = 1, . . . , d

}

(4.15)

For u ∈ R
d we define

C(ℓ)
u

df
= C

(ℓ)
⌊u

ℓ
⌋ℓ, (4.16)

where ⌊ui⌋ is the lower integer part of ui and ⌊u⌋ = (⌊u1⌋, ⌊u2⌋, . . . , ⌊ud⌋).
An ℓ-cube will be a union of elementary ℓ-cubes which form a cube in the usual
meaning.

Definition 4.3.2 (ℓ-cube) We say that a cube Λ ⊂ R
d is an ℓ-cube, if there

exists A ⊂ (ℓ · Z)d such that

Λ =
⋃

x∈A

C(ℓ)
x . (4.17)

Then, off course, A = Λ ∩ (ℓ · Z)d.

Definition 4.3.3 (Coarse graining operation) Let Λ be an ℓ-cube and f :
Z

d → R. We define the coarse-grained function f (ℓ) : R
d → R by

f (ℓ)(u)
df
=

1

|C(ℓ)
u |

∑

x∈C
(ℓ)
u ∩Zd

f(x). (4.18)

For a vector function f = (f1, f2, . . . , fr) : Z
d → R

r we put

f (ℓ)(u)
df
= (f

(ℓ)
1 , f

(ℓ)
2 , . . . , f (ℓ)

r ) (u). (4.19)
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A direct consequence of this definition is the fact that the function f (ℓ) is defined
on R

d and it is constant on every elementary ℓ-cube. We will use this property
very often when computing the estimates of |f − f (ℓ)| or when replacing sums over
ℓ-cubes by an integral

∑

x∈Λ∩(ℓ·Z)d f(x) =
∫

Λ f (ℓ)(u)du. 2

Definition 4.3.4 (Set of coarse grained configurations) Let ℓ ∈ N, Λ be an
ℓ-cube, and σ̃ ∈ Ω. Then we define

M(ℓ)
Λ (σ̃) = {m : R

d → Mr,ℓd, m constant on each elementary ℓ-cube,

u ∈ Λc ⇒ m(u) = (σ̃, σ̃2, . . . , σ̃r−1)(ℓ)(u)}. (4.20)

The set M(ℓ)
Λ (σ̃) is simply an image of the set {(σ, σ2, . . . , σr−1) : σ ∈ Ω(σ̃)Λ}

under the coarse graining operation. We use this fact and split Ω(σ̃)Λ into classes

of equivalence according to the functions from M(ℓ)
Λ (σ̃).

Definition 4.3.5 Let ℓ ∈ N, Λ be an ℓ-cube, σ̃ ∈ Ω, and m ∈ M(ℓ)
Λ (σ̃). Then we

define

Ω
(ℓ)
m (σ̃)Λ =

{

σ ∈ Ω(σ̃)Λ : (σ, σ2, . . . , σr−1)(ℓ) = m

}

. (4.21)

Now, we can rewrite the partition function

Z(β, h |σ̃)γ,Λ =
∑

m∈M
(ℓ)
Λ (σ̃)

∑

σ∈Ω
(ℓ)
m (σ̃)Λ

e−βHh(σ)γ,Λ . (4.22)

For a fixed m ∈ M(ℓ)
Λ (σ̃), we approximate Hh(σ)γ,Λ by

Uh(m)γ,Λ and, consequently, the second sum by |Ω(ℓ)
m (σ̃)Λ|e−β U(m)γ,Λ .

The cardinality of the set above can be evaluated in terms of the finite volume
entropy Sr,ℓd: 3

log |Ω(ℓ)
m (σ̃)Λ| =

∑

x∈Λ∩Zd

ℓdSr,ℓd

(

L−1
m(x ℓ)

)

=

∫

Λ
Sr,ℓd

(

L−1
m(u)

)

du. (4.23)

This can be further approximated by S(m)γ,Λ. Putting these two approximations
together, we get

Z(β, h |σ̃)γ,Λ ∼
∑

m∈M
(ℓ)
Λ (σ̃)

e−βFβ,h(m)γ,Λ . (4.24)

The sum on the RHS consists of non negative numbers. Thus we can bound it
from below by the maximal summand and from above by the maximal summand

2This holds true also for the coarse graining from Definition 4.4.1.
3Likewise in (2.31).
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multiplied by the cardinality of the set we sum over. Then we take logarithm of
both sides and divide them by β|Λ|. We write down the upper bound

1

β|Λ| log Z(β, h |σ̃)γ,Λ . − min
m∈M

(ℓ)
Λ (σ̃)

1

|Λ|Fβ,h(m)γ,Λ +
log |M(ℓ)

Λ (σ̃)|
|Λ| . (4.25)

The lower bound is simply −min
m∈M

(ℓ)
Λ (σ̃)

1
|Λ|Fβ,h(m)γ,Λ and to get our desired

estimate
1

β|Λ| log Z(β, h |σ̃)γ,Λ ∼ − min
m∈M

(ℓ)
Λ (σ̃)

1

|Λ|Fβ,h(m)γ,Λ, (4.26)

we only need to show that
log |M

(ℓ)
Λ (σ̃)|

|Λ| → 0. To be precise, we formulate the second
theorem of this chapter.

Theorem 4.3.6 Let γ ∈ (0, 1), ℓ ∈ N, h ∈ R
r−1, Λ be an ℓ-cube, and σ̃ ∈ Ω. If

2 ℓ ≤ γ−1, then there exists a constant C(d,Ω0, |J |∞, |∇J |∞) ∈ R such that

∣

∣

∣
min

m∈M
(ℓ)
Λ (σ̃)

Fβ,h(m)γ,Λ +
1

β
log Z(β, h |σ̃)γ,Λ

∣

∣

∣
≤ εβ(γ, ℓ) |Λ|, (4.27)

εβ(γ, ℓ) = C γ ℓ +
r

β

log ℓd

ℓd
+ (r − 1)

log(ℓd + 1)

ℓd
. (4.28)

Proof. The proof has been sketched above the theorem and its intrinsic idea is the
same as in the proof of the Theorem 2.3.2 (meanfield). We want to replace the

sum over Ω(σ̃)Λ (which grows exponentially with |Λ|: |Ω(σ̃)Λ| = |Ω0||Λ|) with a
sum over a set which grows slower with the volume of Λ. Slower in the sense that
the logarithm of the set divided by |Λ| tends to zero for |Λ| → ∞ (for example
polynomial growth). Because the summands in partition function are non negative,
we can take the lower bound of the sum to be the the maximal summand and the
upper bound to be the maximal summand multiplied by the cardinality of the set
we sum over. Finally we take a logarithm of the bounds divided by |Λn| and let
|Λn| → ∞. The limit free energy is then simply a logarithm of the limit of the
maximal summands.

In the meanfield case we were able to find the set discussed above. Namely, the
set Mr,|Λ|. The Hamiltonian was constant on Ωm(σ̃)Λ’s which formed a disjoint

decomposition Ω(σ̃)Λ =
.
⋃

m∈Mr,|Λ|
Ωm(σ̃)Λ, and provided us with the equation

(2.26). Then everything went smoothly according to the schema above.
Here the situation is more complicated. We don’t have such a decomposition of

Ω(σ̃)Λ where the Kac r-model Hamiltonian would be constant. However, we will
artificially create one. We achieve that by coarse graining Ω(σ̃)Λ and replacing the
Hamiltonian with energy functional. First we define equivalence “∼” on Ω(σ̃)Λ:

σ, σ ∈ Ω(σ̃)Λ, σ ∼ σ if σ(ℓ) = σ(ℓ). (4.29)
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Then the set Ω(σ̃)Λ splits up into classes of equivalence Ω
(ℓ)
m (σ̃)Λ, where m ∈

M(ℓ)
Λ (σ̃). The set M(ℓ)

Λ (σ̃) will play the the same role Mr,|Λ| did in the meanfield
case. For any ℓ ∈ N we have

Ω(σ̃)Λ =

.
⋃

m∈M
(ℓ)
Λ (σ̃)

Ω
(ℓ)
m (σ̃)Λ. (4.30)

Using this decomposition, we split the partition sum over Ω(σ̃)Λ into the double

sum (4.22). Within Ω
(ℓ)
m (σ̃)Λ we perform coarse graining and replace Hh(σ)γ,Λ by

Uh(m)γ,Λ. In order to do so, we have to be able to control their difference. For

σ ∈ Ω
(ℓ)
m (σ̃), γ ∈ (0, 1), and 2 ℓ ≤ γ−1 we get the bound

|Hh(σ)γ,Λ − Uh(m)γ,Λ| ≤ C γ ℓ |Λ| (4.31)

from the Lemma 4.5.1. So far we suppressed one significant fact. The set M(ℓ)
Λ (σ̃)

grows exponentially with |Λ|. This is the point where the difference between the
Kac and meanfield r-models arises and the coarse graining parameter ℓ comes into

play. We are able to estimate |M(ℓ)
Λ (σ̃)| from above with

[

(ℓd + 1)r−1
]
|Λ|

ℓd which

yields 1
|Λ| log |M

(ℓ)
Λ (σ̃)| ≤ r−1

ℓd+1
. To make the error from (4.25) to vanish we have to

take the limit ℓ → ∞. This is one of the reasons why we do not get the expression
for the free energy of the Kac r-model for finite γ, but after taking its limit to
zero. The parameter ℓ will be later linked up with γ and for γ → 0 it will tend to
infinity.

The only thing we have to do now, to make the procedure above the theorem
to be correct, is to write down carefully inequalities instead of ∼. Two of them we
already provided. The last one comes from the Lemma 3.1.2:

∣

∣

∣

∫

Λ
Sr,ℓd

(

L−1
(

m(u)
)

)

du − S(m)
∣

∣

∣ ≤ r
log ℓd

ℓd
. (4.32)

Finally, putting the three estimates together finishes the proof. �

The theorem 4.3.6 is not only important as one of the main parts of the proof of
the Lebowitz-Penrose theorem. Moreover, it is a key step in the transition from the
lattice description based on the partition function to the continuous description
based on the free energy functional and a variational principle to look for its

minimum. Here we considered only a finite set of test functions m ∈ M(ℓ)
Λ (σ̃). In

the following section, as another part of the proof, we show that we can extend
the test space to the whole continuous configuration space MΛ(m̃) with a suitable
choice of the boundary condition m̃ ∈ M.

4.4 The lower bound on free energy func-

tional

In the previous two sections we expressed the LHS and RHS of (4.3) in terms of
the free energy functional. In the first case we used the infimum of Fβ,h(m)γ,Λ over
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MΛ(m̃) and in the other one its minimum over M(ℓ)
Λ (σ̃). Notice especially, that in

the equation (4.11) we can arbitrarily choose the “boundary condition” m̃ ∈ M.
If we want to prove the Lebowitz-Penrose theorem, we are likely to find in-

equalities between the infimum and the minimum of the free energy functional.

We choose m̃ = (σ̃, σ̃2, . . . , σ̃r−1)(ℓ). Then the functions from MΛ(m̃) and M(ℓ)
Λ (σ̃)

differ only inside Λ and directly from the definitions we get M(ℓ)
Λ (σ̃) ⊂ MΛ

(

m̃) for
any ℓ ∈ N. This implies

inf
m∈MΛ(m̃)

Fβ,h(m)γ,Λ ≤ min
m∈M

(ℓ)
Λ (σ̃)

Fβ,h(m)γ,Λ. (4.33)

The opposite inequality does not generally hold for finite ℓ and we will look

for its approximation. First we construct a map πℓ from MΛ

(

m̃

)

to M(ℓ)
Λ (σ̃) and

find an estimate of the form

Fβ,h

(

πℓ(m)
)

γ,Λ
≤ Fβ,h(m)γ,Λ + error (4.34)

Then by taking infimum of the inequality over MΛ(m̃) we get our desired relation

min
m∈M

(ℓ)
Λ (σ̃)

Fβ,h(m)γ,Λ ≤ inf
m∈MΛ(m̃)

Fβ,h(m)γ,Λ + error (4.35)

with an error term that vanishes in the limit γ → 0.
Let us begin with the construction of πℓ. The first step will be the coarse

graining of the set MΛ(m̃). It is an analog to the Definition 4.3.3.

Definition 4.4.1 (Coarse graining) Let f : R
d → R, f ∈ L∞(Rd). We define

the coarse grained function f (ℓ) ∈ L∞(Rd):

f (ℓ)(u)
df
=

1

|C(ℓ)
u |

∫

C
(ℓ)
u

f(v)dv. (4.36)

For a vector function f =(f1, f2, . . . , fr) : R
d→ R

r, fi∈L∞(Rd), i=1, . . . , r

f (ℓ)(u)
df
= (f

(ℓ)
1 , f

(ℓ)
2 , . . . , f (ℓ)

r ) (u). (4.37)

And finally, for functions f : R
d × R

d → R, f ∈ L∞(Rd × R
d) we define

f (ℓ)(u, v)
df
=

1

|C(ℓ)
u |

1

|C(ℓ)
v |

∫

C
(ℓ)
u

∫

C
(ℓ)
v

f(ũ, ṽ)dṽdũ. (4.38)

The last definition will be used in Section 4.5 for coarse graining of the Kac
potential Jγ(·, ·).

After coarse graining we get functions which are constant on elementary ℓ-
cubes, but they can still take any values from Mr. We need them to attain values
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only from Mr,ℓd . In the equation (3.9) we introduced the map κr,n : Pr → Pr,n.
Recall that Mr = L(Pr) and Mr,n = L(Pr,n). This offers us a straightforward way
how to construct the map ( · )[n] : Mr → Mr,n :

( · )[n] df
= L ◦ κr,n ◦ L−1. (4.39)

For functions we define (·)[n] point wise, i.e. m
[n](u) = m(u)[n]. From the property

(3.10) of κr,n we get a uniform bound

|m[n] − m| ≤ ||L|| |κr,n(L−1m) − L−1m| ≤ ||L||
n

. (4.40)

Now we have two maps ( · )(ℓ) and ( · )[n] that can be applied on functions
from M. The map ( · )(ℓ) produces functions constant on ℓ-cubes and the other
one changes their range to Mr,n. We join them together to get our desired map

πℓ : MΛ(m̃) → M(ℓ)
Λ (σ̃), πℓ( · ) df

= ( · )(ℓ)[ℓd]. To make this definition correct we
have to make sure that that the range of m

(ℓ) is Mr. This will be shown in the
proof of the following remark.

Remark 4.4.2 Let γ, β > 0, ℓ ∈ N, h ∈ R
r−1, Λ be an ℓ-cube, σ̃ ∈ Ω, and

m̃ = (σ̃, σ̃2, . . . , σ̃r−1)(ℓ). If ℓd ≥ e ‖L‖ and 2 ℓ ≤ γ−1 then there exists a constant
K(d,Ω0, |∇J |∞) ∈ R such that

∣

∣

∣
min

m∈M
(ℓ)
Λ (σ̃)

Fβ,h(m)γ,Λ − inf
m∈MΛ(m̃)

Fβ,h(m)γ,Λ

∣

∣

∣
≤ ε̃β,h(γ, ℓ, ℓd)|Λ|, (4.41)

ε̃β,h(γ, ℓ, n) = K γ ℓ +
‖L‖
n

(

3 ‖L‖ +

r−1
∑

i=1

|hi| +
r

β
log

n

‖L‖

)

. (4.42)

This remark is a simple corollary of the equation (4.33), the paragraph above and
the Theorem 4.4.3.

Proof. First of all, we make sure that for m ∈ M(ℓ)
Λ (m̃) also m

(ℓ) ∈ MΛ(m̃). This is
easy to verify, because outside Λ the function doesn’t change at all and inside Λ we
only have to make sure that m

(ℓ)(u) ∈ Mr which is equivalent to L−1
m

(ℓ)(u) ∈ Pr.
But we have

L−1
ij m

(ℓ)
j (u) = L−1

ij

1

|C(ℓ)
u |

∫

C
(ℓ)
u

mj(v)dv =
1

|C(ℓ)
u |

∫

C
(ℓ)
u

L−1
ij mj(v)dv , (4.43)

L−1
ij mj(u) ∈ [0, 1] ⇒ 1

|C(ℓ)
u |

∫

C
(ℓ)
u

L−1
ij mj(v)dv ∈ [0, 1], (4.44)

r
∑

i=1

L−1
ij m

(ℓ)
j (u) =

1

|C(ℓ)
u |

∫

C
(ℓ)
u

r
∑

i=1

L−1
ij mj(v)dv = 1, (4.45)
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which implies L−1
m

(ℓ)(u) ∈ Pr.

Because m
(ℓ) ∈ M(ℓ)

Λ (m̃) we can apply the map (·)[ℓd] on it and from the
Theorem 4.4.3 we get

Fβ,h(m(ℓ)[ℓd])γ,Λ ≤ Fβ,h(m)γ,Λ + ε̃β,h(γ, ℓ, ℓd)|Λ|. (4.46)

Moreover, m
(ℓ)[ℓd] ∈ M(ℓ)

Λ (σ̃) and by taking infimum of the previous inequality over
MΛ(m̃) we get

min
m∈M

(ℓ)
Λ (σ̃)

Fβ,h(m)γ,Λ ≤ inf
m∈MΛ(m̃)

Fβ,h(m)γ,Λ + ε̃β,h(γ, ℓ, ℓd)|Λ|. (4.47)

To complete the proof we recall the equation 4.33. �

Theorem 4.4.3 (Lower bound of the free energy functional) Let γ, β > 0,
n, ℓ ∈ N, h ∈ R

r−1, Λ be an ℓ-cube, and m ∈ M. If n ≥ e ‖L‖ and 2 ℓ ≤ γ−1 then
there exists a constant K(d,Ω0, |∇J |∞) ∈ R such that

Fβ,h(m(ℓ)[n])γ,Λ ≤ Fβ,h(m)γ,Λ + ε̃β,h(γ, ℓ, n)|Λ|, (4.48)

ε̃β,h(γ, ℓ, n) = K γ ℓ +
‖L‖
n

(

3 ‖L‖ +
r−1
∑

i=1

|hi| +
r

β
log

n

‖L‖

)

. (4.49)

The first term of the error comes from the coarse graining (·)(ℓ) and belongs to
the two point interaction terms m1(u)m1(v). The remaining terms come from the
(·)[n] operation and they belong to the two point interaction terms, terms with
external fields, and the entropy term, respectively.

Proof. We will start with the coarse graining (·)(ℓ). Saying that Λ is an ℓ-cube

means that it is a cube and there exists A ∈ (ℓ · Z)d such that Λ =
⋃

x∈A C
(ℓ)
x .

Recall α defined in Section 3.2, choose i ∈ {1, . . . , r − 1} and x ∈ A. Because −α

is a convex function we can use the Jensen’s inequality

− α
(

m
(ℓ)
i (x)

)

= −α
( 1

|C(ℓ)
x |

∫

C
(ℓ)
x

mi(v)dv
)

≤ − 1

|C(ℓ)
x |

∫

C
(ℓ)
x

α
(

mi(v)
)

dv. (4.50)

Now we use the fact that m
(ℓ)
i is constant on any C

(ℓ)
x , multiply the previous

inequality by |C(ℓ)
x | and sum over all x ∈ A. We get

−
∫

Λ
α
(

m
(ℓ)
i (v)

)

dv ≤ −
∫

Λ
α
(

mi(v)
)

dv, (4.51)

which implies −S(m(ℓ)) ≤ −S(m).
Terms with the external fields are easy to handle because

∫

Λ m
(ℓ)(u)du =

∫

Λ m(u)du.
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Further, if 2 ℓ ≤ γ−1, it follows from Lemma 4.5.2 that
|Uβ,h(m(ℓ))γ,Λ − Uβ,h(m)γ,Λ| ≤ K γ ℓ |Λ|. We put the estimates together and obtain

Fβ,h(m(ℓ))γ,Λ ≤ Fβ,h(m)γ,Λ + K γ ℓ |Λ|. (4.52)

For the rest of the proof, let us use m instead of m
(ℓ). One may also think

of m being an arbitrary element of M because the following steps hold for any

m ∈ M. We know that m(u),m [n](u) ∈ Mr. Then |mi| ≤ ‖L‖,|m [n]
i | ≤ ‖L‖. We

use it together with (4.40) to get

|m[n]
1 (u)m

[n]
1 (v) − m1(u)m1(v)| ≤ ‖L‖

n

(

|m[n]
1 (u)| + |m1(v)|

)

≤ 2
‖L‖2

n
. (4.53)

Consequently,

∣

∣

∣

∫

Λ

∫

Λ
Jγ(u, v)m

[n]
1 (u)m

[n]
1 (v)dudv −

∫

Λ

∫

Λ
Jγ(u, v)m1(u)m1(v)dudv

∣

∣

∣

≤ 2
‖L‖2

n

∫

Λ

∫

Λ
Jγ(u, v)dudv ≤ 2

‖L‖2

n
|Λ|, (4.54)

where we used
∫

Λ Jγ(u, v)du ≤ 1. Similarly, we get the same estimate for the
boundary term using

∫

Λc Jγ(u, v)du ≤ 1. Now, we take a look at the terms with
the external fields and, directly from (4.40), we get

∣

∣

∣ hi

∫

Λ
m

[n]
i (u)du − hi

∫

Λ
mi(u)du

∣

∣

∣ ≤ |hi|
‖L‖
n

|Λ|. (4.55)

Finally, we take care of the entropy term. If ‖L‖
n ≤ 1

e , we can use Lemma 3.2.1
and together with 4.40 we get

∣

∣

∣
α
(

m [n](u)) − α(m(u)
)

∣

∣

∣
≤ ‖L‖

n
log

n

‖L‖ . (4.56)

This inequality provides us immediately with the entropy bound

|S
(

m [n]
)

− S
(

m
)

| ≤ r|Λ|‖L‖
n

log
n

‖L‖ . (4.57)

We collect the inequalities concerning (·)[n] and get

|Fβ,h(m [n]) −Fβ,h(m)| ≤ ‖L‖
n

(

3 ‖L‖ +

r−1
∑

i=1

|hi| +
r

β
log

n

|Λ|
)

|Λ|. (4.58)

Now, we put this bound together with (4.52), which finishes the proof. �
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4.5 Supplementary lemmas

Lemma 4.5.1 Let γ ∈ (0, 1), ℓ ∈ N, h ∈ R
r−1, Λ be an ℓ-cube, σ̃ ∈ Ω, m ∈

M(ℓ)
Λ (σ̃), σ ∈ Ω

(ℓ)
m (σ̃), and let 2 ℓ ≤ γ−1. Then there exists a constant C ∈ R such

that
|Hh(σ)γ,Λ − Uh(m)γ,Λ| ≤ C γ ℓ |Λ|. (4.59)

Moreover,
C ≤ (3 · 4d |∇J |1 + |J |∞) ω2

max, (4.60)

where ωmax = maxω∈Ω0 |ω| and J is the function from C1(Rd) which was used in
the definition of the Kac potentials.

Lemma 4.5.2 Let γ > 0, ℓ ∈ N, h ∈ R
r−1, Λ be an ℓ-cube, m ∈ M, and

2 ℓ ≤ γ−1. Then there exists a constant K ∈ R such that

|Uh(m)γ,Λ − Uh(m(ℓ))γ,Λ| ≤ K γ ℓ |Λ|. (4.61)

Moreover,
K ≤ 3 · 4d |∇J |1‖L‖

2. (4.62)

Lemma 4.5.3 Let γ > 0, ℓ ∈ N, u, v ∈ R
d, J

(ℓ)
γ (·, ·) : R

d × R
d → R be a Kac

potential. Then

|Jγ(u, v) − J (ℓ)
γ (u, v)| ≤ 2 ℓ γd γ |∇J |1 I|u−v|<γ−1+2 ℓ,

4 (4.63)

where |∇J |1 = maxu∈[−1,1]d
∑

i=1,...,d |∂iJ |(u).

This estimate plays a key role in the proof of the two lemmas above, which in
turn play a key role in the transition from the partition function to the variation
principle for the free energy functional. In order to easily remember the bound we
disclose that the first two coefficients come from the Lagrange mean value theorem

and they stand for the maximal distance of elements of C
(ℓ)
u plus the maximum

distance of elements of C
(ℓ)
v multiplied by the gradient of Jγ(0, ·). The fact that

Jγ(0, ·) has a finite support with radius γ−1 affects the bound significantly and is
represented by the characteristic function of the set

{

(u, v) ∈ R
d × R

d : |u − v| <

γ−1 + 2 ℓ
}

.
Now we prove the lemmas.

4For J
(ℓ)
γ (·, ·) see the Definition 4.4.1.
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Figure 4.1: Elementary ℓ-cubes Cu and Cv (d = 2)

Proof of the Lemma 4.5.1

From the definition of Ω
(ℓ)
m (σ̃), it follows that

∑

x∈Λ∩Zd σi(x) =
∫

Λ mi(u)du and
thus we have

|Hh(σ)γ,Λ − Uh(m)γ,Λ| = |H0(σ)γ,Λ − U0(m)γ,Λ| ≤
1

2
I1 + I2. (4.64)

Here

I1 =
∣

∣

∣

∑

x∈Λ

∑

y∈Λ

Ix 6=yJγ(x, y)σ(x)σ(y) −
∫

Λ

∫

Λ
Jγ(u, v)m1(u)m1(v)dudv

∣

∣

∣ ≤ I3 + I4,

(4.65)

I3 = ω2
max

∑

x∈Λ

∑

y∈Λ

Ix=yJγ(x, y) ≤ ω2
maxγd|J |∞|Λ| ≤ ω2

max|J |∞|Λ|, (4.66)

I4 =
∣

∣

∣

∑

x∈Λ

∑

y∈Λ

Jγ(x, y)σ(x)σ(y) −
∫

Λ

∫

Λ
Jγ(u, v)m(u)m(v)dudv

∣

∣

∣, (4.67)

I2 =
∣

∣

∣

∑

x∈Λ

∑

y∈Λc

Jγ(x, y)σ(x)σ(y) −
∫

Λ

∫

Λc

Jγ(u, v)m(u)m(v)dudv
∣

∣

∣
. (4.68)

From the definition of Ω
(ℓ)
m (σ̃) we also have m1 = σ(ℓ) and thus 5

∫

Λ

∫

Λ
Jγ(u, v)m1(u)m1(v)dudv =

∑

x∈Λ

∑

y∈Λ

J (ℓ)
γ (x, y)σ(x)σ(y). (4.69)

Then
|I4| ≤ ω2

max

∑

x∈Λ

∑

y∈Λ

|Jγ(x, y) − J (ℓ)
γ (x, y)| (4.70)

5For J
(ℓ)
γ (·, ·) see the Definition 4.4.1.
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and similarly,

|I2| ≤ ω2
max

∑

x∈Λ

∑

y∈Λc

|Jγ(x, y) − J (ℓ)
γ (x, y)|. (4.71)

From Lemma 4.5.3 we get
∑

x∈Λ

∑

y∈Zd

|Jγ(x, y) − J (ℓ)
γ (x, y)| ≤ 2 ℓ γd γ|∇J |1

∑

x∈Λ

∑

y∈Zd

I|x−y|≤γ−1+2 ℓ. (4.72)

Further we compute

∑

x∈Λ

∑

y∈Zd

I|x−y|<γ−1+2d ℓ ≤ |Λ|
[

2(γ−1 + 2ℓ)
]d ≤ |Λ| 4d γ−d, (4.73)

where we just used the assumption 2 ℓ ≤ γ−1.
Altogether, we have

∑

x∈Λ

∑

y∈Zd

|Jγ(x, y) − J (ℓ)
γ (x, y)| ≤ C1 γ ℓ |Λ|, (4.74)

C1 = 2 · 4d |∇J |1. (4.75)

This estimate provides us with upper bound of the same form ω2
max C1 γ ℓ |Λ| on

both |I2| and |I4|. If we add the bound on |I3|, we receive the final inequality. �

Proof of the Lemma 4.5.2

This proof is very similar to the previous one. From the definition of (·)(ℓ), it
immediately follows that

∫

Λ m
(ℓ)(u)du =

∫

Λ m(u)du and because

∫

Λ

∫

Λ
Jγ(u, v)m

(ℓ)
1 (u)m

(ℓ)
1 (v)dudv =

∫

Λ

∫

Λ
J (ℓ)

γ (u, v)m1(u)m1(v)dudv, (4.76)

we have

|Uh(m)γ,Λ − Uh(m(ℓ))γ,Λ| ≤
1

2
I1 + I2, (4.77)

where

I1 = ‖L‖2
∫

Λ

∫

Λ
|Jγ(u, v) − J (ℓ)

γ (u, v)|dudv, (4.78)

I2 = ‖L‖2
∫

Λ

∫

Λc

|Jγ(u, v) − J (ℓ)
γ (u, v)|dudv. (4.79)

We use again Lemma 4.5.3 and for 2 ℓ ≤ γ−1 we get, similarly to the equation
(4.74), the bound

∫

Λ

∫

Rd

|Jγ(u, v) − J (ℓ)
γ (u, v)|dudv ≤ 2 · 4d |∇J |1 γ ℓ |Λ|. (4.80)

�
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Proof of the Lemma 4.5.3

From the definition of J (ℓ)(u, v), 6 we have

|Jγ(u, v) − J (ℓ)
γ (u, v)| ≤ 1

|C
(ℓ)
u | |C

(ℓ)
v |

∫

C
(ℓ)
u

∫

C
(ℓ)
v

|Jγ(u, v) − Jγ(ũ, ṽ)|dũdṽ (4.81)

and we need an estimate on |Jγ(u, v) − Jγ(ũ, ṽ)| where u, ũ ∈ C
(ℓ)
u and v, ṽ ∈ C

(ℓ)
v .

Then |u − ũ| ≤ ℓ, |v − ṽ| ≤ ℓ, and because Jγ(u, v) = γd J
(

γ(v − u)
)

, where
J ∈ C1(Rd), it follows from the Lagrange mean value theorem that

|Jγ(u, v) − Jγ(ũ, ṽ)| ≤ γd γ |∇J |1|v − u − (ṽ − ũ)| ≤ 2 ℓ γd γ |∇J |1. (4.82)

From the formula for Jγ(·, ·), we also see that, if γ|u − v| ≥ 1 and γ|ũ − ṽ| ≥ 1,
the difference is zero because both Jγ(u, v) and Jγ(ũ, ṽ) are zero. From Figure 4.1
(or triangle inequality) we can see that |ũ − ṽ| > |u − v| − 2 ℓ. Finally, if we take
|u − v| ≥ γ−1 + 2 ℓ then |ũ − ṽ| > γ−1 and the difference is zero. �

4.6 Proof of the Lebowitz-Penrose theorem

In this section we collect the results of previous sections and complete the proof of
the Lebowitz-Penrose theorem. Let us first make a brief recapitulation of achieved
results.

For β > 0, γ ∈ (0, 1), ℓ ∈ N, h ∈ R
r−1, σ̃ ∈ Ω, m̃ = (σ̃, σ̃2, . . . , σ̃r−1)(ℓ), Λ an

ℓ-cube with the length of the edge d
√

|Λ| ≥ 2γ−1/2, 2ℓ ≥ γ−1/2, and ℓd ≥ e‖L‖,
we get from Theorem 4.3.6, Remark 4.4.2, and Theorem 4.2.5, in the respective
order,

∣

∣

∣ − 1

β
log Z(β, h |σ̃)γ,Λ − min

m∈M
(ℓ)
Λ (σ̃)

Fβ,h(m)γ,Λ

∣

∣

∣ ≤ εβ(γ, ℓ) |Λ|, (4.83)

∣

∣

∣
min

m∈M
(ℓ)
Λ (σ̃)

Fβ,h(m)γ,Λ − inf
m∈MΛ(m̃)

Fβ,h(m)γ,Λ

∣

∣

∣
≤ ε̃β,h(γ, ℓ, ℓd) |Λ|, (4.84)

∣

∣

∣
inf

m∈MΛ(m̃)
Fβ,h(m)γ,Λ − |Λ| min

m∈Mr

Ψβ,h(m)
∣

∣

∣
≤ 2 ‖L‖2 γ−1 |∂Λ|. (4.85)

We combine the inequalities to get

∣

∣

∣ − 1

β|Λ| log Z(β, h |σ̃)γ,Λ − min
m∈Mr

Ψβ,h(m)
∣

∣

∣ ≤ εβ(γ, ℓ) + ε̃β,h(γ, ℓ, ℓd)

+ 2 ‖L‖2 γ−1 |∂Λ|
|Λ| . (4.86)

Now we choose a sequence of ℓ-cubes {Λn}∞n=1 ⊂ Pf (Zd) such that |Λn| → ∞
for n → ∞. Such a sequence is van Hove and by the Lemma 2.1.1 the limit of

6See the Definition 4.4.1.
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− 1
β|Λn|

log Z(β, h |σ̃)γ,Λn exists. Because |Λn| → ∞ there must exist n0 ∈ N such

that d
√

|Λn| ≥ 2 γ−1/2 for all n ≥ n0 and we get

∣

∣

∣ lim
n→∞

− 1

β|Λn|
log Z(β, h |σ̃)γ,Λn − min

m∈Mr

Ψβ,h(m)
∣

∣

∣ ≤ εβ(γ, ℓ)+ ε̃β,h(γ, ℓ, ℓd). (4.87)

The limit also does not depend on the choice of the sequence and thus the estimate
above holds true for any van Hove sequence.

Finally, let γ0 = min
{

1

1+ d
√

e‖L‖
, 1

4d

}

, γ ∈ (0, γ0) and ℓγ = ⌊γ−1/2⌋. Then

γ ∈ (0, 1), ℓγ ≥ e‖L‖, and 2ℓγ ≤ γ−1. For such γ and ℓγ , all the above mentioned
conditions are satisfied so that (4.87) holds true and we can make the limit γ → 0.
Let us demonstrate on the key terms that both ε(γ, ℓγ) and ε̃(γ, ℓγ , ℓd

γ) tend to
zero if γ → 0.

Remark 4.6.1

0 ≤ γ ℓγ = γ⌊γ−1/2⌋ ≤ γ γ−1/2 = γ1/2 → 0, (4.88)

0 ≤ 1

ℓγ
=

1

⌊γ−1/2⌋ ≤ 1

γ−1/2 − 1
=

γ1/2

1 − γ1/2
→ 0, (4.89)

0 ≤ log ℓγ

ℓγ
=

log⌊γ−1/2⌋
⌊γ−1/2⌋ ≤ log γ−1/2

γ−1/2 − 1
=

1

1 − γ1/2

log γ−1/2

γ−1/2
→ 0. (4.90)

Now, the proof is complete.
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Chapter 5

Van der Waals theory

In the last chapter we have moved up to the mesoscopic level, where the elementary
variables are averages of spins over microscopical regions and, finally, established
the link between discrete and continuous description. An interpretation of the
values of mesoscopic configurations as averages of microscopical values essentially
establishes the relation with underlying microscopic level.

The mesoscopic theory is, in fact, based entirely upon a free energy functional,
which specifies the free energy of all possible mesoscopic states and thus all the
thermodynamical properties of the system. We restrict ourselves to the definition
of basic notions and establishing a link to the free energy functional derived within
the proof of Lebowitz-Penrose theorem. However, we want to stress again that the
microscopic origin is not explicitly considered in the van der Waals theory and the
free energy functional is there regarded as a primitive notion and a starting point
of a self consistent theory.

5.1 Basic notions

The starting notion is the specification of all the possible states of the system,
whose ensemble, the phase space, reflects the nature of the system. In the meso-
scopic theory the states of systems are specified by measurable functions m, defined
on some spatial domain, a region Λ or the whole R

d. Thus for example for mag-
netic systems m has a meaning of a magnetization density at the point r. For
simplicity we suppose m to be bounded, in suitable units m(u) ∈ [−1, 1]r−1. The
reader may refer to the Chapter 4 for a specific example of how such a continuum
description may arise from a lattice spin systems. The considered configurations
are functions from L∞(Rd, [−1, 1]r−1) which is the phase space of the mesoscopic
theory.

We consider here the mesoscopic theory as a coarse grained version of a micro-
scopic model. As a result, a loss of information occurs but on the other hand, it
leads to a gain of a simpler structure which allows a deeper analysis. It describes
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collective properties of the system and neglects all statistical fluctuations. Thus
m(u) is a local average of spins in some microscopically large region around the
point u. Such a region must be in mesoscopical units regarded as infinitesimal and
in the end not distinguished from a point.

The basic notion in the theory is a free energy functional F specifying the free
energy of of the configurations m. As a rule we will use the symbol F to denote
the excess free energy functional. It differs from the previous one by an additive
constant, chosen in such a way that the minimum of the latter is zero: this is why
it is called an “excess free energy”. Notice that, in the infinite volume, the additive
constant may become infinite and, indeed, the free energy functional F is usually
defined only in bounded spatial domains.

In order to introduce thermodynamics we postulate a variational principle (the
second law of thermodynamics) that an equilibrium is attained once the free energy
functional is minimal over the space of all permissible states of the system.

5.2 Ginzburg-Landau free energy functional

The Ginzburg-Landau excess free energy functional

Fgl(m) =

∫

Rd

w
(

m(u)
)

+ C|∇m(u)|2dr, (5.1)

where C is an positive constant, is a prototype of the free energy functional in the
van der Waals theory. The most studied example is the one with w(s) = (s2 −1)2.
In general we suppose that w is a smooth function whose minimal value is taken
to be zero, according to the interpretation of the functional as a free energy excess
(energy modulo an additive constant). The “magnetization” m is required to be
differentiable and such that the integral above is well defined. Since the interest is
in minimization problems, often the domain of definition is extended allowing for
the functional to have also the value +∞. We regard the “magnetization” m to be
generic non-equilibrium profile and Fgl(m) be its “distance” from the equilibrium:
the smaller Fgl(m), the closer to equilibrium.

Ginzburg and Landau had in mind two mechanisms to penalize departures from
equilibrium: the first one is ruled by a mean field free energy density described in
w. Any value of m(u) which is not a minimizer of w contributes to the total free
energy proportionally to the space volume where it is occurs. This term therefore
favours profiles supported by the minimizers of w. In order to describe a phase
transition, there must be also a penalty for changing the minimizer which, in the
Ginzburg-Landau functional, is the last term in (5.1). Thus the global minimizers
of Fgl are functions m constantly equal to a minimizer of w and their free energy
is zero. They are therefore interpreted as the pure phases. All the other profiles
have a non zero free energy and are therefore non equilibrium profiles.
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5.3 A link to the r-model

The analysis as described in Chapter 4 indicates another candidate for the free
energy functional, namely the expression (4.8) from which we simply drop the last
term because it does not have any relevant meaning here. It does neither corre-
spond to the mean-field minimizer nor to the penalty for changing the minimizer.
For the readers convenience we rewrite it here:

Fβ,h(m)γ,Λ =

∫

Λ
Ψβ,h(m(u))du+

1

4

∫

Λ

∫

Λ
Jγ(u, v)[m1(u) − m1(v)]2dvdu

+
1

2

∫

Λ

∫

Λc

Jγ(u, v)[m1(u) − m1(v)]2dvdu. (5.2)

To establish a valid excess free energy functional with zero ground state we subtract
from the first term its minimum, i.e. we define a function ϕβ,h(m) = Ψβ,h(m) −
minm̃∈Mr Ψβ,h(m̃). Further we choose Λ = R

d and define the r-model excess free
energy functional

Fβ,h(m)γ,Λ =

∫

Rd

ϕβ,h(m(u))du +
1

4

∫

Rd

∫

Rd

Jγ(u, v)[m1(u) − m1(v)]2dvdu.

This is the final result of our effort to find a link between the lattice models
(r-model) with the configurations residing on a discrete subsets of Z

d to a model
with configurations being measurable functions m ∈ M residing on 1

R
d and

interpreting the value m(u), u ∈ R
d as a local average of “magnetization” over

microscopical region around u. Notice that the main steps that allow us to interpret
the functional above, as a “van der Waals theory counterpart” of the partition
function of the r-model, involve coarse graining procedure and are subject to the
Remark 4.2.3, Theorem 4.3.6, and Remark 4.4.2.

5.4 Instantons

After coarse graining of the lattice model we have lost the information about the
microscopical structure of the system. However, the main advantage of the derived
mesoscopical theory should be its simpler structure and presence of newly available
tools for its analysis.

If we restrict ourselves to the assumption of planar symmetry, we can reduce to
a one dimensional problem that should be accessible for study in a great detail. In
particular, we are interested in the minimizing profile (an instanton) which mono-
tonically connects several phases. In the case of Ising model there are fundamental
results like existence, uniqueness, regularity, exponential decay form one phase to
the other, etc. proved in [Pr]. A challenging task is to prove similar results for the
Blume-Capel model, where an intrinsic dependence of such results on the “new”

1The set M was defined in (4.4).
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external field l (or h2 in the notation of a general r-model) comes into the play.
This will be subject of further research.
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Chapter 6

Conclusion

I was able to establish a direct link from statistical mechanics of an extended
Blume-Capel model (r-model) to its formulation within the mesoscopic van der
Waals theory.

Further I succeeded in the proof of the Lebowitz-Penrose theorem for the r-
model, a large class of models including the Ising and Blume-Capel (so far the
theorem had been known to hold true for the Ising model).

However, there still remain open questions concerning instantons in the Blume-
Capel model, which require further research. The motivation and direction can
be drawn by the fourth and fifth chapter of [Pr] where all the important question
about existence, uniqueness, regularity and decay of the instantons are proved in
the case of Ising model.
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