
MASTER THESIS

Petr Lukeš

Emergence of space geometries from
quantum entanglement

Institute of Theoretical Physics

Supervisor of the master thesis: Mgr. Martin Scholtz, Ph.D.
Study programme: Physics

Study branch: Theoretical physics

Prague 2019





I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In ........ date ............ signature of the author

i



ii



I would like to dedicate this work to my mother Blanka, father Zdeněk and brother
Zdeněk. It was only their endless support throughout all my studies which helped
me continue even when I would not have enough strength on my own.

Thank you

iii



iv



Title: Emergence of space geometries from quantum entanglement

Author: Petr Lukeš

Institute: Institute of Theoretical Physics

Supervisor: Mgr. Martin Scholtz, Ph.D., Institute of Theoretical Physics

Abstract: Connecting the field of Quantum Physics and General Relativity is one
of the main interests of contemporary Theoretical Physics. This work attempts to
find solution to simplified version of this problem. Firstly entropy is shown to be
a good meeting point between the two different theories. Then some of entropy’s
less intuitive properties are shown, namely its dependence on area, not volume.
This relation is studied from both Relativistic and Quantum viewpoint. After-
wards there is a short description of a quantum model interpretable as geometry
based on the information between its subsystems. Lastly, results of computations
within this model are presented.

Keywords: Emergent geometry, Redundancy Constraint, Bekenstein limit, Hawk-
ing radiation

v



vi



Contents

Introduction 2

1 Preliminaries 4
1.1 Properties of entropy . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Area law of entropy . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Redundancy constrained states . . . . . . . . . . . . . . . . . . . 9
1.4 Lattice structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Entropy and information on black holes . . . . . . . . . . . . . . . 11

1.5.1 Black hole thermodynamics . . . . . . . . . . . . . . . . . 11
1.5.2 Hawking radiation . . . . . . . . . . . . . . . . . . . . . . 12
1.5.3 Information paradox . . . . . . . . . . . . . . . . . . . . . 13
1.5.4 Black hole complementarity . . . . . . . . . . . . . . . . . 16

1.6 Bekenstein limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.7 Page curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.8 Quasi-particle picture and the emergence . . . . . . . . . . . . . . 20

2 Computational methods 23
2.1 Exact embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 Triple product and volume . . . . . . . . . . . . . . . . . . 23
2.1.2 Embedding of an n-simplex . . . . . . . . . . . . . . . . . 24

2.2 Multidimensional scaling . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Density matrix and its tracing . . . . . . . . . . . . . . . . . . . . 26

3 Results 29
3.1 Examples of embeddings . . . . . . . . . . . . . . . . . . . . . . . 29

4 Conclusion 37

Bibliography 38

A Mathematica code 42

1



Introduction
Our world is to the best of our knowledge governed by four fundamental

interactions. Electromagnetic, weak, strong and gravitational. With the usage
of Quantum Field Theory a unified description of the first three can be derived,
this being known as Standard Model and its extensions. On the other hand the
last interaction, gravitational, remains from this point of view elusive.

In the last decades many models of inclusion of gravitation to the Standard
Model have been proposed but none was found completely satisfactory. And so
the task of unifying gravitation with the rest of the fundamental interactions
remains among the most interesting and important problems of contemporary
theoretical physics.

As mentioned, our current understanding of the three unified interactions is
based on their quantum description. So it is natural to search for such description
of the gravitation too, as only when that is found we can put all fundamental
interactions onto common grounds. And such complete theory, known as Theory
of Everything, is one of the ultimate goals of the current theoretical physics.

But let us get back down to earth. The initial problem still being solved these
days is how to describe gravitation on the quantum level. Some at least partial
models have been already proposed, for example in the field of string physics, or
for QFT on curved background. From other considerations we even know what
we should expect from the resulting theory of quantum gravity (e.g. we know that
the particle mediating the gravitation interaction, which we call graviton, has to
have spin 2). As far as this work is concerned it is the AdS/CFT correspondence
[1] which sparked the considerations included in this work (admittedly without
exact understanding of the AdS/CFT itself).

In this work the entropy is chosen to be the meeting point between geometry
and quantum theory. On the gravitation side the entropy of a black hole is well
known from basic consideration of black hole thermodynamics and is found to be
proportional only to the surface area of the black hole’s event horizon

S = 1
4
A

GN

. (1)

In this equation S is the entropy, A area and GN Newton’s constant, ~ and c
are both assumed to be equal to 1. On the other hand in quantum information
theory the entropy is defined via the eigenvalues of the density matrix ρ̂ (and
such matrix can be ascribed to each quantum state)

S = −
∑︂

pj∈σ(ρ̂)
pj ln(pj) (2)

ρ̂ |φj⟩ = pj |φj⟩ . (3)

So the aim is to find such quantum state living on some Hilbert space of
known structure, that the subspaces of the Hilbert space can be interpreted as
points of some metric space. The distance between those points is computed from
the entanglement entropy. Several methods of embedding the points into metric
space are investigated in this work. In general the metric space with the set of
embedded points is called the emergent geometry.
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Because the field of emergent geometry is a contemporary problem and there
is not yet much of an established formalism, this work focuses mainly on trial
and error approach for finding some quantum states capable of representing a
geometry via computational methods. It will be shown that such states are quite
rare and so are even the Hilbert spaces capable of representing them.

The structure of this work is as follows: The first chapter contains a glimpse
at some theoretical findings connected to the topic of this work. This part is
the largest in this work yet is anything but exhaustive. In the second chapter
the computational methods employed in this work are commented upon. In the
third chapter the results of the computation are shown with some commentary
and comparison to the results of other works in the end.
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1. Preliminaries
1.1 Properties of entropy

Entropy is a concept firstly introduced for quantitative description of irre-
versible processes in the field of thermodynamics. Its statistical interpretation is
that it describes the lack of information. The higher the entropy, the more generic
and without precise information is the available description of the system. It is
an observed fact that during all ongoing processes in the nature, the total entropy
of the Universe always increases (known as 2nd Law of Thermodynamics).

Entropy can be also attributed to quantum states. Assume a mixed quantum
state {pi, |ψi⟩}N

i=1, where N is the number of the states and pj is the probability
to find the system in the state |ψj⟩. Then we can ascribe to this mixed state
corresponding density operator (in the field of statistical physics also known as
statistical operator) by relation

ρ̂ =
N∑︂

i=1
qi |ψi⟩⟨ψi| . (1.1)

The spectrum of this density operator is σ(ρ̂) = {p1, . . . ,pn} and the entropy S
is defined as

S = − Tr(ρ̂ ln(ρ̂)) = −
∑︂

pj∈σ(ρ̂)
pj ln(pj). (1.2)

The entropy defined by (1.2) is called Von Neumann entropy (as opposed
to entropy in thermodynamics and Gibbs/Shannon entropy in statistical physics
and information theory[1]). When entropy is mentioned in the following text, it
is understood to be the Von Neumann entropy. Some of its interesting properties
are the following.

Firstly, entropy is always greater than or equal to zero. This can be seen
from Figure 1.1, as the values pj from the definition (1.2) is a probability and
so needs to be always between 0 and 1. Also, for pure states, it is always 0 as
then the corresponding density matrix is a projector onto the space of the pure
state ρ̂ = |ψ⟩⟨ψ|. The reason is that then ρ̂ has only two eigenvalues {+1,0} and,
looking at the Figure 1.1, it is obvious, that it is zero at 1 and its limit from the
right is zero at 0 too. This is in agreement with the meaning of entropy as a
measure of ignorance, as at pure state, we know precisely the exact state of the
system. On the contrary, entropy is obviously not equal to zero for general mixed
states since it is nonzero for all values of pj between 0 and 1.

Secondly, entropy can be also shown to have its maximum at uniform dis-
tribution. Assume a maximally nondiscriminating state |ΨMND⟩ on the Hilbert
space H of dimension D, which is a mixed state |ΨMND⟩ = { 1

D
, |ψi⟩}D

i=1 and
⟨ψi|ψj⟩ = δij, so the set {|ψi⟩}D

i=1 is an orthonormal basis in H . Then the

[1]While each of the type of entropy can be traced to correspond to every other, they are
differed one from another as they are results of different approaches towards the problem of
statistical description
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Figure 1.1: Plot of the function −x ln(x) corresponding to the definition of the
entropy

entropy corresponding to this state is

S = −
∑︂

pj∈σ(ρ̂MND)

1
D

ln
(︃ 1
D

)︃
= ln(D). (1.3)

Now assume the so-called relative statistical entropy [2]
S(ρ̂|ρ̂0) = Tr(ρ̂ ln(ρ̂) − ρ̂ ln(ρ̂0)). (1.4)

Assuming ρ̂ and ρ̂0 can be expressed in the orthonormal eigenbasis |φi⟩ as ρ̂ =∑︁
σ(ρ̂) pj |φj⟩⟨φj| and ρ̂0 = ∑︁

σ(ρ̂0) qj |φj⟩⟨φj| it follows that

S(ρ̂|ρ̂0) =
∑︂

j

pj ln(pj) − pj ln(qj) (1.5)

It can be seen that if

ρ̂0 = ρ̂MND = 1
D

D∑︂
j=1

|ψj⟩⟨ψj| = 1
D
1̂, (1.6)

then ρ̂MND has the same form with respect to any basis. So

S(ρ̂|ρ̂MND) =
D∑︂

j=1
pj ln(pj)−pj ln

(︃ 1
D

)︃
= ln(D)+

D∑︂
j=1

pj ln(pj) = ln(D)−S(ρ̂) (1.7)

exploiting
D∑︁

j=1
pj = 1 as pj is a probability.

It can be also shown, that ∀ρ̂,ρ̂0 : S(ρ̂|ρ̂0) ≥ 0 . For the special case of
ρ̂0 = ρ̂MND = 1

D
1̂ the proof is easy, as then ∀x ∈ (0,1) : ln(1 + x) ≤ x and so

S(ρ̂|ρ̂MND) =
D∑︂

j=1
pj ln(pj) − pj ln

(︃ 1
D

)︃
= −

D∑︂
j=1

pj ln
(︄

1
Dpj

)︄
≥ (1.8)

≥ −
D∑︂

j=1
pj(

1
Dpj

− 1) =
D∑︂

j=1
pj − 1/D = 1 − 1 = 0.
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As a result, S(ρ̂|ρ̂MND) = ln(D) − S(ρ̂) ≥ 0, so S(ρ̂) ≤ ln(D) and it has been
shown above, that ρ̂ = ρ̂MND =⇒ S(ρ̂) = ln(D). The implication can be proven
also in the opposite direction (uniqueness of the maximum of the entropy), but
this is not a part of this work.

Thirdly, entropy can be shown to be concave. This means that if 2 density
operators ρ̂1 and ρ̂2 and a real number λ are found so that ρ̂ = λρ̂1 + (1 − λ)ρ̂2
than S(ρ̂) ≥ λS(ρ̂1) + (1 − λ)S(ρ̂2).
Lemma 1. Klein’s inequality. Let Â and B̂ be self-adjoint operators and f : R →
R be a convex function. Then

Tr(f(A) − f(B) − (A−B)f ′(B)) ≥ 0.
Proof: Assume two orthonormal bases {|ai⟩}D

i=1 and {|bi⟩}D
i=1 such, that Â |ai⟩ =

ai |ai⟩ and B̂ |bi⟩ = bi |bi⟩. Then

Tr
(︂
f(Â) − f(B̂) − (Â− B̂)f ′(B̂)

)︂
=

D∑︂
i=1

⟨ai| f(Â) − f(B̂) − (Â− B̂)f ′(B̂) |ai⟩ =

=
D∑︂

i=1
f(ai) − ⟨ai| f(B̂) |ai⟩ − ai ⟨ai| f ′(B̂) |ai⟩ + ⟨ai| B̂f(B̂) |ai⟩ = . . .

Adding unity in the form 1̂ =
N∑︁

i=1
|bj⟩⟨bj| next to each operator B̂ or its function

then leads to

· · · =
N∑︂

i,j=1
|⟨ai|bj⟩|2(f(ai) − f(bj) − (ai − bj)f ′(bj)).

And since one of the definitions of convexity of f is ∀x,y ∈ D(f) : f(x) ≥
f(y)+(x−y)f ′(y) (D(f) is the domain of the function f) and since |⟨ai|bj⟩|2 ≥ 0
always, the Klein’s inequality is proven.

Now assume f(x) = x ln(x) which is a convex function on the interval (0, + ∞)
and so the Klein’s inequality gives:

Tr
(︂
Â ln

(︂
Â
)︂

− B̂ ln
(︂
B̂
)︂

− (Â− B̂)(1 + ln
(︂
B̂
)︂
)
)︂

= (1.9)

= Tr
(︂
Â ln

(︂
Â
)︂

− Â ln
(︂
B̂
)︂

− (Â− B̂)
)︂

≥ 0

Now there are two cases in which (1.9) will be applied.

Â = ρ̂1, B̂ = λρ̂1 + (1 − λ)ρ̂2 (1.10)
=⇒ Tr(ρ̂1 ln(ρ̂1) − ρ̂1 ln(λρ̂1 + (1 − λ)ρ̂2) − (ρ̂1 − λρ̂1 − (1 − λ)ρ̂2)) = . . .

Tr(ρ̂1) = 1,Tr(ρ̂2) = 1
· · · = Tr(ρ̂1 ln(ρ̂1) − ρ̂1 ln(λρ̂1 + (1 − λ)ρ̂2))) ≥ 0

Â = ρ̂2, B̂ = λρ̂1 + (1 − λ)ρ̂2 (1.11)
=⇒ Tr(ρ̂2 ln(ρ̂2) − ρ̂2 ln(λρ̂1 + (1 − λ)ρ̂2) − (ρ̂2 − λρ̂1 − (1 − λ)ρ̂2)) =

= Tr(ρ̂2 ln(ρ̂2) − ρ̂2 ln(λρ̂1 + (1 − λ)ρ̂2))) ≥ 0
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Multiplying (1.10) by λ and (1.11) by (1 − λ) and adding those gives

Tr(λρ̂1 ln(ρ̂1) − λρ̂1 ln(λρ̂1 + (1 − λ)ρ̂2) + (1 − λ)ρ̂2 ln(ρ̂2) − (1 − λ)ρ̂2 ln(λρ̂1 + (1 − λ)ρ̂2))) =
= Tr(λρ̂1 ln(ρ̂1) + (1 − λ)ρ̂2 ln(ρ̂2) − (λρ̂1 + (1 − λ)ρ̂2) ln(λρ̂1 + (1 − λ)ρ̂2)) ≥ 0 =⇒

=⇒ Tr(λρ̂1 ln(ρ̂1) + (1 − λ)ρ̂2 ln(ρ̂2)) ≥ Tr((λρ̂1 + (1 − λ)ρ̂2) ln(λρ̂1 + (1 − λ)ρ̂2)) ⇐⇒

⇐⇒ λS(ρ̂1) + (1 − λ)S(ρ̂2) ≤ S(λρ̂1 + (1 − λ)ρ̂2) = S(ρ̂) (1.12)
recalling the minus sign in (1.2). This proves the concavity of entropy.

Although the increase of entropy is considered as a well-established fact, at
deeper level it seems quite mysterious. In classical physics, the rules of statistical
mechanics are derived from Hamilton equations that are reversible in time. They
also imply the Liouville theorem which asserts that any initial uncertainty of the
state remains constant in time. In other words, phase volume is constant during
Hamiltonian evolution hence the entropy should remain constant as well during
the evolution. The same argument applies in quantum mechanics where the
evolution of the wave function is given by a unitary, therefore invertible, operator.
This fact is often referred to as the principle of conservation of information and is
an important consideration for example for the black hole information paradox.

There are two explanations why the entropy increases in the real world. The
first one is related to the process of coarse graining of the phase space. Since
the precision of any measurement is not infinite, close points in the phase space
are indistinguishable. Therefore, one has to divide the phase space into cells of
finite size. As the system with many degrees of freedom evolves, the initial phase
volume is conserved from a microscopic point of view, but it acquires complicated
shape, often with fractal structure. Consequently, the phase volume "hits" more
and more indistinguishable cells and, thus, from a macroscopic point of view, the
entropy increases [3].

Another argument addresses the probability of states: system is supposed
to evolve to the most probable state which is an equilibrium state. However,
by reversibility, it is more probable that the entropy will increase in time, but
also that the entropy was higher in the past. In other words, it is more likely
that a lower (less probable) entropy state is a result of a fluctuation from (more
probable) equilibrium than that evolved from even more improbable state with
even smaller entropy. Hence, since we observe a systematic increase of entropy,
it must be the case that the initial conditions for our universe had to be very
special, with very low entropy. This rises another question. From the cosmic
microwave background (CMB) we know that matter close to Big Bang was in
thermal equilibrium, because CMB exhibits Planck distribution with astonishing
accuracy. Thermal equilibrium is usually considered as the highest entropy state.
Still, since then the entropy just increases. It seems plausible that usual ther-
modynamic picture must be modified when gravity becomes relevant. Similar
considerations have led to many interesting ideas, e.g. Weyl curvature hypothesis
and Conformal cyclic cosmology [4].

7



1.2 Area law of entropy
This short summary is mainly rephrasing the initial part of [5].
In this work the assumption is many times used that the entropy correspond-

ing to a part of space whose interior cannot be accessed is proportional to the
area of the surface of this region. Even though such result is acquired in Theory
of Relativity for black holes (where the entropy is SBH = 1

4M
2
P lA, MP l denoting

Planck mass and A the area of the event horizon, it is equivalent to (2) recalling
that convention there is ~ = 1 and c = 1 while it also holds that MP l =

√︂
~c

GN
), it

can be viewed as counter-intuitive from the standpoint of, for example, classical
thermodynamics. There the entropy is an extensive quantity and assuming a
sphere with radius R, one could expect its entropy to grow as R3. But now a few
basic arguments of the article [5] need to be considered.

Assume a simple scalar quantum field, a massless one, being in its ground
state. Assume a region of the shape of a sphere which is inaccessible and so when
computing the entropy of the quantum state the density matrix corresponding to
the state must be traced over the degrees of freedom inside the sphere. This can
be schematically represented as follows:

Let

|0⟩ =
∑︂
io

ψio |i⟩|o⟩ (1.13)

D̂ = |0⟩⟨0| (1.14)

where |0⟩ is the vacuum state of the field and is divided into a direct product of
the field inside (indexed with i) and outside (index o) of a sphere. As the inner
degrees of freedom are inaccessible, we trace over them, e.g.

D̂o = Tri(D̂) =
∑︂

o1, o2, i

ψo1iψ
∗
o2i |o1⟩⟨o2| (1.15)

and so the elements of the density matrix are Do o1o2 = (ψψ†)o1o2 .
On the other hand, imagining the inverse problem, where only the inner de-

grees of freedom are accessible, the density matrix traced over the outer part will
be

D̂i = Tro(D̂) =
∑︂

i1, i2, o

ψoi1ψ
∗
oi2 |i1⟩⟨i2| (1.16)

and the elements of the density matrix will be Di i1i2 = (ψTψ∗)i1i2 .
Obviously, Tri(Di) = Tro(Do) as both are equal to the complete trace Tr(D).

Moreover, because Tr(A) = Tr
(︂
AT
)︂
, it also holds Tri((ψTψ∗)k) = Tro((ψψ†)k) for

any k integer and this in turn implies that Di and Do have the same eigenvalues
up to zeros for the larger matrix. So both density operators give the same entropy
(defined as 1.2).

As a result the entropy of a system where we ignore some spherical region
is the same as the entropy of the system where only that spherical region is
accessible. So it is natural to attribute the entropy to a common feature of both
of those cases, which is the surface of the sphere (obviously the exact shape of
the region is not deciding to the considerations of this section).
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1.3 Redundancy constrained states
As stated in the Introduction the entropy of a region in space should be

proportional to its surface area (see equation (1)). A small generalization to this
principle can be done in line with [6], section II. B and III. A. Firstly let us
define area-law states as states representing a geometry in which the entropy of
an region can be determined by formula

S = ηA+ . . . (1.17)
where η represents a constant of proportionality and the . . . refers to ad-

ditional sub-dominant terms. Above some scale the entanglement structure of
area-law state captures the structure of the Hilbert space on which the area-law
state is defined and where we assume some preferred decomposition into sub-
spaces. By entanglement structure we mean the quantum entropy determined
for each subsystem from the density matrix of the whole system traced over the
subspace corresponding to the given subsystem

SB = − Tr(ρ̂B ln(ρ̂B)), (1.18)
ρ̂B = TrB(ρ̂) (1.19)

and we ascribe the resulting value to the subsystem as its entanglement entropy.
The entanglement structure of area-law states is remarkable because it can be

well approximated by mutual information between certain subsystems, instead of
the defining relation (1.18). Mutual information between disjoint regions B, C is
defined as

I(B,C) = S(B) + S(C) − S(B,C), (1.20)

where S(B) = − Tr
(︂
ρ̂C(B) ln

(︂
ρ̂C(B)

)︂)︂
(this can be viewed as definition, but accord-

ing to Section 1.2 it is the same as (1.18)), S(B,C) = S(B∪C), B is a subsystem
of the total system and C(B) is its complement, also keep in mind (1.19).

Partitioning the total system into set of subsystems {Bp} and computing the
mutual information between each pair of subsystems I(Bj,Bk) the claim is that
for X ⊂ {Bp} the entanglement entropy can be approximated[6] as

S(X) = 1
2

∑︂
p∈X, q∈C(X)

I(Bp,Bq). (1.21)

This situation can be imagined as a graph of vertices connected by edges where
each vertex corresponds to one of the subsystems Bp and each edge is weighted
by the mutual information between the two connected subsystems. Then {Bp} is
the set of vertices and the entanglement entropy of its subset X is given by the
total of the weights of all edges connecting the vertices of X with the vertices
outside of X.

This procedure can be followed from the opposite direction resulting in a
slight generalization of area-law states. Let us consider a system consisting of
subsystems such, that its total Hilbert space H is a direct product of Hilbert
spaces corresponding to those subsystems H = ⨂︁

p
Hp. If, for given state, the

entanglement entropy for any subset of the spaces X ⊂ {Hp} is given by the
equation (1.21), then we call the state redundancy constrained.
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The simplistic structure of entanglement entropy in this case allows attempts
for numerical solutions to the problem of finding a state interpretable as geometry
and some field theory on that geometry. The idea is that for the case where we
can compute the full entanglement entropy (1.18) and also its redundancy con-
strained version (1.21) it is also possible to asses, if the given state is redundancy
constrained. And according to [6] such states are the ones to be interpreted as a
space with geometric and field content.

1.4 Lattice structure
As was proposed in Section 1.2, it is reasonable to expect the entropy of a

local region (e.g. occupied by a black hole) to be proportional to its surface area.
If there were degrees of freedom not contributing to the total entropy, one could
excite those and either increase the entropy via entanglement of these degrees of
freedom with the outer ones (outside the region) or the black hole would expand
out of the borders. Thus it is reasonable to expect all available degrees of freedom
to contribute to entropy. And, as finite entropy corresponds to a quantum state
on finite-dimensional Hilbert space (or at least finite number of states above the
vacuum, see (1.44) and considerations there), we can expect the Hilbert space
of any geometric region to be finite-dimensional. This line of reasoning is more
developed in [7].

Assuming we have more than one such region, the complete Hilbert space is a
tensor product of individual Hilbert spaces of the regions. One might than want
to imagine a geometry at least approximately as a lattice of such regions where we
have some sense of distance between each pair of those. It is quite obvious that
the number of such regions will be considerably high and so will be the dimension
of the total Hilbert space.

Now assume that we are given a theory with general Hilbert space of some
dimension n. How probable it is that it will be a space of a lattice of finite
dimensional subspaces? Consider such large Hilbert space’s dimension. It needs
to be a product of many integers as all subspaces have integer dimension. Each
dimension of a subspace is product of some primes and so is in effect the total
space’s dimension. Now let us see how many primes do general integers have.
It has been proven by Hardy and Ramanujan [8] that for large integers N , the
number of primes which N is a product of, called Ω(N)[2], can be estimated as

Ω(N) = ln(ln(N)) (1.22)

This is a very slowly growing function and so, to attain a number with large
number of primes one needs to look among extremely high integers. As a result, if
one looks for a Hilbert space corresponding to a tensor product of large number
of subspaces, he generally needs to search among extremely high-dimensional
spaces, as only those tend to have enough of different primes to correspond to
the dimensions of the smaller subspaces. From different perspective: the ratio of
Hilbert spaces which can represent a lattice of high number of subspaces versus

[2]Ω(N) is defined to count repeating primes in the factorization of N separately. Function
ω(N) is defined to count only unique primes, it can be shown that for large N these two
functions behave equally.
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all Hilbert spaces goes quickly to very low values. Thus assuming that Hilbert
spaces of all dimensions are equally probable to occur, those which can represent
a lattice of subspaces are the more rare, the higher their dimension. There is
slightly more discussion of this point in [9].

1.5 Entropy and information on black holes
One of the strong arguments supporting the idea that gravity is in fact an

emergent phenomenon is related to the black hole information paradox. Although
initially there has been some controversy about the real existence of black holes
[10], theorems of Penrose [11] have shown that the formation of singularity dur-
ing gravitational collapse is inevitable provided that the mass of the object is
sufficient. Later, the so-called no-hair theorem has been established [12, 13, 14]
which states that after the collapse, black hole is fully characterized by just a
few parameters, namely its mass, angular momentum and electric or magnetic
charge. In fact, there are exceptions, for example gravity coupled to complex
scalar fields may lead to the creation of the scalar hair [15], but the principle
remains unaltered: details about collapsing matter dissapear and the only re-
maining information can be encoded in a small number of parameters.

1.5.1 Black hole thermodynamics
It was also discovered that black holes satisfy laws closely resembling the laws

of thermodynamics [16, 17, 18]. The zeroth law is contained in the statement
that the surface gravity κ of a black hole is constant through the horizon, which
is a surprising result. First law of thermodynamics of black holes can be then
written in the form

δM = κ

8π δA+ Ω δJ + Φ δQ, (1.23)

where M is the mass of a black hole, A is the area of the horizon, Ω is the angular
velocity of the horizon, J is the angular momentum of a black hole, Q and Φ are
the charge and electrostatic potential, respectively (this equation excludes the
magnetic charge, as it has yet not been discovered, if it actually exists in our
Universe). (1.23) suggests that the surface gravity should be interpreted as the
temperature of a black hole, area A as its entropy and remaining terms represent
the work. This analogy is further supported by Hawking’s discovery of the area
law [19] that the area of an event horizon cannot decrease,

δA ≥ 0; (1.24)

clearly, the area law is analogous to the second law of thermodynamics if we
identify the area with the entropy.

Even the third law of thermodynamics has its analogy in black hole physics.
For a rotating black hole, its surface gravity decreases with the angular velocity
and reaches zero for a certain value of angular momentum, in the case of the most
usual Kerr metric this happens for value J = M2. Such black holes are called
extremal and the inner and outer horizons coincide. Extremal black holes have
several interesting properties, for example they behave like superconductors [20,
21] and independently of external spacetime they have always geometry isometric
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to Kerr-Newman black hole [22]. It was conjectured by Penrose [23] that for
realistic matter there are no naked singularities, i.e. singularities must be always
hidden under the horizon. Consequently, black holes cannot be super-extremal,
they cannot rotate faster than extremal black holes because in such case there
would be no horizons.

The third law of thermodynamics asserts that no physical process can produce
an extremal black hole from black hole which was originally under-extremal.
Since extremal black holes have vanishing surface gravity and, hence, vanishing
temperature, this law of black hole physics again resembles the law that zero
temperature cannot be achieved.

Thus, there seems to be a very close analogy between black hole laws and
laws of thermodynamics. This is surprising, because thermodynamics is a phe-
nomenological theory while laws of black hole mechanics are exact mathematical
consequences of Einstein’s equations. Therefore the analogy could be just acci-
dental and misleading. Moreover, the first law (1.23) does not fix the relations
surface gravity-temperature and area-entropy completely, it does so only up to
proportionality factor. However, it was argued by Bekenstein [24] by thought
experiments and dimensional arguements that entropy of a black corresponds to
the loss of information about the matter that formed a black hole. Moreover, he
argued that this entropy has quantum origin.

1.5.2 Hawking radiation
These arguments were fully justified by discovery of Hawking radiation [25].

Using the techniques of quantum field theory in curved spacetimes applied to
spherically symmetric gravitational collapse he was able to show that an observer
far from the black hole sees a thermal radiation with Planckian black-body spec-
trum (possibly corrected by a grey-body factor). Even before it was known that
quantum effects on curved backgrounds typically lead to particle production, for
example, in expanding universe [26]. The reason is that each observer must em-
ploy a set of creation/annihilation operators in terms of he defines the vacuum
state. Say that ak, bk are annihilation operators of particles with momentum k
associated with the two observers and a†

k, b
†
k are corresponding creation operators.

Then vacuum states of both observers are defined by relations

ak |0⟩A = 0, bk |0⟩B = 0. (1.25)

Expected number of particles with momentum k in a generic state |ψ⟩ is then,
for each observer,

NA(k) = ⟨ψ| a†
k ak |ψ⟩ , NB(k) = ⟨ψ| b†

k bk |ψ⟩ , (1.26)

where a†
kak has the meaning of the operator of number of particles. Different

observers use different coordinate systems. In quantum field theory one starts
with the classsical field equation, for example the wave equation

φ = 0. (1.27)

Next step is to find an orthonormal basis uk for the solutions of the wave equation
such that the quantum field (now regarded as the operator) can be expanded into
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the Fourier series

φ(x) =
∑︂

k

(︂
ak uk(x) + a†

k u
∗
k(x)

)︂
. (1.28)

Observer in different frame will obtain similar expansion but with different basis
resulting in different creation/annihilation operators. In fact, the relation between
the two sets will be, in general, given by the so-called Bogolyubov transformation
[27] of the form

ak =
∑︂

q

(︂
αkq bq + βkq b

†
q

)︂
. (1.29)

In other words, the annihilation operator ak is a mixture of both ladder operators
of the observer B. Simple calculation shows that expected number of particles with
momentum k in the vacuum state of observer B is

B ⟨0| a†
kak |0⟩B =

∑︂
q

|βkq|2. (1.30)

Hence, what is a vacuum state for observer B is a non-vacuum state for observer
A unless all coefficients bkq in transformation (1.29) vanish.

This happens for inertial observers in Minkowski spacetime where the modes
uk are related by simple Lorentz transformation which preserves splitting of the
field into negative and positive frequencies. In general, though, coefficients bkq

are non-vanishing. This is the mechanism behind the Hawking radiation but even
in Minkowski spacetime an accelerated observer sees a thermal, so-called Unruh
radiation [28].

Thus, it is not surprising that, in dynamical spacetime representing a gravi-
tational collapse, quantum effects produce particles. The surprising result is the
thermal character of the Hawking radiation and that this radiation is observ-
able forever after the collapse. Quantum field theory in curved spacetimes is an
approximate theory because it does not take into account the backreaction of
quantum fields on the geometry. Therefore, if the Hawking radiation is present
for all the time, its energy must be attributed to the energy loss of the black
hole itself: black hole must evaporate in time. Hawking effect has been derived
in many ways. More physical interpretation using quantum tunneling has been
provided in [29], derivation using Feynman path integrals was given in [30]. An-
other interesting approach was employed in [31] where Gibbons and Hawking
consider periodicity of Green functions in complexified time. However, there are
also objections against the real existence of Hawking radiation, see e.g. [32].

1.5.3 Information paradox
The evaporation of black holes leads immediately to the so-called information

paradox first pointed out by Hawking [33]. The essence of the paradox is the
following. In quantum mechanics, the evolution is unitary so that if the system
starts in a pure state |ψ0⟩, there is a unitary operator U(t) = exp(−i tH) (where
H is the Hamiltonian) such that the state at arbitrary time is given by

|ψ(t)⟩ = U(t) |ψ0⟩ = e−i t H |ψ0⟩ . (1.31)
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Operator U(t) is invertible and hence the initial state vector |ψ0⟩ can be recon-
structed from later state by

|ψ0⟩ = U(−t) |ψ(t)⟩ = ei t H |ψ(t)⟩ . (1.32)

On the other hand, Hawking radiation is in thermal state and therefore it is de-
scribe by a density matrix rather than by a pure ket-state. Hence, apparently,
during the black hole evaporation, collapsing matter which is initially in a pure
state and caries a lot of bits of information undergoes a non-unitary evolution,
ending in a mixed state characterized by few parameters. Although some physi-
cists (and originally also Hawking) argue that information can be truly lost in
the presence of gravity, other consider the conservation of information to be one
of the most basic principles of physics, sometimes even called the -1st law of
thermodynamics.

The whole situation can be nicely described in terms of Penrose diagrams.
Consider standard spherical collapse visualised in figure 1.2. Penrose diagrams
are not isometric to original spacetimes, rather they are conformally compactified
[34]. That is, metric of a compactified spacetime gab is related to the metric of
original spacetime g̃ab by conformal rescaling

gab = Ω2 g̃ab, (1.33)

where Ω is an appropriately chosen conformal factor which vanishes at infinity.
This infinity is represented by null hypersurfaces called past null infinity I−

and future null infinity I+. Since the spacetime is spherically symmetric, each
point of the diagram is in fact a 2-sphere, except for the intersection i0 called
spatial infinity which is in fact only a single point: the origin of a null cone
given by I− ∪ I+. As we mentioned, conformal rescalings are not isometries, but
they preserve the causal structure of the spacetime which means that the light
cones in Penrose diagrams are represented by straight lines with the slope 45◦.
Shaded region in figure 1.2 represents collapsing matter, and H is another null
hypersurface, namely the event horizon of the black hole. Finally, the zig-zag line
represents the singularity of black hole. Since this singularity is spacelike, it is
clear from the diagram that all causal curves crossing the horizon will inevitably
end up in a singularity.

Now, the predictability means that the full spacetime can be reconstructed
from the initial data given either on spacelike initial hypersurfaces (the Cauchy
problem) or on null hypersurface (characteristic initial value problem). It has
been shown that both such formulations of general relativity are well-posed, see
[18, 35] and references therein. See also [13, 36] for rigorous treatment of causal
structure of spacetime.

If the information is conserved during the collapse, the initial data should be
recoverable from the final data. Obviously, observer at I+ cannot reconstruct the
initial data on I− because no geodesics from the interior of the black hole (and
thus no information) will reach I+. In order to have a well-posed characteristic
problem one needs to prescribe the data on H ∪ I+. Data given on the horizon
would consist of information about the matter which crossed the horizon since
the creation of the horizon. Classically, this is in principle possible. For example,
a stationary observer just above the horizon could send the information about
infalling matter to observer at I+. However, Hawking argued [33] that as soon
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singularity

Figure 1.2: Spherical collapse according to classical general relativity.

as quantum effects are taken into account, namely the uncertainty principle, this
is not viable. The basic heuristic argument is that in order to signal the time at
which given particle crossed horizon would require energy of the same order as
the energy of infalling particle. Hence, in order to provide the information about
all infalling particles would require the same energy as the energy of matter that
collapsed: hence there would be no energy left to even form a black hole.

In the case of evaporating black hole the Penrose diagram Fig. 1.2 must be
modified. Following arguments are taken from [37] but there are also different
approaches to the construction of Penrose diagrams for evaporating black holes,
see e.g. [38].

Consider Penrose diagram Fig. 1.3 for evaporating black hole. Again, there
is a zig-zag line representing the singularity but as the black hole evaporates,
singularity disappears in a finite time and all the mass of the black hole is radiated
through the Hawking radiation represented by a curly line emanating from point
P . Let us analyze this process from the point of view of the Cauchy initial
value problem. Suppose that the initial data are given on the initial hypersurface
Σ before the collapse of the matter and formation of the black hole. That is,
Σ contains full information about the spacetime and describes the matter in
pure quantum state |Ψ(Σ)⟩. Now consider later hypersurface ΣP = Σ1 ∩ Σ2
that contains a point P – intersection of the event horizon and the curvature
singularity. Since the part Σ1 lies inside the black hole, the Hilbert of states on
ΣP can be written as a direct product

H = H1 ⊗ H2. (1.34)

Finally, there is a Cauchy hypersurface Σ′ after the black hole has been fully
evaporated and with this hypersurface we associate a pure state (assuming unitary
evolution) |Ψ(Σ′)⟩. However, since Σ′ is not causally connected to Σ1, the full
information present on Σ′ had to be present already on Σ2 and therefore the state
on ΣP had to be of the form

|Ψ(ΣP )⟩ = |Φ(Σ1)⟩ ⊗ |χ(Σ2)⟩ . (1.35)
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Figure 1.3: Conformal diagram for evaporating black hole and initial value prob-
lem. (Adopted from [37].)

Since states on Σ′ are fully determined by states on Σ or, equivalently, Σ2, and
states on Σ1 do not affect states on Σ2 at all, states on Σ1 must be completely in-
dependent on the initial state. In other words, information about the microstates
of the matter is destroyed after the infalling matter crosses the horizon. On the
other hand, according to the equivalence principle, nothing special happens to
matter crossing the horizon and the previous conclusion therefore violates the
equivalence principle. Apparently the only resolution of the paradox is that the
observer at Σ′ cannot see a pure state but a mixed state and hence the information
contained in the initial was truly lost.

1.5.4 Black hole complementarity
Susskind et al [37] suggested that this apparent contradiction of basic prin-

ciples can be resolved by the paradigm of black hole complementarity using the
notion of stretched horizon. Using thermodynamical methods in quantum field
theory it is possible to show [3] that the entropy of a quantum field outside the
black hole horizon (subject to periodic boundary conditions) is given by

S ∝
∫︂

| log k ϵ| dk, (1.36)

where ϵ is a proper distance from the black hole horizon and represents a cut-off
necessary to regularize the integral. It order to recover Bekenstein-Hawking tem-
perature and entropy, ϵ must be of order of the Planck length ℓP . The stretched
horizon is then introduced as a spacelike surface whose radius is 2M + ϵ, i.e.
the Schwarzschild radius increased by the Planck length. Being spacelike rather
than null, stretched horizon admits physical processes to happen on it. In fact,
it behaves like a hot membrane with electric and thermodynamic properties.

The notion of entanglement entropy and its relation to 2nd law of thermo-
dynamics and equivalence principle was already discussed. Another ingredient
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crucial for the black hole complementarity is the so-called no-cloning principle
saying that no device can accept a quantum state on its input and produce the
original state and its duplicate on the output [39]. Among others, that would
violate the Heisenberg uncertainty principle because one would be able to do
incompatible measurements on exactly the same systems. Suppose that such
cloning device C exists. Acting on the spin states it produce

C : |↑⟩ ↦→ |↑⟩ ⊗ |↑⟩ , C : |↓⟩ ↦→ |↓⟩ ⊗ |↓⟩ , (1.37)

Now suppose that we insert a superposed state

|ψ⟩ = 1√
2

(|↑⟩ + |↓⟩) , (1.38)

so that

C : |ψ⟩ ↦→ 1
2 (|↑⟩ + |↓⟩) ⊗ (|↑⟩ + |↓⟩)

= 1
2 (|↑⟩ ⊗ |↑⟩ + |↑⟩ ⊗ |↓⟩ + |↓⟩ ⊗ |↑⟩ + |↓⟩ ⊗ |↓⟩) .

On the other hand, by linearity, we have

C : |ψ⟩ = 1√
2

(|↑⟩ ⊗ |↑⟩ + |↓⟩ ⊗ |↓⟩) . (1.39)

Hence, we got two contradictory results and thus the existence of device C is
impossible.

The no-cloning theorem has important implications for the Penrose diagram
1.3. We have argued that states on Σ1 do not carry information about the infalling
matter. Now we see the reason: any information about infalling matter present
on Σ. If the final state on Σ′ is pure, all information on Σ must be present
also on Σ2. The no-cloning theorem shows that the same information cannot
be simultaneously stored on Σ1 because it would require copying the quantum
information which, as we have now seen, is forbidden.

On the other hand, black holes have entropy S = A/4 and entropy is related
to the dimensionality of underlying Hilbert space via

dim H = eS. (1.40)

Assuming still the unitary evolution, although the Hawking radiation appears
to be thermal, it must carry the information about the infalling matter through
subtle correlations between Hawking photons and degrees of freedom of the black
hole. Hence, as black hole evaporates, the information will slowly leak from the
black hole.

Although the stretched horizon is a real physical membrane, respecting the
principle of equivalence, a freely falling observer will notice anything unusual
when crossing the event horizon. Physical properties of the stretched horizon can
be measured by a stationary observer close to the horizon. The idea of black
hole complementarity is that there is no contradiction in these two points of
view. First, it is clear that the outside observer cannot receive signals from the
infalling observer and therefore cannot get a message saying that there is no hot
membrane. What can in principle happen is the following.
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1.6 Bekenstein limit
Content of this section is heavily inspired by [2] by Horacio Cassini. Beken-

stein limit is a remarkable result first formulated by Jacob D. Bekenstein in [40]
and later reformulated in a covariant form in [41]. It posits an upper bound on
the entropy of some region of spacetime as

S ≤ λER, (1.41)

where λ is some real number of order O(1), E is the energy contained in the
region and R is the region’s typical size. In the original paper it was developed
through thought experiment considering thermodynamics and relativity.

In [2] this bound is shown to be somewhat ill-defined as from the point of
view of QFT it is not obvious how to interpret the involved quantities. Just
directly restricting the defining domains does not work as it can be shown that,
for example, from spatially localized states with energy E0 a state with any energy
lower than E0 can be superposed. This fact then implies, that localized states
with given energy do not form a vector space and do not have defined entropy.
On the other hand, energy and entropy is well defined for a global state, but then
the question raises, what does the value R represent in such a case. Also, there
is some disagreement over the actual value of the parameter λ.

The problem can be resolved with slight redefinition of the energy and entropy.
Assume a discretized quantum system, whose state is represented with the density
operator ρ̂. Restriction to the points inside a volume V can be done by tracing
over the states occupying the exterior of the volume, symbolically

ρ̂V = TrC(V ) ρ̂. (1.42)

We can now assign the entropy to this state as usual,

S(ρ̂) = − TrV ρ̂V ln(ρ̂V ), (1.43)

but this is shown to be divergent in the limit of vanishing distances between the
points of the system (namely for such cutoff ϵ the entropy diverges as ϵ−2). The
correct way to circumvent this problem is argued to be the subtraction of the
vacuum entropy from the entropy in (1.43), explicitly

SV (ρ̂) = S(ρ̂V ) − S(ρ̂0
V ), (1.44)

where ρ̂0 corresponds to the complete vacuum state (and, when localized, de-
scribes the vacuum fluctuations). As the divergence in S(ρ̂) is independent of ρ̂,
it is the same for the vacuum state and so after the subtraction only the finite
part remains.

In [2] it is further shown that the same approach can be deployed to make
sense of the RHS of the inequality (1.41). The product λER is expressed by the
means of the modular Hamiltonian K for volume V , which is implicitly defined
as

ρ0
V = e−K

TrV e−K
. (1.45)
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Also the discussion of parameter λ is made, showing, that it depends on the
volume V , into which we localize the state, most commonly having the value of
2π, π and similar. The actual expression of the RHS is (choosing λ = 2π as this
corresponds to the common case of V being a sphere)

λER = TrV (KρV ) − TrV (Kρ0
V ) (1.46)

where the similarity to (1.44) is obvious and the reasoning for the subtraction is
also similar, to eliminate the divergent quantities.

It is to stress that all the reasoning in this section was based on quantum
theory considerations. If we now replace the quantities in (1.41) with the newly
defined ones from (1.44) and (1.46), we acquire

S(ρ̂V ) − S(ρ̂0
V ) = TrV ρ̂

0
V ln

(︂
ρ̂0

V

)︂
− TrV ρ̂V ln(ρ̂V ) ≤

≤ TrV (KρV ) − TrV (Kρ0
V ) = TrV ρ̂

0
V ln

(︂
ρ̂0

V

)︂
− TrV ρ̂V ln

(︂
ρ̂0

V

)︂
=⇒ 0 ≤ Tr ρ̂V (ln(ρ̂V ) − ln

(︂
ρ̂0

V

)︂
) =S(ρ̂V |ρ̂0

V ) (1.47)

where S(ρ̂V |ρ̂0
V ) coincides with the definition of the relative entropy. It is easy

to check, that the relative entropy is always greater than zero (exploiting the
property of logarithm ln(1 + x) ≤ x) and so this inequality must hold always.
And so the improved Bekenstein bound must be true only from reasoning on the
quantum level. When we recall, that the bound was originally conceived from
relativistic considerations, it can support the conjecture, that quantum theory
might be more fundamental than relativity.

1.7 Page curve
Let us take a point of view that the collapse of a matter in pure state, evapo-

ration of a black hole and ultimate disappearance of a singularity (cf. Fig. 1.3) is
a unitary process so that it can be regarded as a scattering quantum process given
by an S-matrix connecting data on past and future null infinity. Next, assume
that the Bekenstein limit implies the finite dimension of the underlying Hilbert
space.

Based on these assumptions, Page in his seminal papers [42, 43] formulated a
paradigm of unitary black hole evaporation. It is not a microscopic model but a
phenomenological description of black hole evaporation. Assume that the Hilbert
space can be factorized as

H = Hp
1 ⊗ Hq

2, dim H = N ≡ p q, (1.48)

where the subsystem Hp
1 of dimension p describes the degrees of freedom of the

black hole itelsf and subsystem Hq represents the states of the Hawking radia-
tion. During the evaporation, the whole system is always in the pure state but
entangled state so that the Hawking radiation as a subsystem is described only
in terms of the density matrix. At the beginning of evaporation, immediately
after the formation of a black hole, q = 1 since there is no Hawking radiation
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outside the black hole and corresponding Hilbert space is one dimensional (only
a vacuum state):

|Ψ0⟩ = |ψ0⟩ ⊗ |0⟩ . (1.49)

Such state is by definition disentangled and the von Neuman entropy is zero. As
the black hole starts to evaporate, dimensionality q increases and p decreases,
keeping N = p q constant and we have general entangled state

|Ψ⟩ =
∑︂
I,n

|I⟩ ⊗ |n⟩ . (1.50)

The question is what is expected entropy or, in other words, expected information
hidden in the correlactions between black hole and Hawking radiation. Since we
do not know underlying micrsoscopic dynamics, the best estimate is to calculate
the average value of entropy for all possible states. Select an arbitrary but fixed
state |Ψ0⟩ and generate a random unitary matrix U with uniform distribution.
Then,

U |Ψ⟩0 (1.51)

is a uniformly generated random state in H. Averaging through all unitary ma-
trices U with the de Haar measure one finds an expected value of the entropy.
Page conjectured, and it was later proven in [44], that the mutual information
between the two subsystems is

Ip,q = ln p+ p− 1
2 q −

p∑︂
k=q+1

q
1
k
. (1.52)

At the end of the evaporation, black hole disappears and only Hawking radiation
remains, so that the final state is of the form

|Ψfin.⟩ = |0⟩ ⊗ |N⟩ . (1.53)

This state is again disentangled and hence the final entropy is zero again, leading
to a pure state of the Hawking radiation. This paradigm is demonstrated on the
so-called Page curve, see Fig. 1.4.

1.8 Quasi-particle picture and the emergence
In paper by Acquaviva, Iorio and Scholtz [45] another lines of reasoning have

been pursued in order to support the idea of emergence of gravity from more
fundamental micsroscopic degrees of freedom. The two essential inputs are

1. Bekenstein-Hawking entropy interpreted as the (logarithm) of the dimen-
sion of underlying Hilbert space;

2. analogies of emergence of geometry in condensed matter physics.
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Figure 1.4: Page curve demonstrating the unitary evolution during black hole
evaporation. (Adopted from [45])

There are several arguments in the favor of the first statement, see also [7].
The other claim is motivated especially by graphene layers in which new effective
types of geometries can arise as a consequence of the interactions of the lattice
with free electrons. For example, such electrons behave like quanta of massless
Dirac field on curved background which has interesting consequences: existence
of horizons, analogies of Hawking or Unruh radiation. See for example reviews
[46, 47, 48].

In [45] it is first qualitatively argued that both geometries and quantum fields
should emerge from the same Hilbert space whose dimensionality is given by the
Bekenstein limit. Then, a simplistic kinematical model á la Page is constructed.
Instead of simple factorization into two subsystems, the authors considered the
direct sum of such factorization and each term in the sum represents different
rearrangement of degrees of freedom between geometrical and field part. In anal-
ogy with condensed matter physics, where different lattice structures can lead to
same effective geometries, even though the spacetime is flat after the black hole
evaporates, on microscopic level the arrangement can be different than before the
creation of black hole. Hence, instead of simple factorization it is necessary to
use a graph structure

H =
⨁︂

i

Ti, where Ti = Hpi
1 ⊗ Hqi

2 . (1.54)

We call Ti the topologies of the graph and each topology has a form a direct
product of degrees of freedom of geometry and those of the matter. Then, using
the Page approach, i.e. by averaging over all possible states, it was shown that
after black hole evaporates, on average there is a resdiual entanglement between
the two subsystems – black hole is gone but there are still some degrees of freedom
forming the background geometry. Hence, the final entropy is not zero and the
Hawking radiation is still in a mixed state. This was numerically demonstrated
in [45], see Fig. 1.5.

However, all these models are phenomenological, they lack exact mechanism
how the process of evaporation really takes place. There are attempts to construct
such exact models in lower-dimensional spacetimes where conformal symmetries
constrain the dynamics significantly. Such models typically represent low energy
limits of stringy black holes, see, e.g. [49]. In this thesis we turn to different class
of models that closely follow ideas introduced in [45, 7] and study a specific model
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Figure 1.5: Deviations from the expected Page curve for a quasi-particle picture
of spacetime emergence. Different curves correspond to different choices of di-
mensionalities of Hilbert spaces and each curve represents a system consisting of
two topologies. (Adopted from [45])

proposed in [6].
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2. Computational methods
2.1 Exact embedding

In this section a short description follows on the process of embedding a metric
space into an Euclidean one. Firstly a few notions are defined, such as the triple
product and an n-simplex. Then it will be shown, how can an n-simplex be
assigned its volume in the case of Euclidean space and what is the meaning of the
volume in general metric space. Lastly the algorithm of embedding the metric
space into an Euclidean one will be presented.

2.1.1 Triple product and volume
Let (X,d) be a fixed metric space (X is the set of points of the space and d

is the distance function between those points), then for x, y, z ∈ X we can define
their triple product

⟨x, y, z⟩ = 1
2((d(x,z))2 + (d(y,z))2 − (d(x,y))2). (2.1)

A set of n + 1 points from the space X is called an n-simplex. Assume an
n-simplex Y to which we want to assign its volume. Y can be also described by
the set of the points it consist of as Y = {x0,...,xn}. Assume the set {x0,...,xn}
to be an ordered n+1-tuple of points. Then define

D(x0,...,xn) = det(Aij), where Aij = ⟨xi, xj, x0⟩; i, j ∈ {1,...,n}. (2.2)

It can be shown that D is symmetric and on the set of simplices it acquires
only real values. Also, under the assumption that X is a subset of an Euclidean
space, the triple product corresponds to the scalar product via the relation

⟨xi, xj, x0⟩ = (xi − x0) · (xj − x0). (2.3)

Another interesting fact which can be proven is that the square root of the
determinant (2.2) for given simplex is equal to the volume of the parallelotope
spanned by the vectors {x1 − x0,...,xn − x0}. To acquire the volume of the n-
simplex, one needs to divide by n!, so

Vol(Y ) = 1
n!
√︂
D(x0,...,xn). (2.4)

This formula will be used as a general mean of finding the volume of a simplex
in the space X, regardless of whether it is a subset of Euclidean space or not. The
downside to this is that the volume defined by (2.4) can acquire complex values
for generic metric space X. In the special case of X such, that each n-simplex
of X has real volume, the X will be called flat. If X is flat, than its dimension
can be defined as the highest n, for which there exist an n-simplex of X with
non-zero volume.
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2.1.2 Embedding of an n-simplex
Let V be a real space with inner product (the inner product induces a metric).

An embedding of X into V is then an isometry from X to V .

Theorem 2. A metric space can be embedded in Euclidean n-space if and only
if the metric space is flat and of dimension less than or equal to n.

The full proof of this statement can be found in [50] but here only the tools
to compute the embedding will be presented. Let (X,d) be flat metric space of
dimension n (so all subsets of X consisting of n+1 points or less can be interpreted
as simplices with positive volumes). Then one of the n-simplices with non-zero
volume defined by points {x0,...,xn} is picked, which will become a set of basis
vectors of the embedding (namely the set {x1 − x0, x2 − x0,...,xn − x0}). Lastly
the function

f(x) = (⟨x,x1,x0⟩,⟨x,x2,x0⟩,...,⟨x,xn,x0⟩) (2.5)

is defined, which takes as its argument points of X and assigns to them a set of n
real numbers, which will be understood as their coordinates with respect to the
basis given by the simplex {x0,...,xn}. In [50] it is also shown, that for vectors u⃗, v⃗
represented in the basis {x1 − x0, x2 − x0,...,xn − x0} as numeric vectors uL, vL,
it holds (u,v) = uT

LL
−1vL, where Lij = ⟨xi,xj,x0⟩. So if we find matrix R such,

that RTR = L−1, than the representation of vectors u⃗, v⃗ in unit Euclidean basis
will be uE = R · uL and vE = R · vL.

The matrix R can be acquired for example by Cholesky Decomposition [51].
In most general case this is a decomposition of regular matrix A into two matrices
R and R† , which satisfy RR† = A (A can be generally hermitian, even though it
is real in our case) and A is positive definite. The matrix R is a upper triangular
matrix and can be iteratively found in finite number of steps as follows.

Assume an n× n matrix A and assign it a set of n matrices Ai such that

Ai =

⎛⎜⎝Ii−1 0 0
0 ai bi

0 b†
i Bi

⎞⎟⎠ , (2.6)

where Ij denotes a j by j identity matrix, aj is a scalar, bj is a vector of j numbers
and Bj is a general j by j matrix. Also choose A1 := A. Now define

Ri =

⎛⎜⎝Ii−1 0 0
0 √

ai
bi√
ai

0 0 In−1

⎞⎟⎠ (2.7)

Then it holds that Ai = Ri Ai+1 R
†
i , so, after n steps this results into A =

R1R2 . . . Rn(R1R2 . . . Rn)† and so the sought after decomposition A = RR† satis-
fies R = R1R2 . . . Rn.

2.2 Multidimensional scaling
Multidimensional scaling was developed as a data visualisation method. Hav-

ing a set of objects and a weight for each pair from this set (which is commonly
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referred to as the distance) the MDS tries to embed the objects into a flat Eu-
clidean space of some dimension. The dimension is found by construction and
investigation of the resulting embedding coordinates. Sometimes the points do
not fit exactly into a flat space and there is some discrepancy between the initial
data and the resulting embedding. The most common way to describe this is the
stress function, which is defined below.

On the historical note, according to [52] this method was originally created for
psychologists working with data acquired mostly by letting subject evaluate rela-
tions between some stimuli (e.g. how similar of different are two given pictures).
Output of such survey is only a table of these evaluations of given relation, aver-
aged over all the subjects. While some structure can be seen from this format of
the data, MDS can provide very nice visualisation. The value lies in the fact that
there is often some additional information about the data being studied and one
can then find (e.g. from the distances between the point in the MDS embedding)
numerical description for phenomena otherwise hard to quantify. It is to note
that we do not have any additional information and only seek to embed a set of
points with given distances into flat space as good as possible.

To understand the computation itself a reverse approach is employed, as can
be seen in [6]. Imagine we already have the embedding coordinates. Let us
put all vectors corresponding to coordinates of individual points into one matrix
X, whose n-th row are the coordinates of the n-th point and the d-th column
corresponds to the distance in d-th dimension. X is of dimensions N ×D and of
the rank at most D as D ≤ N . Now define matrix

B = XXT =⇒ Bpq =
D∑︂

r=1
XprXqr, (2.8)

which is a N ×N matrix but still of the same rank as X. It is to note, that the
definition of B is unambiguous up to an orthonormal transform X ′ = XO.

If a number is assigned to each point according to the row with its coordinates
in X, than distance between points p and q can be expressed as

d(p,q)2 =
D∑︂

r=1
(Xpr −Xqr)2 =

D∑︂
r=1

X2
pr +X2

qr − 2XprXqr = Bpp +Bqq − 2Bpq. (2.9)

Adding an additional condition that the coordinates are centred at the origin

D∑︂
p=1

Xpr = 0 ∀r (2.10)

and substituting

N∑︂
p=1

d(p,q)2 = NBqq +
N∑︂

p=1
Bpp and

N∑︂
p,q=1

d(p,q)2 = 2N
N∑︂

p=1
Bpp (2.11)

into (2.9) we get

Bpq = 1
2

⎛⎝−d(p,q)2 + 1
N

N∑︂
k=1

d(k,q)2 + 1
N

N∑︂
k=1

d(p,k)2 − 1
N2

2∑︂
k,l=1

d(k,l)2

⎞⎠ . (2.12)
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It is to note that while the matrix X was used in the reasoning, up to now
it was not actually computed and it is obvious from (2.12) that matrix B can
be acquired only from the distances between the points. The next step is to
diagonalize B and do the following decomposition:

B = RΛRT = (R
√

Λ)(R
√

Λ)T (2.13)

where R is appropriate N × N matrix so that Λ = diag(λ1, . . . ,λN) is diagonal
and

√
Λ = diag(

√
λ1, . . . ,

√
λN). As B was only of rank D, among the numbers λj

there will be only D nonzero values. Assuming that those are the first D numbers
on the diagonal of

√
Λ, we can identify the first D columns of R

√
Λ as X:

(R
√

Λ)kl = Xkl for k ∈ {1, . . . ,N}, l ∈ {1, . . . ,D} (2.14)

while keeping on mind the uniqueness up to an orthonormal transform. The
omitted N −D columns of R

√
Λ are zero so no information was lost.

In the case that exact embedding into flat space is not possible it might
be that the distortion from flatness is only small and at least an approximate
embedding can be found. If this is the case there are D large nonzero eigenvalues
of B {λ1, . . . ,λD} while the rest of the λ’s can be nonzero too, but of much
smaller magnitude than the former . The function proposed in [6] to assess, if
the distortion from flat space is small enough, is

ϵD = 1 −
∑︁D

i=1 |λi|∑︁N
i=j |λj|

(2.15)

where 0 means no distortion and 1 maximal.

2.3 Density matrix and its tracing
Assume a quantum system specified by a state |Ψ⟩ from the Hilbert space H ,

which can be expanded with respect to some orthonormal basis as

|Ψ⟩ =
∑︂

I

cI |φI⟩ , (2.16)

where I is a general index set. If the system under investigation consists of
several independent subsystems, the total Hilbert space can be decomposed into
appropriate subspaces, each corresponding to one of these subsystems,

H =
S⨂︂

i=1
Hi,

where S is the number of subsystems. So the state |Ψ⟩ can be expressed as

|Ψ⟩ =
Nm,...,Nn∑︂
m,...,n=1

cm...n |φm⟩ ⊗ · · · ⊗ |φn⟩ , (2.17)

where the number of indices m. . . n is S and they span all the basis vectors from
an arbitrary chosen basis on a Hilbert subspaces Hi and so dim Hm = Nm and
dim H =

S

Π
i=1

Ni.
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Now assume an operator Â, which acts on H . The projection of the complete
state |φ⟩ from H onto its i-th subspace Hi is specified by the i-th ket in the tensor
product decomposition |φ⟩ = |φm⟩ ⊗ . . . ⊗ |φn⟩. Then Â can be expanded with
respect to the basis {|φm⟩ ⊗ . . .⊗ |φn⟩}Nm,...,Nm

m,...,n=1 as

Â =
Nm,...,Nn∑︂
m,...,n=1

Nm′ ,...,Nn′∑︂
m′,...,n′=1

am...nm′...n′ |φm⟩ ⊗ . . .⊗ |φn⟩ ⟨φm′| ⊗ . . .⊗ ⟨φn′ | (2.18)

with the notational convention that |a⟩|b⟩ = |a⟩⊗|b⟩ and ⟨a|⟨b| · |c⟩|d⟩ = ⟨a|c⟩ ⟨b|d⟩.
Focusing on the mean value of Â in the state |Ψ⟩ it can be seen, that [3]

⟨Â⟩|Ψ⟩ =
∑︂

M,M ′
c∗

m...ncm′...n′ ⟨φm|. . . ⟨φn| Â |φm′⟩. . .|φn′⟩ =

=
∑︂

M,M ′, J,J ′
c∗

m...ncm′...n′aj...kj′...k′ ⟨φm|. . . ⟨φn|φj⟩. . . |φk⟩ ·

· ⟨φj′|. . . ⟨φk′ |φm′⟩. . . |φn′⟩ =

=
∑︂

M,M ′, J,J ′, S

c∗
m...ncm′...n′aj...kj′...k′ ⟨φm|. . . ⟨φn|φs⟩. . . |φt⟩ ·

· ⟨φs|. . . ⟨φt|φj⟩. . . |φk⟩⟨φj′|. . . ⟨φk′ |φm′⟩. . . |φn′⟩ =

=
∑︂
S

⟨φs|. . . ⟨φt|
∑︂

M,M ′
c∗

m...ncm′...n′ |φm′⟩. . . |φn′⟩⟨φm|. . . ⟨φn| ·

·
∑︂
J,J ′

aj...kj′...k′ |φj⟩. . . |φk⟩⟨φj′|. . . ⟨φk′| |φs⟩. . . |φt⟩ =

=
∑︂
S

⟨φs|. . . ⟨φt| ρ̂Â |φs⟩. . . |φt⟩ = Tr(ρ̂Â), (2.19)

where the density operator ρ̂ is defined as
ρ̂ =

∑︂
M,M ′

c∗
m...ncm′...n′ |φm′⟩. . . |φn′⟩⟨φm|. . . ⟨φn| (2.20)

To this operator a matrix can be assigned, it will be called the density matrix.
Especially if expressed with respect to the basis {|φm⟩. . . |φn⟩}Nm,...,Nn

m,...,n=1 , then its
elements are c∗

m...ncm′...n′ . Also it is obvious, that ρ̂ = |ψ⟩⟨ψ|. This is a general
rule how to assign each pure state (pure as opposed to mixed) a density matrix.

Next notion defined will be the reduced operator (and corresponding reduced
matrix). Assume that only two subsystems are interesting and in the set of indices
m. . . n let the corresponding indices be e.g. i, j. Then the reduced operator is
defined as being traced over the Hilbert space of all the objects but those two of
interest, so
ρ̂ij =

∑︂
M\{i,j}

⟨φm| . . . ⊗ 1̂i ⊗ . . . ⊗ 1̂j ⊗ . . . ⟨φn| ρ̂ |φm⟩ . . . ⊗ 1̂i ⊗ . . . ⊗ 1̂j ⊗ . . . |φn⟩ ,

(2.21)
[3]From now on the upper limits of the summations will be omitted to avoid cluttering. Also

in the equations the sets of indices like m, . . . ,n by multi-indices named after the first letter in
the set of indices, eg. m, . . . ,n = M
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where the symbol 1̂i stands for an identity operator on the space of i-th object
and ∑︁

M\{i,j}
sums over all indices m, . . . ,n apart from i-th and j-th (and also the

omitted upper limit of the summation would be missing the values corresponding
to i and j). Inserting the definition of ρ̂ into (2.21) then leads to

ρ̂ij =
∑︂

M,M ′, S\{i,j}
c∗

m...ncm′...n′ ⟨φs| . . . ⊗ 1̂i ⊗ . . . ⊗ 1̂j ⊗ . . . ⟨φt|φm′⟩. . . |φn′⟩ ·

· ⟨φm|. . . ⟨φn|φs⟩ . . . ⊗ 1i ⊗ . . . ⊗ 1j ⊗ . . . |φt⟩ =
=

∑︂
M,M ′, S\{i,j}

c∗
m...ncm′...n′δsm′ . . . δtn′δsm . . . δnt |φi⟩|φj⟩⟨φi′ |⟨φj′| = . . .

(2.22)

where among the Kronecker’s delta symbols those corresponding to i-th and j-th
position are missing twice, once for the primed and once for the unprimed indices
m to n. Then the reduced operator can be simplified as

. . . =
∑︂

M,M ′
c∗

m...ncm′...n′δmm′ . . . δnn′ |φi⟩|φj⟩⟨φi′|⟨φj′ | = (2.23)

=
∑︂

M,i′, j′
c∗

m...i...j...ncm...i′...j′...n |φi⟩|φj⟩⟨φi′ |⟨φj′ | = (2.24)

=
Ni,Nj ,Ni′ ,Nj′∑︂

i,j,i′, j′=1
|φi⟩|φj⟩⟨φi′|⟨φj′ |

∑︂
M\{i,j}

c∗
m...i...j...ncm...i′...j′...n = (2.25)

=
Ni,Nj ,Ni′ ,Nj′∑︂

i,j,i′, j′=1
|φi⟩|φj⟩⟨φi′|⟨φj′ | ρiji′j′ . (2.26)

and the numbers ρiji′j′ form the reduced matrix.
The notion of reduced matrix can be generalized to any number of objects,

and thus indices, over which the original density operator is not traced, e.g.

ρ̂q,...,s =
{Nq ,...,Ns}∑︂
{q,...,s}=1

ρq...sq′...s′ |φq⟩ . . . |φs⟩⟨φq′| . . . ⟨φs′ | (2.27)

where ρq...sq′...s′ =
∑︂

M\{q,...,s}
c∗

m...q...s...ncm...q′...s′...n (2.28)

.
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3. Results
3.1 Examples of embeddings

We have attempted numerical computation of embedding of a quantum state
into some metric space. As there is little to none preceding calculations in this
direction (we are aware of such computations for Heisenberg chain and Toric
code in [6]), we have tried only simple states. This means that our results cannot
be interpreted as some specific or known geometry yet. On the other hand a
few interesting properties were found and they will be stressed at appropriate
places. Also there is great space for development in the size of calculations. On
commonly available personal computers it is possible to compute embedding of at
most 22 points in a convenient time. To illustrate, assume that the Hilbert space
corresponding to one point of embedding is 2-dimensional, than the complexity
of the calculation approximately grows with the dimension of the total Hilbert
space. This Hilbert space is taken to be the tensor product of N one-point Hilbert
spaces and so its dimension is 2N , which is exponentially growing. Despite serious
effort, we were unable to lower the computational difficulty of this task.

In our case we assume a set of Hilbert spaces H of dimension 2 and want
to interpret them as points of some emergent geometry. If we denote the basis
of each such small Hilbert space {|0⟩ , |1⟩}, then the basis of the total Hilbert
space Htot defined as a tensor product of N small spaces Htot =

N⨂︁
i=1

Hi can be
naturally chosen as the tensor product of all possible combinations of |0⟩’s and
|1⟩’s. Then we can easily express a state as the set of its coefficients with respect
to this large basis. We have tried several states, out of which 7 have shown at
least some interesting behaviour. To each of these states we have applied the
following approach.

• We have computed the mutual information between each pair of subsystems
corresponding to one point, as described in Section 1.3, equation (1.20).
Then we have converted this information into the distances d(A,B) between
each pair of points

d(A,B) = − ln(I(A,B)/Imax). (3.1)

The choice of the distance function is motivated by [6] and the idea is,
that for the lowest information (I(A,B) = 0) the distance is maximal (in-
finite) and for maximal information the distance is 0 (the information is
maximal, when the entropy corresponding to each point is maximal, that is
for maximally non-discriminating state, and the combined state of the two
subsystems is in pure state, in our case Imax = 2 ln(2)).

• We have used the acquired distances as an input for the exact embedding
procedure described in Section 2.1. The results can not quite yet be inter-
preted as some familiar geometric structure, as the dimensionality of the
resulting embedding is often similar to the number of points (while we would
like a fixed dimension regardless of the number of points being embedded).
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• Lastly, we have also used the MDS for computation of the embedding of the
points into metric space, which is in detail described in 2.2. We have also
attempted to point out some interesting features between the embeddings,
if there were any.

Now follows a short description of each type of the state used together with
the visualisations of its embedding. If not stated otherwise, all computations
were done for a set of 20 points.

Random state I : This state is acquired by assigning a random number from
inside the complex unit circle to each of the basis vectors of Htot, summing those
and then normalizing the resulting vector. The problem with this state is that it
takes all the small Hilbert spaces on equal footing. Thus, the resulting embedding
of the points is almost always N − 1-dimensional, which is the maximum dimen-
sion for N points. Therefore, the attached pictures serve only little illustrative
purpose, as these can show only 3 dimensions at most.

a) Exact b) MDS

Figure 3.1: Example of embedding of the Random state I.

What is to note though is that if one centres both acquired embeddings (trans-
lates them so the average distance from the origin in each of the dimensions is
zero) and computes the distances from the origin, he or she than finds that the
distances are the same (see Figure 3.2). Surprisingly, one does not even need to
order the distances. As the embeddings also preserve the distances by definition,
it is likely that one should be able to rotate one embedding onto the other.

Distance by exact embedding ( 8.86 8.84 8.69 9.13 8.88 8.62 8.45 8.64 8.92 8.9 9.01 8.71 8.57 9.1 8.96 8.84 8.58 8.85 9.21 8.61 )

Distance from exact embedding ( 8.86 8.84 8.69 9.13 8.88 8.62 8.45 8.64 8.92 8.9 9.01 8.71 8.57 9.1 8.96 8.84 8.58 8.85 9.21 8.61 )

Ratio of the distances ( 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. )

Figure 3.2: Distances computed for Random state I for both embedding methods
and comparison of the results

Random state II : In this case each of the above described basis states of Htot

were assigned a random number from the circumference of the complex unit circle
and the resulting total vector was normalized. Once more, a 3D projection of the
whole embedding is plotted in the Figure 3.3.
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a) Exact b) MDS

Figure 3.3: Example of embedding of the Random state II.

The behaviour is very similar to that of Random state I but now the embed-
dings resemble even more points on N −1 sphere. This claim is based on the fact
that the average distance of the points from the origin for Random state I grows
with the number of points (e.g. for N = 12 the average distance is about 5 and
for N = 16 it is about 7) but for Random state II the average distance remains in
the range ⟨2,3⟩ for all N between 10 and 20. Also the distances from the origin
are equal among the two embeddings of Random state II, the same as they were
in the previous case, until N = 16.

Interestingly enough, for N > 16 the exact embedding remains 15-dimensional
while the MDS retains full dimensionality. This phenomenon was realized only
lately and is to be studied in the future, especially when embeddings with larger
N will be available. Also there is an interesting effect that the exact embedding
gives very small distances to few of the last points, otherwise the distances are
fairly similar between the two approaches, as can be seen in Figure 3.4.

Distance by exact embedding ( 2.1 2.1 2.1 2.09 2.1 2.1 2.1 2.1 2.09 2.09 2.09 2.1 2.1 2.1 2.1 2.1 0.02 0.02 0.02 0.02 )

Distance by MDS ( 2.11 2.11 2.11 2.11 2.11 2.11 2.11 2.11 2.11 2.11 2.11 2.11 2.11 2.11 2.11 2.11 2.11 2.11 2.11 2.11 )

Ratio of the distances ( 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.01 0.01 0.01 0.01 )

Figure 3.4: Distances computed for Random state II for both embedding methods
and comparison of the results

State with linear amplitude: Assuming a fixed order of the subspaces Hi

forming Htot each basis vector can be represented as a series of 0’s and 1’s. Such
series can in turn be understood as a set of binary numbers. In this case each
basis state was attributed with a real amplitude of the magnitude proportional
to the magnitude of this binary number corresponding to the state. The total
state was then normalized. Similarly to preceding cases both of the resulting
embeddings are N − 1 dimensional, so this result can also not be interpreted as
some known geometry. The 3D projections to the chosen set of coordinates are
shown in Figure 3.5.

It can be seen from Figures 3.6 and 3.5 that the exact embedding is highly
degenerate in this case. One could expect to find traces of the linearity of the
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a) Exact b) MDS

Figure 3.5: Example of embedding of the State with linear amplitude. The exact
embedding has degenerated to only 4 points in two dimensions.

amplitudes in the data, but we had no success in this direction. Admittedly the
dependence of the distance on the initial state is complicated and so this negative
result is not very surprising.

Distance by exact embedding ( 57.74 57.74 57.74 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. )

Distance by MDS ( 89.26 89.26 89.26 91.39 39.96 39.83 39.78 39.8 39.87 23.34 22.72 22.19 21.74 21.38 21.1 20.88 20.72 20.61 20.51 20.39 )

Ratio of the distances ( 0.65 0.65 0.65 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. )

Figure 3.6: Values of the distances from the origin of the embedded points for
State with linear amplitude. As the exact embedding is highly degenerate, this
offers little informative value.

Lattice-like state I : Next state included in this text is an attempt to force
a specific dimension to the embedding. Assume two integers A, B such, that
N = A · B. Now imagine a set of points positioned at the intersections of a
square grid, forming there the shape of A times B rectangle. Let the points of
the rectangle represent the 2-dim subspaces of the total Hilbert space. If the
projection of a state onto a subspace corresponding to given point is |0⟩, the
point is drawn an empty circle. If the projection is |1⟩, the point is a full circle.
For better idea see Figure 3.7.

The aim was to choose those basis states which respect this 2-dimensional
structure by attributing them with amplitude 1 in the decomposition of the state
used for the computation of the information (the rest of the basis states were
assigned 0). In the case of Lattice-like state I the chosen basis states were such,
that for given point in the grid all the neighbouring points were in the state |1⟩
and the rest of the states were |0⟩ with periodic boundary condition, for better
idea see Figure 3.8.

The resulting embeddings are shown in the Figure 3.9. In this case the dimen-
sionality of the embedding is much lower, even though different for each approach.
The reason is probably the following. For this state the embedding into flat space
has some deviations. Both of the methods react to these deviations differently.
While the exact embedding has several conditions on dimensionality, which must
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Figure 3.7: The left most schema is a grid representation of a state |ψ1⟩ =
16⨂︁

i=1
|0⟩,

the middle corresponds to |ψ2⟩ =
16⨂︁

i=1
|1⟩ and the last one represents a state with

alternating |0⟩’s and |1⟩’s

Figure 3.8: Three examples of the representations of the basis states chosen to
appear in the Lattice-like state I. The crossed out point is the referential one
and as in Figure 3.7 black points are attributed |1⟩ and the white (including the
crossed out one) are assigned |0⟩

be met (volume of the n-simplices built from the embedded points must be real
and non-zero, also the triangular inequality must be satisfied), the MDS can be
deployed always, but some of the coordinates might be complex. In case as this we
do not know how to compare the embeddings closely. So the only general result
is that such specially constructed state highly reduces the final dimensionality of
the embedding at the cost of problems with interpreting the output.

Lattice-like state II This case is very similar to the previous one, only now for
given point such state is chosen, which has |1⟩’s at the neighbouring sites and at
the central site too. For clarity see Figure 3.11.

The character of the embedding is similar to that of Lattice-like state I and
its 3D projection can be found in Figure 3.12.

Weighted state: This state is based on the following idea. As already men-
tioned above, the basis states of Htot can be interpreted as binary numbers. So
each of the basis states was assigned integer equal to the sum of 1’s in the binary
representation of the state. The sum of the basis states weighted in this way was
then normalized. The resulting embeddings can be seen in the Figure 3.14 and
the comparison of the distances given by the embeddings is in Figure 3.15.

While the embeddings themselves have similar properties as those of Random
state I and II (both embeddings are N − 1 dimensional), its surprising property
is that all the embedded points have exactly the same distance from the origin
and so lie on the surface of a N − 1 sphere.

Gaussian state: In the case of this state there is at least some interesting and
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137.526
139.353
141.3
140.399
138.133
134.735
133.757
-2596.37
139.786
136.02
132.547
132.861
139.786
139.786
139.786
132.861
132.547
132.861
139.786
132.547

a) Exact b) MDS

Figure 3.9: Example of embedding of the Lattice-like state I. The exact embed-
ding gave only one-dimensional result.

Distance by exact embedding ( 137.53 139.35 141.3 140.4 138.13 134.73 133.76 2596.37 139.79 136.02 132.55 132.86 139.79 139.79 139.79 132.86 132.55 132.86 139.79 132.55 )

Distance by MDS ( 27.58 43.14 101.02 27.85 27.51 27.64 28.04 100.99 33.46 27.79 33.37 33.21 33.37 27.99 43.18 43.15 43.2 33.35 33.22 33.35 )

Ratio of the distances ( 4.99 3.23 1.4 5.04 5.02 4.88 4.77 25.71 4.18 4.89 3.97 4. 4.19 4.99 3.24 3.08 3.07 3.98 4.21 3.97 )

Figure 3.10: Distances computed for Lattice-like state I for both embedding
methods and comparison of the results

Figure 3.11: Three examples of the representations of the basis states chosen to
appear in the Lattice-like state II. This time also the crossed out point is assigned
|1⟩, the white points remain with |0⟩ in all cases

easy to discover geometrical feature. Imagine an real axis, interval of which is
covered uniformly by points where each point corresponds to one basis state of
H and from left to right the corresponding states have uniformly rising binary
representation (so the left-most point corresponds to all zeros and the right-most
to all ones). Now assume a Gaussian over the set of these points centred at the
middle of the interval and with σ being one sixth of the length of the interval
(so all points are within 3σ interval from the centre). Values of the distribution
projected onto the points in the interval were then interpreted as the amplitudes
for corresponding states and the state was normalized.

In the Figure 3.16 the MDS part is important. Most of the points exhibit a
linear behaviour being sorted into one only slightly curved line. For this embed-
ding also the distortion defined by (2.15) and found in Figure 3.16 in the last
line is interesting, because unlike other cases here it drops quite quickly. This
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-165.199
-162.174
-163.307
-164.823
1487.39
1483.52
-168.536
-170.974
-163.49
-164.352
-165.092
-166.861
-163.49
-163.49
-163.49
-165.092
-165.092
-166.861
-163.49
-165.092

a) Exact b) MDS

Figure 3.12: Example of embedding of the Lattice-like state II.

Distance by exact embedding ( 165.199 162.174 163.307 164.823 1487.39 1483.52 168.536 170.974 163.49 164.352 165.092 166.861 163.49 163.49 163.49 165.092 165.092 166.861 163.49 165.092 )

Distance from exact embedding ( 61.3794 21.6629 21.667 73.6562 94.2461 76.7538 21.6112 67.0732 61.3267 95.8501 42.8595 21.5519 21.4607 42.8826 42.8199 46.3918 21.2426 21.3681 46.4046 57.8908 )

Ratio of the distances ( 2.69145 7.48626 7.53715 2.23773 15.782 19.3282 7.79857 2.54907 2.66588 1.71468 3.85193 7.7423 7.61812 3.8125 3.81808 3.55864 7.77172 7.8089 3.52314 2.85178 )

Figure 3.13: Distances computed for Lattice-like state II for both embedding
methods and comparison of the results

a) Exact b) MDS

Figure 3.14: Example of embedding of the Weighted state.

Distance by exact embedding ( 5.95 5.95 5.95 5.95 5.95 5.95 5.95 5.95 5.95 5.95 5.95 5.95 5.95 5.95 5.95 5.95 5.95 5.95 5.95 5.95 )

Distance by MDS ( 5.95 5.95 5.95 5.95 5.95 5.95 5.95 5.95 5.95 5.95 5.95 5.95 5.95 5.95 5.95 5.95 5.95 5.95 5.95 5.95 )

Ratio of the distances ( 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. )

Figure 3.15: Distances computed for Weighted state for both embedding methods
and comparison of the results

hints that some of the dimensions can be omitted and while not exactly, this
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embedding is close to be of very lower dimension than N − 1 [4]. Admittedly we
seek some more complicated structures as 2 and 3D lattices, but this might be a
start towards such goals.

a) Exact b) MDS

Figure 3.16: Example of embedding of the Gaussian state. The MDS result was
not interpolated with the mesh so the linear structure of the embedding is easily
observed.

Distance by exact embedding ( 26.39 20.04 17.91 16.73 15.59 13.87 12.79 11.77 10.82 9.95 9.16 8.46 7.85 7.33 6.89 6.55 6.29 6.14 6.29 6.26 )

Distance by MDS ( 26.39 20.04 17.91 16.73 15.59 13.87 12.79 11.77 10.82 9.95 9.16 8.46 7.85 7.33 6.89 6.55 6.29 6.14 6.29 6.26 )

Ratio of the distances ( 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. )

Distortion parameter from MDS {0.88, 0.8, 0.72, 0.64, 0.57, 0.51, 0.46, 0.41, 0.36, 0.31, 0.27, 0.24, 0.2, 0.17, 0.14, 0.11, 0.08, 0.06, 0.03, 0.}

Figure 3.17: Distances computed for Gaussian state for both embedding methods
and comparison of the results

[4]For example in [6] they approved an embedding with distortion ϵ = 0.42 as satisfactory in
one case
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4. Conclusion
It has been shown in this work, that entropy can serve as a bridge between

General Relativity and Quantum Physics, the two fields current Physics seeks
to connect. The fact that this problem is better understood from the quantum
side leads to the assumption that GR could be derived from quantum considera-
tions. Many modern fields of Theoretical Physics are tackling with this problem
(e.g. AdS/CFT correspondence and the connected Holography principle or Loop
Quantum Gravity).

Also a few commonly known features of entropy were recapitulated. Moreover
some new approaches were shown, which became the core of computational part
of this work (the idea of Redundancy constrained states). The computational
part itself brought little results, but it has been shown that the task of finding
Hilbert space with decomposition and state all together interpretable as a part
of a geometry is to be expected to be a formidable task. Some experience was
gained in the problems of employing the embedding methods and tracing large
matrices. From the more theoretic point of view the Area Law of entropy was
summarized, whose origin is in GR, but it was shown to be a result of also
Quantum considerations.

This work only scratched the surface of the problem and there is yet much
work to be done. In the theoretical direction there are many interesting theories
that study the connection between geometry and quantum fields and which could
be helpful for the advancement of the topic of this work (at least AdS/CFT needs
to be mentioned here, as it sparked many of the entropic consideration in e.g. [6]).
On the computational note there are many works dealing with problems of lattice
of binary quantum bits thanks to the big interest in Quantum Computing. It is
possible that some results acquired there might be relevant for our work. Also
there are some more complex but also more powerful approaches as Tensor Net-
works. Or the idea of Coarse Graining (regrouping the factors of the total Hilbert
space into larger groups and computing entropy between those). According to [6]
this might be able to simulate the development in time.

Last but certainly not least I would like to thank my supervisor Martin Scholtz
for his guidance and devotion to helping me understand this complicated topic.
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A. Mathematica code
In the appendix the code from Mathematica 11.3.0.0 used to acquire the results
shown in this work is summarized. It is divided into cells as is usual for Math-
ematica Notebook. While the layout of the code might not be visually ideal, it
was created in order not to divide commands among multiple pages.

A.1: Initialization cell
In[ ]:= (*Number of points used in the computation. Use max 16 for trial purposes and max 22 for the

computation not to last more than 1 day on average PC.*)

varNOfPoints = 12;

(*The following option is needed for experimental states 7 and 8,

the product of the numbers should be equal to varNOfPoints*)

varLatticeDimensions = {3, 4};

(*Important note: varDimensions fields correspond to the subsystems from left to right (because also )*)

varDimensions = Table[2, {i, varNOfPoints}];

(*Check, if length of the list Dimensions is equal to the number of points.*)

"Number of dimensions is equal to the number of points: " <> ToString[varNOfPoints ⩵ Length[varDimensions]]

(*Check, if the dimensions are integer*)

"Dimensions are integer: " <> ToString[ArrayQ[varDimensions, _, IntegerQ]]

(*Number of basis states, characterizes well the overall complexity of the computation*)

varComplexity = Times @@ varDimensions;

(*Converts integer representing an ordinal number of a basis vector to that basis vector*)

funcIntegerToList[i_Integer] := Module[{locvarInt = i, locvarOutput = {}, j = 1},

While[

j ≤ varNOfPoints,

PrependTo[locvarOutput, Mod[locvarInt, varDimensions[[-j]]]];

locvarInt = Quotient[locvarInt, varDimensions[[-j]]];

j++

];

locvarOutput

];

(*Generates all basis vectors*)

varBasis = funcIntegerToList[#] & /@ (Range[0, varComplexity - 1]);

(*Converts a basis vector to its ordinal number*)

funcListToInteger[l_List] := Total[Table[l [[-k]] (varDimensions[[-k]]^(k - 1)), {k, 1, Length[l]}]];

(*The following function computes the reduced matrix based on the full density matrix

corresponding to the state 'varState'. It computes the trace over all of the basis subsystems

but those specified by the integers in the input list 'points'*)

funcReduceMatrixFromState[points_List, state_List] :=

Module[{locvarOrderedList = Sort[points, Greater], locvarStartIterators = {}, locvarIterators = {},

locvarIndexOfTraced = Complement[Range[varNOfPoints], points], locvarStart, locvarStartJumps,

locvarVectorJumps, locvarVector, locvarOutput},

If[locvarIndexOfTraced ⩵ {}, Outer[Times, state, Conjugate[state]],

locvarStartIterators = Table[{j[i], 0, varDimensions[[i]] - 1}, {i, locvarIndexOfTraced}];

locvarStartJumps = Total@((j[#] Times @@ varDimensions[[1 ;; # - 1]]) & /@ locvarIndexOfTraced);

locvarStart = Flatten[Table[locvarStartJumps, Evaluate[Sequence @@ locvarStartIterators]]];

locvarIterators = Table[{j[i], 0, varDimensions[[i]] - 1}, {i, points}];

locvarVectorJumps = Total@((j[#] Times @@ varDimensions[[1 ;; # - 1]]) & /@ points);

locvarVector = Flatten[Table[# + locvarVectorJumps, Evaluate[Sequence @@ locvarIterators]]] & /@

locvarStart;

locvarOutput = Total[Outer[Times, #, Conjugate[#]] & /@ (state[[#]] & /@ (locvarVector + 1))];

locvarOutput

]

];

(*Computes the distance based on information. There is a hard set maximal distance,

in order to avoid infinites in the cases of degenerate results. Such results are not interesting

in any case, but in this way one avoid clutter with infinites and indeterminate expressions*)

funcDistanceFunction[info_, order_] :=

If[Chop[info[[order, 1]]] ⩵ 0, 30, Chop[-Log[info[[order, 1]]/(2 Log[2])]]]
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In[ ]:= (*Number of points used in the computation. Use max 16 for trial purposes and max 22 for the

computation not to last more than 1 day on average PC.*)

varNOfPoints = 12;

(*The following option is needed for experimental states 7 and 8,

the product of the numbers should be equal to varNOfPoints*)

varLatticeDimensions = {3, 4};

(*Important note: varDimensions fields correspond to the subsystems from left to right (because also )*)

varDimensions = Table[2, {i, varNOfPoints}];

(*Check, if length of the list Dimensions is equal to the number of points.*)

"Number of dimensions is equal to the number of points: " <> ToString[varNOfPoints ⩵ Length[varDimensions]]

(*Check, if the dimensions are integer*)

"Dimensions are integer: " <> ToString[ArrayQ[varDimensions, _, IntegerQ]]

(*Number of basis states, characterizes well the overall complexity of the computation*)

varComplexity = Times @@ varDimensions;

(*Converts integer representing an ordinal number of a basis vector to that basis vector*)

funcIntegerToList[i_Integer] := Module[{locvarInt = i, locvarOutput = {}, j = 1},

While[

j ≤ varNOfPoints,

PrependTo[locvarOutput, Mod[locvarInt, varDimensions[[-j]]]];

locvarInt = Quotient[locvarInt, varDimensions[[-j]]];

j++

];

locvarOutput

];

(*Generates all basis vectors*)

varBasis = funcIntegerToList[#] & /@ (Range[0, varComplexity - 1]);

(*Converts a basis vector to its ordinal number*)

funcListToInteger[l_List] := Total[Table[l [[-k]] (varDimensions[[-k]]^(k - 1)), {k, 1, Length[l]}]];

(*The following function computes the reduced matrix based on the full density matrix

corresponding to the state 'varState'. It computes the trace over all of the basis subsystems

but those specified by the integers in the input list 'points'*)

funcReduceMatrixFromState[points_List, state_List] :=

Module[{locvarOrderedList = Sort[points, Greater], locvarStartIterators = {}, locvarIterators = {},

locvarIndexOfTraced = Complement[Range[varNOfPoints], points], locvarStart, locvarStartJumps,

locvarVectorJumps, locvarVector, locvarOutput},

If[locvarIndexOfTraced ⩵ {}, Outer[Times, state, Conjugate[state]],

locvarStartIterators = Table[{j[i], 0, varDimensions[[i]] - 1}, {i, locvarIndexOfTraced}];

locvarStartJumps = Total@((j[#] Times @@ varDimensions[[1 ;; # - 1]]) & /@ locvarIndexOfTraced);

locvarStart = Flatten[Table[locvarStartJumps, Evaluate[Sequence @@ locvarStartIterators]]];

locvarIterators = Table[{j[i], 0, varDimensions[[i]] - 1}, {i, points}];

locvarVectorJumps = Total@((j[#] Times @@ varDimensions[[1 ;; # - 1]]) & /@ points);

locvarVector = Flatten[Table[# + locvarVectorJumps, Evaluate[Sequence @@ locvarIterators]]] & /@

locvarStart;

locvarOutput = Total[Outer[Times, #, Conjugate[#]] & /@ (state[[#]] & /@ (locvarVector + 1))];

locvarOutput

]

];

(*Computes the distance based on information. There is a hard set maximal distance,

in order to avoid infinites in the cases of degenerate results. Such results are not interesting

in any case, but in this way one avoid clutter with infinites and indeterminate expressions*)

funcDistanceFunction[info_, order_] :=

If[Chop[info[[order, 1]]] ⩵ 0, 30, Chop[-Log[info[[order, 1]]/(2 Log[2])]]]
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A.2: Cell for determination of the type of state for further work and computation
of the distances between the points represented by this state

(*Measurment of the time the computation of the reduced matrices starts here

(there are some commands before the actual tracing starts,

but these take little time to influence the result).*)

varTime = AbsoluteTime[];

(*Library of states*)

(*(1) - State with fully random amplitude and phase for each basis vector.*)

varStateAllRandom = Normalize[Table[(#1 Exp[2 Pi I #2]) & @@ RandomReal[{0, 1}, 2], {i, varComplexity}]];

(*(2) - State with uniform amplitude and random phase*)

varStateRandomPhase = Normalize[Table[Exp[2 Pi I #] & @@ RandomReal[{0, 1}], {i, varComplexity}]];

(*(3) - State with linearly rising amplitude and constant phase*)

varStateLinearAmp = Normalize[Table[i, {i, varComplexity}]];

(*(4)- State with gaussian distribution of amplitudes and constant phase*)

varStateGaussian =

Normalize[Table[N[PDF[NormalDistribution[Quotient[varComplexity, 2], Quotient[varComplexity, 6]]][i]],

{i, varComplexity}]];

(*Excluded (5)- State with constant amplitudes but opposite phases between each two neighbours.

Reason for excluding - gives zero entropy*)

varStateOppositePhase = Normalize[Table[(-1)^i, {i, varComplexity}]];

(*Excluded (6)- State with constant phase and amplitude

Reason for excluding - gives zero entropy*)

varStateConstant = Normalize[Table[1, {i, varComplexity}]];

(*(7) - Attempting to find a state for lattice-

like positioning of the points with binary Hilbert space at each point.*)

varLatticeBasis = Module[{locvarInstructions},

(*This contains the instructions, which "spins" to flip for each vector creating the total

vector used for further computation*)

locvarInstructions = Flatten[Table[

varTMP1 = i + varLatticeDimensions[[1]] j;

{1 + varTMP1 → 1, (*choosen point*)

1 + varLatticeDimensions[[1]] j + Mod[varTMP1 + 1, varLatticeDimensions[[1]]] → 1,

(*the point to the right*)

1 + varLatticeDimensions[[1]] j + Mod[varTMP1 - 1, varLatticeDimensions[[1]]] → 1,

(*the point to the left*)

1 + (j - Mod[j, varLatticeDimensions[[2]]] + Mod[j + 1, varLatticeDimensions[[2]]])

varLatticeDimensions[[1]] + i → 1, (*the point above*)

1 + (j - Mod[j, varLatticeDimensions[[2]]] + Mod[j - 1, varLatticeDimensions[[2]]])

varLatticeDimensions[[1]] + i → 1(*the point below*)},

{i, 0, varLatticeDimensions[[1]] - 1}, {j, 0, varLatticeDimensions[[2]] - 1}]

, 1];

Reverse[ReplacePart[Table[0, {i, Times @@ varLatticeDimensions}], #]] & /@ locvarInstructions

];

varExperimentalState1 =

Normalize[ReplacePart[Table[0, {i, varComplexity}], # → 1 & /@ (funcListToInteger /@ varLatticeBasis)]];

(*(8) - Attempting to find a state for lattice-

like positioning of the points. (Alternate approach - the central point is omitted)*)

varLatticeBasis = Reverse[ReplacePart[Table[0, {i, Times @@ varLatticeDimensions}], #]] & /@ Flatten[Table[

varTMP1 = i + varLatticeDimensions[[1]] j;

{1 + varLatticeDimensions[[1]] j + Mod[varTMP1 + 1, varLatticeDimensions[[1]]] → 1,

(*the point to the right*)

1 + varLatticeDimensions[[1]] j + Mod[varTMP1 - 1, varLatticeDimensions[[1]]] → 1,

(*the point to the left*)

1 + (j - Mod[j, varLatticeDimensions[[2]]] + Mod[j + 1, varLatticeDimensions[[2]]])

varLatticeDimensions[[1]] + i → 1, (*the point above*)

1 + (j - Mod[j, varLatticeDimensions[[2]]] + Mod[j - 1, varLatticeDimensions[[2]]])

varLatticeDimensions[[1]] + i → 1(*the point below*)},

{i, 0, varLatticeDimensions[[1]] - 1}, {j, 0, varLatticeDimensions[[2]] - 1}],

1];

varExperimentalState2 =

Normalize[ReplacePart[Table[0, {i, varComplexity}], # → 1 & /@ (funcListToInteger /@ varLatticeBasis)]];

(*(9) -

Weighted state: Each basis vector is given the weight corresponding to the number of 1's in

its binary representation.*)

varWeightedState = Normalize[Table[Total[varBasis[[i]]], {i, Length[varBasis]}]];

(*(10) -

Modified weighted

state: Chosen basis vectors are attributed weight corresponding to their binary representation.*)

varWeightedState2 = Table[0, {i, varComplexity}];

(varWeightedState2[[# + 1]] = 1/#) & /@

Table[funcListToInteger@Table[If[j ≥ i, 1, 0], {j, varNOfPoints}], {i, varNOfPoints}];

varWeightedState2 = Normalize[varWeightedState2];

(*(11) - Modified weighted state with random

phase: Chosen basis vectors are attributed weight corresponding to their binary representation

and random phase.*)

varWeightedState3 = Table[0, {i, varComplexity}];

(varWeightedState3[[# + 1]] = (1/# ) Exp[I RandomReal[{0, 2 Pi}]]) & /@

Table[funcListToInteger@Table[If[j ≥ i, 1, 0], {j, varNOfPoints}], {i, varNOfPoints}];

varWeightedState3 = Normalize[varWeightedState3];

(*In the following variable all the states are stored in denoted order,

so the state actually chosen for the computation can be easily reffered to in the following.*)

varStateLibrary = {varStateAllRandom, varStateRandomPhase, varStateLinearAmp, varStateGaussian,

varStateOppositePhase, varStateConstant, varExperimentalState1, varExperimentalState2,

varWeightedState, varWeightedState2, varWeightedState3};

varChosenState = 1;

(*Choosing the state for the following computation*)

varState = varStateLibrary[[varChosenState]];

(*The two following calls compute the entropy of a single point and between two points. For

each computation the result is a two-field array,

first field containing the result itself and the other indices of the subsystems the entropy

corresponds to.*)

varPairwiseEntropy =

Chop[

{Total[N[-Log[#] #] & /@ DeleteCases[Eigenvalues[funcReduceMatrixFromState[#, varState]], N[0] 0]],

#} & /@ Subsets[Range[varNOfPoints], {2}]];

varPointwiseEntropy =

Chop[

{Total[N[-Log[#] #] & /@ DeleteCases[Eigenvalues[funcReduceMatrixFromState[#, varState]], N[0] 0]],

#} & /@ Subsets[Range[varNOfPoints], {1}]];

(*The following function computes the pairwise information for all pairs while preserving

also the information of which pair does the result correspond to.*)

funcComputeInformation[pairwise_List, pointwise_List] := Module[{locvarOutput = {}},

For[k = 1, k ≤ Length[pairwise], k++,

AppendTo[locvarOutput, {-pairwise[[k, 1]] + pointwise[[pairwise[[k, 2, 1]], 1]] +

pointwise[[pairwise[[k, 2, 2]], 1]], pairwise[[k, 2]]}];

];

locvarOutput

];

varInformationOfPairs = funcComputeInformation[varPairwiseEntropy, varPointwiseEntropy];

(*This command prepeares the table of the distances to be filled in in the next step.*)

varDistances = Table[0, {i, varNOfPoints}, {j, varNOfPoints}];

(*This fills in the table of varDistances symmetrically. Currently the formula is distance=

-Ln[mutual information].*)

For[k = 1, k <= Length[varInformationOfPairs], k++,

varDistances[[varInformationOfPairs[[k, 2, 1]], varInformationOfPairs[[k, 2, 2]]]] =

varDistances[[varInformationOfPairs[[k, 2, 2]], varInformationOfPairs[[k, 2, 1]]]] =

funcDistanceFunction[varInformationOfPairs, k];

];

varDistances // MatrixForm;

"The calculation took " <> ToString[AbsoluteTime[] - varTime] <> " seconds"
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(*Measurment of the time the computation of the reduced matrices starts here

(there are some commands before the actual tracing starts,

but these take little time to influence the result).*)

varTime = AbsoluteTime[];

(*Library of states*)

(*(1) - State with fully random amplitude and phase for each basis vector.*)

varStateAllRandom = Normalize[Table[(#1 Exp[2 Pi I #2]) & @@ RandomReal[{0, 1}, 2], {i, varComplexity}]];

(*(2) - State with uniform amplitude and random phase*)

varStateRandomPhase = Normalize[Table[Exp[2 Pi I #] & @@ RandomReal[{0, 1}], {i, varComplexity}]];

(*(3) - State with linearly rising amplitude and constant phase*)

varStateLinearAmp = Normalize[Table[i, {i, varComplexity}]];

(*(4)- State with gaussian distribution of amplitudes and constant phase*)

varStateGaussian =

Normalize[Table[N[PDF[NormalDistribution[Quotient[varComplexity, 2], Quotient[varComplexity, 6]]][i]],

{i, varComplexity}]];

(*Excluded (5)- State with constant amplitudes but opposite phases between each two neighbours.

Reason for excluding - gives zero entropy*)

varStateOppositePhase = Normalize[Table[(-1)^i, {i, varComplexity}]];

(*Excluded (6)- State with constant phase and amplitude

Reason for excluding - gives zero entropy*)

varStateConstant = Normalize[Table[1, {i, varComplexity}]];

(*(7) - Attempting to find a state for lattice-

like positioning of the points with binary Hilbert space at each point.*)

varLatticeBasis = Module[{locvarInstructions},

(*This contains the instructions, which "spins" to flip for each vector creating the total

vector used for further computation*)

locvarInstructions = Flatten[Table[

varTMP1 = i + varLatticeDimensions[[1]] j;

{1 + varTMP1 → 1, (*choosen point*)

1 + varLatticeDimensions[[1]] j + Mod[varTMP1 + 1, varLatticeDimensions[[1]]] → 1,

(*the point to the right*)

1 + varLatticeDimensions[[1]] j + Mod[varTMP1 - 1, varLatticeDimensions[[1]]] → 1,

(*the point to the left*)

1 + (j - Mod[j, varLatticeDimensions[[2]]] + Mod[j + 1, varLatticeDimensions[[2]]])

varLatticeDimensions[[1]] + i → 1, (*the point above*)

1 + (j - Mod[j, varLatticeDimensions[[2]]] + Mod[j - 1, varLatticeDimensions[[2]]])

varLatticeDimensions[[1]] + i → 1(*the point below*)},

{i, 0, varLatticeDimensions[[1]] - 1}, {j, 0, varLatticeDimensions[[2]] - 1}]

, 1];

Reverse[ReplacePart[Table[0, {i, Times @@ varLatticeDimensions}], #]] & /@ locvarInstructions

];

varExperimentalState1 =

Normalize[ReplacePart[Table[0, {i, varComplexity}], # → 1 & /@ (funcListToInteger /@ varLatticeBasis)]];

(*(8) - Attempting to find a state for lattice-

like positioning of the points. (Alternate approach - the central point is omitted)*)

varLatticeBasis = Reverse[ReplacePart[Table[0, {i, Times @@ varLatticeDimensions}], #]] & /@ Flatten[Table[

varTMP1 = i + varLatticeDimensions[[1]] j;

{1 + varLatticeDimensions[[1]] j + Mod[varTMP1 + 1, varLatticeDimensions[[1]]] → 1,

(*the point to the right*)

1 + varLatticeDimensions[[1]] j + Mod[varTMP1 - 1, varLatticeDimensions[[1]]] → 1,

(*the point to the left*)

1 + (j - Mod[j, varLatticeDimensions[[2]]] + Mod[j + 1, varLatticeDimensions[[2]]])

varLatticeDimensions[[1]] + i → 1, (*the point above*)

1 + (j - Mod[j, varLatticeDimensions[[2]]] + Mod[j - 1, varLatticeDimensions[[2]]])

varLatticeDimensions[[1]] + i → 1(*the point below*)},

{i, 0, varLatticeDimensions[[1]] - 1}, {j, 0, varLatticeDimensions[[2]] - 1}],

1];

varExperimentalState2 =

Normalize[ReplacePart[Table[0, {i, varComplexity}], # → 1 & /@ (funcListToInteger /@ varLatticeBasis)]];

(*(9) -

Weighted state: Each basis vector is given the weight corresponding to the number of 1's in

its binary representation.*)

varWeightedState = Normalize[Table[Total[varBasis[[i]]], {i, Length[varBasis]}]];

(*(10) -

Modified weighted

state: Chosen basis vectors are attributed weight corresponding to their binary representation.*)

varWeightedState2 = Table[0, {i, varComplexity}];

(varWeightedState2[[# + 1]] = 1/#) & /@

Table[funcListToInteger@Table[If[j ≥ i, 1, 0], {j, varNOfPoints}], {i, varNOfPoints}];

varWeightedState2 = Normalize[varWeightedState2];

(*(11) - Modified weighted state with random

phase: Chosen basis vectors are attributed weight corresponding to their binary representation

and random phase.*)

varWeightedState3 = Table[0, {i, varComplexity}];

(varWeightedState3[[# + 1]] = (1/# ) Exp[I RandomReal[{0, 2 Pi}]]) & /@

Table[funcListToInteger@Table[If[j ≥ i, 1, 0], {j, varNOfPoints}], {i, varNOfPoints}];

varWeightedState3 = Normalize[varWeightedState3];

(*In the following variable all the states are stored in denoted order,

so the state actually chosen for the computation can be easily reffered to in the following.*)

varStateLibrary = {varStateAllRandom, varStateRandomPhase, varStateLinearAmp, varStateGaussian,

varStateOppositePhase, varStateConstant, varExperimentalState1, varExperimentalState2,

varWeightedState, varWeightedState2, varWeightedState3};

varChosenState = 1;

(*Choosing the state for the following computation*)

varState = varStateLibrary[[varChosenState]];

(*The two following calls compute the entropy of a single point and between two points. For

each computation the result is a two-field array,

first field containing the result itself and the other indices of the subsystems the entropy

corresponds to.*)

varPairwiseEntropy =

Chop[

{Total[N[-Log[#] #] & /@ DeleteCases[Eigenvalues[funcReduceMatrixFromState[#, varState]], N[0] 0]],

#} & /@ Subsets[Range[varNOfPoints], {2}]];

varPointwiseEntropy =

Chop[

{Total[N[-Log[#] #] & /@ DeleteCases[Eigenvalues[funcReduceMatrixFromState[#, varState]], N[0] 0]],

#} & /@ Subsets[Range[varNOfPoints], {1}]];

(*The following function computes the pairwise information for all pairs while preserving

also the information of which pair does the result correspond to.*)

funcComputeInformation[pairwise_List, pointwise_List] := Module[{locvarOutput = {}},

For[k = 1, k ≤ Length[pairwise], k++,

AppendTo[locvarOutput, {-pairwise[[k, 1]] + pointwise[[pairwise[[k, 2, 1]], 1]] +

pointwise[[pairwise[[k, 2, 2]], 1]], pairwise[[k, 2]]}];

];

locvarOutput

];

varInformationOfPairs = funcComputeInformation[varPairwiseEntropy, varPointwiseEntropy];

(*This command prepeares the table of the distances to be filled in in the next step.*)

varDistances = Table[0, {i, varNOfPoints}, {j, varNOfPoints}];

(*This fills in the table of varDistances symmetrically. Currently the formula is distance=

-Ln[mutual information].*)

For[k = 1, k <= Length[varInformationOfPairs], k++,

varDistances[[varInformationOfPairs[[k, 2, 1]], varInformationOfPairs[[k, 2, 2]]]] =

varDistances[[varInformationOfPairs[[k, 2, 2]], varInformationOfPairs[[k, 2, 1]]]] =

funcDistanceFunction[varInformationOfPairs, k];

];

varDistances // MatrixForm;

"The calculation took " <> ToString[AbsoluteTime[] - varTime] <> " seconds"

45



(*Measurment of the time the computation of the reduced matrices starts here

(there are some commands before the actual tracing starts,

but these take little time to influence the result).*)

varTime = AbsoluteTime[];

(*Library of states*)

(*(1) - State with fully random amplitude and phase for each basis vector.*)

varStateAllRandom = Normalize[Table[(#1 Exp[2 Pi I #2]) & @@ RandomReal[{0, 1}, 2], {i, varComplexity}]];

(*(2) - State with uniform amplitude and random phase*)

varStateRandomPhase = Normalize[Table[Exp[2 Pi I #] & @@ RandomReal[{0, 1}], {i, varComplexity}]];

(*(3) - State with linearly rising amplitude and constant phase*)

varStateLinearAmp = Normalize[Table[i, {i, varComplexity}]];

(*(4)- State with gaussian distribution of amplitudes and constant phase*)

varStateGaussian =

Normalize[Table[N[PDF[NormalDistribution[Quotient[varComplexity, 2], Quotient[varComplexity, 6]]][i]],

{i, varComplexity}]];

(*Excluded (5)- State with constant amplitudes but opposite phases between each two neighbours.

Reason for excluding - gives zero entropy*)

varStateOppositePhase = Normalize[Table[(-1)^i, {i, varComplexity}]];

(*Excluded (6)- State with constant phase and amplitude

Reason for excluding - gives zero entropy*)

varStateConstant = Normalize[Table[1, {i, varComplexity}]];

(*(7) - Attempting to find a state for lattice-

like positioning of the points with binary Hilbert space at each point.*)

varLatticeBasis = Module[{locvarInstructions},

(*This contains the instructions, which "spins" to flip for each vector creating the total

vector used for further computation*)

locvarInstructions = Flatten[Table[

varTMP1 = i + varLatticeDimensions[[1]] j;

{1 + varTMP1 → 1, (*choosen point*)

1 + varLatticeDimensions[[1]] j + Mod[varTMP1 + 1, varLatticeDimensions[[1]]] → 1,

(*the point to the right*)

1 + varLatticeDimensions[[1]] j + Mod[varTMP1 - 1, varLatticeDimensions[[1]]] → 1,

(*the point to the left*)

1 + (j - Mod[j, varLatticeDimensions[[2]]] + Mod[j + 1, varLatticeDimensions[[2]]])

varLatticeDimensions[[1]] + i → 1, (*the point above*)

1 + (j - Mod[j, varLatticeDimensions[[2]]] + Mod[j - 1, varLatticeDimensions[[2]]])

varLatticeDimensions[[1]] + i → 1(*the point below*)},

{i, 0, varLatticeDimensions[[1]] - 1}, {j, 0, varLatticeDimensions[[2]] - 1}]

, 1];

Reverse[ReplacePart[Table[0, {i, Times @@ varLatticeDimensions}], #]] & /@ locvarInstructions

];

varExperimentalState1 =

Normalize[ReplacePart[Table[0, {i, varComplexity}], # → 1 & /@ (funcListToInteger /@ varLatticeBasis)]];

(*(8) - Attempting to find a state for lattice-

like positioning of the points. (Alternate approach - the central point is omitted)*)

varLatticeBasis = Reverse[ReplacePart[Table[0, {i, Times @@ varLatticeDimensions}], #]] & /@ Flatten[Table[

varTMP1 = i + varLatticeDimensions[[1]] j;

{1 + varLatticeDimensions[[1]] j + Mod[varTMP1 + 1, varLatticeDimensions[[1]]] → 1,

(*the point to the right*)

1 + varLatticeDimensions[[1]] j + Mod[varTMP1 - 1, varLatticeDimensions[[1]]] → 1,

(*the point to the left*)

1 + (j - Mod[j, varLatticeDimensions[[2]]] + Mod[j + 1, varLatticeDimensions[[2]]])

varLatticeDimensions[[1]] + i → 1, (*the point above*)

1 + (j - Mod[j, varLatticeDimensions[[2]]] + Mod[j - 1, varLatticeDimensions[[2]]])

varLatticeDimensions[[1]] + i → 1(*the point below*)},

{i, 0, varLatticeDimensions[[1]] - 1}, {j, 0, varLatticeDimensions[[2]] - 1}],

1];

varExperimentalState2 =

Normalize[ReplacePart[Table[0, {i, varComplexity}], # → 1 & /@ (funcListToInteger /@ varLatticeBasis)]];

(*(9) -

Weighted state: Each basis vector is given the weight corresponding to the number of 1's in

its binary representation.*)

varWeightedState = Normalize[Table[Total[varBasis[[i]]], {i, Length[varBasis]}]];

(*(10) -

Modified weighted

state: Chosen basis vectors are attributed weight corresponding to their binary representation.*)

varWeightedState2 = Table[0, {i, varComplexity}];

(varWeightedState2[[# + 1]] = 1/#) & /@

Table[funcListToInteger@Table[If[j ≥ i, 1, 0], {j, varNOfPoints}], {i, varNOfPoints}];

varWeightedState2 = Normalize[varWeightedState2];

(*(11) - Modified weighted state with random

phase: Chosen basis vectors are attributed weight corresponding to their binary representation

and random phase.*)

varWeightedState3 = Table[0, {i, varComplexity}];

(varWeightedState3[[# + 1]] = (1/# ) Exp[I RandomReal[{0, 2 Pi}]]) & /@

Table[funcListToInteger@Table[If[j ≥ i, 1, 0], {j, varNOfPoints}], {i, varNOfPoints}];

varWeightedState3 = Normalize[varWeightedState3];

(*In the following variable all the states are stored in denoted order,

so the state actually chosen for the computation can be easily reffered to in the following.*)

varStateLibrary = {varStateAllRandom, varStateRandomPhase, varStateLinearAmp, varStateGaussian,

varStateOppositePhase, varStateConstant, varExperimentalState1, varExperimentalState2,

varWeightedState, varWeightedState2, varWeightedState3};

varChosenState = 1;

(*Choosing the state for the following computation*)

varState = varStateLibrary[[varChosenState]];

(*The two following calls compute the entropy of a single point and between two points. For

each computation the result is a two-field array,

first field containing the result itself and the other indices of the subsystems the entropy

corresponds to.*)

varPairwiseEntropy =

Chop[

{Total[N[-Log[#] #] & /@ DeleteCases[Eigenvalues[funcReduceMatrixFromState[#, varState]], N[0] 0]],

#} & /@ Subsets[Range[varNOfPoints], {2}]];

varPointwiseEntropy =

Chop[

{Total[N[-Log[#] #] & /@ DeleteCases[Eigenvalues[funcReduceMatrixFromState[#, varState]], N[0] 0]],

#} & /@ Subsets[Range[varNOfPoints], {1}]];

(*The following function computes the pairwise information for all pairs while preserving

also the information of which pair does the result correspond to.*)

funcComputeInformation[pairwise_List, pointwise_List] := Module[{locvarOutput = {}},

For[k = 1, k ≤ Length[pairwise], k++,

AppendTo[locvarOutput, {-pairwise[[k, 1]] + pointwise[[pairwise[[k, 2, 1]], 1]] +

pointwise[[pairwise[[k, 2, 2]], 1]], pairwise[[k, 2]]}];

];

locvarOutput

];

varInformationOfPairs = funcComputeInformation[varPairwiseEntropy, varPointwiseEntropy];

(*This command prepeares the table of the distances to be filled in in the next step.*)

varDistances = Table[0, {i, varNOfPoints}, {j, varNOfPoints}];

(*This fills in the table of varDistances symmetrically. Currently the formula is distance=

-Ln[mutual information].*)

For[k = 1, k <= Length[varInformationOfPairs], k++,

varDistances[[varInformationOfPairs[[k, 2, 1]], varInformationOfPairs[[k, 2, 2]]]] =

varDistances[[varInformationOfPairs[[k, 2, 2]], varInformationOfPairs[[k, 2, 1]]]] =

funcDistanceFunction[varInformationOfPairs, k];

];

varDistances // MatrixForm;

"The calculation took " <> ToString[AbsoluteTime[] - varTime] <> " seconds"

46



(*Measurment of the time the computation of the reduced matrices starts here

(there are some commands before the actual tracing starts,

but these take little time to influence the result).*)

varTime = AbsoluteTime[];

(*Library of states*)

(*(1) - State with fully random amplitude and phase for each basis vector.*)

varStateAllRandom = Normalize[Table[(#1 Exp[2 Pi I #2]) & @@ RandomReal[{0, 1}, 2], {i, varComplexity}]];

(*(2) - State with uniform amplitude and random phase*)

varStateRandomPhase = Normalize[Table[Exp[2 Pi I #] & @@ RandomReal[{0, 1}], {i, varComplexity}]];

(*(3) - State with linearly rising amplitude and constant phase*)

varStateLinearAmp = Normalize[Table[i, {i, varComplexity}]];

(*(4)- State with gaussian distribution of amplitudes and constant phase*)

varStateGaussian =

Normalize[Table[N[PDF[NormalDistribution[Quotient[varComplexity, 2], Quotient[varComplexity, 6]]][i]],

{i, varComplexity}]];

(*Excluded (5)- State with constant amplitudes but opposite phases between each two neighbours.

Reason for excluding - gives zero entropy*)

varStateOppositePhase = Normalize[Table[(-1)^i, {i, varComplexity}]];

(*Excluded (6)- State with constant phase and amplitude

Reason for excluding - gives zero entropy*)

varStateConstant = Normalize[Table[1, {i, varComplexity}]];

(*(7) - Attempting to find a state for lattice-

like positioning of the points with binary Hilbert space at each point.*)

varLatticeBasis = Module[{locvarInstructions},

(*This contains the instructions, which "spins" to flip for each vector creating the total

vector used for further computation*)

locvarInstructions = Flatten[Table[

varTMP1 = i + varLatticeDimensions[[1]] j;

{1 + varTMP1 → 1, (*choosen point*)

1 + varLatticeDimensions[[1]] j + Mod[varTMP1 + 1, varLatticeDimensions[[1]]] → 1,

(*the point to the right*)

1 + varLatticeDimensions[[1]] j + Mod[varTMP1 - 1, varLatticeDimensions[[1]]] → 1,

(*the point to the left*)

1 + (j - Mod[j, varLatticeDimensions[[2]]] + Mod[j + 1, varLatticeDimensions[[2]]])

varLatticeDimensions[[1]] + i → 1, (*the point above*)

1 + (j - Mod[j, varLatticeDimensions[[2]]] + Mod[j - 1, varLatticeDimensions[[2]]])

varLatticeDimensions[[1]] + i → 1(*the point below*)},

{i, 0, varLatticeDimensions[[1]] - 1}, {j, 0, varLatticeDimensions[[2]] - 1}]

, 1];

Reverse[ReplacePart[Table[0, {i, Times @@ varLatticeDimensions}], #]] & /@ locvarInstructions

];

varExperimentalState1 =

Normalize[ReplacePart[Table[0, {i, varComplexity}], # → 1 & /@ (funcListToInteger /@ varLatticeBasis)]];

(*(8) - Attempting to find a state for lattice-

like positioning of the points. (Alternate approach - the central point is omitted)*)

varLatticeBasis = Reverse[ReplacePart[Table[0, {i, Times @@ varLatticeDimensions}], #]] & /@ Flatten[Table[

varTMP1 = i + varLatticeDimensions[[1]] j;

{1 + varLatticeDimensions[[1]] j + Mod[varTMP1 + 1, varLatticeDimensions[[1]]] → 1,

(*the point to the right*)

1 + varLatticeDimensions[[1]] j + Mod[varTMP1 - 1, varLatticeDimensions[[1]]] → 1,

(*the point to the left*)

1 + (j - Mod[j, varLatticeDimensions[[2]]] + Mod[j + 1, varLatticeDimensions[[2]]])

varLatticeDimensions[[1]] + i → 1, (*the point above*)

1 + (j - Mod[j, varLatticeDimensions[[2]]] + Mod[j - 1, varLatticeDimensions[[2]]])

varLatticeDimensions[[1]] + i → 1(*the point below*)},

{i, 0, varLatticeDimensions[[1]] - 1}, {j, 0, varLatticeDimensions[[2]] - 1}],

1];

varExperimentalState2 =

Normalize[ReplacePart[Table[0, {i, varComplexity}], # → 1 & /@ (funcListToInteger /@ varLatticeBasis)]];

(*(9) -

Weighted state: Each basis vector is given the weight corresponding to the number of 1's in

its binary representation.*)

varWeightedState = Normalize[Table[Total[varBasis[[i]]], {i, Length[varBasis]}]];

(*(10) -

Modified weighted

state: Chosen basis vectors are attributed weight corresponding to their binary representation.*)

varWeightedState2 = Table[0, {i, varComplexity}];

(varWeightedState2[[# + 1]] = 1/#) & /@

Table[funcListToInteger@Table[If[j ≥ i, 1, 0], {j, varNOfPoints}], {i, varNOfPoints}];

varWeightedState2 = Normalize[varWeightedState2];

(*(11) - Modified weighted state with random

phase: Chosen basis vectors are attributed weight corresponding to their binary representation

and random phase.*)

varWeightedState3 = Table[0, {i, varComplexity}];

(varWeightedState3[[# + 1]] = (1/# ) Exp[I RandomReal[{0, 2 Pi}]]) & /@

Table[funcListToInteger@Table[If[j ≥ i, 1, 0], {j, varNOfPoints}], {i, varNOfPoints}];

varWeightedState3 = Normalize[varWeightedState3];

(*In the following variable all the states are stored in denoted order,

so the state actually chosen for the computation can be easily reffered to in the following.*)

varStateLibrary = {varStateAllRandom, varStateRandomPhase, varStateLinearAmp, varStateGaussian,

varStateOppositePhase, varStateConstant, varExperimentalState1, varExperimentalState2,

varWeightedState, varWeightedState2, varWeightedState3};

varChosenState = 1;

(*Choosing the state for the following computation*)

varState = varStateLibrary[[varChosenState]];

(*The two following calls compute the entropy of a single point and between two points. For

each computation the result is a two-field array,

first field containing the result itself and the other indices of the subsystems the entropy

corresponds to.*)

varPairwiseEntropy =

Chop[

{Total[N[-Log[#] #] & /@ DeleteCases[Eigenvalues[funcReduceMatrixFromState[#, varState]], N[0] 0]],

#} & /@ Subsets[Range[varNOfPoints], {2}]];

varPointwiseEntropy =

Chop[

{Total[N[-Log[#] #] & /@ DeleteCases[Eigenvalues[funcReduceMatrixFromState[#, varState]], N[0] 0]],

#} & /@ Subsets[Range[varNOfPoints], {1}]];

(*The following function computes the pairwise information for all pairs while preserving

also the information of which pair does the result correspond to.*)

funcComputeInformation[pairwise_List, pointwise_List] := Module[{locvarOutput = {}},

For[k = 1, k ≤ Length[pairwise], k++,

AppendTo[locvarOutput, {-pairwise[[k, 1]] + pointwise[[pairwise[[k, 2, 1]], 1]] +

pointwise[[pairwise[[k, 2, 2]], 1]], pairwise[[k, 2]]}];

];

locvarOutput

];

varInformationOfPairs = funcComputeInformation[varPairwiseEntropy, varPointwiseEntropy];

(*This command prepeares the table of the distances to be filled in in the next step.*)

varDistances = Table[0, {i, varNOfPoints}, {j, varNOfPoints}];

(*This fills in the table of varDistances symmetrically. Currently the formula is distance=

-Ln[mutual information].*)

For[k = 1, k <= Length[varInformationOfPairs], k++,

varDistances[[varInformationOfPairs[[k, 2, 1]], varInformationOfPairs[[k, 2, 2]]]] =

varDistances[[varInformationOfPairs[[k, 2, 2]], varInformationOfPairs[[k, 2, 1]]]] =

funcDistanceFunction[varInformationOfPairs, k];

];

varDistances // MatrixForm;

"The calculation took " <> ToString[AbsoluteTime[] - varTime] <> " seconds"
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A.3: Cell that assesses the maximal dimension of the exact embedding
(*Choose, which point will be the origin (can be either set or randomly chosen). The number

identifies the point by its column/row in the table of distances.

Choosing the point in such a way can lead to translation of the final set of points after the computation,

but should not affect the result otherwise.*)

varOriginIndex = 1;

(*Definition of the triple product function accoring to the article.*)

funcTP[dist_, i_Integer, j_Integer, k_Integer] := 1/ 2 (dist[[i, k]]^2 + dist[[j, k]]^2 - dist[[i, j]]^2);

(*A boole to check later, if the dimension of the space into which the embedding will be done,

will have been computed during the calculation or will be preset*)

varMaxDimComputed = True;

(*Determination of volumes of all simplices up to the order of the number of the vertices. From the end:

The last Range creates the set of all available orders of the simplices.

Then the Subsets command takes appropriate n-tuples of vertices while making sure to not pick origin,

or otherwise the volume would need to be 0.

The the main function produces the Table of triple products between all pairs from given n-

tuple and the origin and appropriate Determinant, square Root and Normalization is done

The results are rounded (Chopped) for very small values, for the next steps to be sensible.*)

varNOfSamplePoints = varNOfPoints - 1;

"Number of sample points ≤ total number of points: " <> ToString[varNOfSamplePoints ≤ varNOfPoints]

(*Sample points indices*)

varSamplePoints = RandomSample[DeleteCases[Range[varNOfPoints], varOriginIndex], varNOfSamplePoints];

(*Simplices volumes*)

varSimplexVolume =

Chop[

(1/#1! (Sqrt[Det[Table[funcTP[varDistances, i, j, varOriginIndex], {i, #1}, {j, #1}]]] & /@

Subsets[varSamplePoints, {#1}]) & /@ Range[varNOfSamplePoints]), 10^-7];
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A.4: Cell that checks the triangle inequality satisfaction and computes the co-
ordinates of the embedding

varCounter = 0;

"Points not satisfying the triangle inequality (if any):"

varNote = Table[

If[varDistances[[i, j]] + varDistances[[j, k]] ≥ varDistances[[i, k]], True, Print[{i, j, k, varCounter}];

varCounter++; False],

{i, varNOfPoints}, {j, varNOfPoints}, {k, varNOfPoints}];

(*Check if triangle inequality is satisfied.*)

boolTriangleInequality = And @@ Flatten[varNote];

"Triangle equality is satisfied: " <> ToString[boolTriangleInequality]

(*Check if all volumes are real.*)

boolZeroImaginaryPart = Map[Im[#1] ⩵ 0 &, varSimplexVolume, {2}];

boolFlatGraph = And @@@ boolZeroImaginaryPart;

varHighestFlatDimension = Module[{locvarOutput = 0},

While[ locvarOutput < Length[boolFlatGraph],

If[boolFlatGraph[[locvarOutput + 1]] ⩵ True, locvarOutput++, Break[]] ;

];

locvarOutput

];

"The highest flat dimension of the graph is: " <> ToString[varHighestFlatDimension]

(*Determination of the highest order of simplices for which there exists at least one with

nonzero volume. It creates a List and into each field it puts either the ordinal number of the field,

if there exists a simplex of nonzero volume for given order, or 0,

if all simplices of given order have 0 volume. Then it takes the maximum as the dimension of the space,

into which the points are to be embedded. It also writes this dimension in the end.*)

varNonzeroSimplices = Table[If[varSimplexVolume[[i]] ≠ Array[0 &, Length[varSimplexVolume[[i]]]], i, 0],

{i, varNOfSamplePoints}];

varMaxDim = Module[{locvarOutput = {}, k = 0},

While[varNonzeroSimplices[[k + 1]] ≠ 0 && boolFlatGraph[[k + 1]],

k++;

];

k

];

varMaxDimComputed = True;

(*For reason of caluclational difficulty the acquisition of the dimension from the simplices

volume can be skipped, but then the dimension of the space into which we want to embedd the

points needs to be specified manually*)

varPresetDim = False;

varMaxDim = If[varMaxDimComputed, varMaxDim, varPresetDim];

"Maximal dimension is " <> ToString[varMaxDim]

(*The basis simplex is chosen to be the one,

whose points are in distance table specified by rows/columns {1,2,3,...} with possibly skipping the origin,

if needed.

The function then assings to each point its coordinates in n-

dimensional space within the basis given by the above chosen simplex.*)

varBasisSimplex = DeleteCases[Range[varNOfPoints], varOriginIndex][[1 ;; varMaxDim]];

funcF[x_Integer] := Table[funcTP[varDistances, x, varBasisSimplex[[i]], varOriginIndex], {i, varMaxDim}];

varCoordinates1 = Table[funcF[i], {i, varNOfPoints}];

(*Turning the coordinates back to the cartesian coordinates

1st step: the metric of the current space is g=<x_i,x_j,x_0>^-1, i,

j goes through the vertices of the reference simplex.*)

varTableOfTP = varCoordinates1[[varBasisSimplex]];

(*step 2: finding the transformation matrix to cartesian space

(basically, (u,v)=u.g.v, where u,v are vectors with coordinates with respect to the basis

simplex' edges. What we do is, that we find R such,

that g=RR and so (u,v)=u.R.R.v and so R.u and R.v are coordinates of u and v with respect

to cartesian unit basis. This is called the Cholesky Decomposition*)

varTransformationMatrix = CholeskyDecomposition[(# + Transpose[#])/ 2 &@Inverse[varTableOfTP]];

(*step 3: applying the transformation to acquire the coordinates of the points in euclidean

space with unit metric. The transpose is there in order to have the coordinates in rows

for easier computation.*)

varCoordinates2 = (varTransformationMatrix.varCoordinates1);

(*Move the points to the center, so that the average of each of their coordinates is 0*)

varCoordinatesTranslation = Table[-Total[varCoordinates2[[All, i]]]/ varNOfPoints, {i, varMaxDim}];

varCoordinates2 = Map[# + varCoordinatesTranslation &, varCoordinates2, 1];

varGraphOfEmbedding3D =

If[varMaxDim ⩵ 3, ListPointPlot3D[varCoordinates2, AspectRatio → 1, ImageSize → Large]]

varGraphOfEmbedding2D = If[varMaxDim ⩵ 2, ListPlot[varCoordinates2, AspectRatio → 1, ImageSize → Large]]
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varCounter = 0;

"Points not satisfying the triangle inequality (if any):"

varNote = Table[

If[varDistances[[i, j]] + varDistances[[j, k]] ≥ varDistances[[i, k]], True, Print[{i, j, k, varCounter}];

varCounter++; False],

{i, varNOfPoints}, {j, varNOfPoints}, {k, varNOfPoints}];

(*Check if triangle inequality is satisfied.*)

boolTriangleInequality = And @@ Flatten[varNote];

"Triangle equality is satisfied: " <> ToString[boolTriangleInequality]

(*Check if all volumes are real.*)

boolZeroImaginaryPart = Map[Im[#1] ⩵ 0 &, varSimplexVolume, {2}];

boolFlatGraph = And @@@ boolZeroImaginaryPart;

varHighestFlatDimension = Module[{locvarOutput = 0},

While[ locvarOutput < Length[boolFlatGraph],

If[boolFlatGraph[[locvarOutput + 1]] ⩵ True, locvarOutput++, Break[]] ;

];

locvarOutput

];

"The highest flat dimension of the graph is: " <> ToString[varHighestFlatDimension]

(*Determination of the highest order of simplices for which there exists at least one with

nonzero volume. It creates a List and into each field it puts either the ordinal number of the field,

if there exists a simplex of nonzero volume for given order, or 0,

if all simplices of given order have 0 volume. Then it takes the maximum as the dimension of the space,

into which the points are to be embedded. It also writes this dimension in the end.*)

varNonzeroSimplices = Table[If[varSimplexVolume[[i]] ≠ Array[0 &, Length[varSimplexVolume[[i]]]], i, 0],

{i, varNOfSamplePoints}];

varMaxDim = Module[{locvarOutput = {}, k = 0},

While[varNonzeroSimplices[[k + 1]] ≠ 0 && boolFlatGraph[[k + 1]],

k++;

];

k

];

varMaxDimComputed = True;

(*For reason of caluclational difficulty the acquisition of the dimension from the simplices

volume can be skipped, but then the dimension of the space into which we want to embedd the

points needs to be specified manually*)

varPresetDim = False;

varMaxDim = If[varMaxDimComputed, varMaxDim, varPresetDim];

"Maximal dimension is " <> ToString[varMaxDim]

(*The basis simplex is chosen to be the one,

whose points are in distance table specified by rows/columns {1,2,3,...} with possibly skipping the origin,

if needed.

The function then assings to each point its coordinates in n-

dimensional space within the basis given by the above chosen simplex.*)

varBasisSimplex = DeleteCases[Range[varNOfPoints], varOriginIndex][[1 ;; varMaxDim]];

funcF[x_Integer] := Table[funcTP[varDistances, x, varBasisSimplex[[i]], varOriginIndex], {i, varMaxDim}];

varCoordinates1 = Table[funcF[i], {i, varNOfPoints}];

(*Turning the coordinates back to the cartesian coordinates

1st step: the metric of the current space is g=<x_i,x_j,x_0>^-1, i,

j goes through the vertices of the reference simplex.*)

varTableOfTP = varCoordinates1[[varBasisSimplex]];

(*step 2: finding the transformation matrix to cartesian space

(basically, (u,v)=u.g.v, where u,v are vectors with coordinates with respect to the basis

simplex' edges. What we do is, that we find R such,

that g=RR and so (u,v)=u.R.R.v and so R.u and R.v are coordinates of u and v with respect

to cartesian unit basis. This is called the Cholesky Decomposition*)

varTransformationMatrix = CholeskyDecomposition[(# + Transpose[#])/ 2 &@Inverse[varTableOfTP]];

(*step 3: applying the transformation to acquire the coordinates of the points in euclidean

space with unit metric. The transpose is there in order to have the coordinates in rows

for easier computation.*)

varCoordinates2 = (varTransformationMatrix.varCoordinates1);

(*Move the points to the center, so that the average of each of their coordinates is 0*)

varCoordinatesTranslation = Table[-Total[varCoordinates2[[All, i]]]/ varNOfPoints, {i, varMaxDim}];

varCoordinates2 = Map[# + varCoordinatesTranslation &, varCoordinates2, 1];

varGraphOfEmbedding3D =

If[varMaxDim ⩵ 3, ListPointPlot3D[varCoordinates2, AspectRatio → 1, ImageSize → Large]]

varGraphOfEmbedding2D = If[varMaxDim ⩵ 2, ListPlot[varCoordinates2, AspectRatio → 1, ImageSize → Large]]
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A.5: Computation of MDS embedding
(*Implementation of the multidimensional scaling*)

varB =

Table[

-1/ 2 (varDistances[[i, j]]^2 - Total[# ^2 & /@ varDistances[[i]]]/ varNOfPoints -

Total[# ^2 & /@ varDistances[[All, j]]]/ varNOfPoints +

Sum[varDistances[[k, l]]^2, {k, varNOfPoints}, {l, varNOfPoints}]/ varNOfPoints^2),

{i, varNOfPoints}, {j, varNOfPoints}];

varESystem = Eigensystem[varB];

(*Note: in transpose form the Eigensystem produces a list of pairs,

1st member of the pair being an eigenvalue and 2nd the corresponding eigenvector. So the zero

eigenvalue and their eigenvectors can be easily deleted.*)

varESystem = DeleteCases[Chop[varESystem], {0, _}];

varCoordinatesFromMDS =

Table[Sqrt[varESystem[[1, i]]] Normalize[varESystem[[2, i]]], {i, Length[varESystem[[1]]]}];

A.6: Cell that prints the resulting coordinates and checks, if both embeddings
are properly centred

(*Comparison of results of the coordinates. Each ROW! corresponds to the coordinates of a point.*)

Chop[varCoordinates2] // MatrixForm

Chop[varCoordinatesFromMDS] // MatrixForm

(*The two following lines show that the embeddings are centered at origin*)

Table[Chop[Total[varCoordinates2[[All, i]]]], {i, Length[varCoordinates2[[1]]]}]

Table[Chop[Total[varCoordinatesFromMDS[[All, i]]]], {i, Length[varCoordinatesFromMDS[[1]]]}]

A.7: Cell that computes and compares the distances of individual points from
the origin for both embeddings. Also computes distortion for MDS

(*Computing the distances from origin for all available embedding methods.*)

varDistancesFromOrigin1 = Chop[Total[# ^2 & /@ varCoordinates2, {2}]]

varDistancesFromOrigin2 = Chop[Total[# ^2 & /@ varCoordinatesFromMDS, {2}]]

(*Comparison of distances of the points from the origin for different embeddings.*)

varComparisonOfDistances = Table[varDistancesFromOrigin1[[i]]/ varDistancesFromOrigin2[[i]],

{i, Length[varCoordinatesFromMDS[[1]]]}]

(*Computing the distorsion. If n-th number from left is sufficiently small,

n is the number of dimensions of the space, into which the points are well embedded*)

varDistortionParameter = Table[1 - Total[varESystem[[1, 1 ;; i]]]/ Total[varESystem[[1]]],

{i, Length[varESystem[[1]]]}]
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