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We present a unified analysis of the drag forces acting on oscillating bodies submerged in su-
perfluid helium such as a vibrating wire resonator, tuning forks, a double-paddle oscillator, and a
torsionally oscillating disc. We find that for high Stokes number oscillatory flows, the drag force
originating from the normal component of superfluid helium exhibits a clearly defined universal
scaling. Following classical fluid dynamics, we derive the universal scaling law and define relevant
dimensionless parameters such as the Donnelly number. We verify this scaling experimentally using
all of our oscillators in superfluid 4He and validate the results by direct comparison with classical
fluids. We use this approach to illustrate the transition from laminar to turbulent drag regime in
superfluid oscillatory flows and compare the critical velocities associated to the production of quan-
tized vortices in the superfluid component with the critical velocities for the classical instabilities
occurring in the normal component. We show that depending on the temperature and geometry
of the flow, either type of instability may occur first and we demonstrate their crossover due to
the temperature dependence of the viscosity of the normal fluid. Our results have direct bearing
on present investigations of superfluids using nano-mechanical devices [Bradley et al., Sci. Rep. 7,
4876 (2017)].
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I. PREFACE

Historically, experiments on oscillatory flows of
classical viscous fluids have been studied since the
days of G. G. Stokes [1], with many notable de-
velopments made in the last century [2–5]. Re-
cently, oscillating flows have re-emerged thanks to
developments in micro- and nanomechanical engi-
neering, where access to nano- electro-mechanical
systems (NEMS) [6–10] has offered unprecedented
sensitivity and resolution in fluid dynamical exper-
iments, allowing the transition from continuum to
ballistic (molecular) regime to be probed at easily
attainable pressures, directly probe fluid boundary
layers [9], or formulate universality relations [6–8]
for classical oscillatory flows. This work extends
such universality relations to superfluids, concen-
trating on the hydrodynamic regime; the transi-
tional and ballistic regimes will represent the sub-
ject of a later publication.

An extremely broad range of working fluids of
well-known physical properties [11–13] may be ob-
tained when traversing the different phases of he-
lium, even limiting ourselves to the common iso-
tope 4He. The normal liquid phase of 4He, known
as He I, is a highly interesting working fluid thanks
to its extremely low kinematic viscosity, ν, which
provides very high Reynolds number (Re ≈ 107)
flows in controlled laboratory experiments [14, 15].

Similarly, cryogenic He gas provides extremely
large Rayleigh numbers (Ra ≈ 1017) in convec-
tive flows [16]. Liquid 4He undergoes a super-
fluid phase transition at Tλ ≈ 2.17 K at satu-
rated vapour pressure. Superfluid 4He, or He II,
is a quantum fluid, and its flow properties cannot
be described by means of classical fluid dynamics.
According to Landau’s two-fluid model [17, 18], it
behaves as if composed of two inter-penetrating
liquids – the normal and superfluid components
– with individual velocity fields and temperature-
dependent densities. At the superfluid transition
at Tλ, the density of the normal component ac-
counts for 100% of the total density, but drops
rapidly with decreasing temperature and vanishes
for T → 0 K.

Oscillatory flows of He II have been studied us-
ing various oscillators such as discs [21, 22], piles
of discs [23], spheres [24–26], grids [27–31], tun-
ing forks [32–35], reeds [36], double paddles [37–
39], cylinders of rectangular [40] or circular cross-
section (wires) [41–44] since the discovery of super-
fluidity, and have lead to important insights to this
fundamental physical phenomenon. For reviews,
see [45, 46]. Despite these efforts, a universal pic-
ture is still missing in superfluid hydrodynamics,
which motivated us to investigate oscillatory flows
of He II due to mechanical oscillators of largely
varied geometries – vibrating tuning forks, a mi-
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crowire loop, a torsionally oscillating disc and a
double paddle oscillator – and search for universal
features.

II. INTRODUCTION

In this Section, we introduce the key concepts of
superfluid hydrodynamics, and use classical oscil-
latory flows in the high Stokes number regime as
a stepping stone to derive the properties of simi-
lar flows in superfluids. We limit our discussion of
the dynamics of superfluids to the Newtonian-like
hydrodynamic description applicable above ≃1 K,
as this corresponds to most of the experiments de-
scribed here.

A. Superfluid Hydrodynamics

On a phenomenological level, superfluid 4He at
finite temperatures is described as consisting of
two components - a viscous normal component
and an inviscid superfluid component [17]. Their
temperature-dependent densities, ρn and ρs, re-
spectively, add up to the (nearly temperature-
independent) total density of He II, ρ. While the
normal component behaves classically, possessing
finite viscosity and carrying the entire entropy con-
tent of He II, the superfluid component has neither
entropy nor viscosity and, due to quantum restric-
tions, the vorticity is constrained into line singular-
ities called quantized vortices [18]. In He II, each
quantized vortex carries one quantum of circula-
tion, given as κ = h/m4 ≈ 0.997 × 10−7 m2s−1,
where h is the Planck constant and m4 denotes
the mass of a 4He atom. Superfluid turbulence
[19] therefore takes the form of a dynamic tangle
of quantized vortices in the superfluid component.

At temperatures above ≃1 K, where the frac-
tion of the normal fluid is significant, this tangle of
quantized vortices typically coexists with classical-
like turbulent flow of the normal component, mak-
ing up what is usually called quantum turbulence
(turbulent flow of a quantum fluid). In the pres-
ence of quantized vortices, the otherwise indepen-
dent normal and superfluid velocity fields become
coupled by a mutual friction force which arises due
to thermal excitations (responsible for the entropy
and viscosity of the normal component) scattering
off the cores of quantized vortices. Quantum tur-
bulence can thus be loosely defined as the most
general way of motion of quantum fluids display-
ing superfluidity [19].

Does quantum turbulence always contain quan-
tized vortices? Strictly speaking, quantized vor-
tices are not a necessary ingredient of quantum
turbulence, as one can imagine a two-fluid flow of
He II consisting of turbulent normal flow and po-
tential superflow. Indeed, in the hypothetical case

of a macroscopic sample of He II free of quan-
tized vortices (i.e., without mutual friction cou-
pling the two velocity fields), in an isothermal flow
the normal and superfluid components move inde-
pendently and any instability criteria ought to be
applied to them separately. In this hypothetical
case, quantized vortices must be nucleated intrin-
sically; this process requires critical velocities of
order 10 m/s or higher [19]. In practice, however,
remnant vortices always exist in macroscopic sam-
ples of He II and nucleation of quantized vorticity
takes place extrinsically, by stretching and recon-
nections of seed vortex loops. In many types of
flow the critical velocity for extrinsic vortex nucle-
ation is observed to be a few cm/s. As turbulence
of the normal component may be possible even be-
low this velocity threshold, it follows that there in-
deed is a possibility of having a quantum flow dis-
playing (nearly) potential superflow together with
a vortical flow of the normal component.

With very few remnant quantized vortices
present, the mutual friction force is negligible and,
according to the two-fluid model of Landau [17],
an isothermal flow of the normal component is de-
scribed by the Navier-Stokes equations, while that
of the superfluid component by the Euler equa-
tions for ideal fluids. Under these conditions, any
body moving through He II at low velocity be-
low the (generally independent) critical thresholds
would experience drag forces originating from the
normal component alone, while the drag forces of-
fered by the superfluid component are zero (ne-
glecting any drag due to surface waves and com-
pressibility effects). In this case the superfluid
component can be understood as a physical vac-
uum, merely re-normalizing the effective mass of
the oscillating body by means of conservative in-
ertial forces. Therefore, to derive the scaling laws
for the drag forces in the Newtonian limit, we must
analyze the Navier-Stokes equations governing the
motion of the normal component.

B. Classical Oscillatory Flows –
Hydrodynamic Limit

To describe a classical oscillatory flow, the gov-
erning Navier-Stokes equations (NSE) may be ex-
pressed in terms of dimensionless velocity u′ =
u/U , time t′ = t/T and positions r′ = r/Li as:

ωU
∂u′

∂t′ + U2

L1
(u′ · ∇′u′ + ∇′p′) = νU

L2
2 ∆′u′, (1)

where the characteristic length scales L1,2 are used
together with the characteristic velocity U to es-
timate the maximum magnitude of the respective
velocity derivatives. An independent time scale is
introduced, given (in the continuum limit) by the
angular frequency of oscillation, ω. Generally, the
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choice of L1 and L2 depends on body geometry
and flow parameters. Candidates may include the
typical body size D, the surface roughness Rq, or
the Stokes boundary layer thickness (viscous pene-
tration depth), defined as δ =

√︁
2η/(ρω), where η

denotes the dynamic viscosity of the working fluid.
If, for a given body δ ≪ D, one may say that
the object oscillates in the high-frequency regime,
which is equivalent to the high Stokes number limit
St = D2/(πδ2) ≫ 1.

In the high frequency limit, depending on body
geometry (especially surface roughness and the
presence of sharp corners), δ or D may take the
part of L1 (related to the largest tangential veloc-
ity derivative) in the NSE, but it is always δ that
takes the part of L2 (related to the largest veloc-
ity derivative in any direction), see Fig. 1. When
sharp corners are present (case a in Fig. 1) or when
Rq ≫ δ (case d in Fig. 1), one may safely put
L1 = L2 = δ, and the Navier-Stokes equation may
be expressed using only one dimensionless param-
eter, the boundary layer-based Reynolds number:
Reδ ≡ (δρU)/η. Conversely, for a hydrodynami-
cally smooth body (Rq ≪ δ) without any sharp
corners, such as a cylinder (case b in Fig. 1), one
would obtain the Navier-Stokes equation with the
Keulegan-Carpenter number KC = UT/D as the
only relevant dimensionless parameter [2]. How-
ever, for laminar flows with KC ≪ 1, where the
non-linear term can be neglected, the viscous drag
force would still be expected to scale with Reδ, as
for the viscous drag L2 = δ is the only relevant
length scale even in this case.

Of the oscillators used in this work only the disc
may be considered hydrodynamically smooth. The
classification of our oscillators would thus be: tun-
ing forks (a,d), vibrating wire (d), double paddle
(a), disc (b); see Section III for details. The tun-
ing forks contain sharp corners and have a surface
roughness exceeding the boundary layer thickness
at the same time. We expect the roughness to be
more significant for the commercial tuning fork,
see Section III A.

C. Oscillatory Flows of He II

Assuming two independent velocity fields in He
II, as is the case at low velocities, where the nor-
mal component exhibits laminar flow and the su-
perfluid component remains potential, the above
considerations are fully applicable to the oscilla-
tory viscous flow of the normal component. We
therefore replace ρ by ρn, decompose the pressure
into partial pressures of the normal and superfluid
components, and replace δ by δn =

√︁
2η/(ρnω),

where η denotes the dynamic viscosity of He II.
Again, if, for a given body δn ≪ D, and Rq ≫ δn
(in our experiments, typically δn ≈ 1µm, except
for the disc, where δn ≈ 0.5 mm), we may put

FIG. 1. Illustration of the effects of surface roughness
and sharp corners on the estimates of (maximum val-
ues of) velocity derivatives in the high frequency limit,
where δ ≪ R. In cases a) and d) both velocity deriva-
tives present in the NSE are estimated using δ, while in
case b), the tangential velocity derivative is estimated
using R and the laplacian using δ. In case c), where
Rq ≃ δ, reliable estimates of the tangential derivative
prove difficult; a smooth cross-over between cases b)
and d) is expected.

L1 = L2 = δn, and the Navier-Stokes equation
may be written using only one dimensionless pa-
rameter: Dn ≡ (δnρnU)/η, which we call the Don-
nelly number [47]:

2∂u′

∂t′ + Dn (u′ · ∇′u′ + ∇′p′
n) = ∆′u′. (2)

We note that Dn will become equivalent to Reδ

at the superfluid transition temperature Tλ, allow-
ing direct comparison with classical fluids.

If δn ≪ R is satisfied (high Stokes number
limit), then the flow may be regarded as poten-
tial everywhere outside the thin boundary layer of
thickness on the scale of δn. Moreover, if δn is
smaller than the typical radius of curvature of the
oscillator surface, the surface may be described as
consisting of many planar elements, and the veloc-
ity profile within the boundary layer is given by the
solution to Stokes second problem (an oscillating
plane). In laminar flow around such a body the
average energy dissipation per unit time is given
by [61]:

⟨Ė⟩ = 1
2

η

δn

∮︂
|∆vL0,t|2dS = 1

2
η

δn

∮︂
α2

Lu2
L0dS,

(3)
where ∆vL0,t is the difference between two local
velocity amplitudes projected tangentially to the
surface – that of the potential flow just outside the
boundary layer and that of the surface element of
the body. Then αL is the local flow enhancement
factor relating this velocity difference to the (local)
velocity amplitude uL0 of the surface element in
question: |∆vL0,t| = αLuL0. Integrating over the
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entire surface of an oscillator, we get:

⟨Ė⟩ =
αξU2

pSr

2
η

δn
, (4)

where Up is the maximum velocity amplitude
along the surface of the resonator (peak velocity).
The dimensionless quantity of order unity ξ =∮︁

u2
LdS/(SrU

2
p) describes the velocity profile along

the resonator, and an effective surface area Sr ≥ S
may be used to account approximately for surface
roughness. The integrated flow enhancement fac-
tor α is defined from αξ =

∮︁
α2

Lu2
L0dS/(SrU

2
p). We

note that for a smooth rigid oscillator this becomes
α =

∮︁
α2

LdS/S, e.g., for a sphere: αL = 3/2 sin(θ),
with the angle θ measured from the direction of
the flow, and α = 3/2. Similarly, for a cylinder ori-
ented normally to flow: αL = 2 sin(θ), and α = 2.
We emphasize that the above derivation is valid
for all the cases described in Fig. 1, as the length
scale relevant to viscous drag is always δn.

Using the peak velocity Up, it is possible to
model a given mode of the resonator as a 1D lin-
ear harmonic oscillator, as done in Ref. 32 for a
tuning fork. This leads to the definition of a (net)
dissipative force amplitude:

F = 2⟨Ė⟩
Up

= αξη

δn
SrUp. (5)

We note that this force is meaningful only in the
1D model of the given resonant mode (or for a
rigid oscillator) and does not, generally, offer a di-
rect measure of the total forces experienced by the
body. In analogy with steady flow, we define the
dimensionless drag coefficient related to the nor-
mal component of He II as:

Cn
D = 2F

AρnU2
p

= 2αξSr

A

η

ρnUpδn
≡ Φ/Dn, (6)

where A is the sectional area perpendicular to the
direction of flow, and the dimensionless quantity
Φ = 2αξSr/A is determined purely by the geome-
try of the oscillator. This scaling law is valid uni-
versally for laminar flow around all types of objects
shown in Fig. 1.

Additionally, in accordance with the principle of
dynamical similarity, for hydrodynamically rough
bodies or bodies with sharp corners, the normal
fluid drag coefficient may be expressed as a unique
function of the Donnelly number Cn

D = Cn
D(Dn)

even in non-laminar flow. Any departure from
this function must then signify either a violation
of these assumptions, or an instability occurring
in the superfluid component. In such a case, if the
superfluid component becomes turbulent at some
critical velocity UC, we expect a marked increase in
the drag coefficient above the dependence Cn

D(Dn)
measured in a classical fluid (substituting the total
density ρ for ρn and Reδ for Dn).

The Donnelly-Glaberson (DG) instability lead-
ing to the production of quantized vorticity in the
superfluid is related to self-reconnections of seed
vortex loops. This process has been described in
the literature [48, 49], and for macroscopic objects,
the related critical velocity is expected to scale as
UC ∝

√
κω. Hence, it is convenient to define a

reduced dimensionless velocity Û = Up/
√

κω. To
facilitate a hydrodynamic description of the drag
forces originating in the superfluid component, we
also define the superfluid drag coefficient:

Cs
D = 2F

AρsU2
p

= 2F

AρsκωÛ
2 . (7)

For laminar/potential flow of normal/superfluid
components, this reduces to:

Cs
D = φ

Û
; φ = Φ

√︃
ηρn

2κρ2
s

, (8)

where Φ is the same as above. If turbulence is trig-
gered in the superfluid component without any sig-
nificant coupling to the normal component, again a
unique function Cs

D(Û) should be observed. How-
ever, this scenario seems unlikely except close to
the critical velocity, as the action of the mutual
friction force would couple the two components
when a sufficient density of quantized vortices is
produced.

In the turbulent drag regime, at velocities suf-
ficiently above the critical values, the normal and
superfluid components are expected to be coupled
due to the mutual friction force and contribute to
the pressure drag together. In this situation, the
classical definition of the drag coefficient is appli-
cable: CD = 2F/(AρU2), where the total den-
sity ρ = ρn + ρs is used. It is expected that in
coupled turbulent flows, CD will tend towards a
temperature-independent constant value of order
unity [45, 50].

The total energy contained in the oscillatory
motion of the resonator and the fluid is given
as E = meffU2

p /2, defining the effective mass of
the resonant mode, meff . For a quasi one- or
two-dimensional resonator oscillating perpendicu-
larly to its large dimension(s) – such as a thin
cantilever, beam, or membrane – it follows that
meff = ξm + mHD, where m is the actual mass
of the resonator and mHD represents the hydro-
dynamic added mass. If the hydrodynamic mass
contribution can be neglected, it is convenient to
define a fluidic quality factor, Qf :

1
Qf

≡ ⟨Ė⟩
ωE

= αξSr

meff

√︃
ηρn

2ω
≈ αρnSrδn

2m
, (9)

which can be directly linked to the resonant fre-
quency, f , and linewidth, ∆, by Qf = f/(∆−∆0),
where ∆0 is the linewidth in vacuum. Conversely,
the effective mass may be expressed from the res-
onant frequency in vacuum f0 as meff/(ξm) =
(f0/f)2.
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The fluidic quality factor in Eq. (9) differs from
the one given in Ref. 7 (in the limit of Newto-
nian hydrodynamics) by the explicit inclusion of
the flow enhancement factor α. We note that this
factor is related to the potential flow outside the
boundary layer and is necessary not only to recover
correctly the analytical solutions obtained for the
drag force acting on an oscillating sphere or cylin-
der, but in fact for all oscillators with non-trivial
geometry. The fluidic quality factor Qf is related
to the drag coefficient prefactor Φ by:

Φ = 4meff

QfAδnρn
. (10)

This relation may be used to extract the value of Φ
directly from resonant properties of the oscillator,
without precise calibration of driving force or peak
velocity. In the laminar regime, it can also be used
to infer either force or velocity, provided that the
other quantity is known, together with meff , A,
and working fluid properties.

The prefactors in the universal scaling law pre-
dicted for the oscillators used in this work will be
discussed case by case in Section III.

D. Multiple Critical Velocities in the
Superfluid

Here we comment briefly on the transition to
turbulent drag regime observed in the superfluid
at very low temperatures corresponding to the bal-
listic regime. In oscillatory flows under these con-
ditions, a number of experimental studies using
vibrating wires [43], grids [28, 29] or tuning forks
[33, 51] reported observation of more than one
critical velocity of hydrodynamic origin. Recently
we have presented convincing evidence for three
distinct hydrodynamic critical velocities and pro-
posed explanation linking all the observations of
oscillatory flow in zero temperature limit into a
single framework [35].

The first critical velocity, connected mostly to
frequency shifts rather than changes in the drag
force, is associated with the formation of a num-
ber of quantized vortex loops near the surface of
the oscillator, possibly forming a thin layer, which
affects the coupling to the fluid and thus the hy-
drodynamic added mass. This first critical velocity
is hardly observable in the two-fluid regime above
1 K. The second critical velocity is related to the
quantized vorticity propagating into the bulk of
the superfluid, either in the form of emitted vor-
tex loops or, eventually, as a turbulent tangle. It
is always accompanied by a marked increase in the
drag force and usually hysteresis (detectable with
amplitude sweeps). We would like to stress that it
is this critical velocity which we will be discussing
later in relation to the experiments performed in
the hydrodynamic regime above 1 K.

For completeness, there is a third critical ve-
locity of hydrodynamic origin, likely associated
with the development of larger vortical struc-
tures from bundles of polarized quantized vortices.
We note that at finite temperature, such polar-
ized vortex bundles or rings have been studied
numerically[52, 53]. The mentioned critical veloc-
ity (typically above 1 ms−1) might not be relevant
in the two-fluid regime at all, as classical features
would likely develop in the vortex tangle due to
mutual friction even before this mechanism can
take effect.

E. Additional Dissipation Mechanisms

In addition to viscous damping, losses due to
sound emission through the surrounding fluid may
occur, and may be accounted for approximately
[54]. In the present work, acoustic losses can be
safely neglected for the fundamental mode of both
tuning forks used and represent perhaps a very
small contribution to the damping the first over-
tone of the custom-made fork [55]. Based on our
previous studies of acoustic emission by oscillating
objects in He II [54, 55], acoustic losses are negli-
gible for all other oscillators used in this work. In
our experiments, no sign of cavitation and associ-
ated losses was detected.

We also note that the above description of vis-
cous dissipation is approximate in the sense that it
neglects the steady streaming flow that is known
to exist in the vicinity of the oscillating objects and
has been recently visualized in He II in highly tur-
bulent flow due to vibrating quartz turning fork
[40]. However, the streaming flow has negligible
effect on the drag forces measured in laminar vis-
cous flow, as the typical length scale associated
with streaming is of order of the size of the oscilla-
tor, while the boundary layer thickness is at least
an order of magnitude lower in our experiments.
Of course, in turbulent flows, the pressure drag is
significantly larger than both the viscous friction
and any additional drag due to the streaming.

III. EXPERIMENTAL DETAILS

Most of the resonators used in our investiga-
tion – the wire, the tuning forks, and the double
paddle – were driven by an Agilent A33220 signal
generator, and a phase-sensitive Stanford Research
SR830 lock-in amplifier was used to measure both
the in-phase and out-of-phase components of the
induced signals.

The measurements presented here were per-
formed in Prague, mostly in a helium immersion
cryostat during a dedicated experimental run for
each resonator. The helium bath is brought down
to the desired temperature using a rotary pump
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and a Roots pump and stabilized on the level of
few mK either by manually adjusting the pumping
speed, or using a temperature controller. The low-
est attainable temperature of 1.27 K allows access
to most of the hydrodynamic (two-fluid) regime.

A. Quartz Tuning Forks

Quartz tuning forks are piezoelectric oscillators
with a calibrated resonant frequency, often used
as frequency standards or shear force sensors for
scanning optical microscopes [56]. Tuning forks
are well-established probes of cryogenic helium
flow [32].

The fork is driven by applying an ac voltage
V from a function generator to the metallic elec-
trodes deposited on the surface of the quartz. This
produces a force proportional to the voltage which
sets the two prongs oscillating in anti-phase. The
distortion of the quartz induces a piezoelectric-
current I which is proportional to velocity U . The
relations between force, velocity, voltage and cur-
rent are:

F = afV

2 I = afU ; (11)

where af is the so-called fork constant, which may
be obtained through calibration by deflection mea-
surement or self-calibration in vacuum, in which
case it is given as af =

√︁
4πmeff∆I/V , where

meff is the effective mass of the fork, and ∆ is
the measured resonant width [32] at half-height of
the (Lorentzian) peak. The effective mass [55] of
the tuning fork in vacuum is given by meff = ξm =
TfWfLfρf/4, where ρf is the density of the fork ma-
terial (in our case quartz, ρf = 2650 kgm−3), and
the dimensions Tf , Wf , Lf , stand for the tine thick-
ness (in the direction of motion), width and length,
respectively. The ac current is measured using an
IV-converter [57] and a SR-830 lock-in amplifier.
The standard measurement scheme used here can
be found, e.g., in Fig. 1 of Ref. 35.

We have used two different forks in this work.
The first is a commercially produced fork of the fol-
lowing dimensions: Lf1 = 2.17 mm, Tf1 = 210 µm,
Wf1 = 100 µm, and the gap between the prongs
is Df1 = 120 µm. Its surface roughness is ≈5 µm.
The second is a custom-made fork with: Lf2 =
3.50 mm, Tf2 = 90 µm, Wf2 = 75 µm (original
wafer thickness) and Df2 = 90 µm, with roughness
≈1 µm. A sketch of the fork geometry including
the dimensions is shown in Fig. 2. The commercial
fork resonates at 32 kHz, while with the custom-
made fork, we use two different flexural resonant
modes – the fundamental resonance at 6.5 kHz and
the first overtone at 40.0 kHz.

To describe the drag force acting on tuning forks
in laminar flow, unfortunately, no analytical solu-
tions of NSE can be obtained. However, signifi-
cant effort has been invested into studying the dy-

namical response of rectangular beams immersed
in viscous fluids [58, 59], resorting to numerical
integration to obtain the hydrodynamic response
function for rectangular beams of arbitrary aspect
ratio. These calculations may thus be applicable
to tuning forks. Although we consider Φ as a pa-
rameter to be determined experimentally for each
oscillator due to surface roughness effects, we may
use the results of Ref. 59, to obtain the approxi-
mate dependence Cn

D ≃ 4.67/Dn, for the custom-
made fork, see Appendix A. For the commercial
fork, Cn

D ≃ 5.55/Dn is obtained in a similar fash-
ion, if its surface roughness is ignored.

B. Vibrating Wire Resonator

Vibrating wire resonators are well-established
low temperature probes [60]. They consist of a
semi-circular loop of wire subjected to a vertical
magnetic field B, as shown in Fig. 2. A loop is used
to prevent closely spaced or degenerate modes one
may observe on a straight wire.

Traditionally, the vibrating wire is described in
the following way. Passing an alternating current
I(ω) through the wire forces it to oscillate due to
the Lorentz force, FL = BDI. As the wire moves
through the magnetic field, it induces a voltage
which can be determined using Faraday’s law. For
a rigid semi-circular wire with leg spacing D, oscil-
lating at a peak velocity Up, the area bounded by
the loop is A = πD2/8 and the rate of change of
angle to the field is 2Up/D. Therefore, the induced
Faraday voltage generated by a semi-circular vi-
brating wire loop is traditionally given by:

V = −d(B · A)
dt

≃ π

4 BDUp. (12)

Here we argue that the traditional model does
not describe the behavior at resonance correctly, in
the sense that the energy dissipation at resonance
is not equivalent in terms of electrical quantities
Ėel = 1/2 V I and within the 1D mechanical model
Ėmech = 1/2 FUp, as they differ by a factor of
π/4. This due to the fact that one cannot take the
total Lorentz force FL as the driving force of the
resonant mode of the wire, but a projection of this
force on the mode shape must be considered. The
remaining Lorentz force is driving other resonant
modes, as determined by its distribution along the
length of the wire, but it does not dissipate any
energy, as it is frequency-mismatched with respect
to those modes (in an off-resonance condition).

A correct definition of the model force may be
obtained directly from energy dissipation, as has
been done for tuning forks [32]. We use this ap-
proach in our proposed model that describes the
vibrating wire as a doubly clamped beam. Ne-
glecting for a moment the curvature of the wire
(a valid approximation if the wire radius is much
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smaller than the radius of the loop), the reso-
nant mode shapes may be obtained by solving the
Euler-Bernoulli equation. Using the appropriate
boundary conditions, one obtains in terms of local
velocities:

uL(x) ∝
{︃

sinh(bnx) − sin(bnx)

− [cosh(bnx) − cos(bnx)][sinh(bnL) − sin(bnL)]
cosh(bnL) − cos(bnL)

}︃
,

(13)

for x ∈ [0, L], where L is the length of the semicir-
cular loop, and bn = (µω2

n/EI)1/4, with µ repre-
senting the mass per unit length, ωn the angular
frequency of the n-th mode, E the Young’s mod-
ulus, and I the second moment of area of the wire
cross-section. The resonance frequencies are deter-
mined from the equation cosh(bnL)cos(bnL) = 1,
which has to be solved numerically.

The mode shapes can then be integrated to ob-
tain a mode-dependent effective mass. For n = 1,
we get meff ≈ 0.396m. Now taking into account
the curvature of the wire to find the changing pro-
jected area of the loop on the direction of B using
the obtained mode shape, Eq. 12 will be replaced
by V ≈ 0.690BDUp and the driving force will be
given by F ≈ 0.690BDI. This is the correct pro-
jection of the Lorentz force FL(x) = BI sin(πx/L)
on the mode shape of the fundamental resonance,
as can be verified by direct integration.

To obtain the drag force in laminar flow, we
again neglect the curvature of the loop, approx-
imating each segment along the length of the wire
as a smooth cylinder oscillating with a local ve-
locity amplitude uL(x). The drag force per unit
length acting on such a cylinder is given, e.g., in
Ref. 61. Following the procedure outlined in Sec-
tion II C, for the fundamental mode, the drag co-
efficient is given as Cn

D = 4πξ/Dn ≈ 4.98/Dn.
The vibrating wire resonator used in this study

consists of a semi-circular loop of superconducting
NbTi wire with a leg spacing of D = 2 mm and a
diameter of 2R = 40µm. The wire was mounted
in a brass cell submerged in the bulk superfluid
and mounted between a pair of NdFeB permanent
magnets in a magnetic field of (170 ± 10) mT at
room temperature. We estimate that the field is
reduced by approximately 23% at low tempera-
tures [62] due to spin reorientation occurring in
NdFeB at 135 K. Given the uncertainty of the
magnetic field, we have used Eq. (10) to obtain
a self-calibration of the force driving the vibrating
wire.

C. Double Paddle

Recent studies [38, 39] have shown that double-
paddle oscillators (DPOs) may serve as promising

FIG. 2. Schematic diagrams of the vibrating wire res-
onator (a), of the quartz tuning fork (b), and the dou-
ble paddle (c). The dimensions of the double paddle
are in millimeters. The wafer thickness is 75 µm for
the tuning fork and 250 µm for the double paddle.

probes to study superfluid hydrodynamics. They
have demonstrated high quality factors in vacuum
compared to other mechanical resonators, since
any vibrational losses through their base are heav-
ily suppressed.

Here, we re-analyze the results obtained with
the silicon DPO etched from a 0.25 mm thick ⟨110⟩
wafer used by Zemma and Luzuriaga [38], sketched
in Fig. 2. The two larger wings are approximately
10 mm × 7.5 mm and the smaller upper paddle
is 7 mm × 3 mm. The DPO was driven magneti-
cally, by attaching a small magnet located between
the wings in the oscillator stem; its displacement
was detected capacitively. In order to generate the
oscillatory motion, an ac current was applied to
a small superconducting coil fixed to the support
frame.

The complex geometry of the DPO precludes
any analytical solutions of NSE, and we are not
aware of any numerical studies detailing the lami-
nar drag experienced by a submerged DPO.

D. Torsionally Oscillating Disc

The torsional oscillator consists of a 0.05 mm
tungsten wire, 32 cm long, with a borosilicate glass
disc fixed to the wire at its midpoint using a thin
0.8 mm brass capillary and Stycast 2850 GT. The
disc is 1 mm thick with a diameter of 40 mm;
a schematic diagram is shown in Fig. 3. When
the wire is under tension, the disc is positioned
approximately midway between the two copper-
coated, polished FR-2 plates placed 10 mm apart
(both disc sides are approximately 4.5 mm away
from the FR-2 plate facing them). The deflec-
tion and angular velocity of the disc is determined
from recorded video sequences as detailed in Ap-
pendix B.

To facilitate comparison with other oscillators,
we define a drag coefficient for a thin disc torsion-
ally oscillating in a viscous fluid of density ρn as:
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FIG. 3. Schematic diagram of the torsionally oscillat-
ing disc.

Cn
D = 2MF

AρnΩ2
0R3 , (14)

where MF is the moment of friction forces, R is the
disc’s radius, A = πR2 is the surface area of one
side of the disc, Ω0 is the amplitude of the angular
velocity and ω is the angular frequency of oscilla-
tion. For a rationale of this definition, and for the
derivation of the Donnelly number dependence, we
refer the reader to Appendix C. In laminar flow,
the drag coefficient due to the normal component
can be expressed in terms of the Donnelly number
as Cn

D = 2/Dn.

IV. EXPERIMENTAL RESULTS AND
ANALYSIS

In this Section we present our drag force mea-
surements using the resonators introduced above
and compare the results against the proposed uni-
versal scaling law.

A. Tuning Forks

The custom-made tuning forks used in our mea-
surements are fully described and characterized in
Ref. (35). By performing frequency sweeps in vac-
uum at low temperature, the experimental fork
constant is estimated to be af = 3.665×10−7 C/m
and ao

f = 1.409×10−6 C/m for the fundamental
mode and first overtone, respectively. We estimate
that the fork constant has an uncertainty of 10%
since it was shown that the optically-measured
prong velocity can be 10% lower [63] than that
determined from the electro-mechanical model de-
scribed in Section III A. The details of the commer-
cial fork are given in Ref. (50), where it is labeled
“L2”.

Fig. 4 shows typical results for the drag offered
by He II to driven oscillations of the quartz tun-
ing fork and compares them to the numerical re-
sults of Ref. 59. In the left of Fig. 4, we plot
the classical drag coefficient as a function of the

peak velocity at various temperatures. As ex-
pected, the tuning forks exhibit linear damping
at low velocities at all temperatures. Upon in-
creasing the velocity, the drag coefficient tends to
a temperature-independent constant value of order
unity (CD ≈ 0.6) as one would expect for fully cou-
pled normal and superfluid components. The flow
due to the fork then behaves as a single classical-
like fluid in the turbulent drag regime. On de-
creasing temperature, the drag coefficient drops
appreciably over the range of low and intermedi-
ate velocities as the density of the normal fluid
component decreases. This is in agreement with
previous analysis [50].

To characterize the flow of the normal compo-
nent, we plot the normal fluid drag coefficient as
a function of the Donnelly number in the right of
Fig. 4. At low Donnelly numbers, the data col-
lapse to a single dependence for each fork, before
deviating at some critical value. Note that despite
the difference in the velocity profile and the vis-
cous penetration depth, the same pre-factor Φ in
Eq. 6 is obtained for the two resonant modes of the
custom-made fork, supporting the validity of the
derived scaling law. This is due to the fact that
both modes have the same flow enhancement fac-
tor α determined by the rectangular cross-section
of the prong and practically the same effective
mass meff = ξm+mHD with ξ = 1/4, see Appendix
A of Ref. 55. Furthermore, the obtained prefactor
Φ agrees almost perfectly (≈ 2% deviation) with
Ref. 59 (see calculation in Appendix A). Careful
inspection also reveals differences in the onset of
non-linear drag for the lowest two temperatures,
this will be further analysed in Section IV E. The
commercial fork shows the same universal scal-
ing, but the obtained prefactor is 1.4x higher than
the numerical result. This is likely due to sur-
face roughness effects. Comparison to oscillations
in classical liquid helium and helium gas is shown
on the commercial fork data, where Dn ≡ Reδ is
used, highlighting the same form of the scaling law
in both classical and quantum fluids. As the com-
mercial tuning fork is hydrodynamically rough, a
unique dependence Cn

D(Dn) is expected in classical
fluids as well as wherever the superfluid compo-
nent does not contribute to the drag force appre-
ciably. This is illustrated in the lower right panel
of Fig. 4, as the data obtained in He I, He gas
and at T = 2.16 K agree quite well over the entire
range of Dn. Departures from this dependence
mark drag forces originating from the superfluid
component, or arising in either component due to
their coupling by mutual friction.

B. Vibrating Wire Resonator

The resonant response of the vibrating wire res-
onator is obtained by measuring the voltage in
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FIG. 4. Left: Drag coefficient as function of velocity for the quartz tuning forks. Right: The corresponding
normal fluid drag coefficient as a function of the Donnelly number. Note that (i) the same prefactor for the
laminar scaling is displayed for the fundamental mode and overtone of the custom-made tuning fork, in near
perfect agreement with the calculation described in the text and that (ii) for commercial fork, the same scaling is
observed in classical (He I, He gas) and quantum (He II) fluids. A slight disagreement in the prefactor with respect
to the numerical calculations is observed, the experimental data can be recovered by applying a multiplicative
factor of 1.4, which we associate with the surface roughness of the commercial fork.

phase with the driving current, as a function of fre-
quency. In accord with previous works [43, 44, 60],
for small drive levels, the frequency response is of
Lorentzian form. Upon increasing the drive level,
the Lorentzian shape becomes distorted and the
resonant frequency decreases. The flattening of
the peak indicates the onset of non-linear drag
forces typically associated with turbulent instabil-
ities in the generated oscillatory flow.

The classical drag coefficient as a function of
velocity for the vibrating wire is plotted in the
left of Fig. 5. In order to collapse the contribu-
tion of the normal fluid component to the drag
forces acting on the wire to a single dependence,
we again plot the drag coefficient for the normal
component as a function of the Donnelly number
(see Eq. 6) in the right of Fig. 5. Universal scal-
ing with the Donnelly number is observed for the
wire, up to critical value, which is now, however,

temperature-dependent, in striking difference with
the custom-made tuning fork. We also note that
the prefactor for the laminar drag is by 10% to 15%
smaller than calculated. This is most likely due to
the uncertainty in the wire radius and hence in its
effective mass, which enters Eq. (10) that was used
to obtain the driving force from resonant proper-
ties. While the 2 mm wire loop was located in
a cylindrical cavity of diameter 4 mm, we do not
expect a significant effect of the container walls
on the measured drag, as the viscous penetration
depth δn is of order 1 µm.

C. Double Paddle

We now apply the same analysis to results
obtained using a silicon DPO by Zemma and
Luzuriaga [38]. Specifically, we analyze the sym-
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FIG. 5. Drag coefficients as functions of the peak velocity or Donnelly number obtained for the vibrating wire.

FIG. 6. Normal fluid drag coefficient as a function of
the Donnelly number calculated for the silicon double-
paddle of Zemma and Luzuriaga [38].

metric torsion mode data [37]. In vacuum at ≈
4.2 K, the resonant frequency of the paddle is
520 Hz, in liquid helium at 4.2 K it is 358 Hz.
The viscous penetration depth is ≈ 3 µm. Since
the lateral characteristic length scale of the pad-
dle is D ≃ 7 mm, and the thickness is 250 µm,
the paddle is operating in the high Stokes number
limit, justifying our analysis.

In Fig. 6, we present the normal fluid drag
coefficient plotted against the Donnelly number.
The viscous drag force again collapses to a sin-
gle dependence within an uncertainty of ±15%,
demonstrating that the paddle is indeed in the
high Stokes number limit. The drag force of-
fered by the normal fluid is again described by
the same universal scaling law, even for an oscilla-
tor of significantly different shape than a wire or
tuning fork, in this case following approximately
Cn

d = 4.55/Dn. To the best of our knowledge,
no theoretical or computational works exist that
would allow a quantitative comparison of the pref-
actor.

D. Torsionally Oscillating Disc

The torsionally oscillating disc differs from the
previous oscillators in three fundamental ways.
First, as the disc oscillates around its axis, it does
not displace any fluid, hence there is no potential
flow outside the boundary layer. Second, in this
case we are not able to perform measurements in
a steady state and we have to deal with slowly de-
caying oscillations of the disc and of the flow due to
its motion. Third, we cannot directly measure the
drag force and have to infer the damping from the
decaying amplitude of oscillation. Despite these
important differences, we seek to analyze the flow
in a manner similar to the above oscillators.

First, we have established that the intrinsic
damping of the disc is negligible compared to that
due to the surrounding helium. This was done
by measurements in vacuum at room temperature
and 78 K, and already at 78 K the intrinsic damp-
ing was far below any measured in superfluid he-
lium. We note, however, that the entire tungsten
filament had to be submerged in helium in order
to assure that its temperature is sufficiently low,
as it was connected to the driving mechanism at
the top flange by a thin-walled stainless steel tube
with no special regards for thermal isolation.

As the moment of frictional forces MF cannot
be obtained directly from the experiment, we have
to infer the drag coefficient from other measurable
quantities, such as the extremal displacements of
the disc during its damped oscillations as shown
in Fig. 7. If the series of extremal angular dis-
placements occurring at times tn is labeled ϕn

(interleaving maxima and minima in chronologi-
cal order), the logarithmic decrements of the am-
plitude of oscillation αn are determined as αn =
ln(ϕn−1) − ln(ϕn+1) and the immediate angular
frequency of oscillation is ωn = 2π/(tn+1 − tn−1).
This leads to an alternative definition of the drag
coefficient:

Cn
D = 2Iα

πAρnR3ϕ0
≃ ρdhdα

πρnRϕ0
, (15)

where ϕ0 denotes the immediate angular displace-
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FIG. 7. Typical measurement of angular displacement
of the torsionally oscillating disc in He II as a function
of time. (Top) The signal extrema were evaluated to
obtain the angular displacement amplitude, φ0. The
logarithmic plot (Bottom) clearly shows two distinct
regions – exponential (viscous) decay due to laminar
flow of the normal component for t >∼ 500 s and a
faster nonlinear decay at earlier times, related to tur-
bulent drag. The position of the disc oscillating with
a period of T ≃ 3.17 s is sampled at 240 Hz, see Ap-
pendix B. The turbulent decay is typically observed on
time scales of order 100 s, whereas decays of co-flow
or counterflow turbulence in He II typically in a few
seconds.

ment amplitude, and I = I0 + IHD stands for the
effective moment of inertia consisting of the mo-
ment of inertia of the disc itself, I0, and of its
hydrodynamic enhancement, IHD. If IHD ≪ I0,
the simplified expression on the right hand side of
Eq. 14 holds, where ρd is the density of the disc
material, and hd the height (thickness) of the disc.
The derivation can be found in Appendix C.

FIG. 8. Normal fluid drag coefficient as a function of
the Donnelly number for the torsionally oscillating disc
at the various indicated temperatures. The dashed
blue line is the predicted dependence for viscous drag
Cn

D = 2/Dn. Prior to the calculation of Cn
D the loga-

rithmic decrements αn have been smoothed by a 50-
point weighted adjacent averaging filter and checked
against the original data, showing minimal deviation.

We plot the drag coefficient Cn
D measured at

various temperatures against the Donnelly num-
ber Dn = ρnδnRωϕ0/η in Fig. 8. At small values

of Dn, the data collapse to a single dependence il-
lustrating the universal behaviour. As the disc is
hydrodynamically smooth, we do not expect the
turbulent instability to occur at a well-defined crit-
ical value of Dn, but we may still be able to distin-
guish between a classical instability in the normal
component and the onset of superfluid turbulence
by considering the dependence of the non-linear
drag on the densities ρn and ρs.

E. Analysis of Instabilities

While the drag coefficients shown in the pre-
vious sections contain, in principle, all necessary
information about the flow properties, it is use-
ful to examine the transition to non-linear drag
in more detail. In particular, we are interested in
determining which type of instability occurs upon
increasing oscillation amplitude first: a classical
instability of the normal component or the multi-
plication of remnant quantized vortices in the su-
perfluid component?

To tackle this issue, we need to analyze the
first departures from laminar drag, hence we with-
draw from the measured drag force the part that
is linear with velocity, keeping only the non-linear
contribution. Such a quantity needs to be nor-
malized and plotted against parameters relevant
to either component in order to deduce the na-
ture of the first detected instability. It seems par-
ticularly advantageous to use the quantity 1 −
Φ/(Cn

DDn) in a plot against Dn to describe the
action of the normal component and, analogically,
1 − φ/(Cs

DÛ) against Û for the superfluid compo-
nent, see Eq. (7). These definitions guarantee that
the result is always close to zero in laminar flow,
and approaches one as the non-linear drag starts
to dominate. For the oscillating disc, KC is used
instead of Dn, in agreement with the theory in
Section II B.

Such plots are shown in Fig. 9 for the two tun-
ing forks and the vibrating wire resonator, with
each oscillator displaying different behavior. We
consider the instability occurring at a given de-
parture from the linear drag, which must be above
the experimental noise level in the data acquired
in laminar flow. For the tuning forks, we use a 5%
departure criterion, for the wire, 10% seems more
appropriate. To understand the results, it is use-
ful to consider two aspects: (i) the magnitude and
relative spread of critical values of either Dn or Û
when crossing the given threshold, (ii) the rate at
which the non-linear drag sets in.

In the top two panels of Fig. 9, the custom-made
fork shows a notably lower spread in Dn than in Û ,
signifying that Dn is likely to be the correct param-
eter governing the (classical) instability in a larger
part of the range of temperatures investigated. On
the other hand, the vibrating wire resonator (bot-
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FIG. 9. Turbulent instability analysis for both tuning forks and the vibrating wire resonator. Left: Non-linear
drag normalized using normal component properties versus Donnelly number. Right: Non-linear drag normalized
using superfluid component properties versus non-dimensional velocity Û . We note that the quantities on the
ordinate axes are equivalent, as both represent the ratio of the non-linear drag to the total drag experienced by
the oscillator.

tom two panels) displays a rather well defined crit-
ical value of Û , while showing significant spread in
Dn (except for the two highest temperatures, for
which the critical values of Dn co-incide), giving
evidence of a Donnelly-Glaberson type of instabil-
ity in the superfluid component. The commercial
tuning fork (middle panels) shows a clear cross-
over: at temperatures below 2.0 K the instability
is governed by Û , while at higher temperatures
it is determined by Dn. It is interesting to note
that whenever the instability is determined by Û ,
the onset of non linear drag is notably sharper. A
cross-over between a classical and quantum insta-
bility might be present in the other two oscillators
as well, but is not as pronounced as with the com-
mercial tuning fork.

The presented interpretation is further sup-
ported by the observed critical values of the gov-
erning parameters. For the commercial fork, the
critical dimensionless velocity ÛC ≈ 1.2, and for
the vibrating wire resonator values between 1.5

and 3 are found. However, the custom made fork
has only Û ≈ 0.1 when the non-linear drag sets in.
Hence the Donnelly-Glaberson instability is very
unlikely to occur, and is preceded by the classi-
cal instability near DnC = 2.5. Furthermore, the
(minimum) critical value of Dn characterizing the
classical instability can be obtained from measure-
ments in classical fluids, such as He I or He gas, or
from experiments very close to Tλ where the drag
offered from the very low density superfluid com-
ponent can be neglected. Hence for the commer-
cial fork we obtain DnC ≈ 2.5 and for the wire we
get Dnm

C in ≈ 9 from the data at 2.07 and 2.17 K.
The lower value of DnC obtained for the forks is
likely related to velocity enhancement in flow past
its sharp corners.

In Fig. 10 we analyze the data from the DPO
and the torsionally oscillating disc in a similar
manner. For the DPO we find a classical insta-
bility in the entire temperature range, character-
ized by a critical value of the Donnelly number



13

FIG. 10. Turbulent instability analysis for the double paddle and the disc. Left: Non-linear drag normalized
using normal component properties versus the Donnelly number or Keulegan-Carpenter number, as applicable.
Right: Non-linear drag normalized using superfluid component properties versus non-dimensional velocity Û .

DnC ≈ 0.1, with the rather low value again re-
lated to flow enhancement. Indeed, in the symmet-
ric torsion mode of the DPO, the displaced fluid
needs to move significantly faster than the oscilal-
tor itself to flow from one side of the wings to the
other and back during one period of oscillation.

For the disc, the situation is more complex and
fundamentally different from the oscillators just
discussed, for several reasons. In analysing the
data, we need to bear in mind that contrary to
the other oscillators, the disc is hydrodynamically
smooth, and hence the instability should be gov-
erned by the Keulegan-Carpenter number, KC.
Unfortunately, KC scales with the fluid proper-
ties in a very similar fashion to the dimension-
less velocity Û , making our situation complicated.
The spread of critical values of both parameters
is very similar, and the numerical critical values
are in both cases acceptable. For comparison, if
the data in the bottom left panel in Fig. 10 were
plotted against Dn, the critical values would show
a very large spread between 8 and 100, see Fig. 8.
However, since the data taken at 2.16 K (where
fluid properties ought to be dominated by the nor-
mal component) differ significantly from the all the
other series, we are led to believe that except for
this highest temperature, the instability has ori-
gins in the superfluid component.

Furthermore, since the disc is set into motion
at a high amplitude and left to oscillate, we are
dealing with a decaying turbulent flow – this has

implications for our interpretation, if hysteresis ex-
ists at the turbulent transition. Here we empha-
size that temporal decays of quantum turbulence
usually observed in both co-flow and counterflow
geometries are typically much faster than the ob-
served timescale of the decay of torsional oscilla-
tions. We thus believe that the intensity of quan-
tum turbulence is, at all times, near its steady-
state value determined by the immediate ampli-
tude of oscillations of the disc. Nevertheless, the
observed critical values do not signify the first in-
stability occurring in a laminar flow as with the
other oscillators, but rather a minimum require-
ment, a necessary condition for pre-existing tur-
bulence to survive, which might generally depend
on details of the turbulent flow. Such a require-
ment seems to be given by 10 < ÛC < 20 for all
the investigated temperatures except for 2.16 K,
where a higher critical velocity is observed.

To the best of our knowledge, there are two
possible reasons for this behavior. First, it is
likely that most of the non-linear drag observed
at 2.16 K above ÛC ≈ 30 is in fact due to the nor-
mal component which behaves independently from
the superfluid and undergoes its own instability at
KC ≈ 2, corresponding to ÛC ≈ 30. The non-
linear drag from the superfluid component (still
present) might then be below our resolution. The
second possibility is that at 2.16 K, the signifi-
cantly enhanced damping of the motion of quan-
tized vortices in He II is responsible for the dissipa-
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tion of any existing quantum turbulence (the dis-
sipative part of mutual friction force grows steeply
with temperature close below the superfluid tran-
sition [11]). This seems plausible especially in a
situation with no large scale flow of the superfluid
component to provide a supply of energy, as in our
case the superfluid is not displaced by the motion
of the torsionally oscillating disc.

V. DISCUSSION

Let us summarize the experimental results on
the two-fluid He II flows due to several types of
mechanical oscillators. In all of them the normal
fluid flow (as well as the corresponding flow of clas-
sical viscous normal He I) is characterized by high
Stokes number, and for low velocities it is lami-
nar. In this limit the superflow is either potential
or, in the case of the oscillating disc, the super-
fluid component remains stationary in the labora-
tory frame of reference (barring a low density of
pinned remnant vortices [64]). We therefore have
two (almost) independent velocity fields and flows
of the normal and superfluid components can be
treated independently. It is therefore natural to
treat the normal fluid as classical viscous fluid and
it is not surprising that the drag coefficient Cn

D due
to the normal fluid displays universal scaling in
terms of the Donnelly number Dn. Assuming that
the flow of the superfluid component remains po-
tential, upon increasing the Donnelly number the
universal scaling holds and, for hydrodynamically
rough bodies, describes instabilities in the normal
flow leading to gradual transition from laminar to
turbulent drag regime in the normal fluid flow.
The normal fluid flow is no longer laminar and the
overall He II flow can be characterized as quantum
turbulence in the sense of a vortical flow occurring
in a quantum fluid, despite that there are almost
no quantized vortices present.

In some of the investigated oscillatory two-fluid
He II flows, the opposite situation appears in that
the critical velocity associated with the Donnelly-
Glaberson instability in the superfluid component
occurs first, before the instability in the normal
fluid flow develops. This situation is not new in
superfluid hydrodynamics. Indeed, in typical ex-
periments with rotating superfluid 3He-B the thick
normal component virtually does not move in the
laboratory frame of reference [65]. Still, below
about half of the critical temperature Tc the dissi-
pative mutual friction coefficient falls below unity
[66] and a tangle of quantized vortices - superfluid
turbulence - can exist in the soup of a thick sta-
tionary normal fluid.

In He II experiments with oscillators described
above, the situation is different in that the quan-
tized vorticity coexists with the laminar boundary
layer flow of the normal component. In 4He, this

situation is reported and analyzed, to the best of
our knowledge, for the first time and is best illus-
trated for the case of He II flow due to the vibrat-
ing wire, see Fig. 9.

Now, as the Donnelly-Glaberson instability oc-
curs upon reaching a critical velocity, but the in-
stability in the normal fluid flow is governed upon
reaching a critical Donnelly number, a crossover
is possible, thanks to the steep temperature de-
pendence of the kinematic viscosity of the normal
fluid. In other words, in the particular example of
He II flow due to the commercial tuning fork, see
again Fig. 9, at high temperatures – close to the
superfluid transition temperature Tλ – the classi-
cal instability in the normal fluid is reached first,
while at low temperatures the situation is reversed
in favor of the Donnelly-Glaberson instability. The
existence of this crossover is, remarkably, reported
here for the first time despite the immense effort in
investigating oscillatory flows in He II, especially
during the last two decades.

Either instability eventually serves as a trigger
for the other one, mediated by the mutual friction
force or fluctuating pressure forces, until in the
limit of high velocities, both fluids are tightly cou-
pled in the vicinity of the oscillator and He II be-
haves as a single-component quasi-classical fluid.

VI. CONCLUSIONS

We have performed systematic measurements
of high Stokes number flows of He II due to os-
cillatory motion of selected oscillators: vibrating
wire resonator, tuning forks, double-paddle, and
torsionally oscillating disc, over a broad temper-
ature range where our working fluid, He II, dis-
plays the two-fluid behavior. We have shown that
in this class of flows the origin of any instability
in the normal or superfluid component can be de-
termined by complex drag force analysis, based on
which one can separate the drag offered to these os-
cillators by the normal and superfluid components
of He II. For low velocities, we observe universal
viscous drag scaling in terms of the suitably
defined drag coefficient Cn

D and the normal fluid
boundary-layer-based Reynolds number which we
call the Donnelly number, Dn.

The superfluid component does not contribute
to the drag until an instability associated with
extrinsic production of quantized vorticity oc-
curs, governed by the dimensionless velocity
Û = U/

√
κω. The underlying physics in-

volves Donnelly-Glaberson instability, i.e., self-
reconnections of quantized vortices upon reaching
a critical velocity. Until then the flow of the su-
perfluid component is either potential (excepting
pinned remnant vortices) with the superfluid com-
ponent playing a role of a physical vacuum, re-
normalizing the hydrodynamic effective mass of
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the oscillators, or (in the case of the torsionally
oscillating disc) the superfluid component remains
stationary in the laboratory frame of reference.

Which instability (i.e., classical hydrodynamic
instability of laminar flow of the normal compo-
nent or Donnelly-Glaberson instability in the su-
perfluid component) occurs first depends both on
the geometry of the oscillator and temperature.
We observe a cross-over between these instabili-
ties, thanks to the steep temperature dependence
of the kinematic viscosity of the normal fluid.
Upon increasing oscillation amplitude, either in-
stability can live on its own until eventually it
serves as a trigger for the other one, mediated by
the mutual friction force or by pressure forces. At
high velocities, both fluids are tightly coupled in
the vicinity of the oscillator and He II behaves as
a single-component quasi-classical fluid.

We believe that the described approach – i.e.,
treating the flows of normal and superfluid com-
ponents of He II independently – can be extended
and applied to different two-fluid He II flows, such
as different types of co-flows (where the normal
and superfluid components are forced together)
but perhaps also to the more general case of coun-
terflows (where a non-zero difference of mean ve-
locities of normal and superfluid components ex-
ists), in particular to special cases known as ther-
mal counterflow and pure superflow. One can find
known features of these flows, such as temperature
dependence of the onset of quantum turbulence at
various geometries, which provide hints that this
approach will most likely be useful, however, ded-
icated detailed experiments are needed to fully re-
solve the long-standing puzzles of superfluid hy-
drodynamics such as the existence of experimen-
tally observed [67] turbulent states TI, TII and
TIII in thermal counterflow and pure superflow.
We believe that our results will stimulate further
research of the fascinating topic of superfluid hy-
drodynamics and quantum turbulence.
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Appendix A: Derivation of Tuning Fork Drag
Coefficient

In Ref. 59, numerical calculations are used to
evaluate the inertial and drag forces per unit

length acting on uniformly oscillating rectangular
cylinders. The cylinders are assumed infinite, with
the same cross-section everywhere. The drag force
amplitude per unit length is expressed in Eq. (2)
of Ref. 59 as:

fldl = π

4 ρω2X2WcylΓ(ω), (A1)

where ρ is the fluid density, ω the angular fre-
quency of oscillation, X a dominant length scale
which corresponds to the larger dimension of the
beam cross-section, Wcyl is the displacement am-
plitude, and Γ(ω) is a complex-valued hydrody-
namic response function. This function is then
evaluated numerically for cylinders of selected as-
pect ratios at selected values of a modified Stokes
number, βd, where βd = ωd2/ν, and d = X/2.
The real and imaginary parts of Γ(ω) correspond
to inertial and dissipative forces, respectively, we
will thus need to evaluate only the imaginary part,
ℑ(Γ(ω)). The local energy dissipation rate is given
by ϵ̇l = flul/2, where ul is the local velocity. Inte-
grating the dissipation rate along the length of a
tine of a tuning fork, we obtain:

Ė =
∫︂ L

0
ϵ̇ldl = π

8 ρωX2LξU2
pℑ(Γ(ω)), (A2)

where ξ again describes the velocity profile along
the tine [34]. This leads to the drag force and drag
coefficient:

F = π

4 ρωX2LξUpℑ(Γ(ω)), (A3)

CD = 2F

ρWLU2
p

= πξωX2ℑ(Γ(ω))
2WUp

. (A4)

To estimate the dissipation of a tuning fork of
aspect ratio Ar = T/W in the high Stokes num-
ber limit, we express ℑ(Γ(ω)) as a function of the
modified Stokes number βd:

lim
βd→∞

ℑ(Γ(Ar, ω)) = c(Ar)β−1/2
d = 2c(Ar)

X

√︃
ν

ω
,

(A5)
where c(Ar) is a constant coefficient for a given
aspect ratio Ar that can be obtained with sufficient
accuracy from the numerical data of Ref. 59.

Substituting for ℑ(Γ(ω)) in Eq. (A), we get:

CD = πξXc(Ar)
√

νω

WUp
=

√
2πξXc(Ar)

WReδ
, (A6)

where Reδ = Upδ/ν is the boundary layer based
Reynolds number (equivalent to the Donnelly
number in superfluid He). For both forks discussed
here (and indeed for most tuning forks available),
we have T > W and therefore X = T , or equiva-
lently X/W = Ar (in the opposite case we would
have used X = W ). The drag coefficient expressed
for the normal component of superfluid helium
then becomes Cn

D = Φ/Dn, where the pre-factor
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Φ =
√

2πξArc(Ar) is again determined solely by
the geometry of the tuning fork.

To evaluate c(Ar) for the custom-made fork of
aspect ratio Ar = 1.2 and the commercial fork of
aspect ratio Ar = 2.1, we analyse the results ob-
tained for the aspect ratios of 1.0, 2.0, 5.0 as given
in Ref. 59, obtaining: c(1.0) ≈ 3.78, c(2.0) ≈ 2.41,
and c(5.0) ≈ 1.57. This gives by linear interpo-
lation c(1.2) ≈ 3.51 and c(2.1) ≈ 2.38 for our
tuning forks. Using ξ = 1/4, we finally arrive
at Cn

D ≃ 4.67/Dn for the custom-made fork and
Cn

D ≃ 5.55/Dn for the commercial one.

Appendix B: Determination of the Position
and Velocity of the Torsionally Oscillating

Disc

Sixteen black marks around the circumference of
the disc are used to determine the deflection and
angular velocity of the disc from recorded video se-
quences. The motion of the disc is recorded with
a Casio EX-10 digital camera. The recordings are
acquired at the frame rate of 240 fps with a res-
olution of 512×384 pixels. A large optical lens
is placed between the camera and the cryostat
to improve the spatial resolution. Our raw data
is in the form of video recordings of the motion
of the disc during the experiments. Because the
marks on the disc have rather low contrast to the
not-entirely-uniform background, standard motion
tracking software could not be used to process the
videos. Hence, fairly complex post-processing is
required to extract quantitative and interpretable
data.

The videos are split into individual frames and
de-interlaced. The color images are converted to
monochromatic bitmaps by dynamic contrast al-
gorithms implemented in NI VISION software, so
that the marks appear as black spots on a white
background. These monochromatic bitmaps are
then analyzed by a custom-made LabVIEW pro-
gram. In the first pass, the program localizes
the black areas in each image and evaluates their
size and center-of-mass. In the second pass, using
only numerical data from the first pass, it then
links corresponding images of the same dot be-
tween all frames to each other (making special ar-
rangements for those not reproduced in some of
the bitmaps) and calculates the angular displace-
ment of the disc in each instant. The program
uses a self-calibration obtained from a complete
revolution of the disc around its axis. The optical
distortion from the lenses and the curved walls of
the glass cryostat are negligible, as only a 10 mm
central portion of the field of view is used in the
processing.

Appendix C: Hydrodynamic Description of
the Torsionally Oscillating Disc

Here we derive the equation of motion of the
torsionally oscillating disc and the relevant hydro-
dynamic quantities. The motion of the harmonic
torsional oscillator is given by the equation:

I0ϕ̈ + κfϕ = MF, (C1)

where ϕ is the angular displacement, I0 is the mo-
ment of inertia of the disc, κf is the moment of
torsion of the fiber and MF represents the moment
of drag forces due to the surrounding fluid.

In laminar flow, with some simplification, the
moment of the frictional forces can be calculated
on the basis of the analytical solution of the
Navier-Stokes equations. First, we assume that
the velocity profile u(r, t) locally corresponds to
the rotation of the rigid body modulated with the
distance from the disc, u(r, t) = Ω(z, t) × r, where
Ω(z, t) = (0, 0, Ω(z, t)), in which Ω(z, t) is the in-
stantaneous angular velocity of the fluid at the dis-
tance z from the disk surface. Furthermore, we as-
sume that the radius of the disc R is significantly
greater than its thickness hd and all other rela-
vant dimensions. The Navier-Stokes equation is
then expressed in the form:

∂Ω(z, t)
∂t

= ν
∂2Ω(z, t)

∂z2 , (C2)

where ν is the kinematic viscosity. Assuming that
any temporal changes of the amplitude of oscilla-
tion are much slower than one period of oscillation,
the solution of this equation meeting the bound-
ary conditions on the surface of the disc (z = 0)
and at infinity can be expressed in the form:

Ω(z, t) = Ω0e−z/δei(ωt−z/δ), (C3)

where Ω0 is the instantaneous amplitude of the
disc’s angular velocity and δ =

√︁
2ν/ω is the vis-

cous penetration depth. The total torque acting
on the disc will be determined by integration of
drag forces over both surfaces of the disc, neglect-
ing the friction along its edge. The magnitude of
the local viscous drag force fL (per unit area) is
given by fL(r, t) = η ∂u(z, t)/∂z, where η is the
fluid dynamic viscosity. The magnitude of the lo-
cal contribution to the torque of the viscous forces
is then given as ML(r, t) = rfL(r, t). The total
moment of frictional forces is given as:

MF(t) = 2
∫︂ R

0

∫︂ 2π

0
ML(r, t)rdθdr

= −πη
1 + i

δ
Ω0R4eiωt

= π√
2

(1 − i)√ηωρ ωR4ϕ0eiωt,

(C4)

where Ω0eiωt = iωϕ0eiωt was used, with ϕ0 rep-
resenting the instantaneous amplitude of angular
displacement.
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The moment of the friction forces is therefore
phase-shifted with respect to the angular veloc-
ity of the disk by π/4. By defining a hydro-
dynamically induced moment of inertia IHD =
πR4

√︁
ηρ/2ω and the coefficient Γ = πR4

√︁
ηρω/2,

we can rewrite the moment of the frictional forces
as:

MF(t) = −Γϕ̇(t) − IHDϕ̈(t), (C5)

where the two terms on the right hand side corre-
spond to dissipative and inertial torques, respec-
tively.

The energy dissipated by the viscous forces can
be obtained as:

Ė(t) = −2
∫︂ R

0

∫︂ 2π

0
Re(Mv(r, t))Re(Ωt)rdθdr

= −πηΩ2
0R4

δ

[︁
sin(ωt) cos(ωt) − cos2(ωt)

]︁
.

(C6)

Averaging over one period, we get:

⟨Ė⟩ = π

2
ηΩ2

0R4

δ
. (C7)

Using the fact that the total energy stored in the
motion of the disc is E = I0Ω2

0/2, and it’s moment
of inertia is given by I0 = mR2/2 (neglecting hy-
drodynamic contributions), we may define a fluidic
quality factor:

1
Qf

= ⟨Ė⟩
ωE

= A

md

√︃
ηρω

2 , (C8)

where A = πR2 is the area of one side of the disc,
and md is the disc’s mass.

To define the drag coefficient, we follow the def-
inition used in classical steady flow: the force
F acting on a body in steady flow is given by
F = 1

2 CDA′ρU2, where CD is the dimensionless
drag coefficient, A′ is the cross section of the body
perpendicular to the direction of motion, ρ is the
density of the fluid and U is the (homogenous)
velocity of the fluid. In analogy, it is possible to
define the drag coefficient for the torsionally oscil-
lating disc from:

MFD

R
= 1

2CDAρΩ2
0R2, (C9)

where MFD = ΓΩ0 is the dissipative part of the
moment of frictional forces and we again use A =
πR2.

Finally, to define the dimensionless Donnelly
number, we use the peak velocity at the circum-
ference of the disc U = RΩ0, yielding:

Dn = RΩ0ρnδn

η
. (C10)

Comparing with Eq. (C9), we arrive at
Cn

D = 2/Dn, where the normal component
drag coefficient Cn

D differs from CD only by
replacing the density ρ with ρn.

Substituting (C5) into the dynamic equa-
tion (C1) and dividing by the total moment of
inertia I = I0 + IHD we get:

ϕ̈ + 2γϕ̇ + ω2
0ϕ = 0, (C11)

where γ = Γ/2I is the damping coefficient, and
ω2

0 = κf/I is the square of the intrinsic angular
frequency of the undamped resonator. Thus, we
have a standard equation of the damped harmonic
oscillator, which is satisfied by the solution:

ϕ(t) = ϕ0e−γteiωt, (C12)

where the angular frequency ω is related to the
frequency of a hypothetical undamped oscillator
by ω2 = ω2

0 − γ2.
After processing the recorded videos of the disc

motion, we obtain data in the form of ϕ(t). From
this, we determine the extrema ϕ0,i, and the loga-
rithmic decrements αi = ln(ϕ0,i−1) − ln(ϕ0,i+1),
which are related to the damping coefficient γ
in Eq. (C11) by γi = αiω/(2π). The dissipa-
tive part of the moment of friction forces - the
first term on the right hand side of Eq. (C5) - is
then MFD,i = 2Iωγiϕ0,i. The drag coefficient ob-
tained from each experimental point may then be
expressed as:

CD,i = 2Iαi

πAρR3ϕ0,i
. (C13)

If the hydrodynamic contribution to the mo-
ment of inertia is negligible, we may put I ≃ I0 =
mR2/2, where the mass of the disc can be ex-
pressed as m = Ahdρd, where hd is the disc height
and ρd its density. The drag coefficient can then
be further simplified to:

CD,i = 1
π

ρdhdαi

ρRϕ0,i
, (C14)

which no longer requires the precise knowledge of
I or I0.
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