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Abstract: Plasma polymer fragments deposited from vapor on non-wetting poly-
mer substrates are seen to aggregate into fractal nanoislands. Dependent on
conditions of the experiment, the islands attain diverse shapes ranging from den-
dritic snowflakes, branching seaweed to twisting snakes. In our work, we identify
dominant kinetic processes responsible for this diversity and relate them to phys-
ical characteristics of the experiment [1].

We review and implement basic computer models of deposition and aggregation
of diffusing particles: The Diffusion-Limited Aggregation (DLA) [2], both on
a lattice and without a lattice, and the Cluster-Cluster Aggregation (CCA) [3].
The off-lattice DLA yields isotropic random fractals. The lattice DLA fractals are
influenced by the properties of the lattice itself, which can be chosen to represent
the symmetry of the substrate layer on which the islands grow. Fractals generated
in the CCA model are more linear. Competition between diffusion and deposition
rates gives a transition between off-lattice DLA and CCA fractals.

Each of these models comprises a mechanism that we conjecture to be dominant
during growth of distinct observed polyethylene nanoislands. Thus the multiple
observed fractal shapes allow us to draw conclusions on microscopic kinetics of
the surface diffusion of deposited polymer fragments. The gained insight into
the kinetics may be relevant for plasma-assisted development of polymer-based
devices.
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Introduction
This thesis is an effort to theoretically model fractal patterns observed in an
experiment in Ref. [1]. The goal of the thesis is to explain changes of patterns
grown on a thin polymer film in a certain setting. On the film grow islands
(also called clusters) shaped like on Fig. 1a or 1b. The difference between the
two patterns is tremendous, but the changes in experimental conditions only
slight. In this work we develop a model that can describe such diverse patterns.
Understanding the mechanisms of growth will allow for deeper insight into the
processes in polymer coated surfaces.

In this chapter, we will introduce the basic theoretical framework for analysis
of fractals and the basics of the experiment this work deals with.

Plasma Polymers
Conventional polymers are formed by repeating of the same units in a long chain
or network. Though their chemical structure is organized, the overall shape of
the molecules is random. Long macromolecular chains curl into random coils,
which can be stretched easily, thus giving name to the field of soft matter [4].

Plasma polymers are created by applying plasma to a precursor, which can
be a monomer or a conventional polymer. The plasma fragments the precursor
molecules. The sites of fragmentation become reactive radicals, which then bind
to other molecules.

The chemical structure of molecules formed this way is disordered and often
different from that of the precursors, an example is on Fig. 2. Plasma polymers
can have unsaturated bonds, even if their precursor did not. They are typically
highly cross-linked, which makes them more rigid.

A useful application of these polymers is that they can easily be grown on a
surface and act as a coating. This is achieved simply by placing the coated surface
near the plasma where fragments are generated. This allows for development
of diverse polymeric thin films. One of such is modelled in this work, where
polyethylene (PE) was deposited on polyethylene oxide (PEO) coated surface.

(a) A randomly branched isotropic fractal (b) Linear anisotropic fractals

Figure 1: AFM images of polyethylene islands grown on polyethylene oxide thin
films prepared in Ref. [1].
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Figure 2: A hypothetical structure of plasma-polymerized ethylene film, taken
from Wikimedia Commons [5].

Fractal Growth
Fractals were first conceived as purely mathematical objects. Their basic charac-
teristic is that they consist of repeating patterns on all length scales. For math-
ematical fractals, this is ensured by defining the object recursively: the shape
of the fractal on one scale is deterministically governed by its shape on another
scale.

Fractals also grow in many real-life settings, both in nature and society. These
patterns are almost always not deterministic [6]. Their growth is random and
there are no explicit recursive rules making the object self-similar. The self-
similarity arises spontaneously, usually thanks to the object substructures com-
peting with each other. In most cases, the competition is to ensure effective filling
of space. This is the case for growth of city streets or branched organs, such as
lungs or kidneys.

New streets in a city grow where there are no existing ones to cover the
area. They connect this new area to an existing street, which then becomes
more important. This way the set of streets acquires self-similar hierarchy, as
from important streets grow less important ones. This hierarchy ensures effective
transport of resources from the higher, global scales into the local ones [7].

A recent theory of growth of branched organs in Ref. [8] states three rules to
which the growing organ tips adhere:

1. The tip can elongate itself in a random direction

2. The tip can branch into two new ones, which grow independently

3. When the tip gets too close to another branch, its growth terminates (the
branches send out signal molecules which ensure this)

These rules give rise to the fractal morphology of lungs. As branches growing
in proximity inhibit each other, only those branches which grow in unfilled areas
grow long. This mechanism again ensures effective space-filling.

Space filling is also at work for polymer nanoislands. It will be shown later
in the thesis that the shape of the cluster grown in Fig. 1 also arises from the
competition for space.
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Figure 3: The Vicsek fractal with D = log 5
log 3 , taken from Wikimedia Commons

[10].

Fractal Dimension
The basic measure used to define fractals and describe them quantitatively is the
fractal dimension D [9]. Many equivalent definitions exist, but here we will use
one natural for growing fractals:

Suppose an object (of any shape, not necessarily a self-similar one) is built
from elementary particles of length 1. If the object is to have length 1, it will
naturally consist of one particle. If it is to have length 2, it depends. For a
square, one would need four particles, for a cube, eight. The number of needed
particles N scales with the second power of length L for squares, which are two-
dimensional and with exponent 3 for three-dimensional cubes. This exponent
defined as the fractal dimension D of the object. In equation form:

N ∼ LD (1)

Fractals are then defined as object with non-integer fractal dimension. The
Vicsek fractal in Fig. 3, for example, has D = log 5

log 3 , as for every tripling of size,
five times more particles are needed to build it.

In the following two chapters we discuss two basic models describing fractal
growth. These models assume that particles merging into the fractal island diffuse
freely on the surface. The model in Chap. 1 creates patterns similar to Fig. 1a,
the model in Chap. 2 patterns similar to Fig. 1b. A more detailed analysis of the
latter model is presented in Appendix A. Chap. 3 unifies these two models into a
more robust one, which allows the explanation of morphology changes proposed
in Chap. 4.
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1. Diffusion-Limited Aggregation
Diffusion-limited aggregation (DLA) developed in Ref. [2] is the first and simplest
among the fractal growth models based on irreversible aggregation of diffusing
particles.

In DLA, only one cluster grows at a time, starting from a static seed particle
located at the origin of coordinates. In every step of the simulation a new particle
is placed at a random position far from the seed. Then it undergoes a random
walk until it hits the cluster. After hitting, the particle becomes a part of the
cluster, and a new simulation step begins.

Islands grown by this model have typically the shape of a randomly branched
fractal. What creates these patterns are not the branches themselves, but the
spaces between them (‘fjords’) [11]. When some part of the growing island lags
behind its neighbors, it becomes encroached by two branches. These shield it
from the diffusing particles and it grows even slower.

The DLA-like fractals occur in nature in rather diverse and seemingly unre-
lated settings [12]. Most prominent example include aggregation of dust particles
[2] and growth of fractals in solutions of electrolytes, for example in Ref [13]. In
these cases the fractal actually grows by absorbing diffusing particles that come
near to it. However, DLA can also describe processes such as viscous finger-
ing (injection of a liquid into a more viscous one) or dielectic breakdown in an
insulator [11].

All these phenomena are examples of Laplacian growth [12], which means
the growth of the pattern is governed by a scalar field ϕ satisfying ∆ϕ = 0
with fixed constant ϕ at the cluster boundary. The growth speed of a place at
cluster boundary is then proportional to ∇ϕ. The field ϕ can have many physical
interpretations: electric potential in the case of dielectric breakdown, probability
of location of a diffusing particle or pressure in the case of viscous fingering.

1.1 Lattice DLA
The fastest way to simulate the DLA is to consider the particle motion on a dis-
crete square lattice, so each particle occupies one lattice site. At each movement
step the particle chooses one of the four directions randomly. When it comes to
a site adjacent (sidewise or diagonally) to the cluster, it becomes fixed at that
site as a part of the island.

In [11] the fluctuations were damped by introducing an integer parameter s
describing the stickiness of the cluster. Particles still diffuse until they reach the
fractal, but now a lattice site is added to the cluster only after s particles have hit
it at that site. This takes a small average over the fluctuating particle trajectories
and so makes the cluster grow in a more ordered manner.
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Figure 1.1: A DLA cluster with 40000 particles grown on a square lattice. It shows
no preferred direction of growth and consists of branches encroaching fjords.

1.1.1 Implemented Algorithm
We have reproduced the algorithm proposed in Ref. [2] and simulated the model
in Octave as follows:

The surface is represented as a square matrix of size L much larger than
fully grown cluster size. The initial particle positions were chosen randomly in
distance greater than current cluster radius. For every unoccupied lattice site,
the number of particles that hit the cluster there is stored. When it reaches s,
the site becomes occupied.

If the particle would move outside the grid, it is terminated instead. Also
finite particle lifetime τ is implemented to speed up the simulation, which means
that after τ steps the particle is also terminated. This was to cut off trajectories
that were unreasonably slow to reach the cluster (moved in circles for example).
τ was chosen large enough (τ ≈ 3L), so that almost all particles did not run out
of steps. In reality, the diffusing polymer fragments could diffuse infinitely long,
but since most particles in the simulation were unaffected by τ , this feature does
not affect the resulting shape.

1.1.2 Results
Clusters with nc (the number of particles in the cluster) up to 106 have been
obtained. For s = 1, the fractals are visually same as in Ref. [2] (Fig. 1.1).

Results for higher s (Fig. 1.3 and 1.2) show that the branches grow prefer-
entially in the diagonal direction of the lattice. This is because lattice sites the
cluster neighbors diagonally are more easily accessed. Sites neighboring sidewise
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are shielded by those neighboring diagonally. This creates an effective anisotropy
in the lattice, which is more pronounced for higher s.

In Fig. 1.5, s was chosen smaller in the sidewise directions, so it would counter-
act the anisotropy of the lattice. The fractal follows the four sidewise directions,
but secondary branches are again diagonal.

Figure 1.2: A lattice DLA fractal with nc = 3000 grown with s = 6, showing
amplified growth in diagonal directions.

Figure 1.3: A lattice DLA fractal with s = 2 on the main lattice diagonal s = 4
elsewhere. The preference of diagonals is now weaker, though s is lower on them.

To summarize, results of the simulations are in accordance with Ref. [14]. It
states that the resultant shape of the lattice DLA cluster is given by interplay
of lattice anisotropy (in the case of a square lattice, the preference of diagonals)
and random fluctuations brought in by diffusion. The fluctuations are damped
either by increasing s or with growing cluster size, as the small differences brought
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Figure 1.4: A lattice DLA fractal with s = 10 and s = 5 on the main lattice diag-
onal. The cluster attains a needle-like shape, as diagonals are greatly preferred.

Figure 1.5: A lattice DLA fractal with s = 1 in the middle lattice column and
row, s = 6 elsewhere. The anisotropic s fights with the anisotropy of the lattice.

about by anisotropy build up over time. The growth can be divided into three
stages:

1. At first the cluster retains the typical DLA shape with circular envelope, as
growth is dominated by fluctuations. The fractal dimension is D ≈ 1.71.

2. With increasing size the anisotropy becomes more important and branches
in diagonal directions are preffered, creating a dendritic shape as in Fig 1.2.

3. Lastly the preference of the diagonals becomes so pronounced that the clus-
ter grows almost entirely along them and forms a needle-like shape as in
Fig. 1.4. D −→ 1.

Increasing s merely makes these transitions happen at lower nc. For regular
DLA (s = 1) only the first stage was retrieved (Fig. 1.1), for homogenous s the
first two (Fig. 1.2) and for inhomogenous s all three.
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In lattice DLA therefore the major factor determining the morphology of large
clusters is the lattice itself. Different lattices produce different symmetries, for
example in [11], a triangular lattice was chosen, and the resultant fractals had
hexagonal symmetry thus resembling snowflakes.

In the modeled experiment the lattice can either represent the PEO layer
or the Si substrate. PEO, a plasma polymer, was above its glass transition
temperature in during deposition of PE. That means it was in an amorphous
state and did not have any symmetric properties. To avoid bias from the lattice,
a model without any lattice effects was investigated.

1.2 Off-lattice DLA
The lattice in DLA was originally implemented to ease the demands for memory
and speed up the simulation, but as the lattice properties have major effect on
the growth, a model working without any lattice was developed in Ref. [15].

In the off-lattice DLA, the particles have their own shape and aggregate when
they intersect with a particle already in the cluster. As there is no lattice, they
move according to overdamped Brownian motion [16] with diffusion constant D,
where at every time step the displacement is proportional to a random normal
variable ξ⃗.

1.2.1 Implemented Algorithm
The particle was initiated in a random position within a large circle of size L,
if it would move outside it is terminated. With each movement step a random
normal variable ξ⃗ was generated and the particle’s position is updated according
to:

r⃗(t + dt) = r⃗(t) +
√

Ddt ξ⃗(t). (1.1)

Also, the radius of the growing island l (largest distance from cluster seed) is
computed after each aggregation. To avoid unnecessary diffusion steps, if the
initial distance of the particle from the cluster seed was greater than l, it was
transported straight towards the seed so that the distance equaled l. Because of
this, lifetime had to be chosen infinite.

1.2.2 Results
The simulation was carried out with circular particles. In this case no transition
to dendrites or needles was observed, and introducing stickiness s (only every
sth particle that hit a certain particle of the cluster stuck to it) had no effect on
fractal morphology, as there was no anisotropy in the model to amplify.

We have tried whether using anisotropic particles (for example, triangles ori-
ented the same way) would change cluster morphology. On short distances (3-4
particles apart), the branches had a distinct orientation. However, the particles
did not aggregate exactly in a given place (as was the case with lattice DLA),
so on larger scales this was smeared out. The resulting clusters looked alike to
those grown with circular particles.
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Figure 1.6: An off-lattice DLA fractal, nc = 4500, color based on agregation
order.
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2. Cluster-Cluster Aggregation
Ordinary DLA models do not take into account many-body kinetic effects, namely
the fact that other particles do not wait for the first to hit the cluster. They diffuse
simultaneously and can hit each other. The cluster, too, can move, though slowly.
To describe cluster growth in real time, cluster-cluster aggregation (CCA) was
developed independently by Meakin [3] and Jullien [17].

In its simplest version, n particles (circular with radius a) are initiated ran-
domly on the surface and simultaneously perform Brownian motion. If two parti-
cles hit each other, they stick and diffuse together. Typical clusters generated by
this basic model are shown in Fig. 2.1. More realistic models include dependence
of diffusion constant on cluster size.

Figure 2.1: Typical clusters grown by CCA showing a degree of anisotropy and
more linear morphology than in DLA, cf Fig. 1.6

2.1 Cluster Anisotropy
What is remarkable in this model is that the resulting fractals do not have circular
envelopes or a distinct center. The model generates anisotropic shapes, without
implementing any anisotropy into the growth rules. This symmetry breaking is
generated simply by large amplifying of fluctuations.

In 2D, as written in Ref. [18], two merging clusters do not penetrate much on
average. Therefore their contact happens close to their perimeter. Because of this,
clusters with close-to-circular envelopes merge to form an anisotropic, ‘stringy’,
cluster with length two times the width. On the other hand, too stringy clusters
can overlap and so get more compact. This creates an equilibrium resulting
in fractal dimension of D = 1.42. The anisotropy can be characterized by the
anisotropy ratio A, defined as the greater eigenvalue of the cluster inertia tensor
divided by the lesser eigenvalue. For this model, we have A = 5.7 [19].
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2.2 Low Concentration Limit
The low-density limit of this model is well understood and can be simulated
easily as in Ref. [20]. Without actually simulating the whole process in real time,
one can instead pick two clusters (based on rules described below), rotate them
randomly, set them close to each other and let them move until they hit each
other.

Growth in this limit can also be described using a system of coupled rate
equations, one for every possible cluster size s. These are called the Smoluchowski
coagulation equations [21], [22]:

∂N(nc, t)
∂t

= 1
2

nc−1∑
j=1

K(nc − j, j)N(nc − j, t)n(j, t) −
∞∑

j=1
K(nc, j)N(nc, t)N(j, t)

(2.1)
where N(nc, t) is the number of clusters of size nc at time t. K(x, y) is called
the reaction kernel, or reaction rate constant for the aggregation of clusters of
size x and y. Here K(x, y) depends on x and y for two reasons: because for
larger clusters it is easier to hit each other; and because larger clusters move
more slowly. The exact form from Ref. [23], assuming low concentration and a
mean field approximation, is (the 1/D dependence is from growing size and the
−1/D is given by slower diffusion):

K(x, y) = x1/D + y1/D

x−1/D + y−1/D . (2.2)

The simulation should be consistent with this reaction kernel. When choosing
the two clusters (with sizes x and y) to react, one generates a random number ξ
uniformly from (0, 1), and then, if ξ > K(x, y)/Kmax, where Kmax is the maxi-
mum value among K(x, y), then the clusters are set to react. If ξ < K(x, y)/Kmax,
no aggregation happens. This way it is ensured that the clusters of different sizes
actually react according to K(x, y). However, in Ref. [20] it is stated that the
resulting fractal dimension of the clusters does not depend much on the form of
the reaction kernel, so also a constant one can also be used (then the aggregation
happens always).

This limit is easier to simulate, but the AFM images of the islands from
experiments in Chapter 4 clearly show that the clusters grow near each other.
Thus, this simplified version could not be used and growth at finite concentrations
was investigated instead, with algorithm explained on the following page.

2.3 Finite Concentration
For higher densities, the mean field approach applicable for dilute layers is not
valid. The shapes of neighboring clusters are now not independent. Before neigh-
boring islandS join, they grow in a complementary manner: where one island
has an outward-pointing branch, the second will have an inward-pointing fjord,
so the clusters will interlock each other as in Fig. 2.2. Because of this the inter-
penetration of the clusters is greater, which increases the fractal dimension. The
magnitude of this effect, and also the resulting D depends on concentration.
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Figure 2.2: Interlocking of CCA clusters at high densities.

2.4 Implemented Algorithm
The CCA model was implemented in Matlab, both without an with scaling of
diffusion constant D with cluster size nc. The simulation algorithm is as follows:
Data structure: To make use of Matlab’s optimization of vector operations,
the particle positions r⃗i are stored in one matrix of size 2 × n. The information
about which particles belong to which cluster is in a cell array where the i-th
cell contains for each particle in the i-th cluster the row number in the r-matrix
where its position is stored.
Diffusion: If no aggregation occured in the simulation step, time is incremented
by one and cluster positions are updated. Periodic boundary conditions were also
implemented, so the particles are confined to a box of size L × L. The physical
time interval between two time steps is ∆t.

In the movement step, a normal-distributed random 2×1 vector ξ⃗ is generated
for each cluster. Then the position of every particle in the cluster is updated by:

r⃗i(t + ∆t) = r⃗i(t) +
√

D(nc)∆t ξ⃗i(t) mod L. (2.3)

Aggregation: Computing pairwise distances between all particles to check ag-
gregation would be ineffective, instead the so called cell list strategy [24] was
used:

1. At each simulation step, the box was divided into a grid of squares with
size of 2a, stored in a matrix.

2. For every particle of the i-th cluster, the grid squares which overlap with it
are found (this yields 2 × 2 squares).

3. It is checked if the squares did contain particles of a previous cluster.

4. If yes, then the distance between the current particle and all particles of
such cluster is computed and it is checked whether they aggregate.

13



5. If aggregation did not occur, then the grid squares are marked ’containing
i-th clusterÂť, and the loop continues from step 2 for another particle from
the same cluster. If all particles in the cluster are checked, then the first
particle of the i + 1-th cluster is chosen.

2.5 Results
The simulation resulted in typical stringy fractals known from Ref. [20] or [17],
examples are shown in Fig. 2.4 and 2.3.

Figure 2.3: Two CCA fractals with nc = 369 (left) and 98 (right).

The method for computing the fractal dimension D was as in Ref. [17]. The
method uses radius of gyration R of the clusters to obtain D. R can be easily
calculated as the standard deviation of the cluster particle centers. The scaling
of R with nc is the same as that of Lc, or any other length characteristic of the
growing fractal:

R ∼ n
1
D
c (2.4)

The growth was simulated, and after each cluster collision, the nc and R of the
newborn cluster was calculated. From these D was obtained as the inverse slope
of a linear fit of the dependence of log R on log nc shown in Fig. 2.5.

The obtained value of D = 1.36 is close to the value 1.42 obtained in [17],
where the low concentration limit was simulated. The fluctuations of R for given
nc are results both of the random nature of the fractals and, of finite time step
∆t of the simulation, thanks to which the clusters did not aggregate immediately
at contact, but could overlap slightly. The first effect effect is dominant for larger
nc and the second for nc smaller.
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Figure 2.4: An illustration of typical large CCA clusters.

Figure 2.5: Logarithmic plot of R on nc, results from 18000 clusters generated
from simulation of 40000 monomers with density d = 1.8 · 10−2. D = 1.36.
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3. Deposition Diffusion
Aggregation
In the experiment, particles are deposited onto the surface gradually. The simpler
models, DLA and CCA dealt with deposition in an idealized way: in DLA it
was infinitely slow, in CCA deposition happens only at the beginning. In this
chapter an extended model is presented, that deals with deposition realistically.
It encompasses both DLA and CCA. Thanks to this, it will allow us to see
how changes of the experimental parameters determine which simpler model can
describe the growth.
This generalization is called the DDA model (Deposition, Diffusion, Aggregation).
In it, particles enter the surface with flux F (defined as the number of particles
entering a unit area per unit of time).

The behaviour of the growing surface changes with growth and can be struc-
tured into the following stages [25]:

1. The surface is initiated almost empty with monomers far from each other.
The number of monomers increases.

2. The monomers start to aggregate, forming oligomers. The numbers of
monomers and olimogers both increase.

3. The oligomers are now widespread enough that they capture monomers
faster than they arrive. The islands grow mostly by capturing monomers.

4. The islands are so large now that the number of monomers is negligible,
new particles are caught almost immediately. The growth furthers mostly
by joining of existing islands.

5. The islands slowly join each other, until they become part of a single cluster
spanning the entire surface. This is called the gelation point.

3.1 Kinetic Phase Diagram
What is most remarkable about this model is that it can generate both stringy
fractals shaped like those grown by CCA and also circular DLA-shaped islands.
The resulting shape is given by competition between two timescales: that of
diffusion of existing particles and deposition of new ones.

When diffusion is much faster than deposition, the model effectively reduces
to off-lattice DLA, because, on average, when a new monomer appears, it hits
an island before another monomer is deposited. This way the islands grow by
capturing monomers, instead of oligomers, which is what creates the DLA shape.
The joining of two islands happens rarely, as they diffuse slowly compared to
monomers.

The number of islands simultaneously growing on the surface is also given by
the ratio of the timescales. If deposition would be infinitely slow, all particles
would aggregate into one island everytime between new particle arrivals, which
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is precisely the DLA model. As deposition gets faster, more islands grow on their
own, and the growth slowly changes into CCA.

The mechanism of the growth determines the shape of the gelation cluster.
A phase diagram taken from [25] showing the shape transition boundaries for
different F and system size L is in Fig 3.1. With growing F the gelation cluster
shape changes from DLA to CCA to a percolation cluster, which grows when
diffusion is negligible compared to deposition.

For gelation, the shape also depends on surface size L, as when L is large
enough for many islands to grow on the surface, the resulting spanning cluster
is always CCA-shaped, as it is generated by joining of the islands, which means
that it does not have a center point like DLA fractals. The spanning cluster is
DLA-shaped only if a single (or very few) island grows on the surface. In the
described experiment, gelation was not reached on the acquired AFM images in
Chap. 4. For systems before gelation the behaviour is independent on L and
depends only on the ratio F/D.

The transition also depends on how diffusion constant scales with cluster size.
In the diagram in Fig. 3.1 as well as in the simulations in this chapter, the scaling
was assumed to be:

D(nc) = D0n
γ
c (3.1)

with γ = −1. The value of γ influeces positions of the phase boundaries in the
diagram: with higher γ the transitions happen at lower F and the CCA phase
slowly disappears. For γ → ∞ only the DLA and percolation phases exist [25].

−8 −6 −4 −2 0 2
0

1

2

3

DLA

CCA

Percolation

lnF

ln
L
/a

Figure 3.1: DDA morphology phase diagram reproduced from Ref. [25], show-
ing the transitions between different spanning cluster shapes. The diagram is
constructed for D(nc) ∼ n−1

c .
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3.2 Implemented Algorithm
The algorithm is the same as in Chap. 2, with the addition of one feature:
Deposition: Deposition time τd was introduced, so that every τd-th simulation
step, a new monomer was added onto the surface with a random position. This
yields a flux of

F = 1
τdL2 (3.2)

For quicker simulation, the positions of all particles (not only the initial) were
generated and stored in r at the beginning. Until the particle appeared at the
surface, it was not moved or considered for aggregation.
The exact code is listed in Attachment B.

3.3 Results
We have simulated the DDA model for a range of F with constant D. For each
simulation, we have captured the growth for different stages, given by different
particle density defined as

d = n
πa2

L2 . (3.3)

We have retrieved the three morphologies in Fig. 3.1, their growth is shown
in Fig. 3.4, 3.5 and 3.6. Our results confirm the findings in Ref. [25]: for boosting
F , the fractal shapes change from DLA to CCA to percolation.

However, a closer analysis indicates that the three regimes are actually not
distinct phases. For a range of F and fixed D, we have computed D for given
density and obtained values in Tab. 3.1. They are plotted in Fig. 3.2, and as can
be seen, D changes continuously with F . It has no jumps as in a phase transition.

Each DDA regime is characterised by one dominant growth mechanism (dif-
fusion of monomers for DLA, diffusion of clusters for CCA, deposition for perco-
lation). However, every mechanism is still present also in the other regimes, it
is only weaker. The relative strengths of these mechanisms change continuously
with F . Therefore, also the regimes change into one another continuously.

Figure 3.2: Plot of D as the function of F for D(nc) ∼ n−1
c , showing the change

of island morphology for different DDA regimes.
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Figure 3.3: Logarithmic plot of D as the function of F for D(nc) ∼ n−1
c , showing

the change of island morphology for different DDA regimes. The dependence is
fitted with D ∼ F κ with κ ≈ −0.2.

F · 10−8 786.5 786.5 262.2 157.3 98.32 78.65
D 1.437 1.421 1.476 1.474 1.499 1.499

F · 10−8 52.44 31.46 15.73 7.865 1.573 1.573
D 1.534 1.601 1.603 1.598 1.613 1.642

Table 3.1: Fractal dimension D of DDA clusters grown for different F for d = 0.1.
The clusters were grown with a = 1, L = 200, D = 0.1. D was calculated using
the method from Chap. 2. Each value of D was computed from at least 100
clusters, except those for F = 1.573 · 10−8, for which 29 and 41 clusters were
used.

For high F/D in Fig. 3.4, many small clusters are growing, and they seldom
manage to merge. Diffusion is not important at all and the behaviour can be
modelled as that of a percolation cluster.

For medium F/D in Fig. 3.5, larger islands grow mainly by merging of
oligomers (nc ≤ 5). The shapes of the clusters are similar to the ones grown
by CCA, with the exception of that now particles can be deposited straight onto
a growing island. The dimension D ≈ 1.5 is higher than in ordinary CCA, as
now particles can be deposited straight onto an existing cluster or in the fjords
of an existing cluster.

For low F/D in Fig. 3.6 for high densities the growth is not precisely DLA-
like, as clusters manage to merge. As F/D is low, even large clusters manage to
diffuse enough to hit each other. The resulting clusters in Fig. 3.6 for d = 0.14
are therefore not entirely circular and D is lesser than in pure DLA.
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Figure 3.4: DDA in the percolation regime: clusters growing with a = 1, L = 200,
D = 0.1 and F = 7.85 · 10−5. Growth captured for d = 0.02 (top), d = 0.07
(middle), d = 0.14 (bottom).
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Figure 3.5: DDA in the CCA regime: clusters growing with a = 1, L = 200,
D = 0.1 and F = 1.57 · 10−6. Growth captured for d = 0.02 (top), d = 0.07
(middle), d = 0.14 (bottom).
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Figure 3.6: DDA in the DLA regime: clusters growing with a = 1, L = 200,
D = 0.1 and F = 1.57 · 10−8. Growth captured for d = 0.02 (top), d = 0.07
(middle), d = 0.14 (bottom).
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4. Modeled Experiment
The modeled experiment from Ref. [1] is growth of polymer thin films by Plasma-
Assisted Vapor Phase Deposition (PAVPD). PAVPD is a method for depositing
thin films from gas state. The process takes place in a vacuum chamber filled with
an inert gas with pressure of about 1 Pa. The polymer precursor is put into the
chamber and let to evaporate. On these vapors is then applied low-temperature
plasma produced in the chamber. This turns the vapors into fragments, which
are then deposited onto the substrate.

In our case the precursors were of two kinds: polyethylene (PE) and polyethy-
lene oxide (PEO), and ⟨100⟩ Si was used as the deposition substrate. The depo-
sition was structured in two steps as depicted in Fig. 4.1:

1. At first, PEO was deposited on the substrate long enough to cover its whole
surface with a layer up to 100 nm thick.

2. Then PE was deposited onto the PEO coated surface, short enough that it
did not cover it wholly.

What is special about this combination is that these two precursors are im-
miscible polymers, which is also true for plasma polymers made of them. Hence
the PE fragments deposited had tendency to stick close to each other and form
islands.

Other relevant experimental parameters are deposition speed and power of
plasma dicharge used for fragmentation of PEO. PE deposition speed depends on
the distance between the crucible containing the polyethylene molecules and the
substrate, denoted hPE. The closer the crucible was, the higher the deposition
flux of the fragments entering the growing surface.

Power of the plasma PPEO applied on PEO controlled its cross-link density:
with higher power PEO was more fragmented and the produced plasma polymer
was more cross-linked. Heavily cross-linked polymer layers are more rigid.

Figure 4.1: A schematic representation of the deposition procedure, image taken
from Ref. [1]. At first, PEO was deposited onto the Si substrate, and then PE
was deposited, forming the observed fractals.
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Figure 4.2: AFM images of randomly branched PE fractals grown on 100 nm
thick PEO. PPEO = 10 W, hPE = 20 cm (left) and PPEO = 2 W. hPE = 10 cm
(right). Branches grow and split randomly from a distinct island center.

4.1 Observed Island Morphologies
After the films were prepared, they were analyzed using Atomic Force Microscopy
(AFM). It visualized the individual islands, as they were about 10 nm higher
than the rest of the surface. The islands showed to have fractal shape. Fractal
dimension was calculated for each of them in Ref. [1]. We have classified them
into three categories:

1. Branched fractals, examples shown in Fig. 4.2. The islands grow from a dis-
tinct center without any preferred orientation. Island branches are random
and split frequently into subbranches. They grow on less cross-linked PEO.
Typical D ≈ 1.62.

2. In Fig. 4.3 are examples of dendrites. These grow when PEO is not present
in the film or when it is very thin, as detailed in Fig.4.3 captions. They
exhibit little branching from the primary branches and some degree of ori-
entational symmetry. Typical D ≈ 1.33.

3. In Fig. 4.4 are examples of backbone dendrites. They are random in shape,
without any preferred direction or a distinct center. The fractals are more
linear, as their primary branches are more amplified. Backbone dendrites
grow on highly cross-linked PEO. Typical D ≈ 1.55.

4.2 Interpretation
We now present our hypothesis of how the three distinct island types in Fig. 4.2,
4.3 and 4.4 acquired their shape. For each type, we compare it with fractals grown
by one of the studied models. From this comparison we propose what physical
effects were dominant in the growth of the particular island type.
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Figure 4.3: AFM images of PE dendrites grown on 15 nm thick PEO (right) and
without the PEO layer (lefts). PPEO = 10 W, hPE = 20 cm. The branches of the
islands grow in straight directions.

Figure 4.4: AFM images of PE backbone dendrites grown on 100 nm thick PEO.
PPEO = 10 W. (left), PPEO = 30 W (right), hPE = 10 cm (both). The PEO
layer was more cross-linked and deposition faster, which resulted in more linear
fractals.
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4.2.1 Dendrite growth
Perhaps the most surprising is the growth of the dendrites in Fig. 4.3, which
closely resemble snowflakes. Snowflakes have hexagonal symmetry because the
ice that forms them crystallizes in a hexagonal lattice. The deposited PE plasma
polymer fragments were above their glass transition temperature (see Ref. [1]),
so they were in amorphous state without any symmetry. What could then create
the hexagonal symmetry of Fig. 4.3 (right)?

Results from Chap. 1 show that symmetric shapes can grow through the DLA
process on a symmetric lattice. The PEO layer on which the PE diffused, however,
was also above glass transition and did not have any symmetry. Therefore, the
only element that could serve as the lattice was the Si substrate. That correlates
with the fact that dendrites grew for thin PEO layers, where the influence of Si
was stronger.

Fig. 4.5 shows the similarity between the experimental and theoretical pat-
terns. We therefore conjecture that the attractive London forces between PE and
Si are what governs the growth shape, even for a PEO layer as thick as 15 nm
(Fig. 4.5) between them.

4.2.2 Growth of branched fractals and backbone dendrites
The second peculiarity is the transition from branched fractals to backbone den-
drites. In Fig. 4.6 and 4.7 can be seen that one island type is similar to off-lattice
DLA clusters and the second to CCA clusters. In Chap. 3 we have shown that
the transition between these models happens for varying ratios of deposition flux
and diffusion constant F/D.

One can shift from backbone dendrites in Fig. 4.4 to branched fractals in
Fig. 4.2 in two ways: by lowering the power of plasma applied on the PEO
underlayer PPEO (thus decreasing its cross-link density), and/or by increasing the
distance between the PE crucible and the substrate. The two branched fractals
in Fig. 4.2 show this: the left one has the same PPEO as Fig. 4.4 (left), but higher
hPE, and the right one has lesser PPEO than Fig. 4.4 (left) and the same hPE.

The distance hPE can be simply related to F in the DDA model: with lower
crucible-substrate distance hPE comes faster deposition flux F , as more molecules
from the crucible reach the substrate.

The physics of transition caused by the change in plasma power PPEO is more
subtle. It should have no effect on deposition speed F . Hence we conclude that
PPEO affects the diffusion coefficient of deposited PE oligomers (and clusters),
D(nc), cf. Eq. (3.1).

The diffusion coefficient can change in two respects: either by changing the
base diffusion coefficient of deposited oligomers D0, and/or by changing the de-
pendence of the cluster diffusion coefficient D(nc) on the cluster size, i.e., by
altering the exponent γ.

The PEO layers with higher cross-link density are more rigid. That can affect
the origin of the diffusion itself. Since the PE fragments diffuse in vacuum, the
random force must come from the PEO layer or the Si substrate. More rigid PEO
could, for the same temperature, have slower thermal motion. This decreases
the magnitude of the random fluctuations of PEO surface and hence effectively
reduces D0.
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Alternatively, it can change the scaling, as the surface now becomes more stiff
and also larger clusters are able to slide on it. This would result in a decrease
of γ, which would make the transition between DLA and CCA happen for lower
F/D as reported in [25].

We conclude that the transition between branched fractals to backbone den-
drites is the kinetic transition seen in the DDA model. It can experimentally
be achieved by boosting the deposition flux or by slowing particle diffusion, for
example by using more cross-linked growth surface.
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Figure 4.5: Dendrites compared to lattice DLA: A PE dendrite grown on 15 nm
thick PEO compared to a square lattice DLA fractal grown with amplified diag-
onal preferrence (s = 2 on the main lattice diagonal, s = 10 elsewhere).

Figure 4.6: Branched fractals compared to off-lattice DLA: A randomly branched
PE fractal grown on 100 nm thick PEO with PPEO = 10 W, hPE = 20 cm and an
off-lattice DLA fractal.

Figure 4.7: Backbone dendrites compared to the CCA model: PE backbone
dendrites grown on 100 nm thick PEO, with PPEO = 30 W, hPE = 10 cm and
cluster grown by DDA in the CCA phase.
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Conclusion
We have developed theoretical model describing fractal growth of polymeric thin
films. The modeled thin films comprise of Si substrate with a polyethylene oxide
(PEO) layer, on which polyethylene (PE) was deposited. For varying experimen-
tal conditions, the PE formed fractal islands with three distinct shapes have been
observed. We have reviewed existing growth models and found one that yields
patterns similar to each of the shapes. The three models are lattice Diffusion-
Limited Aggregation (DLA), off-lattice Diffusion-Limited Aggregation, based on
diffusion of single particles, and Cluster-Cluster Aggregation (CCA), based on
diffusion of clusters. Fractals grown by lattice DLA have orientational symme-
try determined by the lattice. Off-lattice DLA gives randomly branched fractals
with no symmetry. CCA gives linear random fractals. A more realistic model
that includes deposition shows a transition between CCA and off-lattice DLA.
This transition is based on competition of diffusion and deposition rates.

When the PEO layer was thin, ordered patterns similar to lattice DLA grew.
This we attribute to the proximity of the Si substrate and the growing islands,
where the crystalline Si acts as an effective lattice.

The other two observed PE island shapes are alike to those grown by off-
lattice DLA and CCA. The transition between them was observed for varying
deposition rate and varying PEO cross-link density. We therefore propose that
this transition is the same as the one between DLA and CCA. This transition
can be made either by speeding up deposition or altering diffusion. Cross-link
density does not affect deposition, but affects diffusion, either uniformly for all
diffusing clusters, or makes the larger clusters more mobile.

For more detailed information about the processes happening during the island
growth, more experimental data would be needed. Namely the measurement of
the crystalline properties of the PE in the nanoislands could help to determine
how the deposited fragments aggregate on the surface.

Also a more realistic representation of the surface could be implemented in the
simulations, as it plays a major role in both described transitions between island
shapes. The cross-linked PEO could be modeled as a Gaussian Random Field,
where the cross-link density could have direct effect on its correlation length.
This would, however, require considerable computational power, as large two-
dimensional gaussian fields are difficult to generate.

Our results clearly show that PE plasma fragments diffuse on the PEO layer
even under conditions of vacuum, which is a process never reported before. We
have discussed how this diffusion is influenced by the PEO layer properties, which
can be fine-tuned in the experiment. In the future, this may allow for the pro-
duction of highly specialized polymeric thin films.
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[26] A. Einstein. Über die von der molekularkinetischen Theorie der
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A. Single Particle Tracking
In this Appendix, we present an analysis of the dynamics of the diffusing particles
in the CCA model based on their mean square displacement (MSD), denoted
⟨r2(t)⟩.

The analysis of trajectories of diffusing particles by studying their MSD as
a function of time has begin in the time of Einstein and Perrin [26]. Einstein
derived that, for freely diffusing particles, the time-dependence is linear:

⟨r2(t)⟩ = At. (A.1)

For particles diffusing in complex environments such as living cells, the depen-
dence is usually in the form of a power law [27]:

⟨r2(t)⟩ ∼ tα, (A.2)

where for α < 1 the process is called subdiffusive and for α > 1 superdiffusive.
Subdiffusion usually indicates that the environment has some obstacles and the
particles cannot diffuse freely. Superdiffusion usually indicates that the particle’s
motion is actively driven by molecular motors.

In the CCA model, particles aggregate on contact. If we focus only on
monomers that do not aggregate, they diffuse in an environment with many effec-
tive obstaclesobstacles formed by other particles and fractal clusters. Therefore
one may expect the monomers to undergo the subdiffusion.

The averaging in MSD can be done in two ways: One can average over trajec-
tories of many particles, or over a (long) trajectory of a single particle [27]. For
N trajectories the averaging is simply:

⟨r2(t)⟩ =
∑N

i=1 r2
i (t)

N
, (A.3)

For averaging over a trajectory with time T , one uses:

⟨r2(t)⟩ = 1
T − t

∫ T −t

0
[r(τ + t) − r(τ)]2dτ. (A.4)

The two approaches are equivalent for ergodic systems [27]. For the CCA
model, however, they are not. The most apparent problem with (A.4) is that the
environment itself is evolving. The dynamics of monomers will sure be different
at the beginning, when all particles are monomers, and at the end stage, where
remaining monomers avoid big clusters. Using (A.4) for small t, we merge both
these processes into the value and lose information about the difference.

A.1 Results
We have performed the MSD analysis of the CCA model in the following way:
The CCA model from Chap. 2 was simulated, and trajectories of all monomers
were recorded. That means every τMSD-th step of trajectories of all particles
was recorded, until the point where the particle aggregated (τMSD = 40 for all

32



results below). For a CCA simulation of n particles, that produced n trajectories
of varying length. The number of monomers decays quickly, so most trajectories
are far shorter than average trajectory length.

Because MSD had to be calculated using (A.3), a simulation of many particles
was needed. Instead of one big simulation, more simulations were run in parallel
and the results were averaged. This was performed for two different densities: for
d = 0.1 and d = 0.25. The results are, as shown below, quite different.

For d = 0.1, for large times, a typical system looked as in Fig. A.1. It
consisted of myriads of CCA islands, but no island spanned the entire system
from one corner to the other. The number of monomers decayed slowly, even for
large times. There were many long-surviving monomers, particles that did not
aggregate even on very long times.

The many-simulation averaged time-dependence of MSD is shown in Fig. A.2.
For large times the behaviour has large fluctuations, as the long-survivors are
still a small fraction of the original n. It shows linear behaviour, which indicates
that the CCA islands are not sufficient to cause subdiffusion. For small times
(Fig. A.3) tthe MSD growth is slower than linear and can be approximated by
the power-law fit with exponent α = 0.92. A typical long-surviving trajectory in
Fig. A.5 explores a significant part of the system, diffusing almost freely.

For d = 0.25 after some time, the majority of the particles became part of
one large cluster spanning the entire system: a fractal maze, depicted in Fig. A.6.
Because diffusion constant scales inversely with cluster size, the maze was effec-
tively static. The number of monomers decayed quickly and only few particles
survive longer times without aggregation.

The many-simulation averaged time-dependence of MSD in Fig. A.7 has a
maximum. After reaching it, MSD suddenly falls and fluctuations intensify. The
dependence then becomes, on average, constant. This is because the long surviv-
ing trajectories for d = 0.25 look as that in Fig. A.9. The typical particle does
not explore the system. It was merely initiated at a place not reached by the
growing maze and stayed there for a long time. For small times (Fig. A.7 and
Fig. A.8) the motion is slower than the normal diffusion and can be characterised
by the exponent α = 0.78.

For both densities, the behaviour was slower than linear for small times. To
this we propose two possible explanations. One is the same as in a similar system,
diffusing hard spheres [28]. For hard spheres, the environment is constant. Slower-
than-linear diffusion for small times comes from short-time correlations in the
particle’s positions that result from other particles blocking their way.

The other possible explanation is that it is a result of the changing environ-
ment the monomers diffuse in. For small times, the system is dotted with many
small obstacles and small regions of empty space. After some time, both the
obstacles and the empty spaces become fewer and larger. Subdiffusion is then a
result of diffusing in an emmental-like environment. The environment then turns
either into a fractal maze or an archipelago of CCA clusters, and the diffusion of
long-survivors copies that. Which of these two is the case can be determined by a
careful analysis of time-scales in question. This represents an interesting problem
for a further study.
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Figure A.1: A typical system grown by the CCA model for density d = 0.1. The
particles form many large islands with free space around them. The large island
move, though more slowly than the monomers.

Figure A.2: Dependence of ⟨r2⟩ on t for d = 0.1. An average of 50 simulations of
20000 particles each. For large times, the dependence is, on average, linear.
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Figure A.3: Dependence of ⟨r2⟩ on t for d = 0.1, zoom on shorter times. An
average of 50 simulations of 20000 particles each. For short times, the dependence
is sublinear.

Figure A.4: Logarithmic plot of of ⟨r2⟩ on t for d = 0.1. An average of 50
simulations of 20000 particles each. The sublinear dependence for short times is
fitted by ⟨r2⟩ ∼ tα with α = 0.92 (red line).
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Figure A.5: Trajectory of a typical long-surviving particle for d = 0.1, surviving
for 24000 steps. The survivor diffuses freely across the whole system. The de-
picted system size is L = 200, particle radius a = 1. The survivor and the other
clusters move comparably fast, so the survivor’s past trajectory does sometimes
cross the current position of some cluster.
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Figure A.6: A typical system grown by the CCA model for density d = 0.25. The
particles form one large spanning cluster, which is almost static. The remaining
monomers diffuse in a fractal maze.

Figure A.7: Dependence of ⟨r2⟩ on t for d = 0.1. An average of 50 simulations
of 20000 particles each. For short times the dependence is sublinear. For large
times ⟨r2⟩ drops suddenly, as all particles join the spanning cluster, except the
long-survivors staying almost in place.
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Figure A.8: Logarithmic plot of of ⟨r2⟩ on t for d = 0.25. An average of 50
simulations of 20000 particles each. The sublinear dependence for short times is
fitted by ⟨r2⟩ ∼ tα with α = 0.78 (red line).

Figure A.9: Trajectory of a typical long-surviving particle for d = 0.25, surviving
for 46000 steps. The survivor diffuses randomly in circles and stays close to its
original position. It does not explore the fractal maze. The depicted system size
is L = 80, particle radius a = 1.
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B. Attachments

DDA simulation code

1 t i c
2 rng ( ’ s h u f f l e ’ ) ;
3

4 f l a g = 0 ;
5 time =0; %number o f d i f f u s i o n s t ep s
6

7 %SIMULATION PARAMETERS
8

9 p a r t i c l e r a d i u s = 1 ;
10 d i f f u s i v i t y = 0 . 1 ; %speed o f d i f f u s i o n
11 deposrate = 500 ; %speed o f d e p o s i t i o n
12 f i e l d s i z e =200; %system s i z e ( with p e r i o d i c boundar ies )
13 n i n i t = 1∗10ˆ1 %i n i t i a l number o f p a r t i c l e s
14 f i n a l d e n s i t y = 0 . 1 5 ; %the s imu la t i on w i l l run u n t i l t h i s dens i ty
15

16

17

18 % PARTICLE VARIABLES:
19 % s u r f a c e s t a r t s with ’ n in i t ’ p a r t i c l e s
20 % w i l l s imulate u n t i l dens i ty reaches ’ f i n a l d e n s i t y ’
21 % that corresponds to ’ ntota l ’ p a r t i c l e s
22 % and ’doom ’ d i f f u s i o n s t ep s
23

24 n = n i n i n t ; %cur rent number o f p a r t i c l e s on the s u r f a c e
25 doom = ( ntota l −n i n i t ) ∗ deposrate %s imu la t i on l ength
26

27 % SURFACE VARIABLES
28 % l a y e r g r i d i s used f o r c e l l l i s t i n g o f c l u s t e r s
29 % when checking f o r aggregat i on
30

31 g r i d s i z e = int16 ( f i e l d s i z e / p a r t i c l e r a d i u s /2) ;
32 l a y e r g r i d = ze ro s ( g r i d s i z e +2) ;
33

34 %POSITIONS AND CLUSTER COUNTING
35

36 r = rand ( ntota l , 2 ) ∗ f i e l d s i z e ; % p a r t i c l e p o s i t i o n s
37 c l p o i n t e r = num2cel l ( 1 : n t o t a l ) ; % i−th c e l l o f t h i s
38 % c e l l array po in t s to the p a r t i c l e s o f the i−th c l u s t e r
39 clnum = n ; %counts the cur rent number o f c l u s t e r s
40 clnumtime=ze ro s ( f l o o r (doom/ deposrate ) , 1 ) ;
41

42 %DERIVED VARIABLES
43 dens i ty=n∗ pi ∗ p a r t i c l e r a d i u s ˆ2/ f i e l d s i z e ˆ2
44 f l u x=pi ∗ p a r t i c l e r a d i u s ˆ2/ f i e l d s i z e ˆ2/ deposrate
45

46 whi le time<doom %working c y c l e
47 l a y e r g r i d = ze ro s ( g r i d s i z e +2) ;
48

49 i f mod( ( time+1) , deposrate )==0 && f l a g ==0 % checks i f d e p o s i t i o n
occurs

50 clnum=clnum+1;
51 clnumtime ( ( time+1)/ deposrate )=clnum ;
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52 n=n+1;
53 end
54 f l a g = 0 ; % becomes 1 i f aggregat ion occured in t h i s c y c l e
55 f o r j =1:clnum % checks i f aggregat i on occurs
56

57 f o r k=1:numel ( c l p o i n t e r { j }) %checks i f the j−th c l u s t e r should
aggregate

58 r i v a l = [ ] ; %po in t e r o f the c l u s t e r with p o t e n t i a l merging
59 po int = c l p o i n t e r { j }( k ) ; %k−th p a r t i c l e o f the j−th c l u s t e r
60 %runs through a l l p a r t i c l e s , puts each on the g r id ( p a r t i c l e

always occup i e s 2x2 c e l l s on the g r id ) .
61 %Checks i f the g r id c e l l s are occupied by another c l u s t e r .
62 %I f yes , computes d i s t a n c e s
63 %i g n o r e s the p o s s i b i l i t y , that two a p a r t i c l e could f i n d two

near
64 %c l u s t e r s
65

66 gr idx= int16 ( f l o o r ( r ( point , 1 ) / p a r t i c l e r a d i u s /2+1/2) ) +1; %
p a r t i c l e ’ s p o s i t i o n in the c e l l l i s t g r id

67 gr idy= int16 ( f l o o r ( r ( point , 2 ) / p a r t i c l e r a d i u s /2+1/2) ) +1;
68 i f sum(sum( l a y e r g r i d ( gr idy : ( gr idy +1) , g r idx : ( gr idx +1) ) ) )==0 %i f

ne ighbor ing c e l l s are empty , put p a r t i c l e on them
69 l a y e r g r i d ( gr idy : ( gr idy +1) , gr idx : ( gr idx +1) ) = j ;
70

71 %i f ne ighbor ing c e l l s conta in only the same c l u s t e r , put
p a r t i c l e on them

72 e l s e i f sum(sum( l a y e r g r i d ( gr idy : ( gr idy +1) , gr idx : ( gr idx +1) )−j ) )==0
73 l a y e r g r i d ( gr idy : ( gr idy +1) , gr idx : ( gr idx +1) ) = j ;
74 % e l s e aggregate
75 e l s e [ fn , gn , va l s ] = f i n d ( l a y e r g r i d ( gr idy : ( gr idy +1) , gr idx : (

gr idx +1) ) ) ;
76 r i v a l = va l s ( f i n d ( va l s −j , 1 ) ) ; %f i n d s the c l u s t e r with

p o t e n t i a l merging
77 i f r i v a l
78 po in t s = c l p o i n t e r { r i v a l } ;
79 %computes euc l i d ean d i s t anc e o f po int and a l l p a r t i c l e s o f

the r i v a l c l u s t e r
80 i f min (sum ( ( r ( po ints , : )−r ( point , : ) ) . ˆ 2 , 2 ) ’−(4∗

p a r t i c l e r a d i u s ˆ2) )<0
81 c l p o i n t e r { j}=horzcat ( c l p o i n t e r { j } , c l p o i n t e r { r i v a l }) ;
82 clnum=clnum −1;
83 c l p o i n t e r ( r i v a l ) = [ ] ;
84 f l a g=1 ; %break two loops in s t ead o f one
85 break ;
86 end
87 end
88 end
89

90 end
91 i f f l a g==1 break ; end ;
92 end
93

94 %DIFFUSION
95 i f f l a g ˜=1 %happens only i f aggregat ion did not
96 time=time +1; %time i s incremented by one
97 disp lacement = d i f f u s i v i t y ∗ randn ( clnum , 2 ) ;
98 f o r j =1:clnum
99 %p e r i o d i c boundar ies and d i f f u s i o n constant s c a l i n g
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100 %( d i f f u s i v i t y p ropo r t i ona l to n c ˆ−1)
101 r ( c l p o i n t e r { j } , : )=mod( r ( c l p o i n t e r { j } , : )+disp lacement ( j , : ) /

sq r t ( numel ( c l p o i n t e r { j }) ) , f i e l d s i z e ) ;
102 end
103 end
104

105 end
106

107 toc
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