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Abstract  

This thesis analyzes the use of realized moments in asset pricing. The analysis is done 

using dataset containing logreturns for 29 of the most traded stocks and covering 10 

years of data. The dataset is split into training set covering 7 years and test set covering 

3 years of data. For each of the stocks a separate time series model is estimated. In 

evaluation of the quality of the models, metrics such as RMSE, MAD, accuracy in 

forecasting the sign of future returns, and returns achievable by executing trades based 

on the recommendations from the model are used. Even though the inclusion of 

realized moments does not provide significant improvements in terms of RMSE, it is 

found that realized skewness and kurtotis significantly contribute to explaining the 

returns of individual stocks as they lead to consistent improvements in identifying 

future positive, as well as negative, returns. Moreover, the recommendations from the 

models using realized moments can help us achieve significantly higher returns from 

trading stocks. Inclusion of the interaction terms for variance and returns, skewness 

and returns, and kurtosis and variance, provides additional improvement of forecasting 

accuracy, as well as improvements in returns achievable by executing transactions 

based on recommendations from the model. 
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Abstrakt  

Tématem této práce je analýza využití realizovaných momentů k oceňování aktiv. K 

analýze je použit dataset obsahující data o devětadvaceti z nejvíce likvidních veřejně 

obchodovaných akciových spolecností. Tento dataset pokrýva období deseti let a je 

dále rozdělen na trénovací a testovací dataset, kde první obsahuje data za 7 let a druhý 

data za zbývající 3 roky. Pro každou z 29 společností je odhadnut vlastní model. 

K posouzení kvality jednotlivých modelů jsou využity metriky, jako jsou RMSE, 

MAD, přesnost v předpovídání kladných a záporných výnosů a výnosy dosažitelné 

díky obchodování na základě předpovědí modelu. Ačkoliv zahrnutí realizovaných 

momentů nevede k výraznému snížení RMSE, výsledky ukazují, že realizovaná 

mailto:i@saktor.net
mailto:barunik@fsv.cuni.cz
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skloněnost a špičatost přispívají k vysvětlení výnosů akcií jednotlivých společností. 

Tento přínos je zachycen skrze zvýšenou schopnost modelu správně předpovídat, jestli 

budoucí výnos bude kladný, nebo záporný. Dále využití realizovaných momentů může 

investorům umožnit dosažení výrazně vyšších výnosů z obchodování v porovnání 

s pasivním držením diveryifikovaného portfolia akcií. Zahrnutí součinu rozptylu a 

výnosů, skloněnosti a výnosů, a špičatosti a rozptylu, přinásí další zlepšení v přesnosti 

modelu a dosažitelných výnosů z obchodování s akciemi. 

 
Klasifikace C18, C58, G15 

Klíčová slova Realizované momenty, skloněnost, špičatost, 

oceňování aktiv, akciové trhy 
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Proposed Topic: 

Are realized moments useful for stock market returns analysis? 

Motivation: 

It has been a never-ending struggle to understand the properties of stock returns 

and be able to forecast their future development. From simple AR and MA models, 

through GARCH and their fractionally integrated versions, to intra-day data based 

models such as HAR, researchers and investors alike have been trying to analyze 

and forecast the behavior of returns. The question of stock return properties is of 

the utmost importance when it comes to portfolio or risk management. 

 

This thesis aims to gain further understanding of stock returns on two different 

levels: 1) Further understand distributional properties of returns – so far, there have 

been various attempts to forecast future returns and future volatility. This thesis 

aims to explore whether it is possible to predict also realized skewness and kurtosis 

and gain additional insights into the distribution of returns. 2) Establish, whether 

current realized skewness or kurtosis can be used in forecasts of future returns or 

volatility, and whether disregarding skewness and kurtosis has a detrimental effect 

on the quality of such predictions. 

 

The intuition behind the use of skewness and kurtosis in the financial market 

modelling is, that volatility should not be the only measure of risk on the market. 

Two distributions with same mean and variance might have completely different 

kurtosis: thus, when speaking about returns, the two distributions also carry a 

different amount of risk as a high kurtosis increases the uncertainty about the actual 

returns. Moreover, the distribution of returns need not be symmetric, thus making 

positive returns more or less likely than negative returns. Thus, additional 

knowledge about two moments might be very helpful in investors’ decision 

making. 

 

The current literature - such as Amaya et al (2015) or Chang et al (2013) - mostly 

focused on cross-sectional analysis of returns and their realized moments. It is the 

goal of this thesis to address also the time-series forecasting of future returns using 

the realized moments. 

 

Furthermore, Corsi and Reno (2009) use HAR with heterogeneous leverage and 

jumps to model volatility. It seems natural to ask, whether inclusion of realized 

skewness and kurtosis in the model would have a significant positive impact on the 

said model performance. 
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Hypotheses: 

1. Hypothesis #1: realized moments can be used to forecast future returns. 

2. Hypothesis #2: current realized moments are not independent of past realized 

moments 

3. Hypothesis #3: higher kurtosis should be compensated by higher expected 

return 

4. Hypothesis#4: realized moments improve HAR’s performance in 1 day ahead 

volatility forecasting 

5. Hypothesis #5: realized moments improve HAR’s performance in multi-period 

volatility forecasts 

Methodology: 

The current plan is to use 5-minute intraday data for 29 most liquid US companies 

spanning the years 2005-2015. This dataset includes information about the prices in 

each of the time intervals. From this information, log returns will be calculated and 

subsequently used to calculate the realized measures. 

 

The above-mentioned measures will be used for the analysis of stock market 

returns as described in the Motivation section of this proposal. The individual time 

series will be modelled using these measures and the validity of the models will be 

evaluated using the out of sample forecast together with a benchmarking against 

some of the other techniques used in financial time-series modelling, such as 

ARIMA or HAR for log-returns and GARCH or HAR for volatility. Where 

applicable, robust statistical methods shall be used to verify the estimation results. 

While the robust methods in time-series setting might not be wide-spread, there 

have been some applications even in the volatility modelling (Croux et al. (2011)) 

 

One additional possible technique to model the joint fluctuation of returns, volatility, 

skewness and kurtosis might be a VAR model, but I will have to explore this option 

further in the process of working on the thesis. 

Expected Contribution: 

This thesis hope to provide further insights into the behavior of stock market 

returns. If the results of the research suggest that the realized measures are useful 

for the analysis of stock returns, these measures might be used for investment 

decisions and risk management. Otherwise, it will be evident that some different 

approaches should be explored. 

Outline: 
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5. Results 
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1 Introduction  

The statistical properties of a price process are crucial to understanding the 

behavior of financial markets. The volatility has been already studied for decades and 

the current literature focuses mostly on realized volatility estimators. In recent years, 

estimators of higher moments, such as skewness and kurtosis, have been of an 

increasing interest. This thesis adds to the existing literature by examining the usability 

of realized moments in individual stocks’ returns analysis. Moreover, sensitivity of the 

obtained results to changes in estimators or model specification is analyzed. The 

quality of the individual models is determined based on extensive analysis of their 

performance on the test set. The following paragraphs outline an introduction to the 

field of asset pricing, provide a reasoning on why risk is thought to be so important in 

determining the price of an asset and how realized moments can be used to approximate 

the factors describing the consumption risk. 

The asset pricing theory aims to understand the process leading to prices of 

uncertain payments, or in other words, understand why one asset gives higher return 

than another. In theory, the stock market should balance so that price and the expected 

discounted return of an asset are identical. Using the notation used by Cochrane (2009), 

we can summarize this idea by the following formulas: 

 𝑝𝑡 = 𝐸[𝑚𝑡+1 ∗ 𝑥𝑡+1] 
 

(1.1) 

 𝑚𝑡+1 = 𝑓(𝑑𝑎𝑡𝑎, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠)  
 

(1.2) 

With 𝑝𝑡 being the asset price, 𝑥𝑡+1 the payoff and 𝑚𝑡+1 the stochastic discount 

factor. Equation (1.1) summarizes the relation between the expected discounted payoff 

and price, while Equation (1.2) represents some general form of the stochastic discount 

factor. In the classic consumption-based model, the stochastic discount factor 𝑚𝑡+1 can 

be written as a product of the individual discount factor and the marginal utilities from 

consumption in two consecutive time periods: 

 
𝑚𝑡+1 = β ∗

u′(ct+1)

u′(ct)
  (1.3) 

Thus, a stochastic discount factor, which is also sometimes called a pricing kernel, 

can be understood as a rate at which the investor is willing to exchange consumption 

between the two periods. The pricing kernel is nothing more than a valuation operator 

creating a link between risk and risk premium. 



Introduction  2 

The goal of the empirical literature is then to find the form of this pricing kernel. 

Several approaches to approximating the kernel can be found in the literature on asset 

pricing. One of the methods would be to use the factor pricing models, such as CAPM. 

These models use a linear model instead of the marginal utility growth used in the 

consumption model. Once again using the notation of Cochrane (2009), the form of the 

linear model is given by the following equation: 

 𝑚𝑡+1 = 𝑎 + 𝑏′ ∗ 𝑓𝑡+1 (1.4) 

Where a and b are parameters, while f stands for the factors. The variables used as 

factors would usually be those indicating occurrence of an event unpleasant to the 

investor. 

The availability of high-frequency data allows us to approximate the pricing kernel 

using realized moments, such as variance, skewness and kurtosis. As Merton (1980) 

noted: the volatility of the price process becomes observable as frequency of returns 

increases. Moreover, skewness and kurtosis can be also observed, and over time 

various realized moments estimators have been developed. These estimators 

leveraging high-frequency data can be used to obtain ex-post estimates on the actual 

levels of risk faced by the investors. Based on the observed levels of risk, we can in 

turn form our expectations regarding the required risk premium. 

The realized variance, skewness and kurtosis provide an intuitive way to describe 

the risks faced by the investor, because all of them are related to events or states of the 

world which the investor would rather avoid. Variance measures the uncertainty of the 

payoffs. The intuitive argument for using variance is that, with increasing uncertainty 

of the payoff, the investor should demand higher risk premium as a compensation for 

taking on the risk to his future level of consumption. That being said, while variance 

has been established as a solid determinant of required risk premium, it doesn’t fully 

describe the risk faced by the investor. While two assets can have the same variance, 

they might have different likelihoods of individual payoffs, which in turn might result 

in one asset being more likely to produce negative payoff and the other to produce a 

positive payoff.  Therefore, realized skewness is used as a determinant of the required 

risk premium. On top of the intuitive argument, there are several theoretical arguments 

creating the link between assets’ skewness and return. They conclude that, in theory, 

there should be a negative relationship between asset’s skewness and return: under the 

cumulative prospect theory assets with higher skewness should yield lower returns, as 

was shown Barberis and Huang (2008);  Brunnermeier, Gollier, and Parker (2007) and 

Mitton & Vorkink (2007) derived similar results based on different assumptions. While 
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the author of this thesis is not aware of comparable theoretical results for the 

relationship between returns and kurtosis, there is at least an intuitive argument for 

using it: it is possible that investor would like to avoid extremely bad payoffs. At the 

same time, one can argue that an asset can achieve given level of realized variance 

either through a sequence of moderate fluctuations or through some small and then one 

extreme. By including the realized kurtosis in the model, we distinguish between these 

scenarios. 

Using a dataset on 29 frequently traded companies covering years 2005 – 2015, a 

simple pricing model using past returns, realized variance, skewness and kurtosis as 

determinants of risk premium is constructed. For each company, a separate estimation 

is done on a training set containing 70% of the observations. Subsequently, the model’s 

performance is analyzed on the test set which contains the remaining 30% of the 

observations. The model’s ability to explain stock market returns is compared to the 

AR1 model. Moreover, several alternative estimators of realized moments are used and 

multiple model extensions and restrictions are considered. All of these models are 

evaluated based on common accuracy metrics such as RMSE, MAD and accuracy in 

correctly identifying the sign of the asset return. Furthermore, the models are used to 

create trading strategies, and the returns achievable by following those strategies are 

analyzed. 

It is found that every single one of the realized moments – variance, skewness and 

kurtosis – contribute to the model performance in terms of achievable returns as well 

as the model’s ability to correctly identify the direction of future asset price 

movements. On the other hand, these achievements do not translate into corresponding 

improvements in standard accuracy measures, such as RMSE or Diebold-Mariano test, 

which might lead to incorrect conclusions on the usability of realized moments had we 

failed to dig deeper in analyzing the results. Use of realized moments in asset pricing 

resulted in 60-120% higher return compared to passively holding stocks over the entire 

time period. While this comparison disregards the transaction costs, it is clear that with 

sufficient scale a trader would benefit from the use of model based on realized returns 

even in face of relatively steep fixed transaction costs imposed upon small agents. 

Furthermore, it has been found that use of robust estimators of moments can improve 

the results further. Moreover, accounting for interaction terms between past return and 

variance, past return and skewness, and past variance and kurtosis can provide almost 

30% additional increase in expected returns and lift the accuracy of predicting the sign 

of future returns from 50.7% to well over 51%. 
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The rest of the thesis is organized as follows. First, the literature on the realized 

moments is reviewed. Included are important theoretical and empirical results relevant 

to the topic of this thesis. In the following chapter, the methodology is outlined and the 

analyzed dataset is described. The chapter includes information on the used estimators, 

the analyzed models and the evaluation criteria for determining the model quality. 

Next, results are discussed. Last chapter concludes this thesis. 
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2 Literature review 

The thesis builds on large literature on realized volatility and significant amount of 

current research on higher realized moments. Amaya et al (2015) provide 

comprehensive review of the state of empirical research on this topic. Daily returns 

have been used to analyze economic drivers of the secular variation in market volatility 

by Schwert (1989) and Paye (2012). The use of intraday trading data was pioneered by 

Hsieh (1991) in his work on nonlinear dynamics in financial markets. Individual assets’ 

realized volatility was studied by Andersen, Bollerslev, Diebold & Ebens (2001). The 

idea of using realized volatility in portfolio allocation was explored by Fleming, Kirby 

& Ostdiek (2003). 

According to Merton (1980), increased sampling frequency allows for unlimited 

precision of volatility measurement. This finding was a precursor to development of 

daily volatility measures based on intraday returns. The currently most popular 

measure of realized volatility, which was famously used in Andersen and Bollerslev 

(1998), is sum of squared intraday log returns. This measure has a model-free property, 

which makes it useful in volatility analysis. For details see Andersen et al. (2001). 

Nielsen et al. (2010) proposed realized semi-variance as a measure of downside risk. 

They argue that negative and positive shocks might have different impact on future 

volatility and therefore volatility stemming from these shocks should be measured 

separately. Next, they also discuss the possibility to use realized bipower downward 

variation (BPDV) which can be used to analyze jumps in the data. The BPDV is an 

extension to bipower variation as mentioned in Barndorff-Nielsen and Shephard (2004) 

and the argument for its use is equivalent to that used for semi-variance.  

One theoretical result for relation of skewness and returns is provided by Barberis 

and Huang (2008) who show that assuming investors make decisions according to 

cumulative prospect theory implies assets with greater skewness have lower returns. 

Amaya et al. (2015) use realized skewness measure defined as sum of cubed short-

period log returns. Once again, this measure is calculated from high frequency returns 

and yields an unbiased estimator of longer periods skewness. As in case of realized 

variance, realized skewness has the model-free property. Recent work by Neuberger & 

Payne (2017) shows that the above mentioned realized skewness measure represents 

only skewness of short-horizon returns. The catch is skewed short-horizon returns 

might yield symmetric long-horizon returns. They show that skewness of long-horizon 
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returns has two components: 1) skewness of short horizon returns, 2) covariance of 

current period variance and lagged return. Therefore, the frequent empirical finding 

that realized skewness might be insignificant determinant of future returns or volatility 

might be purely due to a fact that researchers are using incorrect measure of realized 

skewness. As the measure proposed by Neuberger & Payne (2017) is technically a 

linear combination of the two factors, skewness of short horizon return and covariance 

of current period variance and lagged return, the use of the original measure employed 

by Amaya et al (2015) would be equivalent to incorrect model specification leading to 

an omitted variable bias in the estimates. It seems reasonable to assume that skewness 

of long-horizon returns would be more important determinant of future returns than 

skewness of, say, 5-minute returns. 

The definition of realized kurtosis used by Amaya et al (2015) is defined as a sum 

of short-period log-returns raised to the power of 4. As in the case of skewness, 

Neuberger & Payne (2017) argue that this does not capture the kurtosis of long-period 

returns. Therefore, they propose a measure based on three components: 1) kurtosis of 

short-horizon returns, 2) lagged high-frequency returns and cubed returns covariance, 

3) covariance of squared short-horizon returns and lagged squared returns. 

As mentioned in Neuberger & Payne (2017) it is worth pointing out that the usual 

standardized measures of realized skewness and kurtosis are unbiased estimators of the 

respective variables only if skewness and kurtosis are uncorrelated with volatility.  

The relationship between skewness and returns has been examined by several 

studies in recent years. The research of Zhang (2006) shows a negative relation 

between skewness and stock returns. Boyer, Mitton & Vorkink (2010) find stocks with 

higher expected idiosyncratic skewness to have lower future returns. As discussed by 

Amaya et al (2015) options-based skewness measures were analyzed with mixed 

results. On one hand, works of Xing, Zhang & Zhao (2010) and Rehman & Vilkov 

(2010) find a positive relation between skewness and returns. On the other hand, 

Conrad, Dittmar & Ghysels (2013) performed similar analysis with the opposite result.  

Amaya et al (2015) find that realized skewness and kurtosis are significant 

determinants of future returns even in regression including other frequently used 

variables such as number of analysts following the firm suggested by Arbel and Strebel 

(1982), market beta and lagged return used in Jegadeesh (1990)  and Lehmann (1990), 

book-to-market ratio used by Fama & French (1993) and others. 

There are two main approaches one might want to explore in order to make the 

estimation more robust and predictions more accurate: 1) use measures robust to 



Literature review  7 

outliers as in Amaya et al (2015) who examines several options, such as drift-adjusted 

realized moments, realized skewness and kurtosis scaled by jump robust realized 

variance measure, subsampling and Bowley skewness; or more traditional robust 

measures of skewness and kurtosis, such as was done by Bonato (2011) who uses 

skewness measures proposed by Bowley (1920), Groeneveld & Meeden (1984) and 

the Pearson coefficient as described in Kendall & Stuart (1977). The empirical analysis 

by Bonato draws significantly on the work of Kim & White (2004), who argue that the 

standard, average-based measures of skewness and kurtosis are likely to perform badly 

in presence of outliers and they suggest that non-standard measures of skewness and 

kurtosis can provide deeper insights into market returns behavior. The traditional 

measure of kurtosis measures the spread of a distribution around mean +- standard 

deviation, and so kurtosis can be high if majority of the data is concentrated around 

mean or in thick tails (Moors 1988). Obviously, this might cause some problems in 

using kurtosis as a measure of tail risk, because we can’t distinguish between the above 

mentioned two cases and yet they represent very different circumstances in financial 

data. Following the example of Bonato (2011), I also explore the use of quantiles-based 

kurtosis measure proposed by Crown and Siddiqui (1967). Using these measures, 

Bonato (2011) concludes that they perform better for distributions with thick tails even 

if they have finite higher moments; 2) the other option is to use robust estimation 

methods which put lower weight on the outlying observations, such as least weighted 

squares, weighted least squares, trimmed least squares or least trimmed squares. For 

details on outlier robust time series regressions see e.g. Rousseeuw (2005). 
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3 Methodology 

3.1 Data 

The original raw data has been obtained from the company TICK data. The dataset 

contains data on 29 most liquid companies within S&P 500 index and covers the period 

from July 2005 to December 2015. The prices are tracked at 5 minute’s intervals, which 

means that each day contains approximately 380 observations. 

From the data, different measures of realized variance, skewness and kurtosis at 

daily frequency are calculated. These measures are subsequently analyzed. 

The reason for using and comparing multiple measures of each moment is, as 

explained later on in the thesis, their different properties. The approach most frequently 

used in recent empirical literature (i.e. calculating realized measures from log returns 

raised to 2nd, 3rd and 4th power for variance, skewness and kurtosis respectively), 

gained popularity thanks to the work of Andersen, Bollerslev and Diebold (1998), 

Andersen, Bollerslev, Diebold, and Labys (2003) in case of realized variance as well 

as Neuberger (2012). 

For the purpose of the analysis, the data set is split into a training set and a test set. 

The training set spans data from the 1st of July 2005 to 16th of July 2013. The test set 

spans the subsequent period from 17th of July 2013 to the 31st of December 2015. 

Thus, the results might be affected by a potential structural break as training set covers 

the period of unprecedented financial crisis of 2008 and the test period covers the 

relatively calm and prosperous times. The statistical summary of the training set can 

be found in Table 21 and Table 22 in the appendix. Table 21 summarizes the underlying 

5-minute log returns used in the calculation of realized moments and Table 22 

summarizes the daily log returns used as the explained variable in the pricing model. 

Equivalent information for the test set is presented in Table 23 and Table 24 

respectively.   

3.2 Measure definitions  

The measures used throughout the analysis are discussed below. First, measures of 

scale are discussed, then skewness and kurtosis. The choice of robust measures is 

mostly based on work of Kim & White (2004) and the empirical analysis by Bonato 
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(2011). All measures of higher moments are calculated based on multiple definitions 

to ensure that the results are not affected by microstructure noise and that tail fatness 

and asymmetry are calculated properly. First, the classic measures of realized moments 

as used by Amaya et al. (2015) are considered. Second, measures using jump-robust 

estimates of realized volatility are used in standardizing the higher moments. Finally, 

the robust measures of higher moments, relying on percentiles from the distribution of 

high-frequency returns, are presented. The measures of volatility, skewness and 

kurtosis recently proposed by Neuberger & Payne (2018) are discussed separately from 

the other measures as they need to be discussed together. These measures are included 

mostly to make sure that all recent literature is considered, yet they are used only as 

inspiration for alternative model specification, rather than being used directly in the 

analysis. All measures are calculated based on observations made within one trading 

day. 

For calculation of the measures, it is first necessary to establish the intraday log-

returns for each of the stocks as: 

Definition 1: ith intraday log-return on day t 

𝑟𝑡,𝑖 = 𝑝
𝑡,

𝑖
𝑁

− 𝑝
𝑡,

𝑖−1
𝑁

 

Where the notation was taken over from Amaya et al (2015), and thus p stands for 

natural logarithm of price. The N represents number of observations recorded on a 

trading day t. The daily log-return is then given by: 

Definition 2: log return on day t 

𝑟𝑡 = ∑ (𝑝
𝑡,

𝑖
𝑁

− 𝑝
𝑡,

𝑖−1
𝑁

)

𝑁

𝑖=1

 

These relatively simple measures are the cornerstones of the thesis as daily log-

returns are the dependent variable in the model and all the explanatory variables used 

in the model are functions of the intraday log-returns.  
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3.2.1 Measures of scale 

The first measure of realized variance, which has gained popularity since publication 

of Andersen and Bollerslev  (1998) and is now widely used in literature, is sum of 

squares of the intraday log-returns, as is denoted by the following definition: 

Definition 3: Realized Variance 

𝑅𝑉𝑡
𝑅𝑉 = ∑ 𝑟𝑡,𝑖

2

𝑁

𝑖=1

 

This definition assumes the mean of the 5-minute return to be zero. Amaya et al 

(2015) performed robustness checks adjusting the definition for drift or demeaning the 

data and found that the assumption of zero mean does not have significant negative 

impact on the performance of the estimator. Intuitively, the high-frequency return 

variance dominates the mean. The above measure has several noteworthy properties: 

it is additive – in order to get from short period variance to long period variance, we 

just sum the observed former variances over the later; it is model-free (2001); it 

converges to a quadratic variation as sampling period gets shorter. 

Summary of the limiting properties of realized moments is again provided by 

Amaya et al (2015). Andersen et al. (2003) show, that under the following assumptions: 

1. Log-price of asset at time T is given by: 

𝑝𝑇 = ∫ 𝜇𝑠𝑑𝑠 +  ∫ 𝜎𝑠𝑑𝑊𝑠 + 𝐽𝑇

𝑇

0

𝑇

0

 

2. µ is a locally bounded predictable drift process 

3. σ is a positive càdlàg process 

4. J is a pure jump process 

5. 𝑝0 = 0 

Then for 𝑁 → ∞: 

𝑅𝑀2 = ∑ (𝑝𝑇𝑖
𝑁

− 𝑝𝑇(𝑖−1)
𝑁

)

2
𝑝
→ ∫ 𝜎𝑠

2𝑑𝑠 +  ∑ (Δ𝑝𝑠)^2

0<𝑠≤𝑇

𝑇

0

 

𝑁

𝑖=1
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Thus, even as 𝑁 → ∞ both integrated variance and squared jumps contribute to the 

limit. The realized variance measure includes both of these elements as well.  

The above definition of realized variance has a drawback of being significantly 

influenced by possible jumps in the data, and therefore several definitions of jump 

robust measures are presented. These measures are intended to only measure the 

integrated variance as 𝑁 → ∞. Barndoff-Nielsen and Shephard (2004) suggested the 

bipower variation measure: 

Definition 4: Bipower Variation 

𝑅𝑉𝑡
𝐵𝑃𝑉 =

𝜋

2
∗

𝑁

𝑁 − 1
∗ ∑|𝑟𝑡,𝑖+1| ∗ |𝑟𝑡,𝑖|

𝑁−1

𝑖=1

 

The bipower variation converges to integrated variance even when jumps are 

present in the data. On the other hand, when N is finite and jumps are relatively large, 

the bipower variation still suffers from upward bias. For the purpose of eliminating the 

bias caused by jumps, Andersen, Dobrev and Schaumburg (2012) propose different 

jump-robust measures: the minimum realized variance and median realized variance. 

The minimum realized variance attempts to fix the upward bias in BPV by utilizing the 

second power of the minimum of two consecutive returns, whereas median realized 

variance uses the second power of the median of three consecutive returns in 

calculation of the variance. Their exact definitions follow: 

Definition 5: Minimum Realized Variance 

𝑅𝑉𝑡
𝑀𝑖𝑛𝑅𝑉 =

𝜋

𝜋 − 2
(

𝑁

𝑁 − 1
) ∗ (∑ min (|𝑟𝑡,𝑖|,

𝑁−1

𝑖=1

|𝑟𝑡,𝑖+1|)^2 

Definition 6: Median Realized Variance 

𝑅𝑉𝑡
𝑀𝑒𝑑𝑅𝑉 =

𝜋

6 − 4 ∗ √3 + 𝜋
∗ (

𝑁

𝑁 − 2
) ∗ ∑ 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑟𝑡,𝑖−1|, |𝑟𝑡,𝑖|, |𝑟𝑡,𝑖+1|)^2

𝑁−1

𝑖=2

 

As 𝑁 → ∞, these measures approach the integrated variance, however, as the authors 

of those measures demonstrated, they tend to be less distorted by jumps for finite N. 
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Moreover, any of those measures can be further used to separate the effect of jump on 

quadratic variation by defining the following relationships: 

Definition 7: Jump Estimators 

𝐽𝑡
𝐵𝑃𝑉 = 𝑅𝑉𝑡

𝑅𝑉 − 𝑅𝑉𝑡
𝐵𝑃𝑉 

𝐽𝑡
𝑀𝑖𝑛𝑅𝑉 = 𝑅𝑉𝑡

𝑅𝑉 − 𝑅𝑉𝑡
𝑀𝑖𝑛𝑅𝑉 

𝐽𝑡
𝑀𝑒𝑑𝑅𝑉 = 𝑅𝑉𝑡

𝑅𝑉 − 𝑅𝑉𝑡
𝑀𝑒𝑑𝑅𝑉 

Barndoff-Nielsen and Shephard (2004) further suggest improving the consistency of 

jump estimator by imposing a non-negativity criterion: 

Definition 8: Consistent Jump Estimator 

𝐽𝑡
𝐵𝑃𝑉 =  max (0, 𝐽𝑡

𝐵𝑃𝑉) 

While this adjustment makes the estimator biased, it provides for a reconciliation with 

the intuitive understanding that jumps’ contribution should be always nonnegative. The 

above-mentioned authors found this adjusted estimator to perform significantly better 

compared to simply taking 𝐽𝑡
𝐵𝑃𝑉 = 𝑅𝑉𝑡

𝑅𝑉 − 𝑅𝑉𝑡
𝐵𝑃𝑉. Another approach in analyzing the 

effects of jumps is to use a statistical test to determine their presence and based on the 

test construct a threshold bipower variation as was done by Corsi & Reno (2009). 

However, the impact of jumps on prices is mentioned here purely for completeness of 

discussion and is not part of the analysis presented further in the thesis. 

When determining the tradeoffs between risk and returns, it is natural to consider 

the possibility that variance coming from negative returns should be priced differently 

than variance driven by positive returns. Equivalently, contemporary negative jumps 

might have different impact on both, future returns and variance compared to their 

positive counterparts. This idea was put forward by Barndorff-Nielsen et al. (2010) 

who also proposed the two realized semi-variance measures. The negative and positive 

semi-variance measures on trading day t are defined as: 
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Definition 9: Negative Semi-Variance 

𝑅𝑆𝑉𝑡
− = ∑ 𝑟𝑡,𝑖

2 |𝑟𝑡,𝑖 ≤ 0

𝑁

𝑖=1

 

 

Definition 10: Positive Semi-Variance 

𝑅𝑆𝑉𝑡
+ =  ∑ 𝑟𝑡,𝑖

2 |𝑟𝑡,𝑖 ≥ 0

𝑁

𝑖=1

 

Once again, the t denotes the trading day, so 𝑟𝑡,𝑖 is the ith high frequency return on 

day t and N is the total number of observed returns on day t. Barndorff-Nielsen et al 

(2010) found these measures to improve the performance of models trying to establish 

link between current and future variance, however this thesis follows the approach 

taken by Amaya et al (2015) in not separating the two. As in case of jumps, these 

measures are included only to provide reader with an idea on what are some of the 

possible extensions of the topic covered by the thesis and to highlight that future 

research in the field is needed.  

3.2.2 Measures of skewness 

The baseline measure of realized skewness is defined as: 

Definition 11: Realized Skewness 

𝑅𝑆𝑡
𝑅𝑉 =

√𝑁 ∑ 𝑟𝑡,𝑖
3𝑁

𝑖=1

(𝑅𝑉𝑡
𝑅𝑉)

3
2

 

and attains positive values when right tail is thicker than left tail, while being negative 

when left tail is thicker than right tail. The realized variance is used only for 

standardization. This measure has, similar to realized variance, the model free property 

and has the advantage of being additive before standardization. Thus, being based on 

2 additive measures, the realized skewness has certain appeal to empirical researches 

as once you have non-standardized realized skewness and realized variance for any 

time period, it’s very easy to obtain measures for weekly, monthly, annual or any other 

periods as well. On the other hand, regardless of its’ popularity and appeal for empirical 
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work, it has several important drawbacks that have to be understood before the measure 

can be used for research. First, for the measure to be unbiased, the skewness and 

variance have to be uncorrelated. Second, as explained in Neuberger & Payne (2018), 

this measure might not be very informative for forecasting over longer time periods, 

since the low frequency returns tend to be mostly predicted by low frequency skewness, 

however the skewness of high frequency returns does not necessarily imply skewness 

in low frequency returns. In other words, when calculating realized skewness from 5-

minute returns, you do not learn much about distribution of annual returns. Third, the 

measure is sensitive to outliers, and one extreme observation in a trading day can 

significantly affect the results. The following paragraphs discuss these issues and their 

possible remedies in more detail. 

The limiting properties of realized skewness are further discussed in Amaya et al 

(2015). As they point out, the work of Barndorff-Nielsen et al (2010) and Jacod (2012) 

yields a following result for 𝑁 → ∞: 

𝑅𝑀3 =  ∑ (𝑝𝑇𝑖
𝑁

− 𝑝𝑇(𝑖−1)
𝑁

)

3𝑁

𝑖=1

𝑝
→ ∑ (Δ𝑝𝑠)3

0<𝑠≤𝑇

 

Thus, contrary to the case of realized variance, third moment captures only jump 

contribution to cubic variation with continuous part being separated out. As Amaya et 

al (2015) stress out, the third realized moment does not capture the skewness related to 

correlation between high frequency return and low frequency return. As Neuberger & 

Payne (2018) point out, the long period skewness is mostly caused by this so-called 

leverage effect, while the contribution from skewness in high-frequency returns is 

limited as we aggregate up from high to low frequencies. The remedy to the above 

described issue proposed by Neuberger & Payne is further discussed in a separate 

section of the thesis. Another consequence of the above result is that companies with 

upward (downward) jumps have generally positive (negative) realized third moment. 

A robustness exercise undertaken by Amaya et al (2015) involves replacing the 

realized variance denominator in definition of realized skewness by the jump-robust 

estimators. Such an adjustment leads us to the following definitions: 
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Definition 12: Realized Skewness Scaled by Bipower Variation 

𝑅𝑆𝑡
𝐵𝑃𝑉 =

√𝑁 ∑ 𝑟𝑡,𝑖
3𝑁

𝑖=1

(𝑅𝑉𝑡
𝐵𝑃𝑉)

3
2

 

Definition 13: Realized Skewness Scaled by Minimum Realized Variance 

𝑅𝑆𝑡
𝑀𝑖𝑛𝑅𝑉 =

√𝑁 ∑ 𝑟𝑡,𝑖
3𝑁

𝑖=1

(𝑅𝑉𝑡
𝑀𝑖𝑛𝑅𝑉)

3
2

 

Definition 14: Realized Skewness Scaled by Median Realized Variance 

𝑅𝑆𝑡
𝑀𝑒𝑑𝑅𝑉 =

√𝑁 ∑ 𝑟𝑡,𝑖
3𝑁

𝑖=1

(𝑅𝑉𝑡
𝑀𝑒𝑑𝑅𝑉)

3
2

 

Use of the above measures in the analysis should allow us to verify whether the 

obtained results are in any way due to a specific choice of variance estimator. 

Moreover, the robust estimators of skewness should be also used in order to make 

the results robust to any outliers in the data as well as more robust to violation of our 

assumptions. It is possible to argue that while using the jump-robust variance estimator 

in the denominator, the numerator is still very sensitive to outliers in the data and thus 

a limited number of extreme observations or errors in the data can completely highjack 

the results and invalidate the entire work and hence estimators brought forth by robust 

statistics literature should be considered in order to validate the results. Furthermore, 

the robust estimators might provide us with more accurate forecasts and thus higher 

returns achieved by trading strategies built on top of the pricing models. 

Next, three robust estimators of skewness are presented and later used in an attempt 

to validate the results and potentially improve on the performance of the models. The 

first robust measure was suggested by Bowley (1920): 

Definition 15: Bowley Skewness 

𝑅𝑆𝑡
𝐵𝑜𝑤𝑙𝑒𝑦

=
(𝑄3 − 𝑄2) + (𝑄1 − 𝑄2)

𝑄3 − 𝑄1
=

𝑄3 + 𝑄1 − 2𝑄2

𝑄3 − 𝑄1
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The proposed measure is based on quartiles of the underlying distribution of high 

frequency returns, where 𝑄𝑖 stands for ith quartile of the intraday return. For symmetric 

distributions the coefficient attains value of zero. For right-skewed distributions the 

measure goes up to one, while the minimum attainable by the measure is negative one. 

The measure maintains a skewness ordering of two distributions, as is discussed by van 

Zwet (1968). One possible disadvantage of the above measure is that it does not have 

the dimensionless property and thus two distributions of data in different units of 

measurement can’t be compared using Bowley skewness. This, however, is not a 

problem here as first, the units are all the same across companies, and second, 

comparison of distributions of returns for individual companies is not necessarily the 

goal of the thesis. 

Second robust measure comes from generalization of Bowley skewness done by 

Hinkley (1975): 

Definition 16: Hinkley Skewness 

𝑅𝑆𝑡(𝛼)
𝐻𝑖𝑛𝑘𝑙𝑒𝑦 =

𝐹(−1)(1 − 𝛼) + 𝐹−1(𝛼) − 2𝑄2

𝐹−1(1 − 𝛼) − 𝐹−1(𝛼)
 

The above measure is defined for any value of alpha between 0 and 0.5. However, it is 

not clear which level should be used. Hence, Groeneveld & Meeden (1984) take the 

approach of integrating the alpha out: 

Definition 17: Groeneveld-Meeden Skewness 

𝑅𝑆𝑡
𝐺&𝑀 =

∫ (𝐹−1(1 − 𝛼) + 𝐹−1(𝛼) − 2𝑄2)
0.5

0
𝑑𝛼

∫ (𝐹−1(1 − 𝛼) − 𝐹−1(𝛼))
0.5

0
𝑑𝛼

=
𝐸[𝑟𝑡,𝑖] − 𝑄2

𝐸|𝑟𝑡,𝑖 − 𝑄2|
 

Which results in a measure that attains 0 for symmetric distribution, 1 for extremely 

right skewed and -1 for extremely left skewed distributions. As the denominator can 

be considered a dispersion measure, it is natural to consider replacing it with standard 

deviation. Such an adjustment results in the Pearson skewness due to Kendall & Stuart 

(1977): 
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Definition 18: Pearson Skewness 

𝑅𝑆𝑡
𝑃𝑒𝑎𝑟𝑠𝑜𝑛 =

𝐸[𝑟𝑡,𝑖] − 𝑄2

𝜎
=

𝜇 − 𝑄2

𝜎
 

Unlike Bowley or Groeneveld & Meeden skewness, the last measure requires the 

existence of finite second moment. Groeneveld & Meeden (1984) put forth following 

requirements on properties of skewness coefficient 𝛾, assuming random variable X to 

have continuous c.d.f. and corresponding differentiable density function 𝑓(𝑥) > 0, 𝑥 ∈

(𝑎, 𝑏);  𝑎, 𝑏 ∈ 𝑅: 

i) 𝐴 𝑠𝑐𝑎𝑙𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑐ℎ𝑎𝑛𝑔𝑒 𝑓𝑜𝑟 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑎𝑙𝑡𝑒𝑟 𝛾. 𝐼𝑛 𝑜𝑡ℎ𝑒𝑟 𝑤𝑜𝑟𝑑𝑠: 

∀𝑎 > 0, 𝑏 ∈ 𝑅 & 𝑌 = 𝑎𝑋 + 𝑏: 𝛾(𝑋) = 𝛾(𝑌) 

ii) 𝐼𝑓 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑖𝑠 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑡ℎ𝑒𝑛 𝛾 = 0 

iii) 𝑌 = −𝑋 =>  𝛾(𝑌) = −𝛾(𝑋) 

iv) 𝐿𝑒𝑡 𝐹 𝑎𝑛𝑑 𝐺 𝑏𝑒 𝑐. 𝑑. 𝑓. 𝑠 𝑓𝑜𝑟 𝑋 𝑎𝑛𝑑 𝑌 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑙𝑦 𝑎𝑛𝑑 𝐹 <𝑐 𝐺 =>

 𝛾(𝑋) ≤ 𝛾(𝑌) 

And they prove those properties are satisfied by both Bowley and Groeneveld-Meeden 

skewness. However, as has been proven by van Zwet (1968), the Pearson skewness 

coefficient does not preserve the ordering of two distributions (fails to satisfy property 

iv). For more details on robust estimators see e.g. Huber & Ronchetti (2009). 

3.2.3 Measures of Kurtosis 

In order to better understand the outliers in returns the realized kurtosis measure is 

defined by the following equation: 

Definition 19: Realized Kurtosis 

𝑅𝐾𝑡
𝑅𝑉 =

𝑁 ∑ 𝑟𝑡,𝑖
4𝑁

𝑖=1

(𝑅𝑉𝑡
𝑅𝑉)2

 

The N is used merely as a scaling factor so that the measure corresponds in scale to 

daily kurtosis, however for the results of the analysis it is inconsequential. This 

measure has again the additive property before scaling by variance and is model-free. 

On the other hand, for the kurtosis estimator to be unbiased we have to assume the 

numerator and denominator are uncorrelated. Moreover, as is explained later, the 
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additive property doesn’t mean that we can use this estimator to estimate low-

frequency kurtosis from high-frequency data. The limiting properties of the fourth 

realized moment have been analyzed in the works of Barndorff-Nielsen & Shephard 

(2004) and Jacod (2012) with the following result for 𝑁 → ∞: 

𝑅𝑀4 = ∑ (𝑝𝑇𝑖
𝑁

− 𝑝𝑇(𝑖−1)
𝑁

)

4𝑁

𝑖=1

𝑝
→ ∑ (Δ𝑝𝑠)4

0<𝑠≤𝑇

 

As in case of the third moment, only the jump component is captured, whereas the 

continuous component of quartic variation is not. As Amaya et al (2015) point out, 

variance of variance could be one of the sources for the continuous component. Similar 

to the second realized moment, only the magnitude is captured, while the sign is not. 

A natural extension thus might be negative and positive semi-kurtosis. This extension 

is, however, not examined in detail in this thesis. 

The above limits imply that realized skewness and kurtosis can’t be used to 

measure cubic and quartic variation with increasing efficiency as sampling frequency 

increases. Rather, the estimators will measure different things and achieve different 

results when sampling frequency changes. As has been shown, the measures of 

skewness and kurtosis presented here do not capture total cubic and quartic variation. 

Bakshi, Kapadia & Madan (2003) propose using options to obtain risk-neutral 

moments, an approach later taken by Neuberger (2012) or Conrad, Dittmar & Ghyseis 

(2013). Alternatively, long-period returns or a method recently proposed by Neuberger 

& Payne (2018) can be used. The later approach is briefly discussed in the subsequent 

chapter. However, it is used in the thesis as an inspiration for alternative model 

specification and the measures proposed by Neuberger & Payne are not used directly. 

Following the example of Amaya et al (2015), as in case of skewness, jump robust 

measures of realized variance are used for scaling the realized kurtosis. The three 

resulting definitions follow: 

Definition 20: Realized Kurtosis Scaled by Bipower Variation 

𝑅𝐾𝑡
𝐵𝑃𝑉 =

𝑁 ∑ 𝑟𝑡,𝑖
4𝑁

𝑖=1

(𝑅𝑉𝑡
𝐵𝑃𝑉)2
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Definition 21: Realized Kurtosis Scaled by Minimum Realized Variance 

𝑅𝐾𝑡
𝑀𝑖𝑛𝑅𝑉 =

𝑁 ∑ 𝑟𝑡,𝑖
4𝑁

𝑖=1

(𝑅𝑉𝑡
𝑀𝑖𝑛𝑅𝑉)

2 

Definition 22: Realized Kurtosis Scaled by Median Realized Variance 

𝑅𝐾𝑡
𝑀𝑒𝑑𝑅𝑉 =

𝑁 ∑ 𝑟𝑡,𝑖
4𝑁

𝑖=1

(𝑅𝑉𝑡
𝑀𝑒𝑑𝑅𝑉)

2 

In the following part of the text, two more robust measures of kurtosis are 

discussed. The first measure was proposed by Moors (1988) and uses octiles to estimate 

kurtosis. The second measure is due to Crown & Siddiqui (1967). Let 𝐸𝑖,𝑡 be the ith 

octile of intraday log returns on trading day t, then the Moors kurtosis is defined as: 

Definition 23: Moors Kurtosis 

𝑅𝐾𝑡
𝑀𝑜𝑜𝑟𝑠 =

(𝐸7,𝑡 − 𝐸5,𝑡) + (𝐸3,𝑡 − 𝐸1,𝑡)

𝐸6,𝑡 − 𝐸2,𝑡
 

The Moors’ original argument for this measure was based on following idea: if lot of 

probability mass is located near 2nd and 6th octile, then both terms in brackets in the 

numerator are small. This is in its logic similar to the kurtosis measure measuring the 

dispersion around 𝜇 ± 𝜎. The measure can be centered by subtracting 1.23. The 

denominator is a scaling constant which ensures the measure is invariant under linear 

transformations. In other words, the estimator is constant over any class of distributions 

determined by a location-scale parameter (1988). Moreover, it is more robust to 

extreme observations than the standard realized kurtosis measure. Finally, the measure 

might be valid even in cases when no moments exist. 

The last robust measure of kurtosis which is considered in this thesis is based on 

quantiles and has been used by Bonato (2011), Brys et al (2006), Schmid & Trede 

(2003), and Kim & White (2004).  Bonato attributes the origin of the measure to Crow 

& Siddiqui (1967) and in general it takes the form: 
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Definition 24: Crow & Siddiqui kurtosis – general case 

𝑅𝐾𝑡,𝛼
𝐶&𝑆 =

𝐹−1(1 − 𝛼) − 𝐹−1(𝛼)

𝐹−1(1 − 𝛽) − 𝐹−1(𝛽)
 

Various choices for alpha have been used by the above-mentioned authors. Bonato, as 

well as Kim & White, use 𝛼 = 0.025 𝑎𝑛𝑑 𝛽 = 0.25. Schmid & Trede propose choices 

of 𝛼 = 0.125 𝑎𝑛𝑑 𝛽 = 0.25 or alternatively 𝛼 = 0.025 𝑎𝑛𝑑 𝛽 = 0.125, where the 

former results in breakdown point of 12.5% whereas the later results in breakdown 

point of 2.5%. This thesis sticks to the values used by Bonato, which means the 

resulting measure is defined as:  

Definition 25: Crow & Siddiqui kurtosis 

𝑅𝐾𝑡
𝐶&𝑆 =

𝐹−1(0.975) − 𝐹−1(0.025)

𝐹−1(0.75) − 𝐹−1(0.25)
 

The measure can be centered by subtracting 2.91 from the resulting value. 

3.2.4 Neuberger & Payne measures 

The measures recently proposed by Neuberger & Payne (2018) are discussed here as 

they inspired the extended model presented in the Robustness to model specification 

section. That being said, they do not enter into the analysis directly. Moreover, it seems 

necessary to mention them as they potentially represent an important development in 

research of realized moments. These moments, according to their authors, should help 

to better estimate the low frequency moments from high frequency data. 

Neuberger and Payne (2018) argue that while we can use daily realized volatilities 

to get easily to monthly realized volatility, we cannot do the same for skewness and 

kurtosis. They claim to have found a way to use high-frequency returns to make more 

precise estimates of skewness and kurtosis compared to both, the standard and the 

robust measures. They argue that long-horizon skewness calculated from high-

frequency returns has 2 components, the skewness of short-horizon returns, and the so-

called leverage effect: the covariance of current variance and lagged returns. The long-

horizon kurtosis has 3 components: the kurtosis of high-frequency returns, the 

covariance of cubed high-frequency returns and lagged returns, and what the authors 
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call the GARCH effect: the covariance of squared high-frequency returns and lagged 

squared returns. 

They found that 1) low-frequency skewness and kurtosis are mainly determined by 

the leverage and GARCH effects, while skewness and kurtosis of high-frequency 

returns has only marginal impact, 2) monthly skewness can be used to forecast US 

index returns at both, monthly and annual frequencies. 

The definitions proposed by Neuberger & Payne are much more complex compared 

to the usual realized moments measures. The measures use standard returns instead of 

log return, and all definitions necessary to calculate the measures follow: 

Definition 26: Low-frequency realized measures proposed by Neuberger & 

Payne 

𝑟𝑡 =
𝑃𝑡

𝑃𝑡−1
 , ℎ𝑖𝑔ℎ − 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑟𝑒𝑡𝑢𝑟𝑛, 𝑎𝑛𝑑 𝑅𝑡 =

𝑃𝑡

𝑃𝑡−𝑇
, 𝑙𝑜𝑤 − 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑟𝑒𝑡𝑢𝑟𝑛; 

𝑣𝑎𝑟𝐿[𝑟] ≔ 𝐸[𝑥(2,𝐿)(𝑟)], 𝑤ℎ𝑒𝑟𝑒 𝑥(2,𝐿)(𝑟) ≔ 2 ∗ (𝑟 − 1 − ln(𝑟)); 

𝑣𝑎𝑟𝐸[𝑟] ≔ 𝐸[𝑥(2,𝐸)(𝑟)], 𝑤ℎ𝑒𝑟𝑒 𝑥(2,𝐸)(𝑟) ≔ 2 ∗ (𝑟 ∗ 𝑙𝑛(𝑟) + 1 − 𝑟); 

𝑥(3)(𝑟) ≔ 6 ∗ ((𝑟 + 1) ∗ ln(𝑟) − 2 ∗ (𝑟 − 1)); 

𝑥(4)(𝑟) ≔ 12 ∗ ((ln(𝑟))2 + 2 ∗ (𝑟 + 2) ∗ ln(𝑟) − 6 ∗ (𝑟 − 1)); 

𝑦𝑡−1 ≔ ∑

𝑃𝑡−1

𝑃𝑡−𝑢
− 1

𝑇
,   𝑎𝑛 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑒𝑡𝑢𝑟𝑛 𝑜𝑣𝑒𝑟 𝑡ℎ𝑒 𝑝𝑒𝑟𝑖𝑜𝑑

𝑇

𝑢=1

; 

𝑧𝑡−1 ≔ ∑ 2 ∗

𝑃𝑡−1

𝑃𝑡−𝑢
− 1 − ln (

𝑃𝑡−1

𝑃𝑡−𝑢
)

𝑇

𝑇

𝑢=1

; 

𝑟𝑥𝑡,𝑤
(2,𝐿)

≔ ∑ 𝑥(2,𝐿)(𝑟𝑠), 𝑡ℎ𝑒 𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑣𝑒𝑟 𝑎 𝑝𝑒𝑟𝑖𝑜𝑑 (𝑡, 𝑤);

𝑤

𝑠=𝑡+1

 

𝑟𝑥𝑡,𝑤
(3)

≔ ∑ 𝑥(3)(𝑟𝑠) + 3 ∗ 𝑦𝑠−1 ∗ 𝑥(2,𝐸)(𝑟𝑠),

𝑤

𝑠=𝑡+1

𝑡ℎ𝑒 𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑 3𝑟𝑑 𝑚𝑜𝑚𝑒𝑛𝑡 𝑜𝑣𝑒𝑟 (𝑡, 𝑤); 

𝑟𝑥𝑡,𝑤
(4)

≔ ∑ 𝑥(4)(𝑟𝑠) + 4 ∗ (𝑦𝑠−1 ∗ 𝑥(3)(𝑟𝑠) + 6 ∗ 𝑧𝑠−1 ∗ 𝑥(2,𝐿)(𝑟𝑠),

𝑤

𝑠=𝑡+1

𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑 4𝑡ℎ 𝑚𝑜𝑚𝑒𝑛𝑡; 
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As long as P is a martingale process, the average conditional moments of long-

horizon returns can be estimated by scaling the daily returns by T/(w-t). As Neuberger 

& Payne (2018) point out, while T is explicitly used as a scaling factor, it is also 

included in the definitions of y and z; the low-frequency third and fourth moments 

depend on covariances of high-frequency variance and skewness with returns and 

variances over the long period. 

That being said, it seems reasonable to ask whether it is not easier to use lower 

frequency data to calculate the long-horizon moments. The answer obviously depends 

on whether we can extract comparable quality information about long-horizon 

skewness and kurtosis from daily, monthly or annual returns. Moreover, these 

measures, when calculated from high frequency returns (e.g. 5-minute frequency), are 

significantly more computationally expensive compared to the standard measures. For 

large datasets including several years of data and many firms, it might be better to use 

a database system to calculate these measures. Furthermore, it’s yet to be seen how the 

above measures perform for thick-tailed distributions or outliers in the data. Sadly, it’s 

beyond the scope of my thesis to answer these questions. 

As mentioned above, these measures are not explicitly used in the thesis, however 

they do inspire an alternative model specification presented in the Robustness to model 

specification chapter. Based on research of Neuberger & Payne (2018), this thesis 

explores the use of interaction term between variance and kurtosis, skewness and log 

return, and variance and log return in the model specification. 

3.3 The models 

Once calculated, the above measures are subsequently used in the model estimation. 

As the main purpose of this thesis is to determine the usefulness of realized moments 

in time series analysis, a separate estimation is done for each of the 29 companies. In 

other words, the goal is to use one model specification for all companies and enable 

estimation from data for a single company. On top of using various estimators, several 

model specifications are used in order to: 1) determine whether each of the realized 

moments contributes positively to the performance of the model, 2) establish whether 

extending the model by interaction terms in order to account for the factors such as 

covariance between return and variance, or skewness and return, or variance and 

kurtosis does improve the out of sample performance or significantly changes the 
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estimated coefficients. Moreover, the models are tested against a benchmark model – 

AR1 – as well as against the strategy of passively holding a long position in the entire 

portfolio of stocks. 

The estimated models can be split into three categories: 1) Models using standard 

realized moments estimators and their jump-robust versions, 2) Models using skewness 

and kurtosis estimators proposed by the robust statistics literature, and 3) Restricted 

and Extended models. 

3.3.1 The core model & benchmark 

Next, let’s discuss the individual model specifications in more detail. This subchapter 

covers the models using the standard realized moments estimators and their jump-

robust versions. Let 𝑟𝑖,𝑡 be the return on stock of company i on day t, then assume the 

price of company i is determined by the following equation 𝑓𝑜𝑟 ∀ 𝑖 =  1, … , 29: 

 𝑟𝑖,𝑡+1 =  𝛼𝑖,0
(𝑀)

+ 𝛼𝑖,1
(𝑀)

∗ 𝑟𝑖,𝑡 + 𝛼𝑖,2
(𝑀)

∗ 𝑅𝑉𝑖,𝑡
(𝑀)

+

                𝛼𝑖,3
(𝑀)

∗ 𝑅𝑆𝑖,𝑡
(𝑀)

+ 𝛼𝑖,4
(𝑀)

∗ 𝑅𝐾𝑖,𝑡
(𝑀)

+ 𝜖𝑖,𝑡+1
(𝑀)

  
(3.1) 

Where 𝑀 ∈ {𝑅𝑉, 𝐵𝑃𝑉, 𝑀𝑖𝑛𝑅𝑉, 𝑀𝑒𝑑𝑅𝑉} and  𝑅𝑉𝑖,𝑡
𝑅𝑉, … , 𝑅𝑉𝑖,𝑡

𝑀𝑒𝑑𝑅𝑉 correspond to the 

realized volatility estimators presented in definition 3 to definition 6, while 

𝑅𝑆𝑖,𝑡
𝑅𝑉, … , 𝑅𝑆𝑖,𝑡

𝑀𝑒𝑑𝑅𝑉 are realized skewness estimators defined in definition 11 to 

definition 14, and finally 𝑅𝐾𝑖,𝑡
𝑅𝑉, … , 𝑅𝐾𝑖,𝑡

𝑀𝑒𝑑𝑅𝑉 are realized kurtosis estimators covered 

by definition 19 to definition 22 as presented in the chapter on measure definitions. 

Upon the estimation of this model, we get 𝑓𝑜𝑟 ∀ 𝑖, 𝑀 the following column vector 

of the coefficients: 𝜃𝑖
(𝑀)

= (𝛼𝑖,0
(𝑀)

, 𝛼𝑖,1
(𝑀)

, 𝛼𝑖,2
(𝑀)

, 𝛼𝑖,3
(𝑀)

, 𝛼𝑖,4
(𝑀)

)
𝑇

. From those vectors, a 

following matrix is constructed: 𝜃(𝑀) = (𝜃1
(𝑀)

, … , 𝜃29
(𝑀)

). Thus, for each measure 

definition given by M we get a matrix 𝜃𝑀 which stores the coefficients for each of the 

companies. Throughout the results section Model 𝜃𝑀 is used to talk about what is in 

fact a set of N time series models. 

Since the performance of the model on the testing set of data is taken as the most 

important determinant of the quality of the model, some benchmarking in needed. This 

is done in two ways: 1) the model is compared to AR1 model on set of metrics outlined 
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in the following chapter, 2) the performance is compared to a passive investment 

scenario where the investor buys all stocks at the beginning of the testing period and 

sells them at the end. In the above specification of the model, this thesis deviates from 

the approach frequently taken in the literature, and from that of Amaya et al. (2015), 

by including the lagged return. The impact of decision to include or exclude this term 

is examined in more detail in the Robustness to model specification section. 

For each company i the benchmark AR1 model is defined as: 

 𝑟𝑖,𝑡+1 =  𝛼𝑖,0 +  𝛼𝑖,1 ∗ 𝑟𝑖,𝑡 + 𝜖𝑖,𝑡+1 (3.2) 

The reasoning for the choice of AR1 as the benchmark model is fivefold: 1) it is 

well established in the quantitative finance literature and is used as benchmark in other 

empirical work, 2) it is fantastic in its’ simplicity, 3) it performs relatively well in terms 

of deviations, 4) it fits the narrative that returns tend to be negatively correlated, 5) it 

is a nested model of the 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉, as it merely imposes the restriction: 𝛼𝑖,2 = 𝛼𝑖,3 =

𝛼𝑖,4 = 0. 

3.3.2 The models with robust estimators of skewness and kurtosis 

Second set of models uses the robust estimators of skewness and kurtosis, together with 

Median Realized Variance when pricing the risk. As before, we have a model for each 

company i. In the general form the model can be written as follows: 𝑓𝑜𝑟 ∀ 𝑖 =

 1, … , 29: 

 𝑟𝑖,𝑡+1 =  𝛼𝑖,0
(𝑀,𝑃)

+ 𝛼𝑖,1
(𝑀,𝑃)

∗ 𝑟𝑖,𝑡 + 𝛼𝑖,2
(𝑀,𝑃)

∗ 𝑅𝑉𝑖,𝑡
𝑀𝑒𝑑𝑅𝑉 +

                𝛼𝑖,3
(𝑀,𝑃)

∗ 𝑅𝑆𝑖,𝑡
(𝑀)

+ 𝛼𝑖,4
(𝑀,𝑃)

∗ 𝑅𝐾𝑖,𝑡
(𝑃)

+ 𝜖𝑖,𝑡+1
(𝑀,𝑃)

  
(3.3) 

Where 𝑀 ∈ {𝐵𝑜𝑤𝑙𝑒𝑦, 𝐺&𝑀, 𝑃𝑒𝑎𝑟𝑠𝑜𝑛} and 𝑃 ∈ {𝑀𝑜𝑜𝑟𝑠, 𝐶&𝑆}. 

𝑅𝑆𝑖,𝑡
𝐵𝑜𝑤𝑙𝑒𝑦

, … , 𝑅𝑆𝑖,𝑡
𝑃𝑒𝑎𝑟𝑠𝑜𝑛refer to the robust skewness estimators defined in definition 

15, definition 17 and definition 18. 𝑅𝐾𝑖,𝑡
𝑀𝑜𝑜𝑟𝑠 𝑎𝑛𝑑 𝑅𝐾𝑖,𝑡

𝐶&𝑆 refer to robust kurtosis 

estimators proposed by Moors and Crow & Siddiqui respectively, they are presented 

above in definition 23 and definition 25. 
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Thus, 𝑓𝑜𝑟 ∀ 𝑖, 𝑀, 𝑃 we get a column vector of the coefficients: 𝜃𝑖
(𝑀,𝑃)

=

(𝛼𝑖,0
(𝑀,𝑃)

, 𝛼𝑖,1
(𝑀,𝑃)

, 𝛼𝑖,2
(𝑀,𝑃)

, 𝛼𝑖,3
(𝑀,𝑃)

, 𝛼𝑖,4
(𝑀,𝑃)

)
𝑇

. From those vectors, a following matrix is 

constructed: 𝜃(𝑀,𝑃) = (𝜃1
(𝑀,𝑃)

, … , 𝜃29
(𝑀,𝑃)

). As we have 29 companies, 3 robust 

estimators of skewness and 2 robust estimators of kurtosis, the total number of 

estimated models is actually equal to 29*3*2, however, one specification is usually 

evaluated for all 29 companies at once, which makes the amount of information 

presented more comprehensible. As before, throughout the results section, for each 

combination of M and P, the resulting set of 29 time series models will be addressed 

as Model 𝜃(𝑀,𝑃). Let’s now move on to the sets of extended and restricted models. 

3.3.3 The extended and restricted models 

The analysis of the alternative model specifications can be seen as the most important 

part of the thesis as it sheds light on whether the specification used by Amaya et al 

(2015) is the right one. The specifications described in this section can be split into two 

groups: restricted versions of model described by (3.1) with M = RV and extended 

versions of model described by (3.1) with M = RV. The restricted models answer a 

question what is the cost of omission of individual variables and what is the impact on 

the estimates. As is discussed in the corresponding results chapter, decision whether 

lagged return should be included is particularly consequential. The extended models 

aim to explore the possibility of accounting for leverage and GARCH effects, as 

detailed in Neuberger & Payne (2018), with the use of realized moments estimated 

from high frequency log returns. In this section, the analysis relies solely on the 

standard estimators of realized moments. Neither jump-robust estimators of variance, 

nor robust skewness and kurtosis estimators are used. 

The main purpose of the restricted models is to verify whether a particular sign of 

coefficient estimate on one of the variables could be due to inclusion or omission of a 

particular variable. The question could be: is the different sign of the skewness 

coefficient, compared to Amaya et al (2015), due inclusion of the lagged return variable 

in the model specification? Similarly, omission of the realized moments serves the 

purpose of verifying whether we wouldn’t be better off without one of them. 
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These extended models are inspired by the frequent critique that the estimators of 

realized moments based on log returns do not account for the leverage and GARCH 

effects when estimating the skewness and kurtosis. Based on the Neuberger & Payne 

(2018) paper, this thesis uses the interaction terms between kurtosis & variance (where 

the variance contains the low-frequency information), skewness and log return (where 

log return also captures some of the low-frequency properties), and variance and log 

return. Since the thesis uses different measure definitions compared to Neuberger & 

Payne, it is necessary to verify the contribution of the interaction terms empirically. 

Let’s once again have a general form of the model for each company and 

combinations of variables. Let 𝐵 = (𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5, 𝑏6, 𝑏7), where 𝑏1, … , 𝑏7 ∈ {0,1}. 

Then, as before,  𝑓𝑜𝑟 ∀ 𝑖 =  1, … , 29: 

 𝑟𝑖,𝑡+1 = 𝛼𝑖,0
(𝐵)

+ 𝛼𝑖,1
(𝐵)

∗ 𝑏1 ∗ 𝑟𝑖,𝑡 + 𝛼𝑖,2
(𝐵)

∗ 𝑏2 ∗ 𝑅𝑉𝑖,𝑡
𝑅𝑉 +

                𝛼𝑖,3
(𝐵)

∗ 𝑏3 ∗ 𝑅𝑆𝑖,𝑡
𝑅𝑉 + 𝛼𝑖,4

(𝐵)
∗ 𝑏4 ∗ 𝑅𝐾𝑖,𝑡

𝑅𝑉 +

                𝛼𝑖,5
(𝐵)

∗ 𝑏5 ∗ 𝑅𝑉𝑖,𝑡
𝑅𝑉 ∗ 𝑅𝐾𝑖,𝑡

𝑅𝑉 +  𝛼𝑖,6
(𝐵)

∗ 𝑏6 ∗ 𝑅𝑆𝑖,𝑡
𝑅𝑉 ∗ 𝑟𝑖,𝑡 +

                𝛼𝑖,7
(𝐵)

∗ 𝑏7 ∗ 𝑅𝑉𝑖,𝑡
𝑅𝑉 ∗ 𝑟𝑖,𝑡 + 𝜖𝑖,𝑡+1

(𝐵)
  

(3.4) 

Thus, 𝑓𝑜𝑟 ∀ 𝑖, 𝐵 we get a column vector of the coefficients: 

𝜃𝑖
(𝐵)

= (𝛼𝑖,0
(𝐵)

, 𝛼𝑖,1
(𝐵)

, 𝛼𝑖,2
(𝐵)

, 𝛼𝑖,3
(𝐵)

, 𝛼𝑖,4
(𝐵)

, 𝛼𝑖,5
(𝐵)

, 𝛼𝑖,6
(𝐵)

, 𝛼𝑖,7
(𝐵)

)
𝑇

.  

From those vectors, a following matrix is constructed: 𝜃(𝐵) = (𝜃1
(𝐵)

, … , 𝜃29
(𝐵)

). As 

before, in the results section the naming convention Model 𝜃(𝐵) is used when results 

for the above model are discussed. To give reader a better understanding how the 

notation works, let’s look at some examples: The set of N models (one for each 

company) with lagged return, variance, skewness and kurtosis, but no interaction 

terms, would be called Model 𝜃(1,1,1,1,0,0,0), while set of models including lagged return 

and all  3 interaction terms, but no realized variance, skewness and kurtosis on their 

own, would be called Model 𝜃(1,0,0,0,1,1,1). 

3.3.4 The coefficient averages and medians 

Furthermore, this thesis looks at whether the companies can be priced using an 

aggregation of the coefficients from the individual models. In ideal world, the 

coefficients wouldn’t be too different for different companies and thus a pricing done 
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using, say, average of the coefficients from the N models should perform relatively 

well. For this reason, row-wise mean and median of matrices 𝜃(𝑀), 𝜃(𝑀,𝑃) and 𝜃(𝐵) are 

calculated. When presenting the predictive performance and summary statistics of the 

coeficient averages and medians, the following notation is used: 𝜃(𝑀), 𝜃(𝑀,𝑃) and 𝜃(𝐵) 

for the row-wise means, and matrices 𝜃(𝑀)̃, 𝜃(𝑀,𝑃)̃  and 𝜃(𝐵)̃ for the row-wise medians.  

This wraps up all the models whose behavior is examined throughout the thesis. 

The methods for model evaluation are discussed next. 

3.4 The evaluation criteria 

This chapter outlines the evaluation criteria for the models. In this thesis, the models’ 

performance on the test set is considered to be a crucial indicator of the model’s quality. 

The test set for each company contains trading dates from 17th July 2013 to the 31st of 

December 2015. This translates into over 600 observations for each of the 29 

companies. All models are evaluated and compared on the set of metrics calculated 

from the test set residuals. Furthermore, it is examined whether, in terms of predicting 

the sign of future return, the models are significantly better compared to random 

guessing. Moreover, the returns achievable by making short-term trades based on the 

information provided by the models are studied. The returns achievable by trading 

based on the model recommendation are perhaps the most important criterion in 

determining the quality of the model. In order to fully evaluate the models, it is 

necessary to establish a benchmark. This thesis considers two benchmarks. One of 

them is the AR1 model presented in the previous chapter, the other one is a strategy of 

investing into an equally weighted portfolio of all stocks and passively holding it 

throughout the entire period covered by the test set.  

3.4.1 Metrics based on forecast residuals 

First, the models are compared based on out of sample prediction errors. Three metrics 

are used for this purpose. Perhaps the most famous and frequently used is the root mean 

squared error: 
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Definition 27: Root mean squared error 

𝑅𝑀𝑆𝐸𝑖 = √∑ (𝑟𝑖,𝑡 − 𝑟𝑖,𝑡̂)
2𝑁

𝑡=1

𝑁
 

Where 𝑟𝑖,𝑡̂ is the predicted log return for company i at time t and N is the number of 

test set observations for company i. While frequently used in the literature, the above 

statistic is known to be strongly affected by any large outliers in the data. Thus, it might 

easily happen that a model which would permanently predict 0 returns would be 

considered superior to a model which fits the returns well overall, but produces couple 

of large prediction errors. Therefore, two other statistics are used in order to measure 

the deviations. These put equal weight on large and small errors and are defined as: 

Definition 28: Mean absolute deviation 

𝑀𝑒𝑎𝑛𝐴𝐷𝑖 =
∑ |𝑟𝑖,𝑡 − 𝑟𝑖,𝑡̂|𝑁

𝑡=1

𝑁
 

Definition 29: Median absolute deviation 

𝑀𝑒𝑑𝑖𝑎𝑛𝐴𝐷𝑖 = 𝑀𝑒𝑑𝑖𝑎𝑛|𝑟𝑖,𝑡 − 𝑟𝑖,𝑡̂| 

 

The first two measures are closely tied to a Diebold-Mariano test for comparing the 

accuracy of two non-nested models. While once can consult Diebold and Mariano 

(1995) for exact details, intuitively, for company i, the test works as follows: Let’s have 

a loss differential of two returns forecasts for company i given by: 

𝑑𝑖,𝑡 = 𝑔(𝑒1,𝑖,𝑡) − 𝑔(𝑒2,𝑖,𝑡) 

Where g(.) is the error function satisfying following criteria:  

1) 𝑔(. ) = 0 𝑤ℎ𝑒𝑛 𝑛𝑜 𝑒𝑟𝑟𝑜𝑟 𝑖𝑠 𝑚𝑎𝑑𝑒 

2) ∀𝑒: 𝑔(𝑒) ≥ 0 

3) 𝑔(. ) 𝑖𝑠 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑖𝑛 |𝑒| 
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Then the models have the same accuracy if and only if for ∀𝑡: 𝐸[𝑑𝑖,𝑡] = 0. Therefore, 

we would like to test: 

𝐻0: ∀𝑡: 𝐸[𝑑𝑖,𝑡] = 0 

𝐻1: ∃𝑡: 𝐸[𝑑𝑖,𝑡] ≠ 0 

Let: 

𝑑𝑖̅ =
∑ 𝑑𝑖,𝑡

𝑇
𝑡=1

𝑇
  

𝛾𝑑𝑖
(𝑘) =

1

𝑇
∑ (𝑑𝑖,𝑡 −  𝑑𝑖̅) ∗ (𝑑𝑖,𝑡−|𝑘| − 𝑑𝑖̅)

𝑇

𝑡=|𝑘|+1

 

 𝑀 = 𝑇
1
3 

Then the DM statistic is defined as: 

Definition 30: Diebold-Mariano test statistic 

𝐷𝑀 =
𝑑̅

√∑
𝛾𝑑𝑖̂

(𝑘)

𝑇
𝑀
𝑘=−𝑀

 

and under the null hypothesis it asymptotically follows standard normal distribution. 

In the Robustness to model specification chapter of the results section, the Diebold-

Mariano test is applied to the out of sample predictions for each of the 29 stocks. The 

accuracy measures are analyzed for individual companies as well the entire dataset 

together. 

However, as this thesis demonstrates in the following paragraphs, looking at the 

size of the residuals doesn’t seem to suffice for analysis of the realized moments and 

models leveraging them. For this reason, models’ ability to forecast the sign of future 

returns is also presented. The accuracy of the model for company I can be defined as: 
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Definition 31: Sign accuracy 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖 =
∑ (𝑠𝑖𝑔𝑛(𝑟𝑖,𝑡) == 𝑠𝑖𝑔𝑛(𝑁

𝑡=1 𝑟𝑖,𝑡̂))

𝑁
 

Moreover, this thesis also presents the true positive, true negative, false positive and 

false negative measures and statistics derived from them, such as precision, negative 

predictive value, sensitivity and specificity. 

3.4.2 The returns achievable by trading 

The most important measurement of model quality, presented in this thesis, is perhaps 

the return achievable by relying on information from the model. For this purpose, two 

trading strategies are designed. First strategy relies on buying stocks in the top quintile 

of forecasted returns. More specifically, on day t, predictions for the returns on stock 

of individual companies at time 𝑡 + 1 are made. These predicted returns are then sorted 

and a trading agent chooses to buy all stocks with predicted return in the top quintile. 

By assumption, equal weighting of assets is used in constructing the portfolio. The 

second strategy focuses on buying any stocks with positive predicted return. Thus-

achieved daily returns are subsequently summarized using mean over the entire period, 

quartiles, variance, skewness and kurtosis. The minimum requirement for the models 

is to beat the AR1 model on expected return. Moreover, the model should be able to 

beat a passive strategy of holding stocks over the entire time period covered by the test 

set. Despite the transaction costs of active trading it is possible to beat the market return 

as long as the expected return from the strategy based on the model exceeds the market 

return and the trading agent’s scale is sufficiently large. This is implied by the fixed 

transaction costs faced by small agents. In practice, larger entities should be able to 

extract significantly more favorable terms. 

 

 



Results  31 

4 Results 

This chapter of the thesis summarizes the empirical results of the research. It is divided 

into two sections: 1) Analysis using standard realized measures as given by definitions 

3,11 and 19, 2) Robustness analysis. In the first section, the main focus is on the 

analysis of Model 𝜃𝑅𝑉, its’ performance, comparison with the AR1 benchmark model 

and discussion of the relation to the results achieved by Amaya et al (2015) and other 

researchers. The robustness analysis has 4 subchapters which discuss the following 

topics: jump-robust estimators of realized moments; model averaging; estimators 

proposed by the robust statistics literature; robustness to model specification.  

4.1 Standard realized measures 

Let’s start with examining how realized variance, skewness and kurtosis can be used 

to significantly improve the performance of a pricing model. First, a benchmark AR1 

model is estimated and its’ properties explored. Using this benchmark, the performance 

of the Model 𝜃𝑅𝑉 is analyzed. It is found that the Model 𝜃𝑅𝑉 significantly outperforms 

random guessing in determining whether future returns will be positive or not. 

Moreover, use of realized variance, skewness and kurtosis allows a trading agent to 

achieve higher returns compared to passively holding stocks or relying on information 

from the AR1 model. However, the predictions from Model 𝜃𝑅𝑉 were found to 

occasionally overshoot the actual returns and as a result the model is not able to 

outperform AR1 in terms of accuracy measures such as RMSE or MAD. Throughout 

the next several paragraphs, the results for the benchmarking model and Model 𝜃𝑅𝑉 

are discussed. 

4.1.1 The benchmark 

Let’s start by reviewing the performance of the benchmark model. Out of several 

simple options – AR, MA, ARMA, model with just an intercept, 0 forecast, historical 

average, … - AR has been chosen as the best performing benchmark case. 

The Figure 1 presented below shows for each of the 29 companies the approximate 

95% confidence interval for the coefficient on lagged returns as estimated by the AR1 
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Model. The estimates are based on a training set spanning the period from 1st of July 

2005 to 15th of July 2013. In creation of the confidence interval, the heteroskedasticity 

and autocorrelation robust standard error have been used (HAC sandwich estimator is 

used, the theoretical details can be found in Zeileis (2004) and the R implementation 

used in this thesis is detailed in Zeileis (2006)). The coefficient is estimated to be 

negative most of the time, and for 8 of the companies the robust 95% confidence 

interval doesn’t straddle the 0 mark. While for 3 of the companies the point estimate is 

positive, it is not significantly different from 0. Thus, we can see that the AR1 model 

is relatively consistent in its’ estimates and the estimated relation is negative. Thanks 

to this consistency, the AR1 model seems to be a good starting point for modelling the 

returns of individual companies. The estimated coefficients are moreover summarized 

in a boxplot in Figure 2 below. The overall summary statistics for this model are 

presented in Table 26Models AR1 and 𝜃(𝑀) in the Appendix. 

The three companies for which AR1 has the unexpected sign of the first AR coefficient 

are: Citigroup (ticker C), IBM, and Home Depot (ticker HD). It is worth noting that 

Citigroup stock price fell from over $500 in 2007, to less than $30 in 2009, this steep 

drop lasting several months is likely to have influenced the estimate. 

 

Figure 1: Estimated coefficients for lagged returns in the AR1 model 
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Figure 2: Boxplot of estimated coefficients for lagged returns in the AR1 model 

While the AR1 model is relatively consistent across the individual stocks in terms 

of the estimated coefficient, more interesting is the evaluation of the model 

performance on the test set. The summary statistics for the model performance are 

presented in Table 1 below. As can be seen from the RMSE, as well as mean and 

median absolute deviations, in terms of prediction errors Amazon (ticker AMZN) is 

the company for which the model performs the worst. However, this does not mean 

that Amazon is also the company for which the predicted sign is most frequently 

wrong. It turns out, that the relatively naïve prediction for Amazon (positive return no 

matter what) is actually correct 50.5% of the time. Similarly, for Verizon (ticker VZ), 

where the model prediction is 7th and 8th best in terms of RMSE and mean absolute 

deviation respectively, the accuracy of the predicted sign is only 47.7%. Moreover, it 

can be seen that for Citigroup, the overall accuracy of predictions is 52.2%, while not 

a single positive return has been identified. This analysis suggest that we can’t simply 

look at statistical summary of the estimation when evaluating a model. As it has been 

shown, the summary can tell one story when we look at coefficient estimates on the 

training set, another story about model quality can be told by RMSE or accuracy in 

predicting the sign of the future returns. Equivalently, a Diebold-Mariano test focusing 

on comparison prediction errors of two non-nested models is not sufficient for a full 

analysis of model quality. Therefore, one needs to look at economic factors as well. 
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The economic part of the analysis should be tackled by the evaluation of the two trading 

strategies outlined in the Methodology chapter. 

Table 1 

Main Summary of AR1 individual stocks predictive power on test set 

         

Company RMSE 

Mean 

absolute 

deviation 

Median 

Absolute 

Deviation Accuracy 

True 

Positive 

True 

Negative 

False 

Negative 

False 

Positive 

AAPL 0.0123 0.0093 0.0075 0.514 103 212 199 99 

AMZN 0.0140 0.0107 0.0085 0.505 310 0 0 304 

BAC 0.0111 0.0084 0.0063 0.531 16 305 271 13 

C 0.0107 0.0082 0.0065 0.522 0 318 291 0 

CMCSA 0.0108 0.0080 0.0060 0.493 250 52 64 246 

CSCO 0.0096 0.0073 0.0062 0.483 89 204 237 77 

CVX 0.0112 0.0080 0.0060 0.476 176 116 122 199 

DIS 0.0095 0.0070 0.0053 0.511 310 2 0 298 

GE 0.0094 0.0069 0.0053 0.496 18 283 289 17 

HD 0.0097 0.0072 0.0055 0.516 298 18 20 276 

IBM 0.0090 0.0068 0.0054 0.500 306 0 1 305 

INTC 0.0113 0.0083 0.0065 0.500 117 184 197 104 

JNJ 0.0080 0.0060 0.0046 0.480 143 150 177 141 

JPM 0.0098 0.0073 0.0055 0.480 169 125 156 163 

KO 0.0072 0.0055 0.0042 0.507 184 124 135 164 

MCD 0.0076 0.0055 0.0040 0.501 305 1 3 302 

MRK 0.0103 0.0073 0.0053 0.492 167 132 122 187 

MSFT 0.0113 0.0084 0.0065 0.481 123 170 198 118 

ORCL 0.0100 0.0075 0.0056 0.515 262 51 56 239 

PEP 0.0073 0.0056 0.0044 0.507 301 8 5 296 

PFE 0.0092 0.0070 0.0057 0.526 33 286 256 31 

PG 0.0073 0.0055 0.0043 0.493 270 30 33 275 

QCOM 0.0111 0.0080 0.0060 0.485 135 162 205 111 

SLB 0.0124 0.0093 0.0073 0.527 121 201 184 105 

T 0.0079 0.0059 0.0046 0.509 29 280 272 26 

VZ 0.0081 0.0062 0.0047 0.477 25 265 289 29 

WFC 0.0084 0.0061 0.0048 0.497 169 132 133 172 

WMT 0.0087 0.0058 0.0043 0.511 175 137 121 177 

XOM 0.0093 0.0069 0.0053 0.516 217 99 85 211 

  

Next, let’s look at the overall performance of the model across the 29 companies. 

The results are summarized in Table 2. It turns out the AR1, while having relatively 

low RMSE and MAD, achieves just over 50% overall accuracy in predicting the sign 

of future returns. It turns out that one can achieve comparable or better accuracy by 
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random guessing and sheer luck. The odds that given level of accuracy in forecasting 

the sign of future returns has been achieved by random guessing are summarized in 

Table 25 provided in the Appendix. Moreover, for just 15 of the stocks the model 

achieves accuracy which is strictly greater than 50%, leaving the remaining 14 

companies with accuracy of 50% or lower. This doesn’t seem as much of an 

achievement regardless of the actual size of the prediction errors. More prediction 

accuracy statistics are reported in the Table 27 in the Appendix. Table 27, among others 

indicate that when the model says the return will be positive, it is actually correct 51% 

of the time. This is better than always expecting a positive return, because the share of 

positive returns on all observations is 50.6%. 

Table 2 

Aggregate Summary of AR1 performance on test set 

      

Model RMSE 

Mean 

Absolute 

Deviation 

Median 

Absolute 

Deviation Accuracy 

Accuracy 

over 50 

AR1 0.0097 0.0072 0.0056 0.5018 15 

* For ratios, the metric average over all 29 stocks is used  

 

As a next step of the analysis, the use of the predictions from AR1 in stock trading 

is presented. Instead of pinning down all future stock returns, investor might be 

interested in buying (selling) only stocks which the model identifies as the ones with 

highest (lowest) expected future return. As described in The returns achievable by 

trading chapter, two scenarios are considered: 1) for every day in the test set, make day 

ahead predictions for all of the stocks and select those with predicted return in the 

highest quartile. Subsequently, calculate the daily means of their returns; 2) again make 

day ahead predictions for every stock in the test set, but this time select those with 

positive predicted return. Then calculate daily means of their returns. The model that 

can identify stocks with better returns is deemed superior. The basic requirement for a 

quality model is that it can outperform the returns from holding all stocks for the entire 

time period covered by the test set. The results of this analysis are summarized in Table 

3. 

Let’s start by reviewing the results for the top quartile trading strategy. Trading 

stocks within the highest quartile of predicted daily returns yields better results 



Results  36 

compared to investing in all 29 stocks present in the test set. Thus, the AR1 model 

should provide a decent benchmark for the pricing models leveraging realized variance, 

skewness and kurtosis when evaluating the economic criteria. The return achieved by 

this strategy is higher in 51.6% of cases, which translates to AR1 based strategy 

focusing on the top quartile achieving higher returns in 317 days out of 614 in the test 

set. Of course, the frequent trading comes with significant costs and thus the strategy 

is profitable only if the trading agent reaches a critical scale of operations. The returns 

from the top quartile strategy have variance higher by 32%, on the other hand, they are 

also less negatively skewed and have lower kurtosis. This translates to less negative 

returns and less extreme events. It is rather interesting that variance is higher for the 

AR1 strategy while kurtosis is much lower, as both of these measures can be interpreted 

as measures of risk. 

However, if we wanted to buy stocks based on whether the predicted return is 

positive or not, the mean return over the entire period would have been comparable to 

buying all stocks at the beginning of the test period. On top of the lower returns, this 

strategy also yields variance of returns comparable to the quartile-based strategy, with 

negative skew and kurtosis going up. Additionally, the strategy based on positive 

predictions is beaten by 29 stocks strategy in 315 out of 615 days. 

Table 3 

Comparison of means of log returns from AR1 Top Quartile (TQ) and Positive Predictions 

(PP) strategies 

       

 Min. 1st Qu. Median Mean 3rd Qu. Max. 

AR1 TQ -0.045774 -0.003744 0.00028 0.000202 0.004366 0.040566 

𝐴𝑅1 -0.041756 -0.003279 0.00036 0.000146 0.003599 0.033092 

29 Stocks -0.045669 -0.003211 0.00046 0.000130 0.003537 0.033694 

       

  Variance 

Pearson 

skewness 

Moors 

kurtosis   
AR1 TQ   0.000051 -0.034566 6.992001     

AR1 PP 0.000048 -0.112896 7.314694   
29 Stocks   0.000039 -0.160277 8.700782     

 

In this section, it has been shown that AR1 model provides a reasonable benchmark for 

the RMSE and MAD statistics, however it is not able to clearly outperform random 
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guessing in identification of the sign of future returns. Moreover, when the AR1 model 

identify a stock as one with return in the top quartile, the stock usually ends up 

providing relatively good return compared to the overall market. However, related to 

its’ inability to beat random guessing in identifying the sign of all returns is a fact that 

one isn’t worse off passively holding the stocks rather than buying all stocks for which 

the model claims that the future return will be positive. The following chapter explores 

whether some of the deficiencies of the AR1 model can be fixed by using realized 

moments in the pricing equation. 

4.1.2 Pricing model with realized variance, skewness and kurtosis 

In this section, the results for 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉 with traditional measures of realized 

variance, skewness and kurtosis are discussed. Comparison to the benchmark AR1 

model and overall market is made. 

While the statistical summary of the individual estimates can be found in Table 29 

presented in the appendix, the Figure 3 Figure 3: Estimated coefficients for 

𝐌𝐨𝐝𝐞𝐥 𝛉𝐑𝐕and Figure 4 provided bellow clearly indicate that the estimates are not 

100% consistent across the 29 companies. As in case of Figure 1, Figure 3 shows the 

approximate 95% confidence interval of estimates for each of the companies.  As 

before, triangle indicates values below 0, while solid dots indicate values above zero. 

As Figure 3 indicates, the point estimate for coefficient of lagged return is still 

consistent with the estimates from AR1 model, although the 95% confidence interval 

now mostly straddles the 0 mark. However, for 8 of the companies we can be pretty 

sure that the relationship is negative. Putting this information together with the fact that 

in independent estimations, the point estimate for other 20 companies has been also 

negative, it seems reasonable to conclude that investors taking on the risk of investing 

in stocks that has been declining recently should be rewarded by higher risk premium. 

It is also worth pointing out, that not for a single one of the companies has the 

relationship been estimated to be significant and positive, and even for City and IBM 

we now have negative point estimates, as opposed to the results from AR1. 

The results for realized variance are mixed. On one hand, we can see in second 

panel of Figure 3 and Figure 4 that the point estimate is positive for majority of the 

companies, which would be perfectly in line with our expectations as well as with 
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previous literature on the topic. However, as Figure 3 also clearly shows, for 1 in 4 of 

the companies, the point estimate is negative (although significant only for City) and 

significantly positive for only 3 of them. Overall, there is perhaps some evidence of 

positive relationship between realized variance and return. 

With skewness a first major surprise arises. Based on Amaya et al (2015) one would 

expect the relationship to be negative. Moreover, we can ask a question of why, when 

investors are rewarded for accepting higher variance by higher risk premium, we 

should not expect them to be rewarded for lower skewness with higher premium as 

well. First, it might be possible that historical skewness is not a good determinant of 

future skewness and thus does not really measure the risk investor is exposed to. 

Rather, the positive estimates could indicate that investors tend to react to skewed 

within-day returns and base their decisions on that. A better proxy for the long-term 

skewness is a combination of the lagged return and skewness. Indeed, this is in practice 

very similar to the proposition of Neuberger & Payne (2018). They argue that when 

calculating long-run skewness from high-frequency returns, the leverage effect 

(correlation of past low frequency return with variance over the previous period) is 

what determines the major part of the calculated measure. This means that as the 

horizon becomes longer, the skewness of high frequency returns becomes less 

important and the leverage effect takes over. The 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉 contains all these 

components, only it separates the two effects. From a more technical perspective, the 

different results for coefficient on skewness compared to Amaya et al (2015) could be 

caused by inclusion of the lagged return in the 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉. This theory is later revisited 

in chapter on robustness to model specification. 
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Figure 3: Estimated coefficients for 𝐌𝐨𝐝𝐞𝐥 𝛉𝐑𝐕 
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Figure 4: Boxplots of estimated coefficients for 𝐌𝐨𝐝𝐞𝐥 𝛉𝐑𝐕 

The estimates for kurtosis are not consistently different from zero in either of the 

directions. For 18 companies the point estimate is negative, for the remaining 11 it is 

positive. This is further underlined by the fact, that the approximate 95% confidence 

interval never stays clear of the 0 value. From the statistical perspective, as evaluated 

on the training set, it would seem that the conclusion here would be clear – we do not 

have enough evidence to suggest that there is really a relationship between kurtosis and 

risk premium. However, this is only part of the story, as will become clear throughout 

the rest of the thesis. First, let’s turn to evaluation of the model performance on the test 

set. 

The Figure 5 and Figure 6 presented below compare the AR1 model and Model 

𝜃𝑅𝑉 on RMSE and accuracy in terms of predicting the sign of future returns. Moreover, 

Figure 7 depicts the relationship between RMSE and accuracy of 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉. The full 
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summary of the performance on the test set is available in Table 30 presented in the 

appendix. 

From Figure 5 we can see that 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉 does not represent any improvement in 

terms of RMSE. As is clear from Table 30, the RMSE is actually much worse as it 

went up for 24 out of 29 stocks compared to AR1. While mean absolute deviation is 

also higher for 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉, the median absolute deviation is actually better for 17 of 

the stocks. This would suggest, that the model has some relatively large prediction 

errors, while the median prediction is better compared to AR1. 

 

Figure 5: Comparison of test set RMSE for models AR1 and 𝛉𝐑𝐕 

While the total error was not improved by 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉, the accuracy was. As is 

clearly visible from Figure 6 below, the model achieved over 50% accuracy for 20 of 

the stocks, compared to just 14 in case of AR1. Moreover, compared to AR1, the model 

improved the accuracy for 19 of the stocks. Similarly, the precision is higher compared 

to AR1 on 18 of the stocks and negative predictive value is higher on 17 of the stocks. 

Still, as in case of AR1 the estimated model is rather useless for some of the stocks, 

such as Citigroup where it predicts a negative return over the entire time period in the 

test set and Procter & Gamble where the model insists on positive returns no matter 

what. For stocks like these, it is possible that the estimated model has been highjacked 

by some extreme observations. Thus, clearly a more robust method instead of OLS or 

a more robust estimators of the moments are needed. 
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Figure 6: Comparison of test set accuracy for models AR1 and 𝛉𝐑𝐕 

As is shown in Figure 7, there is no clear relationship between RMSE and accuracy 

in predicting the sign of future returns. This further highlights the notion that the 

models need to be evaluated on complex set of criteria, rather than focusing on statistic 

such as RMSE. 

 

Figure 7: Relationship of test set accuracy and RMSE for 𝐌𝐨𝐝𝐞𝐥 𝛉𝐑𝐕 

The aggregate accuracy compared to AR1 is summarized in Table 4. While, as has 

been already mentioned, 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉 is not superior to the AR1 in terms of the RMSE, 

there are other metrics which indicate variance, skewness and kurtosis are decent 

determinants of the returns and should be considered as part of the pricing equation. 

First, the aggregate accuracy of 50.7% is significantly better than random guessing (if 

we guessed the sign randomly, then given the test set size, we would observe accuracy 

over 50.5% in less than 10% of the attempts). We can say the same about the accuracy 

over individual time series – for our 29 stocks, we would get the accuracy over 50% 

for 20 of them in less than 4% of attempts if we were to guess the sign of the return 

randomly. Second, the precision is over 52.3% which means that when the model 

predicts a positive return it is right in 52% of the cases. That is over 1 percent more 
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than AR1 which had only 51% precision. Moreover, the negative predictive value is 

almost 51% which means that also when predicting a negative return, the model is 

correct in slight majority of cases as opposed to AR1’s 48.7% negative predictive value 

(see Table 28 reported in the Appendix) 

Table 4 

Table: Aggregate Summary of 𝑴𝒐𝒅𝒆𝒍 𝜽𝑹𝑽 performance on test set 

      

Model 

RMS

E 

Mean 

Absolute 

Deviation 

Median 

Absolute 

Deviation Accuracy 

Accuracy 

over 50 

𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉 

0.009

8 0.0072 0.0056 0.5074 20 

      

 

Precis

ion 

Negative 

Predictive 

Value 

Improved 

RMSE 

Improved Median absolute 

dev. 

Improved 

Accuracy 

𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉 

0.523

4 0.5095 5 17 17 

* For ratios, the metric average over 

all 29 stocks is used    

 

While metrics such as RMSE, accuracy and precision provide useful insights, in 

order to fully evaluate the quality of the models it seems necessary to look at the 

properties of the returns achievable with strategies based on the model predictions. As 

in case of AR1 model, results for 2 strategies are evaluated: 1) every day choose stocks 

that have the predicted return in top quartile, 2) every day choose all stocks with 

predicted positive return. The properties of mean daily returns achieved in this way are 

summarized in Table 5. The following paragraph explains why the 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉  should 

be considered superior to AR1 and why it works better compared to diversified 

portfolio of 29 stocks. 

It’s immediately obvious that both trading strategies based on the 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉 beat 

the AR1 model. Looking at Table 5 and starting from the left, the most negative return 

is only -0.0435 and -0.0437 for Top Quartile and Positive Predictions strategy 

respectively. Recall that for AR1 these were -0.0458 and -0.049 while the whole market 

had on its’ worst day a mean return of -0.0457. While the median for Positive 

Predictions strategy doesn’t beat that of whole market, both AR1 strategies are clearly 
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beaten. Moreover, in terms of mean return, both of the strategies beat all of the AR1 

strategies as well as the portfolio of all 29 stocks. Finally, while the risk (as measured 

by variance of mean returns over the test period) of the strategies is still higher 

compared to the portfolio of 29 stocks, the 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉 Top Quartile strategy has 4% 

lower variance of returns while Positive prediction has 11% lower variance relative to 

their AR1 counterparts. On top of that, both strategies have less negatively skewed 

returns compared to the market return and the kurtosis (as measured by Moors 

Kurtosis) is significantly lower compared to market as well as AR1 based strategies. 

These results, together with the findings on improved accuracy in identifying positive 

and negative returns seem to provide sufficient evidence that realized variance, 

skewness and kurtosis bring significant value to understanding of the stock returns. 

Table 5 

Comparison of means of log returns from 𝑴𝒐𝒅𝒆𝒍 𝜽𝑹𝑽 Top Quartile (TQ) and Positive 

Predictions (PP) strategies 

       

 Min. 1st Qu. Median Mean 3rd Qu. Max. 

𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉 TQ -0.043528 -0.003595 0.00048 0.000290 0.004431 0.034846 

𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉 PP -0.043719 -0.003533 0.00037 0.000208 0.004170 0.034184 

       

  Variance 

Pearson 

skewness 

Moors 

kurtosis   

𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉 TQ   0.000049 -0.080383 5.932262     

𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉 PP   0.000043 -0.072098 6.653542     

* the reported statistics describe the distributions of daily means of log returns of chosen stocks 

 

4.2 Robustness 

Several robustness checks are performed in this section. First, results for jump-robust 

estimators of variance are analyzed. Second, these models, together with 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉, 

are used in determining how well does an average model (based on coefficient mean 

or median) fit the data. Third, more robust estimators of skewness and kurtosis are 

explored. Finally, a sensitivity to model specification is explored. In the last section, 

several model restrictions and extensions are considered in order to determine whether 

each of the components of 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉 bring additional value to the pricing formula. 
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4.2.1 Jump-robust estimators 

In this section, the results of model given by (3.1) for 𝑀 ∈ {𝐵𝑃𝑉, 𝑀𝑖𝑛𝑅𝑉, 𝑀𝑒𝑑𝑅𝑉} are 

explored. As a result of the estimation, we get the following set of models: 

𝑀𝑜𝑑𝑒𝑙 𝜃𝐵𝑃𝑉, 𝑀𝑜𝑑𝑒𝑙 𝜃𝑀𝑖𝑛𝑅𝑉 , 𝑎𝑛𝑑 𝑀𝑜𝑑𝑒𝑙 𝜃𝑀𝑒𝑑𝑅𝑉. For more details on their exact 

definitions, please refer to the Methodology chapter, section with definitions of models. 

As these models follow the structure given by (3.1), they are very similar to 

𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉, with the only difference being the use of jump robust estimators of 

realized variance. The statistical summaries are presented in the appendix in Table 33 

- Table 35 in order to keep main body of the text more readable. The 95% confidence 

intervals for the coefficient estimates are provided in Figure 8 for 𝑀𝑜𝑑𝑒𝑙 𝜃𝐵𝑃𝑉, Figure 

9 for 𝑀𝑜𝑑𝑒𝑙 𝜃𝑀𝑖𝑛𝑅𝑉 and finally Figure 10 for 𝑀𝑜𝑑𝑒𝑙 𝜃𝑀𝑒𝑑𝑅𝑉. All these figures are 

provided in the appendix. 

When BPV is used the estimates on lagged return are still mostly negative and for 

7 of the stocks the upper bound of the 95% confidence interval lies below 0. For 

Variance, there are again two stocks – GE and Citi – for which the estimate is negative 

and significant, while for 21 stocks we get the expected positive estimate. The 

skewness estimates still present the unexpected result of positive relationship between 

skewness and next period return. For kurtosis, we get 11 negative estimates and 18 

positive estimates. However, the 95% CI crosses 0 for most of the stocks. In general, 

the results are comparable to the case of  𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉. 

The individual estimates coming from models using MinRV and MedRV estimators 

of variance tell a very similar story. Again, in the tables reported in the appendix we 

can see that estimates on lagged return are mainly negative, estimates of variance are 

mostly positive. Skewness estimates are again mostly positive, as are estimates for 

kurtosis. In general, there are two emergent patterns: 1) the estimated coefficients for 

variance, skewness and kurtosis tend to be mostly positive, regardless of the definition 

of realized variance estimator we decide to use. 2) The estimates do not appear to be 

statistically significant anywhere. 

While we do not have clear results on the estimates, we get at least get certain 

degree of consistency across the individual models. Table 6 summarizes how do the 

companies with positive and negative estimates of kurtosis coefficient change between 
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the individual models. Included are all companies for which the estimated coefficient 

is larger than its’ robust standard error. We can see that it never happens for one 

company to have such a positive estimate of the kurtosis coefficient under one model 

and then get a negative estimate under another model. 

Table 6 

Companies with differing relation between kurtosis and expected return 

        
RV  BPV  MinRV  MedRv  
+ - + - + - + - 

AAPL CMCSA AAPL CSCO DIS AMZN AAPL C 

IBM CSCO BAC JPM IBM C DIS CMCSA 

CVX JNJ DIS MCD PEP CMCSA IBM CSCO 

QCOM JPM IBM ORCL SLB CSCO INTC JPM 

XOM MCD PEP T WFC JPM PEP ORCL 

 MRK SLB  XOM ORCL WFC T 

 T WFC   T XOM  
    XOM           

 

The Table 7 summarizes the out of sample performances of models 𝜃𝐵𝑃𝑉, 𝜃𝑀𝑖𝑛𝑅𝑉,

𝑎𝑛𝑑 𝜃𝑀𝑒𝑑𝑅𝑉. As can be seen, in terms of magnitudes of prediction errors, they are 

relatively comparable as the RMSE is 0.0098 for models 𝜃𝐵𝑃𝑉 and 𝜃𝑀𝑒𝑑𝑅𝑉, and 0.0099 

for the model 𝜃𝑀𝑖𝑛𝑅𝑉. Moreover, in terms of mean absolute deviation and median 

absolute deviation these models are very much alike.  Accuracy-wise, all three models 

are performing worse compared to the Model 𝜃𝑅𝑉, however they are still able to 

outperform the AR1. On the other hand, if we were guessing the sign on random, we 

would be able to get higher accuracy in some 12% – 30%. Similarly, the models 

achieve accuracy over 50% for 14, 16 and 17 stocks for model 𝜃𝐵𝑃𝑉 , 𝜃𝑀𝑖𝑛𝑅𝑉,

𝑎𝑛𝑑 𝜃𝑀𝑒𝑑𝑅𝑉 respectively. As a slight positive can be considered that the models 

achieve both precision and negative predictive value over 50% in which they clearly 

beat the AR1 model. Overall, based on fit of the data, the use of jump-robust realized 

variance estimators does not seem to offer any significant improvements in predictions 

compared to Model 𝜃𝑅𝑉. This could be caused by already mentioned fact that realized 

skewness and realized kurtosis measures are still impacted by any outliers mitigated in 

the realized variance and thus the outliers are likely to still hold a sway over the model. 
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Other possible explanation could be that omission of jump from the risk measures 

simply does not yield any significant benefit. 

Table 7 

Aggregate Summary of models 𝜽𝑩𝑷𝑽, 𝜽𝑴𝒊𝒏𝑹𝑽, 𝜽𝑴𝒆𝒅𝑹𝑽  performance on 

test set 

      

Model RMSE 

Mean 

Absolute 

Deviation 

Median 

Absolute 

Deviation Accuracy 

Accuracy 

over 50 

Model 𝜃𝐵𝑃𝑉 0.0098 0.0072 0.0056 0.5033 14 

Model 𝜃𝑀𝑖𝑛𝑅𝑉 0.0099 0.0072 0.0056 0.5021 15 

Model 𝜃𝑀𝑒𝑑𝑅𝑉 0.0098 0.0072 0.0056 0.5046 17 

      

  Precission 

Negative 

Predictive 

Value 

Improved 

RMSE 

Improved 

Median 

absolute 

dev. 

Improved 

Accuracy 

Model 𝜃𝐵𝑃𝑉 0.5093 0.5114 13 14 14 

Model 𝜃𝑀𝑖𝑛𝑅𝑉 0.5060 0.5098 11 16 16 

Model 𝜃𝑀𝑒𝑑𝑅𝑉 0.5090 0.5122 11 17 17 

* For ratios, the metric average over all 29 stocks is used  
* Improvements are relative to the Model 𝜃𝑅𝑉   

 

As a next step of the analysis, let’s take a look at returns achievable from trading 

based on predictions from the models. The Table 8 reported below shows that all of 

the jump-robust models provide some gains in terms of the mean return or they are at 

least comparable to the Model 𝜃𝑅𝑉 based strategies. The median return for the Top 

Quartile strategy is higher for the Model 𝜃𝐵𝑃𝑉 and Model 𝜃𝑀𝑒𝑑𝑅𝑉 compared to the 

baseline Model 𝜃𝑅𝑉. Moreover, the mean return from these two also beats the Model 

𝜃𝑅𝑉 Top Quartile strategy. On the other hand, the variance achieved by the Top 

Quartile strategy based on the jump-robust estimators is much higher than in case of 

Model 𝜃𝑅𝑉 and is comparable to that of AR1. In terms of skewness and kurtosis these 

models also do not outperform the Model 𝜃𝑅𝑉, however in terms of kurtosis they 

clearly beat both AR1 and 29 Stocks portfolio. In case of the Positive Predictions 

strategy, the medians are quite comparable to the baseline Model 𝜃𝑅𝑉. However, the 

portfolio of 29 stocks still provide better median return. On the other hand, the mean 

return from this strategy beats Model 𝜃𝑅𝑉  as well as AR1 and 29 Stocks portfolio. 

Moreover, these models yield a mean return higher than that achieved by AR1 Top 
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Quartile strategy, while offering much lower variance and kurtosis. In terms of 

variance, these models are at the same level as Model 𝜃𝑅𝑉, while kurtosis-wise, they 

offer less thick or less long tails compared to the Model 𝜃𝑅𝑉. 

Table 8 

Comparison of means of log returns from Top Quartile (TQ) and Positive Predictions (PP) 

strategies for models 𝜽𝑩𝑷𝑽, 𝜽𝑴𝒊𝒏𝑹𝑽, 𝒂𝒏𝒅 𝜽𝑴𝒆𝒅𝑹𝑽 

       

 Min. 1st Qu. Median Mean 3rd Qu. Max. 

Model 𝜃𝐵𝑃𝑉 TQ -0.048037 -0.003779 0.000505 0.000294 0.004323 0.034122 

Model 𝜃𝐵𝑃𝑉  PP -0.042947 -0.003652 0.000371 0.000214 0.004086 0.034184 

Model 𝜃𝑀𝑖𝑛𝑅𝑉 TQ -0.048037 -0.003618 0.000430 0.000274 0.004200 0.034846 

Model 𝜃𝑀𝑖𝑛𝑅𝑉 PP -0.042986 -0.003567 0.000265 0.000214 0.004103 0.034184 

Model 𝜃𝑀𝑒𝑑𝑅𝑉 TQ -0.050305 -0.003603 0.000488 0.000294 0.004366 0.034846 

Model 𝜃𝑀𝑒𝑑𝑅𝑉 PP -0.042529 -0.003609 0.000323 0.000237 0.004119 0.034184 

 
      

  Variance 

Pearson 

skewness 

Moors 

kurtosis   
Model 𝜃𝐵𝑃𝑉 TQ   0.000051 -0.088790 6.607812     

Model 𝜃𝐵𝑃𝑉  PP 0.000043 -0.072240 6.533168   
Model 𝜃𝑀𝑖𝑛𝑅𝑉 TQ 0.000051 -0.065749 6.736116   
Model 𝜃𝑀𝑖𝑛𝑅𝑉 PP 0.000043 -0.023417 6.559622   
Model 𝜃𝑀𝑒𝑑𝑅𝑉 TQ 0.000051 -0.081381 7.328952   

Model 𝜃𝑀𝑒𝑑𝑅𝑉 PP 0.000043 -0.039226 6.407243     

* the reported statistics describe the distributions of daily means of log returns of chosen stocks 

 

Overall, the jump-robust estimators do not yield results too different from what was 

achieved with Model 𝜃𝑅𝑉. The coefficient estimates are relatively similar, the 

performance as measured by RMSE is comparable and the models 𝜃𝐵𝑃𝑉, 𝜃𝑀𝑖𝑛𝑅𝑉 ,

and 𝜃𝑀𝑒𝑑𝑅𝑉 are slightly worse in terms of predicting the sign of future returns. This 

shortcoming is however compensated for by improved returns when the models are 

used in trading decisions. The most reasonable conclusion here seems to be that the 

models do not invalidate the findings for Model 𝜃𝑅𝑉 and they do not bring significant 

additional value to asset pricing.  

4.2.2 Do mean and median models fit the data? 

It seems natural to ask how would the average model perform. If the model based on 

means or medians of the individual coefficients would perform relatively well, we 

could assume that the premiums for each company are determined by same or at least 

similar process. If, on the other hand, the average model would not fit the data at all, it 
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would mean that the process of determining risk premium is different across 

companies. Another motivation for this exercise could be found in Tibshirani et al 

(2001) where model averaging is mentioned as strategy for improving the predictive 

capabilities of models. Hence, similar to Amaya et al (2015), average coefficients from 

the company specific estimates are calculated and used to make predictions on the test 

set. Same set of statistics as before is used to determine the performance of the resulting 

models. First, the average coefficients are reported, then the out of sample performance 

is analyzed and finally the achievable returns are discussed. The models evaluated here 

are 𝜃(𝑀) 𝑎𝑛𝑑 𝜃(𝑀)̃, where 𝑀 ∈ {𝑅𝑉, 𝐵𝑃𝑉, 𝑀𝑖𝑛𝑅𝑉, 𝑀𝑒𝑑𝑅𝑉}. 

As Table 9 reported below indicates, the models are consistent in terms of 

coefficients on intercept, return, variance and skewness. For these variables, both 

average and median indicate the same sign and relatively similar values of the 

estimates. We get the already expected result that past positive returns are penalized 

by lower return in the future and that higher risk as measured by variance is 

compensated for by risk premium. At the same time, both mean and median coefficient 

on skewness are positive, meaning that higher skewness means higher risk premium. 

This result is contradictory to that of Amaya et al (2015) but as is shown in the chapter 

on robustness to model specification, this is probably due to lagged returns being 

included as an explanatory variable in the models presented in the thesis. Slightly more 

problematic is the average and median coefficient for kurtosis. The coefficient is 

negative for models 𝜃𝑅𝑉, 𝜃𝑀𝑖𝑛𝑅𝑉 𝑎𝑛𝑑 𝜃𝑀𝑒𝑑𝑅𝑉  , which means that higher kurtosis of 

the returns in penalized by lower future returns. The coefficient is positive for 

𝜃𝐵𝑃𝑉. However, when we look at the median coefficient estimate, we can see that the 

relationship is positive for all models except 𝜃𝑅𝑉̃, which means that for majority of the 

companies, we get the expected positive relationship between tail risk and returns. Why 

the difference between the average and median estimates? It is a well-known behavior 

of the OLS method that it’s not very robust to outliers in the data. As kurtosis is 

technically a measurement of outliers, we can expect that there might be some 

problems when extreme data points are observed and so some of our estimates might 

be influenced by the outliers. Overall, the consistency of coefficient estimates for the 

kurtosis variable remains questionable. 
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Table 9 

Average and median coefficients of individual models 

      
Model Intercept Return Variance Skewness Kurtosis 

Model 𝜃𝑅𝑉 -2.43E-04 -5.95E-02 1.35E+00 4.60E-04 -3.04E-06 

Model 𝜃𝐵𝑃𝑉 -2.79E-04 -5.63E-02 1.39E+00 2.86E-04 1.34E-06 

Model 𝜃𝑀𝑖𝑛𝑅𝑉 -2.15E-04 -5.57E-02 1.36E+00 2.94E-04 -6.70E-06 

Model 𝜃𝑀𝑒𝑑𝑅𝑉 -2.34E-04 -5.53E-02 1.42E+00 2.72E-04 -4.92E-06 

Model 𝜃𝑅𝑉̃ -2.05E-04 -5.84E-02 1.57E+00 3.82E-04 -1.10E-05 

Model 𝜃𝐵𝑃𝑉̃ -2.16E-04 -5.53E-02 1.69E+00 2.04E-04 1.56E-06 

Model 𝜃𝑀𝑖𝑛𝑅𝑉̃  -2.25E-04 -5.31E-02 1.67E+00 1.70E-04 1.62E-06 

Model 𝜃𝑀𝑒𝑑𝑅𝑉̃  -2.19E-04 -5.44E-02 1.66E+00 1.46E-04 1.48E-06 

 

The Table 10 summarizes the performance of models on the test set. All of the 

models based on coefficient means or medians outperform the Model 𝜃𝑅𝑉 in terms of 

RMSE, as the worst performing of the aggregated models has RMSE of 0.00980, while 

Model 𝜃𝑅𝑉 achieved RMSE of 0.00984 over the entire test set. Moreover, the 

aggregated models perform better in terms of Mean Absolute Deviation. The results 

are mixed in terms of accuracy of the sign prediction, but we see some slight 

improvements from models 𝜃𝑅𝑉 , 𝜃𝑀𝑖𝑛𝑅𝑉 𝑎𝑛𝑑 𝜃𝑀𝑒𝑑𝑅𝑉   , while the models based on the 

medians of the coefficient generally perform worse compared to Model 𝜃𝑅𝑉. 

Surprisingly, while the individual models using jump robust variance estimators do not 

outperform Model 𝜃𝑅𝑉, the accuracy is better when the coefficient averages are used. 

All of the models achieve accuracy significantly better than random guessing and they 

attain above 50% accuracy on majority of the time series. Both, precision and negative 

predictive value are above 50% indicating that the models are relatively good at 

identifying both negative and positive future returns. Compared to Model 𝜃𝑅𝑉, the 

models presented here improve the RMSE for 19-21 of the companies. 
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Table 10 

Aggregate summary of the performance of models 𝜽(𝑴) 𝒂𝒏𝒅 𝜽(𝑴)̃ 

      

Model RMSE 

Mean 

Absolute 

Deviation 

Median 

Absolute 

Deviation Accuracy 

Accuracy 

over 50 

Model 𝜃𝑅𝑉 0.00978 0.00721 0.00560 0.50589 21 

Model 𝜃𝐵𝑃𝑉 0.00978 0.00721 0.00561 0.50850 19 

Model 𝜃𝑀𝑖𝑛𝑅𝑉 0.00977 0.00720 0.00560 0.50743 18 

Model 𝜃𝑀𝑒𝑑𝑅𝑉 0.00978 0.00721 0.00560 0.50782 22 

Model 𝜃𝑅𝑉̃ 0.00979 0.00721 0.00560 0.50640 16 

Model 𝜃𝐵𝑃𝑉̃ 0.00980 0.00721 0.00559 0.50724 15 

Model 𝜃𝑀𝑖𝑛𝑅𝑉̃  0.00980 0.00721 0.00559 0.50775 16 

Model 𝜃𝑀𝑒𝑑𝑅𝑉̃  0.00980 0.00721 0.00559 0.50646 16 

      

  Precission 

Negative 

Predictive 

Value 

Improved 

RMSE 

Improved 

Median 

absolute 

dev. 

Improved 

Accuracy 

Model 𝜃𝑅𝑉 0.51652 0.50027 21 15 14 

Model 𝜃𝐵𝑃𝑉 0.52070 0.50267 21 12 17 

Model 𝜃𝑀𝑖𝑛𝑅𝑉 0.52022 0.50163 21 13 14 

Model 𝜃𝑀𝑒𝑑𝑅𝑉 0.52079 0.50204 21 12 17 

Model 𝜃𝑅𝑉̃ 0.51794 0.50095 21 14 17 

Model 𝜃𝐵𝑃𝑉̃ 0.51560 0.50203 20 15 13 

Model 𝜃𝑀𝑖𝑛𝑅𝑉̃  0.51683 0.50249 20 16 14 

Model 𝜃𝑀𝑒𝑑𝑅𝑉̃  0.51497 0.50151 19 17 14 

* For ratios, the metric average over all 29 stocks is used   
* Improvements are relative to the Model 𝜃𝑅𝑉   

 

The results for returns are summarized in Table 11 presented below. Two patterns 

can be seen in the data. First, the Top Qurntile trading strategies based on predictions 

from models 𝜃𝑅𝑉, 𝜃𝐵𝑃𝑉, 𝜃𝑀𝑖𝑛𝑅𝑉 , 𝜃𝑀𝑒𝑑𝑅𝑉, 𝜃𝑅𝑉̃, 𝜃𝐵𝑃𝑉̃, 𝜃𝑀𝑖𝑛𝑅𝑉̃  𝑎𝑛𝑑 𝜃𝑀𝑒𝑑𝑅𝑉̃  achieve 

higher mean returns compared to their counterparts with separate coefficients for 

individual companies. The mean return is 2.8% to 31% higher compared to Model 𝜃𝑅𝑉 

with majority of the models offering at least 14% increase in the mean return. 

Moreover, another argument for resorting to model averages would be that the first 
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quartile, 3rd quartile and maximum being higher compared to the Model 𝜃𝑅𝑉. In 

general, the right tail of the mean returns coming from Top Quartile strategy based on 

mean or median models is longer and thicker compared to the returns coming from its 

counterpart based on estimates for individual series. 

Second, the Positive Predictions strategy appears to be useless across models when 

we think in terms of maximizing the return for the trader. It achieves lower mean return 

compared to both Model 𝜃𝑅𝑉, as well as all of the jump-robust variants. Moreover, it 

does not consistently beat the return on the entire portfolio of the 29 stocks. On the 

other hand, the median return is higher for 6 out of 8 models compared to the Model 

𝜃𝑅𝑉 and, specifically, both 𝜃𝑅𝑉 and 𝜃𝑅𝑉̃ model yield higher median return compared 

to the Model 𝜃𝑅𝑉. This means that the model is actually pretty good at identifying the 

stocks with positive return in general, however it sometimes misses larger negative 

returns (as demonstrated by lower minimum return and 1st quartile) while the broad 

strategy does not allow to capitalize on high returns as demonstrated by relatively low 

3rd quartile and maximum of returns. Together with relatively higher variance and 

kurtosis, it would not make much sense for a trader to employ the strategy of buying 

all stocks with predicted positive returns based on the average or median models. 

Table 11 

Comparison of means of log returns from Top Quartile (TQ) and Positive Predictions (PP) strategies 

based on models 𝜽(𝑴) 𝒂𝒏𝒅 𝜽(𝑴)̃ 

       

 Min. 1st Qu. Median Mean 3rd Qu. Max. 

Model  𝜃𝑅𝑉 TQ -0.046938 -0.003454 0.00044 0.000332 0.004510 0.039287 

Model 𝜃𝐵𝑃𝑉TQ -0.046938 -0.003489 0.00035 0.000317 0.004343 0.039287 

Model 𝜃𝑀𝑖𝑛𝑅𝑉 TQ -0.046938 -0.003397 0.00039 0.000351 0.004524 0.039287 

Model 𝜃𝑀𝑒𝑑𝑅𝑉 TQ -0.046938 -0.003408 0.00037 0.000316 0.004491 0.039287 

Model 𝜃𝑅𝑉̃ TQ -0.046938 -0.003408 0.00044 0.000353 0.004515 0.039287 

Model 𝜃𝐵𝑃𝑉̃ TQ -0.046938 -0.003344 0.00049 0.000381 0.004721 0.039287 

Model 𝜃𝑀𝑖𝑛𝑅𝑉̃  TQ -0.046938 -0.003353 0.00023 0.000309 0.004736 0.039287 

Model 𝜃𝑀𝑒𝑑𝑅𝑉̃  TQ -0.046938 -0.003507 0.00026 0.000298 0.004463 0.039287 

Model  𝜃𝑅𝑉 PP -0.044670 -0.003513 0.00068 0.000179 0.004512 0.033725 

Model 𝜃𝐵𝑃𝑉 PP -0.045669 -0.003959 0.00048 0.000098 0.004441 0.033725 

Model 𝜃𝑀𝑖𝑛𝑅𝑉 PP -0.045669 -0.003826 0.00031 0.000118 0.004330 0.033725 

Model 𝜃𝑀𝑒𝑑𝑅𝑉 PP -0.045669 -0.004039 0.00054 0.000051 0.004342 0.033725 

Model 𝜃𝑅𝑉̃ PP -0.045669 -0.003617 0.00063 0.000167 0.004486 0.033725 

Model 𝜃𝐵𝑃𝑉̃ PP -0.045669 -0.003548 0.00051 0.000160 0.004062 0.033725 

Model 𝜃𝑀𝑖𝑛𝑅𝑉̃  PP -0.045669 -0.003548 0.00049 0.000161 0.004038 0.033725 



Results  53 

Model 𝜃𝑀𝑒𝑑𝑅𝑉̃  PP -0.045669 -0.003552 0.00050 0.000147 0.004203 0.033725 

       

  Variance 

Pearson 

skewness 

Moors 

kurtosis   

Model  𝜃𝑅𝑉 TQ   0.000054 -0.04406 6.449298     

Model 𝜃𝐵𝑃𝑉TQ  0.000055 -0.01450 6.165686   

Model 𝜃𝑀𝑖𝑛𝑅𝑉 TQ  0.000054 -0.01679 6.309154   

Model 𝜃𝑀𝑒𝑑𝑅𝑉 TQ  0.000055 -0.02287 6.238992   
Model 𝜃𝑅𝑉̃ TQ  0.000057 -0.03513 6.204171   
Model 𝜃𝐵𝑃𝑉̃ TQ  0.000055 -0.04348 6.072788   
Model 𝜃𝑀𝑖𝑛𝑅𝑉̃  TQ  0.000055 0.03281 6.073715   
Model 𝜃𝑀𝑒𝑑𝑅𝑉̃  TQ  0.000055 0.01520 6.094608   

Model  𝜃𝑅𝑉 PP  0.000051 -0.21018 6.237329   

Model 𝜃𝐵𝑃𝑉 PP  0.000055 -0.15375 5.985885   

Model 𝜃𝑀𝑖𝑛𝑅𝑉 PP  0.000055 -0.07823 5.880643   

Model 𝜃𝑀𝑒𝑑𝑅𝑉 PP  0.000057 -0.19363 5.716154   
Model 𝜃𝑅𝑉̃ PP  0.000053 -0.19027 6.179175   
Model 𝜃𝐵𝑃𝑉̃ PP  0.000051 -0.14565 6.367972   
Model 𝜃𝑀𝑖𝑛𝑅𝑉̃  PP  0.000051 -0.13748 6.184407   

Model 𝜃𝑀𝑒𝑑𝑅𝑉̃  PP   0.000051 -0.14755 6.285976     

* the reported statistics describe the distributions of daily means of log returns of chosen stocks  

 

As has been shown in this section, the aggregated models fit the data relatively 

well, especially in case of 𝜃(𝑀). This is clearly visible in the improved RMSE and 

relatively good accuracy given that the models attempt to price all stocks using the 

same coefficient for all companies. Moreover, both 𝜃(𝑀) and 𝜃(𝑀)̃ and the resulting 

Top Quartile strategies represent further improvement in the achievable returns. 

Overall, these results seem to provide further evidence of the usefulness of realized 

measures in asset pricing and suggest that the pricing process can be reasonably well 

fitted by one model. However, the models 𝜃(𝑀) and 𝜃(𝑀)̃ did not bring huge 

improvements in the forecasting performance. 

4.2.3 Robust estimators of skewness and kurtosis 

Having established that the traditional definitions of realized variance, skewness and 

kurtosis, as well as their jump-robust equivalents, provide significant value in the 

analysis of stock market returns, it is time to explore how would the results change if 

robust estimators were used. As mentioned in the Methodology chapter, the considered 

estimators are: Bowley, Groeneveld-Meeden and Pearson measures of skewness, and 
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Moors and Crow & Siddiqui measures of kurtosis. The models considered here 

correspond to 𝑀𝑜𝑑𝑒𝑙 𝜃(𝑀,𝑃), where 𝑀 ∈ {𝐵𝑜𝑤𝑙𝑒𝑦, 𝐺&𝑀, 𝑃𝑒𝑎𝑟𝑠𝑜𝑛} and 𝑃 ∈

{𝑀𝑜𝑜𝑟𝑠, 𝐶&𝑆}. 

The estimated coefficients and their robust standard errors are reported in the 

Appendix in Figure 11 - Figure 16 as well as in the Table 36 - Table 41 presented in 

Appendix: Models with robust estimators of skewness and kurtosis. As can be seen 

from the figures the point estimates for lagged return are still negative and even 

statistically significant for 6 to 8 stocks, depending on the robust measures used for 

estimation of skewness and kurtosis. While for majority of the stocks we couldn’t say 

based on statistical criteria that they are significantly different from 0, the consistency 

of the sign is noteworthy. Similar results are obtained for variance and skewness, where 

we, for individual companies, obtain mostly positive point estimates. Clearly, the 

positive estimates on skewness are not limited to the 𝑅𝑆𝑅𝑉 estimator. In case of 

kurtosis, however, the results do not appear to be consistent neither with the previous 

results nor across different robust estimators of skewness and kurtosis. It can be seen 

that when Moors estimator of kurtosis is used, we get positive the expected positive 

estimate on kurtosis coefficient for about 10 of the stocks. However, when we use the 

definition given by Crow & Siddiqui, we are suddenly down to about 5 stocks with 

positive estimates. That being said, the approximate 95% confidence intervals reported 

in Figure 11 - Figure 16 indicate that the impact of kurtosis variable on the risk 

premium should be non-significant. The fact that the approximate 95% confidence 

interval is spread around 0, together with the inconsistency of the estimated sign of the 

coefficients seems as an evidence, that we are not able to detect a link between returns 

and kurtosis when robust measures of kurtosis are used. 

The Table 12 presented below summarizes the mean and median of the coefficients 

for the cross section of companies. The relative consistency of estimates for returns, 

variance and skewness across the different estimators is clear. At the same time the 

estimates for kurtosis differ based on the robust estimators being used. 
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Table 12 

Mean and median coefficients of models with robust estimators of skewness and 

kurtosis 

      
Model Intercept Return Variance Skewness Kurtosis 

𝜃𝐵𝑜𝑤𝑙𝑒𝑦,𝑀𝑜𝑜𝑟𝑠 -2.71E-04 -5.65E-02 1.42E+00 1.50E-03 1.01E-04 

𝜃𝐵𝑜𝑤𝑙𝑒𝑦,𝐶&𝑆 -9.28E-05 -5.66E-02 1.43E+00 1.52E-03 -1.80E-04 

𝜃𝐺&𝑀,𝑀𝑜𝑜𝑟𝑠 -2.88E-04 -9.74E-02 1.47E+00 1.31E-02 1.01E-04 

𝜃𝐺&𝑀,𝐶&𝑆 -1.12E-04 -9.76E-02 1.48E+00 1.32E-02 -1.79E-04 

𝜃𝑃𝑒𝑎𝑟𝑠𝑜𝑛,𝑀𝑜𝑜𝑟𝑠 -2.86E-04 -9.80E-02 1.47E+00 1.86E-02 1.00E-04 

𝜃𝑃𝑒𝑎𝑟𝑠𝑜𝑛,𝐶&𝑆 -1.11E-04 -9.83E-02 1.48E+00 1.87E-02 -1.79E-04 

𝜃𝐵𝑜𝑤𝑙𝑒𝑦,𝑀𝑜𝑜𝑟𝑠̃  -2.44E-04 -5.31E-02 1.65E+00 1.44E-03 -6.22E-05 

𝜃𝐵𝑜𝑤𝑙𝑒𝑦,𝐶&𝑆̃  -8.39E-05 -5.35E-02 1.70E+00 1.49E-03 -3.45E-04 

𝜃𝐺&𝑀,𝑀𝑜𝑜𝑟𝑠̃  -2.41E-04 -1.03E-01 1.67E+00 9.65E-03 1.77E-06 

𝜃𝐺&𝑀,𝐶&𝑆̃  -9.09E-05 -1.03E-01 1.69E+00 9.62E-03 -3.12E-04 

𝜃𝑃𝑒𝑎𝑟𝑠𝑜𝑛,𝑀𝑜𝑜𝑟𝑠̃  -2.36E-04 -1.01E-01 1.67E+00 1.42E-02 7.19E-07 

𝜃𝑃𝑒𝑎𝑟𝑠𝑜𝑛,𝐶&𝑆̃  -9.32E-05 -1.02E-01 1.69E+00 1.42E-02 -3.13E-04 

 

As a next step of the analysis, let’s take a look at the models’ predictive capabilities 

on the test set. The results are summarized in Table 13 reported below. All of the 

models with robust measures of skewness and kurtosis improve the RMSE, as well as 

mean and median absolute deviations, compared to the 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉. At the same time, 

when Bowley skewness is used the accuracy in identifying the sign of future returns is 

worse and not too different from random guessing. The models using Bowley skewness 

further suffer from negative predictive value of 48.3% and 49.4% respectively, which 

means they are not very good at identifying negative returns properly. It can be seen 

that for 4 of the models, the precision is higher compared to 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉, wile their 

negative predictive value is lower. Thus, they are better at identifying positive returns, 

however, they are also more likely to be wrong when predicting negative return. Some 

improvement coming from use of certain robust measures are the statistics on number 

of stocks for which RMSE, Median absolute deviation or accuracy are improved 

compared to 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉. As the below table indicates, the models using Groeneveld-

Meeden skewness or Pearson skewness improve the out of sample RMSE for 19-20 of 

the stocks, median absolute deviation for 17-18 stocks and overall accuracy is better 

for 17-18 of the individual series.  
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Table 13 

Aggregate Summary of robust models' performance on the test set 

      

Model RMSE 

Mean 

Absolute 

Deviation 

Median 

Absolute 

Deviation Accuracy 

Accuracy 

over 50 

𝜃𝐵𝑜𝑤𝑙𝑒𝑦,𝑀𝑜𝑜𝑟𝑠 0.00979 0.00722 0.00559 0.50431 17 

𝜃𝐵𝑜𝑤𝑙𝑒𝑦,𝐶&𝑆 0.00979 0.00723 0.00560 0.50095 15 

𝜃𝐺&𝑀,𝑀𝑜𝑜𝑟𝑠 0.00978 0.00722 0.00559 0.50679 21 

𝜃𝐺&𝑀,𝐶&𝑆 0.00978 0.00722 0.00559 0.50944 21 

𝜃𝑃𝑒𝑎𝑟𝑠𝑜𝑛,𝑀𝑜𝑜𝑟𝑠 0.00977 0.00722 0.00560 0.50678 20 

𝜃𝑃𝑒𝑎𝑟𝑠𝑜𝑛,𝐶&𝑆 0.00977 0.00722 0.00560 0.50915 21 

      

 Precision 

Negative 

Predictive 

Value 

Improved 

RMSE 

Improved 

Median absolute 

dev. 

Improved 

Accuracy 

𝜃𝐵𝑜𝑤𝑙𝑒𝑦,𝑀𝑜𝑜𝑟𝑠 0.53518 0.48286 18 14 14 

𝜃𝐵𝑜𝑤𝑙𝑒𝑦,𝐶&𝑆 0.51651 0.49425 18 15 15 

𝜃𝐺&𝑀,𝑀𝑜𝑜𝑟𝑠 0.50812 0.50159 20 17 17 

𝜃𝐺&𝑀,𝐶&𝑆 0.54733 0.48997 19 18 18 

𝜃𝑃𝑒𝑎𝑟𝑠𝑜𝑛,𝑀𝑜𝑜𝑟𝑠 0.52833 0.50130 20 17 17 

𝜃𝑃𝑒𝑎𝑟𝑠𝑜𝑛,𝐶&𝑆 0.53781 0.50606 20 18 18 

* For ratios, the metric average over all 29 

stocks is used   
* Improvements are relative to the 

𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉    
 

As in previous scenarios, the returns achievable by the 2 strategies based on 

recommendations from the individual models are examined. These results are 

presented in the Table 14. Starting with the mean return from the Top Quartile strategy, 

we can see that 3 of the models result in much better return compared to 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉. 

These models are 𝜃𝐵𝑜𝑤𝑙𝑒𝑦,𝑀𝑜𝑜𝑟𝑠, 𝜃𝐺&𝑀,𝑀𝑜𝑜𝑟𝑠 and 𝜃𝑃𝑒𝑎𝑟𝑠𝑜𝑛,𝑀𝑜𝑜𝑟𝑠. All of these models 

have mean log return at least 20% above 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉Top Quartile strategy. 

Interestingly, all of the well performing models use moors measure of kurtosis. On the 

other hand, we have two models which result in significantly lower returns from this 

strategy: model 𝜃𝐺&𝑀,𝐶&𝑆 and model 𝜃𝑃𝑒𝑎𝑟𝑠𝑜𝑛,𝐶&𝑆. It appears that the models leveraging 

Siddiqui kurtosis perform worse in terms of predicting the extreme positive returns. In 

terms of the median return, there is also no consistent benefit over 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉. Looking 

at IQR, minimum, maximum, variance and kurtosis of the resulting returns, one must 
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conclude that for an optimizing trader, there doesn’t seem to be any significant benefit 

from using the Top Quartile strategy based on the robust models. 

Meanwhile, the robust models tend to yield better results when evaluated on the 

Positive Predictions strategy. Thus, it seems 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉 is relatively good at spotting 

large future returns, whereas on average the robust models are better in identifying 

positive return, as when they do predict some positive returns, they tend to be mostly 

right and compared to 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉 they are right more often. As a result, compared to 

𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉, 5 of 6 robust models achieve higher returns from Positive Predictions 

strategy. The only model which achieved lower returns was 𝜃𝐵𝑜𝑤𝑙𝑒𝑦,𝐶&𝑆, but the 

difference compared to 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉 was merely 1.4%. Moreover, for 4 of the 6 models, 

the returns from Positive Predictions strategy were higher compared to 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉’s 

Top Quartile strategy. Not only do Positive Predictions strategies based on robust 

models achieve higher average return, they also provide lower variance, lower inter 

quartile range and, and that is important, much higher skewness, which in some cases 

is even positive, suggesting a preferable distribution of returns around the mean. 

Overall, it seems that in terms of prediction errors, as well as achievable returns, the 

models based on robust estimators of skewness and kurtosis provide a non-negligible 

improvement over the 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉 

Table 14 

Comparison of means of log returns from strategies based on models with robust measures 

       
Model - Strategy Min. 1st Qu. Median Mean 3rd Qu. Max. 

𝜃𝐵𝑜𝑤𝑙𝑒𝑦,𝑀𝑜𝑜𝑟𝑠 TQ -0.047129 -0.003608 0.000436 0.000380 0.004332 0.031807 

𝜃𝐵𝑜𝑤𝑙𝑒𝑦,𝑀𝑜𝑜𝑟𝑠 PP -0.042947 -0.003415 0.000143 0.000270 0.004034 0.032476 

𝜃𝐵𝑜𝑤𝑙𝑒𝑦,𝐶&𝑆 TQ -0.047129 -0.003757 0.000488 0.000284 0.004361 0.035267 

𝜃𝐵𝑜𝑤𝑙𝑒𝑦,𝐶&𝑆 PP -0.042973 -0.003397 0.000305 0.000205 0.004051 0.032375 

𝜃𝐺&𝑀,𝑀𝑜𝑜𝑟𝑠 TQ -0.042635 -0.003584 0.000642 0.000382 0.004704 0.032583 

𝜃𝐺&𝑀,𝑀𝑜𝑜𝑟𝑠 PP -0.042920 -0.003060 0.000232 0.000338 0.004112 0.033596 

𝜃𝐺&𝑀,𝐶&𝑆 TQ -0.042635 -0.003615 0.000369 0.000203 0.004090 0.032583 

𝜃𝐺&𝑀,𝐶&𝑆 PP -0.042920 -0.003389 0.000427 0.000305 0.004163 0.033454 

𝜃𝑃𝑒𝑎𝑟𝑠𝑜𝑛,𝑀𝑜𝑜𝑟𝑠 TQ -0.042635 -0.003454 0.000474 0.000353 0.004450 0.032583 

𝜃𝑃𝑒𝑎𝑟𝑠𝑜𝑛,𝑀𝑜𝑜𝑟𝑠 PP -0.042920 -0.002940 0.000194 0.000359 0.004110 0.033596 

𝜃𝑃𝑒𝑎𝑟𝑠𝑜𝑛,𝐶&𝑆 TQ -0.042635 -0.003596 0.000279 0.000184 0.004252 0.032583 

𝜃𝑃𝑒𝑎𝑟𝑠𝑜𝑛,𝐶&𝑆 PP -0.042920 -0.003297 0.000381 0.000296 0.004073 0.033596 

       

  Variance 

Pearson 

skewness 

Moors 

kurtosis   
𝜃𝐵𝑜𝑤𝑙𝑒𝑦,𝑀𝑜𝑜𝑟𝑠 TQ   0.000049 -0.023848 6.666691     
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𝜃𝐵𝑜𝑤𝑙𝑒𝑦,𝑀𝑜𝑜𝑟𝑠 PP  0.000042 0.059371 6.550547   
𝜃𝐵𝑜𝑤𝑙𝑒𝑦,𝐶&𝑆 TQ  0.000050 -0.086396 6.829270   
𝜃𝐵𝑜𝑤𝑙𝑒𝑦,𝐶&𝑆 PP  0.000042 -0.046531 6.525773   
𝜃𝐺&𝑀,𝑀𝑜𝑜𝑟𝑠 TQ  0.000047 -0.113260 5.544816   
𝜃𝐺&𝑀,𝑀𝑜𝑜𝑟𝑠 PP  0.000041 0.049202 7.028134   
𝜃𝐺&𝑀,𝐶&𝑆 TQ  0.000047 -0.072860 5.857397   
𝜃𝐺&𝑀,𝐶&𝑆 PP  0.000041 -0.057024 7.040655   
𝜃𝑃𝑒𝑎𝑟𝑠𝑜𝑛,𝑀𝑜𝑜𝑟𝑠 TQ  0.000048 -0.052533 5.569126   
𝜃𝑃𝑒𝑎𝑟𝑠𝑜𝑛,𝑀𝑜𝑜𝑟𝑠 PP  0.000041 0.076935 7.156331   
𝜃𝑃𝑒𝑎𝑟𝑠𝑜𝑛,𝐶&𝑆 TQ  0.000047 -0.041460 5.816183   
𝜃𝑃𝑒𝑎𝑟𝑠𝑜𝑛,𝐶&𝑆 PP   0.000041 -0.039894 7.234082     

* the reported statistics describe the distributions of daily means of log returns of chosen stocks 

 

4.2.4 Robustness to model specification 

In this final section of the results chapter, the impact of changes to model specification 

is analyzed. 1) Extending the model by interaction terms to at least partially account 

for the so-called leverage and GARCH effects; 2) Restricting the model to see how the 

estimates are influenced by, say, omission of daily log return from the explanatory 

variables. The impact of the changes to specification is evaluated in 3 steps: 1) mean 

and median coefficients are presented; 2) the performance on the test set is analyzed 

and results from Diebold-Mariano test are discussed; 3) return from the two trading 

strategies are compared. 

Let’s start with the extended models. It can be observed in Table 15 and Table 16 

that the inclusion of interaction terms does not change the results from model 

estimation too much. While the mean coefficient on realized kurtosis is now positive 

for all extended models except 𝜃1,1,1,1,0,0,1, Table 16 clearly shows that the estimates 

are still negative for majority of the stocks. Other than that, the estimates for the set of 

variables included in 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉are persistent across model extensions. 

Slightly more interesting case presents itself when we look at the robustness to 

variable omission. As can be seen from the results for 𝜃0,1,1,1,0,0,0 and 𝜃0,1,1,1,0,0,0̃ , both 

the mean and median coefficient on skewness become negative when lagged returns 

are excluded from the model. Thus, the difference between results of Amaya et al 

(2015)  and this thesis seems to be explained purely by the decision to account for the 

lagged returns. Other than that, the estimated coefficients do not change much upon 

our decision to exclude either of the variables. 
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Table 15 

 

 

Table 16 

 

Summary of mean coefficients across specifications 

         

Model Intercept Return Variance Skewness Kurtosis 

Variance * 

Kurtosis 

Skewness 

* Return 

Variance * 

Return 

𝐴𝑅1 -4.23E-05 -4.70E-02 - - - - - - 

𝜃𝑅𝑉  -2.43E-04 -5.95E-02 1.35E+00 4.60E-04 -3.04E-06 - - - 

𝜃1,1,1,1,1,1,1 -3.18E-04 -4.88E-02 1.53E+00 3.38E-04 2.29E-05 -1.95E-02 -2.40E-02 -1.07E+01 

𝜃1,1,1,1,0,1,1 -2.07E-04 -4.98E-02 1.31E+00 4.04E-04 9.76E-07 - -1.88E-02 -8.98E+00 

𝜃1,1,1,1,1,0,0 -4.29E-04 -5.80E-02 1.65E+00 3.97E-04 2.32E-05 -2.21E-02 - - 

𝜃1,1,1,1,0,1,0 -2.55E-04 -5.79E-02 1.45E+00 4.93E-04 3.80E-06 - -2.08E-02 - 

𝜃1,1,1,1,0,0,1 -2.01E-04 -4.95E-02 1.18E+00 3.77E-04 -3.27E-06 - - -9.84E+00 

𝜃1,1,1,0,0,0,0 -2.75E-04 -5.91E-02 1.33E+00 4.24E-04 - - - - 

𝜃1,1,0,1,0,0,0 -2.51E-04 -5.24E-02 1.35E+00 - -1.04E-06 - - - 

𝜃1,0,1,1,0,0,0 -1.66E-05 -5.34E-02 - 4.20E-04 -3.68E-06 - - - 

𝜃0,1,1,1,0,0,0 -2.14E-04 - 1.34E+00 -1.59E-04 -7.26E-06 - - - 

𝜃1,1,0,0,0,0,0 -2.68E-04 -5.26E-02 1.33E+00 - - - - - 

Summary of median coefficients across specifications 

         

Model Intercept Return Variance Skewness Kurtosis 

Variance * 

Kurtosis 

Skewness 

* Return 

Variance * 

Return 

𝐴𝑅1̃ 5.92E-05 -4.36E-02 - - - - - - 

𝜃𝑅𝑉̃ -2.05E-04 -5.84E-02 1.57E+00 3.82E-04 -1.10E-05 - - - 

𝜃1,1,1,1,1,1,1̃  -2.33E-04 -4.29E-02 1.71E+00 3.70E-04 -6.90E-06 -4.18E-03 -1.01E-02 -1.85E+00 

𝜃1,1,1,1,0,1,1̃  -2.22E-04 -5.04E-02 1.74E+00 3.75E-04 -5.81E-06 - -8.51E-03 -3.00E+00 

𝜃1,1,1,1,1,0,0̃  -3.62E-04 -5.99E-02 2.08E+00 3.12E-04 1.56E-05 -3.34E-02 - - 

𝜃1,1,1,1,0,1,0̃  -2.63E-04 -5.77E-02 1.81E+00 4.69E-04 -7.89E-07 - -1.30E-02 - 

𝜃1,1,1,1,0,0,1̃  -1.59E-04 -4.26E-02 1.45E+00 3.22E-04 -9.42E-06 - - -4.47E+00 

𝜃1,1,1,0,0,0,0̃  -3.07E-04 -5.71E-02 1.57E+00 2.95E-04 - - - - 

𝜃1,1,0,1,0,0,0̃  -2.38E-04 -4.82E-02 1.54E+00 - -6.39E-06 - - - 

𝜃1,0,1,1,0,0,0̃  1.79E-04 -5.73E-02 - 3.22E-04 -1.01E-05 - - - 

𝜃0,1,1,1,0,0,0̃  -1.54E-04 - 1.49E+00 -4.64E-05 -1.10E-05 - - - 

𝜃1,1,0,0,0,0,0̃  -3.06E-04 -4.81E-02 1.54E+00 - - - - - 
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The out of sample predictive accuracy is discussed next. The accuracy of individual 

model specifications is presented in Table 17. In terms of RMSE, the AR1 model 

outperforms any of the models. Some of the extended models achieve comparatively 

poor results and their RMSE is up to 66% higher compare do AR1. Specifically, 

inclusion of the interaction term between variance and kurtosis seems to result in very 

steep increase of RMSE. As far as reduced models are concerned, omitting realized 

variance from the equation would lead to lower RMSE. However, it is difficult to 

imagine that AR1 would in pricing outperform models which make use of risk 

measures. And indeed, when we look at other indicators of prediction accuracy, such 

as Mean Absolute Deviation, we can see that the models are relatively comparable. 

This is again visible in Table 17, which shows that the difference between models with 

highest and lowest mean absolute deviation is only 5%. Furthermore, 

𝑀𝑜𝑑𝑒𝑙 𝜃1,0,1,1,0,0,0 was actually second best when measured by RMSE, but there were 

only 2 other models doing worse in terms of Mean Absolute Deviation and none of 

them did worse in Median Absolute Deviation. 

The model’s ability to identify the sign of future returns correctly goes significantly 

down if either realized skewness or kurtosis are omitted. Without skewness and 

kurtosis, the model is no longer significantly better than random guessing. The least 

costly omission appears to be the realized variance, which results in accuracy decrease 

of only 0.2%.  On the other hand, realized skewness is the costliest to omit as the 

omission causes 0.5% decrease in model’s accuracy.  

While restricting 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉 appears to decrease the model’s performance, 

inclusion of the interaction terms is mostly beneficial. When all of the proposed 

interaction terms are included, the model accuracy goes far beyond what could be 

achievable through random guessing in over 99% of cases. This means the models 

predictive power is very unlikely to be caused by coincidence or luck. On top of that, 

when the interaction term between skewness and returns is included the model achieves 

over 50% accuracy for 21 out of the 29 stocks. Meanwhile, any omission of variables 

decreases this value below 20/29, depending on model specification.  

All of the extended models achieve precision and negative predictive value above 

50% and precision-wise the extended models, as well as 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉, perform better 

than their restricted counterparts. While 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉 does a better job in predicting 



Results  61 

negative returns (as measured by Negative Predictive Value) than the extended models, 

the difference is not too large. On the other hand, omitting either realized skewness or 

kurtosis reduces the negative predictive value significantly. Meanwhile, omitting the 

return or variance allows us to achieve better performance in identifying the negative 

returns. However, this improvement fails to compensate for the decrease in precision.  

Table 17 

Comparison of aggregate accuracy across model specifications 

      

Model RMSE 

Mean 

Absolute 

Deviation 

Median 

Absolute 

Deviation Accuracy 

Accuracy 

over 50 

𝐴𝑅1 0.00974 0.00723 0.00559 0.50177 15 

𝜃𝑅𝑉 0.00984 0.00724 0.00560 0.50741 20 

𝜃1,1,1,1,1,1,1 0.01620 0.00757 0.00561 0.51227 21 

𝜃1,1,1,1,0,1,1 0.00985 0.00725 0.00561 0.50324 18 

𝜃1,1,1,1,1,0,0 0.01612 0.00755 0.00560 0.50904 20 

𝜃1,1,1,1,0,1,0 0.00986 0.00725 0.00560 0.50873 21 

𝜃1,1,1,1,0,0,1 0.00983 0.00723 0.00558 0.50601 20 

𝜃1,1,1,0,0,0,0 0.00984 0.00723 0.00558 0.50463 18 

𝜃1,1,0,1,0,0,0 0.00984 0.00723 0.00560 0.50221 16 

𝜃1,0,1,1,0,0,0 0.00975 0.00725 0.00561 0.50571 18 

𝜃0,1,1,1,0,0,0 0.00985 0.00723 0.00557 0.50417 19 

𝜃1,1,0,0,0,0,0 0.00983 0.00722 0.00559 0.50187 16 

      

  Precision 

Negative 

Predictive 

Value 

Improved 

RMSE 

Improved 

Median 

absolute 

dev. 

Improved 

Accuracy 

𝐴𝑅1 0.51028 0.48726 24 12 10 

𝜃𝑅𝑉 0.52342 0.50947 0 0 0 

𝜃1,1,1,1,1,1,1 0.52443 0.50692 7 14 15 

𝜃1,1,1,1,0,1,1 0.52767 0.50266 14 15 8 

𝜃1,1,1,1,1,0,0 0.52064 0.50711 11 14 14 

𝜃1,1,1,1,0,1,0 0.53016 0.50816 14 13 15 

𝜃1,1,1,1,0,0,1 0.51517 0.51015 19 19 13 

𝜃1,1,1,0,0,0,0 0.51170 0.50414 15 17 10 

𝜃1,1,0,1,0,0,0 0.51547 0.49209 19 14 9 

𝜃1,0,1,1,0,0,0 0.51426 0.51243 20 13 13 

𝜃0,1,1,1,0,0,0 0.50742 0.51247 9 17 14 

𝜃1,1,0,0,0,0,0 0.51021 0.49132 16 16 8 

* For ratios, the metric average over all 29 stocks is used 

* Improvements are relative to the 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉  
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The Table 18 shows the results of the Diebold-Mariano test of individual models 

against the 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉. The test has been performed for two shapes of the cost function 

– linear (P1) and second power (P2). For the details of the Diebold-Mariano test, see 

Diebold & Mariano (1995) and Harvey et. al (1997). As the result for AR1 indicates, 

we find the use of realized measures to be of limited use when evaluating purely on the 

loss function in either linear of exponential. However, as the analysis of accuracy in 

predicting the sign of future returns and the analysis of returns achievable by trading 

show, the models relying on realized measures, and especially those that leverage 

skewness, kurtosis and potentially even the interaction terms, are extremely useful in 

analyzing and predicting future returns. 

Table 18 

Results of Diebold-Mariano test of individual Models 

against 𝑴𝒐𝒅𝒆𝒍 𝜽𝑹𝑽. AR1 comes out as the most accurate. 

     

Model 

More 

Accurate 

(P1) 

Less 

Accurate 

(P1) 

More 

Accurate 

(P2) 

Less 

Accurate 

(P2) 

𝐴𝑅1 8 0 6 0 

𝜃1,1,1,1,1,1,1 2 5 0 3 

𝜃1,1,1,1,0,1,1 4 3 2 1 

𝜃1,1,1,1,1,0,0 2 6 0 4 

𝜃1,1,1,1,0,1,0 3 5 1 6 

𝜃1,1,1,1,0,0,1 7 2 6 1 

𝜃1,1,1,0,0,0,0 8 5 3 2 

𝜃1,1,0,1,0,0,0 5 2 1 1 

𝜃1,0,1,1,0,0,0 5 4 4 1 

𝜃0,1,1,1,0,0,0 4 2 0 6 

𝜃1,1,0,0,0,0,0 7 3 3 2 

 

In the remainder of this chapter, the returns achievable by the two trading strategies 

are discussed. The Table 19 summarizes the returns achievable by the Top Quartile 

strategy. The extended models outperform the 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉. While some of the models 

have a minimum return lower compared to the 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉, they also tend to have a 

higher maximum return, with the possible exception of 𝑀𝑜𝑑𝑒𝑙 𝜃1,1,1,1,1,0,0 which 

achieves a spectacularly bad minimum return while not achieving the maximum return 

comparable to other extended models. Similarly, when we look at the interquartile 

range, the extended models tend to dominate the 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉. While two of the 
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extended models have lower value of 1st quartile of the returns, this is more than 

compensated by the increase in the 3rd quartile. For the 𝑀𝑜𝑑𝑒𝑙 𝜃1,1,1,1,1,1,1 we have 3rd 

Quartile higher by 7.6% compared to the 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉, while 1st quartile is only 3% 

below that of 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉. 𝑀𝑜𝑑𝑒𝑙 𝜃1,1,1,1,1,0,0 (which is the 2nd of the two with the 

lower 1st quartile) has slightly lower 3rd quartile than 𝑀𝑜𝑑𝑒𝑙 𝜃1,1,1,1,1,1,1, but it is still 

high enough to beat 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉. In terms of the mean and median return, the benefits 

of including the interaction terms are clear. 

Evaluated on the very same criteria, all the restricted models perform worse 

compared to 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉. Not a single one of the restricted models achieve higher mean 

return than 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉 and they perform much worse compared to the extended 

models. Similarly, their 1st quartiles tend to be much lower without the 3rd quartile 

compensating fully for this shortcoming. 

Finally, the returns achieved by the Positive Predictions strategy are analyzed. The 

numbers are presented in the Table 20 and they generally confirm the results of the 

above analysis. 

While two of the extended models – 𝑀𝑜𝑑𝑒𝑙 𝜃1,1,1,1,0,1,1 and 𝑀𝑜𝑑𝑒𝑙 𝜃1,1,1,1,0,1,0 - do 

not actually beat 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉 in terms of mean return, the extended models all achieve 

higher median returns. At the same time, it’s not the goal of this exercise to show that 

all of the model extensions perform better compared to 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉. The important take 

away message is that 𝑀𝑜𝑑𝑒𝑙 𝜃1,1,1,1,1,1,1 tends to beat the other specifications across 

most of the performance measurement methods. And indeed, 𝑀𝑜𝑑𝑒𝑙 𝜃1,1,1,1,1,1,1 offers 

a mean return which is almost 30% higher than that of 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉 when Positive 

Predictions strategy is used and 28% higher when Top Quartile strategy is used. 

Furthermore, as in case of the Top Quartile strategy, the extended models tend to offer 

a more lucrative distribution of the returns as measured by 1st and 3rd quartile. 

Moreover, the 𝑀𝑜𝑑𝑒𝑙 𝜃1,1,1,1,1,1,1 offers not only higher returns, but also lower 

volatility of the returns, as the variance is marginally lower in case of this model. The 

summary of the restricted models clearly shows that omitting skewness and kurtosis is 

very costly, resulting at drop of median return by over 60% and mean return by almost 

40% relative to the 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉. Omitting realized volatility is much less costly, but 

still results in decrease of mean return by 9%. 
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Table 19 

Comparison of means of log returns from the Top Quartile strategy across model 

specifications 

       
Model Min. 1st Qu. Median Mean 3rd Qu. Max. 

𝐴𝑅1 -0.045774 -0.003744 0.000284 0.000202 0.004366 0.040566 

𝜃𝑅𝑉 -0.043528 -0.003595 0.000478 0.000290 0.004431 0.034846 

𝜃1,1,1,1,1,1,1 -0.048090 -0.003702 0.000698 0.000371 0.004767 0.040306 

𝜃1,1,1,1,0,1,1 -0.041083 -0.003459 0.000547 0.000360 0.004555 0.043187 

𝜃1,1,1,1,1,0,0 -0.049642 -0.003704 0.000568 0.000366 0.004667 0.034122 

𝜃1,1,1,1,0,1,0 -0.041083 -0.003494 0.000653 0.000427 0.004633 0.040156 

𝜃1,1,1,1,0,0,1 -0.044427 -0.003479 0.000476 0.000337 0.004355 0.039196 

𝜃1,1,1,0,0,0,0 -0.048037 -0.003913 0.000527 0.000272 0.004344 0.036811 

𝜃1,1,0,1,0,0,0 -0.043528 -0.003789 0.000307 0.000247 0.004562 0.034846 

𝜃1,0,1,1,0,0,0 -0.041360 -0.003634 0.000602 0.000241 0.004280 0.040566 

𝜃0,1,1,1,0,0,0 -0.047129 -0.003515 0.000416 0.000276 0.004548 0.024706 

𝜃1,1,0,0,0,0,0 -0.048037 -0.003894 0.000176 0.000205 0.004505 0.036811 

       

  Variance 

Pearson 

skewness 

Moors 

kurtosis   
𝐴𝑅1   0.000051 -0.034566 6.992001     

𝜃𝑅𝑉  0.000049 -0.080383 5.932262   
𝜃1,1,1,1,1,1,1   0.000054 -0.133784 6.941249     

𝜃1,1,1,1,0,1,1  0.000048 -0.080756 6.852278   
𝜃1,1,1,1,1,0,0  0.000051 -0.084378 6.928928   
𝜃1,1,1,1,0,1,0  0.000049 -0.096417 5.964541   
𝜃1,1,1,1,0,0,1   0.000049 -0.059695 6.795978     

𝜃1,1,1,0,0,0,0  0.000050 -0.108184 7.027449   
𝜃1,1,0,1,0,0,0  0.000049 -0.025844 6.060263   
𝜃1,0,1,1,0,0,0  0.000050 -0.152955 6.186843   
𝜃0,1,1,1,0,0,0  0.000047 -0.061396 6.080137   
𝜃1,1,0,0,0,0,0  0.000050 0.012254 7.162438     

* the reported statistics describe the distributions of daily means of log returns of chosen 

stocks 

 

 

Table 20 

Comparison of means of log returns from the Positive Predictions strategy across 

model specifications 

       
Model Min. 1st Qu. Median Mean 3rd Qu. Max. 

𝐴𝑅1 -0.041756 -0.003279 0.000359 0.000146 0.003599 0.033092 

𝜃𝑅𝑉 -0.043719 -0.003533 0.000366 0.000208 0.004170 0.034184 

𝜃1,1,1,1,1,1,1 -0.043530 -0.003237 0.000500 0.000269 0.003927 0.034144 

𝜃1,1,1,1,0,1,1 -0.042965 -0.003399 0.000622 0.000192 0.003910 0.033354 
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𝜃1,1,1,1,1,0,0 -0.044224 -0.003381 0.000606 0.000325 0.004176 0.034184 

𝜃1,1,1,1,0,1,0 -0.043788 -0.003400 0.000560 0.000190 0.004033 0.034576 

𝜃1,1,1,1,0,0,1 -0.043326 -0.003301 0.000376 0.000240 0.004278 0.031477 

𝜃1,1,1,0,0,0,0 -0.043193 -0.003700 0.000316 0.000230 0.004150 0.034184 

𝜃1,1,0,1,0,0,0 -0.043788 -0.003644 0.000154 0.000134 0.004064 0.034184 

𝜃1,0,1,1,0,0,0 -0.042955 -0.003213 0.000279 0.000189 0.003635 0.031537 

𝜃0,1,1,1,0,0,0 -0.043780 -0.003377 0.000430 0.000206 0.004159 0.032636 

𝜃1,1,0,0,0,0,0 -0.042973 -0.003736 0.000142 0.000126 0.004005 0.034184 

       

  Variance 

Pearson 

skewness 

Moors 

kurtosis   
𝐴𝑅1   0.000040 -0.100776 6.997802     

𝜃𝑅𝑉  0.000043 -0.072098 6.653542   
𝜃1,1,1,1,1,1,1   0.000042 -0.106213 6.959884     

𝜃1,1,1,1,0,1,1  0.000042 -0.200126 6.765637   
𝜃1,1,1,1,1,0,0  0.000044 -0.126513 6.648649   
𝜃1,1,1,1,0,1,0  0.000042 -0.170615 7.002441   
𝜃1,1,1,1,0,0,1   0.000041 -0.064040 6.700909     

𝜃1,1,1,0,0,0,0  0.000043 -0.038899 6.530684   
𝜃1,1,0,1,0,0,0  0.000044 -0.009255 6.661986   
𝜃1,0,1,1,0,0,0  0.000039 -0.043261 7.306972   
𝜃0,1,1,1,0,0,0  0.000041 -0.105102 6.977001   

𝜃1,1,0,0,0,0,0   0.000044 -0.007400 6.431554     

* the reported statistics describe the distributions of daily means of log returns of chosen 

stocks 
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5 Conclusion 

This thesis focuses on a highly relevant topic in the current financial literature, the use 

of realized moments in asset pricing. It extends the cross-sectional analysis done by 

Amaya et al (2015) to the time series and studies its properties. Moreover, it sets up a 

framework for the evaluation of the pricing model quality which allows for better 

understanding of the pros and cons of the method of realized moments. On top of a 

broad set of accuracy metrics for the model performance on the test set it is also 

examined what returns are achievable by a trader who would rely on recommendations 

from the model. Additionally, the use of robust estimators is explored. Furthermore, a 

simple extension to the pricing model is proposed based on lessons from Neuberger et 

al (2018). The considered extension accounts for interaction terms between variance 

and kurtosis, skewness and return, and variance and return. 

First, it is shown that a time series model leveraging the realized moments 

(𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉) has, as opposed to the benchmark AR1, ability to predict the sign of 

future returns with significantly better than random accuracy. Moreover, the 

𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉 has been shown to allow an agent to achieve 60-120% higher return over 

the test period compared to passively holding the stocks over the same period. When 

looking at the Top Quartile strategy, the 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉 resulted in return which was 40% 

higher compared to AR1. For Positive Predictions strategy, the achieved return was 

330% higher compared to AR1, which is likely due to AR1’s inability to consistently 

beat random guessing in predicting the sign of future returns. That being said, the 

Positive Predictions strategy based on 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉 resulted in higher returns than the 

Top Quartile strategy for AR1 as well as passively holding entire portfolio over the 

time period covered by the test set. Finally, the 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉 has been shown to provide 

solid predictions across the entire portfolio of 29 stocks. All of the above results were 

achieved despite of 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉 underperforming simple AR1 as measured by RMSE 

or Diebold-Mariano test. 

Another important finding is the robustness of the above-mentioned results to use 

of alternative estimators of variance, skewness and kurtosis, such as Moors or Siddiqui 
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kurtosis and Bowley, Groeneveld-Meeden or Pearson measures of skewness. It has 

been shown that the outlier robust measures result in improvement of accuracy as 

measured by RMSE or MAD. Furthermore, the models based on the robust measures 

are still able to beat both AR1 and the passive investment strategy in terms of returns 

achieved over the period covered by the test set. Moreover, the use of Moors kurtosis 

in model specification and Top Quartile strategy for trading resulted in return which 

was 21-32% higher compared to 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉. Same measure of kurtosis combined with 

the Positive Predictions strategy resulted in returns higher by 30-72% compared to the 

𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉. At the same time, the models mostly kept their ability to beat the random 

guessing in terms of identifying the sign of future returns. 

Finally, a robustness of the estimates to model specification has been tested. The 

difference between the coefficient on skewness in 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉 and that reported by 

Amaya et al (2015) has been shown to be due to inclusion of the lagged return. 

Moreover, the omission of the lagged return has such a large negative impact on 

accuracy and achievable returns, that it clearly deserves to be included in the model – 

the omission of lagged return resulted in 1-5% lower expected return over the test 

period, higher RMSE and lower ability to correctly identify sign of future returns. 

Similarly, the omission of skewness and kurtosis variables from the model had 

significant impact on expected returns from trading, as well as on the model’s ability 

to forecast the sign of future returns. On the other hand, it has been shown that 

accounting for the interaction terms between variance and return, variance and kurtosis, 

and skewness and return (𝑀𝑜𝑑𝑒𝑙 𝜃1,1,1,1,1,1,1) is of great benefit to the model 

performance as measured by achievable returns or ability to predict sign of future 

returns. However, the RMSE and other standard accuracy measures do not reflect this, 

proving the point made in this thesis, that they shouldn’t be solely relied on when 

evaluating pricing models. The extended model can yield expected returns which are 

28-29% higher compared to 𝑀𝑜𝑑𝑒𝑙 𝜃𝑅𝑉 and median return higher by 37-46%, 

depending on the trading strategy employed by the agent. Furthermore, the 

𝑀𝑜𝑑𝑒𝑙 𝜃1,1,1,1,1,1,1 has achieved over 51% accuracy in predicting the sign of future 

returns, which is significantly more than the other models based on realized moments.  

As far as identifying the sign of future return is concerned, the 𝑀𝑜𝑑𝑒𝑙 𝜃1,1,1,1,1,1,1 

would be better than random guessing in over 99% of attempts. 
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It can be concluded that the realized moments are very useful in the analysis of 

stock market returns. Despite the literature on using realized moments in asset pricing 

is already quite extensive, and this thesis contributing to that literature, there remains 

a lot to be researched. Some of the future research might focus on longer time periods, 

or forecasting of variance instead of the returns. Similarly, it would be interesting to 

see the measure definitions of Neuberger & Payne (2018) applied to stock market 

returns of individual companies. Also, one might want to consider other estimation 

techniques – be it lasso regression which would allow for use of many more interesting 

determinants of returns; Poisson regression, which would allow for multiplicative 

structure of the model, although it couldn’t be applied to log returns directly as it needs 

values of explained variables to be positive; or some other machine learning technique. 

If our goal was merely improving the forecasting accuracy, then online learning would 

be yet another reasonable step to take, as the data summary presented in this thesis 

shows that there might be a difference between the distribution of returns in the training 

set and the test set. 
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Appendix A: Tables  

Data summary and supporting tables 

Table 21 

Summary statistics of the training set 5-minute log returns 

       
Company Min. 1st Qu. Median Mean 3rd Qu. Max. 

AAPL -0.002322 -0.000286 0.000000 0.000003 0.000286 0.002613 

AMZN -0.004222 -0.000274 0.000000 0.000004 0.000275 0.004467 

BAC -0.003497 -0.000291 0.000000 0.000030 0.000292 0.006452 

C -0.002660 -0.000222 0.000000 -0.000006 0.000222 0.001998 

CMCSA -0.001725 -0.000216 0.000000 -0.000004 0.000216 0.001929 

CSCO -0.004226 -0.000326 0.000000 0.000002 0.000326 0.003896 

CVX -0.002123 -0.000516 0.000000 0.000019 0.000517 0.002732 

DIS -0.003128 -0.000350 0.000000 0.000005 0.000349 0.002661 

GE -0.005166 -0.000399 0.000000 -0.000003 0.000399 0.003565 

HD -0.002787 -0.000254 0.000000 0.000020 0.000254 0.004303 

IBM -0.002106 -0.000253 0.000000 0.000022 0.000266 0.002697 

INTC -0.003013 -0.000371 0.000000 0.000019 0.000373 0.003755 

JNJ -0.001390 -0.000155 0.000000 0.000006 0.000155 0.001723 

JPM -0.002851 -0.000285 0.000000 0.000001 0.000285 0.002845 

KO -0.002140 -0.000236 0.000000 0.000009 0.000236 0.003273 

MCD -0.002866 -0.000350 0.000000 0.000011 0.000349 0.003592 

MRK -0.003644 -0.000323 0.000000 0.000013 0.000324 0.003653 

MSFT -0.002018 -0.000395 0.000000 0.000013 0.000396 0.002414 

ORCL -0.003028 -0.000729 0.000000 0.000020 0.000677 0.003037 

PEP -0.003287 -0.000188 0.000000 0.000003 0.000189 0.002460 

PFE -0.012951 -0.000370 0.000000 -0.000003 0.000370 0.009268 

PG -0.001901 -0.000190 0.000000 0.000014 0.000190 0.004198 

QCOM -0.004780 -0.000298 0.000000 0.000022 0.000300 0.004158 

SLB -0.004076 -0.000382 0.000000 0.000011 0.000386 0.002856 

T -0.003695 -0.000517 0.000000 0.000006 0.000518 0.003586 

VZ -0.002315 -0.000288 0.000000 0.000006 0.000289 0.002026 

WFC -0.001782 -0.000163 0.000000 0.000003 0.000164 0.003783 

WMT -0.002211 -0.000203 0.000000 0.000010 0.000206 0.002630 

XOM -0.002751 -0.000336 0.000000 0.000013 0.000337 0.002342 
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Table 22 

Summary statistics of the training set daily log returns 

       
Company Min. 1st Qu. Median Mean 3rd Qu. Max. 

AAPL -0.122318 -0.010627 0.000098 -0.000398 0.010136 0.112280 

AMZN -0.131336 -0.010545 0.000477 0.001454 0.012964 0.138765 

BAC -0.250927 -0.012125 -0.001522 -0.002016 0.008602 0.201400 

C -0.141597 -0.007890 0.000000 0.000307 0.008878 0.235337 

CMCSA -0.092217 -0.008604 0.000000 -0.000261 0.007871 0.076093 

CSCO -0.120896 -0.007354 0.000749 0.000187 0.007903 0.145960 

CVX -0.346825 -0.012736 -0.002008 -0.003470 0.008034 0.199238 

DIS -0.087877 -0.006736 0.000573 0.000822 0.008293 0.118534 

GE -0.118306 -0.007286 -0.000600 -0.000712 0.006511 0.113550 

HD -0.076310 -0.007545 0.000336 0.000500 0.008119 0.114312 

IBM -0.067651 -0.004848 0.000917 0.000821 0.006980 0.063860 

INTC -0.090707 -0.008672 0.000000 -0.000099 0.008718 0.087969 

JNJ -0.077473 -0.003952 0.000000 -0.000018 0.004166 0.072753 

JPM -0.180445 -0.009441 0.000000 0.000129 0.009274 0.156672 

KO -0.072791 -0.004763 0.000207 0.000060 0.004956 0.075928 

MCD -0.079908 -0.005783 0.000457 0.000238 0.006001 0.103508 

MRK -0.079823 -0.006643 0.000000 0.000007 0.007150 0.091907 

MSFT -0.075523 -0.006465 -0.000312 -0.000025 0.006694 0.110211 

ORCL -0.097522 -0.007759 0.000668 0.000500 0.009051 0.077413 

PEP -0.065697 -0.004505 0.000484 0.000492 0.005279 0.087823 

PFE -0.065597 -0.006704 0.000000 -0.000233 0.006207 0.069634 

PG -0.065549 -0.003933 0.000813 0.000549 0.004883 0.076587 

QCOM -0.111962 -0.008507 -0.000054 -0.000046 0.008627 0.104676 

SLB -0.155198 -0.010950 0.000117 -0.000243 0.011370 0.125305 

T -0.062872 -0.006402 0.000000 -0.000217 0.006148 0.124219 

VZ -0.076025 -0.006490 -0.000028 -0.000172 0.005859 0.109309 

WFC -0.192645 -0.008385 -0.000164 0.000099 0.008603 0.193286 

WMT -0.061708 -0.005364 0.000172 0.000092 0.005489 0.077426 

XOM -0.126113 -0.006010 0.000670 0.000401 0.007588 0.118856 

 

Table 23 

Summary statistics of the test set 5-minute log returns 

       
Company Min. 1st Qu. Median Mean 3rd Qu. Max. 

AAPL -0.001985 -0.000284 0.000000 0.000007 0.000284 0.001701 

AMZN -0.002878 -0.000263 0.000000 0.000012 0.000521 0.002620 

BAC -0.001926 -0.000274 0.000000 0.000013 0.000274 0.001649 

C -0.002192 -0.000219 0.000000 0.000006 0.000220 0.001315 

CMCSA -0.001090 -0.000218 0.000000 -0.000010 0.000218 0.001531 

CSCO -0.002273 -0.000323 0.000000 0.000005 0.000323 0.001301 

CVX -0.002015 -0.000501 0.000000 0.000022 0.000502 0.002020 
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DIS -0.002953 -0.000348 0.000000 -0.000009 0.000347 0.002780 

GE -0.001972 -0.000389 0.000000 0.000021 0.000391 0.001959 

HD -0.003641 -0.000243 0.000000 -0.000007 0.000243 0.002659 

IBM -0.001496 -0.000126 0.000000 0.000010 0.000232 0.002092 

INTC -0.002173 -0.000361 0.000000 -0.000005 0.000361 0.001449 

JNJ -0.001083 -0.000155 0.000000 -0.000008 0.000155 0.001241 

JPM -0.002830 -0.000282 0.000000 0.000013 0.000282 0.001590 

KO -0.001632 -0.000233 0.000000 0.000007 0.000233 0.001635 

MCD -0.001370 -0.000341 0.000000 0.000021 0.000341 0.002381 

MRK -0.002542 -0.000317 0.000000 0.000015 0.000317 0.002223 

MSFT -0.001569 -0.000321 0.000000 0.000012 0.000389 0.002577 

ORCL -0.002740 -0.000617 0.000000 0.000027 0.000717 0.002899 

PEP -0.001829 -0.000182 0.000000 -0.000008 0.000182 0.001824 

PFE -0.001114 -0.000369 0.000000 0.000019 0.000369 0.001853 

PG -0.001289 -0.000184 0.000000 0.000001 0.000184 0.001277 

QCOM -0.001999 -0.000288 0.000000 0.000018 0.000287 0.002851 

SLB -0.003315 -0.000379 0.000000 0.000001 0.000379 0.004341 

T -0.001564 -0.000520 0.000000 0.000014 0.000520 0.002092 

VZ -0.001451 -0.000290 0.000000 0.000006 0.000290 0.001450 

WFC -0.000813 -0.000162 0.000000 0.000004 0.000162 0.001780 

WMT -0.001597 -0.000200 0.000000 0.000011 0.000200 0.001797 

XOM -0.002346 -0.000334 0.000000 0.000000 0.000334 0.003684 

 

Table 24 

Summary statistics of the test set daily log returns 

       

Company Min. 1st Qu. Median Mean 3rd Qu. Max. 

AAPL -0.054671 -0.007383 -0.000299 -0.000263 0.008110 0.080325 
AMZN -0.086145 -0.008167 0.000149 -0.000032 0.008588 0.052097 
BAC -0.055092 -0.006539 -0.000566 -0.000329 0.006191 0.048617 
C -0.041804 -0.006018 0.000416 0.000049 0.005919 0.077748 
CMCSA -0.048360 -0.005545 0.000866 0.000560 0.006555 0.055900 
CSCO -0.067277 -0.005927 -0.000367 0.000054 0.005810 0.047267 
CVX -0.049419 -0.006176 -0.000427 -0.000329 0.006242 0.034961 
DIS -0.040454 -0.005209 0.000144 -0.000222 0.005144 0.032825 
GE -0.059018 -0.004969 0.000188 0.000402 0.005768 0.073463 
HD -0.037934 -0.005075 0.000264 0.000192 0.006031 0.059355 
IBM -0.042421 -0.005442 0.000031 -0.000005 0.005357 0.030924 
INTC -0.043477 -0.005876 0.000408 0.001121 0.007131 0.064215 
JNJ -0.050814 -0.004361 0.000500 0.000078 0.004658 0.024809 
JPM -0.051400 -0.005102 0.000828 0.000142 0.005660 0.037576 
KO -0.024956 -0.003798 0.000468 0.000310 0.004509 0.025716 
MCD -0.044614 -0.003717 0.000104 0.000497 0.004383 0.040880 
MRK -0.073633 -0.005292 -0.000509 -0.000356 0.005220 0.055290 
MSFT -0.051059 -0.005982 0.000424 0.000744 0.007307 0.046109 
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ORCL -0.033741 -0.004908 0.000500 0.000595 0.006646 0.049359 
PEP -0.044597 -0.004327 0.000000 0.000103 0.004654 0.022166 
PFE -0.042161 -0.005719 -0.000350 -0.000215 0.005576 0.036009 
PG -0.048345 -0.003950 0.000000 0.000258 0.004416 0.023447 
QCOM -0.075479 -0.005347 0.001128 0.000448 0.006674 0.048062 
SLB -0.049417 -0.007413 0.000000 0.000173 0.007345 0.060927 
T -0.035817 -0.004788 0.000000 -0.000253 0.004354 0.031091 
VZ -0.042732 -0.004553 0.000213 0.000200 0.005062 0.030033 
WFC -0.061536 -0.004506 0.000000 -0.000016 0.004926 0.056390 
WMT -0.107758 -0.004313 -0.000247 -0.000216 0.004326 0.025017 
XOM -0.032924 -0.004986 -0.000197 0.000108 0.005403 0.036231 

 

Table 25 

Empirical distribution function for an accuracy of randomly 

guessing the sign of the future returns 

0% 1% 2% 3% 4% 

48.82% 49.18% 49.27% 49.33% 49.37% 

5% 6% 7% 8% 9% 

49.39% 49.42% 49.44% 49.46% 49.49% 

10% 11% 12% 13% 14% 

49.52% 49.54% 49.58% 49.59% 49.61% 

15% 16% 17% 18% 19% 

49.63% 49.64% 49.66% 49.67% 49.69% 

20% 21% 22% 23% 24% 

49.70% 49.72% 49.73% 49.74% 49.76% 

25% 26% 27% 28% 29% 

49.77% 49.78% 49.79% 49.80% 49.81% 

30% 31% 32% 33% 34% 

49.82% 49.82% 49.83% 49.85% 49.85% 

35% 36% 37% 38% 39% 

49.86% 49.87% 49.88% 49.89% 49.90% 

40% 41% 42% 43% 44% 

49.91% 49.92% 49.93% 49.94% 49.94% 

45% 46% 47% 48% 49% 

49.95% 49.96% 49.97% 49.98% 49.99% 

50% 51% 52% 53% 54% 

50.00% 50.01% 50.01% 50.03% 50.04% 

55% 56% 57% 58% 59% 

50.05% 50.05% 50.06% 50.08% 50.09% 

60% 61% 62% 63% 64% 

50.10% 50.11% 50.12% 50.13% 50.15% 

65% 66% 67% 68% 69% 

50.15% 50.17% 50.18% 50.18% 50.19% 
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70% 71% 72% 73% 74% 

50.20% 50.21% 50.23% 50.24% 50.24% 

75% 76% 77% 78% 79% 

50.26% 50.28% 50.29% 50.31% 50.32% 

80% 81% 82% 83% 84% 

50.34% 50.34% 50.36% 50.37% 50.39% 

85% 86% 87% 88% 89% 

50.40% 50.42% 50.44% 50.47% 50.49% 

90% 91% 92% 93% 94% 

50.51% 50.54% 50.57% 50.60% 50.63% 

95% 96% 97% 98% 99% 

50.69% 50.73% 50.76% 50.85% 50.92% 

100%     

51.31%         

* based on 1000 trials    

 

Models AR1 and 𝜃(𝑀) 

 

Table 26 

Summary of AR1 models estimated for each of the individual stocks 

       

Company Intercept AR1 

Intercept 

s.e. AR s.e. 

Intercept 

robust 

s.e. 

AR1 

robust 

s.e. 

AAPL -0.0004 -0.0889 0.0004 0.0223 0.0004 0.0307 

AMZN 0.0015 -0.0065 0.0005 0.0224 0.0005 0.0396 

BAC -0.0022 -0.1176 0.0007 0.0222 0.0007 0.0592 

C -0.0033 0.0493 0.0007 0.0224 0.0007 0.0910 

CMCSA 0.0003 -0.0417 0.0004 0.0224 0.0004 0.0323 

CSCO -0.0003 -0.0560 0.0003 0.0223 0.0003 0.0349 

CVX 0.0002 -0.1086 0.0003 0.0222 0.0003 0.0316 

DIS 0.0009 -0.0336 0.0003 0.0224 0.0003 0.0323 

GE -0.0008 -0.0588 0.0004 0.0223 0.0004 0.0551 

HD 0.0005 0.0343 0.0004 0.0224 0.0004 0.0393 

IBM 0.0008 0.0202 0.0003 0.0224 0.0003 0.0339 

INTC -0.0001 -0.0436 0.0004 0.0224 0.0004 0.0327 

JNJ 0.0000 -0.0811 0.0002 0.0223 0.0002 0.0373 

JPM 0.0001 -0.1017 0.0005 0.0223 0.0005 0.0512 

KO 0.0001 -0.0401 0.0002 0.0224 0.0002 0.0393 

MCD 0.0002 -0.0086 0.0003 0.0224 0.0002 0.0271 

MRK 0.0000 -0.0072 0.0003 0.0224 0.0003 0.0327 

MSFT 0.0000 -0.0152 0.0003 0.0224 0.0003 0.0324 
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ORCL 0.0005 -0.0603 0.0003 0.0223 0.0003 0.0279 

PEP 0.0005 -0.0360 0.0002 0.0224 0.0002 0.0352 

PFE -0.0002 -0.0227 0.0003 0.0224 0.0003 0.0279 

PG 0.0006 -0.0647 0.0002 0.0223 0.0002 0.0344 

QCOM 0.0000 -0.0566 0.0004 0.0223 0.0004 0.0307 

SLB -0.0003 -0.0716 0.0005 0.0223 0.0005 0.0307 

T -0.0002 -0.0216 0.0003 0.0224 0.0003 0.0281 

VZ -0.0002 -0.0171 0.0003 0.0224 0.0003 0.0309 

WFC 0.0001 -0.1154 0.0006 0.0222 0.0006 0.0503 

WMT 0.0001 -0.0743 0.0002 0.0223 0.0002 0.0316 

XOM 0.0004 -0.1167 0.0003 0.0222 0.0003 0.0264 

* robust standard errors are heteroskedasticity and autocorrelation robust 
standard errors 

 

Table 27 

Extension of Summary of AR1 predictive power on test set 

        

Company Sensitivity Specificity Precision 

Negative 

Predictive 

value 

False 

Positive 

rate 

False 

Negative 

Rate 

False 

Discovery 

Rate 

AAPL 0.341 0.682 0.510 0.516 0.318 0.659 0.490 

AMZN 1.000 0.000 0.505  1.000 0.000 0.495 

BAC 0.056 0.959 0.552 0.530 0.041 0.944 0.448 

C 0.000 1.000  0.522 0.000 1.000  
CMCSA 0.796 0.174 0.504 0.448 0.826 0.204 0.496 

CSCO 0.273 0.726 0.536 0.463 0.274 0.727 0.464 

CVX 0.591 0.368 0.469 0.487 0.632 0.409 0.531 

DIS 1.000 0.007 0.510 1.000 0.993 0.000 0.490 

GE 0.059 0.943 0.514 0.495 0.057 0.941 0.486 

HD 0.937 0.061 0.519 0.474 0.939 0.063 0.481 

IBM 0.997 0.000 0.501 0.000 1.000 0.003 0.499 

INTC 0.373 0.639 0.529 0.483 0.361 0.627 0.471 

JNJ 0.447 0.515 0.504 0.459 0.485 0.553 0.496 

JPM 0.520 0.434 0.509 0.445 0.566 0.480 0.491 

KO 0.577 0.431 0.529 0.479 0.569 0.423 0.471 

MCD 0.990 0.003 0.502 0.250 0.997 0.010 0.498 

MRK 0.578 0.414 0.472 0.520 0.586 0.422 0.528 

MSFT 0.383 0.590 0.510 0.462 0.410 0.617 0.490 

ORCL 0.824 0.176 0.523 0.477 0.824 0.176 0.477 

PEP 0.984 0.026 0.504 0.615 0.974 0.016 0.496 

PFE 0.114 0.902 0.516 0.528 0.098 0.886 0.484 

PG 0.891 0.098 0.495 0.476 0.902 0.109 0.505 

QCOM 0.397 0.593 0.549 0.441 0.407 0.603 0.451 

SLB 0.397 0.657 0.535 0.522 0.343 0.603 0.465 

T 0.096 0.915 0.527 0.507 0.085 0.904 0.473 

VZ 0.080 0.901 0.463 0.478 0.099 0.920 0.537 
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WFC 0.560 0.434 0.496 0.498 0.566 0.440 0.504 

WMT 0.591 0.436 0.497 0.531 0.564 0.409 0.503 

XOM 0.719 0.319 0.507 0.538 0.681 0.281 0.493 

* table providing ratios calculated based on TP, TN, FN and FP statistics for AR(1) model 

The source statistics are displayed in the AR(1) section of the main text 

 

Table 28 

Additional aggregate statistics for AR1 test set performance 

      

Model Precision Sensitivity Specificity 

Negative 

Predictive 

Value 

False 

Positive 

Rate 

AR1 0.5103 0.5368 0.4623 0.4873 0.5377 

* For ratios, the metric average over all 29 stocks is used  

 

Table 29 

Summary of Model 𝜽𝑹𝑽 estimated for each of the individual stocks  

       
 

Company  Intercept Return Variance Skewness Kurtosis  

AAPL 

Coef. -1.12E-03 -7.70E-02 -7.82E-02 -8.28E-04 1.08E-04  

s.e 7.28E-04 2.58E-02 6.37E-01 8.06E-04 8.42E-05  

Robust s.e. 7.64E-04 3.94E-02 1.43E+00 8.10E-04 7.82E-05  

AMZN 

Coef. 6.04E-04 -3.14E-02 1.57E+00 1.26E-03 -5.32E-06  

s.e 8.82E-04 2.54E-02 6.08E-01 8.01E-04 9.01E-05  

Robust s.e. 9.57E-04 4.49E-02 1.57E+00 8.56E-04 7.11E-05  

BAC 

Coef. -2.52E-03 -1.31E-01 -5.62E-01 1.57E-03 1.33E-04  

s.e 1.29E-03 2.43E-02 2.81E-01 1.40E-03 1.75E-04  

Robust s.e. 1.04E-03 6.32E-02 8.18E-01 1.68E-03 1.50E-04  

C 

Coef. -5.66E-04 -3.52E-02 -2.13E+00 7.36E-04 -3.97E-05  

s.e 1.06E-03 2.42E-02 1.95E-01 1.37E-03 1.27E-04  

Robust s.e. 9.50E-04 7.91E-02 6.24E-01 1.86E-03 1.08E-04  

CMCSA 

Coef. 3.45E-04 -4.18E-02 1.36E+00 1.89E-04 -6.44E-05  

s.e 5.61E-04 2.50E-02 6.52E-01 5.60E-04 4.56E-05  

Robust s.e. 7.13E-04 4.42E-02 1.92E+00 6.93E-04 6.22E-05  

CSCO 

Coef. 6.01E-05 -7.83E-02 3.80E-01 1.34E-03 -8.16E-05  

s.e 5.74E-04 2.49E-02 6.63E-01 6.44E-04 6.73E-05  

Robust s.e. 7.61E-04 3.78E-02 2.10E+00 6.50E-04 7.71E-05  

CVX 
Coef. -1.09E-03 -1.10E-01 3.32E+00 9.63E-05 6.61E-05  

s.e 5.04E-04 2.39E-02 4.56E-01 5.50E-04 5.85E-05  
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Robust s.e. 6.44E-04 5.41E-02 1.96E+00 6.03E-04 5.66E-05  

DIS 

Coef. -4.82E-04 -4.50E-02 4.51E+00 -1.50E-04 2.39E-05  

s.e 5.00E-04 2.48E-02 6.28E-01 5.28E-04 4.68E-05  

Robust s.e. 5.58E-04 4.63E-02 1.92E+00 5.17E-04 4.51E-05  

GE 

Coef. -2.26E-04 -8.16E-02 -1.86E+00 1.28E-03 3.06E-05  

s.e 5.44E-04 2.43E-02 3.99E-01 7.37E-04 6.03E-05  

Robust s.e. 4.59E-04 5.91E-02 1.11E+00 9.32E-04 4.50E-05  

HD 

Coef. -2.05E-04 1.34E-02 2.33E+00 4.81E-04 -1.10E-05  

s.e 5.54E-04 2.39E-02 5.85E-01 5.02E-04 4.74E-05  

Robust s.e. 5.21E-04 4.28E-02 1.29E+00 5.25E-04 4.19E-05  

IBM 

Coef. 7.15E-04 -2.06E-03 -4.96E-01 7.14E-04 2.07E-05  

s.e 3.37E-04 2.41E-02 5.77E-01 3.05E-04 2.42E-05  

Robust s.e. 3.53E-04 4.01E-02 1.63E+00 2.81E-04 2.00E-05  

INTC 

Coef. -8.70E-04 -5.84E-02 1.68E+00 7.94E-04 3.68E-05  

s.e 5.96E-04 2.50E-02 7.67E-01 6.79E-04 6.61E-05  

Robust s.e. 6.37E-04 4.13E-02 1.89E+00 6.07E-04 4.74E-05  

JNJ 

Coef. 1.04E-05 -9.49E-02 3.03E+00 3.12E-04 -4.48E-05  

s.e 2.93E-04 2.37E-02 7.01E-01 2.59E-04 2.64E-05  

Robust s.e. 3.81E-04 4.51E-02 2.59E+00 2.74E-04 3.41E-05  

JPM 

Coef. 1.91E-04 -1.13E-01 8.60E-01 9.91E-04 -8.71E-05  

s.e 8.26E-04 2.42E-02 3.91E-01 9.40E-04 8.47E-05  

Robust s.e. 6.98E-04 6.02E-02 1.11E+00 1.05E-03 6.72E-05  

KO 

Coef. -1.97E-05 -4.49E-02 1.90E+00 2.48E-04 -2.07E-05  

s.e 3.22E-04 2.41E-02 7.76E-01 2.97E-04 2.62E-05  

Robust s.e. 4.40E-04 4.52E-02 2.98E+00 3.17E-04 3.17E-05  

MCD 

Coef. 1.31E-04 -2.67E-02 1.95E+00 2.53E-04 -2.55E-05  

s.e 3.74E-04 2.45E-02 6.20E-01 3.37E-04 3.00E-05  

Robust s.e. 3.09E-04 3.71E-02 1.25E+00 3.21E-04 2.33E-05  

MRK 

Coef. -3.68E-04 -1.80E-02 2.63E+00 3.00E-04 -3.51E-05  

s.e 4.06E-04 2.42E-02 5.44E-01 3.61E-04 2.61E-05  

Robust s.e. 4.03E-04 4.30E-02 1.31E+00 3.61E-04 2.41E-05  

MSFT 

Coef. -3.80E-04 -3.09E-02 1.39E+00 9.55E-04 3.95E-06  

s.e 4.69E-04 2.43E-02 8.09E-01 5.22E-04 4.38E-05  

Robust s.e. 7.63E-04 4.27E-02 3.25E+00 4.83E-04 4.18E-05  

ORCL 

Coef. 2.21E-04 -7.85E-02 1.50E+00 9.24E-04 -2.77E-05  

s.e 4.87E-04 2.45E-02 7.00E-01 5.28E-04 4.10E-05  

Robust s.e. 6.99E-04 4.75E-02 2.19E+00 6.70E-04 5.23E-05  

PEP 

Coef. 2.86E-04 -3.46E-02 1.63E+00 -9.28E-05 -1.29E-06  

s.e 2.90E-04 2.37E-02 5.43E-01 2.23E-04 1.89E-05  

Robust s.e. 3.41E-04 4.64E-02 1.98E+00 2.24E-04 1.88E-05  

PFE 

Coef. -6.09E-04 -2.87E-02 2.16E+00 1.85E-04 -2.17E-05  

s.e 4.00E-04 2.43E-02 7.96E-01 4.70E-04 3.79E-05  

Robust s.e. 4.46E-04 2.89E-02 1.67E+00 5.10E-04 3.78E-05  
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PG 

Coef. 5.00E-04 -6.30E-02 1.37E+00 -6.93E-05 -1.24E-05  

s.e 3.09E-04 2.39E-02 6.34E-01 2.95E-04 2.74E-05  

Robust s.e. 3.05E-04 3.84E-02 8.38E-01 2.99E-04 3.06E-05  

QCOM 

Coef. -2.51E-04 -5.92E-02 4.76E-01 1.13E-04 2.72E-06  

s.e 4.84E-04 2.44E-02 5.21E-01 4.64E-04 3.36E-05  

Robust s.e. 4.81E-04 3.40E-02 1.08E+00 4.37E-04 2.68E-05  

SLB 

Coef. 4.64E-04 -8.20E-02 -1.12E+00 6.92E-04 -1.44E-05  

s.e 6.93E-04 2.43E-02 5.15E-01 6.74E-04 6.08E-05  

Robust s.e. 8.09E-04 3.79E-02 1.38E+00 6.58E-04 6.08E-05  

T 

Coef. -5.00E-04 -1.86E-02 3.13E+00 -2.53E-04 -6.42E-05  

s.e 3.96E-04 2.48E-02 5.09E-01 4.60E-04 3.60E-05  

Robust s.e. 4.02E-04 3.50E-02 1.96E+00 5.27E-04 4.50E-05  

VZ 

Coef. -9.35E-04 -2.01E-02 3.22E+00 -2.81E-04 9.11E-06  

s.e 4.16E-04 2.39E-02 5.84E-01 3.84E-04 3.59E-05  

Robust s.e. 4.06E-04 4.40E-02 1.69E+00 3.80E-04 2.69E-05  

WFC 

Coef. 3.10E-04 -1.22E-01 -1.82E-01 6.93E-04 -1.17E-05  

s.e 7.63E-04 2.33E-02 3.36E-01 7.11E-04 5.71E-05  

Robust s.e. 6.32E-04 5.26E-02 1.06E+00 5.63E-04 3.28E-05  

WMT 

Coef. -1.57E-04 -9.25E-02 1.75E+00 4.99E-04 -2.31E-06  

s.e 3.51E-04 2.40E-02 6.61E-01 3.26E-04 3.13E-05  

Robust s.e. 3.50E-04 3.62E-02 1.52E+00 2.63E-04 2.18E-05  

XOM 

Coef. -5.94E-04 -1.19E-01 3.30E+00 3.82E-04 4.79E-05  

s.e 4.14E-04 2.40E-02 4.66E-01 5.41E-04 4.32E-05  

Robust s.e. 4.13E-04 4.65E-02 1.49E+00 5.36E-04 3.25E-05  

 

Table 30 

Main Summary of 𝑴𝒐𝒅𝒆𝒍 𝜽𝑹𝑽 predictive power on test set 

         

Company RMSE 

Mean 

absolute 

deviation 

Median 

Absolute 

Deviation Accuracy 

True 

Positive 

True 

Negative 

False 

Negative 

False 

Positive 

AAPL 0.0123 0.0093 0.0077 0.550 140 197 162 114 

AMZN 0.0140 0.0107 0.0082 0.523 293 28 17 276 

BAC 0.0111 0.0083 0.0062 0.544 35 294 252 24 

C 0.0102 0.0078 0.0064 0.522 0 318 291 0 

CMCSA 0.0108 0.0080 0.0061 0.480 133 161 181 137 

CSCO 0.0096 0.0074 0.0062 0.489 91 206 235 75 

CVX 0.0113 0.0080 0.0059 0.496 122 182 176 133 

DIS 0.0095 0.0070 0.0053 0.536 192 135 118 165 

GE 0.0093 0.0069 0.0054 0.511 117 193 190 107 

HD 0.0107 0.0073 0.0056 0.503 148 160 170 134 

IBM 0.0090 0.0068 0.0054 0.513 293 21 14 284 

INTC 0.0113 0.0084 0.0065 0.475 75 211 239 77 
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JNJ 0.0083 0.0060 0.0046 0.512 118 195 202 96 

JPM 0.0101 0.0074 0.0055 0.471 105 184 220 104 

KO 0.0072 0.0055 0.0041 0.489 121 176 198 112 

MCD 0.0077 0.0054 0.0040 0.532 204 121 104 182 

MRK 0.0103 0.0074 0.0055 0.535 34 291 255 28 

MSFT 0.0114 0.0084 0.0066 0.501 102 203 219 85 

ORCL 0.0100 0.0075 0.0057 0.520 197 119 121 171 

PEP 0.0074 0.0056 0.0043 0.515 277 37 29 267 

PFE 0.0093 0.0070 0.0056 0.520 21 294 268 23 

PG 0.0073 0.0054 0.0043 0.488 248 49 55 256 

QCOM 0.0111 0.0080 0.0060 0.468 107 180 233 93 

SLB 0.0124 0.0093 0.0075 0.509 178 133 127 173 

T 0.0079 0.0059 0.0046 0.512 8 303 293 3 

VZ 0.0093 0.0064 0.0048 0.467 21 263 293 31 

WFC 0.0084 0.0061 0.0048 0.503 192 113 110 191 

WMT 0.0088 0.0059 0.0043 0.511 139 173 157 141 

XOM 0.0093 0.0069 0.0052 0.518 165 152 137 158 

 

 

Table 31 

Extension of Summary of 𝑴𝒐𝒅𝒆𝒍 𝜽𝑹𝑽 predictive power on test set 

        

Company Sensitivity Specificity Precision 

Negative 

Predictive 

value 

False 

Positive 

rate 

False 

Negative 

Rate 

False 

Discovery 

Rate 

AAPL 0.464 0.633 0.551 0.549 0.367 0.536 0.449 

AMZN 0.945 0.092 0.515 0.622 0.908 0.055 0.485 

BAC 0.122 0.925 0.593 0.538 0.075 0.878 0.407 

C 0.000 1.000  0.522 0.000 1.000  
CMCSA 0.424 0.540 0.493 0.471 0.460 0.576 0.507 

CSCO 0.279 0.733 0.548 0.467 0.267 0.721 0.452 

CVX 0.409 0.578 0.478 0.508 0.422 0.591 0.522 

DIS 0.619 0.450 0.538 0.534 0.550 0.381 0.462 

GE 0.381 0.643 0.522 0.504 0.357 0.619 0.478 

HD 0.465 0.544 0.525 0.485 0.456 0.535 0.475 

IBM 0.954 0.069 0.508 0.600 0.931 0.046 0.492 

INTC 0.239 0.733 0.493 0.469 0.267 0.761 0.507 

JNJ 0.369 0.670 0.551 0.491 0.330 0.631 0.449 

JPM 0.323 0.639 0.502 0.455 0.361 0.677 0.498 

KO 0.379 0.611 0.519 0.471 0.389 0.621 0.481 

MCD 0.662 0.399 0.528 0.538 0.601 0.338 0.472 

MRK 0.118 0.912 0.548 0.533 0.088 0.882 0.452 

MSFT 0.318 0.705 0.545 0.481 0.295 0.682 0.455 

ORCL 0.619 0.410 0.535 0.496 0.590 0.381 0.465 

PEP 0.905 0.122 0.509 0.561 0.878 0.095 0.491 
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PFE 0.073 0.927 0.477 0.523 0.073 0.927 0.523 

PG 0.818 0.161 0.492 0.471 0.839 0.182 0.508 

QCOM 0.315 0.659 0.535 0.436 0.341 0.685 0.465 

SLB 0.584 0.435 0.507 0.512 0.565 0.416 0.493 

T 0.027 0.990 0.727 0.508 0.010 0.973 0.273 

VZ 0.067 0.895 0.404 0.473 0.105 0.933 0.596 

WFC 0.636 0.372 0.501 0.507 0.628 0.364 0.499 

WMT 0.470 0.551 0.496 0.524 0.449 0.530 0.504 

XOM 0.546 0.490 0.511 0.526 0.510 0.454 0.489 

* table providing ratios calculated based on TP, TN, FN and FP statistics for Model 𝜃𝑅𝑉 

The source statistics are displayed in the Variance, Skewness, Kurtosis section of the main text 

 

 

Table 32 

Extension of Summary of Averaged 𝑴𝒐𝒅𝒆𝒍 𝜽𝑹𝑽 predictive power on test set 

        

Company Sensitivity Specificity Precision 

Negative 

Predictive 

value 

False 

Positive 

rate 

False 

Negative 

Rate 

False 

Discovery 

Rate 

AAPL 0.397 0.569 0.472 0.493 0.431 0.603 0.528 

AMZN 0.535 0.543 0.544 0.534 0.457 0.465 0.456 

BAC 0.470 0.569 0.496 0.544 0.431 0.530 0.504 

C 0.426 0.588 0.486 0.528 0.412 0.574 0.514 

CMCSA 0.360 0.594 0.483 0.468 0.406 0.640 0.517 

CSCO 0.399 0.598 0.535 0.462 0.402 0.601 0.465 

CVX 0.409 0.603 0.494 0.519 0.397 0.591 0.506 

DIS 0.416 0.680 0.573 0.530 0.320 0.584 0.427 

GE 0.375 0.637 0.513 0.499 0.363 0.625 0.487 

HD 0.403 0.636 0.545 0.496 0.364 0.597 0.455 

IBM 0.375 0.659 0.525 0.511 0.341 0.625 0.475 

INTC 0.417 0.625 0.548 0.496 0.375 0.583 0.452 

JNJ 0.347 0.718 0.575 0.500 0.282 0.653 0.425 

JPM 0.394 0.601 0.527 0.468 0.399 0.606 0.473 

KO 0.310 0.740 0.569 0.492 0.260 0.690 0.431 

MCD 0.364 0.670 0.528 0.509 0.330 0.636 0.472 

MRK 0.391 0.608 0.475 0.524 0.392 0.609 0.525 

MSFT 0.405 0.622 0.544 0.484 0.378 0.595 0.456 

ORCL 0.377 0.638 0.533 0.483 0.362 0.623 0.467 

PEP 0.314 0.701 0.513 0.504 0.299 0.686 0.487 

PFE 0.367 0.634 0.477 0.523 0.366 0.633 0.523 

PG 0.310 0.711 0.516 0.509 0.289 0.690 0.484 

QCOM 0.362 0.593 0.526 0.427 0.407 0.638 0.474 

SLB 0.459 0.549 0.504 0.505 0.451 0.541 0.496 

T 0.332 0.725 0.543 0.525 0.275 0.668 0.457 
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VZ 0.315 0.673 0.508 0.479 0.327 0.685 0.492 

WFC 0.341 0.615 0.468 0.484 0.385 0.659 0.532 

WMT 0.301 0.659 0.454 0.500 0.341 0.699 0.546 

XOM 0.377 0.635 0.502 0.512 0.365 0.623 0.498 

* table providing ratios calculated based on TP, TN, FN and FP statistics for Averaged Model 

𝜃𝑅𝑉 

The source statistics are displayed in the Variance, Skewness, Kurtosis section of the main 

text, section on averaged model 

 

 

Table 33 

Summary of 𝑴𝒐𝒅𝒆𝒍 𝜽𝑩𝑷𝑽 

       

Company  Intercept Return Variance Skewness Kurtosis 

AAPL 

Coef. -8.57E-04 -7.75E-02 -5.18E-02 -7.34E-04 6.00E-05 

s.e 6.78E-04 2.54E-02 6.45E-01 6.87E-04 6.44E-05 

Robust s.e. 7.32E-04 3.98E-02 1.61E+00 6.70E-04 5.59E-05 

AMZN 

Coef. 9.74E-04 -2.71E-02 1.50E+00 9.34E-04 -3.69E-05 

s.e 7.35E-04 2.46E-02 6.38E-01 6.22E-04 5.28E-05 

Robust s.e. 9.06E-04 4.33E-02 1.64E+00 6.71E-04 5.26E-05 

BAC 

Coef. -2.38E-03 -1.33E-01 -6.09E-01 1.50E-03 9.18E-05 

s.e 1.16E-03 2.39E-02 2.85E-01 1.12E-03 1.19E-04 

Robust s.e. 9.82E-04 6.53E-02 8.54E-01 1.21E-03 8.65E-05 

C 

Coef. -6.17E-04 -3.63E-02 -2.20E+00 9.38E-04 -4.39E-05 

s.e 9.47E-04 2.40E-02 2.08E-01 1.06E-03 7.80E-05 

Robust s.e. 8.98E-04 7.83E-02 6.34E-01 1.50E-03 7.94E-05 

CMCSA 

Coef. -1.11E-04 -2.59E-02 1.73E+00 -2.67E-04 -9.65E-06 

s.e 4.75E-04 2.45E-02 7.48E-01 2.30E-04 9.16E-06 

Robust s.e. 6.49E-04 5.05E-02 2.42E+00 2.72E-04 9.98E-06 

CSCO 

Coef. 5.53E-05 -7.57E-02 2.49E-01 9.85E-04 -5.54E-05 

s.e 4.54E-04 2.43E-02 6.83E-01 4.66E-04 2.83E-05 

Robust s.e. 6.59E-04 3.74E-02 2.23E+00 5.01E-04 2.80E-05 

CVX 

Coef. -6.80E-04 -1.10E-01 3.16E+00 1.35E-04 8.65E-06 

s.e 3.77E-04 2.29E-02 4.64E-01 3.27E-04 2.03E-05 

Robust s.e. 5.50E-04 5.14E-02 2.14E+00 2.96E-04 1.56E-05 

DIS 

Coef. -5.84E-04 -4.39E-02 4.46E+00 -1.19E-04 3.81E-05 

s.e 4.48E-04 2.42E-02 6.23E-01 3.92E-04 2.74E-05 

Robust s.e. 4.93E-04 5.24E-02 1.86E+00 3.89E-04 2.19E-05 

GE 
Coef. -4.56E-05 -7.67E-02 -1.84E+00 8.23E-04 -5.60E-06 

s.e 4.96E-04 2.37E-02 4.18E-01 5.23E-04 3.65E-05 
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Robust s.e. 4.29E-04 5.71E-02 1.16E+00 5.66E-04 2.42E-05 

HD 

Coef. -1.33E-04 1.69E-02 2.22E+00 2.27E-04 -7.73E-06 

s.e 4.33E-04 2.33E-02 5.72E-01 3.11E-04 1.32E-05 

Robust s.e. 3.76E-04 4.33E-02 1.16E+00 3.16E-04 1.14E-05 

IBM 

Coef. 7.52E-04 5.42E-03 -3.61E-01 3.72E-04 9.29E-06 

s.e 2.82E-04 2.30E-02 5.84E-01 1.41E-04 3.50E-06 

Robust s.e. 3.11E-04 3.72E-02 1.63E+00 1.09E-04 2.57E-06 

INTC 

Coef. -8.33E-04 -5.53E-02 1.75E+00 5.16E-04 2.64E-05 

s.e 5.36E-04 2.45E-02 7.93E-01 5.18E-04 4.02E-05 

Robust s.e. 6.14E-04 3.92E-02 1.91E+00 4.55E-04 2.81E-05 

JNJ 

Coef. -1.90E-04 -8.95E-02 2.83E+00 1.49E-04 -1.12E-05 

s.e 2.51E-04 2.33E-02 8.15E-01 1.84E-04 1.34E-05 

Robust s.e. 3.56E-04 4.38E-02 3.31E+00 1.80E-04 1.27E-05 

JPM 

Coef. -2.50E-05 -1.12E-01 9.92E-01 7.63E-04 -5.33E-05 

s.e 7.32E-04 2.37E-02 3.89E-01 7.30E-04 5.27E-05 

Robust s.e. 6.54E-04 5.78E-02 1.13E+00 7.18E-04 3.93E-05 

KO 

Coef. -2.16E-04 -3.88E-02 1.98E+00 4.65E-05 2.55E-06 

s.e 2.62E-04 2.34E-02 7.87E-01 1.76E-04 7.69E-06 

Robust s.e. 4.12E-04 4.28E-02 3.24E+00 1.62E-04 6.36E-06 

MCD 

Coef. 2.93E-05 -2.68E-02 1.98E+00 1.78E-04 -8.91E-06 

s.e 2.97E-04 2.40E-02 6.06E-01 2.42E-04 1.07E-05 

Robust s.e. 2.70E-04 3.72E-02 1.24E+00 2.30E-04 8.66E-06 

MRK 

Coef. -6.27E-04 -1.52E-02 2.73E+00 1.60E-04 -2.73E-06 

s.e 3.44E-04 2.32E-02 5.36E-01 2.05E-04 5.00E-06 

Robust s.e. 3.45E-04 4.73E-02 1.16E+00 1.60E-04 3.75E-06 

MSFT 

Coef. -5.35E-04 -2.46E-02 1.67E+00 5.20E-04 1.57E-05 

s.e 4.00E-04 2.35E-02 8.04E-01 3.38E-04 1.89E-05 

Robust s.e. 7.09E-04 4.16E-02 3.23E+00 3.09E-04 1.73E-05 

ORCL 

Coef. 2.68E-04 -7.59E-02 1.48E+00 6.68E-04 -1.91E-05 

s.e 4.12E-04 2.37E-02 7.46E-01 3.39E-04 9.61E-06 

Robust s.e. 6.47E-04 4.41E-02 2.35E+00 4.43E-04 1.20E-05 

PEP 

Coef. 1.88E-04 -3.46E-02 1.69E+00 -6.91E-05 6.81E-06 

s.e 2.43E-04 2.29E-02 5.81E-01 1.06E-04 5.26E-06 

Robust s.e. 2.90E-04 4.79E-02 2.15E+00 8.16E-05 3.47E-06 

PFE 

Coef. -7.48E-04 -2.37E-02 2.39E+00 -2.44E-05 -1.86E-07 

s.e 3.34E-04 2.31E-02 8.32E-01 2.19E-04 6.17E-06 

Robust s.e. 3.86E-04 2.73E-02 1.74E+00 2.03E-04 5.49E-06 

PG 

Coef. 3.76E-04 -6.31E-02 1.56E+00 -5.41E-05 1.56E-06 

s.e 2.59E-04 2.32E-02 6.48E-01 1.90E-04 1.25E-05 

Robust s.e. 2.19E-04 3.66E-02 8.45E-01 1.65E-04 9.56E-06 

QCOM 

Coef. -2.24E-04 -5.61E-02 5.23E-01 5.39E-06 -2.52E-07 

s.e 4.00E-04 2.33E-02 4.95E-01 2.70E-04 5.90E-06 

Robust s.e. 3.65E-04 3.30E-02 5.52E-01 2.35E-04 5.03E-06 
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SLB 

Coef. 1.78E-04 -7.85E-02 -1.10E+00 2.98E-04 1.49E-05 

s.e 5.55E-04 2.34E-02 5.26E-01 3.97E-04 1.53E-05 

Robust s.e. 7.02E-04 3.57E-02 1.41E+00 3.20E-04 1.11E-05 

T 

Coef. -6.27E-04 -8.10E-03 3.42E+00 -2.56E-04 -3.44E-05 

s.e 3.42E-04 2.43E-02 5.33E-01 2.92E-04 1.65E-05 

Robust s.e. 4.39E-04 3.60E-02 2.17E+00 3.49E-04 1.90E-05 

VZ 

Coef. -8.67E-04 -2.03E-02 3.12E+00 -2.11E-04 6.91E-06 

s.e 3.73E-04 2.35E-02 5.94E-01 2.74E-04 2.06E-05 

Robust s.e. 3.85E-04 4.25E-02 1.75E+00 2.58E-04 1.54E-05 

WFC 

Coef. 1.53E-04 -1.18E-01 -1.68E-01 2.51E-04 5.95E-06 

s.e 6.35E-04 2.24E-02 3.42E-01 2.37E-04 7.12E-06 

Robust s.e. 5.76E-04 5.26E-02 1.06E+00 8.55E-05 1.82E-06 

WMT 

Coef. -2.56E-04 -9.15E-02 1.82E+00 3.63E-04 8.82E-06 

s.e 2.97E-04 2.35E-02 6.53E-01 2.30E-04 1.57E-05 

Robust s.e. 3.09E-04 3.58E-02 1.45E+00 1.82E-04 1.05E-05 

XOM 

Coef. -5.07E-04 -1.16E-01 3.26E+00 2.04E-04 3.08E-05 

s.e 3.52E-04 2.32E-02 4.63E-01 3.72E-04 2.07E-05 

Robust s.e. 3.65E-04 4.98E-02 1.48E+00 3.35E-04 1.33E-05 

 

 

Table 34 

Summary of 𝑴𝒐𝒅𝒆𝒍 𝜽𝑴𝒊𝒏𝑹𝑽 

       

Company  Intercept Return Variance Skewness Kurtosis 

AAPL 

Coef. -7.03E-04 -7.72E-02 7.14E-02 -6.71E-04 3.14E-05 

s.e 6.92E-04 2.51E-02 6.49E-01 6.26E-04 6.31E-05 

Robust s.e. 7.17E-04 3.83E-02 1.44E+00 6.01E-04 5.32E-05 

AMZN 

Coef. 1.26E-03 -2.69E-02 1.37E+00 9.36E-04 -5.73E-05 

s.e 6.75E-04 2.45E-02 6.49E-01 5.77E-04 4.00E-05 

Robust s.e. 8.37E-04 4.29E-02 1.66E+00 6.11E-04 4.01E-05 

BAC 

Coef. -2.04E-03 -1.33E-01 -6.14E-01 1.55E-03 5.19E-05 

s.e 1.06E-03 2.38E-02 2.79E-01 1.12E-03 1.07E-04 

Robust s.e. 9.21E-04 6.84E-02 8.62E-01 1.18E-03 7.57E-05 

C 

Coef. -2.25E-04 -3.43E-02 -1.99E+00 1.41E-03 -1.03E-04 

s.e 9.07E-04 2.39E-02 1.98E-01 9.93E-04 7.21E-05 

Robust s.e. 9.02E-04 7.79E-02 5.66E-01 1.47E-03 8.41E-05 

CMCSA 

Coef. -1.04E-04 -2.65E-02 1.60E+00 -2.11E-04 -7.56E-06 

s.e 4.79E-04 2.42E-02 7.66E-01 1.96E-04 7.35E-06 

Robust s.e. 6.86E-04 4.96E-02 2.50E+00 2.02E-04 6.76E-06 

CSCO 
Coef. 9.32E-05 -7.63E-02 6.99E-02 1.04E-03 -5.64E-05 

s.e 4.40E-04 2.41E-02 6.89E-01 4.56E-04 2.53E-05 
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Robust s.e. 6.58E-04 3.83E-02 2.27E+00 4.30E-04 2.00E-05 

CVX 

Coef. -6.48E-04 -1.10E-01 3.11E+00 1.34E-04 6.06E-06 

s.e 3.66E-04 2.28E-02 4.60E-01 2.81E-04 1.56E-05 

Robust s.e. 5.38E-04 4.98E-02 2.12E+00 2.36E-04 1.11E-05 

DIS 

Coef. -4.91E-04 -4.42E-02 4.37E+00 -7.00E-05 2.87E-05 

s.e 4.20E-04 2.41E-02 6.12E-01 3.79E-04 2.30E-05 

Robust s.e. 4.67E-04 5.14E-02 1.80E+00 3.71E-04 1.71E-05 

GE 

Coef. 8.04E-06 -7.63E-02 -1.76E+00 8.04E-04 -1.55E-05 

s.e 4.87E-04 2.35E-02 4.19E-01 4.95E-04 3.70E-05 

Robust s.e. 4.42E-04 5.65E-02 1.19E+00 5.27E-04 2.82E-05 

HD 

Coef. -1.18E-04 1.63E-02 2.18E+00 2.37E-04 -8.31E-06 

s.e 4.26E-04 2.33E-02 5.55E-01 2.94E-04 1.12E-05 

Robust s.e. 3.67E-04 4.38E-02 1.10E+00 3.04E-04 1.01E-05 

IBM 

Coef. 7.97E-04 1.05E-02 -3.41E-01 2.09E-04 4.21E-06 

s.e 2.80E-04 2.27E-02 5.98E-01 8.62E-05 1.70E-06 

Robust s.e. 3.01E-04 3.80E-02 1.59E+00 7.62E-05 1.46E-06 

INTC 

Coef. -7.93E-04 -5.31E-02 1.72E+00 4.19E-04 2.14E-05 

s.e 5.02E-04 2.42E-02 7.86E-01 4.97E-04 3.40E-05 

Robust s.e. 5.93E-04 3.77E-02 1.79E+00 4.43E-04 2.36E-05 

JNJ 

Coef. -2.31E-04 -8.72E-02 2.59E+00 9.07E-05 -4.64E-06 

s.e 2.44E-04 2.32E-02 8.44E-01 1.69E-04 1.14E-05 

Robust s.e. 3.58E-04 4.22E-02 3.21E+00 1.63E-04 9.90E-06 

JPM 

Coef. 2.67E-04 -1.13E-01 1.05E+00 9.29E-04 -9.51E-05 

s.e 7.80E-04 2.36E-02 3.83E-01 7.08E-04 6.30E-05 

Robust s.e. 6.88E-04 5.63E-02 1.16E+00 7.04E-04 4.61E-05 

KO 

Coef. -2.28E-04 -3.90E-02 2.07E+00 4.32E-05 2.45E-06 

s.e 2.58E-04 2.31E-02 8.09E-01 1.46E-04 5.56E-06 

Robust s.e. 4.08E-04 4.29E-02 3.14E+00 1.21E-04 3.94E-06 

MCD 

Coef. 2.00E-05 -2.76E-02 1.97E+00 1.70E-04 -7.83E-06 

s.e 2.92E-04 2.39E-02 5.81E-01 2.25E-04 9.45E-06 

Robust s.e. 2.62E-04 3.72E-02 1.12E+00 2.15E-04 7.90E-06 

MRK 

Coef. -6.32E-04 -1.35E-02 2.67E+00 1.16E-04 -1.72E-06 

s.e 3.41E-04 2.30E-02 5.10E-01 1.77E-04 4.12E-06 

Robust s.e. 3.35E-04 4.76E-02 1.06E+00 1.31E-04 2.94E-06 

MSFT 

Coef. -4.74E-04 -2.24E-02 1.54E+00 4.18E-04 1.16E-05 

s.e 3.92E-04 2.33E-02 7.94E-01 2.99E-04 1.70E-05 

Robust s.e. 7.24E-04 4.03E-02 3.24E+00 2.83E-04 1.59E-05 

ORCL 

Coef. 2.52E-04 -7.40E-02 1.37E+00 6.16E-04 -1.65E-05 

s.e 4.18E-04 2.35E-02 7.71E-01 3.21E-04 8.42E-06 

Robust s.e. 6.77E-04 4.35E-02 2.39E+00 4.28E-04 1.08E-05 

PEP 

Coef. 2.04E-04 -3.45E-02 1.69E+00 -5.40E-05 5.18E-06 

s.e 2.39E-04 2.27E-02 5.93E-01 8.54E-05 3.71E-06 

Robust s.e. 2.97E-04 4.82E-02 2.27E+00 5.94E-05 2.11E-06 
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PFE 

Coef. -7.37E-04 -2.21E-02 2.28E+00 -7.77E-05 -1.64E-06 

s.e 3.38E-04 2.30E-02 8.29E-01 2.08E-04 6.33E-06 

Robust s.e. 4.02E-04 2.71E-02 1.75E+00 2.11E-04 6.08E-06 

PG 

Coef. 3.64E-04 -6.47E-02 1.67E+00 -5.19E-06 1.62E-06 

s.e 2.44E-04 2.30E-02 6.65E-01 1.57E-04 8.54E-06 

Robust s.e. 2.06E-04 3.60E-02 8.87E-01 1.25E-04 5.47E-06 

QCOM 

Coef. -2.37E-04 -5.63E-02 5.64E-01 1.09E-05 -2.86E-07 

s.e 3.95E-04 2.31E-02 4.74E-01 2.05E-04 3.93E-06 

Robust s.e. 3.69E-04 3.26E-02 5.84E-01 1.65E-04 3.10E-06 

SLB 

Coef. 1.81E-04 -7.83E-02 -1.09E+00 2.51E-04 1.25E-05 

s.e 5.56E-04 2.33E-02 5.38E-01 3.57E-04 1.37E-05 

Robust s.e. 7.09E-04 3.52E-02 1.44E+00 2.95E-04 1.04E-05 

T 

Coef. -6.81E-04 -7.97E-03 3.42E+00 -2.13E-04 -3.13E-05 

s.e 3.33E-04 2.41E-02 5.38E-01 2.64E-04 1.45E-05 

Robust s.e. 4.93E-04 3.65E-02 2.36E+00 3.41E-04 1.74E-05 

VZ 

Coef. -8.32E-04 -2.11E-02 3.03E+00 -1.88E-04 4.39E-06 

s.e 3.52E-04 2.33E-02 5.80E-01 2.49E-04 1.73E-05 

Robust s.e. 3.53E-04 4.78E-02 1.57E+00 2.39E-04 1.35E-05 

WFC 

Coef. 1.59E-04 -1.18E-01 -1.51E-01 1.92E-04 4.16E-06 

s.e 6.33E-04 2.24E-02 3.45E-01 1.78E-04 4.56E-06 

Robust s.e. 5.73E-04 5.24E-02 1.07E+00 5.73E-05 1.14E-06 

WMT 

Coef. -2.21E-04 -9.06E-02 1.85E+00 3.21E-04 4.49E-06 

s.e 2.88E-04 2.34E-02 6.47E-01 2.10E-04 1.33E-05 

Robust s.e. 3.02E-04 3.57E-02 1.44E+00 1.68E-04 9.03E-06 

XOM 

Coef. -4.56E-04 -1.15E-01 3.25E+00 1.23E-04 2.30E-05 

s.e 3.46E-04 2.30E-02 4.59E-01 3.27E-04 1.82E-05 

Robust s.e. 3.64E-04 5.20E-02 1.50E+00 2.90E-04 1.33E-05 

 

 

 

 

 

Table 35 

Summary of 𝑴𝒐𝒅𝒆𝒍 𝜽𝑴𝒆𝒅𝑹𝑽 

       

Company  Intercept Return Variance Skewness Kurtosis 

AAPL 
Coef. -8.26E-04 -7.66E-02 -8.90E-02 -7.54E-04 5.47E-05 

s.e 6.97E-04 2.51E-02 6.62E-01 6.29E-04 6.42E-05 
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Robust s.e. 7.62E-04 4.00E-02 1.78E+00 6.08E-04 5.33E-05 

AMZN 

Coef. 1.22E-03 -2.45E-02 1.20E+00 8.19E-04 -4.41E-05 

s.e 7.05E-04 2.45E-02 6.50E-01 5.75E-04 4.53E-05 

Robust s.e. 9.15E-04 4.30E-02 1.74E+00 6.27E-04 4.87E-05 

BAC 

Coef. -2.12E-03 -1.32E-01 -6.80E-01 1.44E-03 6.97E-05 

s.e 1.05E-03 2.38E-02 2.87E-01 1.12E-03 1.02E-04 

Robust s.e. 9.05E-04 6.51E-02 8.76E-01 1.16E-03 7.04E-05 

C 

Coef. -2.20E-04 -3.31E-02 -2.00E+00 1.44E-03 -1.06E-04 

s.e 9.01E-04 2.38E-02 2.00E-01 9.92E-04 7.00E-05 

Robust s.e. 8.83E-04 7.85E-02 5.81E-01 1.44E-03 7.84E-05 

CMCSA 

Coef. -1.94E-04 -2.56E-02 1.87E+00 -2.18E-04 -6.98E-06 

s.e 4.71E-04 2.40E-02 7.16E-01 1.93E-04 7.21E-06 

Robust s.e. 6.32E-04 4.87E-02 2.25E+00 1.94E-04 6.54E-06 

CSCO 

Coef. 6.98E-05 -7.66E-02 1.90E-01 1.05E-03 -5.82E-05 

s.e 4.43E-04 2.42E-02 6.94E-01 4.66E-04 2.65E-05 

Robust s.e. 6.56E-04 3.79E-02 2.28E+00 4.40E-04 2.08E-05 

CVX 

Coef. -6.73E-04 -1.10E-01 3.32E+00 1.32E-04 3.56E-06 

s.e 3.67E-04 2.28E-02 4.68E-01 2.84E-04 1.60E-05 

Robust s.e. 5.16E-04 4.91E-02 2.02E+00 2.30E-04 1.07E-05 

DIS 

Coef. -5.62E-04 -4.36E-02 4.66E+00 -1.56E-04 3.02E-05 

s.e 4.48E-04 2.42E-02 6.43E-01 3.81E-04 2.81E-05 

Robust s.e. 5.09E-04 5.18E-02 1.92E+00 3.70E-04 2.47E-05 

GE 

Coef. -1.09E-04 -7.67E-02 -1.86E+00 8.07E-04 5.03E-06 

s.e 4.92E-04 2.35E-02 4.11E-01 4.87E-04 3.79E-05 

Robust s.e. 4.51E-04 5.65E-02 1.14E+00 5.54E-04 3.47E-05 

HD 

Coef. -1.70E-04 1.69E-02 2.35E+00 2.12E-04 -7.20E-06 

s.e 4.27E-04 2.32E-02 5.95E-01 2.84E-04 1.03E-05 

Robust s.e. 3.73E-04 4.39E-02 1.21E+00 3.04E-04 9.76E-06 

IBM 

Coef. 8.25E-04 1.15E-02 -4.51E-01 1.83E-04 3.59E-06 

s.e 2.79E-04 2.27E-02 5.91E-01 7.99E-05 1.53E-06 

Robust s.e. 3.07E-04 3.77E-02 1.62E+00 6.77E-05 1.26E-06 

INTC 

Coef. -7.71E-04 -5.44E-02 1.66E+00 4.79E-04 2.14E-05 

s.e 4.89E-04 2.42E-02 7.87E-01 4.86E-04 3.07E-05 

Robust s.e. 5.98E-04 3.91E-02 1.92E+00 4.16E-04 2.04E-05 

JNJ 

Coef. -2.14E-04 -8.92E-02 3.16E+00 1.17E-04 -1.11E-05 

s.e 2.40E-04 2.31E-02 8.09E-01 1.64E-04 1.08E-05 

Robust s.e. 3.32E-04 4.74E-02 3.11E+00 1.64E-04 1.18E-05 

JPM 

Coef. 3.00E-04 -1.12E-01 1.02E+00 8.53E-04 -9.44E-05 

s.e 7.75E-04 2.36E-02 3.89E-01 6.95E-04 6.13E-05 

Robust s.e. 7.01E-04 5.61E-02 1.20E+00 6.62E-04 4.45E-05 

KO 

Coef. -2.28E-04 -3.65E-02 2.33E+00 -2.14E-05 -3.73E-07 

s.e 2.56E-04 2.31E-02 8.18E-01 1.37E-04 5.02E-06 

Robust s.e. 4.07E-04 4.27E-02 3.27E+00 1.28E-04 4.41E-06 
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MCD 

Coef. 2.65E-06 -2.64E-02 1.99E+00 1.46E-04 -6.35E-06 

s.e 2.88E-04 2.39E-02 5.89E-01 2.19E-04 8.36E-06 

Robust s.e. 2.62E-04 3.69E-02 1.13E+00 2.07E-04 7.01E-06 

MRK 

Coef. -6.50E-04 -1.21E-02 2.73E+00 6.40E-05 -5.72E-07 

s.e 3.42E-04 2.30E-02 5.38E-01 1.56E-04 3.50E-06 

Robust s.e. 3.43E-04 4.90E-02 1.19E+00 1.24E-04 2.66E-06 

MSFT 

Coef. -4.12E-04 -2.28E-02 1.28E+00 4.17E-04 1.20E-05 

s.e 3.95E-04 2.33E-02 8.29E-01 2.97E-04 1.70E-05 

Robust s.e. 7.32E-04 4.13E-02 3.36E+00 2.86E-04 1.61E-05 

ORCL 

Coef. 1.95E-04 -7.52E-02 1.58E+00 6.45E-04 -1.71E-05 

s.e 4.11E-04 2.35E-02 7.41E-01 3.18E-04 8.21E-06 

Robust s.e. 6.48E-04 4.39E-02 2.28E+00 4.19E-04 1.04E-05 

PEP 

Coef. 1.83E-04 -3.64E-02 1.87E+00 -4.52E-05 5.05E-06 

s.e 2.36E-04 2.27E-02 5.57E-01 8.53E-05 3.59E-06 

Robust s.e. 2.67E-04 4.32E-02 1.91E+00 5.64E-05 1.99E-06 

PFE 

Coef. -7.48E-04 -2.26E-02 2.35E+00 -6.72E-05 -1.32E-06 

s.e 3.37E-04 2.31E-02 8.29E-01 2.16E-04 6.53E-06 

Robust s.e. 3.97E-04 2.72E-02 1.75E+00 2.12E-04 6.10E-06 

PG 

Coef. 3.82E-04 -6.53E-02 1.54E+00 9.78E-06 1.48E-06 

s.e 2.40E-04 2.30E-02 6.47E-01 1.57E-04 7.67E-06 

Robust s.e. 2.06E-04 3.59E-02 8.43E-01 1.25E-04 4.80E-06 

QCOM 

Coef. -2.42E-04 -5.60E-02 5.80E-01 6.87E-06 -1.99E-07 

s.e 3.99E-04 2.30E-02 5.07E-01 2.02E-04 3.75E-06 

Robust s.e. 3.60E-04 3.27E-02 5.49E-01 1.51E-04 2.74E-06 

SLB 

Coef. 1.68E-04 -7.62E-02 -9.87E-01 1.64E-04 7.74E-06 

s.e 5.61E-04 2.33E-02 5.37E-01 3.44E-04 1.56E-05 

Robust s.e. 7.11E-04 3.54E-02 1.45E+00 2.73E-04 1.20E-05 

T 

Coef. -6.39E-04 -5.60E-03 3.37E+00 -2.68E-04 -3.43E-05 

s.e 3.44E-04 2.43E-02 5.57E-01 2.87E-04 1.69E-05 

Robust s.e. 5.12E-04 4.16E-02 2.46E+00 3.42E-04 1.78E-05 

VZ 

Coef. -8.39E-04 -2.16E-02 3.21E+00 -1.86E-04 2.59E-06 

s.e 3.53E-04 2.33E-02 6.01E-01 2.46E-04 1.72E-05 

Robust s.e. 3.61E-04 4.69E-02 1.69E+00 2.36E-04 1.36E-05 

WFC 

Coef. 1.51E-04 -1.18E-01 -1.35E-01 1.77E-04 3.80E-06 

s.e 6.33E-04 2.24E-02 3.49E-01 1.70E-04 4.54E-06 

Robust s.e. 5.79E-04 5.26E-02 1.08E+00 5.27E-05 1.04E-06 

WMT 

Coef. -2.19E-04 -8.93E-02 1.87E+00 2.92E-04 4.15E-06 

s.e 2.83E-04 2.34E-02 6.39E-01 2.10E-04 1.25E-05 

Robust s.e. 2.93E-04 3.56E-02 1.41E+00 1.59E-04 7.81E-06 

XOM 

Coef. -4.40E-04 -1.14E-01 3.29E+00 1.46E-04 2.09E-05 

s.e 3.52E-04 2.31E-02 4.48E-01 3.44E-04 2.04E-05 

Robust s.e. 3.57E-04 4.65E-02 1.33E+00 2.88E-04 1.64E-05 
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Models with robust estimators of skewness and kurtosis 

Table 36 

Summary of Model 𝜽𝑩𝒐𝒘𝒍𝒆𝒚,𝑴𝒐𝒐𝒓𝒔 estimated for each of the individual stocks 

       

Company  Intercept Return Variance Skewness Kurtosis 

AAPL 

Coef. -1.59E-03 -8.99E-02 3.85E-02 2.01E-03 7.57E-03 

s.e 6.64E-04 2.29E-02 6.63E-01 5.30E-03 2.83E-03 

Robust s.e. 8.44E-04 3.57E-02 1.73E+00 5.31E-03 3.02E-03 

AMZN 

Coef. 1.37E-03 -1.34E-02 1.15E+00 1.84E-03 -1.93E-03 

s.e 7.57E-04 2.34E-02 6.52E-01 5.04E-03 1.99E-03 

Robust s.e. 9.76E-04 4.07E-02 1.72E+00 4.77E-03 1.82E-03 

BAC 

Coef. -2.01E-03 -1.20E-01 -6.58E-01 -1.44E-03 1.42E-03 

s.e 1.00E-03 2.40E-02 2.89E-01 8.49E-03 2.45E-03 

Robust s.e. 9.70E-04 5.92E-02 8.50E-01 1.10E-02 1.81E-03 

C 

Coef. -9.99E-04 -3.25E-02 -2.02E+00 4.18E-03 1.72E-04 

s.e 7.72E-04 2.45E-02 2.01E-01 5.86E-03 1.07E-04 

Robust s.e. 8.79E-04 7.53E-02 7.37E-01 8.70E-03 1.29E-04 

CMCSA 

Coef. -2.14E-04 -3.93E-02 1.71E+00 1.76E-04 -6.22E-05 

s.e 5.47E-04 2.45E-02 7.10E-01 4.25E-03 1.27E-03 

Robust s.e. 6.83E-04 3.94E-02 2.15E+00 4.22E-03 1.08E-03 

CSCO 

Coef. -3.81E-04 -4.69E-02 2.36E-01 -3.04E-03 9.74E-05 

s.e 4.26E-04 2.45E-02 6.95E-01 3.26E-03 7.30E-04 

Robust s.e. 6.12E-04 3.75E-02 2.09E+00 3.86E-03 5.34E-04 

CVX 

Coef. -5.82E-04 -1.07E-01 3.31E+00 -1.23E-05 -3.90E-04 

s.e 4.41E-04 2.31E-02 4.69E-01 3.16E-03 1.71E-03 

Robust s.e. 5.95E-04 4.57E-02 2.08E+00 3.44E-03 1.42E-03 

DIS 

Coef. -3.77E-04 -7.21E-02 4.69E+00 8.58E-03 5.57E-04 

s.e 4.45E-04 2.49E-02 6.42E-01 4.00E-03 1.16E-03 

Robust s.e. 5.11E-04 4.22E-02 1.83E+00 4.76E-03 1.02E-03 

GE 

Coef. -2.58E-04 -5.31E-02 -1.83E+00 -4.99E-03 1.35E-03 

s.e 4.45E-04 2.48E-02 4.11E-01 4.79E-03 1.30E-03 

Robust s.e. 4.24E-04 6.02E-02 1.14E+00 5.81E-03 1.01E-03 

HD 

Coef. -2.09E-04 2.65E-02 2.32E+00 -1.67E-03 -1.14E-04 

s.e 5.47E-04 2.57E-02 5.99E-01 3.83E-03 1.43E-03 

Robust s.e. 5.32E-04 4.87E-02 1.26E+00 4.42E-03 1.40E-03 

IBM 

Coef. 1.27E-03 1.89E-02 -4.76E-01 4.93E-04 -1.98E-03 

s.e 3.85E-04 2.33E-02 5.92E-01 2.64E-03 1.37E-03 

Robust s.e. 3.81E-04 3.68E-02 1.69E+00 2.48E-03 1.19E-03 

INTC 

Coef. -1.06E-03 -5.35E-02 1.65E+00 3.50E-03 2.83E-03 

s.e 4.70E-04 2.51E-02 7.88E-01 4.56E-03 1.31E-03 

Robust s.e. 5.45E-04 3.59E-02 1.67E+00 4.78E-03 1.23E-03 
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JNJ 

Coef. -6.43E-05 -1.17E-01 3.21E+00 5.70E-03 -1.03E-03 

s.e 2.81E-04 2.50E-02 8.08E-01 2.10E-03 6.96E-04 

Robust s.e. 3.87E-04 4.53E-02 2.60E+00 2.20E-03 6.90E-04 

JPM 

Coef. -5.94E-04 -1.08E-01 1.03E+00 2.81E-03 6.70E-04 

s.e 7.44E-04 2.35E-02 3.90E-01 5.61E-03 2.28E-03 

Robust s.e. 6.18E-04 6.05E-02 1.02E+00 7.21E-03 1.71E-03 

KO 

Coef. -2.44E-04 -4.45E-02 2.34E+00 1.44E-03 3.04E-05 

s.e 3.19E-04 2.54E-02 8.19E-01 2.46E-03 7.90E-04 

Robust s.e. 4.39E-04 4.76E-02 2.96E+00 2.80E-03 6.54E-04 

MCD 

Coef. 1.06E-04 -1.25E-02 1.92E+00 -2.12E-03 -6.44E-04 

s.e 3.56E-04 2.49E-02 5.91E-01 2.49E-03 8.92E-04 

Robust s.e. 3.26E-04 4.03E-02 1.17E+00 2.70E-03 7.65E-04 

MRK 

Coef. -2.26E-04 -1.29E-02 2.75E+00 1.33E-03 -1.50E-03 

s.e 4.63E-04 2.47E-02 5.39E-01 3.11E-03 1.09E-03 

Robust s.e. 4.32E-04 4.28E-02 1.19E+00 3.52E-03 9.98E-04 

MSFT 

Coef. -3.76E-04 -9.55E-03 1.25E+00 -1.30E-03 4.76E-04 

s.e 3.96E-04 2.56E-02 8.30E-01 3.57E-03 1.15E-03 

Robust s.e. 7.15E-04 3.99E-02 3.36E+00 4.02E-03 1.01E-03 

ORCL 

Coef. -5.82E-05 -4.72E-02 1.62E+00 -4.25E-03 2.23E-04 

s.e 4.10E-04 2.37E-02 7.41E-01 2.62E-03 1.48E-04 

Robust s.e. 4.94E-04 3.12E-02 1.50E+00 2.48E-03 6.22E-05 

PEP 

Coef. 4.61E-04 -5.63E-02 1.90E+00 3.39E-03 -9.12E-04 

s.e 2.99E-04 2.48E-02 5.57E-01 2.05E-03 7.63E-04 

Robust s.e. 3.23E-04 4.32E-02 1.77E+00 2.40E-03 6.70E-04 

PFE 

Coef. -7.35E-04 -1.38E-02 2.26E+00 -3.55E-03 -1.90E-05 

s.e 3.55E-04 2.46E-02 8.31E-01 3.42E-03 8.34E-04 

Robust s.e. 4.22E-04 3.19E-02 1.86E+00 3.23E-03 6.93E-04 

PG 

Coef. 2.85E-04 -7.43E-02 1.57E+00 1.91E-03 3.91E-04 

s.e 3.01E-04 2.48E-02 6.48E-01 2.22E-03 7.92E-04 

Robust s.e. 2.83E-04 4.47E-02 1.20E+00 2.50E-03 7.09E-04 

QCOM 

Coef. -4.91E-05 -5.90E-02 5.75E-01 8.45E-04 -8.87E-04 

s.e 5.03E-04 2.49E-02 5.07E-01 3.18E-03 1.37E-03 

Robust s.e. 4.96E-04 3.62E-02 9.20E-01 3.45E-03 1.29E-03 

SLB 

Coef. 2.43E-04 -8.62E-02 -9.55E-01 1.23E-02 -3.70E-04 

s.e 7.36E-04 2.29E-02 5.37E-01 4.93E-03 2.80E-03 

Robust s.e. 8.68E-04 3.36E-02 1.43E+00 4.92E-03 2.68E-03 

T 

Coef. -8.47E-04 -3.41E-02 3.38E+00 2.72E-03 -8.46E-04 

s.e 3.32E-04 2.45E-02 5.61E-01 2.88E-03 9.98E-04 

Robust s.e. 5.19E-04 3.44E-02 2.49E+00 2.73E-03 1.01E-03 

VZ 

Coef. -5.72E-04 -3.41E-02 3.26E+00 2.35E-03 -1.27E-03 

s.e 3.57E-04 2.46E-02 6.01E-01 3.21E-03 9.85E-04 

Robust s.e. 3.30E-04 3.70E-02 1.40E+00 3.51E-03 8.05E-04 

WFC Coef. 2.73E-04 -1.13E-01 -1.40E-01 -2.09E-03 -3.59E-04 
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s.e 7.59E-04 2.34E-02 3.49E-01 5.52E-03 2.22E-03 

Robust s.e. 6.57E-04 5.39E-02 1.10E+00 5.11E-03 1.59E-03 

WMT 

Coef. 9.75E-06 -1.05E-01 1.90E+00 5.67E-03 -8.60E-04 

s.e 3.49E-04 2.46E-02 6.40E-01 2.37E-03 9.03E-04 

Robust s.e. 3.61E-04 3.76E-02 1.14E+00 2.50E-03 8.68E-04 

XOM 

Coef. -4.49E-04 -1.31E-01 3.32E+00 6.77E-03 3.40E-04 

s.e 3.91E-04 2.31E-02 4.48E-01 2.78E-03 1.59E-03 

Robust s.e. 3.96E-04 4.40E-02 1.33E+00 3.05E-03 1.35E-03 

 

 

Table 37 

Summary of Model 𝜽𝑩𝒐𝒘𝒍𝒆𝒚,𝑪&𝑺 estimated for each of the individual stocks 

       

Company  Intercept Return Variance Skewness Kurtosis 

AAPL 

Coef. -2.39E-03 -9.21E-02 3.95E-02 1.68E-03 2.37E-03 

s.e 7.95E-04 2.29E-02 6.62E-01 5.30E-03 7.44E-04 

Robust s.e. 8.80E-04 3.48E-02 1.62E+00 5.36E-03 6.94E-04 

AMZN 

Coef. 1.32E-03 -1.28E-02 1.16E+00 1.83E-03 -3.45E-04 

s.e 9.62E-04 2.34E-02 6.55E-01 5.05E-03 6.34E-04 

Robust s.e. 1.19E-03 4.18E-02 1.82E+00 4.74E-03 6.08E-04 

BAC 

Coef. -1.34E-03 -1.20E-01 -6.69E-01 -1.26E-03 -4.18E-04 

s.e 1.06E-03 2.40E-02 2.88E-01 8.49E-03 1.06E-03 

Robust s.e. 8.91E-04 6.40E-02 8.71E-01 1.02E-02 8.23E-04 

C 

Coef. -1.00E-03 -3.34E-02 -2.02E+00 4.80E-03 1.01E-04 

s.e 7.75E-04 2.45E-02 2.02E-01 5.86E-03 8.33E-05 

Robust s.e. 8.91E-04 7.51E-02 7.41E-01 8.66E-03 9.62E-05 

CMCSA 

Coef. 4.20E-05 -3.93E-02 1.74E+00 1.18E-04 -3.47E-04 

s.e 6.37E-04 2.45E-02 7.11E-01 4.25E-03 5.59E-04 

Robust s.e. 7.13E-04 4.37E-02 2.24E+00 4.34E-03 5.10E-04 

CSCO 

Coef. -2.33E-04 -4.65E-02 2.54E-01 -3.24E-03 -1.92E-04 

s.e 4.73E-04 2.44E-02 6.96E-01 3.25E-03 3.87E-04 

Robust s.e. 5.89E-04 3.74E-02 2.11E+00 3.82E-03 3.37E-04 

CVX 

Coef. -5.54E-04 -1.07E-01 3.31E+00 -2.13E-05 -1.17E-04 

s.e 5.74E-04 2.32E-02 4.71E-01 3.16E-03 5.88E-04 

Robust s.e. 7.63E-04 5.24E-02 2.10E+00 3.58E-03 5.58E-04 

DIS 

Coef. 8.02E-05 -7.30E-02 4.75E+00 8.70E-03 -4.32E-04 

s.e 4.97E-04 2.49E-02 6.45E-01 4.00E-03 4.30E-04 

Robust s.e. 4.85E-04 4.09E-02 1.72E+00 4.70E-03 4.32E-04 

GE 
Coef. -4.62E-04 -5.35E-02 -1.90E+00 -4.96E-03 7.59E-04 

s.e 4.87E-04 2.48E-02 4.15E-01 4.78E-03 5.21E-04 
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Robust s.e. 4.22E-04 5.97E-02 1.17E+00 5.77E-03 5.10E-04 

HD 

Coef. 4.00E-04 2.66E-02 2.29E+00 -1.58E-03 -5.77E-04 

s.e 7.05E-04 2.57E-02 5.98E-01 3.83E-03 5.17E-04 

Robust s.e. 7.29E-04 4.61E-02 1.25E+00 4.24E-03 5.83E-04 

IBM 

Coef. 1.69E-03 2.16E-02 -5.22E-01 4.41E-04 -8.26E-04 

s.e 5.03E-04 2.34E-02 5.92E-01 2.64E-03 4.29E-04 

Robust s.e. 5.11E-04 3.52E-02 1.65E+00 2.48E-03 4.08E-04 

INTC 

Coef. -6.48E-04 -5.40E-02 1.70E+00 3.48E-03 1.64E-05 

s.e 5.16E-04 2.52E-02 7.93E-01 4.57E-03 5.19E-04 

Robust s.e. 5.70E-04 3.86E-02 1.93E+00 4.80E-03 5.18E-04 

JNJ 

Coef. 7.21E-05 -1.18E-01 3.22E+00 5.76E-03 -3.52E-04 

s.e 3.62E-04 2.50E-02 8.08E-01 2.10E-03 2.51E-04 

Robust s.e. 4.53E-04 4.51E-02 2.77E+00 2.21E-03 2.54E-04 

JPM 

Coef. 1.07E-04 -1.07E-01 1.00E+00 2.74E-03 -6.22E-04 

s.e 9.60E-04 2.35E-02 3.91E-01 5.61E-03 8.28E-04 

Robust s.e. 8.76E-04 5.94E-02 1.07E+00 7.02E-03 7.37E-04 

KO 

Coef. -2.30E-04 -4.45E-02 2.34E+00 1.44E-03 -6.92E-06 

s.e 3.91E-04 2.54E-02 8.18E-01 2.46E-03 3.06E-04 

Robust s.e. 4.35E-04 4.77E-02 3.05E+00 2.79E-03 2.64E-04 

MCD 

Coef. 5.59E-04 -1.30E-02 1.92E+00 -2.17E-03 -5.56E-04 

s.e 4.48E-04 2.49E-02 5.90E-01 2.49E-03 3.20E-04 

Robust s.e. 4.07E-04 3.95E-02 1.15E+00 2.68E-03 3.04E-04 

MRK 

Coef. -5.67E-04 -1.44E-02 2.75E+00 1.49E-03 -8.21E-05 

s.e 5.36E-04 2.46E-02 5.43E-01 3.11E-03 3.67E-04 

Robust s.e. 5.18E-04 3.86E-02 1.11E+00 3.49E-03 3.96E-04 

MSFT 

Coef. -2.45E-05 -1.05E-02 1.35E+00 -1.03E-03 -4.72E-04 

s.e 4.46E-04 2.56E-02 8.33E-01 3.57E-03 4.25E-04 

Robust s.e. 6.60E-04 3.72E-02 3.21E+00 3.98E-03 4.00E-04 

ORCL 

Coef. -8.39E-05 -4.69E-02 1.58E+00 -4.33E-03 1.42E-04 

s.e 4.15E-04 2.37E-02 7.41E-01 2.62E-03 1.14E-04 

Robust s.e. 6.53E-04 3.38E-02 2.24E+00 2.40E-03 6.87E-05 

PEP 

Coef. 5.86E-04 -5.64E-02 1.91E+00 3.35E-03 -2.97E-04 

s.e 4.03E-04 2.48E-02 5.57E-01 2.05E-03 2.79E-04 

Robust s.e. 3.93E-04 4.26E-02 1.39E+00 2.38E-03 2.52E-04 

PFE 

Coef. -6.78E-04 -1.37E-02 2.33E+00 -3.55E-03 -1.69E-04 

s.e 3.59E-04 2.46E-02 8.44E-01 3.41E-03 3.80E-04 

Robust s.e. 4.06E-04 3.15E-02 1.86E+00 3.22E-03 3.52E-04 

PG 

Coef. 5.59E-04 -7.37E-02 1.54E+00 1.87E-03 -1.48E-04 

s.e 4.01E-04 2.48E-02 6.48E-01 2.22E-03 2.82E-04 

Robust s.e. 3.88E-04 3.87E-02 8.90E-01 2.30E-03 2.68E-04 

QCOM 

Coef. -1.46E-04 -5.93E-02 5.75E-01 9.00E-04 -8.97E-05 

s.e 6.63E-04 2.49E-02 5.08E-01 3.18E-03 4.67E-04 

Robust s.e. 6.82E-04 3.66E-02 1.06E+00 3.58E-03 4.60E-04 
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SLB 

Coef. 5.93E-04 -8.57E-02 -9.78E-01 1.23E-02 -5.06E-04 

s.e 9.26E-04 2.30E-02 5.38E-01 4.93E-03 9.14E-04 

Robust s.e. 1.11E-03 3.28E-02 1.42E+00 4.89E-03 9.17E-04 

T 

Coef. -5.90E-04 -3.57E-02 3.48E+00 2.76E-03 -5.91E-04 

s.e 3.78E-04 2.45E-02 5.64E-01 2.88E-03 3.59E-04 

Robust s.e. 5.20E-04 3.46E-02 2.47E+00 2.75E-03 3.66E-04 

VZ 

Coef. -3.02E-04 -3.44E-02 3.32E+00 2.25E-03 -6.36E-04 

s.e 4.26E-04 2.46E-02 6.03E-01 3.21E-03 3.70E-04 

Robust s.e. 4.16E-04 4.00E-02 1.79E+00 3.62E-03 3.57E-04 

WFC 

Coef. 9.40E-04 -1.12E-01 -1.55E-01 -1.97E-03 -8.09E-04 

s.e 9.56E-04 2.34E-02 3.49E-01 5.52E-03 7.91E-04 

Robust s.e. 8.00E-04 5.38E-02 1.08E+00 5.03E-03 6.54E-04 

WMT 

Coef. 3.68E-04 -1.04E-01 1.88E+00 5.59E-03 -5.10E-04 

s.e 4.61E-04 2.46E-02 6.40E-01 2.37E-03 3.34E-04 

Robust s.e. 4.89E-04 3.77E-02 1.21E+00 2.49E-03 3.21E-04 

XOM 

Coef. -7.54E-04 -1.31E-01 3.35E+00 6.69E-03 4.86E-04 

s.e 5.12E-04 2.31E-02 4.49E-01 2.78E-03 5.49E-04 

Robust s.e. 5.06E-04 3.12E-02 1.09E+00 2.58E-03 4.80E-04 

 

 

Table 38 

Summary of Model 𝜽𝑮&𝑴,𝑴𝒐𝒐𝒓𝒔 estimated for each of the individual stocks 

       

Company  Intercept Return Variance Skewness Kurtosis 

AAPL 

Coef. -1.61E-03 -7.71E-02 3.31E-02 -8.52E-03 7.61E-03 

s.e 6.64E-04 2.48E-02 6.62E-01 8.20E-03 2.83E-03 

Robust s.e. 8.46E-04 4.00E-02 1.71E+00 9.39E-03 3.03E-03 

AMZN 

Coef. 1.33E-03 -2.14E-02 1.17E+00 7.28E-03 -1.91E-03 

s.e 7.59E-04 2.59E-02 6.52E-01 9.15E-03 1.99E-03 

Robust s.e. 9.67E-04 4.77E-02 1.70E+00 1.05E-02 1.82E-03 

BAC 

Coef. -1.87E-03 -1.55E-01 -6.79E-01 2.75E-02 1.19E-03 

s.e 1.00E-03 2.83E-02 2.89E-01 1.44E-02 2.45E-03 

Robust s.e. 9.56E-04 7.44E-02 8.60E-01 2.05E-02 1.81E-03 

C 

Coef. -1.05E-03 -2.22E-02 -1.99E+00 -3.68E-03 1.93E-04 

s.e 7.72E-04 2.95E-02 2.05E-01 1.55E-02 1.03E-04 

Robust s.e. 8.62E-04 1.02E-01 7.35E-01 3.38E-02 1.15E-04 

CMCSA 

Coef. -2.19E-04 -6.87E-02 1.67E+00 9.51E-03 -6.94E-05 

s.e 5.47E-04 4.28E-02 7.12E-01 1.17E-02 1.27E-03 

Robust s.e. 6.75E-04 8.66E-02 2.14E+00 1.77E-02 1.07E-03 

CSCO Coef. -3.91E-04 -7.89E-02 2.40E-01 6.49E-03 1.92E-04 
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s.e 4.26E-04 4.72E-02 6.95E-01 1.18E-02 7.25E-04 

Robust s.e. 6.60E-04 1.09E-01 2.29E+00 2.42E-02 5.05E-04 

CVX 

Coef. -5.97E-04 -1.15E-01 3.30E+00 3.88E-03 -4.19E-04 

s.e 4.41E-04 2.56E-02 4.70E-01 5.97E-03 1.71E-03 

Robust s.e. 5.92E-04 5.28E-02 2.05E+00 8.55E-03 1.40E-03 

DIS 

Coef. -4.84E-04 -1.13E-01 4.79E+00 1.88E-02 5.41E-04 

s.e 4.47E-04 3.71E-02 6.44E-01 8.51E-03 1.16E-03 

Robust s.e. 5.12E-04 1.08E-01 1.95E+00 1.90E-02 1.03E-03 

GE 

Coef. -2.27E-04 -1.08E-01 -1.88E+00 1.67E-02 1.24E-03 

s.e 4.45E-04 3.51E-02 4.11E-01 1.04E-02 1.30E-03 

Robust s.e. 4.20E-04 9.83E-02 1.15E+00 1.92E-02 1.02E-03 

HD 

Coef. -2.41E-04 -2.60E-03 2.41E+00 7.76E-03 -1.17E-04 

s.e 5.47E-04 3.64E-02 6.03E-01 9.35E-03 1.43E-03 

Robust s.e. 5.32E-04 7.43E-02 1.28E+00 1.33E-02 1.40E-03 

IBM 

Coef. 1.26E-03 8.22E-03 -4.64E-01 4.43E-03 -2.01E-03 

s.e 3.85E-04 2.62E-02 5.92E-01 5.06E-03 1.37E-03 

Robust s.e. 3.80E-04 4.28E-02 1.68E+00 5.86E-03 1.19E-03 

INTC 

Coef. -1.12E-03 -2.32E-01 1.83E+00 5.50E-02 2.74E-03 

s.e 4.67E-04 4.98E-02 7.84E-01 1.30E-02 1.30E-03 

Robust s.e. 5.23E-04 8.33E-02 1.68E+00 1.77E-02 1.22E-03 

JNJ 

Coef. -1.20E-04 -2.21E-01 3.51E+00 2.60E-02 -1.02E-03 

s.e 2.80E-04 3.51E-02 8.08E-01 5.28E-03 6.93E-04 

Robust s.e. 3.96E-04 6.12E-02 2.83E+00 6.67E-03 6.88E-04 

JPM 

Coef. -5.83E-04 -1.10E-01 1.03E+00 4.73E-03 6.19E-04 

s.e 7.43E-04 2.62E-02 3.90E-01 1.02E-02 2.28E-03 

Robust s.e. 6.16E-04 7.60E-02 1.03E+00 1.90E-02 1.72E-03 

KO 

Coef. -2.82E-04 -1.40E-01 2.35E+00 2.18E-02 1.30E-05 

s.e 3.19E-04 3.66E-02 8.16E-01 6.18E-03 7.87E-04 

Robust s.e. 4.66E-04 8.00E-02 3.40E+00 9.74E-03 6.53E-04 

MCD 

Coef. 7.20E-05 -4.28E-02 2.06E+00 4.82E-03 -6.29E-04 

s.e 3.57E-04 3.60E-02 6.01E-01 6.31E-03 8.92E-04 

Robust s.e. 3.39E-04 8.30E-02 1.31E+00 1.21E-02 7.64E-04 

MRK 

Coef. -2.17E-04 -1.27E-02 2.74E+00 1.17E-03 -1.52E-03 

s.e 4.63E-04 3.91E-02 5.40E-01 8.65E-03 1.09E-03 

Robust s.e. 4.38E-04 9.03E-02 1.21E+00 1.61E-02 9.98E-04 

MSFT 

Coef. -3.92E-04 -4.83E-02 1.25E+00 9.13E-03 4.41E-04 

s.e 3.96E-04 4.41E-02 8.30E-01 1.01E-02 1.15E-03 

Robust s.e. 7.19E-04 8.39E-02 3.38E+00 1.55E-02 1.01E-03 

ORCL 

Coef. -6.08E-05 -8.96E-02 1.63E+00 8.31E-03 2.51E-04 

s.e 4.12E-04 4.93E-02 7.43E-01 1.25E-02 1.47E-04 

Robust s.e. 6.85E-04 1.04E-01 2.31E+00 2.30E-02 6.12E-05 

PEP 
Coef. 4.68E-04 -8.65E-02 1.92E+00 9.65E-03 -9.50E-04 

s.e 2.98E-04 3.63E-02 5.57E-01 5.74E-03 7.63E-04 
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Robust s.e. 3.38E-04 7.85E-02 1.96E+00 9.84E-03 6.70E-04 

PFE 

Coef. -8.13E-04 -1.36E-01 2.52E+00 2.71E-02 1.77E-06 

s.e 3.54E-04 5.39E-02 8.31E-01 1.19E-02 8.32E-04 

Robust s.e. 4.25E-04 8.09E-02 1.90E+00 1.48E-02 6.93E-04 

PG 

Coef. 2.38E-04 -1.71E-01 1.61E+00 2.21E-02 2.81E-04 

s.e 3.00E-04 3.54E-02 6.46E-01 5.78E-03 7.90E-04 

Robust s.e. 2.80E-04 7.31E-02 1.11E+00 9.62E-03 7.00E-04 

QCOM 

Coef. -3.78E-05 -5.02E-02 5.77E-01 -1.96E-03 -9.05E-04 

s.e 5.03E-04 3.60E-02 5.07E-01 9.38E-03 1.37E-03 

Robust s.e. 5.00E-04 6.53E-02 9.29E-01 1.48E-02 1.29E-03 

SLB 

Coef. 2.34E-04 -1.03E-01 -9.91E-01 2.48E-02 5.81E-05 

s.e 7.36E-04 2.44E-02 5.37E-01 8.24E-03 2.80E-03 

Robust s.e. 8.66E-04 3.80E-02 1.43E+00 9.19E-03 2.67E-03 

T 

Coef. -8.87E-04 -1.04E-01 3.44E+00 2.04E-02 -8.55E-04 

s.e 3.33E-04 4.10E-02 5.61E-01 8.80E-03 9.97E-04 

Robust s.e. 5.33E-04 6.89E-02 2.58E+00 1.17E-02 1.01E-03 

VZ 

Coef. -5.92E-04 -6.98E-02 3.34E+00 1.09E-02 -1.27E-03 

s.e 3.57E-04 3.67E-02 6.04E-01 7.36E-03 9.85E-04 

Robust s.e. 3.31E-04 6.71E-02 1.44E+00 1.09E-02 8.02E-04 

WFC 

Coef. 2.71E-04 -1.32E-01 -1.31E-01 1.27E-02 -3.99E-04 

s.e 7.59E-04 2.65E-02 3.49E-01 1.10E-02 2.21E-03 

Robust s.e. 6.58E-04 6.69E-02 1.11E+00 1.65E-02 1.60E-03 

WMT 

Coef. -1.90E-05 -1.84E-01 2.06E+00 2.28E-02 -8.37E-04 

s.e 3.49E-04 3.71E-02 6.42E-01 6.50E-03 9.02E-04 

Robust s.e. 3.67E-04 6.44E-02 1.28E+00 9.35E-03 8.64E-04 

XOM 

Coef. -4.02E-04 -1.38E-01 3.29E+00 1.05E-02 4.78E-04 

s.e 3.90E-04 2.62E-02 4.48E-01 5.84E-03 1.59E-03 

Robust s.e. 3.95E-04 5.52E-02 1.33E+00 8.57E-03 1.36E-03 

 

 

Table 39 

Summary of Model 𝜽𝑮&𝑴,𝑪&𝑺 estimated for each of the individual stocks 

       

Company  Intercept Return Variance Skewness Kurtosis 

AAPL 

Coef. -2.42E-03 -7.95E-02 3.50E-02 -8.56E-03 2.39E-03 

s.e 7.95E-04 2.48E-02 6.61E-01 8.20E-03 7.44E-04 

Robust s.e. 8.90E-04 4.01E-02 1.73E+00 9.35E-03 6.86E-04 

AMZN 

Coef. 1.29E-03 -2.10E-02 1.17E+00 7.45E-03 -3.49E-04 

s.e 9.63E-04 2.59E-02 6.56E-01 9.15E-03 6.34E-04 

Robust s.e. 1.18E-03 4.73E-02 1.76E+00 1.04E-02 6.08E-04 
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BAC 

Coef. -1.25E-03 -1.55E-01 -6.87E-01 2.79E-02 -4.44E-04 

s.e 1.06E-03 2.83E-02 2.87E-01 1.44E-02 1.06E-03 

Robust s.e. 8.74E-04 7.93E-02 8.75E-01 2.02E-02 8.22E-04 

C 

Coef. -1.07E-03 -2.19E-02 -1.98E+00 -3.97E-03 1.20E-04 

s.e 7.75E-04 2.95E-02 2.05E-01 1.56E-02 8.05E-05 

Robust s.e. 8.72E-04 1.02E-01 7.39E-01 3.38E-02 8.59E-05 

CMCSA 

Coef. 4.07E-05 -6.91E-02 1.69E+00 9.62E-03 -3.54E-04 

s.e 6.37E-04 4.28E-02 7.13E-01 1.17E-02 5.59E-04 

Robust s.e. 7.01E-04 1.02E-01 2.21E+00 2.05E-02 5.09E-04 

CSCO 

Coef. -2.49E-04 -7.83E-02 2.52E-01 6.25E-03 -1.50E-04 

s.e 4.74E-04 4.72E-02 6.96E-01 1.18E-02 3.86E-04 

Robust s.e. 6.03E-04 1.03E-01 2.18E+00 2.29E-02 3.31E-04 

CVX 

Coef. -5.67E-04 -1.15E-01 3.30E+00 3.86E-03 -1.24E-04 

s.e 5.73E-04 2.56E-02 4.71E-01 5.97E-03 5.88E-04 

Robust s.e. 7.45E-04 5.85E-02 2.04E+00 8.85E-03 5.43E-04 

DIS 

Coef. -6.40E-05 -1.14E-01 4.85E+00 1.87E-02 -3.88E-04 

s.e 4.98E-04 3.70E-02 6.47E-01 8.50E-03 4.30E-04 

Robust s.e. 5.05E-04 7.55E-02 1.87E+00 1.32E-02 4.32E-04 

GE 

Coef. -4.39E-04 -1.09E-01 -1.95E+00 1.69E-02 7.43E-04 

s.e 4.87E-04 3.50E-02 4.15E-01 1.04E-02 5.21E-04 

Robust s.e. 4.17E-04 9.77E-02 1.17E+00 1.91E-02 5.06E-04 

HD 

Coef. 3.79E-04 -2.72E-03 2.39E+00 7.92E-03 -5.87E-04 

s.e 7.06E-04 3.64E-02 6.02E-01 9.34E-03 5.17E-04 

Robust s.e. 7.28E-04 6.89E-02 1.26E+00 1.23E-02 5.85E-04 

IBM 

Coef. 1.69E-03 1.04E-02 -5.10E-01 4.55E-03 -8.40E-04 

s.e 5.02E-04 2.62E-02 5.92E-01 5.06E-03 4.29E-04 

Robust s.e. 5.08E-04 4.15E-02 1.62E+00 5.83E-03 4.08E-04 

INTC 

Coef. -6.84E-04 -2.35E-01 1.89E+00 5.55E-02 -4.89E-05 

s.e 5.13E-04 4.98E-02 7.89E-01 1.31E-02 5.16E-04 

Robust s.e. 5.59E-04 9.52E-02 1.92E+00 2.00E-02 5.13E-04 

JNJ 

Coef. -2.65E-05 -2.20E-01 3.52E+00 2.59E-02 -3.12E-04 

s.e 3.61E-04 3.51E-02 8.08E-01 5.29E-03 2.50E-04 

Robust s.e. 4.66E-04 6.79E-02 3.13E+00 7.47E-03 2.56E-04 

JPM 

Coef. 1.20E-04 -1.10E-01 1.00E+00 5.02E-03 -6.37E-04 

s.e 9.60E-04 2.62E-02 3.91E-01 1.02E-02 8.28E-04 

Robust s.e. 8.76E-04 7.39E-02 1.07E+00 1.84E-02 7.41E-04 

KO 

Coef. -2.44E-04 -1.40E-01 2.35E+00 2.18E-02 -3.52E-05 

s.e 3.90E-04 3.66E-02 8.16E-01 6.18E-03 3.05E-04 

Robust s.e. 4.70E-04 8.42E-02 3.46E+00 1.02E-02 2.70E-04 

MCD 

Coef. 5.20E-04 -4.29E-02 2.06E+00 4.71E-03 -5.48E-04 

s.e 4.49E-04 3.59E-02 6.00E-01 6.31E-03 3.20E-04 

Robust s.e. 4.20E-04 7.81E-02 1.31E+00 1.15E-02 3.05E-04 

MRK Coef. -5.63E-04 -1.40E-02 2.75E+00 1.26E-03 -8.09E-05 
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s.e 5.36E-04 3.91E-02 5.44E-01 8.66E-03 3.67E-04 

Robust s.e. 5.15E-04 7.81E-02 1.12E+00 1.42E-02 3.97E-04 

MSFT 

Coef. -3.60E-05 -4.96E-02 1.36E+00 9.46E-03 -4.87E-04 

s.e 4.46E-04 4.41E-02 8.32E-01 1.01E-02 4.24E-04 

Robust s.e. 6.73E-04 7.74E-02 3.31E+00 1.45E-02 4.00E-04 

ORCL 

Coef. -9.09E-05 -8.91E-02 1.59E+00 8.19E-03 1.62E-04 

s.e 4.17E-04 4.94E-02 7.43E-01 1.25E-02 1.13E-04 

Robust s.e. 6.79E-04 1.02E-01 2.29E+00 2.25E-02 6.40E-05 

PEP 

Coef. 5.92E-04 -8.57E-02 1.93E+00 9.42E-03 -3.05E-04 

s.e 4.02E-04 3.63E-02 5.57E-01 5.73E-03 2.79E-04 

Robust s.e. 4.04E-04 7.76E-02 1.53E+00 9.75E-03 2.51E-04 

PFE 

Coef. -7.39E-04 -1.37E-01 2.60E+00 2.74E-02 -2.10E-04 

s.e 3.59E-04 5.39E-02 8.44E-01 1.19E-02 3.80E-04 

Robust s.e. 4.10E-04 8.35E-02 1.95E+00 1.53E-02 3.56E-04 

PG 

Coef. 5.17E-04 -1.71E-01 1.59E+00 2.23E-02 -1.78E-04 

s.e 4.00E-04 3.54E-02 6.45E-01 5.78E-03 2.81E-04 

Robust s.e. 3.89E-04 6.93E-02 1.00E+00 9.24E-03 2.72E-04 

QCOM 

Coef. -1.33E-04 -5.05E-02 5.77E-01 -1.90E-03 -9.49E-05 

s.e 6.64E-04 3.60E-02 5.08E-01 9.39E-03 4.67E-04 

Robust s.e. 6.83E-04 6.79E-02 1.03E+00 1.55E-02 4.60E-04 

SLB 

Coef. 5.46E-04 -1.03E-01 -1.01E+00 2.48E-02 -3.66E-04 

s.e 9.26E-04 2.45E-02 5.38E-01 8.24E-03 9.13E-04 

Robust s.e. 1.10E-03 3.72E-02 1.45E+00 9.09E-03 9.12E-04 

T 

Coef. -6.33E-04 -1.05E-01 3.54E+00 2.03E-02 -5.88E-04 

s.e 3.78E-04 4.10E-02 5.64E-01 8.79E-03 3.59E-04 

Robust s.e. 5.30E-04 6.88E-02 2.53E+00 1.17E-02 3.64E-04 

VZ 

Coef. -3.13E-04 -7.11E-02 3.40E+00 1.11E-02 -6.48E-04 

s.e 4.25E-04 3.67E-02 6.06E-01 7.35E-03 3.69E-04 

Robust s.e. 4.15E-04 7.33E-02 1.84E+00 1.19E-02 3.55E-04 

WFC 

Coef. 9.64E-04 -1.32E-01 -1.46E-01 1.31E-02 -8.45E-04 

s.e 9.56E-04 2.65E-02 3.49E-01 1.10E-02 7.91E-04 

Robust s.e. 8.02E-04 6.64E-02 1.09E+00 1.62E-02 6.59E-04 

WMT 

Coef. 3.37E-04 -1.82E-01 2.03E+00 2.26E-02 -5.02E-04 

s.e 4.60E-04 3.71E-02 6.41E-01 6.50E-03 3.33E-04 

Robust s.e. 4.94E-04 6.68E-02 1.45E+00 9.65E-03 3.22E-04 

XOM 

Coef. -7.17E-04 -1.39E-01 3.32E+00 1.04E-02 5.27E-04 

s.e 5.12E-04 2.62E-02 4.49E-01 5.83E-03 5.49E-04 

Robust s.e. 5.05E-04 3.79E-02 1.11E+00 6.62E-03 4.83E-04 
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Table 40 

Summary of Model 𝜽𝑷𝒆𝒂𝒓𝒔𝒐𝒏,𝑴𝒐𝒐𝒓𝒔 estimated for each of the individual stocks 

       

Company  Intercept Return Variance Skewness Kurtosis 

AAPL 

Coef. -1.62E-03 -7.70E-02 3.58E-02 -1.18E-02 7.62E-03 

s.e 6.64E-04 2.48E-02 6.62E-01 1.13E-02 2.83E-03 

Robust s.e. 8.47E-04 4.01E-02 1.72E+00 1.30E-02 3.03E-03 

AMZN 

Coef. 1.34E-03 -2.04E-02 1.17E+00 9.52E-03 -1.91E-03 

s.e 7.59E-04 2.58E-02 6.52E-01 1.30E-02 1.99E-03 

Robust s.e. 9.69E-04 4.74E-02 1.71E+00 1.49E-02 1.82E-03 

BAC 

Coef. -1.86E-03 -1.54E-01 -6.80E-01 3.74E-02 1.17E-03 

s.e 1.00E-03 2.83E-02 2.89E-01 2.01E-02 2.45E-03 

Robust s.e. 9.56E-04 7.42E-02 8.60E-01 2.86E-02 1.81E-03 

C 

Coef. -1.06E-03 -1.99E-02 -1.98E+00 -7.96E-03 1.93E-04 

s.e 7.73E-04 2.94E-02 2.05E-01 2.17E-02 1.03E-04 

Robust s.e. 8.64E-04 1.02E-01 7.37E-01 4.75E-02 1.15E-04 

CMCSA 

Coef. -2.20E-04 -7.24E-02 1.67E+00 1.55E-02 -6.86E-05 

s.e 5.47E-04 4.29E-02 7.12E-01 1.69E-02 1.27E-03 

Robust s.e. 6.74E-04 8.45E-02 2.13E+00 2.49E-02 1.07E-03 

CSCO 

Coef. -3.88E-04 -7.55E-02 2.40E-01 7.71E-03 1.88E-04 

s.e 4.26E-04 4.81E-02 6.95E-01 1.70E-02 7.25E-04 

Robust s.e. 6.60E-04 1.11E-01 2.29E+00 3.51E-02 5.03E-04 

CVX 

Coef. -5.96E-04 -1.15E-01 3.30E+00 5.33E-03 -4.17E-04 

s.e 4.41E-04 2.55E-02 4.70E-01 8.18E-03 1.71E-03 

Robust s.e. 5.92E-04 5.30E-02 2.06E+00 1.18E-02 1.40E-03 

DIS 

Coef. -4.82E-04 -1.17E-01 4.79E+00 2.79E-02 5.36E-04 

s.e 4.47E-04 3.71E-02 6.43E-01 1.21E-02 1.16E-03 

Robust s.e. 5.11E-04 1.08E-01 1.96E+00 2.72E-02 1.03E-03 

GE 

Coef. -2.26E-04 -1.07E-01 -1.88E+00 2.31E-02 1.24E-03 

s.e 4.45E-04 3.51E-02 4.11E-01 1.46E-02 1.30E-03 

Robust s.e. 4.20E-04 9.79E-02 1.15E+00 2.67E-02 1.01E-03 

HD 

Coef. -2.36E-04 9.46E-04 2.40E+00 9.35E-03 -1.14E-04 

s.e 5.47E-04 3.65E-02 6.03E-01 1.33E-02 1.43E-03 

Robust s.e. 5.32E-04 7.39E-02 1.28E+00 1.89E-02 1.40E-03 

IBM 

Coef. 1.26E-03 9.00E-03 -4.64E-01 5.87E-03 -2.01E-03 

s.e 3.85E-04 2.61E-02 5.92E-01 7.08E-03 1.37E-03 

Robust s.e. 3.80E-04 4.29E-02 1.69E+00 8.21E-03 1.19E-03 

INTC 

Coef. -1.12E-03 -2.41E-01 1.84E+00 8.01E-02 2.73E-03 

s.e 4.67E-04 5.06E-02 7.84E-01 1.85E-02 1.30E-03 

Robust s.e. 5.24E-04 8.46E-02 1.69E+00 2.52E-02 1.22E-03 

JNJ 
Coef. -1.19E-04 -2.16E-01 3.48E+00 3.59E-02 -1.01E-03 

s.e 2.80E-04 3.50E-02 8.08E-01 7.51E-03 6.93E-04 
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Robust s.e. 3.95E-04 6.10E-02 2.80E+00 9.50E-03 6.88E-04 

JPM 

Coef. -5.79E-04 -1.09E-01 1.03E+00 5.22E-03 6.23E-04 

s.e 7.43E-04 2.62E-02 3.90E-01 1.42E-02 2.28E-03 

Robust s.e. 6.16E-04 7.61E-02 1.02E+00 2.67E-02 1.72E-03 

KO 

Coef. -2.80E-04 -1.41E-01 2.35E+00 3.14E-02 9.33E-06 

s.e 3.19E-04 3.66E-02 8.16E-01 8.83E-03 7.87E-04 

Robust s.e. 4.65E-04 7.94E-02 3.39E+00 1.38E-02 6.52E-04 

MCD 

Coef. 7.46E-05 -4.10E-02 2.05E+00 6.38E-03 -6.29E-04 

s.e 3.57E-04 3.58E-02 6.01E-01 9.06E-03 8.92E-04 

Robust s.e. 3.39E-04 8.24E-02 1.31E+00 1.74E-02 7.65E-04 

MRK 

Coef. -2.26E-04 -2.28E-02 2.75E+00 5.77E-03 -1.52E-03 

s.e 4.63E-04 3.85E-02 5.40E-01 1.25E-02 1.09E-03 

Robust s.e. 4.37E-04 8.72E-02 1.22E+00 2.25E-02 9.98E-04 

MSFT 

Coef. -3.91E-04 -5.05E-02 1.25E+00 1.36E-02 4.38E-04 

s.e 3.96E-04 4.49E-02 8.30E-01 1.46E-02 1.15E-03 

Robust s.e. 7.18E-04 8.59E-02 3.38E+00 2.26E-02 1.01E-03 

ORCL 

Coef. -6.29E-05 -9.57E-02 1.63E+00 1.42E-02 2.51E-04 

s.e 4.11E-04 4.99E-02 7.43E-01 1.79E-02 1.47E-04 

Robust s.e. 6.80E-04 1.04E-01 2.30E+00 3.28E-02 6.12E-05 

PEP 

Coef. 4.67E-04 -8.68E-02 1.92E+00 1.41E-02 -9.47E-04 

s.e 2.98E-04 3.64E-02 5.57E-01 8.34E-03 7.63E-04 

Robust s.e. 3.38E-04 7.77E-02 1.95E+00 1.41E-02 6.70E-04 

PFE 

Coef. -8.13E-04 -1.43E-01 2.52E+00 4.06E-02 7.19E-07 

s.e 3.54E-04 5.42E-02 8.31E-01 1.70E-02 8.32E-04 

Robust s.e. 4.25E-04 8.12E-02 1.90E+00 2.10E-02 6.92E-04 

PG 

Coef. 2.42E-04 -1.71E-01 1.60E+00 3.14E-02 2.81E-04 

s.e 3.00E-04 3.55E-02 6.45E-01 8.21E-03 7.90E-04 

Robust s.e. 2.80E-04 7.45E-02 1.13E+00 1.40E-02 7.00E-04 

QCOM 

Coef. -3.90E-05 -5.11E-02 5.77E-01 -2.41E-03 -9.04E-04 

s.e 5.03E-04 3.57E-02 5.07E-01 1.32E-02 1.37E-03 

Robust s.e. 5.00E-04 6.53E-02 9.30E-01 2.11E-02 1.29E-03 

SLB 

Coef. 2.41E-04 -1.03E-01 -9.91E-01 3.52E-02 3.75E-05 

s.e 7.36E-04 2.43E-02 5.36E-01 1.14E-02 2.80E-03 

Robust s.e. 8.66E-04 3.77E-02 1.43E+00 1.27E-02 2.67E-03 

T 

Coef. -8.83E-04 -1.01E-01 3.43E+00 2.80E-02 -8.57E-04 

s.e 3.32E-04 4.10E-02 5.61E-01 1.26E-02 9.97E-04 

Robust s.e. 5.32E-04 6.78E-02 2.58E+00 1.64E-02 1.01E-03 

VZ 

Coef. -5.91E-04 -7.25E-02 3.34E+00 1.67E-02 -1.28E-03 

s.e 3.57E-04 3.68E-02 6.04E-01 1.06E-02 9.85E-04 

Robust s.e. 3.30E-04 6.74E-02 1.44E+00 1.59E-02 8.02E-04 

WFC 

Coef. 2.74E-04 -1.30E-01 -1.31E-01 1.61E-02 -3.98E-04 

s.e 7.59E-04 2.66E-02 3.49E-01 1.56E-02 2.21E-03 

Robust s.e. 6.57E-04 6.71E-02 1.11E+00 2.38E-02 1.60E-03 
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WMT 

Coef. -1.27E-05 -1.81E-01 2.05E+00 3.14E-02 -8.43E-04 

s.e 3.49E-04 3.74E-02 6.42E-01 9.31E-03 9.02E-04 

Robust s.e. 3.66E-04 6.49E-02 1.27E+00 1.35E-02 8.64E-04 

XOM 

Coef. -4.01E-04 -1.38E-01 3.29E+00 1.41E-02 4.84E-04 

s.e 3.90E-04 2.61E-02 4.48E-01 7.90E-03 1.59E-03 

Robust s.e. 3.95E-04 5.55E-02 1.33E+00 1.17E-02 1.36E-03 

 

Table 41 

Summary of Model 𝜽𝑷𝒆𝒂𝒓𝒔𝒐𝒏,𝑪&𝑺 estimated for each of the individual stocks 

       

Company  Intercept Return Variance Skewness Kurtosis 

AAPL 

Coef. -2.42E-03 -7.93E-02 3.79E-02 -1.21E-02 2.40E-03 

s.e 7.96E-04 2.48E-02 6.61E-01 1.13E-02 7.44E-04 

Robust s.e. 8.90E-04 4.02E-02 1.74E+00 1.30E-02 6.86E-04 

AMZN 

Coef. 1.29E-03 -2.00E-02 1.17E+00 9.71E-03 -3.48E-04 

s.e 9.63E-04 2.58E-02 6.55E-01 1.30E-02 6.34E-04 

Robust s.e. 1.18E-03 4.72E-02 1.77E+00 1.47E-02 6.08E-04 

BAC 

Coef. -1.24E-03 -1.54E-01 -6.88E-01 3.81E-02 -4.58E-04 

s.e 1.06E-03 2.83E-02 2.87E-01 2.01E-02 1.06E-03 

Robust s.e. 8.73E-04 7.93E-02 8.75E-01 2.83E-02 8.24E-04 

C 

Coef. -1.08E-03 -1.96E-02 -1.98E+00 -8.34E-03 1.20E-04 

s.e 7.75E-04 2.94E-02 2.05E-01 2.17E-02 8.05E-05 

Robust s.e. 8.74E-04 1.02E-01 7.41E-01 4.75E-02 8.58E-05 

CMCSA 

Coef. 4.14E-05 -7.29E-02 1.69E+00 1.57E-02 -3.56E-04 

s.e 6.37E-04 4.29E-02 7.12E-01 1.69E-02 5.59E-04 

Robust s.e. 7.00E-04 1.01E-01 2.20E+00 2.92E-02 5.09E-04 

CSCO 

Coef. -2.45E-04 -7.50E-02 2.51E-01 7.42E-03 -1.52E-04 

s.e 4.74E-04 4.81E-02 6.96E-01 1.70E-02 3.86E-04 

Robust s.e. 6.01E-04 1.06E-01 2.17E+00 3.35E-02 3.30E-04 

CVX 

Coef. -5.68E-04 -1.15E-01 3.30E+00 5.31E-03 -1.23E-04 

s.e 5.73E-04 2.56E-02 4.71E-01 8.18E-03 5.88E-04 

Robust s.e. 7.45E-04 5.86E-02 2.04E+00 1.22E-02 5.44E-04 

DIS 

Coef. -6.23E-05 -1.17E-01 4.85E+00 2.78E-02 -3.89E-04 

s.e 4.98E-04 3.71E-02 6.47E-01 1.21E-02 4.30E-04 

Robust s.e. 5.03E-04 7.52E-02 1.86E+00 1.88E-02 4.30E-04 

GE 

Coef. -4.38E-04 -1.08E-01 -1.95E+00 2.34E-02 7.44E-04 

s.e 4.87E-04 3.51E-02 4.15E-01 1.46E-02 5.21E-04 

Robust s.e. 4.16E-04 9.73E-02 1.17E+00 2.65E-02 5.07E-04 

HD 

Coef. 3.82E-04 9.51E-04 2.38E+00 9.51E-03 -5.85E-04 

s.e 7.06E-04 3.65E-02 6.02E-01 1.33E-02 5.17E-04 

Robust s.e. 7.28E-04 6.86E-02 1.26E+00 1.75E-02 5.85E-04 
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IBM 

Coef. 1.69E-03 1.13E-02 -5.11E-01 6.02E-03 -8.38E-04 

s.e 5.02E-04 2.61E-02 5.92E-01 7.08E-03 4.29E-04 

Robust s.e. 5.09E-04 4.13E-02 1.63E+00 8.15E-03 4.09E-04 

INTC 

Coef. -6.85E-04 -2.43E-01 1.90E+00 8.08E-02 -4.45E-05 

s.e 5.13E-04 5.07E-02 7.89E-01 1.86E-02 5.16E-04 

Robust s.e. 5.54E-04 9.37E-02 1.89E+00 2.77E-02 5.14E-04 

JNJ 

Coef. -2.15E-05 -2.16E-01 3.49E+00 3.58E-02 -3.13E-04 

s.e 3.61E-04 3.50E-02 8.08E-01 7.52E-03 2.50E-04 

Robust s.e. 4.63E-04 6.59E-02 3.06E+00 1.03E-02 2.56E-04 

JPM 

Coef. 1.21E-04 -1.09E-01 1.00E+00 5.58E-03 -6.33E-04 

s.e 9.60E-04 2.62E-02 3.91E-01 1.42E-02 8.28E-04 

Robust s.e. 8.76E-04 7.40E-02 1.07E+00 2.59E-02 7.40E-04 

KO 

Coef. -2.39E-04 -1.41E-01 2.35E+00 3.15E-02 -3.97E-05 

s.e 3.90E-04 3.66E-02 8.16E-01 8.84E-03 3.05E-04 

Robust s.e. 4.68E-04 8.13E-02 3.45E+00 1.41E-02 2.68E-04 

MCD 

Coef. 5.24E-04 -4.12E-02 2.05E+00 6.26E-03 -5.49E-04 

s.e 4.49E-04 3.58E-02 6.00E-01 9.06E-03 3.20E-04 

Robust s.e. 4.19E-04 7.79E-02 1.31E+00 1.66E-02 3.05E-04 

MRK 

Coef. -5.71E-04 -2.42E-02 2.76E+00 5.90E-03 -8.24E-05 

s.e 5.36E-04 3.85E-02 5.44E-01 1.25E-02 3.67E-04 

Robust s.e. 5.15E-04 7.56E-02 1.12E+00 2.00E-02 3.97E-04 

MSFT 

Coef. -3.48E-05 -5.19E-02 1.35E+00 1.42E-02 -4.88E-04 

s.e 4.46E-04 4.49E-02 8.32E-01 1.46E-02 4.24E-04 

Robust s.e. 6.71E-04 7.90E-02 3.30E+00 2.12E-02 4.00E-04 

ORCL 

Coef. -9.32E-05 -9.53E-02 1.60E+00 1.41E-02 1.62E-04 

s.e 4.17E-04 4.99E-02 7.42E-01 1.79E-02 1.13E-04 

Robust s.e. 6.79E-04 1.04E-01 2.30E+00 3.27E-02 6.37E-05 

PEP 

Coef. 5.91E-04 -8.61E-02 1.93E+00 1.38E-02 -3.04E-04 

s.e 4.02E-04 3.64E-02 5.57E-01 8.34E-03 2.79E-04 

Robust s.e. 4.03E-04 7.70E-02 1.52E+00 1.40E-02 2.51E-04 

PFE 

Coef. -7.39E-04 -1.44E-01 2.60E+00 4.10E-02 -2.12E-04 

s.e 3.59E-04 5.43E-02 8.43E-01 1.70E-02 3.80E-04 

Robust s.e. 4.10E-04 8.48E-02 1.95E+00 2.19E-02 3.57E-04 

PG 

Coef. 5.24E-04 -1.71E-01 1.58E+00 3.16E-02 -1.79E-04 

s.e 4.00E-04 3.54E-02 6.45E-01 8.21E-03 2.81E-04 

Robust s.e. 3.88E-04 6.97E-02 9.92E-01 1.33E-02 2.72E-04 

QCOM 

Coef. -1.35E-04 -5.13E-02 5.77E-01 -2.30E-03 -9.43E-05 

s.e 6.63E-04 3.57E-02 5.08E-01 1.32E-02 4.67E-04 

Robust s.e. 6.82E-04 6.77E-02 1.03E+00 2.21E-02 4.60E-04 

SLB 

Coef. 5.53E-04 -1.03E-01 -1.01E+00 3.51E-02 -3.71E-04 

s.e 9.26E-04 2.44E-02 5.38E-01 1.14E-02 9.13E-04 

Robust s.e. 1.10E-03 3.68E-02 1.44E+00 1.25E-02 9.12E-04 

T Coef. -6.26E-04 -1.02E-01 3.53E+00 2.80E-02 -5.93E-04 
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s.e 3.78E-04 4.10E-02 5.64E-01 1.26E-02 3.59E-04 

Robust s.e. 5.28E-04 6.78E-02 2.53E+00 1.64E-02 3.64E-04 

VZ 

Coef. -3.10E-04 -7.40E-02 3.41E+00 1.70E-02 -6.51E-04 

s.e 4.25E-04 3.68E-02 6.06E-01 1.06E-02 3.69E-04 

Robust s.e. 4.14E-04 7.34E-02 1.84E+00 1.72E-02 3.56E-04 

WFC 

Coef. 9.64E-04 -1.30E-01 -1.46E-01 1.66E-02 -8.42E-04 

s.e 9.56E-04 2.66E-02 3.49E-01 1.56E-02 7.91E-04 

Robust s.e. 8.02E-04 6.65E-02 1.09E+00 2.33E-02 6.59E-04 

WMT 

Coef. 3.42E-04 -1.79E-01 2.03E+00 3.12E-02 -5.03E-04 

s.e 4.60E-04 3.74E-02 6.42E-01 9.31E-03 3.34E-04 

Robust s.e. 4.93E-04 6.72E-02 1.42E+00 1.39E-02 3.22E-04 

XOM 

Coef. -7.18E-04 -1.39E-01 3.32E+00 1.40E-02 5.30E-04 

s.e 5.12E-04 2.61E-02 4.49E-01 7.90E-03 5.49E-04 

Robust s.e. 5.05E-04 3.75E-02 1.10E+00 9.01E-03 4.83E-04 
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Figure 8: Estimated coefficients for 𝐌𝐨𝐝𝐞𝐥 𝛉𝐁𝐏𝐕 
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Figure 9: Estimated coefficients for 𝐌𝐨𝐝𝐞𝐥 𝛉𝐌𝐢𝐧𝐑𝐕 
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Figure 10: Estimated coefficients for 𝐌𝐨𝐝𝐞𝐥 𝛉𝐌𝐞𝐝𝐁𝐏𝐕 
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Figure 11: Estimated coefficients for model 𝛉𝐁𝐒,𝐌𝐊 
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Figure 12: Estimated coefficients for model 𝛉𝐁𝐒,𝐒𝐊 
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Figure 13: Estimated coefficients for model 𝛉𝐆𝐌𝐒,𝐌𝐊 
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Figure 14: Estimated coefficients for model 𝛉𝐆𝐌𝐒,𝐒𝐊 
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Figure 15: Estimated coefficients for model 𝛉𝐏𝐒,𝐌𝐊 
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Figure 16: Estimated coefficients for model 𝛉𝐏𝐒,𝐒𝐊 

 


