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Introduction
The question of when scale invariance of special relativistic classical field theories
implies full conformal invariance was resolved in [7] for spacetimes of any dimen-
sion n, including the special case of n = 2, and fields of any spin. Nonetheless in
[9] the case of n = 2 Liouville field theory was reconsidered. There the classical
centre charge c (Virasoro) appears. In [9] it is conjectured about the impossibility
to have, at once, diffeomophic and Weyl symmetry. In this thesis, we investigate
this issue.

The conformal symmetry arises in physics in many diverse areas. One exam-
ple may be conformal gravity, as an alternative theory of gravitation [11], [10].
Another place where conformal and Weyl symmetries can be found are the Dirac
materials, such as graphene [6]. Additional interesting examples and discussion
of quantum case can be found in [12].

The flow of the thesis is as follows. In the first chapter we introduce the no-
tation, discuss conformal transformations and associated algebras, for the case of
n > 2 and for the case of n = 2. Then we go through the conditions imposed on
the energy-momentum tensor from symmetries of a theory and improvements en-
suring these features. For the case of Liouville theory, we illustrate the extension
of Witt algebra to Virasoro algebra.

The second chapter is devoted to process of Weyl and Ricci gauging, i.e. pro-
moting rigid scale invariance to local Weyl invariance, while introducing Weyl
gauge potential. The equivalence of trasformation properties of particular com-
binations of introduced Weyl potential, and appropriate combinations of Ricci
tensor and Ricci scalar, allows to interchange in some cases the Weyl gauging
with geometrical objects, and have locally Weyl invariant theory without Weyl
gauge field. The cases for which this is possible, are discussed at the end of the
chapter.

The third chapter deals with the classical Liouville theory and the search for
proper improvements giving the traceless energy-momentum tensor is presented.
It starts with construction of Liouville theory as a dimensional limit of appropriate
higher dimension theory which gives rise to additional terms which are being
investigated. This implies a condition on the Weyl gauge field. Following this
restriction the energy-momentum tensor and transformation properties of the
improvement are studied.

2



1. Geometric transformations
and Conformal symmetry
In this chapter we discuss spatiotemporal continuous symmetries of classical fields
and actions, and how they shape the components of the energy-momentum tensor.
Furthermore, we show some interesting mathematical structures coming from
those transformations.

First we define geometric transformations for various fields, discuss the Killing
equation and its solutions. Then we look at Noether theorem and construct
the energy-momentum tensor, which has several interesting properties due to
symmetries of a chosen theory.

In the last part we give more details of the energy-momentum tensor, and
discuss its improvements that are surface terms necessary for ensuring its prop-
erties. We finally show the algebras obeyed by the geometric transformations in
two dimensions.

1.1 Notation
Let us start by introducing our notation. The flat space metric ηµν for general
dimension n

ηµν = diag(−1,+1,+1, . . .), (1.1)
with µ, ν = 0, 1, . . . , n− 1. In curved space we name gµν the metric tensor.

The Christoffel symbols are

Γσ
µν ≡ 1

2g
σρ (∂νgρµ + ∂µgνρ − ∂ρgµν) , (1.2)

where Einstein summation convention is understood.
The Riemann tensor is defined as

Rρ
σµν ≡ ∂µΓρ

νσ − ∂νΓρ
µσ + Γρ

µλΓλ
νσ − Γρ

νλΓλ
µσ, (1.3)

while the Ricci tensor is
Rσν ≡ Rρ

σρν , (1.4)
and the Ricci scalar is

R = gµνRµν . (1.5)
Finally, the diffeomorphic covariant derivative ∇ρ of general tensor Tα...β

µ...ν is

∇ρT
α...β
µ...ν =∂ρT

α...β
µ...ν + T λ...β

µ...ν Γα
λρ + · · · + Tα...λ

µ...ν Γβ
λρ

− Tα...β
λ...ν Γλ

µρ − · · · − Tα...β
µ...λ Γλ

νρ.
(1.6)

1.2 Conformal transformations
Suppose we have the following coordinate transformations

x′µ = xµ + δxµ ≡ xµ − fµ(x), (1.7)
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where δxµ ≡ −fµ are infinitesimal, and we wish to know the corresponding field
transformations. We define a variation δ of a general field Φi(x) (scalar filed,
vector field etc.), excluding spinors, which are discussed later

δΦi(x) ≡ Φ′
i(x′) − Φi(x). (1.8)

For our analysis it is useful to introduce the so-called geometric transforma-
tions [8]

δfΦi(x) ≡ Φ′
i(x) − Φi(x). (1.9)

This transformation clearly commutes with derivative, because the fields are eval-
uated at the same point. We can easily see

δfΦi(x) = δΦi(x) − ∂µΦiδx
µ. (1.10)

Since for scalar fields φ we have φ′(x′) = φ(x), we get

δfφ = fµ∂µφ. (1.11)

For contravariant vector and covaraint vector fields, V µ and Vµ, we have

V ′µ(x′) = ∂x′µ

∂xν
V ν(x)

V ′
µ(x′) = ∂xν

∂x′µVν(x),
(1.12)

hence

δfV
µ = f ν∂νV

µ − ∂νf
µV ν

δfVµ = f ν∂νVµ + ∂µf
νVν .

(1.13)

From this it is easy to find the geometric transformation formula for a general
tensor T . By definition, a tensor transforms like

T ′α...β
µ...ν (x′) = ∂x′α

∂xγ
· · · ∂x

′β

∂xδ

∂xλ

∂x′µ · · · ∂x
κ

∂x′ν T
γ...δ
λ...κ(x). (1.14)

The geometric transformation is then

δfT
α...β
µ...ν = fλ∂λT

α...β
µ...ν +∂µf

λTα...β
λ...ν + · · · + ∂νf

λTα...β
µ...λ −

−∂λf
αT λ...β

µ...ν − · · · − ∂λf
βTα...λ

µ...ν .
(1.15)

One can recognize that this transformation is nothing but the Lie derivative for
bosonic fields in coordinate formulation [3] i.e.

δfT
α...β
µ...ν = LfT

α...β
µ...ν . (1.16)

From our definition of the geometric transformations (1.9) one can see that
zero value of δfΦi reveals a symmetry of the field Φi under the infinitesimal
transformations fµ. Especially interesting are the symmetries of the metric tensor
(called isometries). Let us study

δfgµν = 0 (1.17)
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as an equation for fµ.
Using the formula (1.15) we can rewrite the previous condition as

0 = δfgµν = fα∂αgµν + ∂µf
αgαν + ∂νf

αgµα

= ∂µfν − 1
2f

α (∂µgαν + ∂νgµα − ∂αgµν) + (µ ↔ ν)

= ∇µfν + ∇νfµ,

(1.18)

where we used fµ = gµνfν and the expression (1.2) for Γλ
µν . The last expression

is called Killing equation and its solutions are Killing vectors.
We derived the condition on infinitesimal coordinate transformations under

which the metric is invariant. We could also think of transformations which leave
the metric invariant up to an infinitesimal factor σ(x) i.e.

g′
µν(x) = (1 + σ(x))gµν(x). (1.19)

Although such transformations change the metric, they preserve angles. In
particular, under these transformations the causality is preserved. We can again
study which conditions fµ has to satisfy to have

δfgµν = σgµν . (1.20)

This time we get the conformal Killing equation

∇µfν + ∇νfµ = σgµν . (1.21)

Taking the trace of this, we may express σ in terms of fµ and by substituting
this back into (1.21) we obtain

∇µfν + ∇νfµ = 2
n

∇ρf
ρgµν . (1.22)

Since the conformal Killing equation is a generalization of the Killing equation,
the solutions of (1.18) form a subset of solutions of (1.22). In flat space limit the
conformal Killing equation becomes

∂µfν + ∂νfµ = 2
n
∂ρf

ρηµν . (1.23)

As our following solution to this problem is rather terse, one can find an extended
discussion on this in [5].

Taking the divergence ∂ν of this equation we get

(2 − n)∂µ(∂ · f) = n□fµ, (1.24)

where we denoted □ ≡ ∂α∂
α and ∂ · f ≡ ∂αf

α.
Taking another derivative ∂ν of this equation we get

(2 − n)∂ν∂µ(∂ · f) = n□∂νfµ. (1.25)

Contracting the indices we have

(n− 1)□(∂ · f) = 0. (1.26)
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These equations show that something special happens for n = 1 and n = 2, but
let us focus for the moment on n > 2.

Combining the equations (1.23), (1.25) and (1.26) we see

∂µ∂ν(∂ · f) = 0, (1.27)

therefore ∂ · f is at most linear in x, but since we have the divergence of fµ we
cannot say much about fµ itself now. We have to derive another condition on
fµ.

Taking a derivative of (1.22) ∂ρ we have

∂ρ∂νfµ + ∂ρ∂µfν = 2
n
ηµν∂ρ(∂ · f). (1.28)

From this we can write

n∂µ∂νfρ = ηρµ∂ν(∂ · f) + ηνρ∂µ(∂ · f) − ηµν∂ρ(∂ · f). (1.29)

The discussion of (1.27) implies that ∂ν(∂ · f) has to be constant, therefore

∂µ∂νfρ = constant. (1.30)

We see that fµ is at most quadratic in x and can be written as

fµ(x) = aµ + bµ
νx

ν + cµ
νx

ν + dµ
αβx

αxβ, (1.31)

where aµ, bµ
ν , cµ

ν , dµ
αβ are infinitesimal constants, furthermore bµν = −bνµ,

cµν = cνµ and dµ
αβ = dµ

βα by construction.
By investigating each term separately we try to give every transformation

a geometrical meaning. The first two terms represent the notorious Poinacaré
transformations. The term aµ corresponds to translations and the bµ

νx
ν term are

infinitesimal Lorentz transformations. Those two terms are also the solutions of
the Killing equation (1.18).

To find a meaning for the third term cµ
νx

ν we substitute fµ back to (1.22),
this way we see that cµν is proportional to metric

cµν + cνµ = 2cµν = 2
n
cρ

ρηµν ,

therefore this term can be rewritten as cxµ where c is another small factor. Now
it is clear that this transformation corresponds to a scaling of coordinates.

The last term dµ
αβx

αxβ can be simplified by using (1.29)

dρµν = 2
n

(ηρµd
λ

λν) + 2
n

(ηνρd
λ

λµ) − 2
n

(ηµνd
λ

λρ). (1.32)

This means that dρµν can be reduced to four parameters dµ and the transfor-
mation can be written as 2(d · x)xµ − dµx2. This is called the special conformal
transformation and it is an inversion, followed by translation, followed by an
inversion [2].

In table 1.1 the generators associated with these infinitesimal transformations
are provided.
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Table 1.1: Infinitesimal conformal transformations in n > 2 dimensions
Transf. Ind. par. fµ Generators
Translations n aµ Pµ = ∂µ

Lorentz transf. n(n− 1)/2 bµ
νx

ν Mµν = xν∂µ − xµ∂ν

Dilatation 1 cxµ D = xµ∂µ

Special conformal
transf.

n 2(d · x)xµ − dµx2 Kµ = 2xµx
ν∂ν − x2∂µ

From the table 1.1 of the infinitesimal transformations, we can compute the
commutation relations of Pµ,Mµν , D,Kµ:

[Pµ, Pν ] = 0 (1.33)
[Mµν , Pρ] = ηρµPν − ηρνPµ (1.34)

[Mµν ,Mρσ] = Mµρηνσ +Mνσηµρ −Mµσηνρ −Mνρηµσ (1.35)
[Pµ, D] = Pµ (1.36)

[Mµν , D] = 0 (1.37)
[D,D] = 0 (1.38)

[Pµ, Kν ] = 2ηµνD + 2Mµν (1.39)
[Mµν , Kρ] = ηµρKν − ηνρKµ (1.40)

[D,Kµ] = Kµ (1.41)
[Kµ, Kν ] = 0. (1.42)

We see that the commutators are closed on the set of conformal generators,
and therefore form the conformal algebra. Moreover the full conformal algebra
consists of two nontrivial subalgebras. The first one is Poincaré algebra consisting
of translations generators Pµ and Lorentz transformations generators Mµν . The
second one is Poincaré algebra extended by dilatation generator D. This implies
that a theory invariant under Poincaré transformations and dilatations is not
necessarily invariant under the special confromal transformations [5], yet many
authors interchange the scale and conformal invariance. In many cases the former
really implies the latter, for classical case this question was resolved in [7] and it
is the subject of the next chapter, however a general proof of this implication for
a general quantum case is still missing [12].

The number of independent generators of the full conformal algebra is (n +
2)(n + 1)/2: n for translations, n(n − 1)/2 for Lorentz transformations, 1 for
dilatation, and n for special conformal transformations.

After discussing the conformal transformations in n > 2, we focus on the very
special case of n = 2. We first write the conformal algebra in a compact fashion
as a commutator of two transformations, e.g. for a scalar field φ (the result is
actually independent from the type of field)

[δf , δg]φ = δf (δgφ) − δg (δfφ) ≡ δ[f,g]φ, (1.43)

where
[f, g]µ ≡ f ν∂νg

µ − gν∂νf
µ, (1.44)

is the Lie bracket of fµ and gµ.
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We then notice that, in this case the conformal Killing equation is

∂µfν + ∂νfµ = (∂ · f)ηµν , (1.45)

and let us work in Euclidean space i.e. the metric is δµν . This does not invalidate
the following discussion for Minkowski space, since it is connected to Euclidean
one through Wick rotation (that is taking purely imaginary time). Furthermore,
it reveals the specialty of the n = 2 case in a straightforward way.

With this choice the equation (1.45) splits into

∂0f1 + ∂1f0 = 0
∂0f0 − ∂1f1 = 0.

(1.46)

These are the Cauchy-Riemann conditions for the function f = f0 + if1, defined
on the complex plane, to be holomoprhic. Moreover, by taking derivatives of
those equations, we see that each fi has to be harmonic function, i.e. it must
satisfy Laplace equation

∆fi = 0, (1.47)

where ∆ ≡ ∂2
0 + ∂2

1 .
Introducing complex variables1

z =x0 + ix1 z̄ = x0 − ix1

∂z =1
2(∂0 − i∂1) ∂z̄ = 1

2(∂0 + i∂1)

f =f0 + if1 f̄ = f0 − if1,

(1.48)

the Cauchy-Riemann conditions (1.46) become

∂z̄f(z, z̄) =0
∂zf̄(z, z̄) =0,

(1.49)

therefore f = f(z) and f̄ = f̄(z̄). In two dimensions any holomorphic map
z → z − f(z) is equivalent to conformal transformation.

Furthermore, any holomorphic function can be expanded in Laurent series,
which has infinite number of parameters. This implies the infinite-dimensional
algebra of the two dimensional conformal transformations. Let us now derive the
associated algebra.

In these variables the geometric transformation is

δfφ(z, z̄) =
(
f(z)∂z + f̄(z̄)∂z̄

)
φ(z, z̄). (1.50)

Since f (f̄) is holomorphic (antiholomorphic) it can be expanded in the Laurent
series

f(z) =
∑
n∈Z

fnz
n+1 f̄(z̄) =

∑
n∈Z

f̄nz̄
n+1, (1.51)

where fn (f̄n) are infinitesimal constant parameters.
1If one insists in having Minkowski space, one has to use light-cone variables.
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Introducing generators ln (l̄n) of the transformation

ln ≡ −zn+1∂z l̄n ≡ −z̄n+1∂z̄, (1.52)

(1.50) becomes
δfφ(z, z̄) = −

∑
n∈Z

(fnln + f̄nl̄n)φ(z, z̄). (1.53)

The Lie Bracket (1.44) expanded in the Laurent series gives

[f, g] =
∑
n,m

fngmz
m+n+1(m− n) ¯[f, g] =

∑
n,m

f̄nḡmz̄
m+n+1(m− n) (1.54)

and by recalling the commutator of two geometric transformations [δf , δg] (1.43),
we can find the commutation relations of the two dimensional conformal algebra
by comparing the terms with the same infinitesimal parameters. The resulting
algebra is

[ln, lm] = (n−m)ln+m

[l̄n, l̄m] = (n−m)l̄n+m

[ln, l̄m] = 0.
(1.55)

This is called the Witt algebra.

At this point let us discuss spinors. Although the main interest of this work
is in scalar theories, some of the discussed mathematical tools may be used in
general case. Let us briefly mention methods for dealing with the spinors [1]
[5]. Since they are defined by their transformation properties in a flat space
and we would like to work with them on general manifold, where the properties
of general coordinate transformations are more restrictive, we have to introduce
vielbeins2, which connect the general coordinate description of a manifold with
a local Lorentz frame3 for every point on the manifold. This way we can define
the covariant derivative of spinors, respecting their local Lorentz transformation
properties.

At any non-singular point X of a manifold, we can construct a local coordinate
basis on the tangent space ya

X . There the metric is flat i.e. ηab. We use Latin
indices for locally flat coordinates (local frame), while for the general coordinates
we use Greek indices.

Mathematically speaking we introduce vielbeins ea
µ through

gµν(X) ≡ ea
µ(X)eb

ν(X)ηab, (1.56)

where the summation over Latin indices is understood, and vielbeins can be
expressed as

ea
µ(X) = ∂ya

X

∂xµ

⏐⏐⏐⏐⏐
x=X

. (1.57)

2The word “viel” is usually replaced by German word characterizing the dimension number,
e.g. for two dimensions we have zweibeins, for four dimensions we speak about vierbeins etc.
In some literature also the name tetrads appears for vierbeins

3Hence the mathematical name for vielbeins - frame fields
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Such object responds to both, the Lorentz transformation of ya
X and the gen-

eral coordinate transformation of xµ. For the former

ea
µ(X) → e′a

µ (X) = Λa
b(X)eb

µ(X) (1.58)

and for the latter
ea

µ(X) → e′a
µ (X) = ∂xν

∂x′µ e
a
ν(X). (1.59)

Contracting objects with vielbeins then results in changing their transforma-
tion characteristics, e.g. ea

µV
µ transforms as four scalars under a general co-

ordinate transformation, but it transforms as a vector under a local Lorentz
transformation.

The last step is to introduce a covariant derivative ∇ that works well also for
spinors, i.e. in a locally flat frame. We define such derivative as

(∇µΦ)i = ∂µΦi + (Sµ)i
jΦ

j, (1.60)

where
(Sµ)i

j = 1
2sµ

ab(Σab)i
j, (1.61)

where matrices Σab are the generators of the Lorentz transformations and sµ
ab is

called a spin connection and it is related to Christoffel connection through the
request that the full covariant derivative of the vielbein is zero

∇µe
a
ν = ∂µe

a
ν − Γλ

µνe
a
λ + sµ

a
be

b
ν ≡ 0, (1.62)

i.e.
sµ

a
b = ea

λ(δλ
ν∂µ + Γλ

µν)Eν
b (1.63)

Eν
b being the inverse vielbein, i.e.

ea
µE

ν
a = δν

µ

ea
µE

µ
b = δa

b .
(1.64)

With this in mind we can now handle fields of any spin.

1.3 Energy-momentum tensor
Here we discuss the energy-momentum tensor. We start by deriving canonical
energy-momentum tensor following Noether’s argumentation. Then we mention
possible improvements and another way used to obtain energy-momentum tensor.

Suppose we have a theory described by a flat space action A with correspond-
ing Lagrangian density L. We restrict ourselves to theories, where Lagrangian
density is a functional only of fields Φi and their first derivatives ∂µΦi, i.e. no
explicit dependence on coordinate variable x, and Φi = {φ, ψα, Vµ, . . .}. We then
write

A = A[Φi, ∂µΦi,Ω] =
∫

Ω
dnxL[Φi(x), ∂µΦi(x)]. (1.65)

Considering some general infinitesimal transformation, which changes coordi-
nates as (1.7)

xµ → x′µ = xµ − fµ(x),
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fields change as (1.8)

Φi(x) → Φ′
i(x′) = Φi(x) + δfΦi(x) − fµ∂µΦi(x),

field derivatives change as

∂µΦi(x) → ∂′
µΦ′

i(x′) = ∂µΦi(x) + δf∂µΦi(x) − f ν∂µ∂νΦi(x)

and the corresponding space-time volume Ω → Ω′. We denote such transformed
action A′

A′ =
∫

Ω′
dnx′L[Φ′

i(x′), ∂′
µΦ′

i(x′)]. (1.66)

A transformation that leaves the action unchanged, i.e. A = A′, we call
symmetry of the theory and it has some important consequences we would like
to examine.

To compare the integrals we have to integrate over the same space-time in-
terval, therefore we have to transform from the primed coordinates back to the
original ones. Since we supposed infinitesimal transformation we have

dnx′ = dnx

⏐⏐⏐⏐⏐det
(
∂x′

∂x

)⏐⏐⏐⏐⏐ = dnx(1 − ∂αf
α). (1.67)

Substituting into A′ and expanding L we have

A′ =
∫

Ω
dnx(1 − ∂αf

α)
[
L + ∂L

∂Φi

(δfΦi − fµ∂µΦi)

+ ∂L
∂(∂νΦi)

(δf∂νΦi − fµ∂ν∂µΦi)
]

=
∫

Ω
dnx

[
L − ∂µf

µL + ∂L
∂Φi

(δfΦi − fµ∂µΦi)

+ ∂L
∂(∂νΦi)

(δf∂νΦi − fµ∂ν∂µΦi)
]

=
∫

Ω
dnx

[
L + δfΦi

(
∂L
∂Φi

− ∂µ

(
∂L

∂(∂µΦi)

))
− ∂µf

µL − ∂L
∂Φi

fµ∂µΦi

+∂µ

(
∂L

∂(∂µΦi)
δfΦi

)
− ∂L
∂(∂νΦi)

fµ∂ν∂µΦi

]

=
∫

Ω
dnx

[
L + δfΦi

(
∂L
∂Φi

− ∂µ

(
∂L

∂(∂µΦi)

))

+∂µ

(
∂L

∂(∂µΦi)
δfΦi

)
− ∂µf

µL − fµ∂µL
]

=
∫

Ω
dnx

[
L + δfΦi

(
∂L
∂Φi

− ∂µ

(
∂L

∂(∂µΦi)

))

+∂µ

(
∂L

∂(∂µΦi)
δfΦi − fµL

)]
.

(1.68)

Demanding now A′ − A = 0 for every space-time region Ω we see

∂µ

(
∂L

∂(∂µΦi)
δfΦi − fµL

)
=
(
∂µ

(
∂L

∂(∂µΦi)

)
− ∂L
∂Φi

)
δfΦi. (1.69)
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For any infinitesimal transformation which leaves the action invariant there is
a relation between Euler-Lagrange equations, the right hand side of (1.69), and
divergence of some special object. Hence, on-shell, (i.e., when fields satisfy Euler-
Lagrange equations) we have

∂µ

(
∂L

∂(∂µΦi)
δfΦi − fµL

)
= 0. (1.70)

That is a conservation law for the current

Jµ
f ≡ ∂L

∂(∂µΦi)
δfΦi − fµL, (1.71)

related to the Noether current, the energy-momentum tensor, Θµ
α

4 as

Jµ
f ≡ Θµ

αf
α. (1.72)

Not only the symmetry transformations leave us with (on-shell) conserved
currents, they give us conditions on the energy-momentum tensor.

Considering translation invariance fµ(x) = aµ of an action, substituting into
(1.72) and taking divergence

∂µJ
µ
f = aα∂µΘµ

α, (1.73)

we see that since on-shell Jµ
f is conserved the energy-momentum tensor Θµ

α is also
conserved. Furthermore, since for the translation transformation holds δfΦi =
aµ∂µΦi for all kinds of fields, we can find the general formula for the energy-
momentum tensor by combining (1.71) and (1.72). Such formula has even its
own name and it is called the canonical energy-momentum tensor

Θcan
µν = ∂L

∂(∂µΦi)
∂νΦi − ηµνL. (1.74)

Considering not only the translation invariance of the action but the full
Poincaré invariance, we get another condition for the on-shell energy-momentum
tensor

∂µJ
µ
f = ∂µ(Θµ

αb
α

βx
β) = ∂µΘµ

αb
α

βx
β + Θµ

αb
α

βδ
β
µ = 0 + Θµνbµν = 0, (1.75)

where we used in the third equality that the energy-momentum tensor is con-
served (from the translation invariance) and the last equality comes from the
conservation of Jµ

f under the symmetry. Since bµν is antisymmetric and arbitrary
we see that the Lorentz (along with translation) invariance implies symmetric
energy-momentum tensor Θµν = Θνµ.

In the previous section we derived a broader set of transformations. Let us
see what other conditions the scale a the special conformal transformations put
on the table. In a similar fashion we have for scale transformation

∂µJ
µ
f = ∂µ(Θµ

αcx
α) = cΘµ

µ = 0, (1.76)
4Usual notation for energy-momentum tensor is T µ

α which we reserve to a variational defi-
nition of the tensor
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where we used the same procedure as with the Lorentz transformation. Hence,
scale invariance requires on-shell tracelessness of the energy-momentum tensor.
Unfortunately, studying special conformal transformation in the same way we do
not obtain any new information about energy-momentum tensor.

Knowing all the features of Θµν we may argue that the canonical energy-
momentum tensor is not manifestly symmetric nor traceless in a case of broader
set of symmetries. In such cases we expect the energy-momentum tensor to be
improvable in a way that makes it symmetric and traceless.

One way to improve the energy-momentum tensor was introduced by Belin-
fante and Rosenfeld [4]. They add a superpotential-like term to the canonical
energy-momentum tensor

Θµν = Θcan
µν + ∂λB

λ
µν , (1.77)

where Bλµν = −Bµλν is antisymmetric in the first two indices, and since the
new introduced term is a divergence, it does not change the conservation of the
current Jµ

f .
The energy-momentum tensor can also be obtained by writing the action in

a diffeomorphic invariant manner, A → A (see later), hence at least minimally
coupled to the metric gµν . In this case we can compute the energy-momentum
tensor [3]

Tµν = 2√
−g

δA
δgµν

, (1.78)

where factor 2 is only a normalization factor and can be arbitrarily chosen. In
the flat space limit both tensors coincide, i.e.

Tµν

⏐⏐⏐
gµν=ηµν

≡ Θµν . (1.79)

Let us note that the energy-momentum tensor given by the variation of an ac-
tion is in general not traceless, nevertheless, the symmetry is guaranteed because
of the definition. In case we deal with scale invariant theory, we usually have to
find improvements of the energy-momentum tensor Tµν . This is discussed in the
next chapter.

1.4 Improvements of the energy-momentum
tensor

In this section we are going to illustrate improvements to the canonical energy-
momentum tensor for a special case of our interest throughout this thesis. That
is a scalar field theory in n = 2, named Liouville theory.

We start with the free massless Klein-Gordon action AKG in two dimensions

AKG =
∫

d2x
1
2η

µν∂µφ∂νφ. (1.80)

For the following study of symmetries, it is useful to know the derivatives of
the previously discussed transformations fµ. They are computed in table 1.2.
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Table 1.2: Useful derivatives of infinitesimal conformal transformations
fµ aµ bµ

νx
ν cxµ 2(d · x)xµ − x2dµ

∂αf
µ 0 bµ

α cδµ
α 2dαx

µ + 2(d · x)δµ
α − 2xαd

µ

∂µf
µ 0 0 nc 2n(d · x)

∂α∂µf
µ 0 0 0 2ndα

Taking the infinitesimal variation of (1.80) we have

δfAKG =
∫

d2x ∂µφ∂
µδfφ

=
∫

d2x
(
∂µf

ν∂νφ∂
µφ− 1

2∂νf
ν∂µφ∂

µφ
)
,

(1.81)

where the second line comes from the partial integration. Substituting in (1.81)
the fµ and recalling the derivatives in table 1.2 we get δfAKG = 0 for the full
conformal group.

Since it is conformally symmetric theory we must be able to find a trace-
less energy-momentum tensor. We start by computing the canonical energy-
momentum tensor (1.74):

Θcan
µν = ∂µφ∂νφ− 1

2ηµν∂λφ∂
λφ. (1.82)

It is clearly symmetric and taking the trace we see that it is also traceless, there-
fore we do not need any improvements. The canonical energy-momentum tensor
in this case already has all the demanded properties.

Now we move to the Liouville action AL

AL =
∫

d2x

(
1
2η

µν∂µφ∂νφ− m2

β2 e
βφ

)
, (1.83)

where m and β are constants.
Studying the symmetries of this action under the field transformations (1.11)

we have
δfAL = δfAKG − m2

β

∫
d2x eβφfµ∂µφ. (1.84)

Since we already know δfAKG = 0, we are left only with the second term to study.
By partial integration we have

δfAL = m2

β2

∫
d2x eβφ∂µf

µ (1.85)

and by looking into table 1.2 it is clear that the action AL is only Poincaré
invariant (i.e. ∂µf

µ = 0) under the field transformation φ → fα∂αφ.
Nevertheless, introducing a new field transformation accompanied by a field

independent shift
δ̃fφ ≡ δfφ+ ∂µf

µ = fµ∂µφ+ ∂µf
µ, (1.86)

we can verify that under such transformation, the Liouville action is fully confor-
mal invariant

δ̃fAL =
∫

d2x

(
∂µφ∂µδfφ+ ∂µφ∂µ∂νf

ν − m2

β2 e
βφ (fµ∂µ(βφ) + ∂µf

µ)
)

= δfAKG −
∫

d2xφ∂µ∂
µ∂νf

ν −
∫

d2x
m2

β2 ∂µ

(
eβφfµ

)
.

(1.87)
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The first term is zero as we showed before, the second term is zero because
transformations f ν are at most quadratic in x and the last term vanishes because
it is a surface term. With transformation (1.86) the Liouville theory is invariant
under the full conformal group. So again we should be able to find a traceless
energy-momentum tensor.

Computing the canonical energy-momentum tensor (1.74) we have

Θcan
µν = ∂µφ∂νφ− ηµν

1
2η

σρ∂σφ∂ρφ+ ηµν
m2

β2 e
βφ. (1.88)

The trace of this canonical energy-momentum tensor is

Θµ
µ = 2m

2

β2 e
βφ, (1.89)

but, as we showed, the action is conformally invariant therefore it should be
traceless on-shell. Recalling the equation of motion for Liouville theory

□φ+ m2

β
eβφ = 0, (1.90)

it is clear the trace is non-zero in general.
Therefore we want to find an improvement term to make it traceless. Using

the definition of the energy-momentum tensor (1.72) and (1.71) we get

Θµ
νf

ν = f ν

(
∂µφ∂νφ− δµ

ν

1
2∂αφ∂

αφ+ δµ
ν

m2

β2 e
βφ

)
+ ∂µφ∂νf

ν , (1.91)

where the first is just f νΘcanµ
ν and the second term is the new improvement term

Θ̃µ
νf

ν ≡ ∂µφ∂νf
ν . (1.92)

Since the dilatation is responsible for the tracelessness we use fµ = cxµ in
following steps.

Θ̃µ
νx

ν = 2∂µφ. (1.93)

Requiring the on-shell conservation of the energy-momentum tensor i.e. ∂µΘµν =
0 and because ∂µΘcanµν = 0, we demand the improvement term has vanishing
divergence ∂µΘ̃µν = 0.

By taking derivative of the equation (1.93)

∂µ(Θ̃µ
νx

ν) = Θ̃µ
µ = 2□φ, (1.94)

we see that Θ̃µν can be written in terms of ηµν□φ and ∂µ∂νφ, i.e.

Θ̃µν = aηµν□φ+ b∂µφ∂νφ. (1.95)

The tracelessness of Θµν then gives us the condition on a and b. The improve-
ment term is therefore

Θ̃µν = 2
β

(ηµν□ − ∂µ∂ν)φ. (1.96)
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The improved energy-momentum tensor respecting the conformal symmetry
is

Θµν =Θcan
µν + Θ̃µν

=∂µφ∂νφ− ηµν
1
2∂αφ∂

αφ+ ηµν
m2

β2 e
βφ + 2

β
(ηµν□ − ∂µ∂ν)φ.

(1.97)

It is interesting to look at the properties of the “improved” transformation δ̃f .
Let us study the commutator of the two such transformations

[δ̃f , δ̃g]φ = δ[f,g]φ+ ∂µ[fµ(∂νg
ν + 1) − gµ(∂νf

ν + 1)], (1.98)

where the [f, g] denotes the Lie bracket (1.44).
We see that commutation relations with this new transformations are differ-

ent from those of (1.43). A new term, ∂µ[. . .]µ, arose. We call it central term:
a field independent, pure divergence term (hence contributing only for nontriv-
ial boundaries), that commutes with all generators. This new algebra is called
Virasoro algebra, that is the central extension of the Witt algebra

[Ln, Lm] = (n−m)Ln+m + cn(n2 − 1)δn,−m

[L̄n, L̄m] = (n−m)L̄n+m + cn(n2 − 1)δn,−m

[Ln, L̄m] = 0
[Ln, c] = [L̄n, c] = 0.

(1.99)

The extra generator c, is called central charge. The Virasoro algebra appears in
many areas of physics, from statistical mechanics to black-hole physics [5].
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2. Weyl gauging and Ricci
gauging
In the previous chapter we introduced the improvement terms for the energy-
momentum tensors. Now we describe how to systematically produce such im-
provement terms. In this chapter we shall review the results of [7]. We assume
rigid scale invariance in flat space. Then we demand diffeomorphic invariance
and replace rigid scale invariance with rigid Weyl invariance.

Promoting rigid Weyl invariance to local Weyl invariance requires the intro-
duction of gauge fields we call Wµ (this was the first example of gauge fields in
history [14]). When Wµ enters the (Weyl) gauged action in specific combinations,
such combinations can be replaced by expressions in terms of R and Rµν , because
the response under Weyl variation is the same. This replacement is called in [7]
“Ricci gauging”. The necessary and sufficient condition for an action to be Ricci
gaugable is that, in flat space, scale invariance implies full conformal invariance.

2.1 Weyl transformations
Assume we have an action A which depends only on fields Φi and their first
derivatives ∂µΦi, where Φi = {φ, ψα, Vµ, ...}, i.e. fields of arbitrary spin, and
which is rigid scale invariant, i.e. invariant under transformation

xµ → eωxµ

Φi → edΦωΦi,
(2.1)

where ω is a constant and dΦ is the scale dimension of Φi, usually determined
by kinetic term in the action. We now promote our action A to diffeomorphic
invariant form A in the usual way [1]

A =
∫

dnx
√

−gL (Φi,∇µΦi) . (2.2)

Since we deal with fields of arbitrary spin, we have to introduce covariant
derivatives that work well also for spinors. Such procedure was discussed in
previous chapter, where vielbeins and spin connection were introduced.

We know that our action A is rigid scale invariant (i.e. xµ → eωxµ). We will
rewrite the rigid scale transformation (2.1) in a more useful form

ea
µ → eωea

µ

xµ → xµ

Φi → edΦωΦi.

(2.3)

These transformations are called rigid Weyl transformations. Notice that the
scaling is translated to ea

µ and xµ does not transform, like for the geometric
transformations δf discussed earlier. To have full equivalence of (2.1) with (2.3)
it is understood here that diffeomorphism and Weyl invariance can coexist in any
theory. Among the interesting questions opened by [9] is precisely the use of the
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Liouville action that can be either diffeomorphism invariant or Weyl invariant,
but not both. In what follows in this chapter we shall not consider this issue, but
we shall look at it in the chapter 3.

Now we will try to construct actions invariant when these transformations are
local, e.g. ω → ω(x). This is the first example of the gauge principle in history,
see [14]. For more information about the history of gauge theory see [13].

The action depends on derivatives of field, hence we have to look at derivatives
of the transformed fields. For scalar field φ we have

∂µ

(
edφωφ

)
= edφω (∂µ + dφ∂µω)φ ̸= edφω∂µφ, (2.4)

thus ∂µφ is not covariant when φ → edφωφ
We need to introduce Weyl-covariant derivative Dµ

Dµ ≡ ∂µ + dϕWµ, (2.5)

with
Wµ → Wµ − ∂µω (2.6)

under the Weyl transformations. With this

Dµφ → edφωDµφ, (2.7)

when φ → edφωφ.
For fields of arbitrary spin Φi we see that the Weyl variation of the diffeomor-

phic-covariant derivative is [7]

∆(∇µΦ)i = dΦ∂µωΦi + 2∂τω(Στ
µ)i

jΦ
j. (2.8)

So the Weyl covariant derivative is

Dµ ≡ ∇µ + Λν
µWν , (2.9)

where Wν transforms as in (2.6) and

Λν
µ ≡ dΦg

ν
µ + 2Σν

µ (2.10)

2.2 Ricci gauging for n>2
Since we want to couple the fields to curvature tensors, we need to find a relation
between the latter and expressions involving Weyl potential. Having in mind
Ricci curvature tensor we need to construct second rank tensor from Wµ and
gµν . The possible tensors are WµWν , ∇µWν and gµν itself. Let us investigate the
response of those tensors to finite Weyl transformations

∆ (WµWν) = (Wµ − ωµ) (Wν − ων) −WµWν = ωµων − (Wµων +Wνωµ) , (2.11)

where ωµ ≡ ∂µω. For ∇µWν we need to know the Weyl variation of Christoffel
symbols (computed in appendix A). We then obtain

∆ (∇µWν) = −∇µων − gµνω
σωσ + 2ωµων + gµνW

σωσ − (Wµων +Wνωµ) . (2.12)
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Now we also compute the Weyl variation of gµνWσW
σ

∆ (gµνg
ρσWρWσ) = gµν (ωσω

σ − 2Wσω
σ) . (2.13)

The Weyl variation is linear, therefore we can combine previous tensors to get
an expression that under Weyl variation is independent of W µ. Up to the sign,
and a multiplicative constant we have only one solution

Ωµν [W ] = ∇µWν −WµWν + 1
2gµνWσW

σ. (2.14)

Indeed, the Weyl variation of Ωµν [W ] is

∆Ωµν [W ] = −∇µων + ωµων − 1
2gµνωσω

σ = −Ωµν [ω]. (2.15)

Let us now obtain the Weyl variation of Ricci tensor

∆Rµν = −gµν∇2ω − (n− 2) (∇µων − ωµων + ωσω
σgµν) (2.16)

and of gµνR where R is Ricci scalar

∆ (gµνR) = ∆ (gµνg
σρRσρ) = gµνg

σρ∆Rσρ

= −gµν

(
2(n− 1)∇2ω + (n− 2)(n− 1)ωρω

ρ
)
.

(2.17)

Both previous computations are presented in Appendix A.
Now it is easy to see that the tensor

Sµν = Rµν − 1
2(n− 1)gµνR (2.18)

has Weyl variation proportional to the Weyl variation of (2.14) i.e.

∆Sµν = −(n− 2)Ωµν [ω]. (2.19)

From this we see that Weyl variation of a Weyl-gauged action where Wµ

enters only as in the expression (2.14) gives the same result as Weyl variation of
an action when Ωµν → Sµν . This substitution is called the Ricci gauging in [7].

The form (2.14) is very specific and gives us the wanted coupling. Thus, the
question when is this possible naturally arises. To answer, we start by finding con-
nection between Weyl transformations and conformal transformations. Suppose
xµ → yµ(x) to be conformal transformations

∂xµ

∂yα

∂xν

∂yβ
gµν(x) = ĝαβ(y), (2.20)

where
ĝαβ(x) = e2ω̂gαβ(x), (2.21)

and we look for those ω̂ such that e2ω̂ defines special conformal transformations.
Under (2.20) and (2.21), Sµν in (2.18) transforms as follows

Ŝµν − Sµν = −(n− 2)Ωµν [ω̂]. (2.22)
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In flat space limit the left hand side vanishes and our condition is

∂µω̂ν − ω̂µω̂ν + 1
2ηµνω̂σω̂

σ = 0, (2.23)

whose solution is
ω̂(x) = ln(1 − 2cµx

µ + c2x2), (2.24)

with cµ a constant vector. This identifies special conformal transformation, as
can bee seen in 1.1.

Suppose that we obtain, according to the previously explained procedure, a
Ricci gauged action A

A(Φi, Sµν) = A(Φ′
i, Sµν + (n− 2)Ωµν [ω]). (2.25)

For ω such that Ωµν [ω] = 0, no other gauging is needed. But this is what we have
solved while solving (2.23) in flat space limit. Therefore we have the result

A necessary condition for a Weyl gauged action to admit Ricci gauging is that
it be conformally invariant in the flat space limit

We know the necessary condition, so what is the sufficient one? We start
with conformal invariant action A0 which contains only first derivatives of the
conformally variant fields. For infinitesimal conformal transformation we have

δA0 =
∫

dnx ω̂µj
µ = cµ

∫
dnx jµ = 0, (2.26)

where jµ is the so-called virial current [7], that, e.g., for a scalar ϕ is

jµ ≡ δA0

δ(∂νϕ)Λµνϕ (2.27)

and ω̂ = cµx
µ since it is infinitesimal transformation. Because the action is

conformally invariant, δA0 = 0 implies

jµ = ∂νJ
µν , (2.28)

with Jµν which does not depend on higher derivatives, otherwise lower derivatives
would give us information on higher derivatives.

Thus, conformal invariance is possible only for actions which are at most
quadratic in the derivatives of conformally variant fields.

Now, we vary the action A0 under finite conformal transformation.

∆A0 =
∫

dnx (ω̂µj
µ + ω̂µω̂νT

µν) , (2.29)

where T µν does not have field derivatives. Using again (2.28), partial integration
leads to

∆A0 =
∫

dnx (−Jµν∂µω̂ν + ω̂µω̂νT
µν) (2.30)

and by using (2.23) (that identifies special conformal transformations)

∆A0 =
∫

dnx ω̂µω̂ν

(
T µν − Jµν + 1

2η
µνJ

)
. (2.31)
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∆A0 = 0 implies that
T µν = Jµν − 1

2η
µνJ. (2.32)

In our hunting for the Ricci gauging, we now promote the above flat space
expressions to curved-space ones. Furthermore (2.28) becomes jµ = ∇νJ

µν and
(2.32) becomes T µν = Jµν − 1

2g
µνJ . By taking the trace of the last expression we

can compute Jµν

Jµν = T µν − 1
n− 2g

µνT. (2.33)

Gauging the diffeomorphic-invariant action A0 we have

A = A0 +
∫

dnx
√

−g (Wµj
µ +WµWνT

µν) . (2.34)

Putting everything together

A = A0 +
∫

dnx
√

−g
(

−Jµν∇νWµ +WµWνJ
µν − 1

2WρW
ρgµνJ

µν
)
, (2.35)

and we recognize Ωµν [W ] (2.14)

A = A0 −
∫

dnx
√

−gJµνΩµν [W ]. (2.36)

We then conclude that necessary and sufficient condition for a Weyl-invariant
action A to allow for Ricci gauging is that the flat space limit of the ungauged ac-
tion, A0, is not only scale invariant, but fully conformally invariant. Furthermore
the Ricci gauging is achieved by (2.36).

2.3 Ricci gauging for n=2
For the case of 2 dimensions we have to do few things differently. First we notice
that Sµν in (2.18) is identically zero, because in two dimensions we have

Rµν = R

2 gµν . (2.37)

This is so because the Ricci tensor is symmetric and in n = 2 the Riemann
tensor has only one independent component1. Therefore, the coupling will be to
the Ricci scalar rather then Ricci tensor. Let us now take the trace of (2.15)

gµν∆Ωµν [W ] = −∇2ω = −Ωµ
µ[ω] (2.38)

and compare to the Weyl variation of the Ricci scalar:

R[e2ωgµν ] − e−2ωR[gµν ] = −2e−2ω∇2ω = −2e−2ωΩµ
µ[ω] (2.39)

When we found the relation between Weyl and conformal transformations, we
got (2.22), so that the condition for conformal invariance is (2.23). Looking at
(2.39) we see that the condition is now

∇2ω̂ = 0, (2.40)
1The number of independent components for the Riemann tensor is n2(n2 − 1)/12
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but in flat space this is just the wave equation, and it has the infinitely many har-
monic functions as solutions. For any harmonic function there exists a holomor-
phic function with its real part equal to the given harmonic function. Henceforth
this establishes a relation between (2.40) and the Witt algebra of (1.55).

The discussion on necessary and sufficient condition for Ricci gauging is pretty
much the same as for n > 2 case. Varying the action as in (2.26) gives us stronger
condition since

δA0 =
∫

d2x ω̂µj
µ = −

∫
d2x Jµν∂νω̂µ = 0. (2.41)

where we assumed (2.28).
Now we will do a little sidestep. In appendix B we introduce light cone

coordinates
x± ≡ 1√

2
(x0 ± x1).

In this notation the solution of (2.40) are either2 ω̂(x+) or ω̂(x−). Also we can
rewrite d2x as dx+dx−. Now we see that from (2.41) we have∫

dx+dx−J++∇2
+ω̂(x+) = 0. (2.42)

The only dependence on x− must be in J++ therefore∫
dx−J++ = 0. (2.43)

Since J++ is a general function this formula holds only for J++ = 0. With similar
arguments one shows that J−− = 0. In local frame the values of g++ and g−−

are zero (see appendix B). Then

Jµν = gµνJ, (2.44)

where J is scalar. So now we can see the Virial current

jµ = ∂µJ. (2.45)

So again, conformal invariance is possible only for action which are at most
quadratic in the derivatives of conformally variant fields.

Computing finite Weyl variation of the action A0 in two dimensions is same
as in higher dimensions i.e. (2.29)

∆A0 =
∫

d2x (ω̂µj
µ + ω̂µω̂νT

µν) .

The first term in the integrand vanishes due to (2.40) and partial integration. In
the second term we assume that T µν = gµνK, where the constant K is determined
by virial current. For the case of two dimensions we have K = 0. So again the
integrand vanishes in the finite variation of A0.

Now we still have to do the final step. Rewrite action in covariant form i.e.
Weyl gauge. This time it is not different. The gauged action is of form (2.34).
As we discussed right now the T µν does not contribute. So final form is

A = A0 −
∫

d2x
√

−gJ∇µWµ = A0 −
∫

d2x
√

−gJΩµ
µ[W ] (2.46)

2As announced, this is the “real version” of the complex property f(z) or f̄(z̄) of (1.49)

22



and once again, necessary and sufficient condition for a Weyl-invariant action A
to allow for Ricci gauging is that the flat space limit of the ungauged action A0 is
not only scale invariant, but fully conformally invariant. Furthermore the Ricci
gauging is achieved by (2.46).
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3. Liouville anomaly
In this chapter we investigate the results of the paper [9], where it is proposed that,
in the case of Liouville theory, one can only have either diffeomorphic invariance
or Weyl invariance, but not both.

3.1 Liouville action
As explained in detail earlier Liouville action (1.83)

AL =
∫

d2x

(
1
2η

µν∂µφ∂νφ− m2

β2 e
βφ

)

is invariant under the “improved” conformal transformations δ̃fφ ≡ f ν∂νφ +
∂νf

ν , with fµ given in table 1.1, and we derived the associated traceless energy-
momentum tensor (1.97). Such tensor can also be obtained by varying the non-
minimally coupled diffeomorphic invariant Liouville action AL

AL =
∫

d2x
√

−g
(

1
2g

µν∂µφ∂νφ− m2

β2 e
βφ + 1

β
Rφ

)
(3.1)

with respect to the metric gµν

Tµν = 2√
−g

δAL

δgµν
,

obtaining

Tµν = ∂µφ∂νφ− gµν
1
2g

σρ∂σφ∂ρφ+ gµν
m2

β2 e
βφ + 2

β

(
gµν∇2 − ∇µ∇ν

)
φ, (3.2)

which becomes (1.97) in the flat-space limit.
In fact, the trace of this energy-momentum tensor is

T µ
µ = 2∇2φ+ 2m2

β
eβφ, (3.3)

which is not zero, since the non-minimal coupling changed equations of motion
to

∇2φ+ m2

β
eβφ − 1

β
R = 0. (3.4)

The trace is proportional to the Ricci scalar.
The Weyl transformations for the action (3.1) have the form

φ → φ− 2
β
ω

gµν → e2ωgµν .

(3.5)

We see that the action (3.1) is Weyl invariant only up to the field independent
term

AL → AL − 2
β2

∫
d2x

√
−g (Rω + gµνωµων) . (3.6)

Although the action is not Weyl invariant the equations of motion are.
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3.2 Dimensional limit
Now we will do a little sidestep. Let us introduce a new action An

An =
∫

dnx
(1

2η
µν∂µϕ∂νϕ− λϕ

2n
n−2

)
, (3.7)

where n > 2 and ϕ is a scalar field.
This action is invariant under

δ̂fϕ = fα∂αϕ+ n− 2
2n ∂αf

αϕ, (3.8)

where fα is from full conformal group given in table 1.1.
Computing the canonical energy-momentum tensor (1.74)

Θcan
µν = ∂L

∂(∂µΦi)
∂νΦi − ηµνL,

we have
Θcan

µν = ∂µϕ∂νϕ− ηµν

(1
2η

ρσ∂ρϕ∂σϕ− λϕ
2n

n−2

)
. (3.9)

This is symmetric, but not traceless. Nevertheless, since (3.7) is invariant under
full conformal transformations, we should be able to improve it to the traceless
form. We can do so similarly to the Liouville case by recalling (1.71) and (1.72).
Then we get

Θµν = ∂µϕ∂νϕ−ηµν

(1
2η

ρσ∂ρϕ∂σϕ− λϕ
2n

n−2

)
+ n− 2

4(n− 1) (ηµν□ − ∂ν∂µ)ϕ2. (3.10)

The other way to get this result is through writing the action An in a diffeo-
morphic and Weyl invariant manner and coupling the field non-minimally to the
curvature. This we can do by Ricci gauging. The action is invariant under Weyl
transformation (2.3) with scale dimension dϕ = (2 − n)/2. By Weyl gauging we
obtain

An =
∫

dnx
√

−g
(1

2g
µν (∂µ + dϕWµ)ϕ (∂ν + dϕWν)ϕ− λϕ

2n
n−2

)
=
∫

dnx
√

−g
(1

2g
µν∂µϕ∂νϕ− λϕ

2n
n−2

+1
2dϕ (−∇µW

µ + dϕWµW
µ)ϕ2

)
.

(3.11)

The last term is clearly the trace of Ωµν [W ] in (2.14). Since we know Sµν in
(2.18), and its Weyl variation (2.19), we can replace it by a multiple of R

An =
∫

dnx
√

−g
(

1
2g

µν∂µϕ∂νϕ− λϕ
2n

n−2 + n− 2
8(n− 1)Rϕ

2
)
. (3.12)

Varying this action as in (1.78) we have the energy-momentum tensor

Tµν =∂µϕ∂νϕ− gµν

(1
2g

ρσ∂ρϕ∂σϕ− λϕ
2n

n−2

)
+ n− 2

4(n− 1)
(
gµν∇2 − ∇ν∇µ +Gµν

)
ϕ2,

(3.13)
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where Gµν is the Einstein tensor. In flat-space limit Tµν becomes Θµν in (3.10).
Moreover Tµν is traceless on-shell. Since the equation of motion is

∇2ϕ+ λ
2n
n− 1ϕ

n+2
n−2 − n− 2

4(n− 1)Rϕ = 0. (3.14)

The trace of the energy-momentum tensor

T µ
µ = 2 − n

2 ∂µϕ∂µϕ− nλϕ
2n

n−2 + n− 2
4 ∇2ϕ2 + (n− 2)(2 − n)

8(n− 1) Rϕ2 (3.15)

vanishes.
The action An, for n > 2, is Weyl and diffeomorphic invariant. In the rest of

the thesis we will be investigating where does this property disappear for Liouville,
n = 2, or if Liouville energy-momentum tensor can be improved to have it.

We begin with construction of Liouville action AL from the action An. Since
ϕ and λ are arbitrary we rewrite the field ϕ

ϕ = 2n
β(n− 2)e

n−2
2n

βφ (3.16)

and then we take a dimensional limit n → 2.
Putting this into the action An the term with λ becomes

λϕ
2n

n−2 = λ

(
2n

β(n− 2)

) 2n
n−2

eβφ n→2−→ m2

β2 e
βφ, (3.17)

where n→2−→ denotes the dimensional limit. With [9], in the last step we renormal-
ized λ such that the dimensional dependent factor multiplied by λ became m2

β2 .
The kinetic term of the action An becomes

1
2g

µν∂µϕ∂νϕ = 1
2g

µνe
n−2

n
βφ∂µφ∂νφ

n→2−→ 1
2g

µν∂µφ∂νφ. (3.18)

The last term can be expanded in the limit n → 2 as

n− 2
8(n− 1)Rϕ

2 = n2

2β2(n− 1)(n− 2)Re
n−2

n
βφ

= n2

2β2(n− 1)(n− 2)R + n

2β(n− 1)Rφ+ O(n− 2)
(3.19)

and the O(n − 2) term goes to zero when we take the dimensional limit n → 2.
Therefore we have

An
n→2−→ AL + lim

n→2

2
β2(n− 2)

∫
dnx

√
−gR. (3.20)

In n = 2 the integrand is zero1, therefore we have limit of the type “0/0”.
If we throw it away, we have the wanted Liouville action but we lose the Weyl
invariance. We have to be more careful here.

1It is well known that
∫

Σ d2x
√

−gR is proportional to the Euler characteristic of Σ. Nonethe-
less, what matters here is that

√
−gR ∼ ∂µRµ, hence, as long bulk properties are concerned,

we can take this as zero, as done in [9].
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We now know that the loss of Weyl invariance is hidden in the extra term in
(3.20). Therefore we try to find a way for proper evaluating the limit through
Weyl gauging. In (3.11) we Weyl gauged the action An and in the next step we
found the proper Ricci gauging, which was

1
2(n− 1)R = ∇µW

µ + n− 2
2 WµW

µ. (3.21)

Now we can rewrite the second term in (3.20)

2
β2(n− 2)

∫
dnx

√
−gR = 4(n− 1)

β2(n− 2)

∫
dnx ∂µ

(√
−gW µ

)
+ 2(n− 1)

β2

∫
dnx

√
−gWµW

µ.

(3.22)

Since the first term is a pure divergence in any dimension it does not contribute
in the dimensional limit. Hence

lim
n→2

2
β2(n− 2)

∫
dnx

√
−gR = 2

β2

∫
d2x

√
−gWµW

µ, (3.23)

where according to (3.21) we have a condition for Wµ

R = 2∇µW
µ. (3.24)

To make Liouville action Weyl invariant we have to add (3.23), because the
Weyl transformation of such term is
2
β2

∫
d2x

√
−gWµW

µ → 2
β2

∫
d2x

√
−gWµW

µ + 2
β2

∫
d2x

√
−g (Rω + gµνωµων) ,

(3.25)
that exactly cancels the field independent term (3.6) which arises in Liouville
action AL under Weyl transformation.

In paper [4], the energy-momentum tensor improvements in two dimensions
were discussed with emphasis on the trace anomaly and its relation to central
charges of Virasoro algebra. Among other things the problem

∂µR
µ =

√
−gR (3.26)

was discussed as a partial solution to requirements on an improvement. The
solution for Rµ was provided and since

∇µW
µ = 1√

−g
∂µ(

√
−gW µ),

we see from (3.24) and (3.26)

W µ = 1
2√

−g
Rµ. (3.27)

The solution W µ to (3.24) in not unique, rather it has ambiguity and

W ′µ = W µ + ϵµν

2√
−g

∂νr (3.28)

solve the condition as well.
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3.3 Useful relations
Before presenting the solution for W µ, and deriving the energy-momentum tensor,
some new parametrizations and tricks have to be added to our mathematical
toolkit.

First we introduce new parametrization of the metric gµν

γµν ≡ gµν√
−g

γµν ≡
√

−ggµν √
−g ≡ eσ. (3.29)

Such parametrization γµν has simple relations between its components and com-
ponents of its inverse

γ00 = −γ11 γ11 = −γ00 γ10 = γ01 = γ10 = γ01. (3.30)

Furthermore det γµν = −1. Let us stress that γµν and γµν are Weyl invariant
quantities.

We also introduce

coshω ≡ γ+− eγ ≡
√
γ++

γ−−
, (3.31)

where +− denote light-cone components. More on light-cone coordinates is in
appendix.

The other important object is Levi-Civita symbol ϵµν that can be expressed
as

ϵµν = γ1µγ0ν − γ0µγ1ν , (3.32)
hence ϵ01 = −ϵ10 = 1.

This can be easily seen from product of two Levi-Civita symbols expressed in
gµν or γµν

ϵµνϵαβ = γµβγνα − γµαγνβ, (3.33)

ϵµνϵαβ = g(gµαgνβ − gµβgνα). (3.34)
For Levi-Civita symbols also hold a useful identity

V λµ...νϵσρ + V ρµ...νϵλσ + V σµ...νϵρλ = 0 (3.35)

where V λµ...ν is an arbitrary tensor with at least one index.
Since we want to compute energy-momentum tensor in a variational way

Tµν = 2√
−g

δA
δgµν

,

the variations of some objects are provided.
The variation of the metric determinant is usually needed

δg = ggµνδgµν , δ
√

−g = 1
2

√
−ggµνδgµν , δ

1√
−g

= −1
2

1√
−g

gµνδgµν . (3.36)

The variation of the inverse metric gµν

δgµν = −gρµgνσδgρσ. (3.37)
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Since γµν has a negative unit determinant, the variation is

0 = δ(−1) = δ det γµν = 2γ01δγ01 − δ(γ00γ11). (3.38)

The variation of parameters (3.31) are

δ coshω = 1
2(δγ00 − δγ11) = 1

2√
−g

δgµν

(
δµ

0 δ
ν
0 − δµ

1 δ
ν
1 − 1

2(g00 − g11)gµν
)

(3.39)

δγ =δγ00(γ00γ11 + γ2
11 − 2γ2

01) + δγ11(γ2
00 + γ00γ11 − 2γ2

01)
[(γ00 + γ11)2 − 4γ2

01] γ01

= 2δgµν

(g00 + g11)2 − 4g2
01

[1
2(δµ

0 δ
ν
1 + δµ

1 δ
ν
0 )(g00 + g11) − g01(δµ

0 δ
ν
0 + δν

1δ
µ
1 )
]
.

(3.40)

Defining
δγ = Γµνδgµν , (3.41)

we can write

Γµν = 1
4g++g−−

(
g−− − g++ g−− + g++
g−− + g++ g−− − g++

)

= 1
2√

g−−g++

(
− sinh γ cosh γ
cosh γ − sinh γ

)
.

(3.42)

In paper [4] beside the solution for (3.26) a variation identity is provided

δ [ϵµν(cosh σ − 1)∂νγ] −∂ν [ϵµν(cosh σ − 1)δγ] =

= −1
2γ

µν (∂αγνβ + ∂βγνα − ∂νγαβ) δγαβ.
(3.43)

Since it is non-trivial identity, we would like to prove it. The left-hand side
can be written as

LHS =δ [ϵµν(cosh σ − 1)∂νγ] − ∂ν [ϵµν(cosh σ − 1)δγ]
=ϵµν(δ cosh σ∂νγ − ∂ν cosh σδγ)

= ϵµν

2 [(γ00 + γ11)2 − 4γ2
01] γ01

[
(δγ00 − δγ11)(∂νγ00(γ00γ11 + γ2

11 − 2γ2
01)

+ ∂νγ11(γ2
00 + γ00γ11 − 2γ2

01))
− (δγ00(γ00γ11 + γ2

11 − 2γ2
01) + δγ11(γ2

00 + γ00γ11 − 2γ2
01))(∂νγ00 − ∂νγ11)

]
= ϵµν

2γ01
(δγ00∂νγ11 − δγ11∂νγ00).

The right-hand side may be written as

RHS = − 1
2γ

µν (∂αγνβ + ∂βγνα − ∂νγαβ) δγαβ

= 1
2γ01

[
(δγ11∂0γ00 − δγ00∂0γ11)(γ11γ

µ1 + γ01γ
µ0)

+ (δγ00∂1γ11 − δγ11∂1γ00)(γ00γ
µ0 + γ01γ

µ1)
]
.

Using now that ϵ01 = 1 we see LHS=RHS and the identity is proved.

29



3.4 What is our solution for W µ?
In this section we want to verify the solution provided in paper [4] and then
construct the solution to our problem (3.24). The equation to solve is:

∂µR
µ =

√
−gR. (3.44)

The solution provided in paper [4] is

Rµ = −γµν∂νσ − ∂νγ
µν + ϵµν(coshω − 1)∂νγ, (3.45)

where ω, γ, σ, γµν were introduced earlier.
This can be presented in another fashion, as in [9]

Rµ = ϵµνϵαβ

√
−g

∂αgβν + ϵµν(coshω − 1)∂νγ. (3.46)

It is easy to show that the expressions are equivalent. We see that last term
in both expressions is the same, therefore we are left to prove

γµν∂νσ + ∂νγ
µν = −ϵµνϵαβ

√
−g

∂αgβν . (3.47)

Recalling (3.34), one has

LHS =γµν∂νσ + ∂νγ
µν

=2gµν∂ν

√
−g +

√
−g∂νg

µν

=
√

−g∂νgαβ(gµνgαβ − gµαgνβ)

= − 1√
−g

∂αgβνϵ
µνϵαβ = RHS.

Now we verify that Rµ solves the equation (3.44). First we rewrite the right
hand side by recalling the definition of R

√
−gR =

√
−ggµαgνβRµναβ

=
√

−g
2 gµαgνβ(∂ν∂αgµβ + ∂µ∂βgαν − ∂νβgµα − ∂µ∂αgνβ)

+
√

−ggµαgνβgσρ(Γρ
µβΓσ

να − Γρ
µαΓσ

νβ)
=

√
−g∂µ∂αgβν(gµαgνβ − gµβgνα)

+
√

−g
4 gµαgνβgσρ(4∂µgασ∂ρgβν − 4∂µgασ∂νgβρ

+ 3∂µgσβ∂αgνρ − 2∂σgµβ∂νgαρ − ∂σgµα∂ρgβν).

(3.48)

Our next step is to put the provided form of Rµ, (3.46), inside the left hand side
of (3.44), i.e. compute the divergence of Rµ

∂µR
µ = ϵµνϵαβ

√
−g

∂µ∂αgβν − ϵµνϵαβ

2√
−g

∂αgβνg
σρ∂µgσρ + ∂µ[ϵµν(coshω − 1)∂νγ]. (3.49)

The first term in (3.49) is the only one which contains second derivatives,
because the last term contains ϵµν and therefore the second derivatives in the last
term vanish.

30



By comparing the terms with the second derivatives on both sides of equation
(3.44) and using the (3.34) we see they are identical.

We now rewrite the last term of (3.49) by using variational identity (3.43)

∂µ[ϵµν(coshω − 1)∂νγ] = − 1
4γ

µν(∂αγνβ + ∂βγνα − ∂νγαβ)∂µγ
αβ

=
√

−g
4 gµαgνβgσρ (2∂αgσβ∂ρgµν − 2∂αgνµ∂βgσρ

+∂νgαµ∂βgσρ − ∂σgαβ∂ρgµν) .

(3.50)

The middle term in (3.49) is equal to

−ϵµνϵαβ

2√
−g

∂αgβνg
ρσ∂µgρσ =

√
−g
2 gµαgνβgσρ(∂αgβν∂µgρσ − ∂βgαν∂µgρσ). (3.51)

Putting all together we have

RHS − LHS =
√

−g
4 gµαgνβgσρ(4∂µgασ∂ρgβν − 4∂µgασ∂νgβρ

+ 3∂µgσβ∂αgνρ − 2∂σgµβ∂νgαρ − ∂σgµα∂ρgβν

− 2∂αgβν∂µgρσ + 2∂βgαν∂µgρσ − 2∂αgσβ∂ρgµν

+ 2∂αgνµ∂βgσρ − ∂νgαµ∂βgσρ + ∂σgαβ∂ρgµν)
=

√
−g(−2∂µg

µρ∂ρgβνg
βν + ∂µg

µρ∂νgβρg
βν − ∂µg

ρν∂αgνρg
αµ

+ ∂σg
αν∂νgαρg

σρ − ∂σg
µα∂ρgνβg

ρσgµαgβν)
=

√
−g(∂νgαβ∂µ[gµαgνβ − gµνgαβ)

+ ∂µg
µν∂νgαβg

αβ − ∂σg
µν∂ρgαβg

ρσgµνgβα] = 0.

(3.52)

In the last step we used (3.34). The object Rµ is indeed the solution and we can
use it to construct W µ.

By combining (3.27) and (3.46) we have

W µ = ϵµν

2√
−g

(
ϵαβ

√
−g

∂αgβν + (coshω − 1)∂νγ

)
. (3.53)

One of the first conditions imposed on W µ in our discussion was its Weyl
transformation

Wµ → Wµ − ∂µω.

Let us verify if it holds.
From (3.45) we see that Weyl transformation of Rµ depends only on σ since

the rest is Weyl invariant

Rµ → Rµ − 2
√

−ggµν∂νω. (3.54)

From this we see that Weyl transformation of Wµ is of desired form

Wµ = γµν

2 Rν → γµν

2 (Rν − 2γνρ∂ρω) = Wµ − ∂µω. (3.55)
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3.5 Energy-momentum Tensor improvement
We now want to compute the energy-momentum tensor improvement from our
new term in the action

∆I = 2
β2

∫
d2x

√
−ggµνWµWν = 1

2β2

∫
d2x γµνR

µRν . (3.56)

The natural way to compute the energy-momentum tensor of this action is
by varying with respect to γµν since all objects inside the action, and variation
identity (3.43), are expressed in this notation

Tµν = 2√
−g

δ∆I
δgµν

= 2√
−g

δ∆I
δγαβ

δγαβ

δgµν
, (3.57)

δγαβ

δgµν
=

√
−g

δgαβ − 1
2g

αβδgρσgρσ

δgµν
, (3.58)

Tµν = 2 δ∆I
δγµν

− γµνγ
αβ δ∆I
δγαβ

, (3.59)

δ∆I = 1
2β2

∫
d2x δγµνR

µRν + 1
β2

∫
d2x γµνR

νδRµ, (3.60)

where

δRµ = −δγµν∂νσ − γµν∂νδσ − ∂νδγ
µν + ∂ν [ϵµν(coshω − 1)δγ] − Γ̄µ

αβδγ
αβ. (3.61)

The last two terms emerged by using (3.43) and we used the notation

Γ̄µ
αβ = 1

2γ
µν (∂αγνβ + ∂βγνα − ∂νγαβ) . (3.62)

The solution Rµ for equation (3.44) is not unique. In fact it has a freedom
Rµ → Rµ + ϵµν∂νr. That is why we add δr in δR

δRµ → δRµ + ϵµν∂νδr. (3.63)

It is understood that Rµ in the following part contains this superpotential-like
term.

Since W µ has the wanted Weyl transformation form, we demand that this
new term does not change it. Therefore we impose a condition to r such that the
quantity

gµν

2√
−g

ϵνλ∂λr

is Weyl invariant.
Before computation of Tµν let us divide δ∆I into four terms.

δ∆I = δ∆I1 + δ∆I2 + δ∆I3 + δ∆I4, (3.64)
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where

δ∆I1 = 1
2β2

∫
d2x δγµνR

νRµ

δ∆I2 = 1
β2

∫
d2x γµνR

ν(−δγµλ∂λσ − ∂λδγ
µλ − Γ̄µ

αβδγ
αβ)

= 1
2β2

∫
d2x δγαβ

[
gβλ∇α

(
Rλ

√
−g

)
+ gαλ∇β

(
Rλ

√
−g

)]

δ∆I3 = − 1
β2

∫
d2xRµ∂µδσ = − 1

2β2

∫
d2x

√
−gRgαβδg

αβ

δ∆I4 = 1
β2

∫
d2xRµγµν{∂λ[ϵνλ(coshω − 1)δγ] + ϵνλ∂λδr}

= − 1
β2

∫
d2x ∂λ(Rµγµν)ϵνλδgαβ[(coshω − 1)Γαβ + rαβ].

While deriving the second form of δ∆I2 we used

∂µT
α...
β... + ∂µσT

α...
β... = 1√

−g
∂µ(

√
−gTα...

β... )

gαλ∇βV
λ + gβλ∇αV

λ = gαλ∂βV
λ + gβλ∂αV

λ + V λ∂λgαβ

γαβδγ
αβ = 0.

While deriving δ∆I3 we used the fact that Rµ solves
√

−gR = ∂αR
α.

In rewriting δ∆I4 we defined

δγ =Γµνδgµν

δr =rµνδgµν .

From previous computation we know

Γµν = 1
2√

g−−g++

(
− sinh γ cosh γ
cosh γ − sinh γ

)
. (3.65)

Doing this preparations, we divide the computation of the energy-momentum
tensor into four parts

T i
µν = 1√

−g
δ∆I i

δgµν

with i = 1, 2, 3, 4.
Results are then

T 1
µν = 1

β2

(1
2γµνγαβR

αRβ − γµαγνβR
αRβ

)
(3.66)

T 2
µν = 1

β2

(
gµλ∇ν

(
Rλ

√
−g

)
+ gνλ∇µ

(
Rλ

√
−g

))
− 1
β2Rgµν (3.67)

T 3
µν = − 1

β2Rgµν (3.68)
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T 4
µν = 2√

−gβ2∂β

(
Rλgαλ√

−g

)
ϵαβ[(coshω − 1)Γµν + rµν ]. (3.69)

Adding these computed parts of the energy-momentum tensor together we
have

β2T µν =1
g

(
RµRν − 1

2g
µνR ·R

)
− 2Rgµν

+ gµα∇α

(
Rν

√
−g

)
+ gνα∇α

(
Rµ

√
−g

)

+ 2√
−g

∂β

(
Rλgαλ√

−g

)
ϵαβ[(coshω − 1)Γµν + rµν ]

=2gµνWαW βgαβ − 4W µW ν − 2Rgµν

+ 2gµα∇αW
ν + 2gνα∇αW

µ

+ 4√
−g

∂β

(
W λgαλ

)
ϵαβ[(coshω − 1)Γµν + rµν ].

(3.70)

Since this improvement term should provide the cancellation of the nonzero
value of the energy-momentum tensor trace we want to compute the trace of this
improvement term

β2T µ
µ = −2R + 4√

−g
∂β

(
W λgαλ

)
ϵαβ[(coshω − 1)Γµν + rµν ]gµν . (3.71)

Recalling Γµν

Γµν = 2
(g00 + g11)2 − 4g2

01

[1
2(δµ

0 δ
ν
1 + δµ

1 δ
ν
0 )(g00 + g11) − g01(δµ

0 δ
ν
0 + δν

1δ
µ
1 )
]
,

we see that
gµνΓµν = 0. (3.72)

Therefore
T µ

µ = − 2
β2R + 4√

−g
∂β

(
W λgαλ

)
ϵαβrµνgµν . (3.73)

We see then another condition on r

gµνr
µν = 0. (3.74)

With this the improvement of the energy-momentum tensor cancels the anoma-
lous trace of (3.2)

T µ
µ = 2

β2R.

This proves the Weyl invariance of the improved Liouville action.

3.6 Transformation of W µ

Looking for the improved Lagrangian for Liouville theory, and therefore the
traceless energy-momentum tensor, we encountered the improvement term for
Lagrangian

2
β2

∫
d2x

√
−ggµνW

νW µ.
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Since the action is a scalar we want to find transformation properties of W µ

W µ = ϵµν

2√
−g

(
ϵαβ

√
−g

∂αgβν + (coshω − 1)∂νγ + ∂νr

)
.

From transformation of metric tensor under general coordinate transformation

g′
µν = ∂x

∂x′
∂xβ

∂x′ν gαβ,

we see that √
−g transforms as scalar density of rank 1

√
−g′ =

⏐⏐⏐⏐⏐det
(
∂x

∂x′

)⏐⏐⏐⏐⏐√−g.

From the formula for Levi-Civita symbols (3.34) we can see that single Levi-
Civita symbol ϵµν transforms as a tensor density of rank 1. Therefore ϵαβ/

√
−g

transforms as a regular tensor.
Transformation of ∂αgµν is

∂′
αg

′
µν = ∂′

α

(
∂xρ

∂x′µ
∂xσ

∂x′ν gρσ

)
= ∂xλ

∂x′α
∂xρ

∂x′µ
∂xσ

∂x′ν ∂λgρσ + gρσ
∂

∂x′α

(
∂xρ

∂x′µ
∂xσ

∂x′ν

)
.

(3.75)
Transformation of γµν and its light cone elements is clear from its definition

and it transforms as a tensor density of rank -1

γ′
µν =

⏐⏐⏐⏐⏐det
(
∂x′

∂x

)⏐⏐⏐⏐⏐ ∂xα

∂x′µ
∂xβ

∂x′ν γαβ. (3.76)

We will assume only infinitesimal diffeomorphism transformations i.e.

δxµ = −fµ(x),

for infinitesimal transformations it holds

∂xρ

∂x′µ = δρ
µ + ∂µf

ρ. (3.77)

So let us compute the quantity

∆W µ ≡ W ′µ(x′) − ∂x′µ

∂xν
W ν(x). (3.78)

We are interested in the light-cone components, or better, since we have light-
cone terms in W µ we expect them to be easier to calculate. Therefore, the
following calculations are done using these coordinates.

The Jacobian of the coordinate transformation at first order, expressed in
light-cone coordinates is⏐⏐⏐⏐⏐det

(
∂x′

∂x

)⏐⏐⏐⏐⏐ =
(

∂x′+

∂x+
∂x′+

∂x−
∂x′−

∂x+
∂x′−

∂x−

)
=
(

1 − ∂+f
+ −∂−f

+

−∂+f
− 1 − ∂−f

−

)
=1 − ∂+f

+ − ∂−f
−.

(3.79)
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Since we restricted ourselves only to infinitesimal transformations we get

γ′
µν = γµν(1 − ∂+f

+ − ∂−f
−) + ∂µf

αγαν + ∂νf
αγµα. (3.80)

From this we can write

γ′
++ =γ++(1 + ∂+f

+ − ∂−f
−) + 2∂+f

−γ+−

γ′
+− =γ+− + ∂+f

−γ−− + ∂−f
+γ++

γ′
−− =γ−−(1 − ∂+f

+ + ∂−f
−) + 2∂−f

+γ+−.

(3.81)

So far we have

∆ ϵµν

2√
−g

ϵαβ

√
−g

∂αgβν = ϵµνϵαβ

2√
−g2 gβτ∂α∂νf

τ (3.82)

and

∆ ϵµν

2√
−g

(coshω−1)∂νγ = ∂x′µ

∂xα

ϵαβ

2√
−g

[(coshω′−1)∂βγ
′−(coshω−1)∂βγ]. (3.83)

The only unknown is the transformation of γ′

γ′ =1
2 ln γ

′
++
γ′

−−

=1
2 ln

(
γ++

γ−−

1 + ∂+f
+ − ∂−f

− + 2∂+f
−γ+−/γ++

1 − ∂+f+ + ∂−f− + 2∂−f+γ+−/γ−−

)

=γ + ∂+f
+ − ∂−f

− + ∂+f
−γ+−

γ++
− ∂−f

+γ+−

γ−−
,

(3.84)

where we used Taylor expansion of logarithm and assumed γ+−/γ−− is finite (this
can be problematic when thinking of flat space limit, but it is intrinsic problem
of γ itself).

From this we have

∆ ϵµν

2√
−g

(coshω − 1)∂νγ = ϵµν

2√
−g

[∂+f
−γ−−∂νγ + ∂−f

+γ++∂νγ

+ (coshω − 1)∂ν(∂+f
+ − ∂−f

−)

+ (coshω − 1)∂ν(∂+f
−γ+−

γ++
− ∂−f

+γ+−

γ−−
)].

(3.85)

The Levi-Civita symbol in light-cone coordinates are discussed in the appendix
and it holds ϵ−+ = −ϵ+− = 1 and ϵ−− = ϵ++ = 0. This gives us

∆ ϵµν

2√
−g

ϵαβ

√
−g

∂αgβν = ϵµν

2√
−g

(γ++∂ν∂−f
+ + γ+−∂ν∂−f

−

− γ+−∂ν∂+f
+ − γ−−∂ν∂+f

−).
(3.86)
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If we forget about the ∂νr part of W µ for a moment, we have

∆W µ = ϵµν

2√
−g

⎡⎣γ++∂ν∂−f
+ + γ+−∂ν∂−f

−

− γ+−∂ν∂+f
+ − γ−−∂ν∂+f

−

+ ∂+f
−γ−−∂νγ + ∂−f

+γ++∂νγ

+ (γ+− − 1)∂ν(∂+f
+ − ∂−f

−)

+ (γ+− − 1)∂ν

(
∂+f

−γ+−

γ++
− ∂−f

+γ+−

γ−−

)⎤⎦
= ϵµν

2√
−g

⎡⎣γ++∂ν∂−f
+ + ∂ν∂−f

−

− ∂ν∂+f
+ − γ−−∂ν∂+f

−

+ ∂+f
−γ−−∂νγ + ∂−f

+γ++∂νγ

+ (γ+− − 1)∂ν

(
∂+f

−γ+−

γ++
− ∂−f

+γ+−

γ−−

)⎤⎦.

(3.87)

Recalling now previously derived formulas

∂νγ =1
2

(
1
γ++

∂νγ++ − 1
γ−−

∂νγ−−

)
det γµν = − 1 = γ++γ−− − γ2

+−

∂γ+−γ+− =1
2(∂νγ++γ−− + ∂νγ−−γ++)

(γ+− − 1)γ+− =γ++γ−− − γ+− + 1,

we can simplify the result

∆W µ = ϵµν

2√
−g

∂ν [γ++∂−f
+ − γ−−∂+f

− + ∂−f
− − ∂+f

+

+ (γ+− − 1)(∂+f
−γ+−

γ++
− ∂−f

+γ+−

γ−−
)]

= ϵµν

2√
−g

∂ν [∂−f
− − ∂+f

+ − ∂+f
−γ+− − 1

γ++
+ ∂−f

+γ+− − 1
γ−−

].

(3.88)

This can be written in a form provided in paper [4]

∆W µ = ϵµν

2√
−g

∂ν

[(
∂− − e−γ tanh ω2 ∂+

)
f− −

(
∂+ − eγ tanh ω2 ∂−

)
f+
]
. (3.89)

If f is generated by Lorentz transformation we get

∆W µ = ϵµν

2√
−g

[∂ν

(
eγ tanh ω2

)
∂−f

+ − ∂ν

(
e−γ tanh ω2

)
∂+f

−]

= ϵµν

√
−g

∂ν [cosh γ tanh ω2 ]Λ+
−,

(3.90)

where Λ+
− is the Lorentz transformation matrix. The term in parenthesis is

not zero in general. ∆W µ is therefore not zero in general and, the improvement
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term in Lagrangian does not transform as a scalar. What makes its covariant
divergence a scalar is the presence of Levi-Civita symbol.

This proves the remarkable result posited in [9], i.e., that W µ is not a con-
travariant vector.

A more direct way to prove the lack of diffeomorphic invariance is to compute
∇µT

µν and see whether it is non-zero (and why). This computation proved to be
quite involved and we could carry it on up to a point, that we illustrate in the
appendix C.
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Conclusions
In this thesis we studied Weyl and conformal symmetries, for classical field theo-
ries. These two symmetries are tightly related, but different, as the first applies
to diffeomorphic-covariant (e.g., curved space) contexts, while the second lives
in flat space. In fact, the necessary and sufficient conditions, for flat space scale
invariant theories to be fully conformally invariant, were established in [7], and
they heavily involve Weyl symmetry of the diffeomorphic-covariant ’version’ of
the flat space theory. That discussion applies to fields of arbitrary spin, and to
any number of dimensions n, including the special case of n = 2.

Within that approach, we focused here on the special case of the two-dimen-
sional Liouville scalar field theory. This theory enjoys full conformal symmetry
in flat space, even though it has a macroscopic scale (the mass) and it is selfinter-
acting. This is possible because conformal symmetry, at least in two dimensions,
can be “augmented” by the insertion of a so-called “central extension”. That is,
the infinite charges of conformal symmetry, ln, get one more, the central charge c.
As well known, in the quantum regime, and in presence of curvature, such central
charge is related to an obstruction of Weyl symmetry, namely the vacuum expec-
tation of the trace of the energy momentum tensor is not zero, but proportional
to the curvature, to ℏ, and to c.

This is an instance of an anomaly (trace or Weyl anomaly, in this case),
that is a soft breaking of the symmetry, induced by quantum effects. There are
other instances of anomalies in physics, the most famous (and historically the first
example) being the chiral anomaly of Adler, Bell and Jackiw. One of interest here
is the ’gravitational anomaly’, or lack of diffeomorphic-invariance, for instance
signalled by the lack of covariant conservation of the energy-momentum tensor,
∇µT

µν ̸= 0. In all cases, anomalies here are quantum effects.
Interestingly, in [9] Jackiw raised the question of whether, for Liouville theory,

we are in the presence of a classical instance, either of Weyl anomaly, or of
gravitational anomaly. In other words, in [9] it is conjectured that, for Liouville
theory, one is not entitled to have at once diffeomorphic and Weyl symmetries,
so either of them need be “anomalous”. Both instances would be fascinating,
because they would provide examples of soft breaking of the symmetry not due
to quantum effects.

In this thesis, we have proved that indeed this is the case. We did so by, on the
one hand, explicitly computing the improvement terms of the energy-momentum
tensor (whose role is to make the latter traceless). These terms involve the Weyl
potential W µ, as required by the general procedure of [7] (such calculations are
not trivial, and are presented in Section 3.5). On the other hand, we show
explicitly that W µ is not a contravariant vector under diffeomorphisms (such
calculations are not trivial, and are presented in Section 3.6). This means that
indeed a gravitational anomaly is taking place. Notice that the statement of non
covariance of W µ is in [9], but that was not explicitly proved there.

We also performed the difficult computation of ∇µT
µν , to have an explicit

expression for the gravitational anomaly. Such computations are reported in the
Appendix C, and their outcome is not conclusive in this respect, but can be useful
for later investigations.
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A. Weyl transformations
In this appendix we go through the computations of Weyl variations of several
important objects. First we look at Christoffel symbols and covariant derivates,
then we scrutinize the the Weyl variations of geometrical objects, Ricci tensor
and Ricci scalar.

First we recall how the metric transforms under Weyl transformation

gµν → e2ωgµν . (A.1)

From this it is easy to find the Weyl transformation of Christoffel symbols
(notation ∂µω = ωµ)

Γρ
µν = 1

2g
ρσ (∂µgσν + ∂νgµσ − ∂σgµν)

→ 1
2e

−2ωgρσ
(
∂µ

(
e2ωgσν

)
+ ∂ν

(
e2ωgµσ

)
− ∂σ

(
e2ωgµν

))
= Γρ

µν + 1
2g

ρσ (2ωµgσν + 2ωνgµσ − 2ωσgµν) .

(A.2)

Therefore the Weyl variation is

∆ (Γρ
µν) = gρσ (ωµgσν + ωνgµσ − ωσgµν) . (A.3)

Our aim is to study general cases. Therefore, we have to include spin con-
nection in covariant derivatives as in (1.60). Knowing the Weyl variation of spin
connection sµ

a
b

sµ
a

b ≡ ea
λ(δλ

ν∂µ + Γλ
µν)Eν

b →eωea
λ(δλ

ν∂µ + Γλ
µν + ∆Γλ

µν)e−ωEν
b

=ea
λ(δλ

ν∂µ + Γλ
µν)Eν

b − ea
λδ

λ
νωµE

ν
b

+ ea
λg

λα(ωµgνα + ωνgµα − ωαgµν)Eν
b

=ea
λ(δλ

ν∂µ + Γλ
µν)Eν

b + ea
µωνE

ν
b

− ea
λg

λαωαgµνe
ν
b

(A.4)

and by using antisymmetry of Lorentz generators we get

(Sµ)i
j → (Sµ)i

j − 2ων(Σµ
ν)i

j. (A.5)

The next object of our interest is ∇µWν . Its Weyl transformation is

∇µWν =∂µWν − Γρ
µνWρ

→∂µ (Wν − ων) − (Γρ
µν + ∆Γρ

µν) (Wρ − ωρ)
=∇µWν − ∇µων − (ωµgσν + ωνgµσ − ωσgµν) (W σ − ωσ)
=∇µWν − ∇µων + (2ωµων − gµνωσω

σ)
− (ωµWν + ωνWµ − gµνωσW

σ) .

(A.6)

We compute the Weyl variation of Ricci tensor Rµν

Rµν = Rρ
µρν = ∂ρΓρ

µν − ∂νΓρ
µρ + Γρ

ρσΓσ
µν − Γρ

νσΓσ
µρ,
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by transforming it part by part. So the terms with derivatives transform as
∂ρΓρ

µν − ∂νΓρ
µρ →∂ρ (Γρ

µν + ∆Γρ
µν) − (∂νΓρ

µρ + ∆∂νΓρ
µρ)

=∂ρΓρ
µν − ∂νΓρ

µρ + ∂ρ

(
ωµg

ρ
ν + ωνg

ρ
µ − ωρgµν

)
− ∂ν

(
ωµg

ρ
ρ + ωρg

ρ
µ − ωρgµρ

)
=∂ρΓρ

µν − ∂νΓρ
µρ + ∂µων + ∂νωµ − ∂ρ (ωρgµν)

− n∂νωµ − ∂νωµ + ∂νωµ,

(A.7)

where n is the dimension. Using the definition of ωµ and commutation of partial
derivatives

∂ρΓρ
µν − ∂νΓρ

µρ → ∂ρΓρ
µν − ∂νΓρ

µρ + (2 − n)∂µων − ∂ρ (ωρgµν) . (A.8)
The third term of Ricci tensor transforms as

Γρ
ρσΓσ

µν →
(
Γρ

ρσ + ωρg
ρ
σ + ωσg

ρ
ρ − ωρgρσ

)
·

·
(
Γσ

µν + ωµg
σ
ν + ωνg

σ
µ − ωσgµν

)
= (Γρ

ρσ + nωσ)
(
Γσ

µν + ωµg
σ
ν + ωνg

σ
µ − ωσgµν

)
=Γρ

ρσΓσ
µν + Γρ

ρνωµ + Γρ
ρµων − Γρ

ρσω
σgµν+

+ nωσΓσ
µν + 2nωνωµ − nωσω

σgµν .

(A.9)

The fourth term of Ricci tensor transforms as
Γρ

νσΓσ
µρ → (Γρ

νσ + ωνg
ρ
σ + ωσg

ρ
ν − ωρgνσ) ·

·
(
Γσ

µρ + ωµg
σ
ρ + ωρg

σ
µ − ωσgµρ

)
=Γρ

νσΓσ
µρ + Γρ

νρωµ + Γρ
νµωρ − Γρ

νσω
σgµρ+

+ ωνΓρ
µρ + nωνωµ

+ ωσΓσ
µν + 2ωνωµ − ωσω

σgµν−
− ωρgνσΓσ

µρ − ωσωσgνµ

=Γρ
νσΓσ

µρ + Γρ
νρωµ + Γρ

µρων + Γρ
νµωρ + Γρ

µνωρ−
− Γρ

νσω
σgµρ − Γρ

µσω
σgνρ + (n+ 2)ωνωµ − 2ωσω

σgµν .

(A.10)

Now putting everything together
Rµν →∂ρΓρ

µν − ∂νΓρ
µρ + (2 − n)∂µων − ∂ρ (ωρgµν) +

+ Γρ
ρσΓσ

µν + Γρ
ρνωµ + Γρ

ρµων − Γρ
ρσω

σgµν+
+ nωσΓσ

µν + 2nωνωµ − nωσω
σgµν−

− Γρ
νσΓσ

µρ − Γρ
νρωµ − Γρ

µρων − Γρ
νµωρ − Γρ

µνωρ+
+ Γρ

νσω
σgµρ + Γρ

µσω
σgνρ − (n+ 2)ωνωµ + 2ωσω

σgµν

=Rµν + (2 − n) (∂µων − ωσΓσ
µν − ωνωµ + ωσω

σgµν) −
− ∂ρ (ωρgµν) − Γρ

ρσω
σgµν + Γρ

νσω
σgµρ + Γρ

µσω
σgνρ

=Rµν − (n− 2) (∇µ∇νω − ωµων + ωσω
σgµν) − ∂ρω

ρgµν−
− ωρ∂ρgµν − Γρ

ρσω
σgµν + Γρ

νσω
σgµρ + Γρ

µσω
σgνρ

=Rµν − gµν∇2ω − (n− 2) (∇µ∇νω − ωµων + ωσω
σgµν) +

+ ωσ 1
2 ((∂σgµν + ∂νgσµ − ∂µgνσ) + (∂σgνµ + ∂µgσν − ∂νgµσ))

− ωσ∂σgµν

=Rµν − gµν∇2ω − (n− 2) (∇µ∇νω − ωµων + ωσω
σgµν) .

(A.11)
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From this we should derive the Weyl transformation of Ricci scalar without
any problems

R = gµνRµν →e−2ωgµν
(
Rµν − gµν∇2ω

)
− e−2ωgµν(n− 2) (∇µ∇νω − ωµων + ωσω

σgµν)
=e−2ω

(
R − n∇2ω − (n− 2)

(
∇2ω − ωµω

µ + nωµω
µ
))

=e−2ω
(
R − 2(n− 1)∇2ω − (n− 2)(n− 1)ωµω

µ
)
.

(A.12)
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B. Light cone coordinates
The light-cone coordinates in two dimensions are defined as

x± = 1√
2
(
x0 ± x1

)
. (B.1)

The coordinate transformation (x0, x1) → (x+, x−) can be obtained by acting
with the matrix

S = 1√
2

(
1 1
1 −1

)
. (B.2)

The derivatives in ligh-cone coordinates are

∂+ = 1√
2

(∂0 + ∂1)

∂− = 1√
2

(∂0 − ∂1).
(B.3)

We would like to find components of metric tensor in these coordinates

x2 = gµνx
µxν = g00

(
x0
)2

+ 2g01x
0x1 + g11

(
x1
)2

(B.4)

x2 = gµνx
µxν = g++

(
x+
)2

+ 2g+−x
+x− + g−−

(
x−
)2
. (B.5)

By comparing those two equations and using the definition of light-cone coordi-
nates we get

g++ = 1
2
(
g00 + 2g01 + g11

)
(B.6)

g+− = 1
2
(
g00 − g11

)
(B.7)

g−− = 1
2
(
g00 − 2g01 + g11

)
(B.8)

and the components of inverse metric gµν are

g++ = g−−

g

g+− = −g+−

g

g−− = g++

g
.

(B.9)

For the case of Minkowski space with metric ηµν

ηµν =
(

−1 0
0 1

)
(B.10)

we get new metric

ηµν =
(

0 −1
−1 0

)
, (B.11)
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with µ, ν ∈ {+,−}.
In this case the scalar product is

x2 = −2x+x−. (B.12)

Introducing γµν and its inverse γµν

γµν = gµν√
−g

γµν =
√

−ggµν (B.13)

we can parametrize the light-cone components as

γ++ = eγ sinhω
γ+− = coshω
γ−− = e−γ sinhω.

(B.14)

The last object we want to study in light-cone coordinates is Levi-Civita
symbol. To transform it we recall its matrix representation

ϵµν =
(

0 1
−1 0

)
. (B.15)

To transform it into light-cone coordinates the easiest way is to act on it with
matrix S. Written as a symbolic matrix multiplication we want to compute

SϵS−1. (B.16)

The result is
ϵµν =

(
0 −1
1 0

)
. (B.17)

In these coordinates we have ϵ+− = −ϵ−+ = −1
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C. Covariant divergence
In this appendix we illustrate the computation of covariant divergence of the
computed energy-momentum improvement (3.70)

β2∇µT
µν =2gµν∂µ

(
WαW βgαβ

)
− 2RW ν − 4W µ∇µW

ν − 2gµν∂µR

+ 2gαβ∇α∇βW
ν + 2gνα∇µ∇αW

µ

+ ∇µ

[
4ϵαβ

√
−g

∂β(gαρW
ρ)[(coshω − 1)Γµν + rµν ]

]
.

(C.1)

In two dimensions Riemman tensor can be written as

Rµναβ = R

2 (gµαgνβ − gµβgνα). (C.2)

Using this we can easily commute covaraint derivatives

2gνα∇µ∇αW
µ = 2gναgµρRσραµW

σ + 2gνα∇α∇µW
µ = RW ν + gµν∂µR. (C.3)

With this we simplify the expression for ∇µT
µν

β2∇µT
µν =2gµν∂µ

(
WαW βgαβ

)
− 4W µ∇µW

ν

+ 2gαβ∇α∇βW
ν −RW ν − gµν∂µR

+ ∇µ

[
4ϵαβ

√
−g

∂β(gαρW
ρ)[(coshω − 1)Γµν + rµν ]

] (C.4)

Before proceeding the computation we derive a useful formulation of covariant
divergence

∇µT
µν =∂µT

µν + Γµ
µαT

αν + Γν
µαT

µα

Γµ
µαT

αν = 1√
−g

∂µ

√
−gT µν

Γν
µαT

µα =gνλ∂αgλµT
µα − 1

2g
νλ∂λgµαT

µα

∇µT
µν = 1√

−g
∂µ(

√
−gT µν) + gµν∂αgβµT

αβ − 1
2g

µν∂µgαβT
αβ.

(C.5)

Using this we can rewrite the last term in ∇µT
µν

β2∇µT
µν
last =∇µ

[
4ϵαβ

√
−g

∂β(gαρW
ρ)[(coshω − 1)Γµν + rµν ]

]

= + 4√
−g

∂µ

[
ϵαβ∂β(gαρW

ρ)[(coshω − 1)Γµν + rµν ]
]

+ gµν∂αgβµ
4ϵσλ

√
−g

∂λ(gσρW
ρ)[(coshω − 1)Γαβ + rαβ]

− 2ϵαβgµν

√
−g

∂β(gαρW
ρ)[(coshω − 1)∂µγ + ∂µr].

(C.6)
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We used here the definition of Γµν and rµν

δγ = δgµνΓµν δr = δgµνr
µν .

By using (3.35) we can improve the last term

−ϵαβgµν [(coshω − 1)∂µγ + ∂µr] =ϵβµgαν [(coshω − 1)∂µγ + ∂µr]
− ϵαµgβν [(coshω − 1)∂µγ + ∂µr]

=2
√

−g(gανW β − gβνWα)

+ ∂σgρµ√
−g

gµνϵσρϵαβ

=2
√

−g(gανW β − gβνWα)
+

√
−g(gλα∂λg

βν − gλβ∂λg
αν)

(C.7)

in the second equality we used the definition of W µ and in the last one we used
(3.34).

Therefore we can rewrite the last term as

β2∇µT
µν
last = 4√

−g
∂µ

[
ϵαβ∂β(gαρW

ρ)[(coshω − 1)Γµν + rµν ]
]

+ gµν∂αgβµ
4ϵσλ

√
−g

∂λ(gσρW
ρ)[(coshω − 1)Γαβ + rαβ]

+ 4∂β(gαρW
ρ)
(
gναW β − gνβWα

)
+ 2∂β(gαρW

ρ)
(
gαλ∂λg

νβ − gβλ∂λg
να
)
.

(C.8)

The full improvement term is then

β2∇µT
µν =2gµν∂µ

(
WαW βgαβ

)
− 4W µ∇µW

ν

+ 2gαβ∇α∇βW
ν −RW ν − gµν∂µR

+ 4√
−g

∂µ

[
ϵαβ∂β(gαρW

ρ)[(coshω − 1)Γµν + rµν ]
]

+ gµν∂αgβµ
4ϵσλ

√
−g

∂λ(gσρW
ρ)[(coshω − 1)Γαβ + rαβ]

+ 4∂β(gαρW
ρ)
(
gναW β − gνβWα

)
+ 2∂β(gαρW

ρ)
(
gαλ∂λg

νβ − gβλ∂λg
να
)
.

(C.9)

Let us expand terms quadratic in W µ

2gµν∂µ

(
WαW βgαβ

)
= 4gµν∂µW

αW βgαβ + 2gµνWαW β∂µgαβ, (C.10)

−4W µ∇µW
ν = −4W µ∂µW

ν − 4gµνWαW β∂agβµ + 2WαW βgµν∂µgαβ, (C.11)

4∂β(gαρW
ρ)
(
gναW β − gνβWα

)
=4gµνWαW β∂αgβµ − 4gµν∂µgαβW

αW β

− 4gαβ∂µW
αW βgαβ + 4W µ∂µW

ν .
(C.12)
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Putting together these terms we see

0 =2gµν∂µ

(
WαW βgαβ

)
− 4W µ∇µW

ν

+ 4∂β(gαρW
ρ)
(
gναW β − gνβWα

) (C.13)

This simplifies the divergence of our improvement to

β2∇µT
µν =2gαβ∇α∇βW

ν −RW ν − gµν∂µR

+ 4√
−g

∂µ

[
ϵαβ∂β(gαρW

ρ)[(coshω − 1)Γµν + rµν ]
]

+ gµν∂αgβµ
4ϵσλ

√
−g

∂λ(gσρW
ρ)[(coshω − 1)Γαβ + rαβ]

+ 2∂β(gαρW
ρ)
(
gαλ∂λg

νβ − gβλ∂λg
να
)
.

(C.14)

Using (3.34) we can rewrite the last term as

2∂β(gαρW
ρ)
(
gαλ∂λg

νβ − gβλ∂λg
να
)

= −2ϵαβ∂β(gαρW
ρ)gνσ∂λgµσ

ϵµλ

√
−g2 . (C.15)

The term ∇∇W can be written as
2gαβ∇α∇βW

ν =2gαβ(∂α∂βW
ν + ∂αΓν

βλW
λ + Γν

βλ∂αW
λ − Γσ

αβ∂σW
ν

− Γσ
αβΓν

σλW
λ + Γν

σα∂βW
σ + Γν

σαΓσ
βλW

λ)
=2gαβ[∂α∂βW

ν + 2Γν
βλ∂αW

λ − Γσ
αβ∂σW

ν

+W λ(Rν
βαλ + ∂λΓν

αβ)]
=2gαβ(∂α∂βW

ν + 2Γν
βλ∂αW

λ − Γσ
αβ∂σW

ν +W λ∂λΓν
αβ)

−RW ν .

(C.16)

Unfortunately this does not lead to any cancellations and the most pleasant
form we could derive is

β2∇µT
µν =2gαβ∇α∇βW

ν −RW ν − gµν∂µR

+ 4√
−g

∂µ

[
ϵαβ∂β(gαρW

ρ)
]

[(coshω − 1)Γµν + rµν ]

+ ϵαβ

√
−g

∂β(gαρW
ρ)
⎛⎝4∂µ[(coshω − 1)Γµν + rµν ]

+ 4gµν∂σgλµ[(coshω − 1)Γσλ + rσλ] − 2gνµ ϵσλ

√
−g

∂λgσµ

⎞⎠,
(C.17)

with

Γµν = 1
4g++g−−

(
g−− − g++ g−− + g++
g−− + g++ g−− − g++

)

= 1
2√

g−−g++

(
− sinh γ cosh γ
cosh γ − sinh γ

)
.

(C.18)

We cannot conclude whether the RHS of (C.17) is zero or nonzero, but for
consistency with the results of this thesis on the lack of covariance of W µ, it
should not be zero.
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