
BACHELOR THESIS

Lucia Tódová

OCR for tabular data

Department of Software Engineering

Supervisor of the bachelor thesis: Mgr. Miroslav Kratochvíl
Study programme: Computer Science

Study branch: Programming and Software Systems

Prague 2019

I declare that I carried out this bachelor thesis independently, and only with
the cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the
Act No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact
that the Charles University has the right to conclude a license agreement on
the use of this work as a school work pursuant to Section 60 subsection 1 of
the Copyright Act.

In date signature of the author

i

ii

I would like to express my sincere gratitude to Mgr. Miroslav Kratochvíl,
the supervisor of this thesis, for his time, guidance and patience over the last
year. I would also like to thank my boyfriend, my family and my friends for
their constant support.

iii

iv

Title: OCR for tabular data

Author: Lucia Tódová

Department: Department of Software Engineering

Supervisor: Mgr. Miroslav Kratochvíl, Department of Software Engineering

Abstract: Table recognition is an important tool for digitalizing documents
that contain tabular data, which often occur in areas of administration, fi-
nances and education. This thesis re-uses existing optical character recogni-
tion software to construct a new table recognition algorithm that aims to sim-
plify the digitalization of diverse document types. The resulting algorithm
achieves comparable or better results than currently available open-source
software. Thesis additionally reviews common methods of OCR software im-
plementation, and measures the influence of image preprocessing quality on
the outcome of the table recognition.

Keywords: optical character recognition, document digitalization, table recog-
nition, image processing

v

vi

Contents

Introduction 3

1 Text recognition algorithms 5
1.1 Common obstacles of successful text recognition 5
1.2 Preprocessing for OCR . 6

1.2.1 Scaling . 7
1.2.2 Contrast enhancement 8
1.2.3 Binarization . 9
1.2.4 Deskewing . 11
1.2.5 Noise reduction . 12
1.2.6 Scanning border reduction 14

1.3 Text detection process . 15
1.3.1 Page segmentation . 16
1.3.2 Feature extraction . 19
1.3.3 Character classification 20

1.4 Available OCR software . 22
1.4.1 Tesseract . 24

2 Layout recognition for tabular data 27
2.1 Layout analysis . 27
2.2 Table recognition . 30

2.2.1 Tesseract table recognition 31
2.2.2 Other existing approaches 32

3 Table recognition implementation 35
3.1 Preprocessing . 35
3.2 Tabular OCR . 37

3.2.1 Textline initialization 38
3.2.2 Deletion of unnecessary lines 39
3.2.3 Column detection . 39
3.2.4 Column merge into tables 40
3.2.5 Output determination 41

4 Results 45
4.1 Performance measurements . 45
4.2 Effects of the amount of text 46
4.3 Effects of image resolution . 47

4.3.1 Effects on time complexity 47

1

4.3.2 Effects on Tesseract accuracy 48
4.4 Effects of preprocessing . 48
4.5 Comparison to Tesseract’s TableFind 48
4.6 Open problems and future work 49

Conclusion 61

Bibliography 63

A Software user guide 69

2

Introduction
Recently, digitalization of documents has become an important part of in-
formation systems and related workflows. By digitalization, documents from
governmental, administrative, educational and publishing workflows are be-
ing processed to a more accessible, searchable and manageable form.

To convert the printed text documents back into digital text form, dig-
italization tools employ optical character recognition (OCR). OCR engines
are used to recognize individual text elements of a scanned document and
output them in a more suitable format, e.g. as rich text or a searchable PDF
file.

Specialized OCR algorithms exist to handle various specific input docu-
ment layouts where general OCR would produce sub-optimal or unusuable
results; e.g. for tickets, passports, car plates or postal envelopes. Tabular
documents form a wide, useful category of structured input — table recogni-
tion algorithms must be able to process various features found in the tables,
including inconsistent border formatting, different alignment, spanning cells,
or misaligned columns and rows. Currently, the available table-recognition
software is, in most cases, derived from text-oriented OCR algorithms and
recognizes only limited amount of all possible table features.

The main goal of this thesis is to explore the existing OCR techniques and
software, and create a new table recognition OCR software that can provide
better results than the currently available tools. The resulting software uses
an external OCR engine and image-processing libraries to preprocess the in-
put images and extract simple text elements, which are then heuristically
combined into words, lines, table columns and whole tables. Finally, it pro-
duces an easily readable JSON-formatted output that describes the layouts
of tabular and textual elements in the processed document. The generalized
JSON output may be eventually converted to other, more specific formats.

Related work
There exist several softwares that focus on table recognition. For exam-
ple, Tabula [Ari] is an under development open-source project focusing on
the extraction of tables from PDF files. This software uses the help of
the OpenCV library [IC00] and often results in errors when presented with
scanned documents, multi-line rows and complex tables. Another examples
are OCRSpace [Gmb] and OpenCV [IC00]. Although the focus of these en-
gines is mainly character recognition, they also provide table recognition of
specific layouts (e.g. receipts, tickets). Other approaches to table recogni-

3

tion were presented by Yildiz, Kaiser, and Miksch [YKM05], Kieninger and
Dengel [KD98] and Hu et al. [Hu+99]. Even though they proposed new
techniques, they are now either outdated or do not provide results of suffi-
cient quality. Satisfactory results are provided by commercial softwares like
ABBYY FineReader [ABBa].

Table recognition is also implemented as a feature of the Tesseract
library [SS10]. We discuss it in detail later in this thesis (section 2.2.1).

Layout of this thesis This thesis is structured as follows: In Chapter
1, we review the obstacles that complicate character recognition and show
existing solutions for some of them; after that we describe several techniques
and heuristics for text recognition. In Chapter 2, we describe the imple-
mentation of existing table recognition algorithms. Chapter 3 details the
implementation of our software, including the heuristic used for table detec-
tion and recognition. Performance measurements, results and summary of
the improvements are presented in Chapter 4. After the last chapter, we
conclude with a brief overview of possible future work.

4

1. Text recognition algorithms
Text recognition forms the basis of any complex OCR software. Its task is to
transform an input image into its segmented form, with segments containing
information about individual characters and their positions.

We begin this chapter by presenting various aspects that impact the qual-
ity of the input image, which we have observed to affect the results of the
text recognition algorithms. To reduce the effects of these aspects, we also
focus on the related task of preprocessing the input image. After that, we
analyze the individual steps of the text detection process and review the
existing techniques used for this purpose.

1.1 Common obstacles of successful text recog-
nition

Even for human perception, the task of recognizing text in a complex docu-
ment might become difficult due to various factors. Text recognition engines
work similarly or, in some specific cases trivial for human perception, even
worse.

Common difficulties faced by text recognition algorithms have been re-
viewed by Bieniecki, Grabowski, and Rozenberg [BGR07]. These can be
categorized into following major classes:

Font face variability Text documents contain a lot of different fonts and
styles, including different headings, body text, footer and header sizes
along with bold, italics and underlined characters, differently colored
fonts and even custom-made fonts. Furthermore, when it comes to
handwritten text, each character is slightly different and the text con-
tains a lot of inaccuracies. To hold the information about every possible
font and style would therefore be impractical for any OCR software,
and, in case of custom-made fonts or handwritten text, even impossi-
ble. Therefore, an OCR software needs to use heuristics to match the
actual symbol it recognized to its expectation of the character shape.
This does not always produce the desired results. In specific cases,
especially in decorative fonts or handwritten text, characters like S or
5, 0 or O and I or l are hard to distinguish even by human perception.
This often results in the failure of text detection algorithm for these
specific characters.

5

Scan quality The optimal results of image acquisition techniques, like scan-
ning, are high-contrast images with no inaccuracies. However, the scan-
ning process often disrupts the input image, which results in low con-
trast, insufficient sharpness, pixelation, noise and disruption of lines.
This is usually due to a low resolution scan or human made mistakes
during scanning. We use the techniques of preprocessing to try and
reconstruct this error prone image into a suitable input for text recog-
nition engines.

Skew problems Photographing or scanning an image often results in minor
human made skew and rotation inaccuracies. However, most of the text
recognition engines already assume the input to be properly vertically
and horizontally aligned for the simplicity and lower time complexity
of its algorithm. This causes the engines to fail on skewed images.
Therefore, we attempt to deskew the input images during preprocessing
with the use of deskewing techniques.

Colors To distinguish characters from the image background, OCR engines
use various techniques based on the color values of the individual pixels,
their contrast, brightness, etc. When it comes to monochrome one
images, to determine this division of image pixels is a simple task.
With colored inputs, however, many complications arise. For example,
recognition of green text on a red background fails when presented to
a method based on contrast. This and improved time complexity of
the algorithm is the reason why images often undergo the process of
binarization.

These difficulties motivate the common OCR implementations to work
with optimistic assumptions about documents, such as that the document has
only one column, that it is not handwritten, and that its lines are horizontally
aligned.

Several existing image processing techniques may be used to eliminate the
effects of most of these obstacles in the attempt to increase the performance
of OCR engines. We review the most important of them in the next section.

1.2 Preprocessing for OCR
Many of the existing OCR engines are equipped with several simple built-in
preprocessing methods. It is, however, often beneficial to preprocess the im-
age using specialized tools in order to obtain a better input for the OCR. In
this section, we discuss the most effective and commonly used image trans-
formations for this purpose.

6

1.2.1 Scaling

In computer graphics, scaling refers to the process of changing the resolution
of a digital image while preserving its data content. In OCR, the purpose of
this method is to provide an input of viable size for existing OCR engines. For
example, OCR engines likes Tesseract [Pac96] or ABBYY FineReader [ABBa]
encourage their users to use 300 dpi images — this is due to the fact that the
classification of newly recognized characters requires a large set of training
data which they are then compared to; which are, in this case, most often
obtained from 300 dpi images. 300 dpi is claimed to be a resolution high
enough for a clear recognition of character features in common text, but also
low enough to maintain a reasonable execution time of the algorithm.

If the user has provided us with an image of a different resolution, the
image therefore needs to be either upscaled (if the dpi of the input image was
lower) or downscaled (if the dpi of the input image was higher). For these
purposes, interpolation-based algorithms are used.

Interpolation attempts to minimize the aliasing effect of the resulting
image, so the scaled picture does not appear visibly pixelated and its edges
are not jagged. It is based on using known data to estimate values at unknown
points. It specifically approximates the color and intensity of the resulting
pixel based on the values of surrounding pixels. When downscaling, this
technique therefore computes one color value for each set of pixels, which are
the color values of the pixels in the new image. When upscaling, it computes
color values of the new pixels by approximating the values of the old pixels
around them.

Existing interpolation algorithms can be grouped into two categories:
adaptive and non-adaptive.

Adaptive methods change the way they treat various pixels depending
on whether they are a part of a smooth texture or a sharp edge. They
are primarily designed to minimize the presence of interpolation artifacts
in regions where they are most apparent. Examples of adaptive methods
include e.g. Spline, Sinc, Lanczos or Discrete Wavelet Transforms [Fad14].

Non-adaptive methods, on the other hand, treat all pixels equally. Their
complexity and classification depends on the size of pixel neighborhood they
interpolate [Fad14]. The effects of several of these methods are detailed
in fig. 1.1.

Although the results of adaptive methods are more accurate, they are
not generally used for OCR preprocessing due to their high time complexity.
Therefore, the most popular decision for general cases is the use of Bicubic
interpolation method [Han13].

7

Original

Nearest-neighbor Bilinear interpolation Bicubic interpolation
interpolation

Figure 1.1: Comparison of results of several non-adaptive interpolation meth-
ods, scaled 4× (image by Demofox [Dem]).

1.2.2 Contrast enhancement

Contrast of an image is the difference in luminance or colour that makes
objects in the same field of view distinguishable. Low contrast often results
in blending of edges during recognition, which decreases the accuracy of OCR.

An image histogram is used to improve this aspect. A histogram is a
representation of the distribution of data and, in case of image histograms, it
represents the tonal distribution of an image — x-axis stands for all available
tonal levels, and y-axis represents the number of pixels for each tonal level.
In colored (RGB) images, the histogram is represented by three separate his-
tograms, one for each color component. By spreading out the most frequent
intensity values in the histogram, as shown in fig. 1.2, the contrast of the
image increases.

Histogram stretching methods are categorized as either methods of lin-
ear or non-linear stretching [AaKK10], depending on the forms of functions
they use. Although linear stretching methods are easier to implement and
do not cause the objects in the original image to lose their brightness values,
non-linear stretching methods were shown to produce better results in gen-

8

Figure 1.2: Histogram-based comparison of image contrast. Left: low-
contrast image histogram, right: high-contrast image histogram.

Figure 1.3: Results of histogram equalization. Left: original image, right:
processed image.

eral [CJP]. Despite of that, linear stretching methods still deliver satisfactory
results on images with Gaussian or near-Gaussian histograms.

The most popular choice for contrast enhancement for OCR is a non-
linear stretching technique called histogram equalization [Dor+15]. Although
it produces unrealistic and over-enhanced effects in photographs, the over-
processing actually suits the text data. The typical output of histogram
equalization on textual data is displayed in fig. 1.3.

Suganya, Gayathri, and Mohanapriya [SGM+13] describe other methods
of contrast enhancement, like CLAHE, Dynamic Stochastic Resonance and
generic transforms, such as Fourier, Discrete Cosine, and Wavelet. For com-
plex text recognition cases, CLAHE method can be used with satisfactory
results.

1.2.3 Binarization

To recognize characters in an image, an OCR software must distinguish the
background pixels from the actual pixels that belong to the characters. To
determine the boundaries between these two groups in a colored image is a
complex task due to the need of processing the whole RGB information of
each pixel. However, there might be a loss of information when converting
an RGB image to grayscale/monochrome. Therefore, the approach to the
conversion can not be naive and must consider unusually colored images
(e.g. green font on a red background).

9

Original Averaging technique Luma correction

Figure 1.4: Comparison of grayscale techniques.

Grayscale conversion

Grayscale conversion is the process of assigning each pixel of an image a gray
value, while preserving as much information of the original image as possible.
The simplest approach to grayscale conversion is the averaging approach,
which assigns each pixel the average of its R, G and B values. However, this
approach causes the blending of colors of similar luminance contrast (such
as the already mentioned greens and reds). Additionally, human perception
of colors is non-uniform — green color is perceived more strongly than red,
and red more strongly than blue. For these reasons, a correction formula
(often called luma [KC12]) that weights each color component differently is
used. Slight differences in the results of these techniques are demonstrated
in fig. 1.4.

Other more complicated methods were reviewed by Ĉadík [Ĉad08].

Threshold-based binarization

Binarization of an image is usually performed on grayscale images, which
we obtain from a colored input by previously mentioned techniques. Most
of the binarization methods work on the basis of a threshold — a value
that determines whether the pixel should be black or white in the resulting
binarized image. Various binarization methods differ in the way that this
threshold is calculated and used.

Global thresholding [LKR13] is the simplest approach to binarization. It
works by choosing a threshold value and iterating over the whole image, com-
paring the value of each pixel to this threshold. However, as the brightness
and contrast of different images vary, it is generally impossible to choose a
threshold suitable for all images.

More complex methods that aim to correct the problems of global thresh-
olding exist. Some of these include:

• Otsu’s method for global threshold estimation [You11]

10

Original scanned image Global Thresholding Sauvola Binarization

Figure 1.5: Comparison of the outputs of binarization methods on an un-
evenly lit image (images by Pandey [Pan]).

• Local-thresholding methods [SS04]:

– Niblack method
– Bernsen method
– Sauvola method

Otsu’s method statistically computes a global threshold by a dynamical
classification of image pixels into background and foreground pixels. Al-
though simple and easy to implement, but, as any global method, it is inher-
ently unable to fix high variance or uneven spots in an image background.
Local-thresholding methods aim to solve this issue by allowing different
threshold values in different parts of the image. They differ in the way the ex-
isting thresholds are computed — for example, Niblack’s method [SP00] uses
mean and standard deviation of surrounding pixels for each pixel, Sauvola
method improves it by checking for blank regions and Bernsen’s method by
optimizing Niblack’s computations.

Visual differences between the mentioned methods are displayed in fig. 1.5.
Comprehensive reviews of other, more complex methods are also available [SS04].

1.2.4 Deskewing
Skewed images are probably the most common problem that many OCR
engines struggle with. They usually appear when an image is scanned or
photographed from an angle.

Negative effects of skewed images are most apparent in results of page
segmentation (see section 1.3.1), as this process often relies on the characters
to be properly vertically and horizontally aligned.

In this section, we present various methods of image deskewing. All of
them work (for more accurate results) after binarization of the image and
generally assume the skew angle to be no more than 20◦. Although algorithms
that work on greater skew angles also exist [Ros+14a], they are not as widely

11

Method Performance Max.
skew

Image han-
dling

Setbacks

Hough transform slow 90◦ sufficient –

Projection profiles slow 10◦ problematic –

Cross correlation relatively fast 10◦ problematic works only on simple
documents

Connected com-
ponent clustering

clustering-
dependent

20◦ good requires high-quality
input

Table 1.1: The advantages and disadvantages of different deskewing methods.

used for the purposes of deskewing scanned documents, which are generally
only slightly tweaked.

The most effective and popular algorithms include the following [Ros+14b]:

• Hough transform [SKK16]

• Projection profile method [Ros+14a]

• Cross correlation [Ros+14a]

• Connected component clustering (or nearest-neighbor clustering) [LT03]

Hough transform applies feature extraction to the image, takes the line
with the highest pixel count, and computes the skew of the whole document
using this line. Projection profile method rotates the image multiple times
and computes the histogram along horizontal scan lines. The skew of the
rotated image where the histogram has the most peaks and valleys is deter-
mined to be the skew of the input image. Cross correlation method is based
on applying the projection profile method to multiple vertical segments, and
Connected component clustering method is based on finding the coherency
between connected components of the image and determining their common
skew. We present the overview and comparison of these methods in table 1.1.

Other methods of deskewing may also be used. These include Fourier [SK13],
Wavelet Decomposition, Radon Transform, PCP, one-pass or multi-pass skew
correction, morphology algorithms, etc.

1.2.5 Noise reduction
Image noise is an usually unwanted random variation of brightness or color
information in images, similar to film grain in digital cameras. It is often

12

Figure 1.6: Image deskewing illustrated. Left: original image, right:
deskewed image.

caused by the inevitable physical variance in amount of light recorded by a
scanner or a digital camera.

The presence of noise negatively affects the quality of the image by e.g.
disrupting sharp edges of elements. This causes the process of specific OCR
steps, such as edge detection, to output less accurate data, which can lead
to the failure of character recognition.

Common image processing filters are used [MK11] when performing noise
reduction. These can be categorized as either linear or non-linear, depending
on their linearity relationships.

Linear filtering, such as mean filtering, Gaussian filtering or Wiener filter-
ing, processes each pixel by linearly combining the values of its neighborhood
pixels. This, however, often results in blurred edges and smoother fine de-
tails. As these methods require only a small amount of computations (which
leads to increased speed and simple implementation), they are still widely
used.

Non-linear filtering, on the other hand, renders an output which is not a
linear function of its input. Methods based on non-linear filtering used for de-
noising purposes include filters like median filter, which computes the value of
the resulting pixel from a local median, or non-local means method [BCM05],
which is based on taking a mean value of all pixels in the image weighted
by their similarity to the target pixel. Both methods produce sharper and
clearer images than linear filters at the expense of increased run time.

We provide a comparison of the above mentioned methods in fig. 1.7.

13

Original Gaussian filter

Median filter Non-local means method

Figure 1.7: Comparison of denoising techniques.

1.2.6 Scanning border reduction
Scanned documents often have visible dark borders (marginal noise). These
originate either during scanning (due to the presence of neighboring pages)
or are an unwanted result of the binarization process.

Marginal noise can cause negative effects on the results of OCR, as it may
either be interpreted as a part of character symbols due to its structure, or
it may interfere with other page elements.

Algorithms focusing on marginal noise reduction often perceive it as a
dark connected component of the page. Therefore, they use connected com-
ponent extraction to recognize and further remove these components. An
example of a connected component based scanning border reduction algo-
rithm was presented by Shafait and Breuel [SB09].

14

Figure 1.8: Removal of scanning artifacts, as presented by Packard [Pac96].
Left: original, right: removed scanning borders.

Another slightly different approach was described by Peerawit and Kaw-
trakul [PK04]. It is based on edge density calculations, and the fact that text
areas have generally a much lower density than edge areas. This approach
uses an edge detector to examine the presence of both vertical and horizontal
noise. Its removal is then performed by filters or other heuristic algorithms.

We demonstrate the effects of scanning border reduction in fig. 1.8.

1.3 Text detection process
The goal of text detection is to recognize and classify individual textual
elements of an image document and interpret them as textual contents of
the document.

There exist two main approaches for text detection in OCR:

1. heuristic-based approaches

2. neural-network-based approaches

In this paper, we concentrate on the heuristic-based approach of the OCR
problem, as we use it in our implementation. However, neural network recog-
nition is a promising field of study and also deserves a mention.

Although OCR engines greatly differ in the way their heuristic approaches
work, they generally contain the following steps:

1. Page segmentation — logical and topological division of the page into
multiple smaller segments.

2. Feature extraction — simplification of the extracted elements of the
image to small, informative inputs viable for standalone recognition.

15

3. Character classification.

We analyze these steps in the individual following subsections.

1.3.1 Page segmentation
The task of page segmentation is to extract page sections that contain uniformly-
formatted bodies of characters (e.g. columns or paragraphs) that can be easily
passed to later steps of text recognition.

Page segmentation can be performed in three different ways [SKB08] —
either we start with an image as a whole and recursively divide it into parts
until certain criterion is met (top-down), or we start with individual pixels
and group them according to similarity of their attributes (bottom-up), or
we use a combination of these methods.

In this section, we mostly focus on a method used by the Tesseract en-
gine [Smi09]. For comparison, we also overview several other existing tech-
niques.

Tesseract page segmentation

In this section, we are concerned with a page segmentation technique pro-
posed by Smith [Smi09]. This method is based on detecting tab-stops.

Tab-stops are used in word processors to enable obvious alignment of text,
and are present in documents as margins, column edges, or indentations. All
of them are placed at fixed x-positions, at which edges or centers of text lines
are vertically aligned.

Following are the individual steps of the tab-stop based page segmentation
algorithm (fig. 1.9):

1. Obtain the input image document (fig. 1.9a).

2. Find the connected components of the document image.

3. Select candidate tab-stop components from connected components by
analyzing their alignment.

4. Group the discovered candidate tab-stop components into vertical lines
(fig. 1.9b).

5. Create tab-lines by examining the alignment of the vertical lines.

6. Create column partitions from the connected components of the layout
analysis so they do not cross any tab-lines and are of the same type
(e.g. text, image, form) (fig. 1.9c).

16

7. Merge column partitions into columns (fig. 1.9d).

8. Based on the positioning of columns and heuristics (different types of
fonts, line spacing), merge or divide existing column partitions into
segmented blocks. (fig. 1.9e).

This method is implemented and used by the Tesseract engine [Pac] with
the help of the Leptonica library [Blo01]. It claims to yield satisfactory
results, given the input document is properly preprocessed.

Other page segmentation techniques

In this section, we briefly overview the principles of the most popular page
segmentation techniques, already described by Shafait, Keysers, and Breuel
[SKB08], such as RXYC algorithm, Smearing algorithm, Voronoi diagram
based algorithm, Docstrum algorithm, Whitespace analysis and Contrained
text-line detection. Their core ideas greatly differ and therefore, their be-
haviours vary depending on the input.

For example, RXYC algorithm perceives the input page as a tree and
recursively splits its nodes, dividing the page into smaller segments. Smearing
algorithm, on the other hand, is a bottom-up approach based on linking black
areas together. Voronoi and Docstrum algorithms are both based on the
extraction of connected components. However, Voronoi algorithm determines
the individual page segments from the edges of these components, while
the Docstrum algorithm focuses on identifying fonts and styles and tries to
heuristically determine the segments. Whitespace analysis and Constrained
text-line detection both fixate on detecting as much of the white background
as possible and removing it to uncover the existing characters. They differ
in the way they detect the background.

The most accurate option for segmentation of diverse text documents was
determined to probably be Constrained text-line detection, as it has pro-
vided the best results on a heterogeneous collection of documents. However,
Docstrum and Voronoi algorithms both produced satisfactory results when
presented with homogeneous documents. Voronoi algorithm also seemed to
work well on documents with non-Manhattan layout.

Other approaches did not render as accurate results in general cases.
However, they are still used for specific purposes, e.g. Smearing algorithm
for vehicle plate recognition.

17

(a) The original input
image.

(b) Connected compo-
nents grouped into verti-
cal lines. Upon close in-
spection, we can see that
each page column con-
tains multiple connected
components.

(c) Column partitions
created from the con-
nected components and
individual tab-lines.

(d) Column partitions
merged into columns.
Upon close inspection,
we can see that the rec-
ognized columns are al-
most identical to the ac-
tual page columns.

(e) The final segmented
blocks.

Figure 1.9: The process of Tesseract table recognition [Smi09].

18

1.3.2 Feature extraction
Upon extracting elements by page segmentation, we are left with an unnec-
essary amount of information. Trying to run a text recognition algorithm on
all of it would be significantly time consuming. Additionally, as the character
recognition is based on specific features for each symbol, the extra informa-
tion might not suit the character features of the correct candidate. The
candidate might get undesirably discarded, which might result in decreased
accuracy.

For these reasons, a set of features is extracted for each element that
distinguishes it from other element classes while keeping characteristic dif-
ferences. The set of features that represents each characters needs to be
picked carefully, so that the features define the shape of a character precisely
a uniquely, but are also the smallest set possible to prevent increased memory
usage and time complexity.

There exist three methods for performing feature extraction, described by
both Chaudhuri et al. [Cha+17] and Kumar and Bhatia [KB14]. They differ
in the ways the features are derived from the character, in reconstructability
(whether the image can be reconstructed to its previous version solely from
its features), in invariance to transformations and many more. We describe
these methods in the following list:

• Global transformation and series expansion
These include methods like Fourier or Gabor transform, Fourier De-
scriptor, Wavelets, Moments and Karhunen-Loeve expansion, and are
based on the representation of continuous signals by a linear combi-
nation of simpler functions. The coefficients of the linear combina-
tion provide a compact encoding known as transformation or series
expansion. Therefore, deformations like translation and rotations are
invariant under these methods. The downside of these approaches is
an increased time complexity, as these methods require a number of
non-trivial computations.

• Statistical representation
Unlike transforms, these features are based on the statistical distribu-
tion of points in an element. Their extraction is fast and they also
usually take care of different font and style variations. Methods based
on this representation are e.g. zoning (where the frame containing the
character is split into different zones, which are then analyzed for den-
sities of points and strokes), crossings and distances (crossings — the
number of crossings of a character along vertical and horizontal lines;

19

Zoning Crossing and distances

Figure 1.10: Example of two feature extraction techniques based on statistical
representation (images by Luc [Luc18]).

Figure 1.11: Example of several geometrical and topological features, as
presented by Abdul-Rahaim [AR15].

distances — the distances of character pixels from frame boundaries),
and others, like projections, characteristic loci etc. We display a few of
these techniques in fig. 1.10.
The downside of this approach is the invariance to transforms — if a
character is only slightly skewed, the feature extraction results greatly
differ.

• Geometrical and topological representation
These features are based on the geometrical and topological properties
of the individual elements, like basic line types that form a character
skeleton, or features of the character contour like extreme points, max-
ima, minima, cross points, line ends, isolated dots, different types of
strokes and many more. We display a few of them in fig. 1.11.
They highly tolerate various distortions and style variations, and their
output can be assigned into a feature extraction vector.

1.3.3 Character classification
Character classification is the process of obtaining a digital form of a char-
acter from its features. To classify the characters, OCR engines widely use

20

the methodologies of pattern recognition, which assign an unknown sample
into one of its predefined classes. These approaches are not necessarily inde-
pendent of each other and OCR engines frequently combine subsets of them
to achieve the most accurate results.

Classification is often approached by one of the following types of tech-
niques:

• Template matching

• Statistical techniques

• Techniques inspired by machine learning
In this section, we discuss their core principles.
The first mentioned approach to classification is by

template matching [Mud+07], visualized in fig. 1.12. It is based on the exis-
tence of a database of predefined templates — multiple bitmaps containing
characters of the alphabet. Improved version of this method have extended
this database to include numbers and special characters. Once a character
is detected, it is passed to the algorithm and for every existing template, its
similarity ratio is calculated. The template with the greatest ratio is then
assumed to be the recognized character. This method has various imple-
mentations depending on how the ratio is calculated — for example, cross
correlation, normalized correlation or euclidean formula can be used.

Although the implementation of this method is very simple, even small
disfigurements and noise can greatly affect its efficiency. Also, in case of tem-
plate matching, a feature extraction would be unnecessary as all templates
must be created manually.

The second approach mentioned was by using statistical techniques [DM11],
like Bayes classifier, Hidden Markov Modeling or Nearest Neighbor. These
methods are based on feature extraction for each character. To classify an
unknown character, its extracted features are compared to the features of
training data with the help of statistical decision functions. We show some
of the possible extracted features for these methods in fig. 1.13.

The problem with these methods is that they have no information about
whole-part relations. Moreover, they greatly rely on the correctness and
sufficiency of training data.

The last approach discussed are techniques inspired by
machine learning [Seb02]. These are based on neural networks, and their
ability to “learn” and, over time, build a model of training data that is
further used for categorizing their input. There is no requirement for manual
categorization of individual data features, as the neural networks are capable
of performing the feature extraction from training data on their own.

21

Figure 1.12: Examples of template matching technique as described by Ning
[Nin93].

In the following list, we present an overview of some of the most popular
machine learning algorithms, as described by Bhavsar and Ganatra [BG12]:

• KNN classification algorithm — the algorithm chooses K objects from
the training data that are the most similar to the input image. After
that, the image is assigned to the class most common among its K
nearest neighbors, as shown in fig. 1.14.

• Support vector machine algorithm — given a set of data, each marked
as belonging to one of two categories, this algorithm builds a model
based on complex mathematical functions that is capable of assigning
a newly received data into one of the categories.

• Decision tree — builds a tree from top to bottom, with each node
representing a characteristics feature and its children the values of the
feature (e.g. number of horizontal lines).

Other machine learning algorithms are e.g. Naive Bayes [NJ02], Logistic
Regression [NJ02], Random Forest [Seg04], etc.

1.4 Available OCR software
OCR engines greatly differ not only in the accuracy of their recognition, but
also in the features that they provide. Although OCR engines focusing only

22

Existence and number Number of Number of
of end points vertical lines horizontal lines

Figure 1.13: A few of the possible extracted features in statistical tech-
niques [VK15].

Name Year Code Languages Layout analysis Neural nets

Tesseract 1985 C++,
C

100+ • •

Ocrad 2003 C++ Latin
alphabet

• –

GOCR 2000 C 20+ – –
CuneiForm 1996 C,

C++
28 – –

OCRopus 2007 Python Latin
script

– •

Table 1.2: Overview of available OCR software

on text recognition exist, most of the modern software also contains recogni-
tion of other document elements, like images, forms, tables and many more.
Further differences include the presence of preprocessing options, support for
various file extensions, recognition of different fonts, including handwritten
documents, etc. Furthermore, there exist OCR engines specialized in process-
ing only specific types of images, such as automatic number plate recognition
engines or ticket validation engines.

In table 1.2, we overview the most popular and widely used free OCR
engines. Commercial software used for the purposes of OCR, such as ABBYY
FineReader [ABBb], ReadIris [Gro] and OmniPage [Com], also deserves a
mention. However, although some of these engines produce overall better
results than the free software, they are unusable for the purposes of this
thesis.

23

Figure 1.14: KNN algorithm: with k = 3, the algorithm assigns the new
element to class B; with k = 7 to class A.

1.4.1 Tesseract
Originally developed by Hewlett-Packard Company around 1990 [Pac], Tesser-
act is one of the most robust and accurate open-source OCR engines. In
the beginning, Tesseract could only accept TIFF images containing simple
one-column text in English language. Since then, it has undergone a lot of
improvements and added many features. As of today, Tesseract supports
the processing of multi-columned documents, claims to support over 100
languages (including right-to-left text such as Arabic or Hebrew), works on
different input and output image formats (with the help of the Leptonica
library [Blo01]) and is available for Windows, Linux and even Mac OS. In its
latest version (4.0.0), Tesseract also added a new neural network (specifically
a LSTM network) focused on line recognition.

Tesseract does not have a GUI and works as a command line program.
It is used mostly for development purposes and provides an OCR engine
(libtesseract) that gives developers a chance to create their own applications
using tesseract API. Also, Tesseract contains no preprocessing algorithms. It
advises users to preprocess the input images themselves [Pac96].

Based on our observation, Tesseract provides the most features and in
general cases, provides the best accuracy of element recognition among all
the other open-source OCR engines. Moreover, we found its documentation,
information about individual functions and even examples of use cases well-
organized and easy to understand.

This is the reason why we use the recognition and features of this engine

24

in our implementation.

Tesseract character recognition

In this section, we present an overview of the way Tesseract detects symbols
and so-called textlines, which are logical rows consisting of character sym-
bols. Thoroughly analyzed by Smith [Smi07], this algorithm has the following
steps:

1. Page segmentation
Already discussed in section 1.3.1, the Tesseract page segmentation
algorithm is first performed to provide us with text regions of roughly
uniform text size.

2. Line finding
Upon obtaining text regions, heuristics like height filter and median
filter are used to estimate the height of characters and remove noise,
punctuation and other obstacles. The filtered so-called blobs are then
merged into lines by their y-coordinate and position, with focus on
slight possible skew inaccuracies.
Once the blobs are assigned to lines, they are merged based on heuristic
criteria.

3. Baseline fitting
This steps provides a baseline for each line, as shown in fig. 1.15. These
baselines are fitted using a quadratic spline, as curved baselines can also
be present.

4. Character chopping
Upon determining lines, Tesseract tries to chop the existing words into
characters. This is done by a determined constant pitch when handling
fixed-pitch text. In case of non-fixed-pitch text (fig. 1.16), Tesseract
tries to determine the size of a character by measuring the gaps between
its baseline and upper boundary. However, due to possible inaccurate
assumptions, the decision can still be changed after word recognition.

5. Word recognition in case of non-fixed-pitch text
This step proceeds to further chop blobs that might have produced
unsatisfactory results in the last step. It does so by using various
heuristics, and although its results are satisfactory, this process often

25

Figure 1.15: An example of a fitted baseline (dark blue) along with helper
lines used for baseline fitting and later, character chopping [Smi07].

Figure 1.16: Non-fixed pitch text
spacing issues [Smi07]. Figure 1.17: Left: original letter

h; middle: broken character; right:
merging of multiple smaller fea-
tures [Smi07].

results in higher number of chops than required. Although an associator
that already has knowledge of existing characters tries to resolve this
issue, the occurrence of slight mistakes can not be excluded.

6. Character classification
Earliest versions of Tesseract used a static character classifier based
on topological features. However, this approach was not robust to
damaged characters in real-life images. This was solved by extracting
multiple small features of fixed length from the unknown and merging
them to match more robust features of a character, as shown in fig. 1.17.
Classification itself is then performed by matching the characters to a
training data set and outputting the character that has the greatest
number of similar features (where the “greatest number” computation
is based on heuristics).

26

2. Layout recognition for
tabular data
Layout recognition is the process of extracting individual image elements and
determining their logical relations. When applied to tabular data, its goal is
to determine the presence and content of image tables.

The extraction of table structures from a page poses various difficulties.
Complications mostly arise when the input document does not correspond
to the typical one-column, graphics-free layout. This may cause the spaces
between individual page columns to be interpreted as table column spaces,
which may lead to a complete rejection of any tables present in page columns.
Additionally, complex layouts often cause difficulties when determining the
reading order of the document. Therefore, in most cases, a layout analysis
first needs to performed.

2.1 Layout analysis
Layout analysis is the process of identifying and categorizing image document
elements, such as figures, tables, forms, math symbols, headers, footers or
simple paragraph text (geometric layout analysis) and semantically labeling
them according to their logical roles (logical layout analysis).

In the previous chapter, we already covered the basics of geometric layout
analysis, which is the same process as page segmentation (section 1.3.1). The
output of this process is a data structure containing information about the
detected elements. A logical layout analysis is then applied on this output.

Logical layout analysis is used to determine the reading order of the image
document. It adopts the idea of labels, which provide an information about
the semantic order and type of individual document elements. For example,
a label might be just a number indicating the reading order (as presented
in fig. 2.2), or it could contain more complex information, such as “table
header”, “page footer”, “image caption”, etc.

The result of logical layout analysis is therefore often in a form of map-
ping of each element to its corresponding label. However, the determination
of correct labels is sometimes hard even for human perception, as presented
in fig. 2.1. With various differently aligned columns with different font sizes,
or with image captions appearing on different sides of the image in every
document, people often determine which elements belong together only ac-
cording to their intuition (e.g. when reading about a recent earthquake,

27

Figure 2.1: Reading order problems. Determination of correct labels is some-
times hard even for human perception.

caption saying “Rescued puppy” probably belongs to the picture of a dog
instead of a flooded beach, even though it can be placed right in the middle
of these two images).

Computers have no notion of such things. This is often a cause of many
errors and a reason why a lot of OCR engines claim to work on only docu-
ments with specified layouts, e.g. single-column, non-graphical, etc.

Various heuristics are used for the determination of labels [DS14]. In the
following list, we overview several of the most widely used:

Templates The most simple and basic approach is the technique of the al-
ready mentioned templates. It is based on a limited number of prede-
fined document layouts (templates), which already contain the informa-
tion about the structure of individual elements. An input document is
then matched to these layouts. In the OCR engines that focus solely on
processing a single type of documents (such as ticket validation, recipe
or passport recognition, recognition of forms filled out by patients in
hospitals), this process yields almost perfect results, even though it is

28

Figure 2.2: An example of layout analysis [Had+04].

a naive approach.

Rule-based approaches A human reader often determines the logical succes-
sion of document elements by font settings and locations of the ele-
ments. Rule-based approaches take advantage of this fact and create
heuristic “rules” that determine the type of the element. For example,
a rule for a page header could be “has the smallest y-axis value, has
font size above 22pt, is bold, and is the only element on its line”.

Syntactic methods These methods present the structure used for element la-
beling in a form of a set of formal (usually context free) grammars.
These grammars contain rules for aggregating pixels into more struc-
tured entities until they form logical objects. Parsers for a syntactic
analysis are automatically obtained from these grammars. They are
then used to perform the actual labeling of the detected elements.

Machine learning Already mentioned in this thesis, a non-heuristic approach

29

to logical layout analysis is the use of neural networks. Given enough
information and time for training, the networks are able to determine
the labeling on their own.

There exist various techniques of machine learning, distinguished by the
way the neural networks are trained. For example, a neural network
can be given a set of rules and input images, which leads the learning
process to produce results similar to human observation. Also, it can
be solely reliant on raw physical data and itself.

Worth mentioning are also techniques like Blackboard system, Description
language or methods based on Hidden Markov Models [Cat+98].

Layout analysis is a crucial part of almost every OCR engine. If either
geometric or logical layout analysis fails, the input of the recognition en-
gine might contain corrupted data. This might lead to a significantly lower
accuracy of the recognition process.

Table recognition utilizes the output of layout analysis and extracts table
related information, such as table cells, headers and footers, from it. Other
elements are discarded (e.g. floating text, graphics), as they are considered
worthless for the purposes of table recognition.

2.2 Table recognition
The goal of table recognition is to determine if a table even is present on
a page, and if yes, where and what its content is. This process is often di-
vided into two parts — table detection and table decomposition, with table
detection determining the presence and placement of a table, and table de-
composition analyzing its content and producing a meaningful structure of
its representation. In our thesis, we approach the table recognition problem
as a whole, as usually, both parts benefit from reusing each others outputs.

Although obtaining the elements of a simple m×n grid is an easy task
achieved by a simple line detection algorithm (e.g. Hough transform [SKK16]),
the absence of cell borders requires more complicated heuristics. Moreover,
tables that contain cells of different sizes, various numbers of cells in differ-
ent rows, complicated headers or footers, multi-line cells and many more also
require more complex solutions. We present a few of these possible obstacles
in fig. 2.3.

In this section, we overview some of the existing table recognition algo-
rithms. For the purposes of this thesis, we specifically focus on the table
recognition implementation of the Tesseract engine.

30

Figure 2.3: Several common problems occurring during table recognition:
missing horizontal and vertical lines; missing information in cells; multi-line
cells in the first column and header row; different alignment of header and
content cells.

2.2.1 Tesseract table recognition
The Tesseract engine has been originally used for character detection. Over
the years, many features have been added, including a TableFind algorithm
for table detection and recognition.

Shafait and Smith [SS10] based the TableFind recognition algorithm on
already existing Tesseract’s features, including layout analysis (described
in section 1.3.1) and character detection (section 1.4.1). Following are the
individual steps of the algorithm, along with their visualization in fig. 2.4:

1. Layout analysis
First, layout analysis is performed by tab-stop detection (section 1.3.1)
included in the Tesseract library. The results of this step include not
only a list of segmented blocks, but also the column layout (fig. 2.4a)
and column partitions (sequences of connected components of the same
type — like text, image — that do not cross any tab-line, presented
in fig. 2.4b).

2. Identification of table partitions
With the page layout available, TableFind tries to identify text column
partitions that could possibly belong to a table — table partitions. This
process is based on heuristics, by identifying column partitions that
contain at least one large gap between their connected components,
consist of only one word, or overlap with other partitions along the
y-axis.
This stage of the algorithm is performed quite aggressively, so although
this process returns the desired table partitions, it also produces a lot
of false positives, such as considering section headings, page headers,

31

footers, equations, etc., as tables. Most of these unwanted partitions
are then removed by a heuristic filter. However, as presented in fig. 2.4c,
the presence of minor mistakes is not completely eliminated.

3. Detection of table columns

As shown in fig. 2.4d, vertically aligned partitions are grouped into a
single column. Columns with only one partition are then removed.

4. Table construction

The goal of table construction is to group table columns into a table.
Here, TableFind assumes that flowing text does not share space with
a table along the y-axis. Therefore, boundaries of table columns are
expanded along the y-axis to the borders of the page columns that
contain them. In result, bounding boxes are created for whole tables.
Tables that span across multiple page columns are detected only if a
table column exists that belongs to all of these page columns.

5. Removal of false positives

Because of relatively greedy heuristic used in the previous step, non-
tabular content may be falsely identified in a table. Therefore, TableFind
removes tables with only one column. This produces the final result
(fig. 2.4e).

The algorithm has been proved to have a 86% precision. The biggest
problems have shown to be full-page tables, often resulting in over or under-
segmentation, partial detection or detection of false positives [SS10].

Another problem with TableFind is that currently, there exists no simple
command that a user could run to see the output of this algorithm. To
actually detect a table, a user must first write its own program that uses the
functions of the added Tesseract table recognition files. Then, he needs to
process the data the library returns and output them in a meaningful format,
which requires a non-trivial knowledge of the Tesseract implementation.

We further present the results of this algorithm in section 4.5, where we
compare them to our implementation.

2.2.2 Other existing approaches
In addition to the TableFind algorithm, there exist various heuristic ap-
proaches for table detection. In this section, we overview several of them,

32

(a) Column layout. (b) Column partitions. (c) Candidate table par-
titions.

(d) Table columns. (e) Detected table re-
gions.

Figure 2.4: The process of Tesseract table recognition [SS10].

33

including their advantages and disadvantages. Specifically, we focus on T-
Recs table recognition system [KD98], Medium-independent table detec-
tion [Hu+99], pdf2table project [YKM05] and an approach based on a hier-
archical MXY tree page representation [Ces+02]. However, multiple other
approaches also exist. Worth mentioning is also, for example, sparse line de-
tection [LMG08], which already uses principles of machine learning. Some of
the other methods are briefly reviewed by Jahan and Ragel [JR14] or Bansal,
Harit, and Roy [BHR14].

One of the first approaches to table recognition was presented by the
T-recs table recognition system [KD98], which is based on a bottom-up
approach of clustering word bounding boxes and building a “segmentation
graph”. This segments the page into different regions, which are then eval-
uated by certain heuristic criteria for tables. Although widely popular in
the 90s, this technique has several setbacks. T-Recs is controlled by a set of
numerical parameters, which need to be adjusted manually by the user ac-
cording to the layout of the page. Moreover, it yields unsatisfactory results
on multi-column documents.

Another algorithm was described by Hu et al. [Hu+99]. In single-column
documents, a page can be easily segmented into individual textlines. The
table detection problem is then perceived as an optimization problem, where
the start and end textlines that belong to a table are identified by optimiz-
ing some quality function. However, this approach fails on multi-column
documents, and on documents that contain more than one table.

Cesarini et al. [Ces+02] describe an approach based on hierarchical MXY-
tree-like representation. The presence of a table is determined by searching
the tree for parallel lines that contain white spaces, and other perpendicular
lines between them, which indicate cell borders. Located tables are merged
on the basis of proximity and similarity criteria. However, this approach fails
if no lines in tables are present.

Method presented by the pdf2table project [YKM05] is based on assigning
each text object of the page its positional attributes. By the evaluation of
these attributes, text objects are then merged into single-lines (lines with
only one text object), multi-lines (lines with more than one text object) and
multi-line blocks (multiple multi-lines merged together). The table detection
algorithm then merges the multi-line blocks that may belong to the same
table, with the help of a heuristic threshold that determines the greatest
number of single-line objects between two multi-line blocks possible. This
method also assumes the input to be a single-column document. Despite
of that, the user can manually adjust the information about the number of
columns, which yields more accurate results.

34

3. Table recognition
implementation
This chapter gives us an overview of procedures and tools used to create a
table recognition software.

The project is written in C++ and compilable using CMake (tested on
MSVC 2017 and g++ 7.4). We chose CMake for its cross-platform support
and its ability to work with external dependencies (e.g. Tesseract, Lepton-
ica).

The implementation is divided into two main parts — preprocessing,
which prepares the input images for recognition, and tabular OCR, which
applies our heuristic algorithm for table recognition. Both parts use the fea-
tures of the Leptonica library and tabular OCR utilizes the character and
textline recognition of the Tesseract engine. The image processing in the
program is schematized in fig. 3.1.

3.1 Preprocessing
The preprocessing part is basically a wrapper around the Leptonica library.
Based on the input arguments of our software, the preprocessor calls relevant
Leptonica’s methods with specified parameters. Not all of the Leptonica’s
preprocessing features are currently supported in our implementation. How-
ever, it is a simple task to add the rest of them. Currently supported methods
are the following:

• Contrast enhancement, specifically histogram equalization (see section 1.2.2),
a method of non-linear stretching called gamma correction [Rah+16],
and a simple method of linear stretching based on an arctangent func-
tion.

• Greyscale conversion, specifically the averaging technique and luma
correction technique (both mentioned in section 1.2.3). Supported are
also two techniques from the Leptonica library based on the selection of
either the maximal or minimal value from the three RGB components.

• Binarization, specifically the support of Otsu and Sauvola binarization
techniques (see section 1.2.3).

• Deskewing, which does not contain any options. This is due to the fact
that Leptonica contains only one deskewing function, which is based on

35

Figure 3.1: Program flow diagram.

36

the calculation of projection profiles (see section 1.2.4) with the help of
Hough transform [Blo].

The initial idea for preprocessing was to provide more complex functions
which are included in the OpenCV library [IC00]. However, this was not the
goal of the thesis. Therefore, the preprocessing part stayed very simple and
mostly demonstrative and the user is still advised to preprocess the images
manually.

3.2 Tabular OCR
After the preprocessing part is done, the preprocessed image is passed to
tabular OCR for table recognition. The individual steps of our heuristic table
recognition algorithm are executed in the main process_image function.

In this section, we analyze this algorithm step-by-step and overview the
functions used. During the process, we use the concept of textlines — rows
of the image document that contain recognized character symbols.

Our algorithm is based on the already mentioned Tesseract symbol and
textline recognition (see section 1.4.1) and moreover on whitespace detection.
Upon detecting whitespaces between individual symbols, we try to heuris-
tically estimate the whitespaces between words and, furthermore, columns,
for each textline of the image. Once we have all the textlines separated into
columns, we try to merge consecutive lines with similar column layout into
a table.

Following are the individual steps of the algorithm, also visualized in fig. 3.5:

1. Textline initialization, which includes the Tesseract recognition pro-
cess, and from its output obtains all the required information about
individual textlines.

2. Deletion of unnecessary lines, which removes textlines with no valuable
information (e.g. textlines with no symbols, false positives).

3. Column detection, which determines the column segmentation for each
existing textline.

4. Column merge into tables, which merges the existing textlines into ta-
bles based on their column layout.

5. Output determination, which processes the information in each recog-
nized table and outputs it in a meaningful structure.

37

3.2.1 Textline initialization

The whole process begins with the detection of individual characters and
their merge into textlines (fig. 3.5a).

For the purposes of the character recognition, we use the Tesseract engine.
We initialize the Tesseract API without the use of neural networks and obtain
both lines and symbols. We decided to not use the neural networks due to
the fact that they did not produce as accurate results as simple heuristic
recognition at the time of testing. However, their performance may increase
over the time. Therefore, this setting might need to be manually changed in
the future.

After this step, we do not use the features of the Tesseract engine any-
more, and rely solely on our heuristic functions.

The symbols and lines obtained from Tesseract are represented as simple
boxes, with the symbols also containing textual information. To gain a more
detailed information about individual textlines, we therefore iterate over all
the lines and symbols and assign symbols into their lines. The result of this
function is therefore a list of all textlines containing the information about
their individual symbols, like positioning and their actual character value in
UTF8.

This function runs in O(m · n2). The initial idea for this implementation
was to firstly sort both the symbols and lines by their y coordinates (which
is simply O(log n) and O(log m)). The assignment of individual symbols into
their lines would then be performed by simply iterating symbols and jumping
to another line once the current symbol does not fit in the current line, with
the iteration therefore having a O(m·n) time complexity. This would present
a significant execution time improvement.

However, a problem occurred with this approach. By default, Tesseract’s
recognition creates a lot of false positives, including noise recognized as dots,
white spaces, and, most importantly, horizontal and vertical lines, like footer
or header separators, underlinings of words, table borders, etc. These false
positives disrupt the reading order of the document, which is a factor that
this approach relies on.

Although we tried to remove these false positives (for example, removal
of empty characters was trivial and required only checking for symbols that
contain no textual information), we found no criterion that would suffice all
of these obstacles. Therefore, in our current approach, we chose to sacrifice
time complexity in favor of accuracy.

38

Empty lines Table textline

Figure 3.2: Types of unnecessary lines that Tesseract might have recognized
as textlines. We remove these lines by heuristic algorithms.

3.2.2 Deletion of unnecessary lines
As already mentioned, Tesseract’s textline recognition algorithm may include
false positives. In this step, we delete all unnecessary lines (fig. 3.5b), specif-
ically:

• Empty lines
Like horizontal and vertical line segments, borders or other lines that
contain no UTF8 symbols are of no use and are therefore removed from
the textline list.

• Table textlines
Table textlines are parts of the image that are bordered by visible
lines, which usually represent either a table, form or even a graphics
image. Tesseract often recognizes these parts as single textlines. These
textlines therefore contain multiple other textlines, and are significantly
greater in height. We remove them by a simple heuristic based on the
comparison of their height and the font of their symbols.

We present both cases of unnecessary lines in fig. 3.2.
Once this step of the algorithm is done, we are left only with lines that

contain symbols and can be a part of the table.

3.2.3 Column detection
Upon obtaining individual textlines, we try to determine their segmentation
into columns by analyzing the positions of symbols they contain. This is
done for each line individually. Symbols are merged into words and then into
columns (fig. 3.5c). Although we could simply merge symbols into columns

39

and ignore the whole processing of words, this would leave us with no infor-
mation about word spaces and would therefore lead to merging of text.

We start this process by obtaining all the spaces between individual sym-
bols and sorting them by size. The resulting list of spaces is then used to
determine word space size using a multiplication factor.

Multiplication factor is used to decide whether an element of the sorted
space sizes list differs enough from its predecessor to be a word space. From
the results of the detection of spaces between individual symbols, we have
observed that the greater the current space is, the less the multiplication
factor should be. Based on this, we have tried many different values and
curves for the determination of the multiplication factor. First observations
from these attempts led to the estimation that the best curve to use would
be logarithmic. However, the current implementation seemed to worked well
enough and was therefore left as it is.

The determination of the column whitespace was based on a similar idea
with slightly altered parameters.

Upon determining the column and word whitespaces, we then merge sym-
bols by these whitespaces into words and columns respectively, as shown
in fig. 3.3.

The determination of whitespaces was probably the most difficult part
of the algorithm. There have been multiple different ideas for the imple-
mentation. The one that has been preferred most of the time was the idea
of separating textlines according to their font sizes. The ones with similar
fonts were assigned to the same font category, and the whitespace was then
determined for the whole category. The word whitespace recognition worked
slightly better with this approach. However, the determination of columns
had a higher chance of failure, as the sizes of column spaces greatly differ in
each line. Therefore, the current simpler approach was chosen.

Another initial idea was to simply determine the size of the column space
by a constant, e.g. word_whitespace ∗ constant = column_whitespace.
Surprisingly, the results of this approach were comparable to those of the
current implementation. However, it was prone to errors, especially when
the input image contained small fonts or full-page tables, and had no room
for improvement in contrast to the current approach.

3.2.4 Column merge into tables
Once we have the information about columns for each textline, we can start
searching for tables. The table detection algorithm is performed by a simple
O(n) algorithm by iterating the textlines from top to bottom and merging
two consecutive textlines with similar column layout.

40

The original image

Merged into words

Merged into columns

Figure 3.3: The process of merging symbols of a textline.

The determination of whether two textlines have similar column layout
is performed according to algorithm 1.

From the recognized tables represented by textlines, we create cells by
simply overlaying rows and columns and saving their common areas. The
problem arises with the existence of multi-line rows, that is, rows that often
span over multiple textlines. In our implementation, a simple constant-based
algorithm is added to recognize at least some of them and therefore merge
multiple textlines into one row.

3.2.5 Output determination
Once we obtain the individual cells, the only thing left is to create a user-
friendly representation of the recognized data. Here, the user has two options
according to the parameter he sets in the command line environment.

The first option is a simple image output. Recognized cells are bordered
by colored boxes (fig. 3.5d) in the original input image and saved in a PNG
file.

The other option is a JSON structure of the recognized cells, which
also contains text within each cell. The JSON structure is demonstrated
in fig. 3.4.

By default, both output options are selected and therefore two files are
saved in the newly created results directory next to the executable.

41

Algorithm 1 Are textlines in same table
Require: first_col ▷ represents the current place we are when iterating over columns of first line

second_col ▷ represents the current place we are when iterating over columns of second line
while true do

if either first_col or second_col is at the end of their line then
if at least one pair of columns was found that should be merged then

merge
else

create a table if there are any merged lines
end if
break

end if
if current columns do not overlap then

if first_col has lower x-axis than second_col then
first_col = first_col + 1

else
second_col = second_col + 1

end if
continue

end if
if found columns do not overlap with other existing columns then

save the position of overlapping columns for future merging
else

create a table if there are any merged lines
end if
first_col = first_col + 1
second_col = second_col + 1

end while

42

{ " a l l _ t a b l e s " : {
" c o l s " : number o f columns ,
" rows " : number o f rows ,
" tab l e_repre s " : {

" h " : he ight o f tab le ,
"w" : width o f tab le ,
" x " : the x−co ord inate where the t a b l e s t a r t s ,
" y " : the y−co ord inate where the t a b l e s t a r t s

} ,
" c e l l s " : [

{
" box " : {

" h " : he ight o f cur r ent c e l l ,
"w" : width o f cur r ent c e l l ,
" x " : the x−co ord inate where the c e l l s t a r t s ,
" y " : they y−co ord inate where the c e l l s s t a r t s

} ,
" cols_no " : in which column o f the t a b l e the c e l l i s ,
" rows_no " : in which row o f the t a b l e the c e l l i s ,
" t ex t " : the UTF8 text d i sp l ayed in the c e l l
} ,
. . .
o ther c e l l s

]
}
. . .
o ther t a b l e s

}

Figure 3.4: A JSON structure used for the representation of tables recognized
from an input image.

43

(a) Recognized textlines (blue) and
their symbols (red) by the Tesser-
act recognition. These are merged
so the symbols are assigned to their
textlines.

(b) Unnecessary lines recognized
from the image. These are removed
during the algorithm.

(c) The results of segmentation of
each textline into columns.

(d) Result of our algorithm: individ-
ual bordered cells that represent ta-
bles.

Figure 3.5: The process of table recognition.
44

4. Results
In this chapter, we analyze the performance of our software and compare its
results to those of the Tesseract TableFind algorithm. For these purposes,
we use our own testing set of around 140 images containing one or more
tables. We deliberately chose images that are not scanned or disrupted in
any way, as this might negatively affect the results of Tesseract recognition,
which both our implementation and Tesseract’s TableFind rely on.

4.1 Performance measurements
As already mentioned, Tesseract is an engine heavy on resources. Its recog-
nition and its functions therefore take a great amount of time, which is also
the reason why the time complexity of our implementation is significantly
higher.

For comparison, when we run our software on a single image (1654×2339,
of size 675 KB), the absolute time of recognition is 11.6 seconds. Tesseract’s
API initialization takes 9.6 seconds of this time (with its recognize function
performing the character and line recognition in 9.2 seconds), and our func-
tions for saving results (which use the calls of Leptonica) take 0.5 seconds.
About 1.4 seconds is consumed by our init_textlines function, which also
uses the calls of the Tesseract API. However, this function needs to iterate
over all symbols and textlines multiple times, which is the reason for the
higher time complexity. The time complexity of the other functions (which
is below 0.1 seconds) is therefore negligible.

We ran a performance test on all our images to provide a better concept
of the amount of time that our software spends on each function. We did not
add any preprocessing, as it is a part of the Leptonica library and therefore
does not affect the performance of entirely our functions. Furthermore, upon
running a few tests on the preprocessor functions, they seemed to barely
affect the performance.

The results were as follows: the calls of Tesseract API took 65.94% of
the overall time, our textline initialization 30.26%, result saving 2.9% and
the other functions solely 0.9%. Despite these results, we have observed that
time complexity of the textline initialization does not exceed 20% in most
cases. However, a few images, usually those containing full-page tables, spent
even more time analyzing textlines than with the actual recognition, which
significantly affected the overall results.

In the following sections, we discuss the options of reducing this time

45

complexity in favor of the accuracy of results. This includes the discussion
about the effects of the quality of an image on the results and time complexity,
as well as the effects of the amount of text in an image on the time complexity.

4.2 Effects of the amount of text
In this section, we provide an overview of the effects of the number of recog-
nized symbols and textlines on the execution time of our algorithm. As we al-
ready mentioned in section 3.2.1, the time complexity of our init_textlines
function is O(m ∗ n2) (where m represents the amount of textlines and n the
amount of symbols). Therefore, the greater the amount of textlines and
symbols, the more time this function will consume. However, the time com-
plexity of the Tesseract recognition also greatly depends on the amount of
textlines and symbols it eventually finds. We tested these dependencies on
a subset of 18 of the already mentioned images. We presented all of them in
various (about 15) different resolutions, ranging from 25 to 800 dpi, to our
recognition system. This gave us a reasonably diverse set of different images.
We used the results from the tests to present the mentioned dependencies in
figs. 4.1 to 4.6.

By observing the testing results and utilizing the above mentioned graphs,
we may conclude the following statements:

• For our table detection algorithm to detect a table, Tesseract needs to
recognize above 800 symbols and 40 textlines.
If our algorithm is presented with either smaller amount of symbols or
textlines, then either the Tesseract recognition system failed to recog-
nize most of the page content, or the page has so little text information
that we can assume it does not contain a table. Our table detection
algorithm is therefore presumed to fail.

• The time of the execution of our init_textlines function grows with
the number of symbols and textlines.
As already expected, the time complexity of this function grows ex-
ponentially in both the textline and symbol case. We present this
dependency in fig. 4.1 and fig. 4.4.

• The time of the Tesseract recognition greatly depends on the number of
symbols, not so much on textlines.
The recognition of symbols and textlines is performed concurrently (sec-
tion 1.4.1). However, what Tesseract focuses on during this process

46

is the merging and recognition of the individual characters, while the
textlines are only a side product. Therefore, the dependencies in graph fig. 4.5
could be completely different and the graph does not contain any mean-
ingful information.

4.3 Effects of image resolution
The quality of the input image greatly affects Tesseract’s recognition system
and therefore our recognition system. Tesseract advises its users to use at
least 300 dpi images, as it claims that lower resolution images are more
highly likely to fail during recognition. In this section, we tested the effects
of image resolution on both the speed of the algorithm (presented in figs. 4.7
to 4.9) and the accuracy of Tesseract (by which we understand the number
of recognized symbols and textlines, as Tesseract outputs barely any false
positives, presented in figs. 4.10 and 4.11). For these purposes, we used the
same different resolution images as in section 4.2.

4.3.1 Effects on time complexity

From the observation of the results in fig. 4.8, it is evident that the DPI of the
image does not have a direct effect on the init_textlines function. This
is because the time complexity of this function is directly dependent on the
number of symbols and textlines. As a higher DPI image does not necessarily
mean that more symbols and textlines will be present in the image (due to
false positives, incorrect splits between textlines in lower resolution images,
splitting of characters and more), the dependencies shown in fig. 4.8 could
greatly vary.

However, when it comes to Tesseract recognition, displayed in fig. 4.7,
we can clearly see that its execution time increases with increased DPI. The
exception to this is when the image has around 300 dpi, where the execution
time suddenly decreases. This is due to the fact that most of the Tesseract
training data are of a 300 dpi resolution (see section 1.2.1).

This implies that the overall time complexity of our algorithm will also be
dependent on the DPI of the image, with the best results obtained at the dpi
of around 300 (shown in fig. 4.9). Although the recognition time is exponen-
tially lower with dpi under 150, the results from images with this resolution
are in most cases useless, as they produce many undetected characters.

47

4.3.2 Effects on Tesseract accuracy
From the observation of the results in fig. 4.10, we can clearly see that the
number of detected symbols rises rapidly up to the DPI of around 300. How-
ever, once we increase the DPI of the image above the value of 300, the
recognition system barely recognizes any new characters. Sometimes, at sig-
nificantly higher resolutions, the recognition even decreases in accuracy. This
leads us to the assumption that the 300 dpi resolution is sufficient enough
for symbol recognition.

As we already mentioned in this chapter, the fact that there is an in-
creased amount of textlines does not necessarily mean that the accuracy of
Tesseract has increased. Therefore, the effects of DPI on the amount of
textlines in an image are unpredictable and the results displayed in fig. 4.11
do not contain any meaningful information.

4.4 Effects of preprocessing
As mentioned multiple times in the previous chapters, preprocessing is a
crucial part of any OCR engine, including Tesseract. In both fig. 4.12
and fig. 4.13, we present its importance along with a few examples of how
the Tesseract symbol recognition results change when only slight tweaks in
an image are made.

4.5 Comparison to Tesseract’s TableFind
We already mentioned Tesseract’s TableFind algorithm in section 2.2.1. It
uses heuristic algorithms to find tables from the segmentation Tesseract al-
ready offers. It also contains a simple recognition class that tries to analyze
the found tables for rows, columns and cells. It is a bottom-down approach,
in comparison to our algorithm, which starts from the individual characters
and builds up a table.

Although this algorithm has a pretty impressive results when finding ta-
bles (table detection), it does not provide any information about the text in
various cells and has no output except for a bounding box around the found
table. Therefore, there is almost no support for table recognition. As this
was the goal of our implementation, it is difficult to compare its results to
ours. Moreover, TableFind is mainly used as a tool for developers. It has no
command line interface or GUI and the user needs to understand its API to
obtain its results.

48

The only comparable results that both algorithm produce are the recog-
nized tables. We ran both TableFind and our algorithm on all of our testing
files. By observing the results, we concluded the following:

• Our algorithm considers noticeably different fonts to probably not be-
long to the same table, which is often true. TableFind does not make
this assumption.

• In contrast to our algorithm, TableFind often results in over-segmentation
(fig. 4.14).

• TableFind achieves more accurate results than our algorithm on full-
page tables and heterogeneous page layouts (fig. 4.15).

• TableFind has no support for handling footers and often includes them
in a table, in comparison to our algorithm.

• TableFind considers horizontal and vertical lines and therefore renders
satisfactory results when it comes to bordered tables.

4.6 Open problems and future work
In fig. 4.20, we provide a few sample results of our algorithm. Following
are the most visible problems that our algorithm encounters, along with an
outline of their solutions:

• Tables bordered by horizontal and vertical lines
Presented in fig. 4.16, this most basic example of a table is something
we completely ignore in our algorithm. Once we assume that a textline
recognized by Tesseract is either a simple horizontal or vertical line, or
even a border around a segmentation element, we automatically remove
it as it may disrupt our further recognition process.
Rather than ignoring these lines, we could first implement a heuristic
algorithm trying to combine these lines together and determine whether
they might not be representing a table.

• Word whitespace detection
Although column detection seems to work quite well, word whites-
pace detection has great room for improvement (see fig. 4.17). The
estimated whitespace is often greater than the real one, which results
in merging of words that should be separated. As already mentioned

49

in section 3.2.3, the approach with various font categories provided bet-
ter results of word whitespace estimation. We replaced this approach
by the current. This was because of the complications that arose when
calculating column whitespace, and because of the increased time com-
plexity of the algorithm, as calculating the font categories involved a
number of other iterations of symbols and textlines. To increase the
accuracy of word whitespace detection, the better practice would be to
use the old approach for word whitespace detection, and the new for
column whitespace detection.

• Multi-row columns
Clearly visible in fig. 4.18, the detection of multi-rows does not work
very effectively. This is because of our constant based algorithm. We
could try to improve this by an implementation of a smarter algorithm
based on heuristics. For example, one of the possible implementations
could try to get all of the gaps between lines in a table and determine
the spaces similarly to our whitespace detection (section 3.2.3). Also,
when every third cell’s text starts with an upper case letter and all
the others start with a lower case, it is a pretty clear indicator of the
presence of a multi-row cell.

• Multi-column layouts
Our algorithm has no support for multi-column layouts. This results in
either merging of tables from different columns into one, or recognizing
each table from different column as a single column table. This can be
solved by firstly checking whether the page is multi-column (by finding
wide whole-page columns that contain no symbols), and then applying
our algorithm to each of the recognized columns.

• Support of different languages
In our implementation, we initialize Tesseract with a testing data set
suitable for characters of English language. Tesseract still recognizes
symbols from other languages (like é, ô, ñ and many more), but instead
of outputting the symbol we wished for, it returns a combination of non-
alphabetical ASCII characters. Although this does not interfere with
the image output of our table recognition, it notably affects the JSON
output.
This can be solved by adding other testing data from the Tesseract
open source repository and implementing their usage.

• Support of only simple table structure

50

Our system does not recognize complicated table structures. It relies
on tables having a simple grid layout. Moreover, the structure of our al-
gorithm was not designed for handling other kinds of layouts (although
our JSON output file supports them). To solve this problem, a lot of
serious changes need to be made in our function that merges lines into
tables, such as isolating the tables, checking for their headers, adding
the support for segmentation of the table and maybe even a semantic
analysis.

Our algorithm encounters multiple other types of errors. These include
unrecognized headers of tables, table splits (see fig. 4.19), recognition of
graphics as tables, no support for vertical text and others.

51

Figure 4.1: The time of execu-
tion of the init_textlines func-
tion with respect to the number of
recognized textlines.

Figure 4.2: The time of execution
of Tesseract recognition with re-
spect to the number of recognized
textlines.

Figure 4.3: The overall time of ex-
ecution with respect to the number
of recognized symbols.

Figure 4.4: The time of execu-
tion of the init_textlines func-
tion with respect to the number of
recognized textlines.

Figure 4.5: The time of execution
of Tesseract recognition with re-
spect to the number of recognized
textlines.

Figure 4.6: The overall time of ex-
ecution with respect to the number
of recognized textlines.

52

Figure 4.7: The time of Tesser-
act recognition with respect to the
DPI of the given image (different
lines = different images).

Figure 4.8: The time of execu-
tion of the init_textlines func-
tion with respect to the DPI of the
given image (different lines = dif-
ferent images).

Figure 4.9: The overall time of execution with respect to the DPI of the given
image (different lines = different images).

53

Figure 4.10: The number of recog-
nized symbol with respect to the
DPI of the given image (different
lines = different images).

Figure 4.11: The number of recog-
nized textlines with respect to the
DPI of the given image (different
lines = different images).

Figure 4.12: The effects of preprocessing on Tesseract recognition. Left:
Tesseract does not recognize most of the symbols of the original image be-
cause of low contrast. Right: Upon applying a simple luma greyscale con-
version and increasing contrast, Tesseract outputs notably better results.

54

Figure 4.13: The effects of preprocessing on Tesseract recognition. Left: The
lower part of the image is not recognized properly due to a dark background.
Right: Tesseract recognizes all the symbols of the image once it is prepro-
cessed by applying an adaptive greyscale conversion (by lowering blues, reds,
yellows and greens).

55

Figure 4.14: Comparison of TableFind algoritm (left) and our algoritm
(right). Our algorithm renders better results in case tables are a part of
a text document, while TableFind often results in over-segmentation.

56

Figure 4.15: Comparison of TableFind algoritm (left) and our algoritm
(right). TableFind renders notably better results when it comes to full-page
tables.

57

Figure 4.16: Empty horizontal and vertical lines recognized by the Tesseract
textline recognition. In our algorithm, we remove them and in the end, our
algorithm determines there is no table present in the image. With the use of
these lines, table recognition could significantly improve.

Figure 4.17: Improperly recognized words in a text. The biggest issue is that
multiple words are often merged into one.

58

Figure 4.18: Improperly recognized multi-row cells.

Figure 4.19: Table split errors. Although the image contains only one table,
two are recognized. Our algorithm assumes that the first table has 6 columns,
while the second has only 5 which do not align properly. Left: recognized
tables by cells; right: borders of the recognized tables.

Figure 4.20: Correct table recognition (our implementation).

59

60

Conclusion
In this thesis, we explored and reviewed the existing approaches for optical
character recognition, and focused on applying its results to the problem of
table recognition.

As a main result of the thesis, we have developed a software package that
combines the OCR functionality available in the Tesseract library with sev-
eral methods of image preprocessing, and a newly developed heuristic-based
algorithm that aims to improve the available possibilities of table extraction
from scanned documents.

We have compared the results obtained from running this combination
on a simple testing data set to the results from the TableFind algorithm of
Tesseract. While both implementations required similar computational re-
sources for processing the data, our implementation produced more accurate
results for more complicated types of table layouts, especially on tables with-
out available border separators, and in cases where the table layout depends
e.g. on subtle differences in cell formatting. Additionally, we have assessed
how the resolution and information content of the input image affects the
time complexity and output quality of the algorithms.

Despite the improvements in table recognition capabilities, we have ob-
served that the outcome of the recognition still mainly depends on the quality
of the input image, and is mostly improved by correct preprocessing.

In the future, we plan to improve the main deficiencies of the whole
pipeline, primarily the mentioned preprocessing and several open problems
with table recognition summarized in section 4.6. From the observed results,
we believe that after applying the preprocessing improvements, the table
recognition system will produce results of excellent quality.

61

62

Bibliography
[AaKK10] Salem Saleh Al-amri, Dr. N. V. Kalyankar, and Dr. S. D. Khamitkar.

“Linear and Non-linear Contrast Enhancement Image Mr”. In:
2010.

[ABBa] ABBYY. ABBYY FineReader. https://abbyy.technology/
en:kb:images_resolution_size_ocr. Accessed: 2018-12-03.

[ABBb] ABBYY. ABBYY FineReader Software. https://www.abbyy.
com/en-ee/finereader/. Accessed: 2019-05-16.

[AR15] Laith Abdul-Rahaim. “Design Proposed Features Extraction Recog-
nition System of Latin Handwritten Text Based on 3D-Discrete
Multiwavelet Transform”. In: The Open Electrical & Electronic
Engineering Journal 3 (Apr. 2015), pp. 51–63. doi: 10.12691/
ajeee-3-2-5.

[Ari] Manuel Aristarán. Tabula. https://github.com/tabulapdf/
tabula. Accessed: 2019-05-16.

[BCM05] Antoni Buades, Bartomeu Coll, and J-M Morel. “A non-local
algorithm for image denoising”. In: Computer Vision and Pat-
tern Recognition, 2005. CVPR 2005. IEEE Computer Society
Conference on. Vol. 2. IEEE. 2005, pp. 60–65.

[BG12] Hetal Bhavsar and Amit Ganatra. “A comparative study of
training algorithms for supervised machine learning”. In: Inter-
national Journal of Soft Computing and Engineering (IJSCE)
2.4 (2012), pp. 2231–2307.

[BGR07] Wojciech Bieniecki, Szymon Grabowski, and Wojciech Rozen-
berg. “Image preprocessing for improving ocr accuracy”. In:
Perspective Technologies and Methods in MEMS Design, 2007.
MEMSTECH 2007. International Conference on. IEEE. 2007,
pp. 75–80.

[BHR14] Anukriti Bansal, Gaurav Harit, and Sumantra Dutta Roy. “Ta-
ble extraction from document images using fixed point model”.
In: Proceedings of the 2014 Indian Conference on Computer Vi-
sion Graphics and Image Processing. ACM. 2014, p. 67.

[Blo] DS Bloomberg. “Analysis of document skew”. In: Leptonica2002
[2] JONATHAN J. HULL,” Document Image Skew Detection:
Survey And Annotated Bibliography”, Document Analysis Sys-
tems ().

63

https://abbyy.technology/en:kb:images_resolution_size_ocr
https://abbyy.technology/en:kb:images_resolution_size_ocr
https://www.abbyy.com/en-ee/finereader/
https://www.abbyy.com/en-ee/finereader/
https://doi.org/10.12691/ajeee-3-2-5
https://doi.org/10.12691/ajeee-3-2-5
https://github.com/tabulapdf/tabula
https://github.com/tabulapdf/tabula

[Blo01] Dan Bloomberg. Leptonica Library. http://www.leptonica.
com/. Accessed: 2018-12-04. 2001.

[Cat+98] Roldano Cattoni et al. “Geometric layout analysis techniques for
document image understanding: a review”. In: ITC-irst Techni-
cal Report 9703.09 (1998).

[Ces+02] Francesca Cesarini et al. “Trainable table location in document
images”. In: Pattern Recognition, 2002. Proceedings. 16th Inter-
national Conference on. Vol. 3. IEEE. 2002, pp. 236–240.

[Cha+17] Arindam Chaudhuri et al. Optical character recognition systems
for different languages with soft computing. Springer, 2017.

[CJP] Kalpit R Chandpa, Ashwini M Jani, and Ghanshyam I Prajap-
ati. “Comparative Study of Linear and Non-linear Contrast En-
hancement Techniques”. In: International Journal of Research
and Scientific Innovation 1 (), pp. 37–41.

[Com] Nuance Communications. OmniPage. https://www.nuance.
com/print-capture-and-pdf-solutions/optical-character-
recognition/omnipage.html. Accessed: 2019-05-16.

[Dem] Demofox. Methods of non-adaptive interpolation. https://blog.
demofox.org/. Accessed: 2019-05-16.

[DM11] Vikas J Dongre and Vijay H Mankar. “A review of research on
Devnagari character recognition”. In: arXiv preprint arXiv:1101.2491
(2011).

[Dor+15] R Dorothy et al. “Image enhancement by Histogram equaliza-
tion”. In: Int. J. Nano. Corr. Sci. Engg 2.4 (2015), pp. 21–30.

[DS14] Andreas Dengel and Faisal Shafait. “Analysis of the logical lay-
out of documents”. In: Handbook of Document Image Processing
and Recognition (2014), pp. 177–222.

[Fad14] Shreyas Fadnavis. “Image Interpolation Techniques in Digital
Image Processing : An Overview”. In: 2014.

[Gmb] a9t9 software GmbH. OCRSPace. https://ocr.space/tablerecognition.
Accessed: 2019-05-16.

[Gro] IRIS Group. ReadIris. https://www.irislink.com. Accessed:
2019-05-16.

[Had+04] Karim Hadjar et al. “Xed: a new tool for extracting hidden struc-
tures from electronic documents”. In: First International Work-
shop on Document Image Analysis for Libraries, 2004. Proceed-
ings. IEEE. 2004, pp. 212–224.

64

http://www.leptonica.com/
http://www.leptonica.com/
https://www.nuance.com/print-capture-and-pdf-solutions/optical-character-recognition/omnipage.html
https://www.nuance.com/print-capture-and-pdf-solutions/optical-character-recognition/omnipage.html
https://www.nuance.com/print-capture-and-pdf-solutions/optical-character-recognition/omnipage.html
https://blog.demofox.org/
https://blog.demofox.org/
https://ocr.space/tablerecognition
https://www.irislink.com

[Han13] Dianyuan Han. “Comparison of Commonly Used Image Interpo-
lation Methods”. In: Proceedings of the 2nd International Con-
ference on Computer Science and Electronics Engineering. At-
lantis Press, 2013. isbn: 978-90-78677-61-1. doi: 10.2991/iccsee.
2013.391. url: http://dx.doi.org/10.2991/iccsee.2013.
391.

[Hu+99] Jianying Hu et al. “Medium-independent table detection”. In:
Document Recognition and Retrieval VII. Vol. 3967. Interna-
tional Society for Optics and Photonics. 1999, pp. 291–303.

[IC00] Itseez Intel Corporation Willow Garage. OpenCV library. https:
//opencv.org/about.html. Accessed: 2018-12-04. 2000.

[JR14] MAC Akmal Jahan and Roshan G Ragel. “Locating tables in
scanned documents for reconstructing and republishing”. In: In-
formation and Automation for Sustainability (ICIAfS), 2014 7th
International Conference on. IEEE. 2014, pp. 1–6.

[KB14] Gaurav Kumar and Pradeep Bhatia. “A Detailed Review of Fea-
ture Extraction in Image Processing Systems”. In: Feb. 2014.
doi: 10.1109/ACCT.2014.74.

[KC12] Christopher Kanan and Garrison W. Cottrell. “Color-to-Grayscale:
Does the Method Matter in Image Recognition?” In: PLOS ONE
(2012). doi: 10.1371/journal.pone.0029740. url: https:
//doi.org/10.1371/journal.pone.0029740.

[KD98] Thomas Kieninger and Andreas Dengel. “The t-recs table recog-
nition and analysis system”. In: International Workshop on Doc-
ument Analysis Systems. Springer. 1998, pp. 255–270.

[LKR13] William B Lund, Douglas J Kennard, and Eric K Ringger. “Com-
bining multiple thresholding binarization values to improve OCR
output”. In: Document Recognition and Retrieval XX. Vol. 8658.
International Society for Optics and Photonics. 2013, 86580R.

[LMG08] Ying Liu, Prasenjit Mitra, and C Lee Giles. “Identifying table
boundaries in digital documents via sparse line detection”. In:
Proceedings of the 17th ACM conference on Information and
knowledge management. ACM. 2008, pp. 1311–1320.

[LT03] Yue Lu and Chew Lim Tan. “A nearest-neighbor chain based
approach to skew estimation in document images”. In: Pattern
Recognition Letters 24.14 (2003), pp. 2315–2323.

65

https://doi.org/10.2991/iccsee.2013.391
https://doi.org/10.2991/iccsee.2013.391
http://dx.doi.org/10.2991/iccsee.2013.391
http://dx.doi.org/10.2991/iccsee.2013.391
https://opencv.org/about.html
https://opencv.org/about.html
https://doi.org/10.1109/ACCT.2014.74
https://doi.org/10.1371/journal.pone.0029740
https://doi.org/10.1371/journal.pone.0029740
https://doi.org/10.1371/journal.pone.0029740

[Luc18] Guislain Luc. Statistical Features. https://heptadvices.eu/
index.php/2018/01/18/handwriting-rec-features-extraction/.
Accessed: 2018-05-14. 2018.

[MK11] C Mythili and V Kavitha. “Efficient technique for color image
noise reduction”. In: The research bulletin of Jordan, ACM 1.11
(2011), pp. 41–44.

[Mud+07] Nadira Muda et al. “Optical character recognition by using tem-
plate matching (alphabet)”. In: National Conference on Soft-
ware Engineering & Computer Systems. 2007.

[Nin93] Li Ning. “An Implementation of OCR System Based on Skeleton
Matching”. In: 1993.

[NJ02] Andrew Y Ng and Michael I Jordan. “On discriminative vs. gen-
erative classifiers: A comparison of logistic regression and naive
bayes”. In: Advances in neural information processing systems.
2002, pp. 841–848.

[Pac] Hewlett Packard. Tesseract About. https : / / github . com /
tesseract-ocr/tesseract/wiki/ReadMe. Accessed: 2018-12-
04.

[Pac96] Hewlett Packard. Tesseract Improve Quality. https://github.
com/tesseract-ocr/tesseract/wiki/ImproveQuality. 1996.

[Pan] Parul Pandey. Binarization techniques. https://towardsdatascience.
com/image-segmentation-using-pythons-scikit-image-
module-533a61ecc980. Accessed: 2019-05-14.

[PK04] Worapoj Peerawit and Asanee Kawtrakul. “Marginal noise re-
moval from document images using edge density”. In: 4th In-
formation and Computer Engineering Postgraduate Workshop,
Phuket, Thailand. Citeseer. 2004.

[Rah+16] Shanto Rahman et al. “An adaptive gamma correction for im-
age enhancement”. In: EURASIP Journal on Image and Video
Processing 2016.1 (2016), p. 35.

[Ros+14a] Daniel Rosner et al. “Image Skew Detection: A Comprehen-
sive Study”. In: Proceedings of IWoCPS-3, The Third Interna-
tional Workshop On Cyber Physical Systems, Bucharest, Roma-
nia. 2014.

66

https://heptadvices.eu/index.php/2018/01/18/handwriting-rec-features-extraction/
https://heptadvices.eu/index.php/2018/01/18/handwriting-rec-features-extraction/
https://github.com/tesseract-ocr/tesseract/wiki/ReadMe
https://github.com/tesseract-ocr/tesseract/wiki/ReadMe
https://github.com/tesseract-ocr/tesseract/wiki/ImproveQuality
https://github.com/tesseract-ocr/tesseract/wiki/ImproveQuality
https://towardsdatascience.com/image-segmentation-using-pythons-scikit-image-module-533a61ecc980
https://towardsdatascience.com/image-segmentation-using-pythons-scikit-image-module-533a61ecc980
https://towardsdatascience.com/image-segmentation-using-pythons-scikit-image-module-533a61ecc980

[Ros+14b] Daniel Rosner et al. “Image Skew Detection: A Comprehen-
sive Study”. In: Proceedings of IWoCPS-3, The Third Interna-
tional Workshop On Cyber Physical Systems, Bucharest, Roma-
nia. 2014.

[SB09] Faisal Shafait and Thomas M. Breuel. “A simple and effec-
tive approach for border noise removal from document images”.
In: 2009 IEEE 13th International Multitopic Conference (2009),
pp. 1–5.

[Seb02] Fabrizio Sebastiani. “Machine learning in automated text cat-
egorization”. In: ACM computing surveys (CSUR) 34.1 (2002),
pp. 1–47.

[Seg04] Mark R Segal. “Machine learning benchmarks and random for-
est regression”. In: (2004).

[SGM+13] P Suganya, S Gayathri, N Mohanapriya, et al. “Survey on Image
Enhancement Techniques”. In: International Journal of Com-
puter Applications Technology and Research 2.5 (2013), 623–
meta.

[SK13] Ruby Singh and Ramandeep Kaur. “Improved skew detection
and correction approach using Discrete Fourier algorithm”. In:
International Journal of soft computing and Engineering 3.4
(2013), pp. 5–7.

[SKB08] Faisal Shafait, Daniel Keysers, and Thomas Breuel. “Perfor-
mance evaluation and benchmarking of six-page segmentation
algorithms”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 30.6 (2008), pp. 941–954.

[SKK16] Bhavesh Kumar Shukla, Gautam Kumar, and Ashish Kumar.
“An approach for Skew Detection using Hough Transform”. In:
International Journal of Computer Applications 136.9 (2016),
pp. 20–23.

[Smi07] Ray Smith. “An overview of the Tesseract OCR engine”. In:
Ninth International Conference on Document Analysis and Recog-
nition (ICDAR 2007). Vol. 2. IEEE. 2007, pp. 629–633.

[Smi09] Raymond W Smith. “Hybrid page layout analysis via tab-stop
detection”. In: 2009 10th International Conference on Document
Analysis and Recognition. IEEE. 2009, pp. 241–245.

[SP00] Jaakko Sauvola and Matti Pietikäinen. “Adaptive document im-
age binarization”. In: Pattern recognition 33.2 (2000), pp. 225–
236.

67

[SS04] Mehmet Sezgin and Bülent Sankur. “Survey over image thresh-
olding techniques and quantitative performance evaluation”. In:
J. Electronic Imaging 13 (2004), pp. 146–168.

[SS10] Faisal Shafait and Ray Smith. “Table detection in heteroge-
neous documents”. In: Proceedings of the 9th IAPR Interna-
tional Workshop on Document Analysis Systems. ACM. 2010,
pp. 65–72.

[VK15] Purna Vithlani and CK Kumbharana. “Structural and statisti-
cal feature extraction methods for character and digit recogni-
tion”. In: International Journal of Computer Applications 120.24
(2015), pp. 0975–8887.

[YKM05] Burcu Yildiz, Katharina Kaiser, and Silvia Miksch. “pdf2table:
A method to extract table information from pdf files”. In: IICAI.
2005, pp. 1773–1785.

[You11] Jamileh Yousefi. “Image Binarization using Otsu Thresholding
Algorithm”. In: (2011).

[Ĉad08] M Ĉadík. “Perceptual evaluation of color-to-grayscale image
conversions”. In: Computer Graphics Forum. Vol. 27. 7. Wiley
Online Library. 2008, pp. 1745–1754.

68

A. Software user guide
In this appendix, we provide a user guide for compiling and running the
project.

The software has been tested on Windows 10 (MSCV 2017) and Ubuntu 18
(g++ 7.4). As we do not provide any binaries, the user must compile the
project first.

To compile the project, execute the following steps:

Windows:

1. Clone GitHub directory from
https://github.com/todoval/Bachelor-s-Thesis.git.

2. Download and setup cppan.

3. Run cppan in any directory.

4. Build the project using CMake (make sure you have installed MSVC 2017
and CMake 3.8).

5. Set the environment variable TESSDATA_PREFIX to tabularOCR/tessdata
directory.

Linux:

1. Clone GitHub directory from
https://github.com/todoval/Bachelor-s-Thesis.git.

2. Install the following libraries: libleptonica-dev, libtesseract-dev, libopencv-
dev.

3. Build the project using CMake (make sure you have installed g++ 7.4
and CMake 3.8).

4. Set the environment variable TESSDATA_PREFIX to tabularOCR/tessdata
directory.

Follow these steps to run a sample demo:

1. Take one of the pictures from our sample images directory at https://
drive.google.com/open?id=1cPPQc0H2AYUB7jHM8_6KwlQ05YNOrJdY,
for example 11-1.jpg, and copy it to your compiled tabularOCR exe-
cutable.

69

https://github.com/todoval/Bachelor-s-Thesis.git
https://github.com/todoval/Bachelor-s-Thesis.git
https://drive.google.com/open?id=1cPPQc0H2AYUB7jHM8_6KwlQ05YNOrJdY
https://drive.google.com/open?id=1cPPQc0H2AYUB7jHM8_6KwlQ05YNOrJdY

2. From this directory, run command:

• Windows: tabularOCR.exe 11-1.jpg

• Linux: ./tabularOCR 11-1.jpg

In the rest of this user guide, we will be using a unified command call
tabularOCR.

3. The results can be found in a results directory (located where you run
the command) as both 11-1.png and 11-1.json.

Note 1 : The input image does not necessarily have to be in the same
directory as the tabularOCR compiled binary. However, in such case, the
path to the image must be provided.

It is possible to run the program with several options. The explained
usage with complete list of options is as follows:

Usage: tabularOCR [-options] (filenames | directory name)
where options include:

(-e | --enhance) (SIMPLE | GAMMA | EQUALIZATION)
enhance the contrast of the image before processing

(-g | --greyscale) (AVG | MIN | MAX | LUMA)
set the image mode to greyscale before processing

(-b | --binarize) (OTSU | SAUVOLA)
binarize image before processing

-p | --preprocess
preprocess image with the default preprocessing options
before processing

-sk | --deskew
deskew image before processing

--output-json
output the result in a json file

--output-image
output the result in an png file as a bounding box
around each cell

Examples of usage:

• tabularOCR -e EQUALIZATION --binarize OTSU 11-1.jpg

This command will perform the table extraction on a binarized 11-1.jpg
image (with the exact method of binarization being Otsu) with en-
hanced contrast (with the exact method of contrast enhancement being
histogram equalization).

70

• tabularOCR ./image_directory

This command will process all the images from image_directory and
save their results into a new results/image_directory directory.

• tabularOCR –output-image 11-1.jpg 7-1.jpg 5-1.jpg

This command will process the images 11-1.jpg, 7-1.jpg, 5-1.jpg
in the given order and save their results as 11-1.png, 7-1.png and
5-1.png files, excluding JSON output.

The internal C++ structure of the project is as follows:

• main.cpp — used for calling the individual functions of all other files
consecutively.

• parser — contains functions for parsing the input command line ar-
guments, file manipulation and error handling.

• preprocess — contains the calls of individual preprocessing methods
of Leptonica depending on the parser’s output.

• process — the core of the program. Contains the Tesseract API calls
and the implementation of table recognition algorithm including vari-
ous heuristics.

• utils — contains several helper functions and structures used in the
process file.

71

72

	Introduction
	Text recognition algorithms
	Common obstacles of successful text recognition
	Preprocessing for OCR
	Scaling
	Contrast enhancement
	Binarization
	Deskewing
	Noise reduction
	Scanning border reduction

	Text detection process
	Page segmentation
	Feature extraction
	Character classification

	Available OCR software
	Tesseract

	Layout recognition for tabular data
	Layout analysis
	Table recognition
	Tesseract table recognition
	Other existing approaches

	Table recognition implementation
	Preprocessing
	Tabular OCR
	Textline initialization
	Deletion of unnecessary lines
	Column detection
	Column merge into tables
	Output determination

	Results
	Performance measurements
	Effects of the amount of text
	Effects of image resolution
	Effects on time complexity
	Effects on Tesseract accuracy

	Effects of preprocessing
	Comparison to Tesseract's TableFind
	Open problems and future work

	Conclusion
	Bibliography
	Software user guide

