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Introduction
The classical mean vector and covariance matrix are the cornerstones in many
multivariate statistical methods. Sometimes, we need to consider their robust
alternatives, because they are extremely sensitive to outliers. Robustness is a
very desired property of an estimator, representing the ability of an estimator to
handle a variety of distributions, including outliers. Robust estimators of location
and scatter are widely used in practice, e.g. in linear regression or principal
component analysis [1]. In this thesis we will show one specific usage, and that
is outlier detection.

Let X1, . . . , Xn be a random sample from a bivariate normal distribution with
the expected value µ and the variance matrix Σ. The question is: how does the
region containing 99 % of the mass of this distribution look like? In other words,
we want to find a set containing a new independent observation generated from
this model with probability 99 %. One possible approach is to take a suitable level
set of the density function, whose probability is 99 %. Every level set of the density
function of a normal distribution forms an ellipse, therefore an appropriate ellipse
will be our confidence region (also called a 99% tolerance ellipse). Moreover, this
ellipse obviously depends only on µ and Σ, therefore if we know µ and Σ, we
can draw it. But how can we proceed if we do not know µ and Σ? How can we
find this confidence region only from data? This and more will be discussed in
Chapter 1. The intuitive approach is to estimate µ and Σ with sample mean and
sample variance matrix to compute the confidence region with them. It is a good
method and we obtain reasonable results.

Figure 1: Importance of using robust estimators. The figure shows 99% to-
lerance ellipse for bivariate data based on robust and non-robust estimations of
the expected value µ and the variance matrix Σ.
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Now, this problem gets much more difficult if our data contains outliers. An
outlying observation, or an outlier, is one that appears to deviate markedly from
other members of the sample in which it occurs. It is hard to define formally
because an outlier can occur by chance in any distribution, but it often indicates
a measurement error. With the outliers, estimates of µ and Σ using the sample
mean and the sample variance are heavily damaged. Therefore, we need to find
their robust alternative. In Figure 1 we can see the difference between computing
the tolerance ellipse using robust and classical methods.

The core of the thesis is the MCD estimator (Minimum Covariance Determi-
nant). It is an estimator of location and scatter, that is very robust. For a whole
class of distributions (including normal), MCD estimator can estimate µ and Σ
consistently regardless of outlying observations. The main idea is to use only a
suitable subset of our data (not outliers), and compute µ and Σ only from this
selection. The definition of the estimator is in Chapter 2. Of course, everything
comes with a price — if we want a robust estimator, we will pay with other
worse properties. In Chapter 3 we will find these properties and discuss possible
improvements.

In Chapter 4, we will present other highly robust estimator called the MVE
estimator (Minimum Volume Ellipsoid). This estimator uses mainly the geometric
interpretation of a tolerance ellipse (or an ellipsoid in more dimensions). The main
idea is the following. Instead of estimating µ and Σ to compute the tolerance
ellipsoid, we will first find an appropriate tolerance ellipsoid to compute µ and Σ.
We can try to fit the smallest possible ellipsoid containing some fraction of the
data (that are not likely to be outliers) and inflate it, such that the ellipsoid will
represent an estimate of the 99% tolerance ellipse. Then we can easily compute
µ and Σ from its location and shape.

We will show that these estimators are the most robust estimators — there
does not exist a “reasonable” estimator that can handle more outliers. Moreover,
we will use these estimators in one application in Section 2.1.

0.0.1 Symbols, notations and definitions
In the entire thesis we assume the following.

Let n, p ∈ N. Let µ ∈ Rp and Σ ∈ PDS(p) be unknown parameters (PDS(p)
denotes the class of positive definite symmetric matrices with dimension p). We
consider X1, . . . , Xn random sample from Np(µ, Σ). Suppose we have data from
this distribution, the i-th observation is denoted by xi = (xi,1, ..., xi,p)t, and stored
in a matrix M = (x1, . . . , xn) ∈ Rp×n.

List of all symbols and notations can be found in Attachment A. There, also
some basic theorems from linear algebra are given that will be used in the thesis.

The most important notations are these: Matrices are denoted by bold capital
letters such as A,B,C, . . . . Random vectors and variables have the same notation
X, Y, . . . . By default we consider vectors as column vectors, x = (x1, . . . , xn)t.
The notation X ∼ Np(µ, Σ) stands for X is the p-dimensional random vector
with normal distribution (with parameters µ ∈ Rp and Σ ∈ Rp×p).

Usually, we consider only normal vectors (possibly contaminated by outliers).
We do not necessarily need this restriction, we can proceed in the entire thesis
similarly with any elliptically symmetric unimodal distribution. Such extensions
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are in detail described in [2]. Formally, we can extend even to any elliptically
symmetric distribution (but not necessary with similar results).

Definition. A distribution with a density f is called elliptically symmetric if f
takes the form

f(x) = kg((x − µ)tΣ−1(x − µ)),

where k ∈ R is a scale factor, g : R → R is a non-increasing continuous function,
and µ ∈ Rp and Σ ∈ PDS(p) are parameters.

Example. Elliptically symmetric distributions are the normal distribution or the
multivariate t-distribution. Another example is the uniform distribution on the
surface of a sphere.

We will use the term location for parameter µ and scatter for parameter Σ.
Note that the scatter is not uniquely determined. If we multiply Σ with a constant
we still obtain the prescription for an elliptically symmetric density function, only
with different function g. Usually, this ambiguity will not be a problem. When
we are in a normal case, location represents the expected value, and scatter
represents the variance matrix. Having a random sample from an elliptically
symmetric distribution of size n, any measurable function L : Rp×n → Rp is
called a location estimator if it does not depend on the unknown parameters.
Also, any measurable function T : Rp×n → PDS(p) is called an estimator of
scatter, if it does not depend on the unknown parameters. Our goal is to find an
estimator of location and scatter with suitable properties.
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1. Classical tolerance ellipsoid
Consider a bivariate normal density function and look at its level set. It is clear
that it forms an ellipse. How does this ellipse look? We will show that it is the
set of points {x ∈ Rp : (x−µ)tΣ−1(x−µ) ≤ c} for a constant c ∈ R. Is this really
an ellipse? If so, what is the area of this ellipse? What are its semi-axes and how
long are they? And how does it generalize to greater dimensions? In this section,
we will answer these questions. Moreover, we will show how to estimate these
ellipsoids only from a given data set.

1.1 Definition and basic properties
Definition. For a given µ ∈ Rp and Σ ∈ PDS(p), we define Mahalanobis dis-
tance of a point x ∈ Rp as

MDµ,Σ(x) =
√

(x − µ)tΣ−1(x − µ).

In other words, the Mahalanobis distance MDµ,Σ(x) describes how far away
the point x is from the centre µ with regard to Σ. Geometrically, the graph of a
function MDµ,Σ : Rp → R forms a cone in Rp+1 with the peak in µ. This function
can be considered as a shifted norm on Rp, where ||x||µ,Σ =

√
(x − µ)tΣ−1(x − µ)

(it is not a norm, because ||x||µ,Σ = 0 ⇐⇒ x = 0 is not fulfilled for µ ̸= 0). Now
we prove a very important lemma, that helps us to understand the properties of
Mahalanobis distances.

Lemma 1. Let Y ∼ Np(µ, Σ) where Σ ∈ PDS(p). Then

(Y − µ)tΣ−1(Y − µ) ∼ χ2
p.

Proof. Because Σ is positive definite, there exists A ∈ Rp×p non-singular, such
that Σ = AAt and Y = AZ + µ for Z ∼ Np(0, Ip) (Theorem A3). Then we can
write

(Y − µ)tΣ−1(Y − µ) = (AZ)t(AAt)−1AZ = ZtAt(At)−1A−1AZ

= ZtZ =
p∑

k=1
Z2

k ∼ χ2
p.

Definition. The 99% tolerance ellipsoid for a given µ ∈ Rp and Σ ∈ PDS(p) is
defined as the set of points x ∈ Rp whose MDµ,Σ(x) ≤

√
χ2

p,0.99, in other notation
{x ∈ Rp : (x − µ)tΣ−1(x − µ) ≤ χ2

p,0.99}.

The tolerance ellipsoid is defined such that it contains 99% of the occurrence
of the random vector.

Of course, usually we do not know what µ and Σ are. In classical methods,
when outliers are not a concern, we can estimate them directly with the sam-
ple mean and the sample variance matrix. Therefore, for x ∈ Rp and observa-
tions x1, . . . , xn will classical Mahalanobis distance take the form MDx,S(x) =
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√
(x − x)tS−1(x − x), where x =

∑n

i=1 xi

n
is the sample mean and where S =∑n

i=1(xi−x)(xi−x)t

n−1 is the sample covariance matrix of observations x1, . . . , xn. Also,
the classical 99% tolerance ellipsoid will take the form {x ∈ Rp : (x − x)tS−1(x −
x) ≤ χ2

p,0.99}.
It is important to notice that the classical tolerance ellipsoid is, in fact, an

ellipsoid. That is valid only for x1, . . . , xn not lying in a hyperplane because only
then it holds S ∈ PDS(p) (Theorem A5).

In the literature, there are several different definitions of what an ellipsoid is.
One of the possible definitions is the following:

Definition. Let c ∈ Rp, and let v1, . . . , vp be an orthonormal basis of Rp. Let
a1, . . . , ap > 0. Then the ellipsoid with the center c, with the semiaxes v1, . . . , vp

of lengths a1, . . . , ap respectively is defined as the set

E = {[x]V ∈ Rp :
p∑

i=1

(xi − ci)2

ai

≤ 1}, (1.1)

where [x]V = ∑p
i=1 xivi is x ∈ Rp expressed in basis V = {v1, . . . , vp}.

Other literature defines an ellipsoid directly as

E = {x ∈ Rp : (x − µ)tΣ−1(x − µ) ≤ c}

for suitable parameters. We can conclude the equivalence of these definitions
from the next theorem.

Theorem 1. The classical 99% tolerance ellipsoid for the observations x1, . . . , xn

lying in a general position is an ellipsoid.

Proof. Let us denote m = χ2
p,0.99 > 0 and c = x. We want to prove that E :=

{x ∈ Rp : (x − c)tS−1(x − c) ≤ m} is an ellipsoid from definition above.
It holds, that matrix S−1 ∈ PDS(p) (Theorem A5). Now, consider the SVD

decomposition (Theorem A1) of S−1 = UDUt for orthogonal U ∈ Rp×p and dia-
gonal D ∈ Rp×p with Di,i > 0 elements on the diagonal. Then

E = {x ∈ Rp : (x − c)tUDUt(x − c) ≤ m}
= {x ∈ Rp : (Ut(x − c))tD(Ut(x − c)) ≤ m}
= {[x]Ut ∈ Rp : (x − c)tD(x − c) ≤ m}

= {[x]U−1 ∈ Rp :
p∑

i=i

(xi − ci)2

m
Di,i

≤ 1},

what is actually the definition of an ellipsoid with the basis U−1. Note, that it is
a set of the eigenvectors of S−1.

Now, we can find the shape of this ellipsoid. It has its centre in c. If
we denote e1, . . . , ep the standard basis of Rp, then its principal semi-axes are
U−1(e1), . . . ,U−1(ep), with lengths m

D1,1
, . . . , m

Dp,p
respectively. Visualization is

given on Figure 1.1.
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1.2 Volume of an ellipsoid
In this section we will find the volume of the classical tolerance ellipsoid, generally
given by

E = {x ∈ Rp : (x − t)tC−1(x − t) ≤ c1}, (1.2)

for some C ∈ PDS(p), t ∈ Rp and c1 > 0. We will use this result in Chapter 4.

Lemma 2. The volume of a p-dimensional ellipsoid E with lengths of its semi-
axes a1, a2, . . . , ap is given by

V (E) = 2
p

πp/2

Γ(p/2)

p∏
i=1

ai.

Proof. It is an easy application of integration using spherical or ellipsoidal coor-
dinates. See [3].

Theorem 2. Let C ∈ PDS(p), t ∈ Rp, c1 > 0. The volume of the p-dimensional
ellipsoid from (1.2) is given by

V (E) = 2
p

πp/2

Γ(p/2)cp
1det(C).

Proof. We aim to prove, that the product of the lengths of the principal semiaxes
is equal to cp

1det(C). Then the proof is complete due to Lemma 2. Let us use the
SVD decomposition (Theorem A1) in the form C−1 = UDUt for diagonal D with
Di,i on the diagonal, and U an orthogonal matrix. In the proof of Theorem 1 we
showed that E is an ellipsoid with principal semiaxes with lengths c1

D1,1
, . . . , c1

Dp,p
.

But it is well known that in the SVD decomposition Di,i are the eigenvalues of
C−1. Now we use that a determinant of a matrix is the product of its eigenvalues.
Therefore, the product of the length of the principal semi axes of E is equal to∏p

i=1
c1
Di,i

= cp
1∏p

i=1 Di,i
= cp

1
det(C−1) = cp

1det(C) what we wanted to prove.

Remark. Let c1 > 0 . For every C ∈ PDS(p), t ∈ Rp there exists a uniquely
determined ellipsoid with the form (1.2). This implication can be reversed. For
every ellipsoid there exists a uniquely determined C ∈ PDS(p), t ∈ Rp such
that this ellipsoid has the form from (1.2). Therefore, estimating the location
and scatter of an elliptically symmetric distribution is equivalent with finding an
ellipsoid which is a level set of the density function.
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Figure 1.1: We concluded that the 99% tolerance ellipsoid computed from
x1, . . . , xn will have its centre in x and semi axes U−1(e1), . . . ,U−1(ep) with lengths
χ2

p,0.99
D1,1

, . . . ,
χ2

p,0.99
Dp,p

(where S−1 = UDUt is the SVD decomposition, Di,i is the i-th
diagonal element of D and e1, . . . , ep is the standard basis of Rp). We also con-
cluded that the volume of this ellipsoid equals Kpdet(S) for some constant Kp

depending only on the dimension p.
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2. MCD estimator
One of the most commonly used robust estimators is the MCD estimator of
location and scatter.

The main idea of the MCD estimator is, that we look only at some of the
observations and compute the location and scatter only from them. But which
h ≤ n observations should we choose? As long as we are in an elliptically sym-
metric distribution, the most suitable observations are those that are closest to
each other, because they tend to be in the centre of the distribution. Roughly
speaking, if there are many of them close together, most likely they will not be er-
ror measurements. The term “close” can be mathematically interpreted in many
ways, each estimator then takes a different interpretation.

The MCD estimator considers the points with the minimal determinant of the
sample covariance matrix. As we can see in Figure 2.1, if we take only a fraction
of our dataset, points in the middle tend to have a smaller determinant of the
sample covariance matrix (represented by the volume of the ellipses). From the
fraction of points in the centre of the distribution, we can compute the sample
covariance matrix. We will show, that by multiplying this sample covariance
matrix by a suitable constant, we will obtain a consistent estimator of Σ (for
normal distributions).

We can now move on to the formal definition of the MCD estimator.

Definition. The raw MCD estimator with parameter h ∈ N, where n/2 + 1 ≤
h ≤ n, defines the mean and covariance matrix as follows:

µ̂MCD is the mean of those h observations whose determinant of the sample
covariance matrix is minimal.

Σ̂MCD is the corresponding covariance matrix multiplied by a consistency fac-
tor c0 = q/Fχ2

p+2
(χ2

p,q) where q = h/n and Fχ2
p+2

is the distribution function of the
chi-squared distribution with p + 2 degrees of freedom.

Figure 2.1: Points in the middle of the distribution tend to be more closely
packed. Therefore, they have smaller determinant of the covariance matrix and
are more suitable for our estimator. In the figure there is the same number of red
and blue points. The ellipses visualise the determinants of covariance matrices
computed from the blue and red points. An ellipse with smaller area will have
smaller determinant.
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The consistency factor c0 is chosen in order to obtain consistency at the normal
distribution. In other words, we inflate the covariance matrix, such that we would
expect a covariance matrix for a normal distribution to behave when we have only
those h observations. We discuss the consistency factor in Section 3.2.2.

Now, we have a different, robust tolerance ellipsoid based on the MCD esti-
mator.

Definition. For x ∈ Rp we define the robust Mahalanobis distance as

RD(x) =
√

(x − µ̂MCD)tΣ̂−1
MCD(x − µ̂MCD)

and the robust tolerance 99 % ellipse based on the MCD estimator are those
x ∈ Rp that satisfy RD(x) ≤

√
χ2

p(0.99).

Note that MCD can be computed only if h > p, otherwise the covariance
matrix of any h-subset will be singular. It is recommended that n > 5p [4].

2.1 Applications of MCD
As an example, consider a dataset on waste material in Slovak boroughs (dataset
is available in [5]). Each borough is obliged to monitor the quantities of all types
of waste material such as glass waste, paper waste and many other. For each ton
of waste pays the borough a fee. In Slovakia, there are 81 boroughs, and we will
focus on the 10 most common types of waste materials, therefore we have n = 81
observations with dimension p = 10.

Figure 2.2: Robust Mahalanobis distances of the observations of the waste quan-
tity in Slovak boroughs. Each observation represents one Slovak borough (for
example, borough with index 1 is Bratislava I.). Boroughs above the horizontal
cut-off line (above χ2

10(0.99) = 23.2) are marked as outliers. We can conclude
that the borough with index 71 (Košice II) deviates the most.
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In our model, we can assume that the quantity of waste for one resident in each
borough follows a normal distribution (we compute the waste material only per
capita, otherwise there would be much more waste material in larger boroughs).
For simplicity, we also assume that the quantity of the waste material is in each
borough independent (which is not exactly true, e.g. if there is a factory for
plastic in a nearby borough, it is expected to be a more plastic waste).

Our goal is to investigate which boroughs are not monitoring their waste
material as expected, or where is remarkably more waste materials used. We
will use the robust distances based on the MCD estimates to mark outliers. In
Figure 2.2 we have data visualized with a distance plot so we can see which
boroughs deviate the most. For example, the borough with index 71 is Košice II.
This makes sense because the large factory (US Steel Košice) is based here.

2.2 MCD algorithm
Computing the MCD estimator exactly is computationally expensive, because it
requires as many as

(
n
h

)
evaluations. Therefore, one usually resorts to finding

only an approximate solution. We can use the FAST-MCD algorithm [6] that
uses iteration and repetition. The main part of the algorithm is this:

1. Take a random h-subset of (x1, ..., xn) and compute xh,Sh the sample mean
and covariance matrix of this subset;

2. For each i ≤ n compute the relative distances Di := MDxh,Sh
(xi);

3. Take a new h-subset of (x1, ..., xn) that consists of those elements with
minimal relative distances Di. Compute x∗

h,S∗
h (the sample mean and the

sample matrix from this subset). If det(S∗
h) < det(Sh) then set xh :=

x∗
h, Sh := S∗

h and go to step 2. If det(S∗
h) = det(Sh) then end the algorithm

with an output x∗
h,S∗

h.

Lemma 3. Denote Sh,S∗
h as in the previous algorithm. Then it is always satisfied

that det(S∗
h) ≤ det(Sh).

Proof. The proof is relatively long and technical, and can be found in [6].

This algorithm ends in a finite number of steps because there is only a finite
number of h-subsets of (x1, ..., xn). Note that it generally does not return the
global minimum of det(Sh).
One of the possible approaches is to repeat this algorithm many times with new
random initial subsets (in the package “robustbase v0.93-4” has this algorithm in
the programming language R this default value 30000 repetitions) and finally to
return a solution which can be expected to be close to the minimal solution.

There are several improvements of this algorithm that can be found in the
literature. For example, we can repeat step 2 only twice, because the resulting
determinant is usually sufficiently close to the determinant obtained from further
iterations. The time complexity of this algorithm is O(p3n log n) with a large
constant. More sophisticated methods using Cholesky decomposition, along with
a discussion on some numerical properties of this algorithm, can be found in [7].
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3. Properties of MCD estimator
In this chapter, we aim to prove some important properties of the MCD estimator.
Is it robust, and if so, how robust? How many outliers can this estimator handle?
Does it really estimate Σ? More formally, is Σ̂MCD a consistent estimator of
scatter? At first, we will recall some definitions that are important in robust
statistics, that we want to examine.

We will refer to the consistency as the weak consistency (convergence in proba-
bility). Again, let X1, . . . , Xn be a random sample from an elliptically symmetric
distribution with parameter of location µ and scatter Σ. Suppose we have data
from this distribution, the i-th observation is denoted by xi = (xi,1, ...xi,p)t, and
stored in columns of the matrix M = (x1, . . . , xn) ∈ Rp×n. For convenience, we
will use the notation where matrix M contains fixed observations, not random
variables.

3.1 General definitions
Definition. Let L : Rp×n → Rp be a location estimator, T : Rp×n → PDS(p) be
an estimator of scatter. An affine equivariant estimator of location and scatter
(L(M), T (M)) is one for which:

• L(AM + b) = AL(M) + b,

• T (AM + b) = AT (M)At,

for any non-singular matrix A ∈ Rp×p and b ∈ Rp. Here, we write A + b the
vector b added to every column of the matrix A.

Basically, affine equivariance means that an estimator is well adjusted for
affine transformations of the data. Affine equivariance is an important property
because an affine equivariant estimator remains consistent after an affine trans-
formation.

3.1.1 Robustness
One of the most common definitions describing the robustness of an estimator is
the breakdown point. The breakdown point represents the minimal percentage
of observations that can carry our estimate beyond all bounds. In other words,
the number of points that can do with the estimate whatever they want, if they
are suitably chosen. For example, the sample mean and the sample variance have
the breakdown point 1/n, because a single element can change those estimates
arbitrarily.
Definition. Let (L(M), T (M)) be a location and scatter estimator, and let us
denote by M(k) the set of all matrices obtained by replacing k columns (k data
vectors) in M with arbitrary points. For the location estimator we define a break-
down point as follows:

BP (L,M) := 1
n

(min{k ∈ {1, ..., n} : sup
Mk∈M(k)

||L(M) − L(Mk)|| = ∞}).
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For the scatter estimator we define a breakdown point as follows:

BP (T,M) := 1
n

(min{k ∈ {1, ..., n} :

sup
Mk∈M(k)

max
i

|log(λi(T (M))) − log(λi(T (Mk)))| = ∞}),

where λi(A) denotes i-th greatest eigenvalue of A.

The transcription for scatter means that arbitrary points can carry some eigen-
value arbitrarily close to 0 or beyond all bounds; using logarithms only expresses
these two options.

We will show one important theorem, which describes the upper bound for
the breakdown point of an affine equivariant estimator.

Theorem 3. Let (L(M), T (M)) be a location and scatter estimator, that is affine
equivariant. Let b ∈ Rp and A ∈ Rp×p be nonsingular matrix. Then it holds

1. BP (L,M) = BP (L,AM + b);

2. BP (L,M) ≤ ⌊ n+1
2 ⌋
n

;

3. BP (T,M) = BP (T,AM + b);

4. BP (T,M) ≤ ⌊ n−p+1
2 ⌋
n

, as long as x1, . . . , xn lie in a general position.

Proof. We will prove only the first two statements. The remaining two statements
can be proven similarly or can be also found in [8].

(1): Let b ∈ Rp and A ∈ Rp×p be a nonsingular matrix. Let k = nBP (L,M),
therefore k ∈ {1, ..., n} and is the minimal k for which supMk∈M(k) ||L(M) −
L(Mk)|| = ∞.

” ≤ ”: Let M(k−1) be a set of matrices obtained by replacing k − 1 columns
in M with arbitrary points. Then it holds (using Theorem A4)

sup
Mk−1∈M(k−1)

||L(AM + b) − L(AMk−1 + b)||

= sup
Mk−1∈M(k−1)

||AL(M) + b − AL(Mk−1) − b||

= sup
Mk−1∈M(k−1)

||A(L(M) − L(Mk−1))||

≤ ||A|| sup
Mk−1∈M(k−1)

||L(M) − L(Mk−1)|| < ∞.

Therefore BP (L,AM + b) > k−1
n

.
” ≥ ”: Let λ be the smallest eigenvalue of A. Then it holds (using Theo-

rem A4)

sup
Mk∈M(k)

||L(AM + b) − L(AMk + b)|| = sup
Mk∈M(k)

||AL(M) + b − AL(Mk) − b||

= sup
Mk∈M(k)

||A(L(M) − L(Mk))|| ≥ |λ| sup
Mk∈M(k)

||L(M) − L(Mk)|| = ∞.

13



Therefore BP (L,AM + b) ≤ k
n
.

(2): Let k = ⌊n+1
2 ⌋. For a contradiction, let us assume that

sup
Mk∈M(k)

||L(M) − L(Mk)|| < ∞.

This implies that there exists Q ∈ R such that ||L(Mk)|| < Q for all Mk ∈ M(k).
Because k ≥ n/2, Mk will have changed at least half of the columns of M. Let v ∈
Rp and let Mk be the matrix with columns (x1, . . . , x⌊n/2⌋, x⌊n/2⌋+1 +v, . . . , xn +v).
In words, we shifted the second half of the columns. It is important to notice,
that Mk ∈ M(k). But also (Mk − v) ∈ M(k), therefore it holds Q > ||L(Mk − v)||.
Now, because L is affine equivariant, it holds that ||L(Mk − v)|| = ||L(Mk) − v||.
But for v large enough, both conditions Q > ||L(Mk) − v|| and Q > ||L(Mk)||
cannot be satisfied, which is a contradiction.

3.1.2 Efficiency
We want to know how accurate is our estimator. We can compare two estimators
by their variances, the smaller variance of estimation the better. It is easier to
understand how “good” the variance is, if we divide it with the “best” variance
that can be achieved. If our estimator is unbiased, this property can be expressed
as the efficiency of our estimator [9]. In a normal distribution, the sample mean
is an efficient estimator of the expected value, which means that the variability
of this estimator is the smallest possible (out of all unbiased estimators).

Often, we do not know if our estimator is unbiased. Anyway, if we know the
efficient estimator, we can still denote by efficiency the quotient of the variance
of our estimator and the variance of the efficient estimator. We want our estimate
to have the efficiency closest to one. Note that by this definition, we can also
obtain the efficiency greater than one.

For a multivariate case, the efficiency cannot be defined as the quotient of the
variances, because quotient of matrices is not defined. Instead, we can look only
at the diagonal elements of the matrix and we define multivariate efficiency as
the smallest efficiency among them. Therefore, we will take the “worst” of the
diagonal elements with which we proceed as in the univariate case. Some other
definitions are often used, such as the average of efficiencies of all elements of the
matrix.

3.2 Properties of the MCD estimator

3.2.1 Affine equivariance
Theorem 4. MCD estimator is an affine equivariant estimator.

Proof. Let A ∈ Rp×p be non-singular and b ∈ Rp. We want to prove that

• µ̂MCD(AM + b) = Aµ̂MCD + b,

• Σ̂MCD(AM + b) = AΣ̂MCDAt.
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If we denote H ⊂ {1, ..., n} any set with h elements (for h > p), MH ∈ Rp×h

the matrix obtained by erasing every column (observation) of M whose index is
not in H, and S : Rp×h → Rp×p : MH ↦→ S(MH) the sample covariance matrix
computed from the columns of matrix MH , then it holds

det(S(AMH + b)) = det(AS(MH)At) = det(A)2det(S(MH)).

The first equality holds due to

S(AMH + b) = 1
h − 1

h∑
i=1

(AxHi
− AxH)(AxHi

− AxH)t

= 1
h − 1

h∑
i=1

A(xHi
− xH)(xHi

− xH)tAt = AS(MH)At,

where xHi
is i-th column of MH and xH = 1

h

∑h
i=1 xHi

. So MH minimizes the
covariance determinant (with respect to the untransformed data) if and only if
AMH minimizes the covariance determinant (with respect to the transformed
data). Therefore, µ̂MCD and Σ̂MCD will be computed from the same h points
(before and after the affine transformation). Because the sample mean and the
sample covariance matrix are affine equivariant estimators [8], and µ̂MCD, Σ̂MCD

are computed as the sample mean and sample covariance matrix of h observations,
therefore µ̂MCD and Σ̂MCD are also affine equivariant estimators.

3.2.2 Consistency factor
We will show that after choosing c0 = q/Fχ2

p+2
(χ2

p,q), we obtain consistency for
normal distributions. We will show only a main idea of the proof because one
step appears to be quite difficult, although intuitive. We assume p = 1, for p > 1
we can proceed very similarly.

If we want to compute the consistency factor, it is sufficient to compute this
only for X1, . . . , Xn ∼ N(0, 1). Due to the affine equivariance of the MCD es-
timator, consistency remains the same after any affine transformation, therefore
for any N(µ, σ2). For N(0, 1), it is intuitive that (asymptotically for n → ∞)
the Σ̂MCD will be computed from the “middle” q % of the standard normal dis-
tribution (the meaning of this expression is that Σ̂MCD will be the same as the
variance of such a truncated standard normal distribution).

Definition. Let µ ∈ R, σ > 0. We define the truncated normal distribution with
parameter y > 0 to be the distribution with density f , for which f(x) = 0 for
|x| > y, and for x ≤ y the function f is defined as the density of the normal
distribution N(µ, σ2) multiplied by an appropriate constant. We will denote this
distribution by Ny(µ, σ2).

Density function is shown in Figure 3.1.

Theorem 5. Let q ∈ (0, 1). Denote by ϕ1(x) the density of the standard normal
distribution. Let Ny(0, 1) be the truncated normal distribution for y > 0, such that∫ y

−y ϕ1(x)dx = q (this refers to middle q % of the standard normal distribution).

Then, the variance of Ny(µ, σ2) is equal to
F

χ2
1+2

(χ2
1,q)

q
.
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Proof. We will use one short auxiliary lemma:
Lemma. Let ut be the t-quantile of the standard normal distribution. Then for
every t ∈ (1

2 , 1) holds ut = χ1,(2t−1) (where χp,q refers to the square root of the
q-quantile of chi-squared distribution with p degrees of freedom).

Proof. Let Z ∼ N(0, 1). Then t = P (Z ≤ ut) = P (Z ∈ (0, ut)) + 1
2 =

P (Z∈(−ut,ut))
2 + 1

2 = P (Z2≤u2
t )

2 + 1
2 . We can conclude that 2t − 1 = P (Z2 ≤ u2

t ).
Because Z2 has chi-squared distribution with one degree of freedom, we obtain
χ2

1,(2t−1) = u2
t .

Now, we can calculate the restriction boundaries 1(−y,y) by putting into equa-
tion ∫ y

−y
ϕ1(x)dx = q,

where we easily compute y = uδ for δ = q+1
2 . Now we have a truncated

standard normal distribution, whose density will be ϕ1 divided by q (to obtain∫ uδ
−uδ

ϕ1(x)
q

dx = 1), which we denote by ϕ̃1(x) := ϕ1(x)
q

1(−uδ,uδ)(x).
The variance of this truncated distribution is equal to∫ ∞

−∞
x2ϕ̃1(x)dx =

∫ uδ

−uδ

x2 ϕ1(x)
q

dx =
∫ χ1,q

−χ1,q

x2 1
q
√

2π
e− x2

2 dx

=
√

2
q
√

π

∫ χ1,q

0
x2e− x2

2 dx = 2
q
√

π

∫ χ2
1,q
2

0
t1/2e−tdt =

γ(3/2,
χ2

1,q

2 )
Γ(3/2)

1
q

=
Fχ2(χ2

1,q)
q

.

The second equality holds due to the previous lemma, the third one due to
symmetry. At the fourth we used the substitution t = x2

2 . The fifth equation
holds by definition γ(k, x) =

∫ x
0 tk−1e−tdt, and because Γ(3/2) =

√
π/2. The last

equation is valid due to the definition of the chi-squared distribution [10].

If it holds that Σ̂MCD converges to
F

χ2
1+2

(χ2
1,q)

q
, then we need to multiply our

estimate by q
F

χ2
1+2

(χ2
1,q) to obtain a consistent estimate for σ = 1. The difficult

step (that Σ̂MCD really converges) uses more sophisticated mathematics; parts of
this proof can be found in [11] and [12].

Figure 3.1: On the left panel is the density of a truncated normal distribution
Ny(0, 1). On the right panel is a possible generalization of the density of a
truncated normal distribution for p = 2.
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3.2.3 Robustness
We will prove that the MCD estimator has the largest possible breakdown point,
that can be attained for an affine equivariant estimator. First, we will need two
auxiliary lemmas.

Lemma 4. Let n > p and let x1, . . . , xn ∈ Rp be in a general position (no more
than p points lie on any hyperplane of dimension less than p). Then it holds
that Sc :=

∑n

k=1(xk−c)(xk−c)t

n−1 ∈ PDS(p) for every c ∈ Rp. Moreover, it holds that
λp(Sc) ≥ λp(Sxn), where λp(Sc) denotes the smallest eigenvalue of Sc.

Proof. For non-zero y ∈ Rp is

ytScy = 1
n − 1

n∑
k=1

yt(xk − c)(xk − c)ty = 1
n − 1

n∑
k=1

((xk − c)ty)2 ≥ 0.

It can be zero if and only if (xk − c)ty = 0 for all k. But because (xk − c)
spans Rp, there exist α1, . . . , αn ∈ R such that y = ∑n

i=1 αi(xi − c). This gives us
yty = ∑n

i=1 αi(xi − c)ty. Therefore if (xk − c)ty = 0 for all k ≤ n, then y = 0,
which is a contradiction. Therefore ytScy > 0.

Concerning the statement λp(Sc) ≥ λp(Sxn), the smallest eigenvalue in Sc is
equal to

λp(Sc) = min
y∈Rp:||y||=1

ytScy = min
y∈Rp:||y||=1

1
n − 1

n∑
k=1

((xk − c)ty)2

≥ min
y∈Rp:||y||=1

1
n − 1

n∑
k=1

((xk − xn)ty)2 = min
y∈Rp:||y||=1

ytSxy = λp(Sxn).

The inequality holds, because of Theorem A5 (the sample mean minimizes
the squared error). The first equality (and the last one) holds because: for the
SVD decomposition (Theorem A1) in the form Sc = UtDU, with orthogonal U
and diagonal D with Di,i = λi(Sc), it holds that

λp(Sc) = min
y∈Rp:||y||=1

ytDy = min
y∈Rp:||y||=1

(Uy)tD(Uy)

= min
y∈Rp:||y||=1

ytUtDUy = min
y∈Rp:||y||=1

ytScy.

Lemma 5. Let x1, . . . , xp+1 ∈ Rp be in a general position. Then there exists
Q > 0 such that for all xp+2, . . . , xn ∈ Rp is every eigenvalue of Sn greater than
Q. Here, Sn stands for the sample covariance matrix computed from all x1, . . . , xn.

Proof. It is sufficient to prove this only for one arbitrary point (n = p + 2),
otherwise we can repeat the following step n − p − 1 times. WLOG xn = 0,
otherwise we shift our points (this does not change the sample covariance matrix).

Let S∗
p+1 = 1

p+1
∑p+1

i=1 (xi −xn)(xi −xn)t = 1
p+1

∑p+1
i=1 xix

t
i. We know (Lemma 4)

that S∗
p+1 ∈ PDS(p), and denote by Q1 its smallest eigenvalue (Q1 > 0). Note,

that Q1 ≥ Q > 0, where Q is the smallest eigenvalue of 1
p+1

∑p+1
i=1 (xi − xp+1)(xi −
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xp+1)t (this is due the second part of Lemma 4), which does not depend on
xp+2, . . . , xn.

Now, we know that Sn = S∗
p+1 + 1

p+1xnxt
n. From the definition of positive

definite matrices, it holds that ∀h ∈ Rp, ||h|| = 1 : htS∗
p+1h ≥ Q1 > 0 and

ht( 1
p+1xnxt

n)h = 1
p+1(htxn)(htxn)t ≥ 0. Together, we must have htSnh = ht(S∗

p+1+
1

p+1xnxt
n)h ≥ htS∗

p+1h ≥ Q1 ≥ Q > 0. Therefore, the smallest eigenvalue of Sn is
greater than or equal to Q.

Theorem 6. The breakdown point of the MCD estimator of scatter with parame-
ter h is equal to 1

n
min{n−h+1, h−p}. It is maximal for h =

⌈
n+p+1

2

⌉
, when the

breakdown point is equal to BP (Σ̂MCD,M) = ⌊ n−p+1
2 ⌋
n

. This is the largest possible
breakdown point, that can be attained for an affine equivariant estimator.

Proof. We will prove that the breakdown point is equal to 1
n
min{n−h+1, h−p}.

This value is indeed maximal for h =
⌈

n+p+1
2

⌉
. We proved in Theorem 3 that we

cannot hope for a better result than this. Let h − p ≥ n − h + 1 (in other form
h ≥ n+p+1

2 ), otherwise we proceed similarly.
Roughly speaking, we want to find out how many “bad” points can be replaced

in M so that the estimate will not go beyond all bounds. Therefore, we say that
matrix M contains “good” points, which means that it contains a given x1, . . . , xn

lying in a general position.
” ≤ ”: Put k = n − h + 1. We want to show supMk∈M(k) maxi |log(λi(T (M))) −

log(λi(T (Mk)))| = ∞, or that after replacing n−h+1 points with arbitrary points,
the estimate can be carried beyond all bounds. This is trivial, if we compute the
MCD estimate from h points, at least one of them will be an arbitrary one,
therefore it can carry the estimate beyond all bounds (already a single arbitrary
element can carry the sample variance beyond all bounds).

” ≥ ”: Put k = n − h. We will show that supMk∈M(k) maxi |log(λi(T (M))) −
log(λi(T (Mk)))| < ∞, or that only n − h arbitrary points can not carry the
estimate beyond all bounds.

First, we prove that the estimate of scatter cannot be infinitely small, or that
there exists Q2 > 0 such that λi(T (Mk)) > Q2 for all i ∈ {1, . . . , p} and all
Mk ∈ M(k). Let Mk ∈ M(k). We know that if we have n − h arbitrary points,
then in any h columns of Mk will be at least p + 1 “good” columns, that are
not arbitrary (thus lying in a general position). The rest of this claim can be
done using Lemma 5. There exists Q such that every eigenvalue of the sample
covariance matrix computed from those h points will be at least Q. If we take all(

n
p+1

)
choices of choosing p + 1 columns, for every choice there exists such Q > 0

and we choose the minimal one to be Q2. Then, for every h columns of every
Mk ∈ M(k), the smallest eigenvalue of a sample covariance matrix (computed from
those h columns) will be greater than Q2, what we wanted to show.

Finally, we prove that the estimate of scatter cannot be carried infinitely far,
or that there exists Q1 ∈ R such that λi(T (Mk)) < Q1 for all i ∈ {1, . . . , p} and
all Mk ∈ M(k). For this, it is sufficient to show that there exists Q1 such that
det(T (Mk)) ≤ Q1 (because determinant is only a multiple of the eigenvalues, and
all eigenvalues are greater than Q2). Let Mk ∈ M(k). Let us denote H the set
of those h “good” points, that are the same as in matrix M. Denote QH the
determinant of the sample covariance matrix computed only from points from
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H. From the definition of the MCD estimator, we take for our estimate those h
points that have the minimum determinant of the covariance matrix, therefore
det(T (Mk)) ≤ QH . Again, we want to show this for every initial choice of h

columns. If we take all
(

n
h

)
choices of choosing H, then for every H there exists

such QH < ∞. If we take Q1 := max QH , then for every Mk holds det(T (Mk)) ≤
Q1, what we wanted to show.

We concluded that ∀Mk ∈ M(k), ∀i ∈ {1, . . . , p} : Q1 > λi(T (Mk)) > Q2,
therefore it holds supMk∈M(k) maxi |log(λi(T (Mk))) − log(λi(T (M)))| < ∞.

3.2.4 Efficiency
It is well known that when X1, . . . , Xn ∼ Np(µ, Σ), then the unbiased estimators
of mean and variance with the minimal variance are xn = 1

n

∑n
i=1 xi and Sn =

1
n−1

∑n
i=1(xi − xn)(xi − xn)t. We can estimate the variance of the MCD estimator

using a simulation study. For this simulation, we took n = 200 random points
from a multivariate normal distribution and computed their MCD estimates of
location and scatter. We approximated their efficiency by dividing the sample
variance of these estimates by the sample variance of the sample mean (or the
sample variance matrix). This result is random, therefore in order to obtain more
accurate results, we repeated this step 100 times. Means of these 100 results and
their standard deviations are in Table 3.1. In this table, we show only the results
for the scatter, efficiency for the location parameter was similar. The source code
of this simulation (in programming language R) is in Attachment B.

Theorem 7. The MCD estimator has better efficiency in greater dimensions.
Moreover, it holds limp→∞

varX
var(µ̂MCD) = h

n
.

Proof. See [2].

It is obvious that by increasing h we obtain greater efficiency. As we can
see in Table 3.1, the efficiency is insufficient for low p. Due to this property, in
programming tools such as Matlab, or R has in the implementation of the MCD
estimator the default value h = 0.75n, because it is a reasonable compromise
between robustness and efficiency.

Efficiency
h/n p Classical MCD estimator Reweighted MCD estimator
0.5 2 6% (sd=4.4%) 48% (sd=3.1%)
0.5 10 18% (sd=4.3%) 81% (sd=2.1%)
0.75 2 26% (sd=3.9%) 49% (sd=3.4%)
0.75 10 45% (sd=3.1%) 82% (sd=1.7%)

Table 3.1: Efficiency of the MCD estimator and of the reweighted MCD estima-
tor for selected values of dimensions p and quotients h/n. Values are obtained
numerically from computing 100 repetitions (R script in Attachment B), therefore
are not exact (sd stands for the standard deviation of the sampled results).
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3.3 Reweighted MCD estimator
In order to obtain a better efficiency of an estimator, we can use the reweighted
MCD estimator of location and scatter defined as follows:

µ̂RMCD =
∑n

i=1 W (d2
i )xi∑n

i=1 W (d2
i )

,

Σ̂RMCD = c1

n

n∑
i=1

W (d2
i )(xi − µ̂RMCD)(xi − µ̂RMCD)t,

where di =
√

(xi − µ̂MCD)tΣ̂−1
MCD(xi − µ̂MCD), c1 is an appropriate consistency

factor and W (x) is an appropriate weight function. In R or Matlab is the default
choice for the weight function W (x) = 1(d2

i ≤ χ2
p,0.99), that can be considered as

a function providing a cut-off for the outlying observations found by the classical
MCD estimate.

The reweighted MCD estimator is affine equivariant, robust with high break-
down value and with better efficiency than the classical MCD estimator. Proofs
of these results are analogous to the proofs for the classical MCD estimator [13].
Therefore, the reweighted MCD estimator is even more commonly used in prac-
tice, and in R it is used as the default MCD estimator.
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4. MVE estimator
There exist other methods for finding a robust estimate of location and scatter
parameters [14]. For example, there are M-estimators, which are a generalization
of the maximum likelihood estimators. They are usually defined for a more
general class of distributions, they have properties different from those of the
MCD estimator, and usually does not handle such a great number of outliers.
We will introduce one other method called MVE.

The minimal volume ellipsoid (MVE) estimator is similar to the MCD esti-
mator in many ways. But in this case, we will find an ellipsoid with a minimal
volume containing at least h observations and compute location and scatter only
from those observations.

As we proved in Theorem 1 and Theorem 2, we know that {x ∈ Rp : (x −
t)tC−1(x − t) ≤ c1} forms an ellipsoid for C ∈ PDS(p). Moreover, we know the
shape of this ellipsoid. The volume of such an ellipsoid is V (E) = Kpdet(C) for
some constant Kp ∈ R for every dimension p ∈ N.

We start with a lemma which will guarantee the existence and uniqueness of
the MVE estimator.

Lemma 6. Let c1 ∈ R, n, p ∈ N, such that c1 > 0, n > p, and let x1, . . . , xn ∈ Rp

lie in a general position. Then there exists a unique ellipsoid E = {x ∈ Rp :
(x−t)tC−1(x−t) ≤ c1} which contains x1, . . . , xn and such that det(C) < det(C2)
for every other ellipsoid E2 = {x ∈ Rp : (x− t2)tC−1

2 (x− t2) ≤ c1} which contains
x1, . . . , xn. Moreover, at least p + 1 points from x1, . . . , xn lie on the surface of
E. Therefore, E is the minimum volume ellipsoid for the points on its surface
(ellipsoid uniquely determined by those p + 1 points).

Proof. The proof of this theorem requires deeper knowledge of measure theory.
It may be found in [15] or in [16].

Definition. Let c1 > 0. The raw MVE location estimator µ̂MV E and scatter
estimator Σ̂MV E with parameter h ∈ N, where n/2 + 1 ≤ h ≤ n, minimize the
determinant of C subject to the condition

#{i : (xi − t)tC−1(xi − t) ≤ c1} ≥ h,

where the minimization is over all t ∈ Rp and C ∈ PDS(p).

In other words, we choose as our estimate of the scatter matrix Σ̂MV E the
matrix with the minimal determinant for which there exists t ∈ Rp such that the
ellipsoid {x ∈ Rp : (x − t)tΣ̂−1

MV E(x − t) ≤ c1} contains at least h observations.
The consistency factor c1 is usually chosen so that Σ̂MV E is a consistent esti-

mator of the covariance matrix for normal data, in which case we put c1 = χ2
p,q,

where q = limn→∞ h/n. This result can be achieved by evaluating the condition
#{i ≤ n : (xi − µ)tΣ−1(xi − µ) ≤ c1} ≥ h for true values µ, Σ instead of the
estimated ones. Using Lemma 1 we can conclude that the condition holds if and
only if c1 = χ2

p,q (for n → ∞).
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Figure 4.1: Computation of the MVE algorithm. The red p + 1 points represent
the first randomly chosen set. The red ellipse is the corresponding minimum
ellipse. The blue ellipse represents the inflated red ellipse such that it contains
h = 0.75n observations.

4.1 MVE algorithm
Computing all

(
n
h

)
evaluations in the MVE estimator is computationally expen-

sive, so we rather satisfy with an approximate solution. We limit our search by
taking not h subsets, but only (p + 1) subsets, which is computationally more
convenient. Then we deflate or inflate the found ellipsoid corresponding to these
elements (i.e. multiply C by a constant) until it contains h elements.

This process can be seen in Figure 4.1. The algorithm for one randomly
generated dataset is the following:

1. Take random (p+1) elements (if their sample covariance matrix is singular,
we add elements until it is non-singular) and compute their sample mean
xp+1 and sample covariance matrix Sp+1;

2. Compute for each i ≤ n the quantity Di := MDxp+1,Sp+1(xi) and denote by
D the h-th smallest squared distance of all Di;

3. Denote f = D/c1 (where c1 = χ2
p,q with q = h/n) and β = fp/2det(Sp+1)1/2;

4. Return xp+1 and βSp+1.

Note that fp/2det(Sp+1)1/2 = [det(fSp+1)1/2], which stands for the volume of the
ellipsoid corresponding to xp+1 and Sp+1 multiplied by a scaling factor. It is
important to notice that this algorithm does not return the optimal solution,
only when an appropriate first (p + 1) subset is chosen. Anyway, repeating this
algorithm for each

(
n

p+1

)
evaluations is still computationally expensive, so only a

random collection is chosen, usually with 3000 or 30000 random initial (p + 1)-
subsets (there are surely better options for the number of initial subsets, this is
a compromise for large and for small number of observations n).

4.2 MVE properties
We will show that the MVE estimator is an affine equivariant estimator with the
same breakdown value as the MCD estimator. On the other hand, what makes
it a less attractive choice is its efficiency.
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Theorem 8. The MVE estimator of location and scatter with parameter h is
affine equivariant with the breakdown point 1

n
min{n − h + 1, h − p}.

Proof. Affine equivariance follows from the fact that if a point is in the ellipsoid,
then after any affine transformation stays in the ellipsoid. Likewise, if a point is
not in the ellipsoid after any affine transformation stays outside of the ellipsoid.
Therefore, the ellipsoid with a minimal volume containing at least h points stays
being the ellipsoid with a minimal volume containing at least h points after any
affine transformation.

The proof of the breakdown point is analogous to that for the MCD estimator
in Section 3.2.3. Both are discussed in [8].

Theorem 9. Let X1, X2, . . . be independent random vectors, Xi ∼ Np(µ, Σ).
Then n

1
3 (Σ̂MV E − Σ) D−−−→

n→∞
T , where T is a non-degenerative random vector

described in [16]. Therefore, the asymptotic efficiency of the MVE estimator is
0 %.

Proof. See [16].

There exist several improvements of the MVE that increase its efficiency. See
[17], but usually if they improve the efficiency, then some other property is com-
promised, such as the breakdown point or the time complexity of the algorithm.

Remark (Comparison of MCD and MVE). As we have shown, the MVE esti-
mator has lower efficiency than the MCD estimator. The reason is that it loses
some information during the process — consider two data sets in Figure 4.2. The
MVE scatter matrix will be similar for both, but the MCD scatter matrix of the
first data set will have a greater determinant than for the second one (for h large
enough so that the whole ellipse of points on the left panel will be considered in
the “best” h points). The main difference is, that for the MVE is not important
how are the observations in the ellipsoid distributed.

Figure 4.2: The fundamental difference between MCD and MVE — MVE does
not distinguish between the two different distributions inside the tolerance ellip-
soid, but MCD estimator does.
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Conclusion
In this thesis, we introduced two approaches for finding robust estimators of
location and scatter parameters in elliptically symmetric distributions.

At first, we described a method for finding a tolerance region using Maha-
lanobis distances. We showed, that this region forms an ellipsoid, and described
its shape and derived its properties.

Second, we introduced the MCD estimator of location and scatter. This esti-
mator uses only a fraction of observations with the minimal determinant of their
sample covariance matrix. We showed the difference between using this robust
estimate and using classical methods. Moreover, we used the MCD estimator in
an application.

After that, we discussed the properties of the MCD estimator. First, we
introduced the affine equivariance and the breakdown point. Then we proved
that the MCD estimator is affine equivariant, with the highest possible breakdown
point that can be achieved for an affine equivariant estimator. It can handle up
to ⌊ n−p+1

2 ⌋
n

of outlying observations. We discussed the consistency and efficiency
of the MCD estimator, where we used a simulation study rather than giving a
proper proof. Moreover, we introduced the reweighed improvement of the MCD
estimator and briefly discussed the algorithm for its computation.

Finally, we introduced the MVE estimator of location and scatter. This es-
timator fits the ellipsoid with the smallest volume containing a given fraction of
the observations. We discussed the algorithm for its computation and listed some
of its properties.

In the end, we can summarize that both MCD and MVE estimators are affine
equivariant, robust with the highest possible breakdown point, and they are both
consistent estimators of location and scatter. The MVE estimator has worse
efficiency, but it is maybe a more natural choice as it can be more easily conceived.
We conclude that these estimators are both very effective alternatives to the
classical methods.
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A. Attachment: Basic theorems
from linear algebra and the table
of notations
Proofs of theorems A1–A4 can be found in [18].

Theorem A1: [SVD decomposition] Suppose we have a real matrix M ∈
Rm×n. Then, there exists a factorization, called the singular value decomposition
of M, of the form M = UDVt, where U is an m × m orthogonal matrix, D is a
diagonal m × n matrix (elements that are not on the main diagonal are 0) with
non-negative real numbers Di,i on the diagonal, V is an n × n orthogonal matrix.
In case M ∈ PDS(n), then U = V and ∀i ∈ {1, . . . , n} : Di,i > 0. Moreover, Di,i

are the eigenvalues of matrix M.
Theorem A2: [about orthogonal matrix] Let x, y ∈ Rp and U ∈ Rp×p be

an orthogonal matrix. Then ||x|| = ||U(x)|| and ∢[x, y] = ∢[U(x),U(y)], where
∢[a, b] denotes the angle between vectors a, b. Specially, for an orthonormal basis
u1, . . . , up is also U(u1), . . . ,U(up) an orthonormal basis.

Theorem A3: [square root of a matrix] For any matrix M ∈ PDS(p) there
exists a non-singular matrix A ∈ Rp×p, such that M = AAt.

Theorem A4: [matrix norm] Let x ∈ Rp, A,M ∈ Rp×p. Let ||A|| :=
max{||Ay|| : y ∈ Rp, ||y|| = 1} denote a matrix norm. Then it holds ||Ax|| ≤
||A|| ||x|| and ||AM|| ≤ ||A|| ||M||. Moreover, if A ∈ PDS(p), and we denote λi

the i-th greatest eigenvalue of A, then it holds λ1||x|| ≥ ||Ax|| ≥ λp||x||.
Theorem A5: [sample mean and sample covariance matrix] Let n > p

and let x1, . . . , xn ∈ Rp be in general position (no more than p points lie on
any hyper plane of dimension less than p). Denote xn the sample mean, S =∑n

k=1(xk−xn)(xk−xn)t

n−1 the sample covariance matrix. Then it holds that S,S−1 ∈
PDS(p).

Let y ∈ Rp. The function f(c) = ∑n
k=1((xk − c)ty)2 has a global minimum in

xn. (With a special case f(c) = ∑n
k=1(xk − c)2).

Proof. Proof that S ∈ PDS(p) is a special case of the proven Lemma 4 in Sec-
tion 3.1.1. An inverse of a PDS matrix is also a PDS matrix [18]. The statement
about the minimum follows from the fact that f is convex and ∇f(xn) = 0. This
is true, because ∂f(x)

∂xi
= ∑n

k=1(x
(i)
k − c(i))2y(i) = 2y(i)n(

∑n

k=1 x
(i)
k

n
− c(i)) is zero for

c = xn. Here, ∂f(x)
∂xi

denotes the partial derivative of f with respect to i, and x
(i)
j

denotes the i-th element of the vector xj.
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Table A.1: Table of notations and basic definitions.

X ≜ d-variate random vector for d ≥ 1
FX ≜ distribution function of X

EX or µ ≜ expected value of X

V ar(X) or Σ ≜ variance of X

N(µ, σ2) ≜ normal distribution with expected value µ and vari-
ance σ2

Np(µ, Σ) ≜ p-dimensional normal distribution with expected
value µ and variance matrix Σ

X ∼ N(0, 1) ≜ X has standard normal distribution
Φp(x) ≜ distribution function of p-dimensional standard nor-

mal distribution
uq ≜ q-quantile of the standard normal distribution
χ2

p ≜ chi-squared distribution with p degrees of freedom
χp,q or χp(q) ≜ q-quantile of the chi-distribution with p degrees of

freedom, equally root of the q-quantile of the chi-
squared distribution with p degrees of freedom

γ(k, x) ≜ lower incomplete gamma function, defined as
γ(k, x) =

∫ x
0 tk−1e−tdt

Γ(k) ≜ gamma function, defined as Γ(k) =
∫ ∞

0 tk−1e−tdt
Xn ≜

∑n

k=1 Xk

n
, called the sample mean, often written

without index n

Sn ≜
∑n

k=1(Xk−Xn)(Xk−Xn)t

n−1 , called the sample covariance
matrix, often written without index n

N ≜ set of all natural numbers
A,B, . . . ≜ matrix notation

At ≜ transposed matrix
Ai,j ≜ the value on the i-th column and j-th row of matrix

A
In ≜ n-dimensional identity matrix

||A|| ≜ matrix norm, ||A|| = max{||Ax|| : x ∈ Rp, ||x|| =
1}

PDS(p) ≜ class of positive definite symmetric matrices of di-
mension p

PDS ≜ class of positive definite symmetric matrices of any
dimension

∇f(x) ≜ gradient of the function f in the point x

⌊.⌋ ≜ floor function
⌈.⌉ ≜ ceiling function

1A(x) ≜ indicator function of the set A, returns 1 for x ∈ A,
otherwise returns 0

standard basis of Rp ≜ orthonormal basis (1, 0, . . . , 0)t, . . . , (0, 0, . . . , 1)t.
#i : condition ≜ number of i fulfilling condition
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B. Attachment: R source code

#Computing efficiency of the MCD estimator
#Using "mvtnorm" and "robustbase" package

p=2 #dimension
a=0.75 #a=lim h/n
reweighted=FALSE

#########################
pocetopakovani=200;n=200;
library(mvtnorm)
library(robustbase)
listhodnot=1; listhodnot2=1;

for (i in 1:pocetopakovani) {

x=rmvnorm(n, rep(0,p), diag(p))
sigma=covMcd(x, alpha = alpha, raw.only = !reweighted )
listhodnot=rbind(listhodnot, sigma$cov[1,1])
listhodnot2=rbind(listhodnot2, var(x)[1,1])

}

var(listhodnot2)/var(listhodnot);

Figure B.1: R script for computing the efficiency of the MCD estimator of scatter.
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