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Seasonal mortality and its application in
life insurance

Department of Probability and Mathematical Statistics

Supervisor of the bachelor thesis: prof. RNDr. Tomáš Cipra, DrSc.
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Introduction
The uncertainty of human life is something many institutions have to take into
consideration. This topic is important primarily for insurance companies and
banks. There is a number of models being used, however with the mortality data
changing, new models are constantly being developed in the hopes of maximizing
profit.

Reasons for contracting insurance are to protect one self against unexpected
events and their negative consequences. Short term life insurance may not be as
common as long term life insurance, but there is a number of situations where it’s
important. Examples include: traveling, taking part in a risky event, business
loans and personal loans. In case of death of the insured individual, the insurance
should cover the costs of the loss events.

The goal for this thesis is to look at various principles being used to model
the mortality behavior and apply our findings to specific data in the case of a
short term life insurance policy.

The first chapter summarizes theoretical principles used in life insurance as
well as commonly used notations and formulas. We mention various types of
common life insurance policies and ways of calculating corresponding net premi-
ums.

In the second chapter we introduce the uniform distribution assumption, con-
stant force of mortality assumption, Balducci assumption and deduce correspond-
ing distribution functions and probability density functions. We predict an inade-
quate reflection of the variability of mortality data throughout the year. Therefore
we then introduce the seasonal mortality assumption developed by Fernández-
Durán [2004]. This assumption uses non-negative trigonometric sums (shortly
NNTS) for modeling circular distribution, for which the distribution function
and density function is also derived. We elaborate on fitting the NNTS distribu-
tion using the method of maximum likelihood. The equations for the calculation
of net single premiums under these assumptions are also deduced in this chapter.

In the third chapter we work with data provided by the Czech Statistical Of-
fice. We analyze the behavior of monthly mortality rates throughout the year.
Graphically comparing the empirical data with the introduced typical assump-
tions on fractional ages confirms the previous hypothesis about the variability
of the data not being reflected when using these assumptions. We estimate the
parameters for fitting the data using a probability density function of the distribu-
tion based on non-negative trigonometric sums. We are thereby able to calculate
monthly premiums using the seasonal mortality assumption and compare them
with results using classical assumptions.
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1. Actuarial Principles of Life
Insurance

1.1 Mortality in Life Insurance
Life insurance is a form of insurance in which a person makes regular payments
to an insurance company, in return for a sum of money to be paid to this person
after a period of time, or to other beneficiaries if this person dies.

The definition of mortality we will be using is the number of deaths in a given
time and place. Mortality rate is the proportion of deaths to population. These
statistical data are used for constructing life tables. Life tables are standard
tools used in life insurance. They contain probabilities of a person aged x dying
within one year. When underwriting a life insurance policy, the insurer has to
take into consideration mainly the age of the individual and the probabilities of
death within a time period.

1.1.1 Probabilities in Life Insurance
We would like to examine the future lifetime of a person aged x years (see Gerber
[1990]). This is a random variable which we’ll denote as T(x), shortly T.
T is usually not an integer. Let’s consider

T (x) = K(x) + S(x), (1.1)

where K is the amount of integer years the person lives and S is a fraction of the
last year of their life.
The probability distribution function of T is given by the probability that the
lifetime of a x aged person will be less than or equal to t years. We well denote
this distribution function as

G(t) = P (T ≤ t) for any t ≥ 0. (1.2)

We can expect G to be continuous and available from suitable life tables of a
population.
We will denote the probability density of T as the probability that the person
will die between the time x+t and x+t+dt for infinitesimal dt:

g(t)dt = P (t < T < t + dt). (1.3)

We will be using the following usual notation. In the case t=1, the index t is not
written:
The probability of a person aged x dying within t years:

tqx = G(t). (1.4)

The probability of a person aged x surviving at least t years:

tpx = P (T > t) = 1 − tqx. (1.5)
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The probability of a x aged person surviving s years and dying withing the next
t years:

s|tqx = P (s < T < s + t) = G(s + t) − G(s) = s+tqx − sqx. (1.6)

The conditional probability of a person dying within t years, after surviving s
years:

tpx+s = P (T > s + t|T > s) = 1 − G(s + t)
1 − G(s) . (1.7)

The conditional probability of a person surviving t more years, after surviving s
years before:

tqx+s = P (T ≤ s + t|T > s) = G(s + t) − G(s)
1 − G(s) . (1.8)

The expected lifetime of a x aged person:
oex = E[T ] =

∫︂ ∞

0
tg(t)dt. (1.9)

The force of mortality is defined as

µx+t = g(t)
1 − G(t) = − d

dt
ln(1 − G(t)) = − d

dt
ln(xpt) (1.10)

which implies
xpt = e−

∫︁ t

0 µx+sds. (1.11)

The probability of dying between t and t+dt:

P (t < T < t + dt) = tpxµx+tdt. (1.12)

The random variable K(x) in (1.1) is defined as the curated future lifetime of
a person aged x. The probability distribution of K(x) is

P (K(x) = k) = P (k ≤ T < k + 1) = kpxqx+k. (1.13)

For K(x) and S(x), the following equation holds

P (S(x) ≤ s|K(x) = k) = sqx+k

qx+k

. (1.14)

1.1.2 The Principle of Equivalence
The insurer of a life insurance wants to avoid generating loss L. Loss is the
difference between the present values of benefits and premiums. The principle of
equivalence states that the present value of the benefits and premiums should be
equal, making the expected value of the loss equal to 0.

E[L] = 0. (1.15)
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1.2 Actuarial formulas

1.2.1 Standard Life Insurance Formulas
Firstly let’s consider a fixed annual effective interest rate i, and an equivalent
annual nominal interest rate i(m) compounded m times per year.

(1 + i(m)

m
)m = 1 + i (1.16)

If we consider continuous compounding, we get the force of interest δ.

δ = lim
m→∞

i(m) (1.17)

The following relations hold:
δ = ln(1 + i)

eδ = 1 + i

e−δ = v. (1.18)

Let d, defined as
d = i

1 + i
(1.19)

be interpreted as interest in advance(i discounted). We get the following equa-
tions for d(m) which is the equivalent nominal interest in advance compounded m
times per year:

d(m) = i(m)

1 + i(m)/m
=⇒ 1

d(m) = 1
m

+ 1
i(m) (1.20)

from which we obtain
lim

m→∞
d(m) = lim

m→∞
i(m) = δ. (1.21)

We denote Z as the present value of the sum insured. The payment is discounted
using a fixed interest rate i, so-called technical interest rate. The net single
premium is E(Z), the expected present value of the sum insured. We will firstly
look at some insurance products with the assumption that the insured sum is
payable at the end of the year, if not stated otherwise. (Gerber [1990])

• Whole life insurance
In the case of a whole life insurance, a fixed monetary unit is payable at the
end of the year of death (K+1). The present value of the sum insured is

Z = v(K+1). (1.22)

Since the time of death is a random variable, Z is also random. To calculate
the net single premium, we must know the distribution of Z.

P (Z = v(K+1)) = P (K = k) = kpxqx+k for k = 0, 1, 2.... (1.23)

We denote the net single premium as Ax,

Ax = E[Z] = E[v(K+1)] =
∞∑︂

k=0
v(K+1)

kpxqx+k. (1.24)
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• Term insurance of duration n
The sum insured is payable only in the case of death occuring within n years
and nothing is payed if the person survives n years. The present value of
the insured sum is

Z =

⎧⎨⎩v(K+1) for K = 0, 1, ..., n − 1
0 for K = n, n + 1, ...

(1.25)

We denote the net single premium as A1
x:n :

A1
x:n =

n−1∑︂
k=0

v(k+1)
kpxqx+k.

• Pure endowment of duration n
The payment occurs if the person is alive after n years. Otherwise no
payment is made.

Z =

⎧⎨⎩0 for K = 0, 1, ..., n − 1
vn for K = n, n + 1, ...

(1.26)

We denote the net single premium as Ax:
1
n :

Ax:
1
n = vn

npx. (1.27)

• Endowment
The payment occurs at the end of the year of death if K < n. Otherwise,
if the person survives n years, it occurs at the end of the nth year. This
insurance type is a combination of a term insurance of duration n and a
pure endowment of duration n. Giving us the present value of the sum
insured as

Z =

⎧⎨⎩vK+1 for K = 0, 1, ..., n − 1
vn for K = n, n + 1, ...

(1.28)

The net single premium is denoted asAx:n . Since Z can be expressed as
the sum of the two previously mentioned insurance types, the net single
premium can be calculated as

Ax:n = A1
x:n + Ax:

1
n . (1.29)

• m year deferred whole life insurance
The payment occurs at the end of the year of death if K ≥ m, otherwise
nothing is payed.

Z =

⎧⎨⎩0 for K = 0, 1, ..., m − 1
vK+1 for K = m, m + 1, ...

(1.30)

The net single premium is

m|Ax = mpxvmAx+m. (1.31)
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• Insurance payable at time T

Z = vT . (1.32)
The net single premium Āx must be calculated continuously as follows

Āx =
∫︂ ∞

0
vt

tpxµx+tdt. (1.33)

where tpxµx+t is the probability of death occurring between t and t+dt
mentioned in (1.12). From the equation T = K + S we can express the net
single premium as

Āx = E[vK+1]E[(1 + i)1−S] = i

δ
Ax. (1.34)

1.2.2 Standard Life Annuities Formulas
We will firstly mention some formulas, which will be used in specific life annuity
products. (Gerber [1990])
A series of n payments of 1 unit made at the beginning of each time period is
called an annuity-due. The present value is

än = 1 + v + v2 + ... + vn = 1 − vn

d
. (1.35)

A different approach to represent än could be as a difference of a perpetuity
starting at time 0 and a perpetuity starting at time 1. We obtain the following
relationship: än = ä∞ − vn ä∞
A series of n payments made at the end of each period is called an immediate
annuity. The present value is

an = v + v2 + ... + vn = 1 − vn

i
. (1.36)

We denote Y as the present value of a stream of payments the beneficiary obtains
while alive. Y depends on the random variable T, making Y a random variable.
The net single premium is E(Y).

• Whole life annuity-due
Beneficiary receives one unit annually at the beginning of a period until he
dies.

Y = 1 + v + v2 + ... + vK = äK+1 =
∞∑︂

k=0
vk1K≥k. (1.37)

To calculate the net single premium, we must first express the distribution
of Y.

P (Y = äK+1 ) = P (K = k) = kpxqx+k. (1.38)
Then the net single premium äx is

äx = E[Y ] = E[äK+1 ] =
∞∑︂

k=0
äK+1 kpxqx+k. (1.39)
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If we consider
Y = 1 − vK+1

d
= 1 − Z

d
, (1.40)

then the net single premium can be also written as

äx = 1 − Ax

d
. (1.41)

• n-year life annuity-due
The beneficiary receives annually in advance one unit while surviving the
next n years. The present value of Y is

Y =

⎧⎨⎩äK+1 for K = 0, 1, ..., n − 1
än for K = n, n + 1, ...

(1.42)

The net single premium is

äx:n =
∞∑︂

k=0
äk+1 npxqx+k + än npx. (1.43)

• Immediate life annuity
In case of immediate annuities, the beneficiary makes payments at the end
of time periods:

Y = v + v2 + v3 + ... + vK = aK . (1.44)

The net single premium is

ax = äx − 1. (1.45)

• m year deferred life annuity-due
The beneficiary receives annual payments in advance starting at year m.

Y =

⎧⎨⎩0 for K = 0, 1, .., m − 1
vm + vm+1 + ... + vK for K = m, m + 1, ...

(1.46)

The net single premium is

m|äx = npxvm äx+m. (1.47)

• Payments made m times per year
Payments 1/m are made at the beginning of each time segment. We can
denote the net single premium due to (1.41)

ä(m)
x = 1

d(m) − 1
d(m) A(m)

x . (1.48)
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1.2.3 Net Premium Calculation
We define a net premium as the premium satisfying the principle of equivalence.
The insured can pay a single net premium at the beginning, constant periodic
level premiums, or varying periodic premiums. In the case of a single premium,
we have already described the net single premium calculations in the previous
section. Let’s list ways of calculating constant annual premiums in various types
of insurance. (Gerber [1990])

• Whole Life Insurance
The insured pays net annual premiums at the beginning of each year and a
receives an insured sum of 1 at time K +1. We denote the annual premiums
as Px :

L = vK+1 − Px äK+1 =⇒ Px = Ax

äx

. (1.49)

• Term Insurance of duration n
The insured pays net annual premiums at the beginning of each year for n
years. He receives the insured amount at time K +1 in case of death within
n years:

L =

⎧⎨⎩vK+1 − P 1
x:n äK+1 for K = 0, 1, ..., n − 1

−P 1
x:n for K = n, n + 1, ...

(1.50)

Then the net annual premium is:

P 1
x:n = A1

x:n

äx:n
. (1.51)

• Pure Endowment of duration n
If the insured is alive after n years, the insured amount is payed:

L =

⎧⎨⎩−Px:
1
n äK+1 for K = 0, 1, ...n − 1

vn − Px:
1
n än for K = n, n + 1, ...

(1.52)

Then the net annual premium is

Px:
1
n = Ax:

1
n

äx:n
. (1.53)

• Endowment
The annual net premium in this insurance type explained in 1.2.1 is

Px:n = Ax:n

äx:n
. (1.54)
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2. Seasonal mortality in life
insurance
The seasonal mortality effect can be observed in many countries, with usual
reports of a 5% to 30% winter excess mortality (Healy [2003]). What interest us
is the mathematics in this occurrence, specifically applied to short life insurance.
Short term life insurance usually covers a period less than one year, with monthly
premiums or a single premium payed in advance.

One of the possible approaches to this problem is described in Fernández-
Durán and Gregorio-Domı́nguez [2015]. This paper addresses the problem of
calculating net premiums in short term life insurance, taking into consideration
seasonal mortality. The authors approach this problem by using circular distri-
butions based on non-negative trigonometric sums (NNTS circular distributions)
to model monthly mortality data.

2.1 Typical assumptions for fractional ages
The random variables which we will be working with T (x), K(x), S(x) have been
defined in section 1.1.1. S(x) = T (x) − K(x) being the fraction of a person’s last
year. The seasonal mortality assumption will be expressed using the probability
density function of S(x) conditional on K(x) = k for a person born in month b

f b
S(x)|K(x)=k(s) for s ∈ (0, 1) (2.1)

defined for k an integer and s ∈ (0, 1) as

f b
S(x)|K(x)=k(s) = d

ds
F b

S(x)|K(x)=k(s), (2.2)

where the distribution function is defined as

F b
S(x)|K(x)=k(s) = P (S(x) ≤ s|K(x) = k) =

= P (S(x) ≤ s ∩ K(x) = k)
P (K(x) = k) = P (k < T (x) ≤ k + s)

P (k < T (x) ≤ k + 1) = FT (x+k)(s)
FT (x+k)(1) . (2.3)

Let’s consider three assumptions often used for fractional ages (see Fernández-
Durán and Gregorio-Domı́nguez [2015] or Gerber [1990]) which use life tables to
compute necessary probabilities. All these assumptions imply the probability of
death that do not dependent on b:

• Uniform distribution of deaths

Let’s assume uniform distribution for fractional ages. From (2.2) and (2.3)
we can express the distribution function of T (x + s) and the probability
density function for the fractional ages as follows

F b
S(x)|K(x)=k(s) = FT (x+k)(s)

FT (x+k)(1) = s,
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i.e.
FT (x+k)(s) = sFT (x+k)(1). (2.4)

One obtains obviously

f b
S(x)|K(x)=k(s) = fS(x)|K(x)=k(s) = 1. (2.5)

We can conclude that the probability of death in this assumption does not
depend on the month of birth and random variables S(x) and K(x) are
independent.

• Constant force of mortality

Assuming for 0 < s < 1 that µx+u is constant, let’s denote it by µ. From
(1.10) and (1.11) we can express the force of mortality and the probability
of an individual surviving a fraction of a year s (see Gerber [1990]):

µ = − ln px, (2.6)

spx = e−µs = (px)s. (2.7)

From the equations above and (1.14) we obtain the following relationship

P (S(x) ≤ s|K(x) = k) = 1 − spx+k

qx+k

= 1 − (px+k)s

qx+k

. (2.8)

The distribution function FT (x+s)(1) represents the probability of a person
aged x+k surviving one year at most. This can also be also expressed as
1 − px+k = qx+k. Applying this to our desired distribution function we
obtain

FT (x+k)(s)
FT (x+k)(1) = 1 − (px+k)s

qx+k

= 1 − (1 − FT (x+k)(1))s

FT (x+k)(1) ,

i.e.
FT (x+k)(s) = 1 − (1 − FT (x+k)(1))s. (2.9)

Substituting FT (x+s)(1) with 1 − px+k and qx+k results in

F b
S(x)|K(x)=k(s) = 1 − (px+k)s

qx+k

. (2.10)

We can easily calculate the derivative, considering ps
x+k = e−µs

f b
S(x)|K(x)=k(s) = d

ds

1 − e−µs

qx+k

= 1
qx+k

µe−µs. (2.11)

We see that S(x) and K(x) are not independent, but the probability of
death in this assumption again does not depend on the month of birth.
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• Balducci assumption

The Balducci assumption assumes the linearity of the reciprocal of the sur-
vival function (see Gerber [1990] or Hossain [2011]) .

1−sqx+s = (1 − s)qx. (2.12)

Hence we can write

spx = px

1−spx+s

= 1 − qx

1 − (1 − s)qx

. (2.13)

To calculate the force of mortality, we need the following derivative

d

ds
ln spx = −1 − (1 − s)qx

1 − qx

1 − qx

(1 − (1 − s)qx)2 qx. (2.14)

Then we use (1.10) to obtain

µx+s = qx

1 − (1 − s)qx

. (2.15)

The following relationship

sqx+k = 1 − spx+k = 1 − 1 − qx+k

1 − (1 − s)qx+k

= sqx+k

1 − (1 − s)qx+k

(2.16)

and (1.14) lead to

P (S(x) ≤ s|K(x) = k) = s

1 − (1 − s)qx+k

= FT (x+k)(s)
FT (x+k)(1) . (2.17)

We can express the distribution function of T (x + k) for fractional ages as

FT (x+k)(s) = sFT (x+k)(s)
1 − (1 − s)FT (x+k)(1) . (2.18)

The derivative of the distribution function (3.17) gives the probability den-
sity function

f b
S(x)|K(x)=k(s) = fS(x)|K(x)=k(s) = 1 − qx+k

(1 − (1 − s)qx+k)2 . (2.19)

In conclusion, the random variables S(x) and K(x) are not independent in
the Balducci assumption and the probabilities of death does not depend on
b.

When these assumptions are used to calculate mortality rates for each month, the
variability typical in data collected throughout the year is not reflected. To reflect
the varying mortality rates, a seasonal mortality assumption was introduced.
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2.2 Seasonal mortality assumption
Fernández-Durán [2004] has developed circular distributions based on
non-negative trigonometric sums, following research done by Fejér [1915] and
Dimitrov [2002]. We will be using these circular distributions (shortly NNTS)
to model mortality. The random variable S(x)|K(x) = k will be modeled as a
circular random variable (see Fernández-Durán and Gregorio-Domı́nguez [2015]).
The distribution for a circular random variable θ measured in radians is expressed
by Fernández-Durán [2004] as a non-negative trigonometric sum

fθ(θ; c, M) = ||
M∑︂

k=0
ckeikθ||2, 0 ≤ θ ≤ 2π, (2.20)

which can also be written as

fθ(θ; c, M) =
M∑︂

k=0

M∑︂
m=0

ckc̄mei(k−m)θ, 0 ≤ θ ≤ 2π, (2.21)

where c and M are parameters, (ck are complex numbers), M is the order of the
trigonometric sum and i =

√
−1.

To express parameters of the probability density function given the complex num-
bers ck, we use the following theorem by Dimitrov [2002]:

T heorem : The trigonometric polynomial

T (θ) = a0 +
n∑︂

k=1
(ak cosk θ + bk sink θ) (2.22)

of order n is non-negative for every real θ if and only if there exist complex
numbers ck, k = 0, 1, ..., n such that

a0 =
n∑︂

k=0
|ck|2, (2.23)

ak − ibk = 2
n−k∑︂
v=0

ck+v c̄v for k = 1, ..., n. (2.24)

Since the trigonometric sum must integrate to one in order to be a probability
density function, we add the following constraint:

a0 =
n∑︂

k=0
|ck|2 = 1

2π
. (2.25)

We can write the probability density function for our circular random variable
defined by Fernández-Durán [2004] as

f(θ; c, M) = 1
2π

+ 1
π

M∑︂
k=1

(ak cos(kθ) + bk sin(kθ)), 0 ≤ θ ≤ 2π. (2.26)
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2.3 Fitting of NNTS distribution
In Fernández-Durán and Gregorio-Domı́nguez [2015] one suggests the estimation
of NNTS distribution using the method of maximum likelihood. Let’s define
c = (c0, ..., cM)′ as the vector of complex parameters in the sum of order M . Let’s
define the vector of observations as N = (N1, ..., N12), where Nk is the number of
deaths during the k-th month for an age group we are examining, for k = 1, ..., 12.
The likelihood function is (Fernández-Durán and Gregorio-Domı́nguez [2015])

L(c, M |N) =
12∏︂

r=1
(F (2πur; c, M) − F (2πur−1; c, M))Nr , (2.27)

where ur = r/12 represents the proportional part of the year at the end of month
r, and F (θ; c, M) is the accrued NNTS distribution function.
NNTS distribution can be realized using R package CircNNTS, Fernández-Durán
and Gregorio-Domı́nguez [2016] available online at
https://cran.r-project.org/package=CircNNTSR.

2.4 Calculation of net premiums in short term
life insurance

We are interested in calculating monthly premiums for one year term life insur-
ance payed at the time od death (1.33), where we have an annual force of interest
δ (1.18). In our case, we are considering an individual who was born in month b
and has already survived x years.
Firstly let’s express the net single premium for one year, and then the correspond-
ing monthly premiums. The net single premium can be expressed as

Ā1
x:1

b = E[e−δT (x)] =
∫︂ 1

0
e−δtf b

T (x)(t)dt. (2.28)

In the equation above, f b
T (x)(t) represents the probability of death at time t of a

person aged x born in month b.
The net premium can be equivalently expressed as a sum within particular months
as follows:

Ā1
x:1

b =
11∑︂

h=0

∫︂ h+1
12

h
12

e−δtf b
T (x)(t)dt. (2.29)

Here h represents the number of survived whole months. Let’s use the substitution
t = h

12 + s, where s (s ∈ [0, 1]) represents the number of survived days in the last
month. Using this substitution we obtain:

Ā1
x:1

b =
11∑︂

h=0

∫︂ 1
12

0
e−δ( h

12 +s)f b
S(x)|K(x)=0

(︄
h

12 + s|K(x) = 0
)︄

P (K(x) = 0)ds

=
11∑︂

h=0
e−δ h

12 qx

∫︂ 1
12

0
e−δsf b

S(x)|K(x)=0

(︄
h

12 + s|K(x) = 0
)︄

ds. (2.30)
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The net premium can also be written as a sum of discounted monthly premiums
multiplied by a corresponding probability of surviving a given month:

Ā1
x:1

b =
11∑︂

h=0
e−δ h

12 h
12

pb
x
Ā1

x+ h
12 : 1

12

b. (2.31)

When we put equations (2.30) and (2.31) together, we can express the monthly
premium given that the individual has survived x years and h months as

Ā1
x+ h

12 : 1
12

b = qx

h
12

pb
x

∫︂ 1
12

0
e−δsf b

S(x)|K(x)=0

(︄
h

12 + s|K(x) = 0
)︄

ds. (2.32)

In our model, S represents the fraction of the individual’s last year. The circular
random variable θ was introduced in 2.2. Since S should lie in the interval [0,1],
we will use the following transformation: t : θ → θ

2π
. From the theorem on the

transformation of continuous random variables, we obtain the expression for the
distribution function of S:

t : θ → θ

2π
= S, t−1 : S → 2πS,

∂t−1(s)
∂s

= 2π,

so that
fS(s) = fθ(t−1(s))

⃓⃓⃓⃓
⃓∂t−1(s)

∂s

⃓⃓⃓⃓
⃓ = fθ(2πs)2π. (2.33)

Let’s explain the principle reflecting the birth month on a simple example. Let’s
consider an individual born in February (b=2/12). Assuming this individual
survives 65 years and 3 months (S=3/12), death happens in May. The month of
birth is reflected, but the time the policy was issued is irrelevant. Since we can
imagine the year as a circle split into 12 months, there is a certain periodicity
occurring. Hence we express the probability density function of S(x) depending
on the month of birth as

f b
S(x)(s) = 2πfθ(2π(s + b)). (2.34)

Using (2.21) we express the density of NNTS distribution

f b
S(x)|K(x)=0(s|K(x) = 0) = 2πfθ(2π(s + b))

= 2π
M∑︂

k=0

M∑︂
m=0

ckc̄mei(k−m)2π(s+b).
(2.35)

Due to the constraint (2.25) for k = m, we obtain

f b
S(x)|K(x)=0(s|K(x) = 0) = 2π

⎡⎢⎢⎣ 1
2π

+
M∑︂

k=0

M∑︂
m=0

m ̸=k

ckc̄mei(k−m)2π(s+b)

⎤⎥⎥⎦
= 1 + 2π

M∑︂
k=0

M∑︂
m=0

m ̸=k

ckc̄mei(k−m)2π(s+b).

(2.36)
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We use this result to calculate the integral in (2.32)∫︂ 1
12

0
e−δsf b

S(x)|K(x)=0

(︄
h

12 + s|K(x) = 0
)︄

ds

=
∫︂ 1

12

0
e−δs

⎡⎢⎢⎣1 + 2π
M∑︂

k=0

M∑︂
m=0

m̸=k

ckc̄mei(k−m)2π( h
12 +s+b)

⎤⎥⎥⎦ ds

=
∫︂ 1

12

0
e−δsds + 2π

M∑︂
k=0

M∑︂
m=0

m ̸=k

ckc̄mei(k−m)2π( h
12 +b)

∫︂ 1
12

0
ei(k−m)2πs−δsds.

(2.37)

The particular integral in (2.37) can be calculated separately as follows:∫︂ 1
12

0
e−δsds = −1

δ

[︂
e−δs

]︂ 1
12

0
= 1

δ
(1 − e− δ

12 ),

∫︂ 1
12

0
es(i(k−m)2π−δ)ds = 1

i(k − m)2π − δ

[︂
es(i(k−m)2π−δ)

]︂ 1
12

0

= 1
δ − i(k − m)2π

(︂
1 − e

1
12 (i(k−m)2π−δ)

)︂
.

Hence we obtain the equation∫︂ 1
12

0
e−δsf b

S(x)|K(x)=0

(︄
h

12 + s|K(x) = 0
)︄

ds

= 1
δ

(1 − e− δ
12 ) + 2π

M∑︂
k=0

M∑︂
m=0

m ̸=k

ckc̄mei(k−m)2π( h
12 +b)

⎡⎣1 − e
1

12 (i(k−m)2π−δ)

δ − i(k − m)2π

⎤⎦ .

(2.38)

To calculate the monthly premium, the last thing we need is the probability that
an individual aged x born in month b will survive h months. This probability is
denoted as h

12
pb

x
and calculated as the complementary probability to dying within

h months:

h
12

pb
x

= 1 −
∫︂ h

12

0
f b

T (x)(t)dt

= 1 − P (K(x) = 0)
∫︂ h

12

0
f b

S(x)|K(x)=0(s|K(x) = 0)ds

= 1 − qx

∫︂ h
12

0

⎡⎢⎢⎣1 + 2π
M∑︂

k=0

M∑︂
m=0

m ̸=k

ckc̄mei(k−m)2π(s+b)

⎤⎥⎥⎦ ds

= 1 − qx

⎡⎢⎢⎣ h

12 + 2π
M∑︂

k=0

M∑︂
m=0

m ̸=k

ckc̄mei(k−m)2πb

⎛⎝1 − ei(k−m)2π h
12

−i(k − m)2π

⎞⎠
⎤⎥⎥⎦ .

(2.39)

In section 2.1 we introduced typically used assumptions for fractional ages. For
comparison we will calculate the monthly premiums using the probability density
functions obtained in the section 2.1 under these assumptions in order to compare
the results with the ones applying the NNTS distribution.
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• Uniform distribution

h
12

pb
x

= 1 − qx

∫︂ h
12

0
1ds = 1 − h

12 qx,

Ā1
x+ h

12 : 1
12

b = qx

1 − h
12 qx

∫︂ 1
12

0
e−δs1ds = qx

1 − h
12 qx

⎛⎝1 − e
1

12

δ

⎞⎠ . (2.40)

• Constant force of mortality

h
12

pb
x

= 1 − qx

∫︂ h
12

0

µe−µs

qx

ds = e−µ h
12 ,

Ā1
x+ h

12 : 1
12

b = qx

e−µ h
12

∫︂ 1
12

0
e−δs µe−µs

qx

ds = µ

e−µ h
12

⎛⎝1 − e− 1
12 (µ+δ)

δ + µ

⎞⎠ . (2.41)

• Balducci Assumption

h
12

pb
x

= 1 − qx

∫︂ h
12

0

1 − qx

(1 − (1 − s)qx)2 ds = 1 − qx

[︄
s

1 − (1 − s)qx

]︄ h
12

0

=
12
[︂
1 −

(︂
1 − h

12

)︂
qx

]︂
− hqx

12
[︂
1 −

(︂
1 − h

12

)︂
qx

]︂ = 1 − qx

1 −
(︂
1 − h

12

)︂
qx

,

Ā1
x+ h

12 : 1
12

b =
qx

[︂
1 −

(︂
1 − h

12

)︂
qx

]︂
1 − qx

∫︂ 1
12

0
e−δs 1 − qx

(1 − (1 − s)qx)2 ds

= qx

[︄
1 −

(︄
1 − h

12

)︄
qx

]︄ ∫︂ 1
12

0

e−δs

(1 − (1 − s)qx)2 ds.

After inserting into Wolfram Mathematica Inc., we obtain:

Ā1
x+ h

12 : 1
12

b

= 1
(1 − qx)qx(12 − 11qx)(e− δ

12 (1 − hqx

12 )(12(−1 + qx)qx

− e
δ

12 qx(−12 + 11qx) − e(− 11
12 + 1

qx
)δ(12 − 23qx + 11q2

x)δ

Ei

[︄(︄
11
12 − 1

qx

)︄
δ

]︄
+ e(− 11

12 + 1
qx

)δ(12 − 23qx + 11q2
x)δEi

[︄
(−1 + qx)δ

qx

]︄
)),

.

(2.42)

where

Im[q] ̸= 0, 0 < Re[q] < 1, Re[1/q] < 11/12.
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3. Application to Czech data
We are considering a one-year term life insurance where the insured individual
pays monthly premiums. We will be analyzing data collected by the Czech Statis-
tical Office, containing information about the age at death, gender and month of
death. The gender is not important in our case, since gender doesn’t pay a role in
insurance policies according to Directives of the EU. This data had been collected
throughout the years 2008-2017. Assuming the death rates are stable throughout
the years, we can calculate average monthly death rates. We calculated the rates
for 5 year interval age groups (see Table 3). Since the target age group for short
term life insurance policies is older than 20 years, we will be working with these
data from now on.

Source: Czech Statistical Office

Table 3.1: Average Czech monthly death rates

To obtain a more representative image of the mortality rates throughout the
months, we multiplied the averages by 30 and divided by the number of days in
the particular month, which is a reasonable normalization of the data.

Figure 3.1 shows the normalized empirical data compared with typical as-
sumptions for fractional ages mentioned in 2.1. For specific calculations we used
qx = 0.01 and δ = 0.04. It can be observed that the higher mortality rates at the
beginning of the year are not reflected under the typical assumptions.

Computing in R (R Development Core Team [2018]) using the CircNNTS
package (Fernández-Durán and Gregorio-Domı́nguez [2016]), we fitted our data
as shown in Figure 3.2.
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Figure 3.1: Empirical average death rates for individuals older than 20 years com-
pared with monthly dead rates calculated using typical assumptions mentioned
in 2.1
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Figure 3.2: Empirical Czech mortality data fitted by NNTS probability density
function
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We observed a best fit for M = 4 and the vector c where

c0 =0.008260735,

c1 =0.014057275 − 0.02284671i,

c2 = − 0.047886442 − 0.08647993i,

c3 = − 0.362284320 + 0.08710416i,

c4 =0.001954026 − 0.09876413i.

Higher mortality rates during winter months as well as slightly higher rates during
summer months are reflected in the fitted NNTS density function, see Figure 3.2.

3.1 Monthly Net Premium Calculations
In section 2.1 we concluded that the month of birth and the probability of death
are independent for the uniform distribution, constant force of mortality and
Balducci assumption. Hence we calculated the monthly premiums for 100000
monetary units under these assumptions using (2.40),(2.41),(2.42), where h =
0, ..., 11 and we obtained:

Table 3.2: Monthly premiums using typical assumptions for fractional ages

Under our introduced seasonal mortality assumption 2.2, we must consider
the month of birth. Assuming that the behavior of death rates during the year
does not depend on the number of survived years, (i.e. f b

S(x)|K(x) = f b
S(x) for

every x) we use the fitted NNTS density shown in Figure 3.2 for calculating the
monthly premiums shown in Table 3.3.

Table 3.3: Monthly premiums using fitted NNTS density

We can do a number of conclusions from Table 3.3. Let’s take any month, for
example March. The premiums for March calculated for an individual born in
January (b=0 and h=2) and for an individual born in November (b=10/12 and
h=4) are very similar. This can be generalized for all b and h giving the same
sum, which indicates the same considered month. In case 12b + h ≥ 12, we can
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observe a similar value for 12b + h − 12, since the survived part of the year was
defined as a circular random variable.
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Figure 3.3: Fitted NNTS density for age groups 20-24, 40-44, 60-64 and 85+
along with corresponding monthly premium amounts.
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The fact that mortality rates in the Czech Republic are higher during winter
months and slightly higher during summer months, in July in particular, is re-
flected by higher premiums during these months.

We can also analyze the patterns of monthly premiums for different age shown
in Figure 3.1, assuming that the behavior depends on the number of survived
years. We studied the age groups 20-24, 40-44, 60-64 and people aged 85 years
or more. For simplicity, we compared the monthly premiums for people born in
January. These results are shown in Figure 3.1.

It can be concluded that within the age group 20-24, an excess mortality oc-
curs during summer months rather than during winter months. With increasing
age, the the higher mortality rates during summer months decrease and mortality
rates in the winter months increase. This behavior is reflected in the monthly
premium amounts as well.

In comparison with Fernández-Durán and Gregorio-Domı́nguez [2015], we do
not observe such a strong winter excess mortality. As a consequence of this, our
results are different. Slightly different computation results, for example in the
calculations of monthly premiums using the Balducci assumption, can consist in
using different mathematical tools for computation. However, the differences are
relatively small.
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Conclusion
In this paper we firstly addressed the problematic of life insurance. We intro-
duced common life insurance products and formulas. We analyzed typically used
assumptions for modeling mortality behavior during the year: the uniform dis-
tribution of deaths, constant force of mortality and Balducci assumption.

Analyzing data about mortality in the Czech Republic, we observed the high-
est mortality rates during the months of January and February as well as an
increase during the summer months, specifically July. This was not reflected un-
der the typical assumption for fractional ages. For this reason we introduced the
seasonal mortality assumption which uses trigonometric sums for modeling the
distribution. We were able to deduce formulas for calculating monthly premiums
and compare results under various assumptions and thus to observe the effect of
seasonal mortality.

We fitted our data using the NNTS distribution, which indicated the variabil-
ity of the data throughout the year. After calculating the net premiums, we were
able to observe a significant difference between results when using the seasonal
mortality assumption and the classical assumptions. The month of birth was not
relevant in the latter, while being an important parameter in the season mortality
assumption.

Finally, the following findings are important from the practical point of view:
when insurance companies use classical assumptions for fractional ages, where
the month of birth and the month of the policy issue is not reflected, then the
monthly premiums are either undervaluated or overvaluated.
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L. Fejér. Über trigonometrische Polynome. Journal für die Reineund Angewandte
Mathematik, 146:53–82, 1915.

J. J. Fernández-Durán. Circular distributions based on nonnegative trigonometric
sums. Biometrics, 60(2):499–503, 2004.

J. J. Fernández-Durán and M. M. Gregorio-Domı́nguez. Seasonal mortality for
fractional ages in short term life insurance. Scandinavian Actuarial Journal,
2015(3):266–277, 2015.

J. J. Fernández-Durán and M. M. Gregorio-Domı́nguez. CircNNTSR: An R pack-
age for the statistical analysis of circular, multivariate circular, and spherical
data using nonnegative trigonometric sums. Journal of Statistical Software, 70
(6):1–19, 2016. doi: 10.18637/jss.v070.i06.

H. U. Gerber. Life Insurance Mathematics. Springer-Verlag, Berlin-Heidelberg
and Swiss Association of Actuaries Zürich, 1990.
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