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Abstract

Thesis investigates the impact of German wind and solar energy on the dy-

namics of Czech electricity spot prices in the period between 2015 to 2018.

Using pooled panel-GARCH model, a negative merit order effect of German

wind and solar energy were observed. More specifically, one additional GW

of power produced by wind and solar, reduces the spot price by 0.60 and 0.45

EUR/MWh, respectively. The negative merit order effect was also found in

the case of Czech solar energy. Corresponding spot price reduction equals to

1.42 EUR/MWh per additional gigawatt hour. Next, increased volatility in

the spot prices was found due to both German wind and Czech solar energy. I

also observed that these effects differ during a day. Furthermore, I estimated

total financial impact stemming from the negative merit order effect and com-

pared it with the total costs of households that arise in surcharges to support

renewable energy. While Czech households pay approximately 270 million eu-

ros annually in surcharges, the total financial impact stemming from the merit

order is around 145 million euros. The value comprises the merit order effect

of both Czech and German renewable sources. In other words, Czech and Ger-

man households bear the costs of subsidized renewable energy while they do

not necessarily profit on the merit order effect. Only spot market participants

can make a profit on the negative merit order effect. It is up to national poli-

cymakers to set rules which will not promote one part of customers above the

other.
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Abstrakt

Práce zkoumá dopad německé solarńı a větrné energie na dynamiku českých

spotových cen elektřiny v obdob́ı 2015 až 2018. S použit́ım GARCH modelu

pro panelová data, autor nalezl snižeńı spotové ceny v závislosti na německé

solarńı a větrné energii. Přesneji řečeno, jedna gigawatt hodina německé solárńı

a větrné energie, dodaná do systému sniž́ı spotovou cenu elektřiny o 0.45 a 0.60

EUR/MWh. V př́ıpadě české solárńı energie to je 1.42 EUR/MWh. Dále byla

objevena zvýšená volatilita cen kv̊uli německé vetrné a české soalrńı energii.

Tyto závislsoti se měńı v pr̊uběhu dne. Na základě výsledk̊u regresńıho mod-

elu byl odhadnut celkový finančńı dopad sńıžeńı spotových cen plynoućı z ob-

novitelných zdroj̊u. Dále byla tato hodnota porovnána s náklady domácnost́ı,

které plynou z př́ıplatk̊u na podporu obnovitelných zdroj̊u. Zat́ımco české

domácnosti zaplat́ı přibližně 270 milión̊u euro ročně, celkový efekt sńıžeńı spo-

tových cen se pohybuje kolem 145 milión̊u euro. Tato hodnota je tvořena efek-

tem záslužnosti pořad́ı ve výrobě z českých a německých obnovitelných zdroj̊u.

Jinými slovy, české a německé domácnosti nesou náklady plynoućı z podpory

obnovitelných zdroj̊u, ale neprofituj́ı ze snižených spotových cen. Tento užitek

je přenechán výhradně účastńık̊um spotového trhu. Je na vládách jednotlivých

stát̊u, aby nastavila pravidla, které nebudou zvýhodňovat jen některou část

spotřebitel̊u.

Klasifikace JEL C14, C50, Q42, Q48

Kĺıčová slova obnovitelne zdroje, panelový GARCH, spo-

tove ceny, volatilita
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Supervisor doc. PhDr. Josef Barunik, Ph.D.

Proposed topic The Impact of German Renewable Electricity on Czech

Electricity Spot Prices

Motivation Due to Germany’s transition to low carbon energy supply (Energiewende),

large energy surpluses flow into the Czech transmission system, potentially affecting

the price of electricity in the local market. The Energiewende was accelerated after

the accident in Japan’s Fukushima nuclear power plant in 2011 and corresponding

closing of eight nuclear power reactors. Thereafter, both wind and solar power plants

installed capacity almost doubled to today’s 55.5 GW and 42.9 GW, respectively.

The Energiewende has a major influence on the functioning of the Central Eu-

ropean interconnected electricity market. It affects the regional price of electricity

and the way in which electricity is traded (The Ministry of Foreign Affairs of the

Czech Republic, 2017). To what extent German renewable electricity affects Czech

electricity spot prices is of principal importance for government and local electric-

ity providers. For example, Czech Republic already installed special Phase Shifting

Transformers (PST) which allow keeping electricity flows within safe limits. Further,

local providers can optimize their business strategies with respect to expected inflows

of cheap German electricity.

Recently, many empirical studies were conducted on the topic of renewable elec-

tricity, its impact on electricity prices and price volatility. In Haxhimusa (2018), the

author estimates cross-border effects of German wind and solar electricity on French

spot price volatility. Study finds both, positive and negative effect on the volatility

of French prices. The effect depends on the shape of the French supply function and

on the French demand. Likewise, Mulder and Scholtens (2013) find German elec-

tricity produced by wind farms to have a negative effect on Dutch electricity prices.

Both studies use 2SLS method to investigate corresponding dependencies. In con-

trast, Pham & Lemoine (2015) focus solely on the German market. Using family of

GARCH models, authors find a decrease in wholesale prices related to electricity gen-

mailto:matej.kourilek@gmail.com
mailto:barunik@fsv.cuni.cz


Master’s Thesis Proposal xiii

erated from renewable sources. Regarding the Czech electricity market, Lunáčková
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respectively. While data from the Czech market has hourly granularity, German

production volumes are given in 15 minutes stamps. Thus, I will compute and work

with hour averages.

For classical statistical modelling, the date is assumed to follow a stationary

process. Nevertheless, in case of electricity prices, assumption about stationarity is

usually rejected (Voronin and Partanen, 2013). To overcome the non-stationarity

and seasonal pattern of electricity prices we will use wavelet transformation of an

initial time series. Further, as in Tashpulatov (2013), Pham & Lemoine (2015),

Conejo et. al (2005), prices and price volatility will be analyzed using various types

of autoregressive conditional heteroskedasticity models.

Expected Contribution As the German transition to carbon-free economy accel-

erates it is important to know to what extent is Czech market affected. The thesis

should analyze whether German electricity produced by renewable sources lowers the

spot prices on Czech electricity market. Further, volatility of the Czech spot prices

with respect to German renewables will be analyzed. In contrast to other studies

about Czech electricity market, I will assume cross-border dependencies. Also, I will

employ modern techniques for high-frequency data analysis. The estimates can be



Master’s Thesis Proposal xiv

used by both, the Czech government and Czech local electricity providers for strategy

optimization.

Outline

1. Motivation: Introduction to the topic and description of the electricity market.

2. Literature Review: Description of estimation techniques used in recent studies

of the electricity market.

3. Data: I will describe the data used for analysis.

4. Methods: A detailed summary of methods I will use in the thesis.

5. Results: I will discuss my findings based on estimated models.

6. Conclusion: Summary of regression results and possible implications for the

Czech policy decision maker.

Core bibliography

Mallat, S.G., A theory for multiresolution signal decomposition: the wavelet

representation. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 11(7), pp.674-693. Available at: http://ieeexplore.ieee.org/document/

192463/ [Accessed June 05, 2018].

Engle, R.F., 1982. Autoregressive Conditional Heteroscedasticity with Esti-

mates of the Variance of United Kingdom Inflation. Econometrica, 50(4),

p.987-. Available at: https://www.jstor.org/stable/1912773?origin=crossref

[Accessed June 05, 2018].

Conejo, A.J. et al., 2005. Day-Ahead Electricity Price Forecasting Using the

Wavelet Transform and ARIMA Models. IEEE Transactions on Power Sys-

tems, 20(2), pp.1035-1042. Available at: http://ieeexplore.ieee.org/document

/1425601/ [Accessed June 05, 2018].

Tashpulatov, S.N., 2011. Estimating the Volatility of Electricity Prices: The

Case of the England and Wales Wholesale Electricity Market. In Prague:

Charles University, CERGE-EI.

Pham, T. K. Lemoine (2015): “Impacts of subsidized renewable electricity

generation on spot market prices in Germany: evidence from a GARCH model

with panel data.” In: CEEM working paper 2015e15 .



Master’s Thesis Proposal xv

Voronin, S. Partanen, J., 2013. Price Forecasting in the Day-Ahead Energy

Market by an Iterative Method with Separate Normal Price and Price Spike

Frameworks. Energies, 6(11), pp.5897-5920. Available at: http://www.mdpi.

com/1996-1073/6/11/5897 [Accessed June 05, 2018].

Mulder, M. Scholtens, B., 2013. The impact of renewable energy on elec-

tricity prices in the Netherlands. Renewable Energy, 57, pp.94-100. Available

at: http://linkinghub.elsevier.com/retrieve/pii/S0960148113000505 [Accessed

June 05, 2018].
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Chapter 1

Introduction

Over the last decade, a strong emphasis has been put on the promotion of

green electricity in the European energy sector. Under the Renewable Energy

Directive 2009/28/EC (RED), the European Union (EU) committed itself to

reduce its emissions of carbon dioxide (CO2) by 20 percent compared to prein-

dustrial level. The goal should be met by 2020. Solar and wind energy became

the most popular instrument for reaching the target. The energy produced

by these renewable energy sources (RES) is cheap and carbon-free. Neverthe-

less, the transition to RESs brings also many challenges. Since the production

of energy from solar and wind depends purely on weather conditions, the in-

creased share of RESs in country’s energy mix likely changes dynamics of the

spot prices. A situation, when a huge volume of green electricity drives spot

prices to negative values, is not unique. Approaching 2020, more and more

RESs being connected to the energy grid all around Europe. The leader in

the transition to a sustainable energy sector is Germany with 46 percent of in-

stalled capacity in RESs. Since the flow of electricity does not respect borders,

spillover effects of cheap green electricity influence energy grids of neighbour-

ing countries. For example, the Czech Republic already installed special phase

shifting transformers which allow keeping electricity flows from Germany within

safe limits. It shows that energy policy should be set internationally. Also for

national electricity retailers is of principal importance to know how much is the

spot market influenced by both national and foreign green energy production

so they can optimize their portfolio accordingly.

The objective of this thesis is to examine the effect of German RESs on

the Czech electricity spot prices. More specifically, the effect on both the

spot price level and its volatility is studied. Production from the Czech RESs
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is also considered. Further, I focus on the merit order effect of RESs and

its total financial impact on end-customers and spot market participants. To

study the price dynamics, I build upon an approach developed by Cermeño

& Grier (2003). It allows modelling panel data with time-varying conditional

matrix while preserving the simplicity of the model. The model is from the

family of multivariate generalized autoregressive conditional heteroskedasticity

(GARCH) models. To estimate desired effects, I introduce several external

regressors into both the mean and the variance equation. The total financial

impact of the merit order effect stemming from RESs is calculated based on

the results of the model described above. To do so, I follow a similar approach

as in Cludius et al. (2014) and Sensfuss et al. (2008).

Thesis contributes to the existing literature in several ways. There has not

been much research devoted to the effect of RESs on the volatility of Czech

spot prices. Also, no cross-border dependencies were considered in the existing

literature. As far as the author is aware, the merit order effect of RESs and its

total financial impact on end-customers has not been studied either.

This thesis is organized as follows. Chapter 2 describes Czech and Ger-

man energy markets. Further, the revision of existing literature on price and

volatility modelling is provided. Chapter 4 describes the data used in the anal-

ysis. Chapter 5 introduces the model and related methods used in this thesis.

Chapter 6 presents and discusses the results of the analysis. Chapter 7 provides

conclusion.



Chapter 2

European Energy Markets

In this chapter I describe history and transformation of energy industry in

Europe from state monopoly to highly competitive market. I review European

policy which shapes the development of Czech and German electricity markets.

Main focus is given to renewable part of the industry. This section is based on

Flášar et al. (2016).

2.1 Liberalization of Energy Markets

Electricity market is from family of grid industries. An electricity network

consists of power generation units, transmission grid, distribution, and con-

sumption units. A common characteristic for a grid industry are large initial

costs. Example of such a costs is nuclear power plant, water dam or national

transmission system. The opposite is true for a marginal costs of connecting

one additional consumer into the grid. Thus, with respect to economies of scale

it makes sense to interconnect all local production and consumption units into

one electricity grid. Such conditions are perfect for natural monopoly. Indeed,

a regional and state monopolies in energy industry were common across Europe

before liberalisation of energy markets. The electricity providers used to own

production units, transmission grid and distributions, i.e., energy sector was

vertical monopoly. The integration of energy sector into the monopoly was due

to large entrance costs and conviction that electricity is a public service and

everyone should have an access to it for reasonable price.

Liberalisation of energy markets has its origin in the 1970s. Before first oil

crisis in 1973, energy companies were either state-owed or regulated by state

policy. Unlike Europe, privately owned energy companies were already estab-
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lished in the United States. Private investors gradually took over importance

from municipalities and state while being regulated by a state. This was possi-

ble due to stable macroeconomic environment and low inflation in 1960s. The

turning point were two oil crisis in the 1970s. A sudden surge in the prices

of inputs was addressed by a state-budget buffer dedicated for state-owned

regulated companies, whereas private companies translated increase in costs

into the end-customers tariffs. The inefficiency resulting from such a setup

was resolved by liberalisation. The purpose of liberalisation was to introduce

elements of competition into the energy market. Thus, increasing efficiency

and consequently lowering the prices for customers. The first step was to re-

think the structure of entire energy industry and divide it into a smaller units.

The ultimate result of such a process was collapse of vertical monopoly. One

company could no longer participate in entire industry, i.e, production, trans-

mission, distribution, and retail. While production, delivery, and retail were

deregulated completely, transmission, distribution, and system services are still

regulated by local states. The regulation is due to the monopolistic nature of

transmission systems.

2.2 European Energy Market Structure

Energy markets in the EU are shaped by directive 2009/72/ES. The directive

altogether with national laws define the structure of energy market in particu-

lar country or area. As mentioned above, the energy market comprises of four

areas, generation, transmission, distribution, and retail or customer. The phys-

ical interconnection between these is illustrated on Figure 2.1. A generation

consists of power plants with large installed capacity. These are usually nu-

clear, hard coal or lignite. Transmission grid links generation units with local

distribution grids. Transmission grid transports electricity over large distances.

Hence, electricity in the transmission grid has to be transmitted in high voltages

to avoid losses due to grid’s electrical resistance. Contrarily, distribution grids

transmit electricity in low voltages. The distribution grid has a local character

and transports electricity to the end-customer. Connection of a customer di-

rectly to the transmission grid is possible when customer has a high offtake like

steelworks. Small scale generation units can be connected to the distribution

grid, e.g., a single wind turbine, co-generation unit, and small solar farm. As

Figure 2.1 depicts, generation units, transmission grid, and distribution grids

are connected via transformers. The transformer between generation unit and
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Figure 2.1: Physical Transport of Electricity

Source: SA. (2018)

transmission grid is so-called ”step-up” transformer. It upscales the voltage

115 kilo-volts (kV) and more. The transformer between transmission grid and

distribution grid is called ”step-down” transformer and it drops voltage to 35

kV and lower.

Figure 2.2: Financial Structure of the Energy Market

Source: Flášar et al. (2016)

The model of financial bonds and responsibilities on energy market is very

complex and it is describe in Flášar et al. (2016). The fundamental structure

of energy market is shown in Figure 2.2. Arrows depict bonds between market

participants. Each country has its market operator. A market operator runs

register of market participants on an energy exchange. Further, the market

operator arranges clearing of the actual and negotiated deliveries. A producer

agrees on delivery either with a retailer or directly with end-customer. A re-

tailer buys electricity either on the energy exchange or directly from a producer.

Further, the energy market comprises of two parts, regulated and deregulated.
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Whereas generation, distribution, and commerce are all competitive markets,

transmission due to its characteristic is a monopoly. Hence, government has to

impose regulatory policy on it. Additionally, the commerce is further divided

into retails and traders. Retail provides electricity to the end-customers. On

the other hand, traders resale electricity on the wholesale market to make a

profit. Now, there are mainly two ways of trading electricity, via energy ex-

change or by bilateral trade. The latter is usually referred as over-the-counter

(OTC) market. OTC deals are either settled directly between two entities or

via broker. The most frequent deals on the OTC market are following:

• Base load - a delivery of constant power throughout the whole period.

• Peak load - a delivery of constant power from Monday to Friday between

8:00 and 20:00.

• Off peak - the opposite of peak load.

• High tariff - is sometimes called extended peak and it is a delivery of

constant power from Monday to Friday between 6:00 and 22:00.

• Low tariff - the opposite of high tariff.

While base load, peak load, and off peak are standard products across Europe,

high and low tariff are mainly recognized in eastern European markets. The

second option for trading is the energy exchange. The energy exchange allows to

trade the same standard products as those on the OTC market. There are three

main energy exchange platforms in Europe, the Nordpool, the European Energy

Exchange (EEX), and the ICE Energy exchange (ICE ENDEX). The Nordpool

exchange organizes a spot market for Scandinavian countries. The EEX is the

biggest commodity exchange in Europe. The EEX organizes markets for both

future and spot trading. German, French, Austrian, and Swiss electricity is

traded here. The ICE ENDEX operates electricity in Benelux region. The

spot market organized by energy exchange is the principal element in process

of price creation. It guarantees that physical delivery of electricity is efficient,

i.e., merit order effect is applied (Flášar et al. 2016). The merit order effect is

discussed in Section 3.1. Trades with physical delivery for next trading day are

settled on the spot market, i.e., the day-ahead spot market 1. Hence, standard

products traded on the spot market are following:

1Further, I will use only phrases spot market and spot prices.
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• Hour - a delivery of power for particular hour for a next day.

• Base load - a delivery of constant power for a next day.

• Peak load - a delivery of constant power between 8:00 and 20:00 for a

next day.

Based on orders of these products energy exchange determines the spot prices

for a next day. The auction mechanism is an iterative process. Firstly, products

are decomposed to single hours. Secondly, price curves are computed for each

hour so all demanded volumes are covered. Finally, auction hall checks whether

all submitted orders can be satisfied. If not particular order is discarded and

prices are computed again until equilibrium is reached. Highly liquid spot

markets also offer trans-border trades. Traders sell electricity on foreign spot

market where it is physically present and they buy it on domestic market. Such

a deal then determines the price of cross boarder transmission.

Figure 2.3: Type of electricity market with respect to time flow.

Source: www.incite-itn.eu

The electricity market can be split with respect to the time of product

purchase. I already mentioned possibility of closing future and spot deals.

Nevertheless, the energy market recognizes also intraday market and balancing

market. The time diagram is shown in Figure 2.3. Standard products on

the futures market are year, quarter, and month baseload. The spot market

is further divided into day-ahead and intraday market. The intraday market

allows to close deals within the day of physical delivery. It helps retailer to

optimize their long (short) position one hour ahead before delivery. Thirty

minutes before delivery balancing market opens. It is organized by the market

operator and the transmission system operator (TSO) is the only participant.

The TSO buys (sells) regulation power to offset the system deviation. The costs

of regulation power are charged one day after delivery to market participants

according to their deviation between agreed and actual offtake.
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With the increasing share of wind and solar energy European Commission

adopted Regulation No 543/2013. It binds all national TSOs, which have more

than one percent feed-in of wind or solar power generation per year to publish

day-ahead generation forecast for these fluctuating sources. Even though it

came into force in mid 2013, the formal obligation came into effect at the

beginning of 2015 (EC 2013). It was an important step for the process of spot

prices formation. Only after that could traders on the spot market reflect the

cheaper green electricity into the spot prices more accurately.

2.2.1 German Market

In 2009 the European Commission adopted the RED 2009/28/EC setting three

main targets which are to be met by 2020. According to European 20-20-20

target, Europe should decrease its CO2 emission by 20 percent compared to

1990 level, 20 percent of consumed energy should be from the RESs, and energy

efficiency should increase by 20 percent. Previously, Germany set its national

target to 40 percent reduction in CO2 emissions. However, the emission target

has been soften by German government in January 2018 by the new govern-

ment treaty (CleanEnergyWire 2018a). Additionally, German government has

committed to cover 65 percent of energy consumption covered by the RES

by 2030. A baseload production shall be provided by a natural gas (Power-

mag 2018). Further, German government pledged to announce date when all

coal burning power plants will be shut down. Another legal document shaping

the German energy policy is the Renewable Energy Sources Act (Erneuerbare

Energien Gesetz, EEG). The EEG was issued in 2000 and had several amend-

ments. Recall, TSO has to publish day-ahead forecast for wind and solar power

generation from 2015 on. Under revision of EEG, German TSOs have to pub-

lish day-ahead forecast from 2010. Last revision of the EEG came into force

in 2018. The EEG sets incentive scheme for investments into RES. It guar-

antees a connection between the transmission grid and preferential dispatch.

The main part is a surcharge for the renewable energy which is charged to

end-customers. The renewable surcharge is mainly paid by households. Under

EEG (2017), large industrial companies are exempt from the renewable sur-

charge due to the possible loss of competitiveness. Thus, the levy of renewable

energy is borne by German households. Figure 2.4 depicts the evolution of the

EEG surcharge from 2010. Since the EEG act came to force, the surcharge

trippled with peak in 2017. The current amendment of EEG 2019 sets this
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surcharge to 6.405 ct/kWh. To put it into context, household pays additional

64 EUR/MWh in their energy bill for the RES subsidy. The average spot price

in 2018 was 43.26 EUR/MWh2.

Figure 2.4: The EEG surcharges in respective years.
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Source: netztransparenz.de

Further, the German energy market was heavily influenced by the accident

in Japan’s Fukushima nuclear power plant in 2011. The government closed

eight nuclear power reactors right after the accident with plant to close the

remaining reactors by 2022. The drop in installed capacity has been offset

by lignite and hard coal burning power plants to ensure baseload production.

Peak hours were opportunity for the RES. Recent development in the RES

installed capacity is displayed in Table 2.1. In 2015 the RES represented 25.8

percent of installed capacity. By the end of 2018 this ratio almost doubled to

46 percent. The ratio rose mainly due to additional 18 GW of wind power and

17 percent drop in total installed capacity. The drop took place in 2016 when

a lot of lignite power sources were closed. In 2018, approximately 20 percent

of German installed capacity was in photo-voltaic (PV) power plants. Next 24

2www.energy-charts.de
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percent comprises from onshore wind parks which are spread all over Germany.

Last but not least, RES are offshore wind parks accounting for for 2.3 percent

of installed capacity. These parks are located in the North and Baltic Sea

(CleanEnergyWire 2019). See Table A.1 in Appendix for the development of

country’s energy mix.

Table 2.1: Installed Capacity of RES in Germany

2015 [MW] 2016 [MW] 2017 [MW] 2018 [MW]

Solar 37446 38840 40849 42804
Wind Offshore 993 3283 4131 5051
Wind Onshore 37757 41179 47042 51633
Total Capacity 294738 200406 212926 215080

Source: www.entsoe.eu

2.2.2 Czech Market

Due to its weather conditions, the Czech Republic is not suitable for RES.

Nevertheless, PV power plants experienced a large boom in period of 2008 to

2010. Installed capacity rose from approximately 40 MW to 1959 MW (oEner-

getice 2015). Now, PV installations account for almost 10 percent of country’s

installed capacity. In 2006, the Act 180/2005 Sb. setting subsidized prices for

electricity from PV plants came to effect. Investors were guaranteed with 15

CZK/kWh. The Act 180/2005 Sb. was abolished in 2013. Nevertheless, under

the Act 165/2012 Sb. end-customer is obliged to pay surcharge to promote

RESs. Its values is not trivial to compute. However, its price ceiling is set to

495 CZK/MWh, i.e., approximately 18.9 EUR/MWh. The surcharge did not

change since 2014 (Poncarová 2017). Note, that the Czech fee is three times

lower compared to the EEG surcharge.

Table 2.2: Installed Capacity of RES in the Czech Republic

2015 [MW] 2016 [MW] 2017 [MW] 2018 [MW]

Solar 2050 2067 2027 2040
Wind Onshore 270 277 277 308
Total Capacity 20725 20627 20188 20845

Source: www.entsoe.eu
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Recent development of the Czech RES installed capacity is shown in Table

2.2. The Czech energy mix is relatively stable compared to Germany. Indeed,

PV installed capacity stagnates since 2012 due to reasons explained above.

Compared to Germany, wind farms are not very common in the Czech Republic.

Due to its low wind potential installed capacity of wind farms makes roughly

1.5 percent of country’s energy mix. Another source of clean energy are water

dams and hydro pumped storages. Cumulatively, they account for 10 percent

of installed capacity. Baseload power sources are dominated by lignite with

approximately 40 percent of installed capacity. Nuclear power follows with 20

percent. Recent development in the Czech Republic energy mix can be found

in Table A.2 in appendix.

The Czech balancing market has hourly granularity and two prices. The

price differs for electricity providers according to their residual position with

respect to the system. In general, if market participant is short (long) and

system is long (short), then market participant receives money. On the other

hand, if the market participant’s position is on the same side as the system

deviation, he pays.



Chapter 3

Literature Review

This chapter describes unique characteristics of electricity as a commodity. Fur-

ther, it reviews some of the latest papers which study the impact of renewable

power generation on market prices and price volatility. More precisely, I report

author’s findings and discus corresponding methodology.

3.1 Electricity As Tradeable Commodity

Unlike other commodities, electricity is still more or less non-storeable. It is

impossible to substitute delivery of 3 AM electricity with delivery in 4 AM.

Thus, every hour of electricity delivery can be viewed as a distinct commodity.

An electricity flows from production sources to customers through the short-

est distance possible, i.e., through the least resistant path. Also, an electricity

travels almost instantaneously. As a consequence, an energy has to be con-

sumed at the same time of its production. If one production unit suffers outage,

other has to balance for that loss in power grid. By contrast, if one consumer

stops off-taking the electricity from the grid there should be equal offset to

balance for the excess of an energy. In other words, grid has to be balanced

in every point of time so an electricity is delivered in a constant quality. The

balancing of a grid is performed by a dispatching facility of particular transmis-

sion system owner. Taking all together, an electricity grid is a very fragile and

volatile environment where each participant can influence the others. Both,

shortages and excesses in a grid, can damage the transmission system and con-

sequently cause blackouts. Recall, that supply and demand have to be met in

every point of time. To set a price for a specific hour system, a TSO has to

rank available energy sources in ascending order with respect to their marginal
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costs and amount of energy generated. This type of ranking is called merit

order and it is depicted on Figure 3.1.

Figure 3.1: The merit order of power sources.

Source: www.journals.openedition.org

As can be seen from the graph, RESs are first when comes to merit order.

Indeed, RES’s marginal costs of production are close to zero (Lunáčková et al.

2017). The final price is set at the point where forecasted power generation

supply meets forecasted demand. In times with low demand and favourable

weather conditions for RES a significant portion of a total demand can be

met only by production from the RES. Such conditions were seen after the

New Year’s Eve in Germany. Around 6:00 AM on January 1, 2018, the whole

Germany’s power demand was covered by the RES (CleanEnergyWire 2018b).

At that moment prices ”reached” negative values around -72.5 EUR/MWh 3

and production of conventional power sources had to be minimized. Negative

prices is another characteristic which can not be seen in any other market.

It has several reason such as ramp-up and ramp-down costs for conventional

power sources, provisions to the TSO, and already mentioned electricity from

the RES, Cludius et al. (2014), Nicolosi (2010).

3https://www.smard.de
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3.2 Price Modelling

Preceding section describes an electricity as a commodity. Due to character-

istics explained above, electricity spot prices have several unique properties.

Like many financial market data, the distribution of electricity spot prices is

usually leptokurtic and departs from normality by exhibiting heavy tails. The

presence of heavy tails means that extreme observations occur more frequently

than expected by the normal distribution. Such a distribution commonly has

excess kurtosis. In Cludius et al. (2014) authors find that the distribution

of the European Power Exchange (EPEX) spot prices for Germany is indeed

highly leptokurtic. Further, Haxhimusa (2018) and Higgs (2009) claim that

the electricity spot prices is a mean-reverting process with seasonality pat-

terns and volatility clustering. A volatility clustering occurs when a large price

change is followed by a large price change. To control for seasonality, authors

in Cludius et al. (2014) create vector of time dummies. It consists of twenty

three variables to take specific hours into a account, six variables to control

for week days, and eleven variables to distinguish between months. Similar

approach used Clò et al. (2015) and Gelabert et al. (2011) in analysis of Italian

and Spanish electricity wholesale prices, respectively. In Tashpulatov (2013)

author argues that using smooth periodic functions rather then daily dummies

should by preferred approach for capturing weekly seasonality. He supports his

claim by parsimony of resulting model. This is also in line with propositions

in Koopman et al. (2007). This paper will follow the same approach.

There has been a lot of research in the area of electricity prices and the

RES power production. Cludius et al. (2014) studies merit order effect of the

RES on the EEX spot prices. For each year in the sample period from January

2008 to December 2012, authors estimate a model by the OLS methodology.

The model estimates spot prices dependency on wind and solar feed-in to the

system. Further, variable of a total system load is included as an indicator of a

total demand. Cludius et al. (2014) finds drop in average spot prices between

0.97 to 2.27 EUR/MWh for wind and 0.84 to 1.37 EUR/MWh for solar per

GWh fed into the system. As mentioned above, Gelabert et al. (2011) studies

the electricity wholesale prices in Spain. The paper use OLS and control for

various type of power generation sources including hydro, coal, nuclear, and gas

plants. On period between years 2005 and 2009, the authors find decrease of

2 EUR/MWh in wholesale price per GWh of electricity produced by the RES.

This is approximately four percent of the mean price during sample period.
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Another study investigating the impact of the RES on the electricity spot prices

by the OLS is Clò et al. (2015). The authors estimate that Italian subsidy

scheme resulted in the average decrease of spot prices by 2.3 EUR/MWh and

4.2 EUR/MWh for wind and solar, respectively. Further, they find an increase

in price volatility.

When investigating the impact of the RES on a spot prices, many studies

use daily averages rather then hourly prices. See Gelabert et al. (2011), Clò

et al. (2015) or Higgs (2009). Nevertheless, using daily prices can result in a

loss of information contained in hourly granularity. Since the energy output

from RES, especially solar, can vary substantially during the day, averaging of

spot prices could reduce short run dynamics across hours. Thus, I use similar

approach as in Pham & Lemoine (2015) and Haxhimusa (2018).

Recall, the example about impossibility of substitution between specific

delivery hours. Does it mean that each hour should be modelled separately?

The question is partially answered in Cuaresma et al. (2004). By applied variety

of auto-regressive (AR) and auto-regressive–moving-average (ARMA) models

on the Leipzig Power Exchange spot prices authors find better predictability of

price development when each hour is treated separately. Huisman et al. (2007)

also argues that hourly electricity spot prices do not behave as a single time-

series process. Thus, authors deploy model for panel data where each hour is

considered as a one cross-sectional entry.

3.3 Price volatility

The knowledge of a price level and a price volatility is one of crucial importance

in relation to the development or success of national and business strategy.

When it comes to business strategy, electricity provider has to take into account

several types of risk. These risks mostly originate from price movements. One

example of such a risk is holding risk. Customers are usually offered with

certain price along with time period during which they can accept or decline

the offer. If prices would suddenly surge during this period, electricity provider

suffers loss. Thus, holding risk has to be priced accurately. In Linsmeier &

Pearson (2000) authors describe value at risk concept for measuring an entity’s

exposure to market risk. It uses price volatility of given commodity as key

input for determining risk premium. Common property of solar and wind

power generations is their dependence on weather. With highly volatile weather
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conditions I also expect the RESs to have volatile power output, i.e., to increase

price volatility.

In Paschen (2016) author studies price dynamics of German spot prices in

period from July 2010 to March 2013. Using structural vector auto-regressive

model (SVAR) author finds decrease in spot prices to be 2.4 EUR /MWh

and 1.7 EUR/MWh due to positive structural shock in solar and wind power

generation, respectively. Along with explanatory variables for wind and solar

generation, the author controls for the load (demand) and the power gener-

ated from conventional sources. The use of the SVAR model is then justified

by possibility of inter-dependencies between these explanatory variables and

their auto-correlation. Under such conditions coefficients estimated by the

OLS could be biased since inter-dependencies remain in the residuals, Paschen

(2016). The source of inter-dependencies is claimed to arise from the merit

order effect. See example of strong winds. During favourable weather condi-

tions, wind parks generate more power and conventional power sources have to

minimize their power output. Such a correlation would be then included in the

residuals.

The German spot prices are also analyzed in Ketterer (2014). The paper

investigates relationship between renewable electricity generated by wind parks

and the spot electricity price from the EEX. The author uses GARCH model

to estimate the impact of wind electricity on price level and price volatility. He

studies the period from January 2006 to January 2012 when the new revision

of EEG came into effect. He finds that one percent increase in wind generation

(MWh per day) lowers the price approximately by 0.1 percent. Like in Paschen

(2016), author detects higher volatility of prices due to wind power generation.

He claims that introduction of the EEG mechanism in January 2010 helped

to reduce the price volatility. Instead of month ahead forecast for all types of

power generation, the TSO had to start publish day-ahead forecast. Resulting

increase in accuracy lower the spread between forecasted and actual in-feed

load. Further, he argues the price volatility is additionally smoothed through

possibility of export to neighbouring countries. The possibility of import and

export electricity to neighbouring country was used as an explanatory variable

in Haxhimusa (2018). The paper studies the volatility of the French spot prices

due to the import of the electricity produced by the German RES. The author

defines volatility as the absolute value of the difference between price in given

hour and daily mean. He argues that such a price volatility measure retains

more information then the standard volatility computed with daily frequency.
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To control for domestics price determinants he employs variables such as day-

ahead forecasts of nuclear and wind generation, load, and already mentioned

imports from Germany. Further, he use day-ahead forecasts for the German

RES generations and dummy variables controlling for the German and French

holidays. The use of nuclear generation is justified by its low marginal costs and

corresponding downward pressure on the price. The likely endogenity problem

stemming from reverse causality between imports and the spot price volatility

is addressed by the two-stage-least squares (2SLS) model. The imports are

regressed on instrumental variables, i.e., the German RESs generation and

holiday dummies. The second-stage equation then accounts for effects of the

German imports and the German RESs electricity. The author finds that the

effect on the price volatility depends on the shape of French demand function.

During the peak hours price volatility was lowered by the German import. This

is attributed to the solar energy since its generation coincides with peak hours.

On the other hand, volatility has increased during off-peak hours.



Chapter 4

Data

4.1 Data Description

I employ large variety of data. I use the Czech electricity spot prices as our

dependent variable. These prices are published by the Czech market operator

(OTE a.s.) on the OTE’s website 4. The prices are reported in EUR/MWh.

Next, the data from RESs are used. Recall, the spot price is formed one day

ahead before actual delivery. Thus, when applicable, I should use day-ahead

forecasts of RESs generation. The RESs’ forecasts from the German market are

collected on the websites of four transmission grid operators TenneT, Amprion,

50Hertz, and TransnetBW. These data have quarter-hourly granularity and

megawatt (MW) as a measurement unit. To control for the effect of t he Czech

RESs, I also employ the day-ahead forecast of energy produced by the Czech

PV plants. Unfortunately, the day-ahead forecasts for the Czech wind energy

are not available. Instead, I use the data about actual wind generation as proxy

for the day-ahead forecast. I assume there is no systematic departure from the

forecasted data. Further, I use day-ahead forecast of total load in the Czech

grid as a main determinant of price equilibrium in short term. Load represents

the instantaneous power consumption in the system. Unlike Pham & Lemoine

(2015), I use day-ahead forecast of load to avoid problem with endogeneity. All

Czech data are reported in MWh, have a hour granularity, and are available

online on the website of the Czech transmission grid operator ČEPS a.s 5.

In order to have valid inference, all explanatory variables should be exoge-

nous. This is certainly valid assumption in case of RESs. A behaviour of these

4www.ote-cr.cz
5www.ceps.cz
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sources is determined by weather conditions. Also, RESs have priority feed-in

and marginal costs close to zero. Thus, producers have no incentive to spec-

ulate on current market price and they produce as much energy as possible.

Further, I have to assume that in a short run demand (load) is perfectly in-

elastic with respect to the spot price. Customers do not react to day-to-day

or even hour-to-hour changes. Again, there is no incentive to do so since the

most energy products have fixed price for longer period. Thus, I conclude this

assumption is likely to hold.

Further, several adjustments have to be introduced to the dataset. Firstly,

the German data have to be transformed to hourly granularity. I simply take

arithmetic average over four observation per each hour for particular day. More

precisely, I do the following:

xh =

∑4
q=1 xhq

4
(4.1)

where xhq represents observation for given quarter of an hour. Recall, the Czech

Republic and Germany have daylight saving time changes. Thus, there is one

day with 25 hours and one day with 23 hours each year. To have consistent

dataset, I delete and add one observation for those days, respectively.

The resulting dataset spans from 1 January 2015 to 30 December 2018

yielding 33 774 observations for hourly data. Table 4.1 presents descriptive

statistics of all explanatory variables. The unit of measurement is a gigawatt

(GW). Approximately half of observations for both the German and the Czech

solar production are zero. This is expected since I use hourly data. Note that

Solar.GE has fewer null observations then Solar.CZ. This difference stemming

from the geographic location of German production. Germany extends across

more latitudes and longitudes then the Czech Republic. Both variables are

positively skewed and have excess kurtosis statistic around 2.2, i.e., they de-

part from normal distribution. Shapiro-Wilk test also supports this claim. A

part from the obvious difference between installed capacities, standard devi-

ation of Solar.GE is much higher. On contrary to solar, Wind.Offshore and

Wind.Onshore have no null observations. In other words, there was always

some production from wind in Germany during whole study period. On av-

erage, German onshore wind parks produce 8.71 GW per hour while offshore

parks produce only 1.6 GW. On contrary, the Czech wind production is very

small. On average, it is only 0.06 GW of energy per hour. All variables rep-

resenting wind production have negative excess kurtosis statistics. In other
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words, their distribution is platykurtic which means that outlires are not that

frequent. I attribute this to the technical properties of wind turbines. Wind

turbine is capable of producing power until certain level of wind speed. After

this speed is reached a turbine has to be artificially braked or shut down com-

pletely. The results is distribution with well defined possible values which can

not exceed certain level. Further, Wind.Onshore and Wind.CZ are positively

skewed. This is not the case for the Wind.Offshore which has slightly negative

skewness. It suggests that the mass of its distribution lays on the right, leaving

low observations less probable. In other words, offshore wind farms have lower

probability of not producing anything. Last explanatory variables is the Load.

It has minimum equal to 4.33 GW. The maximum is equal to 11.07 GW. The

median almost overlap with the mean, i.e., its distribution is close to sym-

metric. Indeed, skewness statistic equal to -0.01. Nevertheless, Shapiro-Wilk

test strongly rejects normality of the data. This is due to its negative excess

kurtosis. Thus, the distribution of the Load variable is platokurtic. Again, it

stems from technical properties of the transmission system. The lowest possible

value of load is zero. The maximum cannot reach arbitrarily high values since

it would damage the system.

Table 4.1: Descriptive statistics

Solar.GE Wind.Offshore Wind.Onshore Wind.CZ Solar.CZ Load

Observation 33774 33774 33774 33774 33774 33774
Null.obs 14010 0.00 0.00 10.00 14959 0.00
Min 0.00 0.00 0.20 0.00 0.00 4.33
Max 28.82 5.30 37.33 0.28 1.69 11.07
Median 0.18 1.31 6.55 0.05 0.01 7.38
Mean 4.30 1.60 8.71 0.06 0.26 7.40
Std.dev 6.49 1.24 7.12 0.05 0.39 1.27
Skewness 1.83 -0.06 0.73 0.73 1.79 -0.01
Kurtosis 2.35 -1.42 -0.41 -0.28 2.17 -0.84
Shapiro-W.s 0.66 0.93 0.93 0.93 0.66 0.98
Shapiro-W.p 0.00 0.00 0.00 0.00 0.00 0.00

Further, Table 4.2 shows the correlation matrix of all considered variables.

The Solar.GE is negatively correlated with all variables representing wind pro-

duction. This is most likely caused by the fact that wind parks have rather

off-peak production profiles. Nevertheless, correlation is moderate and it does

not exceed 0.2. The opposite is true for the Solar.CZ. As expected both solar

production are very highly correlated with correlation coefficient equal to 0.89.

The Wind.Onshore has highest correlation with the Wind.Onshore equal to
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0.67. Also, it is slightly correlated with the Load. Next, the Wind.Onshore

has negative correlation with the Spot equal to -0.29. Conversely, very high

correlation is observed with the Wind.CZ. Likewise, the Wind.Onshore has

positive correlation with the Load. Nonetheless, the correlation is modest. The

Load has the largest correlation with the Spot equal to 0.53. As mentioned

before, the Load variable represents an instantaneous demand of electricity in

a system. Recall, the merit order effect is depicted in Figure 3.1. From Figure

comes that the higher the load the more production sources have to be turned

on. And consequently the higher the price is. Figure 4.1 displays normalized

Spot and normalized Load in one graph. Indeed, the spot price rises and falls

with the load.

Table 4.2: Correlation matrix

Solar.GE Wind.Offshore Wind.Onshore Spot Wind.CZ Solar.CZ Load

Solar.GE 1.00 -0.12 -0.18 0.04 -0.17 0.89 0.17
Wind.Offshore -0.12 1.00 0.67 -0.08 0.33 -0.10 0.13
Wind.Onshore -0.18 0.67 1.00 -0.29 0.71 -0.15 0.14
Spot 0.04 -0.08 -0.29 1.00 -0.22 0.05 0.53
Wind.CZ -0.17 0.33 0.71 -0.22 1.00 -0.16 0.12
Solar.CZ 0.89 -0.10 -0.15 0.05 -0.16 1.00 0.17
Load 0.17 0.13 0.14 0.53 0.12 0.17 1.00

4.2 Czech Spot Price

Figure 4.2 displays histogram of the spot prices. By the visual inspection of

the histogram one can see that spot price has excess kurtosis. Also, the spot

price distribution is slightly positively skewed. Indeed, corresponding excess

kurtosis and skewness statistics equal 2.30 and 0.58, respectively. Shapiro-Wilk

test for normality rejects null hypothesis of normality even at one percent. Test

statistic equals 0.925. Thus, I conclude that the distribution of the spot prices is

highly leptokurtic. Also, histogram shows that there are negative prices in the

sample. Departure from normality, a lot of outliers, and negative realizations

are common features of electricity spot prices.

When modelling the relationship between the spot price and other explana-

tory variables, outliers turn out have to major influence on the robustness of

the results. Thus, I decide to correct price data for outliers. Specifically, I de-

cide to filter all observations which lay three standard deviation off the original

spot price variable. Applied filter assigns outliers with a value equal to three
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Figure 4.1: Normalized spot price vs. normalized load.
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times the standard deviation from the mean. The main reason to eliminate the

most extreme prices is that they are usually caused by system failure rather

then normal price formation. This is in line with existing literature Ketterer

(2014), Haxhimusa (2018), and Wozabal et al. (2016).

4.2.1 Seasonality

As a part of preliminary analysis, I use autocorrelation function (ACF) to study

seasonal patterns in the data. Figure 4.3 shows correlogram of hourly spot

prices. Clearly, there are spikes around lags 24, 48, etc. These spikes correspond

to the daily seasonality. The highest spike is at lag 168 marking the weekly

seasonal pattern. To address these seasonal patterns I introduce trigonometric

periodic functions as in Tashpulatov (2013), Erni (2012). I assume that seasonal

component of spot prices can be described as following function of time

Figure 4.3: ACF of hourly spot price with 250 lags
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A× cos(
2πt

T
− υ) (4.2)

where 1
T

denotes frequency and υ denotes phase shift and A is the amplitude

of cosine function. From trigonometric identities I can rewrite (4.2) as

A× cos(
2πt

T
)cos(υ) + A× sin(

2πt

T
)sin(υ). (4.3)
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From the expression (4.3) follows that I need to include cos(2πt
T

) and sin(2πt
T

) as

explanatory variables. Sine and cosine value of the phase shift υ together with

scalar A will create coefficients in final regression. To find frequencies which fits

our data I perform spectral decomposition of spot price time series. According

to Fourier analysis any time series with seasonal pattern can be expressed as

a sum of periodic functions with different frequencies. More precisely, Fourier

transformation of real-valued function y(t) on domain [0, T ] is defined as

y(ω) =

∫ T

0

y(t)e−iωtdt. (4.4)

In my setting I have ω = 2π
T

. To obtain values of T , I use Fast Fourier Transfor-

mation which computes an approximation of (4.4). The most significant values

of T are shown in Table 4.3. Values 12, 24, 167, and 8640 represent reasonable

time intervals such as half-day, day, week, and year seasonality, respectively.

Indeed, these seasonality patterns are usually found in other existing literature

Guthrie & Videbeck (2007), Koopman et al. (2007). Values 17280, 34560 de-

notes two and three years. Since our dataset represents three years of data, I

will not include these in later analysis.

Table 4.3: Seasonal periods

T 24 34560 8640 17280 12 11520 167

4.3 Panel Data

There are several reasons to treat electricity spot prices as a panel with 24

cross-sections. Recall, electricity is still mostly non-storable commodity and

has to be consumed at same time when it is produced. Different hours cannot

be traded between each other. Further, a time series is usually described as a

sequence of updating information, Huisman et al. (2007). The spot prices are

updated once per day. One could argue that this suggests use of daily averages

for the analysis. Nevertheless, a price for each hour is determined with different

set of information. This is true especially for peak hours when PV production

comes to effect. Averaging the data could mitigate this effect. Thus, I consider

each hour as separate time series. The resulting dataset has 24 cross-sectional

entries and 1411 observations in time dimension. The final set of variables used

within the analysis for each hour is following:
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• Solar.GE - Cumulative solar production of all German PV parks. Unit

of measurement is GW.

• Wind.Offshore - Cumulative wind production of all German offshore

wind parks located in North and Baltic Sea. Unit of measurement is

GW.

• Wind.Onshore - Cumulative wind production of all German onshore

wind parks located on land. Unit of measurement is GW.

• Wind.CZ - Cumulative wind production of all Czech onshore wind parks.

Unit of measurement is GW.

• Solar.CZ - Cumulative solar production of all Czech PV parks. Unit of

measurement is GW.

• Load - Instantaneous offtake of power in the Czech power grid. Unit of

measurement is GW.

• Spot - The Czech spot price of an electricity. Unit of measurement is

EUR/MWh.

• sinW - Variable controlling for week seasonality defined as sin( 2πt
167

)

• cosW - Variable controlling for week seasonality defined as cos( 2πt
167

)

• sinY - Variable controlling for yearly seasonality defined as sin( 2πt
8640

)

• cosY - Variable controlling for yearly seasonality defined as cos( 2πt
8640

)

Further, I provide box plots for each hour to have a notion how distribu-

tion of selected variables change during a day. I use box plot which include

following elements. A line representing the median value. A box representing

the interquartile range (IQR). Vertical lines, or “whiskers” indicating 1.5 times

the IQR in either direction from the 75th and 25th percentiles. Short hori-

zonal lines representing the maximum and minimum of given variable. Dots

representing outliers.

First set of box plots in Figure 4.4 refers to the spot price. Except 7 PM,

all hours have a lot of outliers which confirms previous finding of leptokurtic

distribution. By visual inspection it can be seen that hours 8 AM through

7 PM have similar IQR range. Likewise, the average spot price during these

hours is higher. These hours are also recognized by the energy market as peak



4. Data 26

hours. Further, Figure 4.5 depicts box plots of the Load. The Load has similar

distribution across different hours as the spot price. It is not the coincidence

since instantaneous demand is the main driver of the spot price. There are only

few outliers which occur during night hours. In general, Load is stable during

whole day. Next, Figure 4.6 display distribution of the German PV production

across day. It has expected shape. The production peaks during 1 PM, while

there is not production during night. The most of solar production matches

peak hours. Actually, solar production is responsible for the small dip in the

spot price which can be seen between 9 AM and 6 PM. Further, early morning

and late evening hours contain a lot of outliers. Moving to the wind production,

Figure 4.7 displays box plots for German onshore production. Clearly, all hours

contains a lot of outliers on the right part of their distribution while the mass

of distribution is on the left. It suggests that the distribution of an onshore

wind production is close to log-normal. IQRs are a little more wider for hours

around noon. Lastly, Figure 4.8 captures distribution of German offshore wind

production across all hours. Essentially, the distribution does not differ for any

hour. Again, it looks like a log-normal distribution. Unlike onshore production,

it has no outliers, i.e., the production is stable during the whole day.

Figure 4.4: Box plots of spot price.
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Figure 4.5: Box plots of load.
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Figure 4.6: Box plots of German PV production.
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Figure 4.7: Box plots of German wind onshore production.
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Figure 4.8: Box plots of German wind offshore production.
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Chapter 5

Methodology

This section describes theoretical framework that we use for estimating the

effects of RESs on Czech spot price. The methodology builds on the approach

developed by Cermeño & Grier (2003). Similar model is used in Pham &

Lemoine (2015) for analysis of German spot prices. I diverge from it by in-

troducing smooth periodic function to control for seasonality and considering

cross-border dependencies. Section is structured as follows. Firstly, I discuss

spot price formation and why it should be taken into account when building

the model. Secondly, I state several assumptions of Cermeño & Grier (2003)

model and argue why it suits well to the purpose of this paper. Thirdly, I

present model and procedure for preliminary model estimation. Lastly, I de-

scribe several formal tests, which are used throughout the analysis.

In chapter 2, I describe organization of the spot market and the process

of price formation. Prices for all 24 hours are submitted at the same time.

Thus, I assume they follow same dynamics. Indeed, they are likely to be influ-

enced by same factors and market fluctuations which might be omitted in final

model. As discussed in 2, electricity spot price is usually mean reverting pro-

cess and which exhibits volatility clustering. This type of behaviour is generally

described by ARMA-GARCH process. Therefore, appropriate modelling tech-

nique would be some vector auto-regressive (VAR) model which also control

for conditional variance, i.e., multivariate GARCH model. Widely used mod-

els are VECH, BEKK, DCC-GARCH, etc. These models capture dynamics of

multiple dependent variables while controlling for their conditional variances

and conditional covariances between them. Nonetheless, the major disadvan-

tage of these models is that they become quickly unfeasible to estimate with

growing number of dependent variables. Considering panel dataset with 24
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cross-section, VECH(1,1) requires 180 300 parameters to estimate, Pham &

Lemoine (2015).

5.1 Model

In Cermeño & Grier (2003) authors describe Pooled Panel-GARCH (PP-GARCH)

model. It allows modelling panel data with time-varying conditional matrix

while preserving the simplicity of the model. The model describes a mean

equation, a variance equation, and a covariance equation. I depart from orig-

inal model by introduction external regressors to the variance equation. The

mean equation is characterized as follows

yit = µi +
K∑
k=1

ϕkyit−k + xitβ + uit, i = 1, . . . , N, t = 1, . . . , T (5.1)

where y denotes dependent variable, µi marks intercepts, ϕk are AR coeffi-

cients, xit is a (1 ×M) vector of external regressors, β is a (M × 1) vector

of coefficients, and uit denotes disturbances. Disturbances are assumed to be

normally distributed with zero mean and following conditional moments:

(1) E[uitujs|uit−1, ujs−1] = σ2
it for i = j and t = s

(2) E[uitujs|uit−1, ujs−1] = σijt for i ̸= j and t = s

(3) E[uitujs|uit−1, ujs−1] = 0 for i = j and t ̸= s

(4) E[uitujs|uit−1, ujs−1] = 0 for i ̸= j and t ̸= s

Assumptions (3) and (4) prohibit autocorrelation and non-contemporaneous

correlation between cross-section, respectively. Assumptions (1) and (2) de-

scribe variance-covariance process. More specifically, I assume variance-covariance

follows GARCH(p,q) process, i.e.,
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σ2
it = αi + zitζ +

p∑
n=1

δnσ
2
i,t−n +

q∑
m=1

γmu
2
i,t−m for i = 1, . . . , N (5.2)

σijt = ηij +

p∑
n=1

λnσij,t−n +

q∑
m=1

ρmui,t−muj,t−m for i ̸= j. (5.3)

Equations (5.2) and (5.3) refer to the conditional variance and the conditional

covariance, respectively. Both equations assume ARCH process with p lags and

GARCH process q lags. Intercepts are denoted by αi and ηij. In equation (5.2)

I assume additional external variables to possibly influence the behaviour of

conditional variance. They are denoted by the (1×L) vector zit and the corre-

sponding coefficient (L×1) vector ζ. To ensure non-negativity and stationarity

of the variance process conditions αi > O and (
∑p

n=1 δn +
∑q

m=1 γm) < 1 have

to be met. Note, the closer the sum of coefficients is to 1, the more is the

volatility clustering persistent. A sufficient condition for stationarity of the

covariance process is (
∑p

n=1 λn +
∑q

m=1 ρm) < 1.

Recall, in all three equations (5.1), (5.2), and (5.3) I assume heterogeneity

in intercepts across all cross-section while assuming homogeneity in slope coef-

ficients. The homogeneity assumption in slope coefficients dramatically reduces

the number of coefficients to be estimated. Not taking into account the exter-

nal regressors, variance-covariance process is described by 2(p + q) + N(N−1)
2

coefficients. The largest part comes from the heterogeneity in the intercept.

Later, I present procedure determining if individual intercepts are needed or

common intercept fits the data better.

5.2 Formal Tests

In this section I describe several statistical tests which are used throughout the

analysis to correctly specify the final model.

5.2.1 Maddala-Wu Unit-Root Test

To tests for stationarity I use Maddala-Wu test originaly proposed by Maddala

& Wu (1999). It is based on Augmented Dickey Fuller (ADF) test adjusted for
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a panel data. The test is applied to following model:

yit = αi + ϕiyit−1 +

ki∑
j=1

ψij∆yit−j + εit, i = 1, . . . , N, t = 1, . . . , T (5.4)

where εit is i.i.d. with E(εit) = 0, E(ε2it) = σ2
i < ∞, and ki refers to the

number of lags tested. The null hypothesis is H0 : ϕi = 1 ∀i. The so-

called heterogeneous alternative hypothesis is HA : ”at least one of the series

is I(0)”. Author claims that the null hypothesis can be tested jointly based on

combination of p-values from all N independent ADF tests. Thus, under the

null hypotheses, fixed N and T → ∞, test statistic follows

P = −2
N∑
i=1

log(pi)
d−→ χ2(2N).

5.2.2 Variance Inflation Factor

Second test applied in following analysis examines whether multicollinearity is

an issue in particular model. The Variance Inflation Factor (VIF) test examines

the impact of collinearity among independent variables on the precision of

estimated coefficients. The test was originally proposed by Fox & Monette

(1992). Consider following linear model.

y = α + β1x1 + · · · + βkxk + ε (5.5)

To obtain VIF statistics for xj, I need to regress xj on all the other explanatory

variables. Then the VIF for xj is given by

V IF (β̂j) =
1

1 −R2
j

(5.6)

where R2
j is the R-squared from corresponding linear regression. Definition

(5.6) says how much is the variance of estimated coefficient inflated by the

correlation with the other independent variable. If R2
j is equal to 0, i.e., there is

no correlation between xj and other covariates, V IFj equals 1 and the estimate

β̂j is not effected by collinearity. The rule of thumb says that VIF larger then

10 suggests high muliticollinearity, Neter et al. (1996).
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5.2.3 Breusch–Pagan Test

To test whether the assumption of homoskedasticity in the residuals is satisfied

I use test introduced in Breusch & Pagan (1979). Homoskedasticity is violated

when the variance of residuals is not similar across the values of the independent

variables. The test is performed as follows.

Assuming same general linear model as in (5.6), I run corresponding re-

gression and obtain residuals. Secondly, I square the residuals and perform

following auxiliary regression

ε2 = γ + γ1z1 + · · · + γpzp + ν (5.7)

where z can be substitute by independent variables x. The null hypothesis

H0 : γ1 = · · · = γp = 0 assumes homoskedasticity. Respective LM = nR2

statistic is asymptotically distributed as χ2
p−1 under the null hypothesis. The

R-squared corresponds to the regression of (5.7). Rejection of the H0 in favour

of alternative hypothesis suggests presence of heteroskedasticity.

5.2.4 Breusch-Godfrey Test

Last test used throughout the analysis is the Breusch-Godfrey test for serial

correlation developed by Godfrey (1978) and Breusch (1978). It tests whether

residuals from given linear model follow autoregressive process up tu order p,

i.e., AR(p). Specifically, having following dynamic linear model

y = Xβ + u (5.8)

where y is a (T×1) vector of observation on dependent variables, X is a (T×k)

matrix of observation on independent variables and lagged dependent variable,

β is a (T × 1) vector of coefficients, and u is a (T × 1) vector of error terms.

After estimating equation (5.8) and obtaining residuals ût, the test for AR(p)

process in the residuals is done via fitting following auxiliary regression

ût = α0 + Xβ + ρ1ût−1 + ρ2ût−2 + · · · + ρpût−p + εt (5.9)

If the null hypothesis H0 : ρi = 0 of no serial correlation holds, then corre-

sponding LM = (T − p)R2 χ2(p) statistics can be used for the distribution of

the test.
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5.2.5 Bayesian information criterion

There are several metrics commonly used for the model’s goodness-of-fit, e.g.,

Akaike’s or Schwarz’s Bayesian information criterions (BIC) or likelihood ratio

test. Note that lower the information criterion is the better are data fitted.

Akaike information criterion (AIC) emphasizes good prediction power of a

model. On the other hand, AIC has higher probability of over-fitting the model

with increasing sample size. BIC defined as

BIC = ln(n)k − 2ln(L̂)

where k refers to the number of estimated coefficients and L̂ is the maximum

of log-likelihood function, values parsimony of a model. While both criterions

penalize model complexity, BIC’s penalty weight grows with sample size. Thus,

BIC has lower probability of both over-fitting and under-fitting with increasing

sample size, Dziak et al. (2019). Since this thesis use quite large sample of

data, I choose to use BIC for final model selection.

5.2.6 Model Estimation

Even though the OLS estimator of equation (5.1) is consistent and possibly

most efficient, it does not allow to estimate the whole model simultaneously,

Cermeño & Grier (2003). Therefore, I will estimate the model by direct max-

imization of log-likelihood function. To obtain the log-likelihood function, I

rewrite equation (5.1) to matrix notation as follows:

Yt = Iµ + Ztθ + ut t = 1, . . . , T (5.10)

where I is a (N × N) identity matrix, µ is a (1 × N) vector of intercept

coefficients, Z is (N × (K + M)) matrix, where K and M refer to the num-

ber of endogenous lagged variables and the number of exogenous variables,

respectively. θ is corresponding coefficient ((K + M) × N) matrix. They are

constructed as follows:

Zt = [yt−1 . . . yt−k Xt], θ =

[
θ

β

]

The ut is (N × 1) vector of disturbances with distribution given as ut ∼
N(0,Ωt). More specifically, ut has a multivariate normal distribution with
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mean equal to zero and variance-covariance matrix Ωt. Its diagonal and off-

diagonal elements are given by equations (5.2) and (5.3), respectively. Thus,

vector of observation yt has a conditional normal distribution given by yt ∼
N(Iµ + Ztθ,Ωt) and its conditional density function is following:

f(yt|Xt,µ,θ, ϕ) = (2π)−
N
2 |Ωt|−

1
2 e−

1
2
(yt−Iµ−Ztθ)

′
Ω

−1
t (yt−Iµ+Ztθ) (5.11)

where ϕ stands for parameters in conditional variance and conditional covari-

ance equations (5.2), (5.3). Thus, the log-likelihood function for whole panel

is given as follows:

ln(L) = −NT

2
ln(2π)− 1

2

T∑
t=1

ln|Ωt| −
1

2

T∑
t=1

(yt − Iµ − Ztθ)
′
Ω−1

t (yt − Iµ − Ztθ).

(5.12)

To maximize the log-likelihood function in (5.12) I will use numerical opti-

mization methods. More specifically, I employ Broyden–Fletcher–Goldfarb–Shanno

(BFGS) algorithm which is from family of so-called ”hill-climbing” optimiza-

tion techniques. The algorithm seeks stationary point of the function where

conditions for maximum are satisfied, e.g., gradient of the function is equal to

zero. Since equation (5.12) can have multiple local maxima I need to spec-

ify different starting values for the BFGS algorithm, so the optimization does

not cease in only local maximum. Further, the possibility of homogeneity in

intercepts needs to be investigated. Therefore, I need to perform preliminary

analysis of the data to identify the most suitable model.

Authors in Cermeño & Grier (2003) propose procedure for identification of

individual effects in the mean and the variance equation. Testing for ARCH

effects is also described. Authors argue that under assumption of cross-sectional

independence appropriate model can be determined as follows 6.

• Firstly, a test for individual effects in the mean equation needs to be

performed. I estimate the mean equation (5.1) using least square dummy

variable (LSDV) estimator. Specifically, I perform Wald test with a null

hypothesis H0 : µ1 = · · · = µN . Further, authors suggest to use the

autocorrelation-hetoreskedasticity robust covariance (HAC) matrix.

6Even though this assumption could be invalid, paper proves preliminary analysis under
such a condition is strong tool for correct model identification.
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• Secondly, a test for ARCH effects and individual effects in the variance

equation (5.2) is performed. Based on the result from first step, I take

either OLS or LSDV squared residuals and regress them on its lags. The

appropriate number of lags can be determined by estimating autocorrela-

tion (ACF) or partial autocorrelation (PACF) function. More specifically,

I perform Breusch–Godfrey test with a null hypothesis H0 : δi = 0 for all

i, i.e, ARCH(0) vs. ARCH(p). The corresponding LM-statistics follows

χ2
p distribution. Since GARCH(1,1) describes arbitrarily large number of

ARCH lags, testing for small values of p is sufficient, Cermeño & Grier

(2003). Finally, I regress ARCH process with and without individual

effects and compare models with F test.

• Lastly, final model is estimated via maximum likelihood estimator (MLE).

Several alternative specification of the model should be considered. I

choose the final model based on corresponding value of BIC. Finally,

the plausibility of cross-sectional independence should be tested, i.e., if

coefficients in equation (5.3) are statistically significant.

5.3 Merit Order Effect

In order to determine the total average merit order effect (MOE) of RESs in

specific year, I follow similar approach as in Cludius et al. (2014) and Sensfuss

et al. (2008). Authors define the total average MOE as the sum of product be-

tween volume weighted average of generation source multiplied by the source’s

marginal effect. More specifically, the MOE is computed as follows

MOEy =

∑
j∈J βjxj,y∑

t zt,y
(5.13)

where zy = (x1,y, . . . ,xJ,y) denotes system load in given year, xj,y is a pro-

duction of source j, and βj is a corresponding marginal effect.

Then it is simple to compute an annual financial volume of the total average

MOE in given year by the following equation.

υy = MOE ×
T∑
t=1

zt,y. (5.14)

The annual financial volume υ represents a total annual costs savings for market

participants.
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Results and Discussion

In this chapter, I present all final results. First, I describe how I proceed with

the identification of the final model. Second, I present results of the statistical

model. Lastly, I discuss obtained results and put them into perspective with

the costs borne by households.

6.1 Preliminary Model Identification

In this section, I describe in detail preliminary identification of the final model.

Firstly, selection of appropriate independent variables is presented. Secondly,

I conduct model identification procedure as described in Chapter 5.

When dealing with times series data, stationarity of data is one of the

crucial assumption for validity of final model. Therefore, I perform Maddala-

Wu Unit-Root test for the spot price time series. Corresponding χ2 statistics

508 rejects the null hypothesis of non-stationarity. Secondly, I decide to split

the dataset into two smaller ones. One dataset contains ”PEAK” hours, i.e.,

8 AM to 19 PM. The second one consists of ”OFF-PEAK” hours, i.e., 20 PM

to 7 AM. Actually, datasets coincide with standard delivery products, peak

load and off-peak load. There are two reasons for such a division. First of

all, PV power plants do not produce energy during night. Secondly, during

peak hours there is a higher demand for electricity which may arise in different

price dynamics than during off-peak hours. Detailed identification procedure

is presented for the ”PEAK” model. The ”OFF-PEAK” model is identified

analogously. Nevertheless, I only present final model for given equation.
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6.1.1 Mean Equation

I start with identification of the mean equation (5.1). Recall, preliminary

analysis of data shown large correlation between a Solar.GE and a Solar.CZ

variables. Since one of the main goals of this thesis is to identify the extent

the Czech spot prices are effected by the German solar production, I need to

make sure that multicollinearity among independent variables does not shift

coefficients of interest. In line with Wooldridge (2013), I center both variables

by subtracting their means and add interaction term Solar.GE:Solar.CZ which

is a product of centered variables. The interaction term filters out the common

effect of solar production on the spot prices.

Except variables presented in Table 4.1, I also consider seven lags of spot

price. As been tested in Chapter 4, spot prices exhibit strong autocorrelation.

Including seven lags of dependent variable captures all information in the mar-

ket from the past week which might not be explained by other independent

variables. Similar approach was used in Pham & Lemoine (2015). Further, the

Load variable should control for a week seasonality in the spot prices. Indeed,

preliminary analysis of the spot price frequency in Chapter 4 shown the week

pattern. Nevertheless, I test whether inclusion of smooth periodic function

cosW and sinW captures any residual information which might be omitted.

More specifically, I examine whether smooth periodic functions captures resid-

ual week seasonality as good as lagged dependent variable, which would result

in more parsimonious model. Thus, I estimate three possible models for the

mean equation with LSDV estimator. Specifically, I estimate three variation

of equation (5.1). All regressions use the HAC robust errors. First model is

a benchmark model without any control for the residual week seasonal pat-

tern. Second model controls residual week seasonality with smooth periodic

functions cosY and sinY. Third model employs seven lags of dependent vari-

able. Models will be referred to as model A,B, and C, respectively. Results

are presented in Table 6.1. It shows estimated coefficients with corresponding

standard errors in parentheses. To save space, I do not present coefficients for

individual effects. Complete results can be found in Appendix. Nevertheless,

all effects are highly statistically significant with t-statistic above 10 and have

a negative sign for all three models. First column presents summary results

of model A. Both, cosY and sinY, variables which control for year seasonal-

ity are statistically significant even at 1 percent level. As expected Solar.GE,

Solar.CZ, and Wind.Onshore have negative effect on the spot price. On the
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Table 6.1: Results of the PEAK mean equation identification.

Dependent variable:

Spot

(A) (B) (C)

Solar.GE −0.443∗∗∗ −0.439∗∗∗ −0.327∗∗∗

(0.071) (0.071) (0.033)
Wind.Offshore 1.005∗∗∗ 0.993∗∗∗ −0.396∗∗∗

(0.167) (0.166) (0.088)
Wind.Onshore −0.741∗∗∗ −0.738∗∗∗ −0.500∗∗∗

(0.033) (0.033) (0.017)
Wind.CZ 6.055∗ 6.058∗

(3.192) (3.214)
Solar.CZ −3.491∗∗∗ −3.494∗∗∗ −2.413∗∗∗

(0.787) (0.784) (0.466)
Load 11.106∗∗∗ 11.218∗∗∗ 7.747∗∗∗

(0.154) (0.178) (0.136)
cosW 0.006

(0.095)
sinW 0.459∗∗∗

(0.125)
cosY −8.307∗∗∗ −8.400∗∗∗ −6.970∗∗∗

(0.491) (0.491) (0.274)
sinY −8.952∗∗∗ −8.989∗∗∗ −4.395∗∗∗

(0.395) (0.398) (0.147)
lag1 Spot 0.251∗∗∗

(0.007)
lag2 Spot 0.026∗∗∗

(0.007)
lag3 Spot 0.047∗∗∗

(0.007)
lag4 Spot 0.034∗∗∗

(0.007)
lag5 Spot 0.047∗∗∗

(0.006)
lag6 Spot 0.047∗∗∗

(0.006)
lag7 Spot 0.177∗∗∗

(0.007)
Solar.GE:Solar.CZ 0.382∗∗∗ 0.380∗∗∗ 0.122∗∗∗

(0.080) (0.080) (0.039)

Observations 16,882 16,882 16,882
R2 0.947 0.947 0.965
Adjusted R2 0.947 0.947 0.965
F Statistic 14,472.680∗∗∗ 13,226.320∗∗∗ 17,459.810∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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other hand, Load as a main determinant of instantaneous demand has a posi-

tive effect on the spot price. Corresponding coefficient is highly significant at

any conventional level. Coefficients of Wind.Offshore and Wind.CZ are also

significant at 1 percent level. Nevertheless, they have a positive sign which is

not in line with expectations. Interaction variable Solar.GE:Solar.CZ is also

highly statistically significant. Model A has F-statistics equal to 14 472 and

adjusted R-squared 0.947.

Second column of Table 6.1 displays estimation results of the model B.

Including cosW and sinW variables to control for the residual week seasonal-

ity did not change any other coefficient significantly. All the other variables

remained highly significant with almost the same coefficients. Seasonal vari-

ables are themselves highly significant. While adjusted R-squared remained the

same, corresponding F-statistics dropped to 13 226. Last column shows results

of the model C. All the coefficients shrunk towards zero. The main difference

here lays in the effect of the Wind.Offshore variable. Its coefficient is now neg-

ative which is expected from the economic point of view. Further, the effect of

Wind.CZ on the spot price become statistically insignificant. Compared to the

benchmark model, there is a significant increase in the F-statistics. Indeed, F

test finds statistically significant reduction in the residual sum of squares even

at 1 percent. Also, corresponding adjusted R-squared increased to 0.965. Fi-

nally, I choose model C, without Wind.CZ variable, as the best representation

of the mean equation for next analysis.

Last, I test whether a multicollinearity is present in the final model. Table

6.2 shows resulting VIF test statistics for variables of interest. All the statistics

are below the cut-off value of 10 7. Thus, I conclude multicollinearity is not an

issue.

Table 6.2: Results of the VIF test for multicollineairty

Solar.GE Wind.Offshore Wind.Onshore Solar.CZ Solar.GE:Solar.CZ

7.307 5.189 4.927 6.739 2.952

Similar approach was used for determination of the ”OFF-PEAK” mean

equation. Analogue of model C turns out to be the best fit. Table 6.3 shows

results of final model. Model does not contain any variables controlling for

7Actually, centering and adding interaction term reduced VIF test statistics considerably.
Before this procedure, Solar.GE and Solar.CZ variables had VIF test statistics as high as
20.
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solar production since most of the sample are night hours. Only Wind.CZ and

Wind.Offshore variables are statistically insignificant as their corresponding

p-values did not reach any conventional significance level. In line with expecta-

tion, coefficient of the Load variable is almost two times smaller than in case of

the PEAK model. This is the result of lower demand for electricity during night

hours. F-statistics obtained from regression is equal to 24 981. Corresponding

adjusted R-squared is 0.974.

Note, R-squared obtained from both regressions exceeds 0.95. This means

that models explain 95 percent of variation in the spot price. Such a large R-

squared usually means presence of autocorrelation in the data or even spurious

regression. Roughly speaking, spurious regression occurs when both dependent

and independent variables follow same trend. Since stationarity of dependent

variables was confirmed by the Maddala-Wu test statistic, spurious regression

can be ruled out. Recall that model contains sine and cosine functions with fre-

quencies obtained directly from spectral decomposition of dependent variable.

Moreover, Load is highly correlated with the spot price as shown in chapter 4.

Figure 4.1 confirms that most of variation in the spot price is indeed explained

by the load. Indeed, these two effects together capture most of the spot price

variability. Therefore, I conclude that model does not violate any standard

assumption.

6.1.2 Conditional Variance Equation

Next, I examine squared residuals obtained from the previous regression of

model C. The goal is to identify which variables should be included in the final

variance equation. Again, the PEAK model is described in detail.

First, I investigate whether squared residuals exhibit autocorrelation. Fig-

ure 6.1 shows plot of the ACF for corresponding series. Clearly, there is a strong

pattern of autocorrelation up to 24 lags. Second, I perform Breusch–Godfrey

test up to lag 24. Resulting LM statistics equal to 3586, rejects null hypothesis

of no serial correlation. Recall, GARCH(1,1) describes arbitrarily large number

of ARCH effects. Thus, I continue with my analysis with rather small number

of lags, i.e., ARCH(3)8. Lastly, I test for presence of heteroskedasticity us-

ing Breusch–Pagan test. Test statistics equals 476 resulting in rejection of the

null hypothesis at 1 percent level. Given all the information above, I estimate

following equation with and without individual effects.

8More detailed analysis shown that ARCH(3) describes process of squared residuals well.
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Table 6.3: Results of the OFF-PEAK mean equation identification.

Dependent variable:

Spot

Wind.Offshore 0.048
(0.075)

Wind.Onshore −0.680∗∗∗

(0.022)
Wind.CZ 1.670

(1.726)
Load 4.577∗∗∗

(0.124)
cosY −2.161∗∗∗

(0.160)
sinY −2.264∗∗∗

(0.111)
lag1 Spot 0.308∗∗∗

(0.008)
lag2 Spot 0.032∗∗∗

(0.007)
lag3 Spot 0.067∗∗∗

(0.007)
lag4 Spot 0.040∗∗∗

(0.007)
lag5 Spot 0.052∗∗∗

(0.006)
lag6 Spot 0.057∗∗∗

(0.006)
lag7 Spot 0.188∗∗∗

(0.007)

Observations 16,892
R2 0.974
Adjusted R2 0.974
F Statistic 24,981.130∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 6.1: ACF of squared residuals from the PEAK mean equation.
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i,t−m + ϵit (6.1)

As before αi denotes individual effects, ζ is a vector of independent vari-

ables. Based on F test, I conclude that individual effects are present also in

the variance process. Results are presented in Table 6.4. Again, coefficients

of individual effects can be found in Appendix. Results suggest that both

Wind.Offshore and Wind.Onshore influence volatility of prices quite heavily.

Coefficient corresponding to the German solar production is also positive and

significant. Conversely, the effect of the Czech solar production is insignificant.

Analog procedure was used to investigate variance process of OFF-PEAK

model. I briefly present results of corresponding tests and regression. Figure

6.2 shows the ACF of squared residuals. As can be seen in the plot, serial

correlation is more persistent in the spot prices of off-peak hours.

The Breusch–Godfrey test for serial correlation up to 50 lags gives LM

statistics equal to 4777, i.e., test rejects the null hypothesis of no serial cor-

relation. Next, Breusch-Pagan test rejects the null hypothesis of homoskedas-

ticity at 1 percent level. Similarly to the PEAK model, I estimate equation

with ARCH(3) and two independent variables Wind.Onshore,Wind.Offshore.

Further, I performed F test to find whether model with individual effects is
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Table 6.4: Results of the PEAK variance equation identification.

Dependent variable:

res

lag1 res 0.107∗∗∗

(0.008)
lag2 res 0.102∗∗∗

(0.008)
lag3 res 0.026∗∗∗

(0.008)
Solar.GE 0.615∗

(0.366)
Wind.Offshore 4.675∗∗∗

(1.208)
Wind.Onshore 1.552∗∗∗

(0.209)
Solar.CZ −2.105

(6.202)

Observations 16,879
R2 0.196
Adjusted R2 0.195
F Statistic 215.814∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Figure 6.2: ACF of squared residuals from the OFF-PEAK mean equation.
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plausible. According to the test, the model with individual effects explains

data better. Corresponding F statistic equals 11.8. Thus, I conclude that the

OFF-PEAK variance process contains individual effects. Results can be found

in tables 6.5 and A.6. Wind.Offshore variable is statistically significant on the

5 percent level. All the other variables are significant at 1 percent level.

Table 6.5: Results of the OFF-PEAK variance equation identification.

Dependent variable:

res.sq

lag1 res.sq 0.131∗∗∗

(0.008)
lag2 res.sq 0.036∗∗∗

(0.008)
lag3 res.sq 0.021∗∗∗

(0.008)
Wind.Offshore 1.384∗∗

(0.596)
Wind.Onshore 1.846∗∗∗

(0.108)

Observations 16,889
R2 0.222
Adjusted R2 0.221
F Statistic 282.682∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

6.2 Results

In this section, I present results of final models. I describe the results of the

PEAK model first.

The final model for the PEAK data is estimated by the MLE. The resulting

value of log-likelihood function is -41 343. Corresponding BIC, which was one of

the main criteria for the selection of final model, is 84 280. Table 6.6 displays

estimated coefficients. Again, coefficients of individual effects are displayed

only in appendix since corresponding coefficients are not of top importance

for the purpose of this analysis. Nevertheless, all of them are statistically

significant at 1 percent. As can be seen from the Table 6.6, variables controlling

for the wind energy produced by the German offshore parks and the Czech
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onshore parks were excluded from the final model since both variables lost its

significance while estimating all equations (5.1), (5.2), and (5.3) simultaneously.

All estimated coefficients are significant. Actually, the lowest t-statistic is equal

to 2.93. Thus, all variables are statistically significant at any conventional level.

All AR coefficients are positive. The AR(1) and the AR(7) have the largest and

second largest effect on the spot price, respectively. Possible explanation is that

the last price for given hour accommodate the most information about latest

development of the energy market. Next, the seventh lag of dependent variable

corresponds to the spot price of the same hour week ago. Thus, I conclude that

it captures the residual information of week seasonality which is not captured by

the Load variable. As expected Solar.GE, Wind.Onshore, and Solar.CZ have

a negative effect on the spot price. Specifically, one additional GW of power

fed into the system reduces the spot price by 0.45, 0.60, and 1.42 EUR/MWh,

respectively. Conversely, the spot price rises by 7.68 EUR/MWh when one

additional GW is consumed. Both smooth periodic functions controlling for

year seasonality have negative coefficients equal to -6.97 and -4.23 for cosY and

sinY, respectively. The interaction term between the Czech and the German

solar production has coefficient equal to 0.09.

Moving to the conditional variance, one can see that only two external re-

gressors were included in the final model. It is the Czech solar production and

the German onshore wind production. The main driver of the spot price volatil-

ity is the Czech solar production with coefficient equal to 2.4. On the other

hand, the wind energy from Germany has rather smaller impact on the spot

price volatility with coefficient equal to 0.02. The conditional variance follows

GARCH(1,1) process with estimated coefficients 0.785 an 0.062, respectively.

Same process is found for the conditional covariance with very similar coef-

ficients equal to 0.783 and 0.06. One can see that stationarity condition is

satisfied, i.e., the sum of the ARCH and the GARCH coefficients is less than

one for both, conditional variance and conditional covariance. Also, all the

intercepts in the conditional variance equation are positive. Further, the sum

of ARCH and GARCH coefficients in the conditional variance is approximately

0.85 denoting high level of persistence in volatility clustering.

Further, I continue with the results of the OFF-PEAK model. As in case of

the PEAK model, I use MLE to estimate final model. The results are displayed

in Table A.8. The resulting value of log-likelihood function is -38 340. The

BIC criterion equals 78 215. All estimated coefficients are highly statistically

significant. The lowest t-statistic corresponds to the AR(3) term and equals
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Table 6.6: Results of Dynamic Panel GARCH for PEAK Model

Mean Equation

Variable Coeff Std Error T-Stat Signif

AR(1) 0.161 0.008 19.640 0.000
AR(2) 0.030 0.008 3.802 0.000
AR(3) 0.049 0.008 6.418 0.000
AR(4) 0.049 0.007 6.647 0.000
AR(5) 0.037 0.007 5.099 0.000
AR(6) 0.078 0.007 10.831 0.000
AR(7) 0.115 0.007 15.915 0.000
Solar.DE -0.446 0.022 -20.737 0.000
Wind.Onshore -0.609 0.016 -38.888 0.000
Solar.CZ -1.420 0.296 -4.792 0.000
Load 7.682 0.165 46.483 0.000
cosY -6.975 0.305 -22.886 0.000
sinY -4.235 0.235 -18.060 0.000
Solar.GE:Solar.CZ 0.093 0.032 2.933 0.003
µi(12) . . . . . . . . . . . .

Conditional Variance Equation

ARCH(1) 0.785 0.005 162.249 0.000
GARCH(1) 0.062 0.004 15.507 0.000
Solar.CZ 2.397 0.186 12.862 0.000
Wind.Onshore 0.020 0.001 14.104 0.000
αi(12) . . . . . . . . . . . .

Conditional Covariance Equation

ARCH(1) 0.783 0.005 156.619 0.000
GARCH(1) 0.060 0.004 14.988 0.000
ηij(66) . . . . . . . . . . . .

Estimation by BFGS
Convergence in 476 Iterations
Usable Observations 1403
BIC 84280.669
Log-likelihood value -41343.312
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Table 6.7: Results of Dynamic Panel GARCH for the OFF-PEAK Model

Mean Equation

Variable Coeff Std Error T-Stat Signif

AR(1) 0.158 0.011 13.779 0.000
AR(2) 0.075 0.012 6.169 0.000
AR(3) 0.048 0.012 3.826 0.000
AR(4) 0.042 0.013 3.335 0.001
AR(5) 0.057 0.012 4.539 0.000
AR(6) 0.089 0.011 8.170 0.000
AR(7) 0.144 0.010 14.738 0.000
Wind.Onshore -0.575 0.014 -42.491 0.000
Load 5.134 0.167 30.678 0.000
cosY -3.267 0.338 -9.676 0.000
sinY -2.989 0.283 -10.549 0.000
µi(12) . . . . . . . . . . . .

Conditional Variance Equation

ARCH(1) 0.818 0.004 192.878 0.000
GARCH(1) 0.059 0.003 18.186 0.000
Wind.Onshore 0.014 0.001 26.224 0.000
αi(12) . . . . . . . . . . . .

Conditional Covariance Equation

ARCH(1) 0.820 0.004 195.446 0.000
GARCH(1) 0.059 0.003 18.278 0.000
ηij(66) . . . . . . . . . . . .

Estimation by BFGS
Convergence in 254 Iterations
Usable Observations 1403
BIC 78215.392
Log-likelihood value -38339.6568
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3.33. The AR coefficients are very close to the ones from the PEAK model.

Again, first and seventh lags of dependent variable drive the behaviour of the

spot price the most. As in case of the PEAK model, Wind.Offshore turns out

to be insignificant and thus excluded from the final model. The energy from the

German onshore parks reduces the price by 0.57 EUR/MWh per one additional

GW fed into the system. This is slightly below the effect during peak hours.

The Load controlling for an energy demand variable has coefficients equal to

5.13. In other words, one GW increase in the system load rises the spot price

by 5.13 EUR/MWh. Compared to peak hours, this effect is approximately

2.5 EUR/MWh lower. Since demand for electricity is lower during night, this

observation suggests that the relationship between the spot price and demand

is non-linear. Next, both seasonal trigonometric function have again negative

values. Nevertheless, both coefficients are almost 2 times lower as in case of the

PEAK model. Specifically, amplitudes of cosY and sinY are -3.26 and -2.99,

respectively.

The following paragraph discuss the results of the conditional variance and

covariance equation. The Wind.Onshore is sole external regressor is the con-

ditional variance equation. Positive coefficient suggests that German energy

produced by onshore wind parks increases the volatility of spot price. It is

equal to 0.014. This is below the effect which it has on the peak hour prices.

The conditional variance follows GARCH(1,1) process with estimated coeffi-

cients 0.82 an 0.059, respectively. The ARCH term is higher then in case of

peak hours suggesting stronger volatility clustering during night hours. Simi-

larly, the conditional covarince follows the same process with coefficients equal

to 0.819 and 0.59.

6.3 Discussion

Based on the results above, I conclude that energy production from RESs has

negative MOE and the Czech spot prices while the opposite is true for the

price volatility. The results of a green energy MOE are in line with many

previous studies which focus on energy markets in Western Europe, i.e., Ger-

many, Netherlands. Conversely, not much has been written about the Czech

spot market and corresponding MOE of a renewable energy. In Lunáčková

et al. (2017) authors find slight positive MOE of solar on the spot price. This

is in contradiction with the result of this paper. There are three possible ex-

planations for the discrepancy in our findings. First, authors in Lunáčková
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et al. (2017) use data from early stage of the PV boom in the Czech Republic

form 2010 to 2015. The relationship might have change since then. Secondly,

authors use actual power generation as a determinant of the spot price, but

the spot price forms day before actual generation is realized, i.e., the causality

is reversed. Nevertheless, actual generation of PV power plant is likely to be

correlated with the day-ahead forecast. Recall, national TSOs are obligated

to publish day-ahead forecast of solar and wind energy only after 2015. Since

only long term forecast were available before, market participants did not have

accurate information about the real solar generation resulting in poor transla-

tion of the solar MOE into the spot price. Thirdly, former study use daily data

which might result in loss of information.

Further, the effect of wind energy was investigated. I found strong statisti-

cal evidence that German onshore wind energy reduces the Czech spot price.

On the other hand, Czech wind energy and German offshore wind energy has

no statistically significant effect. While both do not effect the price, the ex-

planation is different. In case of the Czech wind farms, possible explanation is

simply its low installed capacity. Approximately 1.4 percent of total installed

capacity in wind is not enough to have any effect on price. On the contrary, the

insignificance of German offshore wind production is rather due to its location.

Electricity produced in the North Sea and in the Baltic Sea is likely to flow to

Germany and its northern neighbouring countries, i.e., Denmark, Netherlands,

and Poland.

Focusing on the price volatility, the effect of national and foreign renewable

sources is substantial. The energy produced from the Czech PV power plants

increase price volatility considerably. The effect comes from the volatility of

solar radiation which changes day to day. Even though the effect is much

smaller, the German onshore wind production increases price volatility also.

Different effects are observed during peak and off-peak hours which further

justifies data division. Haxhimusa (2018) also finds different effects of RESs

cross-border flows during day.

Recall, estimated coefficients describe the marginal effect of one additional

GW of power fed into the system during peak and off-peak. To find whether

energy from RESs really reduce price of electricity I compute total average MOE

and corresponding financial volume for given year. I use equations (5.13) and

(5.14). Further, I compute annual financial volumes steaming from surcharges

on RESs. The results are shown in Table 6.8.

Table contains data about households energy consumption in the Czech Re-
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Table 6.8: Cost-benefit analysis

2015 2016 2017

Households con∗∗ 14.38 14.82 15.21
CZ Costs∗ 261.69 271.70 286.27

MOEczvolume∗ 87 90.76 93.05

Household con∗∗ 129 129 129
GE Costs∗ 7959.30 8196.66 8875.20

MOEimp volume∗ 51.10 53.33 54.71

Total MOE volume∗ 138.10 144.09 147.76

Note: ∗(emillion);∗∗(TWh)

Source: www.eru.cz, www.bdew.de

public and Germany9. Costs refer to the total annual amount which households

pay in surcharges for RESs. Values are product of households consumption

and renewable surcharge in given year. The MOEcz represents total financial

volume of MOE stemming from the Czech solar production. Similarly, the

MOEimp represents total financial volume of MOEs stemming from German

solar and wind production. Last row depicts total average MOE volume which

is a sum of both effects above. It captures the whole financial reduction is the

Czech spot price. As can be seen from the table total costs for Czech house-

holds rose from 261 to 286 million euros between years 2015 and 2017. The

MOE financial volume increased from 138 to 147.7 millions euro. The costs for

German households are vast. In 2015 German households paid cumulatively

over 7.9 billion euros in EEG surcharges. The number surged approximately

by one billion to 8.8 billion euros in 2017.

Coming back to the Czech market, it can be seen that costs for households

are almost three times higher then the actual financial savings from MOE. After

adding the MOE of the German sources, the final price tag is still two times

higher then costs. It is important to note that the financial volume from the

MOE is not direct reduction of the electricity price for households. Price for

end-customers depends on long term contracts. The price reduction is rather

enjoyed by the spot market participants, i.e., retailers and traders. Thus, the

MOEimp is an estimate of wealth redistribution from German households to

9Czech households consumption was obtain from the Yearly Report on the Operation of
the Czech Electrical Grid 2017 publish by the Energy Regulatory Office. German households
consumption are available on the web page of BDEW Federal Association of Energy.
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the market participants on the Czech spot market. The same applies for Czech

households with the MOEcz.



Chapter 7

Conclusion

The European energy sector went through substantial development in the last

10 years. After the adoption of the RED 2009/28/EC in 2009, all member

states are obliged to reduce their CO2 emission by 20 percent compared to

1990 level. According to the RED, this target should be met by 2020. The

leader in the transition to green energy sources is Germany with its national

plan Energiewende. After the accident in Japan’s Fukushima nuclear power

plant in 2011, the German government closed eight nuclear power reactors

which even accelerated country endeavour towards sustainable electricity. In

2018, German had 46 percent of installed capacity in solar and wind energy

combined. On the contrary, the Czech Republic experienced its largest boom

of RESs in the period of 2008 to 2010. Within this period installed capacity

of PV power plants went from 40 MW to 1959 MW. Nowadays, the Czech

Republic has approximately 10 percent of installed capacity in PV and wind

energy sources.

Electricity flows from production sources to customers through the shortest

distance possible, i.e., through the least resistant path. Also, electricity travels

almost instantaneously. As a consequence, energy has to be consumed at the

same time as it is produced. These fundamental characteristics of electricity

play an important role especially when PV and wind energy sources begin to

form a significant percentage of the country’s energy mix. Since the production

of these RESs is driven purely by weather, accurate forecast of wind and solar

energy production is essential for the spot price formation. The EU addressed

this in 2015 by adopting regulation which bound all national TSOs with more

than one percent feed-in of wind or solar power generation per year to publish

day-ahead generation forecast for these fluctuating sources. Thus, trades on
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energy spot markets around Europe could reflect the cheaper green electricity

into the spot prices more accurately.

Approaching 2020, more and more RESs being connected to the energy

grid all around Europe. Since the flow of electricity does not respect borders,

spillover effects of cheap green electricity influence energy grids of neighbouring

countries. For governments and national retailers is of principal importance to

know how much is the spot market influenced by both national and foreign

green energy production. For example, local retailers have to optimize their

short (long) position on the spot market which is indeed influenced by green en-

ergy production. Also, policymakers can use this information to decide whether

the state should support the construction of pumped hydroelectric energy stor-

ages or batteries which could benefit on it.

In this thesis, I examine the effect of Czech and German RESs on the

Czech spot price of electricity. When investigating the impact of the RES on

spot prices, many studies use daily averages rather than hourly prices. Nev-

ertheless, using daily prices can result in a loss of information contained in

hourly granularity. Since electricity is non-storeable, I treat each hour as a

distinct commodity, i.e., data are regarded as panel. I build upon an approach

developed by Cermeño & Grier (2003). It describes Pooled Panel-GARCH

model. Compared to other multivariate GARCH models, it allows modelling

panel data with time-varying conditional matrix while preserving the simplic-

ity of the model. Therefore, I can estimate the effect of RESs on both the

level of spot price and the conditional variance, while controlling for possible

cross-sectional correlation. The model suits the purpose well. Prices for all 24

hours are submitted at the same time. Thus, I assume they follow the same

dynamics. Also, they are likely to be correlated with each other. In order

to capture different price dynamics which might vary during day and night, I

split data into two datasets. One containing peak hours while the second one

containing off-peak hours.

In the case of peak hours, both main hypotheses were confirmed. As ex-

pected energy production from German solar and German wind onshore parks

lower the spot price. Likewise, the energy produced by Czech solar farms has

a negative effect on the spot price. Specifically, one additional GW of power

produced by wind and solar, reduces the spot price by 0.45, 0.60, and 1.42

EUR/MWh, respectively. Further, increased volatility of Czech spot price due

to RESs was found. The main driver of the volatility is the Czech solar pro-

duction. A much lower, but still highly significant effect is also found for the
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German onshore wind production. Production from the Czech wind farms has

no statistically significant effect on the spot price neither on its volatility. For

off-peak hours, only wind production is considered. The energy from the Ger-

man onshore parks reduces the price by 0.57 EUR/MWh per one additional

GW fed into the system. This is slightly below the effect during peak hours.

As in the case of peak hours, an increase in the spot price volatility due to Ger-

man energy produced by onshore wind parks was found. Again, the effect is

below the one for peak hours. Moreover, a high level of persistence in volatility

clustering was found for all hours.

In general, energy production from RESs has negative MOE on the Czech

spot prices while the opposite is true for the price volatility. The results of a

green energy MOE are in line with many previous studies which focus on energy

markets in Western Europe, i.e., Germany, Netherlands. Also, there are some

studies which examine the effect of RESs on the Czech spot price. In Lunáčková

et al. (2017) authors study the impact of PV farms on the Czech electricity

supply. Further, Czech and German markets are studied with respect to RESs

in Ĺı̌sková (2017). Nevertheless, no cross-border dependencies are considered.

Next, I used similar methodology as in Cludius et al. (2014) and Sensfuss

et al. (2008) to estimate total average MOE and corresponding financial impact

stemming from it. To put it into perspective, I also computed the total financial

amount paid by households in surcharges for promotion of RESs. The values

were computed for years 2015, 2016, and 2017.

Total costs for Czech households rose from 261 to 286 million euros between

the years 2015 and 2017. The MOE financial volume stemming from the Czech

solar production increased from 87 to 93 millions euro. Similarly, the MOE

financial volume resulting from the German renewable production rose from

51.1 to 54.7 million euro. The costs were also computed for German house-

hold. In 2015, German households paid cumulatively over 7.9 billion euros in

EEG surcharges. The number surged approximately by one billion to 8.8 billion

euros in 2017. Coming back to the Czech market, costs for households were

almost three times higher than the actual financial savings from MOE. Adding

the MOEs together, annual financial volume from MOE on the Czech market

increased from 138 to 147.7 million euro. Comparing the values with annual

household costs, the final price reduction is still two times lower than costs. It

is important to note that the financial volume from the MOE is not a direct

reduction of the electricity price for households. Price for end-customers de-

pends on long term contracts. The price reduction is rather enjoyed by the spot
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market participants, i.e., retailers and traders. Thus, the volumes from MOE

are estimates of wealth redistribution from Czech and German households to

the market participants on the Czech spot market.

Clearly, renewable electricity does not bring the same benefits to all con-

sumers. While households bear the costs stemming from surcharges on RESs,

they do not necessarily profit from the MOE. It is rather enjoyed by the spot

market participants, i.e., retailers and traders. Redistribution of households

wealth from neighbouring countries occurs too. The growing share of RESs in

Europe’s energy mix will even increase this discrepancy in costs and benefits

among consumers. It is up to national policymakers to set rules which will not

promote one part of customers above the other. My findings also suggest that

energy policy needs to be set internationally.

Further research in this field is possible. I analyzed the effect of German

and Czech RESs on the Czech spot market. Nevertheless, intraday and bal-

ancing markets are likely to be influenced by the electricity from RESs as well.

Balancing market is important especially for retailers since their residual posi-

tion is settled there. The knowledge about the balancing price dynamics with

respect to the electricity from RESs could reduce their risk. Also, the national

transmission system operator could benefit from information like that. An

analysis of balancing market dynamics could be performed by a similar model

as in this thesis.
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Powermag (2018): “Germany’s new coalition government agrees to phase out

coal, but will miss 2020 emissions targets.”



Bibliography 60

Sensfuss, F., M. Ragwitz, & M. Genoese (2008): “The merit-order effect:

A detailed analysis of the price effect of renewable electricity generation on

spot market prices in germany.” Energy Policy 36(8): pp. 3086 – 3094.

Tashpulatov, S. N. (2013): “Estimating the volatility of electricity prices:

The case of the england and wales wholesale electricity market.” Energy

Policy 60: pp. 81 – 90.

Wooldridge, J. M. (2013): “Introductory econometrics: a modern approach

5th edition.” Mason, OH: South-Western .

Wozabal, D., C. Graf, & D. Hirschmann (2016): “The effect of intermit-

tent renewables on the electricity price variance.” OR Spectrum 38(3): pp.

687–709.



Appendix A

Appendix

Table A.1: Development of the energy mix in Germany

2015 [MW] 2016 [MW] 2017 [MW] 2018 [MW]

Biomass 6787 6814 6989 7396
Fossil Brown coal/Lignite 121141 21057 21257 21270
Fossil Coal-derived gas 1316 1316 1316 1316
Fossil Gas 29830 30621 31973 31250
Fossil Hard coal 26928 26063 26999 24478
Fossil Oil 3961 4083 4162 3821
Geothermal 33 34 40 38
Hydro Pumped Storage 8397 8384 8733 8748
Hydro Run-of-river and poundage 4775 3904 3929 3493
Hydro Water Reservoir 729 729 734 786
Nuclear 12068 10793 10793 9516
Other 616 1247 1837 1386
Other renewable 454 515 513 496
Solar 37446 38840 40849 42804
Waste 1507 1544 1629 1598
Wind Offshore 993 3283 4131 5051
Wind Onshore 37757 41179 47042 51633
Total Grand capacity 294738 200406 212926 215080

Source: www.entsoe.eu
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Table A.2: Development of the energy mix in the Czech Republic

2015 [MW] 2016 [MW] 2017 [MW] 2018 [MW]
Biomass 0 350 350 350
Fossil Brown coal/Lignite 8500 8334 7929 8542
Fossil Coal-derived gas 380 380 380 380
Fossil Gas 1720 1226 1226 1226
Fossil Hard coal 900 1200 1200 1200
Hydro Pumped Storage 1175 1172 1172 1172
Hydro Run-of-river and poundage 440 431 334 334
Hydro Water Reservoir 650 650 753 753
Nuclear 4040 4040 4040 4040
Other 600 0 0 0
Other renewable 0 500 400 400
Solar 2050 2067 2027 2040
Waste 0 0 100 100
Wind Onshore 270 277 277 308
Total Grand capacity 20725 20627 20188 20845

Source: www.entsoe.eu
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Table A.3: Individual effects from the PEAK mean equation identification.

(A) (B) (C)

Hour.8 −43.629∗∗∗ −44.475∗∗∗ −41.834∗∗∗

(0.751) (0.821) (0.693)
Hour.9 −42.342∗∗∗ −43.225∗∗∗ −41.583∗∗∗

(0.760) (0.834) (0.705)
Hour.10 −43.738∗∗∗ −44.654∗∗∗ −42.169∗∗∗

(0.778) (0.853) (0.722)
Hour.11 −44.984∗∗∗ −45.912∗∗∗ −42.206∗∗∗

(0.785) (0.861) (0.728)
Hour.12 −45.589∗∗∗ −46.529∗∗∗ −42.239∗∗∗

(0.792) (0.869) (0.735)
Hour.13 −47.075∗∗∗ −48.017∗∗∗ −42.673∗∗∗

(0.794) (0.871) (0.737)
Hour.14 −47.769∗∗∗ −48.704∗∗∗ −42.810∗∗∗

(0.786) (0.864) (0.731)
Hour.15 −48.274∗∗∗ −49.193∗∗∗ −42.961∗∗∗

(0.774) (0.851) (0.721)
Hour.16 −48.334∗∗∗ −49.250∗∗∗ −43.644∗∗∗

(0.774) (0.852) (0.722)
Hour.17 −47.361∗∗∗ −48.262∗∗∗ −43.706∗∗∗

(0.774) (0.850) (0.719)
Hour.18 −45.018∗∗∗ −45.903∗∗∗ −43.205∗∗∗

(0.782) (0.856) (0.722)
Hour.19 −43.175∗∗∗ −44.040∗∗∗ −42.604∗∗∗

(0.793) (0.863) (0.727)

Observations 16,882 16,882 16,882
R2 0.947 0.947 0.965
Adjusted R2 0.947 0.947 0.965
F Statistic 14,472.680∗∗∗ 13,226.320∗∗∗ 17,459.810∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.4: Individual effects from the OFF-PEAK mean equation identification.

(C)

Hour.1 −15.848∗∗∗

(0.819)
Hour.2 −16.131∗∗∗

(0.808)
Hour.3 −16.083∗∗∗

(0.795)
Hour.4 −16.079∗∗∗

(0.788)
Hour.5 −16.251∗∗∗

(0.792)
Hour.6 −16.959∗∗∗

(0.822)
Hour.7 −18.662∗∗∗

(0.916)
Hour.20 −18.312∗∗∗

(1.027)
Hour.21 −18.356∗∗∗

(1.012)
Hour.22 −17.902∗∗∗

(0.964)
Hour.23 −17.034∗∗∗

(0.922)
Hour.24 −16.699∗∗∗

(0.862)

Observations 16,892
R2 0.974
Adjusted R2 0.974
F Statistic 24,981.130∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.5: Individual effects from the PEAK variance equation identification.

Dependent variable:

res

Hour.8 29.421∗∗∗

(4.308)
Hour.9 31.702∗∗∗

(4.357)
Hour.10 28.553∗∗∗

(4.393)
Hour.11 26.360∗∗∗

(4.418)
Hour.12 27.705∗∗∗

(4.452)
Hour.13 30.700∗∗∗

(4.474)
Hour.14 29.985∗∗∗

(4.457)
Hour.15 26.988∗∗∗

(4.414)
Hour.16 31.367∗∗∗

(4.380)
Hour.17 33.421∗∗∗

(4.364)
Hour.18 26.739∗∗∗

(4.362)
Hour.19 19.532∗∗∗

(4.359)

Observations 16,879
R2 0.196
Adjusted R2 0.195
F Statistic 215.814∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.6: Individual effects from the OFF-PEAK variance equation identifica-
tion.

Dependent variable:

res

Hour.1 4.554∗∗

(2.062)
Hour.2 3.495∗

(2.059)
Hour.3 3.854∗

(2.057)
Hour.4 3.673∗

(2.055)
Hour.5 3.184

(2.053)
Hour.6 3.686∗

(2.052)
Hour.7 18.073∗∗∗

(2.074)
Hour.20 19.687∗∗∗

(2.087)
Hour.21 16.072∗∗∗

(2.080)
Hour.22 8.669∗∗∗

(2.068)
Hour.23 0.740

(2.060)
Hour.24 3.655∗

(2.061)

Observations 16,889
R2 0.222
Adjusted R2 0.221
F Statistic 282.682∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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