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Introduction
In 1936, in his innovative paper, Young [14] proved the existence of the Riemann-
Stieltjes integral where the integrator need no longer be of finite variation. He
further proved an inequality which, as it has turned out, seems to be of quite
the importance and is now referred to as the Love-Young inequality. It should
be noted, however, that the original proof of the inequality was obtained by
E. R. Love and Young devised its more refined version. It could be said that
this paper layed the groundwork on which the pathwise stochastic integration
theory stands. A few applications, e.g. theorem on term by term integration
and theorem on mean variations of Fourier kernels were demonstrated in Young
[14]. But in any event, the paramount application of his paper, which is the
integration with respect to stochastic processes, was not addressed. This idea
was acknowledged and scrutinized in the later books, such as Lyons et al. [7].
Here the authors provide an introduction to the theory of rough paths which can
be made use of in the pathwise approach to stochastic integration (besides other
areas of mathematics).

The main goal of this thesis is to give a rigorous and detailed proof of the
Love-Young inequality based on the original paper Young [14] and to demonstrate
how it can be used to define integrals with respect to stochastic processes and,
in particular, with respect to fractional Brownian motions.

We begin with a chapter presenting a heuristic approach to differential equa-
tions driven by irregular functions. It also serves as an incentive for integration
where the integrator does not have to meet as strict a condition as is the finiteness
of total variation.

The second chapter is a treatise on the Love-Young inequality and it entails
four subchapters. One ought to pay special attention to Theorem 2.10 in the first
subchapter providing the upper bound for the difference of two Riemann sums
and to Lemma 2.21 in the second subchapter. This lemma yields the crucial
estimate including oscillation of a function. Both of these, amongst the lemmata
presented in the subchapter 2.3, will be helpful when proving Theorem 2.30.
This particular theorem is what we are striving for. The last section displays the
possible shortcomings and restrictions of the Riemann-Stieltjes integration.

The last chapter is focused on the fractional Brownian motion and its prop-
erties. We use the Kolmogorov continuity theorem (Theorem 3.5) to prove the
finiteness of p-variation of almost all trajectories of fractional Brownian motions.
The existence of the Riemann-Stieltjes integral of its trajectories is then explored.
Finally, the last section introduces the concept of iterated integrals where the in-
tegrator is only of finite p-variation and states an interesting result concerning
the existence of solutions to differential equations.

This thesis is of compilatory character. In Motivation, the ideas from the
booklet Maslowski et al. [9] have been used. The proof given in Young [14] is
presented in the second chapter. We elaborate its steps (see e.g. Lemma 2.14,
equalities before Theorem 2.10, Propositions 2.16 and 2.20, Theorem 2.30, etc.),
fill all the missing parts (mainly the theory of regulated functions) and generalise
some of the conclusions to inner product spaces. The results in this chapter
have been taken from Young [14] unless stated otherwise. A few properties of
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the fractional Brownian motion which are of particular interest are featured in
more detail than how they appeared in Nualart [10], Guerra and Nualart [5] and
Nualart [11] from where they have been taken. At last, we refer the reader to
the monograph Lyons et al. [7] containing a distinct proof of the Love-Young
inequality which as well serves as an introduction to the theory of rough paths.
The featured results on differential equations and iterated integrals can be found
in Lyons et al. [7] and in the seminal article Lyons [8].
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1. Motivation
In this chapter, we establish the basic idea behind differential equations driven
by irregular functions. Two commonly used approaches to stochastic integration
are assessed and one of them is elaborated upon.

Differential equations are of use in many areas since they can model time
evolution of a physical system. As is customary, in what follows, we consider
the interval [0, T ], T > 0. Let us consider an example which, alongside others,
can be found in Øksendal [13]. It is the ordinary differential equation describing
population growth which takes the form

dY (t)
dt

= αY (t) , Y (0) = Y0, (1.1)

where t ∈ [0, T ], Y0 and α are given real numbers. A well-known fact is that the
solution to this equation on the interval [0, T ] is given by Y (t) = Y0eαt. However,
rarely can the reality be modelled so simply. Assume that α is not a constant
but that it depends on various external effects that cannot always be predicted
beforehand. A simple case would be that α is a function of the form α (t) = β (t) +
“noise”, t ∈ [0, T ], where the function β is known but the “noise” term is not. We
may know only some of its properties, e.g. its probability distribution. How shall
we continue? Let us simplify the situation by considering a discrete time model.
Let D = {ti}n

i=0 be a partition of [0, T ] and let g : R → R be a continuous (and
therefore measurable) function for which we have

Y (ti) − Y (ti−1) = g (Y (ti−1)) (ti − ti−1) , Y (0) = Y0, (1.2)

where i = 1, 2, . . . , n and Y0 is given. The solution to equation (1.2) is clearly
given by

Y (tj) = Y0 +
j∑︂

i=1
g (Y (ti−1)) (ti − ti−1) , (1.3)

where j = 1, 2, . . . , n. Now, were we to send the mesh |D| to 0 (see Definition
2.9), we would have that (1.3) takes the form of the following differential equation
in the integral form

Y (t) = Y0 +
∫︂ t

0
g (Y (s)) ds (1.4)

where t ∈ [0, T ]. The integral in (1.4) can be thought of as a Riemann, or, more
generally, a Lebesgue integral.

Let us consider a complete probability space (Ω, A,P) on which the stochas-
tic processes will be defined. Assume that f : R → R is a continuous function
and {Xti

, i = 0, 1, . . . , n} is a random vector. We might introduce the above-
mentioned “noise” as f (Y (ti−1)) X (ti−1, ω) (ti − ti−1) which is to be added to
the right-hand side of equation (1.2). However, this approach carries an unfor-
tunate consequence. If we now try to pass to a continuous time model as above,
after imposing sensible requirements on {Xt, t ≥ 0}, we still cannot guarantee its
measurability. This technique is explained in more detail in Maslowski et al. [9].
In order to overcome the problem with measurability, consider the noise written
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as an increment of a process, rather than a process itself. This means that we
obtain the equation

Y (ti, ω) − Y (ti−1, ω) = g (Y (ti−1, ω)) (ti − ti−1) (1.5)
+ f (Y (ti−1, ω)) (X (ti, ω) − X (ti−1, ω))

Y (0) = Y0,

where i = 1, 2, . . . , n. The dependence of Y on ω is due to the dependence of
Y (tj) on X (ti, ω), i = 0, 1, . . . , j, which is obvious by the following identity:

Y (tj, ω) = Y0 +
j∑︂

i=1
g (Y (ti−1, ω)) (ti − ti−1)

+
j∑︂

i=1
f (Y (ti−1, ω)) (X (ti, ω) − X (ti−1, ω)) ,

Y (0) = Y0,

where j = 1, 2, . . . , n. We thus regard Y as a function of time sooner than a
random vector.

We will have some demands for the process X. We will assume that X is
a fractional Brownian motion. Chapter 3 serves as an introduction to it. The
improvement of the situation is principal since the fractional Brownian motion
exists as a measurable process. For its construction, see Nualart [11].

Let us proceed from a discrete time model (1.5) to a continuous one. We
would obtain

Y (t, ω) = Y0 +
∫︂ t

0
g (Y (s, ω)) ds +

∫︂ t

0
f (Y (s, ω)) dX (s, ω) , (1.6)

for t ∈ [0, T ]. The first integral on the right-hand side of equation (1.6) is a
Lebesgue integral as previously stated and can be manipulated in the usual man-
ner. On the right-hand side of equation (1.6) we can also see a “derivative” of
a fractional Brownian motion. This augurs foreboding problems since almost all
trajectories of fractional Brownian motions are nowhere differentiable. But not
necessarily does the process X need to have differentiable trajectories. One must
give meaning to the second integral in equation (1.6) though.

For a real-valued stochastic process {Xt, t ≥ 0} two approaches can be con-
sidered. One may fix t ∈ [0, ∞) and obtain a random variable:

Xt : ω ↦→ Xt (ω) , ω ∈ Ω

or, fix ω ∈ Ω and obtain a function

Xω : t ↦→ Xt (ω) , t ∈ [0, ∞) . (1.7)

The function (1.7) is said to be a sample path, or a trajectory, of the stochastic
process X. One may find an intuition behind these outlooks again in Øksendal
[13]. We may already observe that it will be possible to approach the integral∫︂ t

0
f (Y (s, ω)) dX (s, ω) (1.8)
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from two perspectives. On the one hand, the pathwise integration can be con-
sidered, that is the existence of the integral

∫︁ t
0 f (Ys (ω)) dXs (ω) where ω ∈ Ω

is given. This scenario involves pointwise convergence of Riemann sums. On
the other hand, one can turn to classical stochastic integration (mainly the Itô
integral) which entails convergence in probability or convergence in mean square.
In this thesis, we shall approach the integral from the pathwise perspective. The
stochastic approach will be very briefly mentioned in chapter 3.

The integral (1.8) can be defined pathwise if X, Y and f meet certain regular-
ity conditions. These shall be addressed precisely later, see subchapter 3.3 and
subchapter 3.4. The approach from the pathwise perspective allows to give mean-
ing to integrals that cannot be defined in the classical measure theory. Notwith-
standing, it carries an underlying downside. Brownian motion B is a fundamental
continuous time stochastic process, yet as it is to be seen, its trajectories are not
regular enough and the integral

∫︁ T
0 Bt (ω) dBt (ω) cannot be defined pathwise.

The application of this particular integral will be reviewed in chapter 3. Consider
the differential equation of the form

dYt = f (Yt) dXt, Y (0) = Y0. (1.9)

The functions X, Y and f are said to satisfy equation (1.9) when the integral
equation

Yt = Y0 +
∫︂ t

0
f (Ys) dXs, t ∈ [0, T ]

holds.
We say that X is the control or driving noise, Y0 is the initial condition and

Y is the solution (driven by X). If f is a Lipschitz continuous function and
X is of finite variation, equation (1.9) has a unique solution by a well-known
theorem (see Lyons et al. [7]). The existence of a solution without its uniqueness
is procured as soon as f is continuous. But what happens if X is so irregular that
such smoothness cannot be attained? In the following sections, questions such as
this will be answered.
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2. Love-Young inequality
One usually regards two proofs when considering Love-Young inequality. The
original proof was given by Young in 1936. It is quite simple, albeit a tad intricate.
The second can be found in Lyons et al. [7]. It makes use of control functions
and uses more abstract mathematical objects to obtain the similar result in a
more general setting. This chapter is based on the proof of the inequality given
by Young [14] and uses its definitions, theorems etc. but presents the proofs
and steps in more detail. To begin with, we make some prefatory estimates and
introduce the concept of p-variation alongside some of its properties. We then
use the theory of regulated functions, relate them to the functions of finite p-
variation and obtain a result about the oscillation of a function. Consequently,
we prove the Love-Young inequality and give a counterexample to the case when
the assumptions for the inequality to hold are not satisfied.

2.1 Preliminary estimates
From now on, we shall consider an inner product space (V, ⟨·, ·⟩). We open with a
definition of a well-known function that will appear throughout the whole chapter.

Definition 2.1. For s ∈ C, Re(s) > 1, the Riemann zeta function is defined by
the relation

ζ(s) =
∞∑︂

n=1
n−s.

In what follows, the norm is considered to be induced by the dot product ⟨·, ·⟩
in V .

Lemma 2.2. Let n ∈ N and let p, q ≥ 1 be real numbers such that 1
p

+ 1
q

> 1.
For ai, bi ∈ V, i = 1, 2, . . . , n, it holds that

n∑︂
i=1

|⟨ai, bi⟩| ≤ ζ

(︄
1
p

+ 1
q

)︄(︄
n∑︂

i=1
∥ai∥p

)︄ 1
p
(︄

n∑︂
i=1

∥bi∥q

)︄ 1
q

.

Proof. We consider the following sequence of real numbers |⟨ai, bi⟩| arranged in
order of decreasing size, that is n = argmini |⟨ai, bi⟩|, i = 1, 2, . . . , n. Thus, from
the Cauchy-Schwarz inequality and the inequality of arithmetic and geometric
means we obtain that

|⟨an, bn⟩| ≤
⃓⃓⃓⃓
⃓

n∏︂
i=1

⟨ai, bi⟩
⃓⃓⃓⃓
⃓

1
n

≤

⎛⎝(︄ n∏︂
i=1

∥ai∥p

)︄ 1
n

⎞⎠
1
p
⎛⎝(︄ n∏︂

i=1
∥bi∥q

)︄ 1
n

⎞⎠
1
q

≤
(︄

1
n

n∑︂
i=1

∥ai∥p

)︄ 1
p
(︄

1
n

n∑︂
i=1

∥bi∥q

)︄ 1
q

= n−( 1
p

+ 1
q )
(︄

n∑︂
i=1

∥ai∥p

)︄ 1
p
(︄

n∑︂
i=1

∥bi∥q

)︄ 1
q
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holds. Correspondingly, we get

|⟨an−1, bn−1⟩| ≤ (n − 1)−( 1
p

+ 1
q )
(︄

n−1∑︂
i=1

∥ai∥p

)︄ 1
p
(︄

n−1∑︂
i=1

∥bi∥q

)︄ 1
q

≤ (n − 1)−( 1
p

+ 1
q )
(︄

n∑︂
i=1

∥ai∥p

)︄ 1
p
(︄

n∑︂
i=1

∥bi∥q

)︄ 1
q

.

We continue in this fashion to acquire

n∑︂
i=1

|⟨ai, bi⟩| ≤
(︄

n∑︂
i=1

i−( 1
p

+ 1
q )
)︄(︄

n∑︂
i=1

∥ai∥p

)︄ 1
p
(︄

n∑︂
i=1

∥bi∥q

)︄ 1
q

≤ ζ

(︄
1
p

+ 1
q

)︄(︄
n∑︂

i=1
∥ai∥p

)︄ 1
p
(︄

n∑︂
i=1

∥bi∥q

)︄ 1
q

which concludes the proof.

Remark 2.3. Under the assumptions of Lemma 2.2, there exists k ∈ {1, . . . , n}
such that the following inequality holds

|⟨ak, bk⟩| ≤
(︄

1
n

n∑︂
i=1

∥ai∥p

)︄ 1
p
(︄

1
n

n∑︂
i=1

∥bi∥q

)︄ 1
q

.

Proof. Take e.g. k = argmini |⟨ai, bi⟩|, i = 1, 2, . . . , n.

Corollary 2.4. Let ai, bi, i = 1, 2, . . . , n, be non-negative real numbers. Then,
the inequality

n∑︂
i=1

aibi ≤
(︄

n∑︂
i=1

ap
i

)︄ 1
p
(︄

n∑︂
i=1

bq
i

)︄ 1
q

is satisfied for every p, q ≥ 1 such that 1
p

+ 1
q

≥ 1.

Proof. The case 1
p

+ 1
q

= 1 reduces to the Hölder inequality. Otherwise, we first
observe that

n∑︂
i=1

n∑︂
j=1

aibiajbj =
(︄

n∑︂
i=1

aibi

)︄2

(2.1)

holds. By Lemma 2.2, we can estimate

n∑︂
i=1

n∑︂
j=1

aibiajbj ≤ ζ

(︄
1
p

+ 1
q

)︄⎛⎝ n∑︂
i=1

n∑︂
j=1

(aiaj)p

⎞⎠ 1
p
⎛⎝ n∑︂

i=1

n∑︂
j=1

(bibj)q

⎞⎠ 1
q

≤ ζ

(︄
1
p

+ 1
q

)︄(︄
n∑︂

i=1
ap

i

)︄ 2
p
(︄

n∑︂
i=1

bq
i

)︄ 2
q

.

The second inequality follows by (2.1). Hence, it is clear that

n∑︂
i=1

aibi ≤ ζ

(︄
1
p

+ 1
q

)︄ 1
2
(︄

n∑︂
i=1

ap
i

)︄ 1
p
(︄

n∑︂
i=1

bq
i

)︄ 1
q
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holds. By induction, one obtains for m ∈ N:

n∑︂
i=1

aibi ≤ ζ

(︄
1
p

+ 1
q

)︄ 1
m
(︄

n∑︂
i=1

ap
i

)︄ 1
p
(︄

n∑︂
i=1

bq
i

)︄ 1
q

.

The result follows by letting m → ∞.

We continue with the definition of a P -partition and use it as a springboard
for Lemma 2.8.

Definition 2.5. Let n ∈ N, ai ∈ V , i = 1, 2, . . . , n. We say that for m ∈ N,
m ≤ n, the set {x1, x2 . . . , xm} is a P -partition of the set {a1, a2, . . . , an} if there
exist j0, j1, . . . , jm ∈ {0, 1, . . . , n}, j0 = 0, jm = n such that xk =

jk∑︁
i=jk−1+1

ai,

k = 1, 2, . . . , m.

Remark 2.6. One can regard the P -partition as a set of elements derived in such
way that its elements are successive sums of the original set.

Let a = {a1, a2 . . . , an}, b = {b1, b2 . . . , bn} be sets in V . For n ∈ N and real
numbers p, q ≥ 1, we denote

Sp,q (a, b) = max
P −partitions

⎧⎨⎩
(︄

m1∑︂
i=1

∥xi∥p

)︄ 1
p
(︄

m2∑︂
i=1

∥yi∥q

)︄ 1
q

⎫⎬⎭
where {x1, x2, . . . , xm1} and {y1, y2, . . . , ym2} are P -partitions of {a1, a2 . . . , an}
and {b1, b2 . . . , bn}, respectively.

Remark 2.7. For our purposes, it is enough to consider P -partitions with the
same number of elements, that is m1 = m2.

Lemma 2.8. Let p, q ≥ 1 be real numbers satisfying 1
p

+ 1
q

> 1. Assume that
a = {a1, a2 . . . , an}, b = {b1, b2 . . . , bn} are sets in V . Then⃓⃓⃓⃓

⃓
n∑︂

s=1

s∑︂
r=1

⟨ar, bs⟩
⃓⃓⃓⃓
⃓ ≤

(︄
1 + ζ

(︄
1
p

+ 1
q

)︄)︄
Sp,q (a, b) . (2.2)

Proof. Consider the following P -partitions of a and b:

xr =

⎧⎪⎪⎨⎪⎪⎩
ar, 1 ≤ r < k,

ar + ar+1, r = k,

ar+1, k < r < n,

yr =

⎧⎪⎪⎨⎪⎪⎩
br, 1 ≤ r < k,

br + br+1, r = k,

br+1, k < r < n,
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for k ∈ {1, 2, . . . , n − 1}. Let us compute

n∑︂
s=1

⟨︄
s∑︂

i=1
ai, bs

⟩︄
=

k−1∑︂
s=1

⟨︄
s∑︂

i=1
ai, bs

⟩︄
+
⟨︄

k∑︂
i=1

ai, bk

⟩︄
+
⟨︄

k+1∑︂
i=1

ai, bk+1

⟩︄

+
n−1∑︂

s=k+1

⟨︄
s+1∑︂
i=1

ai, bs+1

⟩︄

=
k−1∑︂
s=1

⟨︄
s∑︂

i=1
ai, bs

⟩︄
+
⟨︄

k+1∑︂
i=1

ai, bk + bk+1

⟩︄
− ⟨ak+1, bk⟩

+
n−1∑︂

s=k+1

⟨︄
s+1∑︂
i=1

ai, bs+1

⟩︄

=
n−1∑︂
s=1

⟨︄
s∑︂

i=1
xi, ys

⟩︄
− ⟨ak+1, bk⟩ .

By Remark 2.3, there exists k ∈ {1, 2, . . . , n − 1} such that

|⟨ak+1, bk⟩| ≤
(︃ 1

n − 1

n−1∑︂
i=1

∥ai+1∥p
)︃ 1

p
(︃ 1

n − 1

n−1∑︂
i=1

∥bi∥q
)︃ 1

q

≤ (n − 1)−( 1
p

+ 1
q ) Sp,q (a, b) .

Therefore, with this particular k the following estimates hold:⃓⃓⃓⃓
⃓

n∑︂
s=1

s∑︂
i=1

⟨ai, bs⟩
⃓⃓⃓⃓
⃓ ≤ |⟨ak+1, bk⟩| +

⃓⃓⃓⃓
⃓
n−1∑︂
s=1

⟨︄
s∑︂

i=1
xi, ys

⟩︄⃓⃓⃓⃓
⃓

≤ (n − 1)−( 1
p

+ 1
q ) Sp,q (a, b) +

⃓⃓⃓⃓
⃓
n−1∑︂
s=1

⟨︄
s∑︂

i=1
xi, ys

⟩︄⃓⃓⃓⃓
⃓ .

Further, the inequality Sp,q (x, y) ≤ Sp,q (a, b) holds by definition. In the same
manner, we can estimate the element⃓⃓⃓⃓

⃓
n−1∑︂
s=1

⟨︄
s∑︂

i=1
xi, ys

⟩︄⃓⃓⃓⃓
⃓ ≤ (n − 2)−( 1

p
+ 1

q ) Sp,q (a, b) +
⃓⃓⃓⃓
⃓
n−2∑︂
s=1

⟨︄
s∑︂

i=1
ui, vs

⟩︄⃓⃓⃓⃓
⃓ ,

where {u1, u2, . . . , un−2} and {v1, v2, . . . , vn−2} are P -partitions of the sets x =
{x1, x2, . . . , xn−1} and y = {y1, y2, . . . , yn−1}, respectively. By induction, it is
proved that the inequality⃓⃓⃓⃓

⃓
n∑︂

s=1

s∑︂
i=1

⟨ai, bs⟩
⃓⃓⃓⃓
⃓ ≤

(︃
1 +

n−1∑︂
i=1

i−( 1
p

+ 1
q )
)︃

Sp,q (a, b)

holds and the result follows.

Definition 2.9. Let [a, b] ⊂ R be a non-degenerate bounded interval. A partition
is a finite set of real numbers D = {t0, t1, . . . , tn} satisfying a = t0 < t1 < ... <
tn = b. The mesh of the partition D equals maxi=1,2,...,n {ti − ti−1} and it is
denoted by |D|. Partition F is a refinement of the partition E if all the points
from E are included amongst the points of F .
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From now on, anytime an interval in R is being considered, it is assumed to
be bounded, closed and non-degenerate unless stated otherwise.

Let n ∈ N, let D = {tj}n
j=0 be a partition of [a, b] and further assume that

X, Y : R → V are functions defined at least on [a, b]. Let us denote

FD =
n∑︂

s=1
⟨Y (ts) , X (ts) − X (ts−1)⟩,

Sp,q (a, b; X, Y ) =

= sup
D

{︃(︃ n∑︂
i=1

∥X (ti) − X (ti−1)∥p
)︃ 1

p
(︃ n∑︂

i=1
∥Y (ti) − Y (ti−1)∥q

)︃ 1
q
}︃

,

where p, q ≥ 1 and the supremum is taken over all partitions of [a, b].
The following equalities hold:

FD =
n∑︂

s=1

s∑︂
r=1

⟨Y (tr) − Y (tr−1) , X (ts) − X (ts−1)⟩ + ⟨Y (a) , X (b) − X (a)⟩

(2.3)

=
n∑︂

s=1

n∑︂
r=s+1

⟨Y (tr−1) − Y (tr) , X (ts) − X (ts−1)⟩ + ⟨Y (b) , X (b) − X (a)⟩.

(2.4)

Should we choose an arbitrary division point tj, j ∈ {1, 2, . . . , n − 1}, we will
immediately obtain:

FD =
j∑︂

s=1
⟨Y (ts) , X (ts) − X (ts−1)⟩ +

n∑︂
s=j+1

⟨Y (ts) , X (ts) − X (ts−1)⟩

=
j∑︂

s=1

j∑︂
r=s+1

⟨Y (tr−1) − Y (tr) , X (ts) − X (ts−1)⟩

+
n∑︂

s=j+1

s∑︂
r=j+1

⟨Y (tr) − Y (tr−1) , X (ts) − X (ts−1)⟩

+ ⟨Y (tj) , X (b) − X (a)⟩.

(2.5)

The following theorem provides a foundation for the Love-Young inequality.

Theorem 2.10. Let n, m ∈ N, [a, b] ⊂ R, let D1 = {t1
i }

n
i=0 , D2 = {t2

i }
m
i=0 be

partitions of the interval [a, b]. Assume that ξ1
r are such that ξ1

r ∈
[︂
t1
r−1, t1

r

]︂
,

r = 1, 2, . . . , n, and ξ2
r are such that ξ2

r ∈
[︂
t2
r−1, t2

r

]︂
, r = 1, 2, . . . , m. Let X, Y :

[a, b] → V be functions and let p, q ≥ 1 be real numbers that satisfy 1
p

+ 1
q

> 1.
Then, we have that the inequality⃓⃓⃓⃓
⃓

n∑︂
r=1

⟨︂
Y
(︂
ξ1

r

)︂
, X

(︂
t1
r

)︂
− X

(︂
t1
r−1

)︂⟩︂
−

m∑︂
s=1

⟨︂
Y
(︂
ξ2

s

)︂
, X

(︂
t2
s

)︂
− X

(︂
t2
s−1

)︂⟩︂⃓⃓⃓⃓⃓ ≤

≤ 2
(︄

1 + ζ

(︄
1
p

+ 1
q

)︄)︄(︄
n∑︂

i=1
Sp,q

(︂
t1
i−1, t1

i ; X, Y
)︂

+
m∑︂

i=1
Sp,q

(︂
t2
i−1, t2

i ; X, Y
)︂)︄

(2.6)

holds.
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Proof. Consider a refinement of the partitions D1, D2 denoted by D such that it
contains all ξ1

r , r = 1, 2, . . . , n and all ξ2
r , r = 1, 2, . . . , m. We first show that for

any point ξ ∈ D it holds that

|FD − ⟨Y (ξ) , X (b) − X (a)⟩| ≤ 2
(︄

1 + ζ

(︄
1
p

+ 1
q

)︄)︄
Sp,q (a, b; X, Y ) . (2.7)

If ξ is equal either a or b, the inequality (2.7) is obtained directly by equalities
(2.3), (2.4) and further by applying the inequality (2.2) on ar = Y (tr)−Y (tr−1),
bs = X (ts) − X (ts−1) in the former situation, and on ar = Y (tr−1) − Y (tr),
bs = X (ts) − X (ts−1) in the latter. If ξ is not an end point, by equality (2.5) we
get

|FD − ⟨Y (ξ), X (b) − X (a)⟩| ≤

≤
(︄

1 + ζ

(︄
1
p

+ 1
q

)︄)︄(︂
Sp,q (a, ξ; X, Y ) + Sp,q (ξ, b; X, Y )

)︂
≤ 2

(︄
1 + ζ

(︄
1
p

+ 1
q

)︄)︄
Sp,q (a, b; X, Y ) .

Should the above inequality be applied to intervals
[︂
t1
r−1, t1

r

]︂
, we will have⃓⃓⃓⃓

⃓FD −
n∑︂

i=1

⟨︂
Y
(︂
ξ1

i

)︂
, X

(︂
t1
i

)︂
− X

(︂
t1
i−1

)︂⟩︂⃓⃓⃓⃓⃓ ≤

≤ 2
(︄

1 + ζ

(︄
1
p

+ 1
q

)︄)︄
n∑︂

i=1
Sp,q

(︂
t1
i−1, t1

i ; X, Y
)︂

by triangle inequality. Analogous result can be obtained for the partition D2.
Then the left-hand side of inequality (2.6) is less than or equal to the sum⃓⃓⃓⃓
⃓FD −

n∑︂
i=1

⟨︂
Y
(︂
ξ1

i

)︂
, X

(︂
t1
i

)︂
− X

(︂
t1
i−1

)︂⟩︂⃓⃓⃓⃓⃓+
⃓⃓⃓⃓
⃓FD −

m∑︂
i=1

⟨︂
Y
(︂
ξ2

i

)︂
, X

(︂
t2
i

)︂
− X

(︂
t2
i−1

)︂⟩︂⃓⃓⃓⃓⃓ ,
which is bounded by

2
(︄

1 + ζ

(︄
1
p

+ 1
q

)︄)︄(︄
n∑︂

i=1
Sp,q

(︂
t1
i−1, t1

i ; X, Y
)︂

+
m∑︂

i=1
Sp,q

(︂
t2
i−1, t2

i ; X, Y
)︂)︄

.

This proves the claim.

2.2 P-variation
Notice that the quantity Sp,q (a, b; X, Y ) need not be finite. The proved inequali-
ties would hence be relinquished of any meaning. In what follows, we introduce
the concept of p-variation of a function to avoid such issues. The p-variation is
defined as in Lyons et al. [7].
Definition 2.11. Let p ≥ 1 be a real number and let I be an interval. Assume
that X : I → V is a function. We define the p-variation of X on I by the relation

∥X∥p,I =
(︄

sup
D

n∑︂
i=1

∥X (ti) − X (ti−1)∥p

)︄ 1
p

,

where the supremum is taken over all partitions of I.
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Remark 2.12. It can be easily verified that ∥X∥p,I = 0 ⇐⇒ X is constant on I.

It should be stressed that the definition is different from

[X]p,I =
(︄

lim
|D|→0

n∑︂
i=1

∥X (ti) − X (ti−1)∥p

)︄ 1
p

,

which is frequently used in stochastic calculus, see e.g. Nualart [11]. A trajectory
of a Brownian motion B : t → Bt (ω) constitutes a suitable example for the
difference in these two definitions. Whereas its 2-variation ∥B∥2,[0,T ] is almost
surely infinite (see Freedman [4]), its quadratic variation [B]2,[0,T ], defined as the
limit in mean square, is finite and equal to the length of the interval T , see
Maslowski et al. [9].

Lemma 2.13. Whenever ∥X∥q,I ̸= 0 for some real q ≥ 1, the function p ↦→
log

(︂
∥X∥p

p,I

)︂
is convex.

Proof. It suffices to show that h (p) = log
(︃

n∑︁
i=1

∥ai∥p
)︃

is convex in p ∈ [1, ∞),
where ai are elements of an inner product space representing the differences
X (ti) − X (ti−1) and there exists j ∈ {1, ..., n} satisfying aj ̸= 0. By the Hölder
inequality we obtain that

n∑︂
i=1

∥ai∥λx ∥ai∥(1−λ)y ≤
(︄

n∑︂
i=1

∥ai∥
λx
λ

)︄λ (︄ n∑︂
i=1

∥ai∥
(1−λ)y

1−λ

)︄1−λ

holds for any real x, y ≥ 1. Let λ ∈ (0, 1). Then for every x, y ≥ 1 the following
inequality

h (λx + (1 − λ) y) = log
(︄

n∑︂
i=1

∥ai∥λx ∥ai∥(1−λ)y
)︄

≤ λ log
(︄

n∑︂
i=1

∥ai∥x

)︄
+ (1 − λ) log

(︄
n∑︂

i=1
∥ai∥y

)︄

is satisfied. Thus h (p) is indeed convex on [1, ∞).

The following lemma describes the inequalities concerning p-variation.

Lemma 2.14. Let X : I → V be a function of finite p1-variation, p1 ≥ 1.
(i) For a real number p2 satisfying p1 ≤ p2 < ∞:

∥X∥p1,I ≥ ∥X∥p2,I .

(ii) For real numbers p2 and p3 satisfying p1 < p2 < p3 < ∞:(︂
∥X∥p2

p2,I

)︂p3−p1 ≤
(︂
∥X∥p1

p1,I

)︂p3−p2 (︂∥X∥p3
p3,I

)︂p2−p1
. (2.8)

Proof. Let ai ∈ V , i = 1, 2, . . . , n, where n ∈ N. In the first case, it is again
enough to show (︄

n∑︂
i=1

∥ai∥p1

)︄ 1
p1

≥
(︄

n∑︂
i=1

∥ai∥p2

)︄ 1
p2

. (2.9)
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We prove this part likewise as in Hardy et al. [6]. We assume that
n∑︁

i=1
∥ai∥p1 ̸= 0.

Otherwise, inequality (2.9) holds trivially. Let us denote

Q =
n∑︂

i=1
∥ai∥p1 , bi = ∥ai∥

Q
1

p1

, i = 1, 2, . . . , n.

Since bi ≤ 1 for each i = 1, 2, . . . , n, it is readily seen that bp1
i ≥ bp2

i . We obtain
the following chain of relations:

Q =
n∑︂

i=1
∥ai∥p1 = Q

n∑︂
i=1

bp1
i ≥ Q

n∑︂
i=1

bp2
i = Q

1− p2
p1

n∑︂
i=1

∥ai∥p2

This can be rewritten as
Q

p2
p1 ≥

n∑︂
i=1

∥ai∥p2 ,

which proves inequality (2.9).
The second part of the claim follows by Lemma 2.13. If X is constant on I,

the inequality holds. If not, then from convexity of the function h we obtain

log
(︃

n∑︁
i=1

∥ai∥p2
)︃

− log
(︃

n∑︁
i=1

∥ai∥p1
)︃

p2 − p1
≤

log
(︃

n∑︁
i=1

∥ai∥p3
)︃

− log
(︃

n∑︁
i=1

∥ai∥p1
)︃

p3 − p1
.

Since the logarithm is non-decreasing, we get

⎛⎜⎜⎝
n∑︁

i=1
∥ai∥p2

n∑︁
i=1

∥ai∥p1

⎞⎟⎟⎠
1

p2−p1

≤

⎛⎜⎜⎝
n∑︁

i=1
∥ai∥p3

n∑︁
i=1

∥ai∥p1

⎞⎟⎟⎠
1

p3−p1

which implies(︄
n∑︂

i=1
∥ai∥p2

)︄p3−p1

≤
(︄

n∑︂
i=1

∥ai∥p1

)︄p3−p2 (︄ n∑︂
i=1

∥ai∥p3

)︄p2−p1

.

This is the desired conclusion.

Definition 2.15. We say that

sup
t,s∈I

∥X (t) − X (s)∥

is the oscillation of a function X : I → V and we denote it by Osc (X)I .

The next proposition connects the oscillation of a function to p-variation.

Proposition 2.16. Let X : [a, b] → V be a function of finite q-variation for some
q ≥ 1. Then

Osc (X)[a,b] = lim
p→∞

∥X∥p,[a,b] .
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Proof. We have that for any real p ≥ 1 the relations

sup
t,s∈[a,b]

∥X (t) − X (s)∥ ≤
(︄

sup
t,s∈[a,b]

∥X (t) − X (s)∥p

)︄ 1
p

≤ ∥X∥p,[a,b]

hold. By letting p → ∞, one immediately gets the first inequality. In order to
prove supt,s∈[a,b] ∥X (t) − X (s)∥ ≥ limp→∞ ∥X∥p,[a,b] , we start with the following
estimate. Let p > q ≥ 1 and let D = {ti}n

i=0 be an arbitrary partition of the
interval [a, b]. Then it holds that

n∑︂
i=1

∥X (ti) − X (ti−1)∥p =
n∑︂

i=1
∥X (ti) − X (ti−1)∥p−q ∥X (ti) − X (ti−1)∥q

≤ Osc (X)p−q
[a,b]

n∑︂
i=1

∥X (ti) − X (ti−1)∥q

≤ Osc (X)p−q
[a,b] ∥X∥q

q,[a,b]

and we thus obtain

∥X∥p
p,[a,b] ≤ ∥X∥q

q,[a,b] Osc (X)p−q
[a,b] (2.10)

which is equivalent to

∥X∥p,[a,b] ≤ ∥X∥
q
p

q,[a,b] Osc (X)
1− q

p

[a,b] .

The term ∥X∥q,[a,b] is finite by assumption and hence the claim is proved by taking
the limit p → ∞.

Definition 2.17. For p ≥ 1, we denote by νp (I, V ) the set of all functions
X : I → V of finite p-variation, that is for which ∥X∥p,I < ∞.

Remark 2.18. Lemma 2.14 (i) gives νp1 (I, V ) ⊂ νp2 (I, V ) as soon as 1 ≤ p1 ≤
p2 < ∞.

Definition 2.19. We say that the function X : I → V is Hölder continuous with
exponent α ∈ (0, 1] if there exists a positive constant C with the property that for
every pair s, t ∈ I the inequality ∥X (s) − X (t)∥ ≤ C|s − t|α holds.

Proposition 2.20. Let p ≥ 1. Assume that X : [a, b] → V is a Hölder continuous
function with exponent 1

p
. Then X ∈ νp ([a, b] , V ) .

Proof. Choose an arbitrary partition D = {ti}n
i=0 of the interval [a, b]. By the

definition of Hölder continuity, one may estimate
n∑︂

i=1
∥X (ti) − X (ti−1)∥p ≤ Cp

n∑︂
i=1

|ti − ti−1| = Cp (b − a) . (2.11)

The right-hand side of (2.11) is independent of the chosen partition. Having
obtained a uniform bound, the inequality ∥X∥p,[a,b] ≤ C (b − a)

1
p follows. This

concludes the proof.
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Lemma 2.21. Let D = {ti}n
i=0 be a partition of the interval [a, b]. Assume that

X ∈ νp ([a, b] , V ) , Y ∈ νq ([a, b] , V ) and Osc (X)[ti−1,ti] < γ, i = 1, 2, . . . , n. Then
if p1 > p ≥ 1, q1 > q ≥ 1 satisfy 1

p1
+ 1

q1
> 1, we obtain

n∑︂
i=1

∥X∥p1,[ti−1,ti] ∥Y ∥q1,[ti−1,ti] ≤ γ
p1−p

p1 ∥X∥
p

p1
p,[a,b] ∥Y ∥q1,[a,b] . (2.12)

Proof. First we make the following observation. For any partition D = {ti}n
i=0 of

[a, b] the inequality (︄
n∑︂

i=1
∥X∥p

p,[ti−1,ti]

)︄ 1
p

≤ ∥X∥p,[a,b]

is satisfied. By formula (2.10) and Corollary 2.4, the left-hand side of (2.12) is
dominated by

n∑︂
i=1

∥X∥
p

p1
p,[ti−1,ti] γ

p1−p

p1 ∥Y ∥q1,[ti−1,ti] ≤

≤ γ
p1−p

p1

(︄
n∑︂

i=1
∥X∥p

p,[ti−1,ti]

)︄ 1
p1
(︄

n∑︂
i=1

∥Y ∥q1
q1,[ti−1,ti]

)︄ 1
q1

. (2.13)

By the observation above, the right-hand side of inequality (2.13) can never exceed

γ
p1−p

p1 ∥X∥
p

p1
p,[a,b] ∥Y ∥q1,[a,b] .

2.3 Regulated functions
Rigorous framework for the theory of regulated functions can be found in Dudley
and Norvaiša [3]. We feature only the basic results from this book which are used
in the proof of Theorem 2.30. From now on, we suppose that the space V is
additionaly complete, i.e. a Hilbert space. If we say that a limit exists, it means
that the limit is finite. Let us begin with a common lemma.

Lemma 2.22. Let X : [a, b] → V be a function and let z ∈ [a, b). The following
two statements are equivalent.
(i) The limit limt→z+ X (t) exists.
(ii) ∀ϵ > 0 ∃δ > 0 ∀e, f ∈ [a, b] , 0 < e − z < δ, 0 < f − z < δ the inequality
∥X (e) − X (f)∥ < ϵ holds.

Proof. The forward implication (i) ⇒ (ii) is elementary. Assume that (ii) holds
and choose an arbitrary ϵ > 0. Consider an arbitrary sequence {en}∞

n=1 converging
to z and satisfying en > z for every n ∈ N. The sequence {X (en)}∞

n=1 is evidently
Cauchy and since V is complete, it is also convergent to some L ∈ V . By
assumption, there must exist δ > 0 and N ∈ N such that whenever 0 < t − z < δ
and n ≥ N , the inequality ∥X (t) − X (en)∥ < ϵ holds. Subsequently, we have
found δ such that whenever t satisfies 0 < t − z < δ, in addition we obtain
∥X (t) − L∥ < 2ϵ, i.e. L is the wanted limit. The proof is therefore concluded.
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Definition 2.23. Function X : [a, b] → V is said to be regulated if for every
z ∈ [a, b) there exists the limit X (z+) = limt→z+ X (t) and for every z ∈ (a, b]
there exists the limit X (z−) = limt→z− X (t).

Lemma 2.24. Assume that X ∈ νp ([a, b] , V ), p ≥ 1. Then X is regulated.

Proof. Choose z ∈ [a, b). We will show that limt→z+ X (t) exists. Suppose the
limit does not exist. Then it needs be either infinite or it cannot exist. If there
existed a right neighbourhood of z in which X was unbounded, we would have
∥X∥p

p,[a,b] ≥ ∥X (z) − X (t)∥p, t ∈ (z, b] , which contradicts the assumption that
X ∈ νp ([a, b] , V ). On the other hand, if X is bounded in the right neighbourhood
of z and X (z+) does not exist, then by Lemma 2.22, there exist ϵ > 0 and
decreasing sequences {en} , {fn} ⊂ (z, b] converging to z such that for all n ∈ N
one has ∥X (en) − X (fn)∥ ≥ ϵ and where max {en, fn} < min {en−1, fn−1}. If we
now denote T = {e1, f1, e2, f2, . . .}, it is an infinite subset of (z, b] of different real
numbers. Choose a partition D = {ti}n

i=0 of [a, b] with m division points from T .
We immediately get that ∥X∥p

p,[a,b] ≥ mϵp. Since T is infinite, m can be arbitrarily
large, which again contradicts the finiteness of p-variation of X. Thus, X must
be a regulated function.

Remark 2.25. By Lemma 2.24, we can meaningfully include also the points t+
and t− amongst division points of a partition.

Lemma 2.26. Let X : [a, b] → V be a regulated function. Then, for every
ϵ > 0 there exist finitely many points z ∈ (a, b) such that at least one of the three
following inequalities holds:
∥X (z+) − X (z)∥ ≥ ϵ or ∥X (z) − X (z−)∥ ≥ ϵ or ∥X (z+) − X (z−)∥ ≥ ϵ.

Proof. We will show only ∥X (z+) − X (z)∥ > ϵ, z ∈ [a, b). The rest can be
proved similarly. Let Eϵ = {z ∈ [a, b) : ∥X (z+) − X (z)∥ ≥ ϵ}. Supppose that Eϵ

is infinite and choose an arbitrary sequence {zn}∞
n=1 ⊂ E of different points (this

sequence is bounded). Without loss of generality, we can assume this sequence
is decreasing. By the Bolzano-Weierstrass theorem, there exists a convergent
subsequence {znk

}∞
k=1 with the limit Z ∈ [a, b). Nevertheless, for every k ∈ N we

obtain ∥X (znk+) − X (znk
)∥ ≥ ϵ and znk

> Z. By Lemma 2.22, X (Z+) does not
exist. That contradicts the assumption of the claim.

Corollary 2.27. Let X : [a, b] → V be a regulated function. Then it has at most
countable points of discontinuity.

Proof. Let us denote for n ∈ N

En =
{︄

z ∈ (a, b) : max
{︂

∥X (z+) − X (z−)∥ , ∥X (z+) − X (z)∥ ,

∥X (z) − X (z−)∥
}︂

≥ 1
n

}︄
.

The sets En are finite by Lemma 2.26 and hence, their union ⋃︁∞
n=1 En (which

differs from the set of all discontinuity points by a maximal number of two points)
is countable.
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The previous proofs were obtained with the help of a few hints. The statement
and the proof of the last lemma is the one in the previously mentioned book
Dudley and Norvaiša [3].

Lemma 2.28. Assume that X : [a, b] → V is a regulated function and let
ϵ > 0 be given. Let [c, d] ⊂ [a, b] be a subinterval such that for all z ∈ (c, d) :
∥X (z+) − X (z)∥ < ϵ and ∥X (z) − X (z−)∥ < ϵ. Assume further that ∥X (c+) −
X (c) ∥ < ϵ and ∥X (d) − X (d−)∥ < ϵ. In this case, there exists δ > 0 such that
whenever u, v ∈ [c, d] satisfy |u − v| < δ, the inequality

∥X (u) − X (v)∥ < 2ϵ (2.14)

holds.

Proof. First we observe that the inequalities ∥X (z+) − X (z)∥ < ϵ and ∥X(z) −
X(z−)∥ < ϵ imply ∥X (z+) − X (z−)∥ < 2ϵ. Were the inequality (2.14) not
to hold, there would exist sequences {en}∞

n=1 , {fn}∞
n=1 ⊂ [c, d] satisfying 0 <

en − fn < 1
n

and ∥X (en) − X (fn)∥ ≥ 2ϵ. By the Bolzano-Weierstrass theorem,
a subsequence {enk

}∞
k=1 converging to some y ∈ [c, d] can be found. What is

more, limk→∞ fnk
= y. Thus, we can find a subsequence

{︂
nkj

}︂∞

j=1
⊂ {nk}∞

k=1,
abbreviated to {m}∞

m=1, such that one of the following possibilities holds: If
em < y, m ∈ N, then X (y−) does not exist. If fm ≥ y, m ∈ N, then either X (y+)
does not exist or ∥X (y+) − X (y)∥ ≥ 2ϵ . If fm < y ≤ em, m ∈ N, then either
∥X (y+) − X (y−)∥ ≥ 2ϵ or ∥X (y) − X (y−)∥ ≥ 2ϵ. All three cases contradict the
assumptions of the claim. The inequality (2.14) must therefore hold.

2.4 Riemann-Stieltjes integral
In this section, conditions for the integrability in the Riemann-Stieltjes sense
are presented. For simplicity, we define the integral solely for complex-valued
functions. Generalisation to Hilbert spaces and, more generally, Banach spaces,
can be made, see Lyons et al. [7].

Definition 2.29. Assume that X, Y : [a, b] → C are functions. Let D = {ti}n
i=0

be a partition of [a, b] and for i = 1, 2, . . . , n, let ξi ∈ [ti−1, ti]. The function Y
is said to be integrable on the interval [a, b] with respect to the function X in the
Riemann-Stieltjes sense if the following limit

lim
|D|→0

n∑︂
i=1

Y (ξi) (X (ti) − X (ti−1))

exists. That is, it holds that there exists a complex number
∫︁ b

a Y dX such that for
every ϵ > 0 there exists δ > 0 such that for each partition D = {ti}n

i=0 of the
interval [a, b] satisfying |D| < δ and for every ξi ∈ [ti−1, ti] :⃓⃓⃓⃓

⃓
∫︂ b

a
Y dX −

n∑︂
i=1

Y (ξi) (X (ti) − X (ti−1))
⃓⃓⃓⃓
⃓ < ϵ.

In such event, this limit
∫︁ b

a Y dX is called the Riemann-Stieltjes integral of Y with
respect to X on the interval [a, b].
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A sufficient condition for the existence of the Riemann-Stieltjes integral of
Y with respect to X on the interval [a, b] is that for every ϵ > 0 and any two
partitions D1 = {t1

i }
n
i=0, D2 = {t2

i }
m
i=0 of [a, b] with the property |D1|, |D2| < δ,

the following inequality⃓⃓⃓⃓
⃓

n∑︂
i=1

Y
(︂
ξ1

i

)︂ (︂
X
(︂
t1
i

)︂
− X

(︂
t1
i−1

)︂)︂
−

m∑︂
i=1

Y
(︂
ξ2

i

)︂ (︂
X
(︂
t2
i

)︂
− X

(︂
t2
i−1

)︂)︂⃓⃓⃓⃓⃓ < ϵ

holds, where ξ1
i ∈

[︂
t1
i−1, t1

i

]︂
, i = 1, 2, . . . , n, ξ2

i ∈
[︂
t2
i−1, t2

i

]︂
, i = 1, 2, . . . , m.

2.4.1 Love-Young inequality
We shall now see the results of the previous sections as we bring them all together
in order to find sufficient conditions for the Riemann-Stieltjes integrability as well
as to prove the Love-Young inequality per se.
Theorem 2.30 (Love-Young). Let p, q ≥ 1 satisfy 1

p
+ 1

q
> 1 and let ξ ∈ [a, b].

Assume that the functions X ∈ νp ([a, b] ,C) , Y ∈ νq ([a, b] ,C) have no common
discontinuities. Then Y is integrable with respect to X on the interval [a, b] in
the Riemann-Stieltjes sense. Moreover, the inequality⃓⃓⃓⃓

⃓
∫︂ b

a
(Y (t) − Y (ξ)) dX (t)

⃓⃓⃓⃓
⃓ ≤ 2

(︄
1 + ζ

(︄
1
p

+ 1
q

)︄)︄
∥X∥p,[a,b] ∥Y ∥q,[a,b] (2.15)

is satisfied.
Proof. Choose an arbitrary ϵ > 0 and partitions D1 = {t1

i }
n
i=0 and D2 = {t2

i }
m
i=0

such that |D1|, |D2| < δ. δ is to be chosen later. It is obvious that for any
subinterval [c, d] ⊂ [a, b] the inequality Sp,q (c, d; X, Y ) ≤ ∥X∥p,[c,d] ∥Y ∥q,[c,d] holds
by definition. Thus, by Theorem 2.10, to prove the existence of the Riemann-
Stieltjes integral, it suffices to show that there exist p1, q1 ≥ 1 satisfying 1

p1
+ 1

q1
> 1

such that the following bound
n∑︂

i=1
∥X∥p1,[t1

i−1,t1
i ] ∥Y ∥q1,[t1

i−1,t1
i ] <

ϵ

2
(︂
1 + ζ

(︂
1
p1

+ 1
q1

)︂)︂ (2.16)

holds as well as a corresponding inequality for the partition D2. By Lemma
2.24 and Lemma 2.26, for every γ1 > 0 there exist finitely many discontinuities
ξ1

1 , ..., ξ1
n ∈ [a, b) of X satisfying ∥X (ξi,+) − X (ξi)∥ ≥ γ1. The other two types of

discontinuities, as described in section 2.3, can be treated similarly. By Lemma
2.28, δ1 > 0 can be found such that for a subinterval [c, d] ⊂ [a, b]: |d − c| < δ1
it holds that ∥X (d) − X (c)∥ < 2γ1 as soon as [c, d] does not contain any of the
discontinuities ξ1

1 , ..., ξ1
n (and any of the other two types of discontinuities). In a

similar manner, δ2 > 0 can be found for the function Y and any γ2 > 0. For there
are no common discontinuities of X and Y , we can find δ ≤ min {δ1, δ2} such that
there is no interval in the partition D1 which would contain a discontinuity point of
both X and Y . Subsequently, either Osc (X)[t1

i−1,t1
i ] < 2γ1 or Osc (Y )[t1

i−1,t1
i ] < 2γ2

must hold. Let us now choose p1 > p, q1 > q still satisfying 1
p1

+ 1
q1

> 1 and set

γ1 := 1
2

⎛⎜⎝ ϵ

2 ∥X∥
p

p1
p,[a,b] ∥Y ∥q1,[a,b]

(︂
1 + ζ

(︂
1
p1

+ 1
q1

)︂)︂
⎞⎟⎠

p1
p1−p

.
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Lemma 2.21 then implies inequality (2.16). Likewise, γ2 can be obtained on the
intervals with the property that Osc (Y )[t1

i−1,t1
i ] < 2γ2. Inequality (2.15) is a direct

consequence of (2.7).
Remark 2.31. By Proposition 2.20, instead of the assumptions X ∈ νp ([a, b] ,C)
and Y ∈ νq ([a, b] ,C) it is sufficient that X is a Hölder continuous function with
exponent α and Y is Hölder continuous with exponent β such that α + β > 1.
Note, however, this condition is not necessary.
Remark 2.32. Young proved a more general version of the integrability of Y
with respect to X. We will address the definitions, though this result will not be
reviewed here in more detail and we refer the reader to the original paper Young
[14].

Let [a, b] be an interval and let D = {ti}n
i=0 be its partition. Further let

ξi ∈ [ti−1, ti], i = 1, 2, . . . , n. We say that the integral
∫︁ b

a Y dX exists in the so
called Moore-Pollard sense if for every ϵ > 0 there exists a finite set E such that
it holds that ⃓⃓⃓⃓

⃓
∫︂ b

a
Y dX −

n∑︂
i=1

Y (ξi) (X (ti) − X (ti−1))
⃓⃓⃓⃓
⃓ < ϵ

as soon as the partition D includes all points of the set E.
Moreover, if X and Y are regulated functions, the integral

∫︁ b
a Y dX is said to

exist in the generalised Moore-Pollard sense with the value A + B if the integral
A =

∫︁ b
a Y (t+) dX (t−) exists in the Moore-Pollard sense and additionally the sum

B =
∑︂
t∈F

(Y (t) − Y (t+)) (X (t+) − X (t−))

converges absolutely. Here, F denotes the set of all shared discontinuity points of
X and Y . Notice that the set F is by Corollary 2 countable. Young proved that if
X ∈ νp ([a, b] ,C) and Y ∈ νq ([a, b] ,C) have neither any common discontinuities
on the right nor on the left, the integral

∫︁ b
a Y dX exists in the Moore-Pollard sense.

The integral
∫︁ b

a Y dX does exist in the generalised Moore-Pollard sense as soon as
it exists in the Moore-Pollard sense or in the Riemann-Stieltjes sense.

2.4.2 Insufficiency of Riemann-Stieltjes integration
In what follows, we are to provide an example where the conclusion of Theorem
2.10 fails should the condition 1

p
+ 1

q
= 1 not be met. Assume that p = 2, q = 2,

N ∈ N, a ∈ N, a > 1 and let t ∈ (0, 1) . Let X, Y : [0, 1] → C be functions defined
in the following way:

X (t) =
N∑︂

n=1
a− n

2 e−2πiant, Y (t) =
N∑︂

n=1
a− n

2 e2πiant.

Let h ∈ (−1, 1), h ̸= 0 be such that we can choose n0 ∈ N satisfying 2π|h|an0 ≤
1 ≤ 2π|h|an0+1. The following relations will be employed:⃓⃓⃓

e2πianh − 1
⃓⃓⃓
=
√︂

sin2 (2πanh) + (cos (2πanh) − 1)2

=
√︂

2 − 2 cos (2πanh)

=
√

2
√︂

1 − cos (2πanh)
= 2 |sin (πanh)| , n ∈ N,
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n0∑︂
n=1

a
n
2 =

√
a

√
an0 − 1√
a − 1 ,

n0∑︂
n=0

a− n
2 =

√
a√

an0+1

√
an0+1 − 1√

a − 1 ,

∞∑︂
n=0

a− n
2 =

√
a√

a − 1 ,

and

|Y (t + h) − Y (t)| ≤
N∑︂

n=1
a− n

2
⃓⃓⃓
e2πiante2πianh − e2πiant

⃓⃓⃓

=
N∑︂

n=1
a− n

2
⃓⃓⃓
e2πianh − 1

⃓⃓⃓

=
N∑︂

n=1
a− n

2 |2 sin (πanh)| . (2.17)

For every t ≥ 0 it holds that sin (t) ≤ t. Therefore, the right-hand side of inequal-
ity (2.17) is at most

n0∑︂
n=1

a− n
2 2πan|h| + 2

∞∑︂
n=n0+1

a− n
2 =

= 2π|h|
n0∑︂

n=1
a

n
2 + 2

(︄ ∞∑︂
n=0

a− n
2 −

n0∑︂
n=0

a− n
2

)︄

=

√︂
|h|

√
a − 1

⎛⎝2π
√︂

|h|
√

a
(︂√

an0 − 1
)︂

+ 2
⎛⎝ √

a√︂
|h|

−
√

a√︂
|h|

(︄
1 − 1√

an0+1

)︄⎞⎠⎞⎠
≤

√︂
|h|a

√
a − 1

⎛⎝2π
√︂

|h|
√

an0 + 2√︂
|h|an0+1

⎞⎠
which is by our choice of n0 dominated by√︂

|h|a
√

a − 1
(︂√

2π + 2
√

2π
)︂

= 3
√

2πa√
a − 1

√︂
|h| ≤ 32

√︂
|h|.

Consequently, one has S2,2 (0, 1; X, Y ) ≤ 322. Simultaneously, the equalities∫︂ 1

0
Y (t) dX (t) =

∫︂ 1

0
Y (t) X ′ (t) dt

=
N∑︂

n=1

N∑︂
m=1

−2πiam− n+m
2

∫︂ 1

0
e2πit(an−am)dt

= −2πi
N∑︂

n=1

∑︂
m=n

1

= −2πiN

hold. A partition D = {ti}n
i=0 of the interval [0, 1] can be found such that

|FD + 2πiN | < ϵ. It is readily seen that X (1) = X (0) so the left-hand side
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of (2.7) can indeed exceed any finite bound. Therefore, if 1
p

+ 1
q

= 1, the conclu-
sion of Theorem 2.10 need not hold with any finite bound should the right-hand
side of inequality (2.6) be replaced by it.

We finish this section with the integral∫︂ b

a
Y (t) dX (t) (2.18)

in mind. Suppose the functions X and Y are of finite p-variation for p < 2.
Then the integral (2.18) exists in the Riemann-Stieltjes sense. However, as we
will see, the trajectories of Brownian motion possess finite p-variation solely for
p > 2. The Riemann-Stieltjes integral will hence not suffice for probabilists in
this case of the utmost importance. One might argue that this is a shortcoming
of the Riemann-Stieltjes integration theory. Contrariwise, there does not exist a
pathwise linear integration theory that could give meaning to the integral (2.18)
were X and Y trajectories of a Brownian motion. Lyons et al. [7] explains the
problem in more detail.
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3. Fractional Brownian motion
Stochastic processes are used as input noises in many applications. These may
vary greatly, from biology to financial mathematics. Consequently, the theory
of stochastic differential equations had to be developed to find tools for manag-
ing these processes. Main focus is on the (in)ability to integrate with respect
to stochastic processes. A natural example of a simple stochastic process with
reasonable properties is the aforementioned Brownian motion that requires the
independence of the increments. Over the last few decades the utility of pro-
cesses with dependent increments has been shown. Hence, the generalisation of
a Brownian motion - the fractional Brownian motion, was unavoidable. As the
source of information for this chapter we have used papers Nualart [10], Guerra
and Nualart [5] and Nualart [11] on which the following text heavily relies. Let
(Ω, A,P) be a complete probability space. All stochastic processes in this chapter
will be defined on (Ω, A,P) with the state space R. We will feature some of the
elementary properties of fractional Brownian motions.

3.1 Basic properties
Definition 3.1. We say that a continuous time stochastic process {Xt, t ≥ 0} is
Gaussian if for any finite subset F ⊂ [0, ∞) the random vector {Xt, t ∈ F} has
joint normal distribution.

Any Gaussian process is given by its expectation function and covariance
function. This brings us to the important definition.

Definition 3.2. A Gaussian process {Xt, t ≥ 0} is said to be a (standard) frac-
tional Brownian motion if the following criteria are met:
(i) X0 = 0 P-almost surely.
(ii) EXt = 0, t ∈ [0, ∞) .
(iii) For s, t ∈ [0, ∞)

EXsXt = 1
2
(︂
s2H + t2H − |t − s|2H

)︂
, (3.1)

where H ∈ (0, 1) denotes the so-called Hurst parameter.

Remark 3.3. If H = 1
2 , the covariance function is EXsXt = min{s, t}. The

resulting process is the standard Brownian motion which is also called the Wiener
process.

It is possible to observe one of the significant properties of a fractional Brow-
nian motion - self-similarity as a consequence of formula (3.1). Let a > 0 and
X be the fractional Brownian motion of Hurst parameter H. Then for any fi-
nite set F ⊂ [0, ∞) the distributions of the random vectors

{︂
aHXt, t ∈ F

}︂
and

{Xat, t ∈ F} coincide. Another direct consequence of formula (3.1) is the variance
of increments of a fractional Brownian motion, for which it holds that

E
(︂
(Xt − Xs)2

)︂
= EX2

t + EX2
s −

(︂
s2H + t2H − |t − s|2H

)︂
= |t − s|2H .
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Therefore, fractional Brownian motions have stationary increments, i.e. the prob-
ability distribution of Xt − Xs depends solely on the difference t − s. As a result
of the standard normal distribution, the even moments satisfy

E
(︂
(Xt − Xs)2k

)︂
= 1 · 3 · 5 · . . . · (2k − 1) |t − s|2Hk , k ∈ N. (3.2)

Moreover, consider the increments Xt2 − Xt1 and Xt4 − Xt3 of a fractional
Brownian motion where 0 ≤ t1 < t2 ≤ t3 < t4. The following equalities hold for
its covariance function:

E ((Xt4 − Xt3) (Xt2 − Xt1)) = E (Xt4Xt2 + Xt3Xt1 − Xt4Xt1 − Xt3Xt2) (3.3)

= 1
2
(︂

|t4 − t1|2H + |t3 − t2|2H − |t4 − t2|2H

− |t3 − t1|2H
)︂
.

Were we to set t4 − t2 = t3 − t1 = n, n ∈ N and t2 − t1 = 1, we would have that
the right-hand side of (3.3) equals

ρH (n) := 1
2
(︂
(n + 1)2H + (n − 1)2H − 2n2H

)︂
.

This identity can be used to show positive correlation (ρH (n) > 0 for large n)
of the increments for H > 1

2 , negative correlation (ρH (n) < 0 for large n) of the
increments for H < 1

2 or independence for H = 1
2 (i.e. Brownian motion). For

more details, see e.g. Nualart [10].

3.2 P-variation of the trajectories
One property of the fractional Brownian motion, which is actually crucial for us
in order to address its p-variation, has not yet been given. How “continuous”
are its trajectories? We shall first see that there exists a “modified” continuous
process of a fractional Brownian motion whose trajectories are Hölder continuous.

Definition 3.4. Let {Xt, t ≥ 0} and {Yt, t ≥ 0} be stochastic processes. The
process X is said to be a modification of the process Y if the equality

P (ω ∈ Ω : Xt (ω) = Yt (ω)) = 1

holds for every t ≥ 0.

It is not demanding to verify that if a process X is a modification of a process
Y , their finite-dimensional distributions are identical. In particular, let X be a
modification of a fractional Brownian motion Y . Then X is a fractional Brownian
motion as well. Next, we present one of Kolmogorov’s results that can be found
proved in Bauer [1].

Theorem 3.5 (Kolmogorov continuity theorem). Let {Xt, t ≥ 0} be a stochastic
process with the state space Rn, n ∈ N. Assume that there exist real numbers
a, b, c > 0 such that the inequality

E (∥Xt − Xs∥a) ≤ c |t − s|1+b (3.4)
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is satisfied for s, t ∈ [0, ∞). Then there exists a continuous modification of the
process {Xt, t ≥ 0} still satisfying (3.4). Furthermore, almost all trajectories of
this modification Xω : t ↦→ Xt (ω), t ∈ [0, T ], T > 0, are Hölder continuous with
every exponent γ ∈

(︂
0, b

a

)︂
.

Theorem 3.6. Let {Xt, t ∈ [0, T ]} be the fractional Brownian motion of Hurst
parameter H. Then there exists its modification almost all trajectories of which
have finite p-variation for p > 1

H
.

Proof. Choose an arbitrary k ∈ N and set the constants a = 2k, b = 2Hk − 1
and c = 1 · 3 · . . . · (2k − 1). The inequality (3.4) is satisfied as a result of formula
(3.2). Almost all trajectories of the modification from Theorem 3.5 are Hölder
continuous with exponent strictly smaller than

2Hk − 1
2k

= H − 1
2k

,

where k ∈ N can be chosen arbitrarily large. Hence, we see that the trajectories
are in fact Hölder continuous with every exponent γ ∈ (0, H). Therefore, by
Proposition 2.20, the trajectories of the process {Xt, t ∈ [0, T ]} are of finite 1

γ
-

variation as soon as γ ∈ (0, H), which is the desired conclusion.

Remark 3.7. The trajectories of a fractional Brownian motion can be deemed
to be Hölder continuous with exponent γ ∈ (0, H) P-almost surely. From now on,
we consider this modification.

Remark 3.8. The Hurst parameter H affects the regularity of the trajectories of
fractional Brownian motions in the sense that the larger the H, the smoother the
trajectories become.

We conclude this section with the non-differentiability attribute.

Theorem 3.9. Almost all trajectories of a fractional Brownian motion are no-
where differentiable.

Proof. See Biagini et al. [2].

3.3 Existence of the integral
Following the ideas in Motivation, two approaches when addressing the integra-
tion of a stochastic process are usually considered. The previous section provided
a framework to when the pathwise integral∫︂ T

0
YtdXt, (3.5)

where T > 0 and t ↦→ Xt is a trajectory of a fractional Brownian motion, can
be defined as the Riemann-Stieltjes integral. The trajectory t ↦→ Xt is Hölder
continuous with every exponent γ ∈ (0, H). Therefore, by Remark 2.31, if
Y : [0, T ] → R is a Hölder continuous function with exponent δ such that the
inequality γ +δ > 1 holds, the integral (3.5) exists in the Riemann-Stieltjes sense.
In particular, it is sufficient for Y to be Hölder continuous with an exponent that
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is greater than 1 − H. Similar approach that uses fractional calculus to give
meaning to the integral (3.5) can be found in Zähle [15]. However, Theorem 2.30
bears an unfortunate implication for the Brownian motion. In spite of its many
applications, we cannot give a meaning to the integral

∫︁ T
0 ZtdBt, where t ↦→ Bt

is a trajectory of a Brownian motion, when Z is not regular enough. Brownian
motions possess finite p-variation solely for p > 2 which clearly prevents us from
defining the integral ∫︂ T

0
BtdBt (3.6)

in the Riemann-Stieltjes sense. We shall see the use of (3.6) in the next section.
This is a dire disadvantage of the pathwise approach. In such case, one ought
to turn to the methods of the Itô calculus. Whilst the Itô integral (3.6) exists,
its use is limited to the case H = 1

2 . For a thorough introduction to stochastic
calculus and how it relates to the fractional Brownian motion we encourage the
reader to take a look at Biagini et al. [2] and Nualart [12]. Moreover, the rough
paths theory introduced a way to give meaning to (3.5), where X and Y are
trajectories of the fractional Brownian motion of Hurst parameter H ∈

(︂
0, 1

2

)︂
,

provided extra data is given a priori. See Lyons et al. [7] and Lyons [8].
Regardless, the integral (3.5) is properly defined for any process X satisfying

(3.4) and a real-valued function Y that is Hölder continuous with exponent greater
than 1− b

a
. Similarly, the integral (3.5) can be given meaning to when {Xt, t ≥ 0}

and {Yt, t ≥ 0} are stochastic processes whose regularities are controlled via the
condition (3.4).

3.4 Applications
This section presents some of the results from Lyons [8] and Lyons et al. [7]. Let
us first introduce the iterated integrals and their relation to solving differential
equations. It shall demonstrate the need for the first-order iterated integral (3.6).
The functions in this section, just as the stochastic processes before, are assumed
to be real-valued. We start with a proposition describing the p-variation of the
Riemann-Stieltjes integral.

Proposition 3.10. Let p, q ≥ 1 satisfy 1
p
+ 1

q
> 1. Assume that X ∈ νp ([a, b] ,C) ,

Y ∈ νq ([a, b] ,C) are continuous functions. Then the function z ↦→
∫︁ z

0 YtdXt has
finite p-variation.

Proof. See Lyons et al. [7].

Definition 3.11. Let X : [0, T ] → R be a function of finite p-variation, p ∈ [1, 2),
n ∈ N. We then define its n-th iterated integral by the relation

Xn
0,T =

∫︂
0<un<T

(︄∫︂
0<un−1<un

...
(︃∫︂

0<u1<u2
dXu1

)︃
...dXun−1

)︄
dXun

=
∫︂

0<u1<u2<···<un<T
dXu1dXu2 · · · dXun . (3.7)

Remark 3.12. The integral (3.7) exists in the Riemann-Stieltjes sense according
to Theorem 2.30 and Proposition 3.10.
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Example 3.13. It can be easily verified that

Xn
0,T = (XT − X0)n

n !
holds.

Lemma 3.14. Let X : [0, T ] → R be a function of finite p-variation, p ∈ [1, 2).
The following estimate holds for each k ∈ N:⃓⃓⃓

Xn
0,T

⃓⃓⃓
≤

∥X∥n
p,[0,T ]

n ! . (3.8)

Proof. ⃓⃓⃓
Xn

0,T

⃓⃓⃓
≤ |XT − X0|n

n ! ≤
Osc (X)n

[0,T ]

n ! ,

which is clearly dominated by the right-hand side of (3.8).

Without going into much detail, we will present the motivation behind the
iterated integrals based on the results from Lyons et al. [7] and Lyons [8] where
we refer the reader for a thorough approach. Let X : [0, T ] → R be a continuous
function of bounded 1-variation. We consider the simple case when f : R → R is
a function defined by the relation f (u) = au, a is a real number. Consider the
differential equation

dYt = f (Yt) dXt (3.9)
that is interpreted in the integral form and Y0 is a given number (initial condition).
The solution to (3.9) can be obtained in the form of the convergent series

Yt = Y0 +
∞∑︂

n=1
fn (Y0) Xn

0,t,

where fn (Y0) = f (f (... (Y0)))⏞ ⏟⏟ ⏞
n-times

, see Lyons et al. [7]. Should we additionally assume

that Xt is a smooth function, Yt is the solution and f is bounded, we obtain the
consecutive identities:

Yt = Y0 +
∫︂ t

0
dYu1 = Y0 +

∫︂ t

0
f (Yu1) dXu1

= Y0 + f (Y0)
∫︂

0<u1<t
dXu1 +

∫︂ ∫︂
0<u1<u2<t

f (f (Yu1)) dXu1dXu2

= Y0 +
n∑︂

i=1
f (f (· · · f (Y0)))⏞ ⏟⏟ ⏞

i-times

∫︂
· · ·

∫︂
0<u1<u2<···<ui<t

dXu1dXu2 · · · dXui

+
∫︂

· · ·
∫︂

0<u1<u2<···<un+1<t
f (f (· · · f (Yu1))) dXu1dXu2 · · · dXun+1 . (3.10)

In a generel case where f is not of the form f (u) = au, one may come to similar
relations using Taylor expansion, again see Lyons et al. [7]. It is readily seen that,
by Lemma 3.14, the integral (3.10) is in modulus less than or equal to

∞∑︂
i=n+1

(︂
∥f∥ ∥X∥1,[0,T ]

)︂i

i ! ,

which inspires the following remark.
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Remark 3.15. The convergence of the error term (3.10) is exceptionally fast. It
can be seen that the iterated integrals entail an extensive information about the
solution to the equation (3.9). It suffices to find but the first few iterated integrals
for the error to be adequately small.

The aim of the rest of this section is to present a generalisation of the well-
known Peano theorem for existence of a solution to a differential equation. Let I
be a closed bounded interval. Further, let X : I → R be a continuous function,
f : R → R be a linear continuous function and Y0 ∈ R. Consider now the
differential equation

Yt = Y0 +
∫︂ t

0
f (Ys) dXs. (3.11)

Firstly, the integral on the right-hand side of (3.11) must exist. Let hence X
be of finite p-variation and let f ◦ Y be of finite q-variation such that 1

p
+ 1

q
> 1.

However, one would like to impose requirements solely on the functions X and
f , not necessarily on the solution Y . This brings us to the following lemma.
Lemma 3.16. Let p ≥ 1 be a real number. Let Y ∈ νp (I,R) be a function.
Suppose f : R → R is a Hölder continuous function with exponent α ∈ (0, 1].
Then f ◦ Y ∈ ν p

α
(I,R).

Proof. Let f be Hölder continuous with the constant C > 0 and choose an arbi-
trary partition D = {ti}n

i=0 of I. We then have that
n∑︂

i=1

⃦⃦⃦
f (Yti

) − f
(︂
Yti−1

)︂⃦⃦⃦ p
α ≤ C

p
α

n∑︂
i=1

⃦⃦⃦
Yti

− Yti−1

⃦⃦⃦p
≤ C

p
α ∥Y ∥p

p,I .

By the uniformity of the bound, when the supremum over all partitions is taken,
one gets that ∥f ◦ Y ∥ p

α
,I ≤ C ∥Y ∥α

p,I . The claim follows.

Should we suppose for X to be of finite p-variation, we have that it suffices
that 1

p
+ α

p
> 1 holds for the existence of the Riemann-Stieltjes integral (3.11)

(X and f are continuous). Since α ∈ (0, 1] by definition, we get p < 2. Notice
that the trajectories of the standard Brownian motion therefore depict a rather
troublesome example even if the integral is not precisely in the form of (3.6). The
following theorem with its proof can be found in Lyons et al. [7].
Theorem 3.17. Let p ∈ [1, 2) and α ∈ (p − 1, 1]. Let X ∈ νp (I,R) and let
f : R → R be a linear Hölder continuous function with exponent α. For every
initial condition Y0 ∈ R there exists a solution to the differential equation (3.11).

Let us turn back to the first example (1.1). For convenience, let βt ≡ 0 and
let Xt represent the noise so that we get the differential equation

Yt = Y0 +
∫︂ t

0
YsdXs. (3.12)

Evidently f (Y ) = Y is Hölder continuous with exponent 1. Theorem 3.17 yields
that (3.12) indeed admits a solution as soon as X has finite p-variation for some
p ∈ [1, 2).

In Lyons et al. [7], a similar claim concerning the uniqueness of a solution is
proved. This however requires getting acquainted with an “alternative” definition
of Hölder continuous functions with exponent greater than 1 which do not include
only constant functions.
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Conclusion
The primary goal of this thesis was to provide the reader with the complete and
thorough proof of the Love-Young inequality that appeared in Young [14]. The
ideas behind this proof are elementary but intricate at the same time. There
exists a shorter proof of the Love-Young inequality, see e.g. Lyons et al. [7]. Had
we presented it here, we would have obtained the results in a more general setting,
although to the detriment of relying on more advanced techniques.

An example and deterministic models that lead to stochastic integration have
been offered, the limitations of the stochastic as well as of the pathwise integration
theory have been discussed. As far as consequences of the Love-Young inequality
are concerned, the integration theory involving noise of finite p-variation has
been our main interest. We have introduced the fractional Brownian motion as a
generalisation of the Wiener process and, under certain conditions on regularity,
we have given meaning to the Riemann-Stieltjes integrals that involve fractional
Brownian motions as integrators. Differential equations and iterated integrals
have also been mentioned to show specific implications of the pathwise approach.

The main possible extension of the results given in this thesis is the rough
paths theory which is currently in the center of attention and which already has
applications across multiple mathematical fields.
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