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Introduction

Axion-like particles appear in many theories beyond the Standard Model of
particle physics as a consequence of a spontaneous symmetry breaking of an ax-
ial U(1) symmetry. They are pseudoscalar particles sharing common properties
with axions, which were originally predicted in 1977 in order to explain the Strong
CP problem of quantum chromodynamics but as of yet have not been observed.
Thanks to their theoretical properties axion-like particles present a serious can-
didate for the dark matter particle in a case they are very weakly coupled to the
observed matter, which gives a rise to a plenitude of techniques how to measure
the impacts of their possible existence.

Current technologies allow to search for axion-like particles with an excep-
tional sensitivity in a cost-effective manner and hence many new experiments are
proposed in the near-future. Another option to search for axion-like particles is
to use existing experiments like is the case of collider beam-dump facilities, which
can access regions of masses of potential axion-like particles inaccessible by other
techniques. In most of the cases the beam-dump measurements can take place
complementary to a differently motivated physics programme as is the case of
the NA62 experiment at CERN.

While the NA62 experiment serves primarily as a ‘kaon factory’ for a test of
the Standard Model, estimations show that already with one day of the data-
taking in the beam-dump mode, it accesses unexplored areas in the axion-like
particle parameter space. A sufficient statistics of data in the beam-dump mode
was gathered during the 2016-2018 data-taking period, which has to be analyzed
and also studied in terms of data quality in order to allow even more efficient
research in the future data-taking.






0. Outline

The thesis consists of three main parts, presenting the theoretical and exper-
imental motivation and a study of real data. An undergraduate level of knowl-
edge of quantum field theory is expected from the reader, but any other reader
is welcome as most of the topics discussed are at least briefly introduced either
in the text or in the appendices. A more detailed description or an exhaustive
literature is usually referenced throughout the text.

0.1 Theory

The theoretical part is found in chapters [I] and [2, where the first one intro-
duces the Standard Model of particle physics as a gauge field theory and heads
towards the quantum chromodynamics (QCD). The axial U(1) problem of QCD
is presented and eliminated by the forced axial symmetry breaking due to a non-
trivial theta-vacuum topology, which however elevates the Strong-CP problem.

A solution of the Strong-CP problem using the Peccei-Quinn mechanism and
an introduction of axions is presented in the second chapter. A phenomenologi-
cal section with a generalization to Axion-Like Particles (ALPs), which presents
the central motivation for the thesis, follows together with a brief summary of
ALP models, ALP couplings to the SM and implications for the cosmology.

0.2 Experiment

The experimental part is concerned with a summary of distinct experimental
searches and current limits on ALP invariant masses, couplings and current cov-
erage of the parameter space with an emphasis on beam-dump (BD) experiments
provided in the chapter [3]

Further the experimental layout of the fixed-target NA62 experiment at CERN
is discussedﬂ in the chapter . The trigger setup described in the chapter
contains slightly more technical details. This is necessary in order to explain
technical difficulties found in the analysis.

0.3 Data analysis

The last part of the thesis discusses the event reconstruction within the NA62
Framework (NA62FW) and necessary corrections in the chapter [fl The possibil-
ity of running the experiment under special data taking conditions (beam-dump
mode) and review of gathered data are described in the chapter |f] together with
the estimated sensitivity by Monte Carlo (MC) simulations. The study of gath-
ered data (trigger efficiency) in BD mode in the chapter 8 is followed by a test

!Chapters[d]and [5| present an extended and updated version of chapters [2] and [3] of the bach-
elor thesis [1].



of the data quality with a ‘known physics’ in the standard data-taking mode in
the chapter [9] Finally. the last chapter [10] deals with a ALP — ~~ analysis of
the beam-dump data samples taken during runs from years 2016-2018.

The analysis is performed using ROOT (object-oriented data analysis frame-
work) [2] together with NA62 Framework libraries [3] which have been in devel-
opment since 2014. Since a lot of parameters from various detectors in the exper-
iment have to be taken into account, machine learning techniques are used e.g.
for particle identification. The machine learning is implemented using the Toolkit
for Multivariate Data Analysis (TMVA) for ROOT [4].



1. Gauge field theories

Since the thesis aims at physics beyond the Standard Model (SM) of particle
physics, it is convenient to briefly present the SM together with its technical base
before dealing with some of the issues regarding the SM by its extension.

1.1 Standard Model

The Standard Model is a quantum field theory with a local gauge symmetry(|
SU@3)c x SU(2);, x U(1l)y and describes elementary particles and interactions
among them (except for gravity). Thanks to its immense predictive precision, it
has stayed in the center of attention throughout the scientific community for more
than forty years. The organisation of the SM in terms of physical observables (par-
ticles) can be shown in a popular periodic table of elementary particles. Particles
corresponding to spinor fields, (carrying spin 1/2) are subdivided to quarks and
leptons (see table depending on the corresponding gauge symmetry group.

18'gen 2%9gen 3"gen | e
u c t 2/3
quarks J < b Y
leptons © a T -1
v, vy vy 0

Table 1.1: Fermions and corresponding electric charges.

Elementary particles in the SM corresponding to the vector fields (carrying
spin 1) are called gauge bosons and present force carriers. Gluon g for the strong
interaction, photon ~ for the electromagnetic interaction and Z and W bosons
for the weak interaction. The last elementary particle of the SM is a scalar boson
(with spin 0) H, also called the Higgs boson.

In terms of quantum fields, the SM is composed of gluon fields G,,a =1, ..,8
(transforming under the SU(3)c gauge group), electroweak boson fields W, i =
1,2,3 and B (transforming under SU(2);, and U(1)y), Higgs-Goldstone field ®
(transforming under SU(2), x U(1)y) and spinor fields ¢, which can be subse-
quently divided into leptons transforming under electroweak SU(2), x U(1)y and
quarks which unlike leptons are also SU(3)¢ triplets.

The electroweak sector can be further treated via the Higgs mechanism.
Where through the global SU(2), x U(1)y spontaneous symmetry breaking (SSB)
and further rearrangements, three massive vector bosons W=, Z, one massless
vector boson v and one massive scalar boson H are obtained in the physical spec-
trum from the ® field. For more details consult e.g. [6] or a more exhaustive
description [7].

IFor a recapitulation of the use of symmetries in particle physics from a group theory point
of view consult e.g. [5].



1.2 Gauge theories

As mentioned before, Standard Model is a gauge field theory. More light will
be shed on this term as it will be used in the rest of this Chapterﬂ The approach
of [8] or [9] is used (sometimes together with a notation of [5]).

A gauge theory is a theory in which the action is invariant under some specific
continuous group symmetry. Note that the symmetry being global (meaning un-
localized) implies a conservation of currents related to this symmetry as is given
by the Noether’s theorem [I0]. By promoting the theory to be also invariant lo-
cally, so-called gauge ﬁeldsﬂ have to be introduced into the action. The obtained
local symmetry with a continuous symmetry group (gauge group) under which
the gauge theory is invariant is usually called the gauge symmetry.

The gauge theory carries the properties given by its gauge group which also
can give an intuition of how the theory will act. The Lagrangian formalism will
be used in the following] where the action is expressed as

S = /d4x£. (1.1)

1.2.1 U(1) gauge theory

The simplest example of a gauge theory is an Abelian gauge theory, i.e. a the-
ory with a commutative gauge group: U(1), the prototype of which is the quan-
tum electrodynamics (QED), e.g.

The starting point for the derivation of the complete U(1) theory is a free-field
theory with a (massive) fermionic field ¢ and a Lagrangian

L = i7" (~mip), (1.2)
which is clearly invariant under a global U(1) transformation of ¢:
Y(z) = ¥'(2) = e (), (1.3)

where 6 is a phase angle. One can also express # as e«, where e can be identified
with the electric charge in the Maxwell’s theory. The corresponding conserved
current (as given by the Noether’s theorem) is then

Ju(z) = e(x)y,(z). (1.4)

However, when the transformation is local (& — «(z)), our Lagrangian ([1.2))
is not invariant under it anymore as the newly appeared J,a(x) term is not
compensated. In general, this compensation occurs naturally when the original

2Even if not always explicitly mentioned.

3The description of quantum field theories using the gauge fields as force mediators has led
to remarkable discoveries in the last seventy years and the search for symmetries and related
conserved currents became the driving force in the particle physics.

4As is an usual convention, by Lagrangian it will be referred to the Lagrangian density in
the rest of the text.

10



Lagrangian (|1.2]) posses a derivative, which transforms the same way as the field
itself (it then merits a label covariant derivative), instead of the d,,. In the Abelian
case, the covariant derivative takes the form

Dyp =0, —ieAup, (1.5)

where a vector gauge field A, transforming as A,(v) — A}, (z) = A, (r)+0d.a(z),
is introduced. Thanks to the construction, any object made by repeated appli-
cation of D, is also gauge invariant. For instance, in the U(1) gauge theory one
gets

[Dy, D] = ie0, Ay (x) — 0, Apu(x)], (1.6)

where can be recognized the definition of the electromagnetic field strength tensor
from the Maxwell’s theory

F,., =0,A, — 0,A,. (1.7)
Hence, by adding the kinetic term for the gauge field in a form Ly;, = —iF w M
the Lagrangian of the U(1) gauge theory can be completed as [§]
1 _
L= —Fu P + (i7" D, — m)y. (1.8)

It is apparent that there is a whole equivalence class of fields {A) (@)}
leaving the Lagrangian invariant. This property is convenient for solving spe-
cific problems by choosing a specific A € {A®} and yet leaving the physics
‘untouched’. This constraint for extra degrees of freedom is called gauge fizing.
An example of a gauge conditionﬂ isn-A=n,A" =0, where specific choice of
n, gives then:

o axial gauge n?> = —1: n = (0,0,0,1) = Az = 0;
e light-cone gauge n? = 0: n = (1,0,0,1) = 4y — A3 = 0;

o temporal gauge n®> = 1: n = (1,0,0,0) = Ay = 0.

1.2.2 Yang-Mills theory

The concept used in the previous section can be generalized from the U(1)
to an n-dimensional simple Lie group G with the irreducible representation D.
The generators G*,a = 1, .., n of the group G form a Lie algebra with a Lie bracket

(G, G = foeGe, where factors f2¢ = — fb¢ are called structure constants of
the group G and the generators G* satisfy the Jacobi identit@,ﬁ
(G, [GP, G + [G<, [G*, G*)] + [G?, [G<,G*]] = 0. (1.9)

Now, one would like to build a transformation of Dirac fields similarly to (1.3])
but according to our Lie group G:

Y(z) = ¢ (2) = e P(x). (1.10)

5Probably the most famous example of gauge fixing is the Coulomb gauge: divA = 0,4y = .
A different example is presented here as the temporal gauge will be needed later in the text.

6A similar identity as holds also for fo¢, then it can be proved that f®° is antisym-
metric in all three indices.

11



So, if one has a (global) unitary transformation U(«) (with exponential param-
eters a®), then the linear map D(g),g € G (representation) can be equivalently
expressed as

D(g) = exp(a®D(G?)) = exp(—ia®T?) = U(«a). (1.11)

The T* = iD(G®) is then a representation of G* on some representational space V'
and in terms of matrices one can define [T%]* = —ife¢. Thus, the structure con-
stants themselves produce a representation, also called the adjoint representation,
and in terms of the commutator of the matrices it does hold: [T%,T?] =i fabcTﬂ
By choosing a suitable basis of G, it holds n% = —§%® and hence for any irreducible
representation D one can obtain a normalization

Te(T°T") = Kpo®™. (1.12)

Further, the transformation built above will be promoted to be local
a — a(z) and from now the corresponding group will be taken as a gauge group.
The corresponding gauge fields undergo the following gauge transformation leav-
ing the Lagrangian invariant

Au(z) = Al (z) = Aif“)(x) =U()A,U(a)™! — ;U(oz)aﬂU(a)_l, (1.13)

where g is a general coupling constamﬁ. It is apparent that by different choices of
U () one gets specific configurations of A, leaving the observables the same. Thus
formally, from the whole configuration space {A,(x)}, one can select the equiva-
lence classes {A{®(x)} usually called orbitﬂ.

For the infinitesimal transformations can be written
Uz) =1 —iga®(z)T* + O(g?). (1.14)

Then, using the covariant derivative D, = 19, + igA,, one can derive the trans-
formation of the gauge field A, as

Al = A+ 0 —igla, Ay, (1.15)

where a = a®T*. Tt is also consistent to want A, = AT as everything is then
a linear combination of 7.

Similarly to the U(1) case, one knows that by a repeated application of D,
the gauge invariance is not broken. Furthermore, in an analogy with (1.6]), can
be constructed

[Dy, D] = i9(0, A () — 0, Au(x) +ig[Au, A)). (1.16)

"One can see that for a case, where T® would commute, the U(1) transformation would
be restored.

8In the case of U(1) the coupling constant was labeled as e.

9There is a special class of equivalence giving A/, (z) = —éU(a)@uU(a)_l, which is called
the pure gauge.

12



The gauge field strength tensor for this more general case then takes form

F,, =0,A, — 0,A, +ig[A,, A, (1.17)

Thanks to the non-commutativity of the gauge fields, one gets new special
terms when constructing a Lagrangian using F?, corresponding to cubic and
quartic self-interactions of the gauge fields, which has been found to manifest
in the nature for specific Lie algebras. One case has already been discussed:
the Abelian U(1), which, for example, represents the electromagnetism. Now,
a more general non-Abelian SU(n) algebra, representing so-called Yang-Mills
theories, can be presented. As one already has all the necessary puzzles, the full
Yang-Mills Lagrangian can be presented

1 _
EYM = —7T1”[FW,F”V] + ¢(ify“DM — m)¢, (1.18)
4Kp

where F, = 9, A% — 9,A% — g f*e AL AC.

One might also built another term using F;, and yet keep the gauge invariance
of (T.18) and the renormalizability of the theory[V

~ Fo o = chveo 1o [ (1.19)

pv= po”

However, one can show that this term corresponds to a surface integral when
evaluating the action (|1.1)) using the Wick rotation:

Y
S = / d'zeP S, Py, = / d'x4e?? 9, (A0,Aq — 7;9 fUAGADAL) =
; vpo a a 22 aoc Aa Cc
= 44eM? /d4xE8M(AV8pAU - —39f b AVAZAU) = (1.20)

) Ay (z—00)—0

21
= 42’6’“”’""/ dy,(AL0,A% — —gf“bCAﬁAbAf, 0.
Ss 3 p
The assumption that the potential vanishes in the infinity seems natural and
was taken for granted for many years. Nevertheless, later with the discovery of

instantons it has been found how non-trivial this assumption is. This topic will
be recalled in the section [1.3.3]

1.2.3 Quantization of Yang-Mills fields

The path integral method will be used here as it also allows a more efficient
treatment of problems in the following sections. This formalism is also very conve-
nient for both qualitative and quantitative description of the behaviour of pertur-
bative theories. The general properties of divergences coming from higher order
contributions to transition amplitudes will be, however, discussed in the next

section [[L24

10The renormalization will be discussed more in the section m
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In the context of the perturbation theory most of the calculations go down to
a generating functional, in general given as

zsl) = | D@exp(; / d4x[£+hJ(a:)\Il(x)]) (1.21)

with general external sources J. The latter is usually referring to specific Feyn-
man diagrams for a given action and field operators in a given order of coupling
constant g. Many theories share the same properties of n-point correlation func-
tions. They can be expressed as the n-th functional derivative of the generating
functional over the external sources
G (xy,...,x,) = 1) o Zp|lJ| =

(1 ) (z 5J(x1) ... J(xy) zlJ) (1.22)

:(WT@@Q.”¢@mM®=i/D@em{;S@ﬂ-

For the quantization of a gauge field theory, one may use the general generat-
ing functional as presented above and only take the path integral over the gauge
field A, in hopes of obtaining a measurable quantity as

Z[J] = / DA, &SI, (1.23)

However, this will not happen as one would in fact run over all possible config-
urations and hence multiple-count physically equivalent configurations. It has
already been discussed in the previous section that there is an option of splitting
the configuration space {A,(x)} into orbits {A(®(x)}. Consequently, the corre-
sponding integrands will be constant along the orbit giving an infinite constant
proportional to the volume of the gauge group GG. This is in principle not a prob-
lem as this constant can be absorbed into the definition of the measure of the inte-
gral. The problem arises when one wants to treat the path integral perturbatively
(which is usually always) as already in the second order of the action appear zero
modes. This presents an issue when one wants to derive the Feynman rules as
e.g. the corresponding Green functions cannot be defined (respectively
their defining integral is divergent).

In order to overcome this problem one can use the Faddeev—Popov method,
which means to factorize out the integration over gauge group members first and
apply the perturbation expansion afterwards. This can be achieved by insertion
of the following identity defining the Faddeev-Popov determinant A[A,]

1= AlA4,] / Dad[f[AC)] (1.24)
into the generating functional Z[.J], where a function f[A{®] = 0 is assumed and
that the equation has one solution for any A,. This means that f [A;(f”)] =0

defines a hypersurface crossing each orbit exactly once, but that in other words
means that the gauge has just been fixed. By insertion of (1.24)) and further
rearrangements one gets

Z1J] = ( / Da) / DA,S[fIA]]A[A,]eS 1A (1.25)

14



as the quantities are independent of . By doing several practical choices, the Fad-
deev—Popov determinant can be evaluated as a functional derivative

A[A,] = det “e ] (1.26)

B=0

and when omitting the prefactor one will get the Faddeev—Popov formula as
If[AY]
op

In the case of gauge field theories one has to be cautious when evaluating
the transition amplitudes as for given gauges some unphysical gauge-dependent
contributions can appear, so-called Faddeev—Popov ghosts, which has to be, how-
ever, taken into account to keep the information complete. Their nature is nowa-
days well-understood and can be nicely treated using the BRST quantization[ir].

2410 = [ DAS(IA) exp (z [atle+ JgAff’]) det (1.27)

B=0

During the evolution of quantum field theory, it was very early realized that
from some given order of g the Feynman amplitudes become divergent even if their
contributions should be more and more suppressed. This phenomenon challenging
the whole idea behind the perturbation theory is more discussed in the following
section.

1.2.4 Renormalization

As mentioned earlier, during the evaluation of contributions in higher orders
of perturbation expansion one may encounter divergences in the amplitudes which
would bring infinities to the results. This typically occurs at the loop level but
in general a (superficial) degree of divergence can be evaluated for the specific
configuration of any Feynman diagram. When evaluating an amplitude with such
singularity, one may isolate it using some type of the regularization. The A pa-
rameter presenting an energy cutoff will be used here as a regulator. Then in order
to get a finite result with a clear physical interpretation a series of renormaliza-
tion techniques has been developed for the subtraction of infinite contributions
(techinque of counterterms).

This leads to a definition of the renormalizability of the quantum field theory,
which means that only a finite number of counterterms is needed for an elimi-
nation of all divergences. This is an elegant and useful property of the theory,
however, not compulsory as at each order of the perturbation expansion there is
a finite number of divergent contributions which need to be renormalized. Thus,
even a non-renormalizable theory can offer a very good description of the physics
only the computational demands increase drastically when one requires more pre-
cise predictiond™?]

UEven if this topic is essential in the context of gauge field theories, the thesis aims into
a different corner of Yang-Mills theory. A detailed discussion on the latter can be found e.g. in
1]

12This led to a renaissance for many effective field theories in the 21st century thanks to both
the technological progress and a higher manpower in physics.
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The procedure of renormalization usually requires a redefinition of the original
(commonly called bare) coupling constant gpe-e and mass my,,.. but frequently also
of the field operators themselveﬂ. Its root is in the subtraction of the divergent
part in some sense, where the exact form is given by the choice of the renormal-
ization scheme and a renormalization scale u, at which the presented result is
valid. The redefinition of field operators can be then thought of as

A
Bpare = VZ P, e, where Z = Z(ﬁ,gbare). (1.28)

The scaling Z of the field operators can be determined by a direct calculation
of corresponding Feynman diagrams. If one performs a Fourier transform on
the Green function (|1.22])

G (py, ..., pn) = /d4x1- o drz, G (2, . @y P1EEPOTR) (1.29)

its renormalization can be then presented as

G}gzze(plu -+« Pn> Gvare; A) = Zn/ZGg«ZZL(pl) -« s Pn; Gren, ,LL) (130)

As G,(,Zie does not depend on the renormalization scale i, one can straightfor-

wardly derive the following relation

9 n
+ /8(97‘671)7 + nf}/(gren)} Ggaez,,(Pla -y Pns Gren, ,U/) = 07 (131)

[M@ OGren

also being called the homogeneous Callan-Symanzik equationE [12]. The pre-
sented S-function and the ‘anomalous dimension’ 7 are defined as follows

9

ﬁ@)zuaﬂ

(1.32)

gbareaA fixed gbarﬁvA fixed

The anomalous dimension presents a quantum correction to the mass-dimension
of field operators, giving some effective mass-dimension to the renormalized op-
erators due to interactions among particles. The S-function describes the scaling
of the renormalized coupling constant with the energy scale, a phenomenon also
called the running coupling.

This behaviour is closely related to whichever energy region the physics can
still be well-described by the given quantum field theory and when a new effective
field theory is necessary. This point, where 5(g) — 0 and hence g — o0, is called
the Landau pole. For example QED has a positive S-funtion, at low energies its
coupling constant goes to a well-known electric charge constant and its Landau
pole lies at energies far beyond what we are able to achieve. However, it is ex-
pected that beyond this point a new theory is necessary. In fact, the electroweak

13Tn the case of Yang-Mills theory the ghost fields has to be renormalized as well, while
the counterterms for the gauge-fixing part are not needed. In order to remove all the divergences
in the Yang-Mills theory a renormalization scheme respecting the BRST symmetry has to be
chosen.

14 Also a name renormalization group equation is frequently used.
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theory incorporates the QED, but it also has a Landau pole and provides a moti-
vation for searches for another unifying theory beyond these. This brings a wide
spectrum of possible effective theories for various scenarios of a behaviour with
changes of the energy scale. One such remarkable scenario was the finding out
that non-Abelian theories may have a negative S-function with the Landau pole
in the low-energy limi’} The QCD is one such example and the confinement of
quarks in hadrons and so-called asymptotic freedom are the consequences, which
will be discussed more in the following section.

1.3 Quantum chromodynamics

The quantum chromodynamics (QCD) is a prototype of a Yang-Mills the-
ory with an SU(3) gauge group. The SU(3) Lie algebra has eight generators
conventionally defined by the Gell-Mann matrices \* [13]

AY 1
Wzaﬂﬁﬁﬁﬂsz (1.33)
Hence together with eight vector gauge potentials Aj, called gluons, one can
define a gluon field strength tensor G,, = 4-G%, invariant under SU(3). As
already mentioned in the first recapitulation of the Standard Model [1.1], gluon
gauge fields are acting on triplets of Ny fermion fields called quarks

qra
Qf: q]v,g . (134)
qf,3

The SU(3) is usually being referred as a colour gauge group as colour was origi-
nally a new quantum number allowing quarks, yielding the Pauli principle, being
bound into hadrons. For this study, however, a different quantum number will
be in the center of attention, the flavour f. As already stated in the table [I.1]
six flavours of quark fields has been found up to now and hence one could take
Ny = 6 in the following. If one suppresses the colour indices and emphasize
the flavour ones, the QCD Lagrangian can be simply expressed as
1 i

Laop = =5 Tre|Gu ] + fz 45 (iv" Dy — my)ay, (1.35)

where the approximate quark masses my can be found in the following table .

qr U d c S t b
my | 2.2 MeV 4.7 MeV 128 GeV 96 MeV  4.18 GeV  173.1 GeV

Table 1.2: Quark masses [14].

One can see quite a big gap between the masses of the first two v and d (and
potentially of s) and the rest of quarks. This gap acquires even more importance
when also compared to the energy at which QCD becomes non-perturbative,
which will be more analyzed in the forthcoming sections.

5For this theoretical prediction were D. J. Gross, H. D. Politzer and F. Wilczek awarded by
the Nobel prize in 2004 after experimental confirmation.
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1.3.1 Running coupling

An exhaustive summary on the strong coupling constant can be found in [15]
and general results on the transition area, where QCD becomes non-perturbative,
will be briefly presented here. In the following, the strong coupling constant will
be taken as
9:(Q%)

4 7

as(Q%) (1.36)
where the momentum transfer scale (Q? is given by a change of the sign of the mo-
mentum of the process Q? = —¢? and the renormalization scale will be taken equal
to the physical momentum transfer p = ). When working in the dimensional
regularization and in the MS (or renormalization scheme, the S-function
can be evaluated as a series

Bla) = Qs = ()’ 5 ()6 (137)

where the coefficients f3,, are given by contributions of diagrams of the given order
as:

2

38
B =102 2N (1.38)

By a simple substitution one can show that in the high-energy limit the de-
pendence of the coupling is logarithmic. Specifically, at the 1-loop level

4

s (Q7) = m~

(1.39)

This, however, does not apply in the low-energy region and it has been proven
that at energy under 1 GeV, the theory cannot be treated perturbatively. It
was experimentally demonstrated that below this energy the particles cannot act
as free and become confined within a state, which is colour charge neutral on
the outside. These states are called hadrons and the process is called hadroniza-
tion.

It has been demonstrated that the character of the coupling constant changes
at Q@ ~1 GeV = Q, see figure [L.1], and to study the physics under this scale
a new perturbative effective theory describing the physics of hadrons is needed.
An example of such theory is the chiral perturbation theory (yPT), which inherits
the symmetries of QCD we will describe further.

16The minimal subtraction scheme clears away only the regulator arisen from the dimensional
regularization, while the MS-bar clears away also the accompanying constants. Both leave
the coupling constant gauge invariant.
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Figure 1.1: A transition between coupling as given by the perturbative QCD and
as predicted (and measured) in the low-energy region [15].

1.3.2 Chiral symmetry

Only a few useful results will be presented in this section, for more compre-
hensive explanation see [16].

When introducing the projection operators

1+
2

1—7s

Pr 5

>PL:

(1.40)

the fields ¢ can be projected into right-handed and left-handed components
qr = Prq,q1 = Prq. (1.41)
The QCD Lagrangian ([1.35)) can be then rewritten in the following form

N
1 Y Lo .
Locp = —ngc[G;wG“ |+ > (iqr " Dugr,s + 1Gr.s7" Duqr.5)
F=1
. (1.42)

= (qryMars + qr,sMary),
=

where M is the general mass matrix. One can also perform a limit m; — 0 in
the former Lagrangian and then obtain a variant of with a large
global symmetry U(Ns)g x U(Nyg),. This is of course not a physical case as
one knows from the table However, from the previous section [1.3.1] one
has an information that something new could appear at energies below )y. By
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comparison it can be seen that m,,m; < )y and thus at least an approxi-
mate global U(2)r x U(2), symmetry (as expressed in the Wigner-Weyl real-
ization) can be assumed. This symmetry is not manifest explicitly in the spec-
trum of hadrons, but one can rewrite it in a Nambu-Goldstone realization, i.e.
U2)r x U(2), = U(2)y x U(2) 4, in order to study it in more details.

i

As for the U(2) transformation a factor e™ can be extracted from the trans-

formation matrix U

3 a
. a T —1i
qr,r — Ur.LqR,L = €xp <—Z Z aR,L2> € GC_IR7L» (1.43)

a=1

one can decompose U(2) x U(2) = SU(2) x SU(2) x U(1) x U(1). The part
SU(2) x SU(2) will be referred in the following as the chiral symmetry.

By studying the physical spectrum of QCD, some pattern corresponding to
the vectorial (V = R+ L) part U(2)y C U(2)r x U(2) can be actually observed.
The U(1)y C U(2)y symmetry corresponding to the vectorial baryon number is
an exact symmetry of QCD irrespective to the value my, while SU(2)y C U(2)y
corresponding to the isospin quantum number would be exact in a case that
m, = mg, which does not hold. Nevertheless, the values are very close and
the symmetry is only slightly violated and one can observe approximately degen-
erate multiplets of hadrons (e.g. the pion triplet or the nucleon doublet).

An axial (A = R — L) symmetry U(2)4 C U(2)g x U(2) is not preserved
by the QCD vacuum < @u >=< dd ># 0, which in a case it was an exact
global symmetry would imply the spontaneous symmetry breaking and hence
the appearance of four Nambu-Goldstone bosonsE] in the physical spectrum [17].
Remarkably, the spectrum of hadrons contain a triplet of pions corresponding
to the SU(2)4 whose mass m, — 0 for m,,mgq — 0. These are called pseudo-
Goldstone bosons as they are not massless but yet possess only a small mass as
the symmetry is only slightly violated. However, no fourth (pseudo-)Goldstone
corresponding to the remaining U(1)4 axial symmetry has been observed.

The situation with U(1)4 is, in fact, more complicated as the corresponding
current JE' = %cjfy”vg,q is not conserved due to the presence of the chiral anomaly
I, JE = G Gopy- The right-hand side has been encountered earlier, in the sec-

tion [1.2.2) where has been shown that it is a total divergence 0, K* = Gg”@,m,,,
where K* is defined

vpo 249 rabe 4a
K" = 4¢P (A50,A% — ?f bCAl,AZAg). (1.44)
Thus, by incorporating this term it would be possible to construct a conserved
current J§ = J§ — 9= K*. Nevertheless, this does not manifest in the physical
spectrum of hadrons even as there was not seemingly any reason for it, which

became known as the U(1)4 problem.

170One Nambu-Goldstone boson for each generator.
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1.3.3 U(1) problem

The resolution of the problem presented above came from a better under-
standing of the QCD vacuum. For gauge fields one can take the vacuum state
to be the state where the vector potential is either zero or in a gauge configu-
ration equivalent to zero. However, proper study of these configurations reveals
that the structure of the vacuum is for non-Abelian gauge theories richer than
expected.

Further will be proceeded in the SU(2) subgroug™| homeomorphic to the S?,
which is much more natural topological space to work in. It is also convenient to
study the latter in the temporal gauge A} = 0 presented in the section [I.2.1] as
then the spatial gauge fields are time-independent and transform as

Al(F) = %Ag — UAFU + ;UaiU—l, (1.45)

where 7% are Pauli matrices. Thanks to the equivalence between different gauge
field configurations, one can work in the pure gaugdﬂ. It will be required that
the gauge transformation matrices satisfy a boundary condition U(F) == 1.
Than the instanton configuration gives A* ~=>% éU O'U~'+0O(1/r?), which maps
the physical space onto the group space. Thus, one get an S — S? map, which
splits U (7) into different homotopy classes U, (7) characterized by a winding num-
ber n, causing U, —= €™ The winding number is given by the Jacobian of

S3 — 83 transformation
n= / Sré ™ T [U- G UU Y UU L8R, (1.46)
which is equivalent to the Chern-Simons functional as the A’ is the pure gauge

—.

n~ NIA| =

T / e T[4, (7) AL (7) AL (7). (1.47)

Obviously, one can construct the n-th gauge transformation matrix U, by com-
pounding (U;)", from which follows that the vacuum state corresponding to A’ (7)
is not really gauge invariant because U; |n) = |n + 1).

Nevertheless, one can construct a gauge invariant vacuum state by a super-
position
=>"e "™ |n), (1.48)
n

so-called #-vacuum. By using this more complex structure, the vacuum functional
splits into distinct sectors

(010) = Zeme ~in0 (m|n) = Ze’”ez (n+v|n),v €N, (1.49)

18The case of a general SU(n) or our QCD SU.(3) can be further generalized.

Tn the quantum field theory, the field configurations vanishing at infinity, which have some
‘topological twist® (expressed using the winding number), are called instantons. A nice review
of instantons in QCD presents [I8].
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characterized by a winding number v. Using definitions of n (1.47]) and K* ([1.44]),
it can be shown that v has a gauge invariant meaning

Qs 4 auv Fya
v =22 [daGcs, (1.50)
and in terms of the path integral can be written
9]6) = / DA, 51145 (1 / d'a GG, (1.51)
Thus, 6 can be reinterpreted in terms of an effective action
Qs 4 apv Fya
SerslA] = S[A] + 02> /d edery (1.52)

and therefore the surface term, which was originally driven away in section |1.2.2
has been recovered. The term is also directly connected to the chiral anomaly

from the last section
9, JF = —=GguvGge 1.53
ns 4 n% ( )

Thus, the U(1)4 cannot be a symmetry of QCD which also means that there is
no U(1) problem.

Nevertheless, with this new term another problem occurs
/ dxGor e, ~ / d'z BB, (1.54)

This means that this term directly violates P and CP symmetries in strong
interactions, which is something that has never been experimentally observed.
This phenomenon became known as the strong CP problem.

1.3.4 Strong CP problem

The vacuum structure is not the only contribution to the CP violation of
strong interactions. In the latter was neglected the effect of the quark mass term

£mass = _(_?RMQR - _(,?LMTQZA (155)

where M is the mass matrix emerging from the SSB in the weak sector, which is
neither hermitian, neither diagonal. One can diagonalize the matrix by unitary
transformations (U(1)4)

qr — €'2qr,qr — e "2 qy, (1.56)

where the angle @ = gyArgdet M. The total angle giving the CP violation of
strong interactions is then

6 =0+ Argdet M (1.57)

and @ becomes a free parameter of the theory, where any value is equally likely.

On the other side the experimental observations say that ’é’ < 10710 [14).

The reason why 6 is so unnaturally small or even possibly zero have not yet been
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found and thus presents a fine tuning problem in this context called the strong
CP problem.

There are several possible solutions to the strong CP problem [19]:
o Anthropic principle;

e Unconventional dynamics;

o Massless quark;

o Additional chiral symmetry.

The first solution is not a plausible answer, however cannot be ruled out un-
less some mechanism responsible for the C'P conservation is found.

The second solution proposes that the solution of the U(1) problem presented
above is not the correct one and that there is a different mechanism.

The third one was a possible candidate within the SM with a massless quark
or more specifically with m, = 0 giving rise to an additional chiral symmetry
enabling effectively rotating the 6 away. Today we know that m, /m, = 0.48 [14]
and thus this case does not solve the problem.

The last solution persists the most plausible one and resides in adding the SM
an additional global U(1) chiral symmetry.
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2. Axions

As discussed in the section [1.3.4] probably the most plausible solution to
the strong CP problem is by introducing a new U(1) symmetry into the SM as
proposed by R. D. Peccei and H. R. Quinn [20], who showed that the strong
CP problem remains solved even if this symmetry is consequently spontaneously
brokenﬂ This symmetry can be introduced by adding a new CP conserving dy-
namical field a(z), which effective potential saddles at a value causing cancellation
of the 6 term, which became known as the Peccei-Quinn mechanism. Weinberg
and Wilczek independently stated that assuming such field necessarily leads to
the appearance of new pseudoscalar boson, so-called azion [21] [22].

2.1 QCD axions

Following the derivation in [23], an axion field a(z) will be presented as trans-
forming under U(1) as a(x) — a(z) + af,, where f, is related to its SSB scale,
and having a chiral anomaly

LA e 21
0,7 ffa322GG (2.1)

where ¢ is a model dependent parameter. This allows one to present the extension
of the SM in a model independent way as

Lot = Long + -2 N e el 8ua8“a—|—£mt[8“a/ Fur W] + €2 g _Ge, G
32w f 327
(2.2)
and ensuring that the effective action
Tfa, A,] / &2V, (2.3)

gives a periodic effective potential in a form similar to

Vagsla) ~ m2f2[1 — cos(a/ f.)] (2.4)

Thus, when the potential relaxes in its minimum

a‘/e 5 s a SYauv
(Zeary = £ 2 (e, cm)

— 0, (2.5)
<a>:_éfa/£

one gets a Lagrangian with as,s = a—{(a), where the 6-term for QCD is effectively
zero forbidding SSB in the vectorial subgroup of the flavour U(2) x U(2) (from
the section due to the Vafa-Witten theorem [24]. Furthermore, the axion
mass can be defined expanding the effective potential

0%V, £ g 0
2 eff — s = a apv
ma_< Da? > . 3272 0a (Ghe)

(2.6)

<a>:_éfa/£

IToday the symmetry is usually referred as the Peccei-Quinn symmetry and it is labelled
U(1)pg-
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and one gets a general model-independent effective Lagrangian

1
*CtOtal = ‘CSM + Eint [auaphys/fa; \I]] - Eauaphysauaphys
(2.7)

2
2 ‘I’faphys 9 G éauu

2
maaphys fa 392 MY

2
To extract any more specific information about axions, the mechanism intro-
ducing axions into the SM has to be presented and hence any further results will
be model-dependent. However, there are several generic features these models
will share as thanks to the chiral anomaly axions will possess some mass as well
as their predominant coupling will be effectively to two photons like in the case
of 7 and 7 pseudoscalar mesons. Thus, the effective Lagrangians for low-energy
QCD (e.g. the xPT [25]) might be applied as well as the outcomes of the lattice
QCD [26] in order to get more precise results.

2.1.1 Peccei-Quinn theory
The original PQEI theory [27] assumed two Higgs doublets

o= 25 () o= 5 (§) 25)

where x = vy/v; and vp = y/v} + v3 and the Yukawa interaction Lagrangian
Lyukawa = qrd1ur + qrdadr + Lrdilg + hec., (2.9)
which is invariant under U(1)pg

a — a-+ aup;

ur — € ““upg;

: 2.10
dR — e_m/de; ( )
lR — e—ia/mlR‘

If one omits the lepton part, the associated Noether current will be
1-
Jpg = vro"a + vury'ur + —dry"dg (2.11)
x

giving the coefficient ¢ for this model

_ ]\27f<x+ ;) (2.12)

In the following will be proceeded in the limit with two light quarks with
an effective Lagrangian of the non-linear sigma model [16]. The quark operators
will be replaced by their condensates (gq), giving rise to 7 and 1 mesons

§

2 . .
Lo = g0, U = e (7).

2Sometimes also refered as PQWW (Peccei-Quinn-Weinberg-Wilczek) theory taking into
account all three papers [20][21][22] which it preceded.

(2.13)
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7; here are the Pauli matrices and the product 77, is defined as

T = ( fgi fif). (2.14)

The U transforms under U(1)pg as
eiax 0
U—U ( 0 em/m> (2.15)

and hence only the U(1)4 flavour symmetry is broken by the quark mass term
(1.42), which is symmetric under U(1)pg and gives

f2M2
Ly =T TR[UAM + (UAM)T], with

el 2.16)
) O Moy, 0 (
A= (6 F » 117) : M = (muamd g ) )

a_
0 e VP My +mgy

We already know there is also the anomalous term breaking both U(1)4 and
U(1)pg, responsible for the correction of the mass of the n meson as well as
giving a mass to our axion and the a-7 and a-n mixing

M? fr1/N 1 2
: n T f
anoma. - = A 7_1 1 - M 2'1

& 2 [77 Up2(2 )( x)a] (2.17)

Combining both previous contributions one gets the axion mass as

N 1N\ fr “
m, — f<$ n )fmﬂmmd (2.18)
2 T/ vp My + Mg

and from mixing with 7 and 7 also the coupling to two photons from the EM

anomaly
o2

O J#Q = 24x2

1 ~
N, (x + )FWF‘“’ (2.19)
xXr

Lo = Fopw— © N LY M ohys o 92.20
ayy = YGayy@physt’ v = 3.2 x—l—; Mw + g fa ™ . (2.20)

As this model gives the SSB scale of U(1)pg coincident with the electroweak
SSB scale f, = vp, all the above variables have fixed values. However, these were
quickly excluded by experiments and other models came to the fore as in principle
the SSB scale might be at much higher energies f, > vp. Then the coupling would
be much weaker and axions would be very light, so-called invisible axions, which
was later realized makes them perfect candidates for the dark matter (DM).

2.1.2 Invisible axions

There are in principle two mechanisms how to extend the original PQWW
model to shift the f, at higher energies, which can be collectively called the ha-
dronic models and the non-hadronic models.
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The Kim-Shifman-Vainshtein-Zakharov [28] [29] (KSVZ) model was the first
hadronic model proposal. It expands the SM with a heavy quark ) and an ad-
ditional complex Higgs scalar ¢ both are weak-interaction-singlets and are sym-
metric under U(1)pg. The describing Lagrangian can be expressed in a form

Lrxsyz = i@’y“DMQ—Fa”UTa“U—h(@LO'QR—i-QRUTQL)+m20'TO'—)\<O'TO'>2. (221)

The U(1)pq is spontaneously broken by the f, = (¢) = m/V2\ > vp, so
the quark @ gets a mass mg = hf, and the complex field o in gives a rise
to a scalar state from its radial part with a mass m+v/2 and a pseudoscalar state
a from its phase. The anomalous triangle gives then

2 2
Gph
£anoma =——" boye 2.22
w= 5t |+ 222
and thus a mass m, and axion-photon coupling ¢4+~
10% GeV ez 2 dmg+m
0=63eV|———— |, gopy =53¢ — 0— |, 2.23
" ¢ ( fa ) 9o = Bom? fa< Q7 B + ma) (2.23)

where eg is the EM charge of the quark Q.

In the case of non-hadronic models the Dine-Fischler-Srednicki-Zhitnisky [30]
[31] (DFSZ) model was the first one. It adds to the PQWW model (i.e. to
the two scalars ¢; and ¢2) a new scalar ¢ transforming under U(1)pg, which
(¢p) = fo > vp. One gets similar results to the KSVZ model, when one rescales
fa = fa/Ny, the axion mass is given by the same expression as in the former case
and the coupling to photons is given by

ez 2 (4 dmg + m,, >

J A e L LT 2.24
9o = 322 f,\3 7 3(m + ma) 224

2.2 Axion-Like Particles

In principle one can access the whole (g4, m,) parameter space in a model
independent way as the role of elementary pseudoscalars might be much more
general then the above proposed solutions to the Strong CP problem. Due to
the fact that the nature of these pseudoscalars is very similar to axions (they are
usually remnants of a breaking of some U(1) symmetry, they couple predomi-
nantly to photons, etc.) a generalization called azion-like particles (ALPs) will
be used in the rest of the text. Based on the results of the previous section,
a general interaction Lagrangian can be assumed

5%13 = gaW’YaF;wFWV + gav“/aFleMV + gaff_azif,%f + gaff_az ff
f

d (2.25)

+ gavff*aFWZifa“l’%f + ...
f

The breaking of U(1) symmetries is a common phenomenon in many theories
beyond the SM (if not in most of them), so only the most usual examples will be
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presented here: majorons connected with the breaking of the lepton number and
familons connected with the breaking of the family number.

One of the first ideas of majorons came in [32], where neutrinos are consid-
ered to be Majorana particles and hence breaking the lepton number, but unlike
in the usual approach the lepton number is broken spontaneously. In the case
of familons, where the flavour symmetries are spontaneously broken a general
approach was discussed in [33].

2.2.1 Kaluza-Klein axions

Many of the unified field theories follow the idea behind the Kaluza-Klein
theory, where the space-time in which the theory is postulated is made of a ten-
sor product of the 4-dimensional Minkowski space-time (or a pseudo-Riemannian
manifold in general) and a manifold geometrically reflecting given symmetries.
At low energies, this manifold can be seen as compactified and the original action
in the higher dimensional space-time gives rise to gauge fields in four dimensions
obeying the symmetries of the compactified manifold®| and extra modes which
decouple from these gauge fields are not observable in four dimensions.

In late 90’s it was realized that the size of some dimensions need not to be as
small as Planck length (~ 107*° m) and instead could have the right size to solve
the hierarchy problem [35]. This new approach has influenced also other theories
beyond the SM even if they have a different original motivation. Axions, which
in models built in previous section seek for a mechanism putting the SSB
scale f, into high values, are one such case. Thus, could have the similar solution
to the gravity as they would propagate into our 4 dimensions as Kaluza-Klein
particles [36].

Meanwhile a different strategy, much more similar to the original KK one, was
followed during the years and it was shown that by a reduction about more than
one dimension also non-Abelian gauges can be restored [37]. Most of the unifica-
tion schemes of today try to restore the whole SU(3) x SU(2) x U(1) SM gauge
group, which corresponds to a manifold of at least seven compact dimensions. In
such theories the cases of ALPs as presented above (majorons, familons, ..) have
a much more general character, which supports an idea that a lot of ALP modes
could appear in the spectrum independently. A similar dimensional reduction
scheme follow also string theories, where ALP modes (besides the axion one [3§])
appear very naturally as KK zero modes of antisymmetric tensor fields or more
similarly to the previous case as open strings on D-branes. The plenitude of ALPs
in string theory is recently being referred as a string aziverse [39] and predicts
ALPs in experimentally reachable regions.

3The original KK theory assumed the simplest topological manifold, the circle, and a 5-
dimensional metric incorporating the 4-dimensional metric, the EM 4-potential and an ad-
ditional scalar field. As a result of the compactification it restored from the unified equa-
tion the general relativity equations and the QED, where the U(1) symmetry corresponded to
the transformations in the compactified dimension. The theory however failed in the prediction
as, when incorporating the fermionic field corresponding to the electron with the given electric
charge, it predicted an incorrect value of the electron mass [34].
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2.2.2 Cosmological implications

As already mentioned in the previous section [2.1] axions or ALPs are perfect
DM candidates and thus one has to take into account the corresponding cosmo-
logical phenomena most of which are model-dependent. This presents a very wide
topic nicely reviewed e.g. in [40]. Only a few generic instances derived for QCD
axions will be presented here for the convenience of description of cosmological
restrictions in the following chapter. The case of hot axions created and annihi-
lated in the primordial soup influences also the amount of observable matter as
in the early universe they couple predominantly to gluons and the corresponding
restrictions from observations will be presented in the following chapter. The pop-
ulation of hot axions, however, might have been wiped out by the inflation unless
they are reheated. Thus, the case of cold axions will be mainly discussed furher.

There are two general scenarios differing the production of cold DM (CDM)
axions in the early universe as discussed in [41]. In the first case the U(1)pg sym-
metry was spontaneously broken at energy f, after the inflation and in the second
one before or during the inflation.

In the post-inflation scenario, a network of one-dimensional topological defects
(cosmic strings) creates and consequently starts disintegrating by the emission
of massless axions, which at temperatures below the QCD scale obtain mass

by the instanton (anomalous) term as discussed in the section and
the axion potential takes a periodic form

V(a) = mgf3[1 — cos(a/ fu)]. (2.26)

Since the potential has infinitely many minima, the axion field settles down
to a different minima around the universe as it cools down and gets divided into
domains separated by quasi-stable domain walls attached between cosmic strings
creating string-domain network.

In fact, the instanton effects break the U(1)pg symmetry into a discrete sub-
group, Z(N) symmetry, as f, = v,/N. The spontaneously broken Z(N) sym-
metry implies N degenerate vacua and the further development of string-domain
network varies for N = 1 and for N > 1.

e For N =1 the domain walls are quantum-mechanically unstable and decay
into axions giving significant contribution to the matter density of the uni-
verse.

e For N > 1 the domain walls are stable giving rise to extra acceleration
to the universe expansion. One could identify this expansion with the ob-
served one. Nevertheless, such universe would be less homogeneous than is
observed, which became known as the domain wall problem. This problem
is solved for N =1 or if the Z(N) symmetry is somehow explicitly broken
or in the pre-inflation scenario discussed further.

In the pre-inflation scenario, the inflation expands ‘our’ domain into larger size
than is the present observable universe and thus there is no domain wall problem
and the current axion density is given by coherent oscillation of the axion field.
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3. Searches for ALPs

Most of the searches for ALPs stand on the coupling of ALPs to two photons
gawﬂ, giving the decay width (in leading order) for a simple two-body decay as

2,3
YaryMa

o (3.1)

Ila—y7y) =

The approach how to measure the decay, however, varies a lot throughout distinct
sections of the parameter space, see figure Several experimental approaches
will be outlined here together with some representing experiments, a comprehen-
sive review presents e.g. [42].

10
107°
107°
107
10-®
10-*
10710
10711
10712

1013 Haloscopes

CV_l)

A
T

Laboratory

|9ay|(C

y—Trays

£
i
&

107
10719
1[]—16

107
1[]—]_3 II II II II II II II

1071 107 1077 10° 107* 107t 10 w100 107 107
mg(eV)

Figure 3.1: Current coverage (excluded regions with 95% C.L.) of the (gay-, Ma)
parameter space from the summary of [42].

Apart from experimental searches there are also cosmological constraints im-
plied by effects already discussed in the previous section as well as appear-
ing naturally due to the coupling to the observable matter, which will be briefly
sketched here. Based on the current knowledge of the universe evolution and
astrophysical observations the ALPs with a high mass but a small coupling are
generically ruled out by cosmological bounds Among the most constraining
effects are:

IThere are of course many other possibilities, yet the coupling to two photons is probably
the most pratical one and in most of the models also the dominant one.
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« Big Bang Nucleosynthesis (BBN) - mostly coming from the D/H ratio as
well as the n/p ratio giving rise to the “He;

o Cosmic Microwave Background (CMB) - there cannot be distortions in
the CMB spectrum;

« Extragalactic Background Light (EBL) - photons produced in ALP decays
cannot exceed extragalactic background light;

o X-rays, y-rays - peaks in galactic spectra coming from ALP decays cannot
exceed the background;

« Star evolution - too strongly coupled ALPs would cause faster star evolution
than is observed?

3.1 Dark matter experiments

According to [43], the local dark matter halo density is p = 0.2—0.56 GeV cm ™3
and in a case that this halo is made of ALPs, they might be directly measured by
a conversion into two photons in a magnetic field by so-called axion haloscopes
as proposed in 1983 by Siskivie [44].
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Figure 3.2: Curent limits from haloscopes (dark green) and proposed ones (semi-
transparent green) in parameter space expressed in terms of |Cy,|v/ps, Where
Coy = Garr fo(2m/cr) and p, is local axion DM density [42].

The technique assumes that DM axions are non-relativistic and hence produce
monochromatic photons of energy given by the mass of ALP. Using microwave

2This holds mostly for Sun. There are in fact energy losses e.g. in the evolution of white
dwarfs and for which ALPs might be responsible and hence gives us a hint where to look for
ALPs in the parameter space.
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cavities the signal can be enhanced by a quality factor () when the resonant fre-
quency of the cavity matches the axion mass. By tuning of the resonant frequency
one can thus scan the mass spectrum with an immense sensitivity. The results
of the ADMX Collaboration [45] have proven the possibility of reaching regions
of coupling for axion masses yet inaccessible by other measuring techniques, see
figure 3.2,

3.2 Solar axions

The expected predominant production of ALPs in Sun is by the Primakoff
conversion of plasma photons in the EM field of charged particles giving the solar
axion flux at the Earth surface ®, = g2,,3.75 x 103 GeV?cm~2s~" [46]. The most
promising method to measure solar axions are the axion helioscopes, where the in-
coming axion flux is converted to a flux of X-rays in presence of a transverse
magnetic field B. If the background is static the energies of photons are given by
energies of incoming axions, where the expected energy is of a few keV. The prob-
ability of axion conversion is given by [42]

2 2
B 7 Ja 2( B L
Pla — ) =2.6 x 10 (10108}:}\/_1) <1OT> <10m> F(qL), (3.2)

where L is length of the magnet coil (in meters) and the form factor reflecting
the coherence of conversion goes as

FlqL) = (;)2 sin” <(]2L> q = ky = Ka. (3.3)

Case for qL. << 1 gives a coherent conversion along the whole length F =1 and
g ~ m2 /2w and is satisfied for masses m, < 1072 eVf

The state of art presents the CERN Axion Solar Telescope (CAST), de-
scribed in the following figure [3.3] which provided the current average limit
Jay < 2.3 x 10710 GeV™' (95% C.L.) for 0.02 eV < m, < 0.64 eV and then
about gayy < 3.3% 10710 GeV ' (95% C.L.) for 0.64 eV < m, < 1.17 eV with *He
buffer filling gas [47].
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X-ray detector

Figure 3.3: Sketch of the CAST helioscope from [4§].

Magnet

The next generation of helioscopes, namely TAXO [49], will go even further to
the region g, ~ 1071, see figure

3The sensitivity of the experiment decreases with masses m, > 1072 eV as (2/qL)? oc 1/m2.

33



10—11

10+

10—13 11111 1 |||||,|,|] 1 |||||,|,|] 1 |||||,|,|l 1 |||||,|,|J 11111
0 10 1w0% 107 109 10° 10* 10°* 10* 10! 1
mq(eV)

Figure 3.4: Curent limits from helioscopes (dark blue) and proposed ones (semi-
transparent blue) [42].

3.3 Laboratory experiments

Apart from astrophysical sources, there are options how to measure possible
effects of axions purely from terrestrial sources in laboratory. One of the options
is using the same process for the creation of ALP as for its decay, the photon
regeneration in magnetic field v+~v* — a — y+~* in an experimental setup based
on so-called light-shining-through-wall (LSW) technique. In LSW experiment
a high-energy laser is used as a source of photons, which are exposed to a strong
transversal magnetic field, the flux is then shielded by a wall and again exposed to
a magnetic field and possible regenerated photons are measured by the detector.
The probability of LSW can be then written as

Py = a—7)=Ply—a)Pla—=7)

_ l(gawBeLP>2]__P] [<gawBeLR>2]_—R] , (3.4)

2 2
where form factor is defined as in the former case . The technique has been
improved by adding Fabry-Perot cavities into the magnetic field, see picture 3.5
enhancing the transition probability by a factor SpSr. The factor Sp corresponds
to the amplification of the right-moving photon wave when the cavity is in res-
onance and the second factor Sr is given by the coherent detection of the ALP
field, together giving

Ply = a— ) = [(@)prﬁp] [(@)Qﬂml. (3.5)
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Figure 3.5: The principle of LSW experiment [50].

The most current limits coming from LSW experiments are from an ongoing
experiment OSQAR ¢4, ~ 107® [51], much further up to the region ~ 10~ will
go the future experiment ALPS-II in its final stage [52].

Apart from the LSW experiments, another possibility how to use the axion-
photon coupling for measurements is its influence on the light polarization [53].
A different approach offer experiments measuring possible ALP forces between
baryons competing with gravity at distances ~ 1/m, [54].

3.4 Beam-dump experiments

ALPs are usually being taken as weakly interacting sub-eV particles (WISPs)
as the case of heavy ALPs is usually ruled out by the nucleosynthesis (see fig-
ure . There is, however, a possible window at the MeV/GeV scale which is
reachable by the collider beam-dump experiments, where the accelerated beam
(electron or proton) is dumped in a target with a high proton number Z and
produced ALPs would decay in the decay region covered by the detector. An ex-
periment with the distance between the target and the detector comparable to
the ALP decay length [, would be most sensitive to ALPs. Mean proper lifetime
T = 1/I" is given by and for high energies F, > m,, thanks to the Lorentz
boost (additional 7 factor), the decay length is [55]

gaWE a ) \ (3.6)
~ ; ga’y'y )_ < ma )_
=~ 40 —_— .
X 70 Gev (10—5 Gev—L) \100 MeV

For the fixed decay length measurable by the experiment, there is an obvious
inverse dependence between m, and gq,,, giving the exclusion region of beam-
dump experiments the typical prolonged shape.

There are several ways of the production of ALPs in beam-dump experiments:

« coherent scattering (elastic scattering: the beam proton on the target nu-
cleus);

35



« incoherent scattering (inelastic scattering: the beam proton constituents on
the target nucleus ones);

 non-perturbative processes (decays of hadrons).

The coherent scattering presents the dominant source of ALPs which are not di-
rectly coupled to quarks and the ALP production goes via the Primakoff process
[56], effectively described by diagram An advantage accompanying the co-
herent scattering is that it can be calculated perturbatively at low energies and
hence provides very clean theoretical prediction.

P

Z \

Figure 3.6: Primakoff production of ALPs in proton-nucleus collisions [55].

The current constraints are given mainly by experiments on electron-positron
colliders (electron beam-dumps SLAC 137 and 141) and by CHARM and NuCal
experiments with the proton beam, see figure The data set in the case of
CHARM is determined by Npor = 2.4 - 10'® on a copper target and Npor =
1.7-10' on an iron target in the case of NuCal.
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Figure 3.7: Current constraints in the ALP parameter space [55].

An ongoing research in the beam-dump mode is currently being performed at
the NA62 experiment discussed in details in the following chapters. A notable
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near-future experiment presents the SHiP, which will be made particularly for
this kind of searches and will go well beyond the current limits, for details see

the ShiP physics study [57].

Recently, a more detailed simulation of the production of ALPs in targets has
been performed taking into account the contribution of secondary photons result-
ing from 7° and 1 decays, giving even further reach of beam-dump experiments
[58]. The corrected sensitivities of past and future experiments are projected in

the following figure |3.8|
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Figure 3.8: Corrected sensitivity of past and future searches [58].
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4. Layout of NA62 experiment

The NAG62 experiment is a fixed-target experimentﬂ at CERN laboratory lo-
cated on the border between France and Switzerland near Geneva. The Eu-
ropean Organization for Nuclear Research known as CERN (Conseil Européen
pour la Recherche Nucléaire) operates the largest particle physics laboratory in
the world hosting a chain of accelerators. Each machine in the chain provides
beams for its own experimental halls as well as for the next machine in the se-
quence.

Most of the experiments are provided with a proton beam. The proton source
is a simple bottle of hydrogen gas and an electric field is used to strip hydrogen
atoms of their electrons to yield protons. Linac 2 (linear accelerator), the first ac-
celerator in the chain, accelerates the protons to the energy of 50 MeV. The beam
is then injected into the Proton Synchrotron Booster (PSB), which accelerates
the protons to 1.4 GeV, followed by the Proton Synchrotron (PS), which pushes
the beam to 25 GeV. Protons are then sent to the Super Proton Synchrotron
(SPS) where they are accelerated to 450 GeV and then injected to the two beam
pipes of the LHC, where the nominal energy for each beam reaches 6.5 TeV [59).
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Figure 4.1: CERN’s accelerators complex [59)].

!Experiment where the particle beam is impinged onto a specific target and products of
the interaction (constituents of the secondary beam) are studied.
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4.1 The aim of NA62

The NAG62 is one of the fixed-targed experiments located in the Prévessin
(France) site, called North Area. The main purpose of the NA62 experiment is
to study rare kaon decays, where in the present configuration the main goal is
to measure the ultra-rare decay K™ — w"vr [60]. The first observation of such
decay in the data sample taken in 2016 has been published [61]. The data from
2017 and 2018 have yet to be analyzed.

The experimental site can be subdivided in three parts. The region where
the secondary kaon beam is produced and adjusted. Then, the region where
undecayed kaons are tagged and beam momentum is measured, called the ‘up-
stream region’, and finally the ‘downstream region’ where the decay products are
identified and their momenta are measured, see the NA62 layout in the figure 4.2

4.2 Beam line

The primary proton beam taken from the SPS accelerator passing T4 target
(~ 10" protons/s) at 400 GeV/c impinges beryllium target T10 and generates
a secondary high-intensity (750 MHz) hadron beam containing about 6% of K.
A triplet of radiation-hard quadrupole magnets (Q1, Q2, Q3) collects large angle
of particles and is followed by an achromat selecting a beam momentum around
75 GeV /c. The archomat consists of four dipole magnets. The first two magnets
displace the beam by 110 mm from the original axis and keep it parallel. Then the
beam passes through a set of apertures so-called ‘Target Attenuator eXperimen-
tal areas’ (TAX) in a metallic beam-dump/collimator TAX1 and TAX2, which
select momentum about 75 GeV/c and absorb unwanted particles. Next, two
magnets of achromat return the beam onto the original axis. A following triplet
of quadrupoles (Q4, Q5, Q6) focuses the beam and finally muons of both signs
are swept aside using three 2 m long dipole magnets.

The beampipe then enters the experimental area, where in the ‘upstream re-
gion’ kaons in the beam are identified. Kaon momenta are further measuered
before entering the 60 m long decay region in the first part of a 117 m long tank.
The tank is evacuated down to ~ 10~% mbar and hosts the downstream spectrom-
eter measuring charged tracks of the decay products. Besides the spectrometer,
the whole tank is encircled by 11 veto detectors to detect all possible particles
escaping the decay region in angles out of the acceptancy of the downstream de-
tectors. After passing the downstream region at the end of the experimental hall,
the beam is deflected by a magnet and absorbed in a beam dump. [60].

4.3 KTAG/CEDAR

As K comprise about 6% of the beam, and the rest are mostly pions and
protons which cannot be efficiently separated from the beam, there is a need for
a particle identification detector. The first detector in the experimental hall is
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the CEDAR (Cherenkov Differential counter with Achromatic Ring), also called
KTAG (Kaon tagger). The KTAG tags kaons very precisely with the time reso-
lution below 100 ps and an efficiency of the kaon identification about 98% [60].

The CEDAR is filled with a nitrogen gas at the pressure about 1.7 bar.
The amount of the material in the path of the beam can be further decreased
by the use of hydrogen gas. This option was, contrary to the original proposal,
ruled out due to safety reasons. For the given relativistic velocity of the beam,
the angle of Cherenkov light is a function of the mass of a particle.

The Cherenkov light is reflected by a spherical mirror at the end of the vessel
back on the diaphragm at the beginning, so only the light from a specific particle
type has the right angle to reach the slit. There is a sequence of 8 quartz windows,
lenses and spherical mirrors to transfer the light to 8 collecting sections of cones
which can be seen on the figure A coincidence of at least 6 of them indicate
a passage of the kaon.

Diaphragm

Condenser lens

Light collecting cones

ATEX cylinder ) Splllcrical mirror - :‘ S"®
eam pipe ™

Figure 4.3: KTAG/CEDAR detector [60].

4.4 GTK

The following detector in the chain is the beam spectrometer called Giga-
Tracker (GTK). The GTK is a silicon pixel spectrometer and measures the mo-
mentum, time and the outgoing angle of the passing beam. An exceptional accu-
racy is essential here as for the beam rate ~ 750 MHz a hit time resolution below
200 ps is required.

The GTK consists of three stations with four dipole magnets among them.

Each station is made of one silicon pixel detector with matrix of 18000 pixels
on an area 63.1 x 29.3 mm. The matrix is read out by ten chips (further called
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TDCpix) in two rows, each TDCpix is 40 x 45 pixels, see figure As GTK is
exposed to a high rate of radiation, the detector has to be cooled. Its lifetime

can be also increased during the years by a higher bias voltage.
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Figure 4.4: GigaTracker station [62].

The magnetic field from the dipole magnets deflects charged particles to
the second station and back to the axis of the beam line, see figure 4.5 The lay-
out is set to measure the momentum around 75 GeV/c. The real momentum can
be derived from the particle displacement in the central station with respect to
other two stations [62].

Mag2

Mag3

GTK2

GTK1 GTK3

Mag1

Mag4

Figure 4.5: GigaTracker setup [62].

4.5 CHANTI

Particle interactions in the last GTK station are not swept away by the mag-
netic field like in the first two stations and can produce additional background
in the downstream region. For this case there is the CHANTI (The Charged
Anti-Coincidence Detector) placed between the GTK3 station and the beginning
of the decay region.
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The CHANTI consists of six hodoscope stations, each of 300 x 300 mm. A sin-
gle station is made by 48 bars triangular in cross section. One plane of bars for
X and one for Y coordinate, as can be seen in the figure Each bar has
a polystyrene scintillator with an optical fibre in the middle. Ends of the fibre
are connected to photomultipliers and the signal from a possible incoming particle
is detected.

Figure 4.6: CHANTI station construction [63].

Single CHANTTI stations locations are chosen to cover the acceptance of the de-
cay region, so any possible inelastic interactions cannot make background, see
figure The first station is located 28 mm from the GTK3 station and is
covered in the vessel with this last GTK station [63].

Beam particle

.
- NN

Figure 4.7: CHANTI detector layout [63].

4.6 Decay region and LAVs

About 18% of tagged kaons with momentum measured by the GTK decay in
a 60 m long region in the first part of a circa 117 m long evacuated tank with
the vacuum at pressure about 10~¢ mbar. This part of the tank is also referred to
as the ’blue tube’ due to the cover colour. The beam is being slightly deflected in
this long region by the so called "blue ﬁeldﬂ, which has to be taken into account
during the subsequent data analysis. Final reconstructed results of the track has
to be corrected about A ~ 35 urad for a 25 GeV/c track [64].

2The presence of the ’blue field’ is mostly a consequence of the Earth magnetic field.
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The decay region tube is widening with the beam with 1.92 m in the diameter
at the beginning, widening to 2.8 m in the end. Because of the events where
photons are radiated in wide angles (8.5 up to 50 mrad), LAV (Large Angle
Veto) photon detectors are placed in the full length of the region, see figure
There are 11 LAV stations alongside the whole tank and a last twelfth LAV
station operated in the air, about 3 m upstream of the calorimeter. The LAV
station’s diameter increases just as increases the diameter of the tube.

exel
eC“ oﬁ‘/
%)

Figure 4.8: Decay region scheme [60)].

For the setup of one LAV station, see figure 4.9 Each station has lead glass
blocks arranged on the edge in several mutually shifted rows to cover the whole
border of the station. A possible passing particle leaves an electromagnetic shower
producing Cherenkov light. Fach block is then read out by a photomultiplier.

Module of 4

Lead Glasses

Vacumun tube Vessel

Figure 4.9: Complete station layout [64].

45



4.7 Straw Spectrometer

The Straw spectrometer occupies the last 35 m of the 117 m long evacuated
tank and its purpose is to measure momenta of the decay products. As in the case
of the GTK, a good accuracy is necessary to achieve the sufficient background
rejection. The spectrometer has four identical stations, where the first station
is placed 25 m downstream from the fiducial region, see figure K4.10] A large
aperture dipole magnet (MNP33), providing vertical magnetic field of 0.38 T,
is located between the second and the third station. The first and the last two
stations provides vectors of the track of charged particles. The position vectors
accompanied with the deflection from the magnetic field provides information
about the particle momentum.

117 m

Figure 4.10: Straw spectrometer location [60].

Every station is composed of four planes, each plane giving a position in one
axis perpendicular to the beam axis. The first two planes measuring the vertical
(0°) and the horizontal (90°) position and another two planes rotated by 45°,
see figure on the left. Such layout provides more precise measurement
of coordinate for one particle and prevents ambiguities when two particles hit
the station at the same time [60].

e
o8 'O 3 2

Figure 4.11: Left: Straw chamber layout. Right: Straws positioning in the plane

[65].

Each plane consists of 1,792 straws, 2160 mm long about 9.82 mm in di-
ameter and a 12 cm gap for the beam is left near the center. The straws are
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staggered in four rows in the plane to cover all possible angles, as can be seen
in the figure on the right, and are made of a very thin (36 pm) PET foil
to minimize the scattering. The straw chambers are placed in the vacuum tank
while the straws are filled with a mixture of 30% of COy and 70% of argon at
the atmospheric pressure. Straws are coated from the inside by two metal layers
(50 nm of copper and 20 nm of gold) as a cathode, and has a gold-plated tungsten
anode wire in the middle with an electric field ~ 1 kV between the anode and
the cathode. The passing particle ionize the filling gas and the leftover charge is
collected and processed by the front-end electronics [65].

4.8 RICH

The Ring Imaging Cherenkov Counter (RICH) is a downstream particle iden-
tification detector with a time resolution less then 100 ps. The RICH is a 17.5 m
long cylindrical vessel (see figure filled with the neon gas at a constant
pressure of 990 mbar. The vessel has four sections with diameter increasing back-
wards against the direction of the beam. The entrance and the exit windows
have a conical shape and are made of two and four mm thick aluminium, where
the entrance window separates the vessel from the vacuum of the decay region
[66].

P 2 x 976 PMs
Mirror Mosaic (17m focal length)

Beam
-

Vessel: ~17 m long, filled with Neon

Figure 4.12: The RICH layout [60].

The RICH is designed to separate pions from muons between 15 and 35 GeV /¢
momentum, see the momentum resolution on the figure [4.13| on the left. To
increase the resolution and to keep the photomultipliers out of the active area,
the downstream end of the vessel of the 3.2 m diameter is filled with mosaic of
20 spherical mirrors which reflect the cone of Cherenkov light backwards onto
the photomultipliers, see figure on the right. Half of the mirrors points left
and half right of the beam pipe. The inner side of the vessel is covered with black
epoxy painting to avoid reflection of the Cherenkov light from it [66]. During 2014
- 2015 runs for 86% pion efficiency a 1.3% muon survival probability was observed
in the 15-35 GeV/c range. The RICH yields an intrinsic event time resolution
about 70 ps and hence is used as a referential time for charged tracks [60].
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Figure 4.13: Left: Cherenkov ring radii for different particles. Right: Cherenkov
light ilumination on the photomultipliers [60].

4.9 CHOD/NewCHOD

Charged particle hodoscopes (CHOD) are fast scintillator detectors providing
the impact point position of a passing charged particle. There are two CHOD
detectors, the New CHOD detector immediately behind the RICH, followed by
the last LAV station and the original NA48-CHOD further downstream.

The NewCHOD is a single plane of 152 polystyren scintillator tiles, covering
the radius from 140 to 1070 mm. All the tiles are 30 mm thick and mostly
200 mm or 135 mm WideEl and are organized in rows with a mutual overlap 1 mm,
as one can see in the following figure The scintillation light is read out of
each tile by two bundles of wavelength shifting (WLS) fibres coupled to silicon
photomultipliers [67].

G10 plane

107

107

107

1mm overlap

Figure 4.14: Left: Layout of rows on the support panel. Right: Layout of tiles in
single rows [67].

3Smaller tiles are located around the beam pipe to sustain the higher hit rate.
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The original NA48-CHOD has two planes of 64 scintillator slabs with photo-
multipliers on the ends and space left around the beam pipe, see [£.15] The NA48-
CHOD posses worse efficiency for high intensity beams than the NewCHOD, yet
it was left in the experiment and is used as a control detector. [60].

fr

Figure 4.15: CHOD scheme [60].

4.10 LKr

The Liquid Krypton calorimeter (LKr) is an electromagnetic calorimeter,
placed inside the cryostat filled with 9 m? of liquid krypton at 130 K. It presents
a key part of the experiment enabling a precise photon detection with an ineffi-
ciency about 107°. The radius of the LKr is 128 ¢cm, where first 8 cm are left for
the beam pipe, see the following figure [£.16, The active area of LKr is composed
of a single plane about 127 c¢m in depth (corresponding to 27 Xj), containing
13248 cells about 2 x 2 cm with Cu-Be electrodes [60].

DETAIL ON RIBBONS
AND SPACER-PLATE

: (0
CuBe ribbons ; = Beam tube

™——Back plate

Front plate

Figure 4.16: Left: One LKr quadrant layout, Right: LKr cells ‘zig-zag’ arrange-
ment detail [60].
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Alternating electrodes filling the plane are oriented with the beam axis but
slightly deflected. They also change the direction of the deflection several times
to avoid inefficiency for very flat tracks close to the anodes, see the figure 4.16| on
the right. Electrodes are connected directly to the preamplifiers sending a signal
to the readout electronics.

4.11 MUV

The muon veto (MUV) is a system of three independent detectors succeeding
the LKr: hadronic calorimeters MUV1 and MUV?2 and a fast muon veto MUV3.
See the system layout in the following figure

gl 800 . 610 855 913 382
<
5|
,c':'i,,,, — ,,,,,,,,,,1,0,%!, _ ,,1,7,,',,*
40

410 |

MUV3 iron 24, - MUV2 MUV1

Figure 4.17: MUV detectors layout [60].

MUV1 and MUV2 are iron-scintillator sandwich calorimeters of twelve ver-
tical and twelve horizontal layers of iron alternating with scintillator covering
a plane of 260 x 260 cm and corresponding to ~ 8 X,. Each scintillator strip is
2606 (or 4) x 1 cm and is connected to photomultipliers through the WLS fibres
in case of MUV1. The MUV2 is a refurbished original NA48 hadron calorimeter
very similar to the new MUV1. It has readout photomultipliers connected di-
rectly to scintillators [60)].

The iron wall of 80 cm is placed between the MUV2 calorimeter and the MUV 3
muon veto and is thick enough to stop everything, but muons. MUV3 itself is
composed of 22 x 22 cm tiles with two photomultipliers placed 21 c¢cm behind
each tile. They cover the angle for scintillation photons, but as they also detect
Cherenkov radiation if a muon passes through the photomultiplier windows two
photomultipliers are neccesary for a better timing [60].
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4.12 Additional Veto Detectors

Two pairs of additional veto detectors are implemented in the experiment.
The Small angle veto (SAV) system serves for detection of photons emitted at
small angles close to the beam line out of the acceptance of the LKr. It is com-
posed of the Small angle calorimeter (SAC) and the Intermediate ring calorimeter
(IRC). Both detectors are of made of an alternating sequence of lead plates and
scintillators (also referred to as the shashlyk type) read out by photomultipliers
coupled through WLS fibres and both are of a similar construction outlined in
the following figure [£.18, The IRC is placed between the CHOD and LKr and
covers radia between 7 cm and 14 cm. The SAC is placed inside the beam vacuum
towards the beam line when the charged part of the beam is swept to the beam
dump, to detect the leftover photons in the beam line.

- WLS fibers

a

lead scintillator

Figure 4.18: Shashlyk type detector [64].

The second pair of detectors serve for a detection of charged pions in the K+ —
7tr 7t (K3,) decays and consists of the peripheral MUV detector and the ha-
dronic sampling calorimeter (HASC). The MUV is a single plane of two layers of
scintilator tiles read out by photomultipliers via WLS (see figure on the left)
and detects 7~ with momenta below 10 GeV/c deflected by the spectrometer
magnet out of the acceptance of other downstream detectors.
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Figure 4.19: Left: Sketch of MUVO0. Right: Layout of one HASC module [60].
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The HASC on the other side detects 7% above 50 GeV /¢ propagating through
the beam line. These 7" are deflected off-axis together with the charged compo-
nent of the beam at the end of the beam line before the SAC detector. Unlike
the 75 GeV /¢ beam, which is dumped, these 7 hit the HASC as they have lower
momentum [60]. The HACS is a sandwich calorimeter consisting of 9 identical
modules. The layout of each module can be seen in figure [4.19 on the right.

4.13 Data taking

As mentioned at the beginning of the chapter, SPS provides the primary
beam and sets its intensity by changing the position of beam selecting apertures
at the T4 targetﬂ The primary beam is not continuous but is split into 4.6 s
long spills, so-called bursts, and its intensity on the T10 target is in the order
of ~ 10'2 PoT/s | The secondary beam generated at T10 has an intensity in
the order of ~ 10® s7! and has about ~ 6% of K.

During the data-taking period 2016-2018 the intensity has been gradually in-
creased with a better understanding of the detector readout logic response. It is
expected that the intensity could be even higher in the next data-taking period
(starting in 2021) if the signal-to-background ratio (S/B) is kept at an accept-
able level. For the declared intensity, one burst usually corresponds to about
3 - 10° measured events, where the selection of well-measured events is provided
by the trigger and data acquisition system, which will be discussed further in
the following chapter.

4The beam has a gaussian profile, hence a lower intensity subset of the beam can be chosen.
5PoT or Npor means protons-on-target.
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5. Readout and TDAQ) system

The high beam rate of decays up to 10 MHz in the detector dictates a need for
a high-performance trigger system to maximize the high quality data collection,
for which a unified trigger and data acquisition (TDAQ) system is used at NA62.
The TDAQ system is composed of the readout (section , a single hardware
trigger level LO (section and high level software triggers (section .

The LO trigger decision is stated by the L0 Trigger Processor (LOTP), reduc-
ing the data flow by factor of 10, based on the trigger primitives generated by
the readout of single detectors. The higher level software triggers are performed
at the PC-farm. Both levels together reduce the data rate down to 10 - 100 kHz,
which meets the bandwidth of the data flow for the permanent storage tapes.
The data passing all the trigger levels are written on the disk by the Central
Data Recording (CDR) service, see figure [5.1]
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|RICH | |MUV | CEDAR ... LLKR | | LAV | .
TELSZ” " ”
(L] s iRy s
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TDCB TDCB TDCB | TDCB
[ L[ =] | |l
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1 MHz v V V 100 kHz
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A
L1/L2 L1/L2 L1/L2 L1/L2 L1/L2 L1/L2 L1/L2 —
PC PC PC PC PC PC PC R.'J\
4 N v + + +
——— L0 trigger ' ﬂ O(K HZ) ‘
——— L1 trigger : e m
= e LR =

Data

Figure 5.1: An overview of the NA62 trigger system and the corresponding data
flow reduction [6§].

For practical considerations, a common Timing, Trigger and Control (TTC)
system[l has been used for clock and trigger distribution. The TTC transmis-
sion system contains two multiplexed channels encoded using 40 MHz clock and
transmitted at 160 MHz rate. All the synchronous elements of the TDAQ system
(see the next section run on the TTC clock and are synchronously reset by

!The system was developed at CERN and is adopted by all LHC experiments[60].
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a Start of Burst (SOB) command and similarly stop on an End of Burst (EOB)
signal delivered after a given number of 25 ns clock periods [60].

5.1 Readout

Most of the detector sub-systems at NA62 share a similar timing precision and
readout capabilities, which led to a design of a common system based on high-
precision Time-to-Digital converters (TDCs) (sec. [5.1.1)). The spectrometers use
their own dedicated systems made suitable for a high number of channels, where
the GTK has the highest number of channels, which are coupled by optical fibres
to meet the necessary time resolution (sec. [5.1.2). On the other side, in the case
of the Straw spectrometer a lower time-resolution readout is sufficient (sec. |5.1.3)).
Calorimeters are read out by a flash analog-to-digital converter (FADC) system
and have a separate readout (sec. .

5.1.1 Common readout

A TDC based system TEL62 provides a 100 ps time resolution and a possibil-
ity of an implementation of different trigger conditions. To provide the sufficient
flexibility and programmability, the TEL62 board is able to host up to 4 mezza-
nine boards for input data channels controlled by field-programmable gate array
(FPGA) with up to 2 GB of DDR2 RAM.

Each mezzanine TDC board houses 4 high-performance TDC (HPTDC) chips
and can digitize times of leading and trailing edges for 128 detector channels.
A 32-bit word is read out by HPTDC every 25 ns and 6.4 us long frames are
created. Frames from each TDC are merged and compacted together with addi-
tional data into the data blocks.

The TEL62 can also host an output quad-Gigabit Ethernet board driven
by a fifth identical FPGA, which sends LO trigger primitives to the LOTP and
detector data blocks to the PC farm in the case that the L0 trigger is received.

Figure 5.2: A TEL62 board equipped with two TDC boards and the quad gigabit
board [60].
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5.1.2 GTK readout

The GTK off-detector readout (GTK-RO) comprise ten GTK-RO cards for
each station (each card serving to one TDCpix). The GTK-RO card is controlled
by an FPGA with 2GB of DDR2 RAM and is located directly at the PC-farm,
connected to the corresponding TDCpix by 200 m long optical fibre. Each five
GTK-RO cards (one row of TDCpix) share one PC making an interface between
the card and the PC-farm [60].

5.1.3 Straw readout

The Straw Tracker readout chain can be structured into two parts. The first
are front-end boards hosting two analogue readout CARIOCA chipg? each read-
ing and processing leading and trailing edges of 8 channels, and one FPGA con-
taining 32 TDCs. The second part, containing the back-end electronics built
on Straw Readout Boards (SRB), serves for communication with the TTC sys-
tem and for sending the collected data to the PC-farm if they are selected by
the trigger.

5.1.4 Calorimeter readout

The calorimeter readout system is based on Calorimeter Readout Modules
(CREAM) and is used for LKr, MUV1, MUV2, IRC and SAC. One CREAM
board is able to read up to 32 analogue channels via a daughter-board, which
shapes the input signals and further digitizes them using an FADC. Data are
further processed by an FPGA on the motherboard and copied to a DDR3 RAM
waiting for the trigger condition to be sent.

5.2 LO trigger

The LO trigger is designed to reduce the data flow to the maximum rate of
1 MHz and latency below 1 ms which by default comprises only a small set of
sub-detectors but can be easily extended to most of them. This set of detectors
consists of: CHOD, NewCHOD, RICH, LAV12, MUV3 and calorimeters.

5.2.1 TDC-based LO

As discussed in section [5.1.1} these LO trigger primitives are generated by
TDCs on the corresponding TEL62 boards and the result of the trigger decision
is based on the identification of hits belonging to the same event.

CHOD LO provides selection of just single-track events with impact time correc-
tion, which is required due to the length of NA48 CHOD scintillator bars. These
corrections become time demanding in a case of multiple hit{’} It is used in LO

2The CARIOCA chips were originally developed for the LHCb muon chambers [60].
3The increasing inefficiency of the NA48 CHOD with higher intensity rates led to the con-
struction of the NewCHOD detector.
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as an independent stream (control trigger).

NewCHOD LO is used for the appraisal of multi-track events as the tile con-
struction does not require such corrections.

RICH LO is based on the multiplicity of clusters of hits for any charged track
above the Cherenkov signal threshold.

LAV12 LO from the LAV system can be used in order to tag events with EM
interacting particles within its geometrical acceptance.

MUV3 LO can be used as both the positive trigger or a fast muon veto. All
296 MUV3 channels are connected to a single TEL62 board equipped with three
TDC boards.

5.2.2 Calorimeter LO (LO0-Calo)

Due to a large data rate of calorimeters, their channels are first connected
to the CREAMSs, which save data into local temporary buffers, see section

The LO-Calo itself is based on TEL62 boards in three stages: Front-End, Merger,
Concentrator, see figure [5.3|

Front-End boards ask a simplified information from CREAMSﬁ and perform
a search for energy peaks and compute related parameters. Merger boards merge
peaks from the Front-End into single electromagnetic clustersﬂ. And the final
Concentrator board compute the total energies related to the event and generates
trigger primitives, which are passed to the LOTP.

28 x Front-End 7 x Merger
8ch
a3 =] 1 x Concentrator
8 3 = 8 ch
|8 8

"l d p—>{ LOTP
GbE L1 &
DAQ

Figure 5.3: A scheme of the L0-Calo system [60].

4Front-End boards ask a total energy from each 4 x 4 cells and only 10 most significant bits
of FADC (from the total 14).
5Contrary to the figure description, the L0O-Calo is currently applied only for the LKr.

o6



5.2.3 LO Trigger Processor (LOTP)

The LOTP is made of a single FPGA which receives packets with multiple
primitives, sorts them in time and checks if the combination within the time
window meets the preset configuration, so-called trigger masks. If it does, LOTP
sends a signal for the readout to send the data further to the PC-farm with
the preset downscaling for given trigger masks. This operation is managed by
the Associative Memory Module (AMM), which also generates so-called trigger
word. Different types of trigger word will be summarized in section |5.4}

The synchronization of internal LOTP clock with the TTC is managed by
a Phase Locked Loop (PLL), which automatically adjusts the phase of internal
signal with the input one. There are two clock domains, the 40 MHz one is com-
mon with the TTC and 125 MHz clock is common with the trigger-algorithm
logic and the ethernet communication.

Driving two uncorrelated streams corresponding to the same events, as is
required for running both Physics and Control, is possible thanks to the Mem-
ory Management Unit (MMU), see figure [5.4 The time alignment of these two
uncorrelated flows is critical as the output RAMs are read in parallel so the ad-
dresses of RAM are using the output of MMU, which is in principle the content
of merged_FIF Qﬂ filled with sorted primitives of one 6.4 us frame from the refer-
ence_FIFO and control FIFO.

TTC signals Detectors
TTC interface ‘ Ethernet Interfaces - links 0-1-2-3-5-6-7 ‘
PLL (40 MHz PLL (125 MHz
: ) ‘ ! . Delay Generator ‘
Timestamp Counter ‘ Input RAMSs for primitives
reference_FIFO MMU control_FIFQ
4 \ merged_FIFO /
packet_FIFO F packet_FIFO
reference control AMM
Packet Generator Downscaling Dead time
procedure
Periodic Trigger Generator Ethernet RAM Fixed
Interface - 4 ‘ St L Latency
NIM Interface ‘ USB Controller
_ B PC-Farm - LTuU
LKr Calibration Workstation

Figure 5.4: A scheme of the L0-Calo system [69).

6By FIFO we mean a memory buffer with the First-In-First-Out type of queue, where
the first address entering the register also leaves as first.
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5.3 High level triggers

While the maximum rate of the LO trigger is 1 MHz a considerable data
reduction has to be made to meet the requirements of the permanent data storage
and hence a high level software trigger is used.

5.3.1 L1 trigger

The L1 trigger reduces the data rate by another factor 10. It uses KTAG
and whole LAV system separately from LO trigger. A partial downstream track
reconstruction from Straws is also implemented, reducing the data flow even more.

5.4 'Trigger types

The data type propagating through the TDAQ system is defined on the L0
level and is commonly classified by the Trigger word and can take the following
definitions:

o The standard data-taking Physics trigger comprises the already mentioned
hardware L0 and higher level software trigger.

o Control trigger is ran with a very general definition on the LO level with
an appropriate downscaling[] and is usually used for the trigger efficiency
studies.

« Beyond the standard data-taking triggers are used several special triggers
gathering useful information for tests and monitoring purposes, e.g. the
Periodic trigger or already mentioned SOB and EOB.

"In the case of v data-taking only CHOD is usually used as a Control trigger. The beam-
dump case has specific trigger conditions, which will be specified in chapter
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6. Reconstruction procedure

The stored raw data are already distributed into events with some initial time
offsetl'] The offline data reconstruction is made for each detector separately using
the NA62Reconstruction routines of given revision of NA62FW [3]. It is based on
matching signals in distinct channels into hits and matching hits into candidates.
Unlike raw data, the reconstructed files have already the typical tree-like structure
of ROOT files and are stored burst-by-burst.

6.1 Track reconstruction

By track reconstruction we mean the reconstruction of a Straw candidate,
the reconstruction of whole charged track is done within the analysis and will
be discussed in chapter [9] where standard (kaon) runs are analyzed. The Straw
candidate reconstruction is based on an in-time matching of chamber hits (ide-
ally full 4 hits for a high quality track) and an inter-chamber (first two and last
chamber) matching in order to create the track vector.

The combination of vectors from before and after the magnet chambers with
respect to the magnetic field gives rise to the full momentum vector before and
after the magnet and a corresponding charge sign. The blue-field corrections
already mentioned in section are applied during the analysis.

6.2 LKr cluster reconstruction

The LKr cluster reconstruction algorithm scans all LKr cells for each event
and makes a list of cells with E.; > 0.25 GeV ordered from the highest to
the lowest deposited energy. During this procedure the cells marked as dead?] are
skipped. Then, a loop over all these cells is performed checking the surrounding 8
cellf] (3 x 3 box) to see whether the central cell really presents the most energetic
one. If it does it is marked as a seed of the cluster [70].

After this procedure, there is a loop over all seeds and for each seed all the pos-
sible contributing cells based on the energy profile are taken into account to re-
construct the whole cluster. If the cell is shared among more clusters at the same
time, the energy contribution to each cluster is weighted by the cluster profile as

W,
chus I/V] ’
where W; is the weight estimated for given types of cluster profile. If the cell is

E;, = FE.y (6.1)

!Time corrections (both pre-reconstruction and reconstruction) will be discussed further in
section

2Cell is considered dead if it manifestly provides a wrong signal (e.g. can be spotted as a hot
cell). The list of dead cells is updated for each run and is attached to the reconstruction tool.

3If there is a dead cell among the surrounding cells, it checks also another line (5 x 5 box)
of cells to inspect if the seed is not located in the dead cell.
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marked in the database as dead, its energy contribution to the cluster is extrap-
olated from the cluster profild’}

6.3 Corrections

During the reconstruction several correction and calibration procedures take
place among which the most important corrections are the time corrections (T0)
and momentum /energy corrections, which will be discussed in following sections.
There are also some post-reconstruction corrections usually applied as preanalyz-
ers before the data analysis itself.

6.3.1 Track corrections

Besides the mentioned blue-field corrections and TO corrections discussed in
the following section [6.3.3] which are applied already during the data reconstruc-
tion, so-called o and 3 corrections are applied using the SpectrometerTrackCor-
rections preanalyzer.

The SpectrometerTrackCorrections tool corrects the chamber x-y misalignment,
which induces a split between opposite charged particles reconstructed masses,
and track momentum p as

pcorr:p(1+6)(1+ap'q)7 (62)

where ¢ is the track charge and «a, § constants are evaluated from reconstructed
K3, decays for each run and are provided by the NA62ConditionsService. The a
here corresponds to the geometrical misalignment of chambers and takes the value
~ 107 MeV~!/c and f corresponding to miscalibration of the magnetic field is
typically ~ 1073 [71].

6.3.2 LKr cluster corrections

The LKr corrections incorporate the position alignment and the energy correc-
tions required for the overall energy as well as a cluster non-linearity or the energy
loss in the beamline hole. All are treated by the LKrClusterCorrections preanalyzer.

The position alignment has a fixed value for the Monte Carlo (MC) data
and for real data is determined offline for each run. The values are provided by
the NA62ConditionsService. The z-y cluster position is corrected for the motion of
the center of the shower developing in the LKr and can be simulated by the MC.
Also extra x position correction is applied to compensate the cell zig-zag struc-
ture [70].

Similarly for the energy corrections, which vary run-by-run or burst-by-burst
and are either provided by the NA62ConditionsService, which loads them from

4There is obviously a possibility of a systematic error entering the data analysis in this
procedure and hence more strict cuts on the cluster distances and distances from dead cells will
be applied in the data analysis.

60



the databasd’} or are fixed for MC. The loss-in-the-hole corrections have fixed
values evaluated using MC for given radius and vary with energy but by choos-
ing an additional acceptance cut during the analysis one can avoid bad cluster
reconstruction completely. The non-linearity corrections cover the bias induced
by the feedback in electronics, while the overall correction covers a different be-
haviour of low energy and high energy clusters with respect to their position
[70].

6.3.3 Time corrections

There are several steps in which are time corrections (so-called T0s) calculated
and applied [72].

o Initial TOs are setup already before data-taking by hand and are applied
online as they are essential for an alignment of trigger primitives within one
event and hence also for the trigger decision.

o Coarse T0s are applied offline as the first step during reconstruction. They
are calculated on 100 bursts and they give us time offsets for sets of channels.

o Magic TOs are applied offline and are evaluated for Straw channels wire-
by-wire, where the hit time distribution is compared to the hypothesis one
by a Gaussian fit [3].

o Fine TOs are applied during the offline reconstruction. They represent
channel-by-channel time corrections with respect to the referential time
(usually taken as the KTAG time).

5These values for cluster corrections are evaluated from a known densly populated mode.
Up to NA62FW v1.0.4 a value EoP (see section [8.1) from K.3 decay was used. From v1.0.5 7°
reconstruction from Ko, decay is used (see chapter @) [72].
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7. NA62 in the beam-dump mode

Despite the fact that the target at NA62 experiment is quite far from the decay
region (as is needed for kaon decays), it was realized that even without significant
intervention there is a possibility of running the experiment in the beam-dump
mode and reach energy and sensitivity regions necessary for exotic searches yet
unreached by other experiments. It was verified by MC simulations that the big
distance between target and decay region is partly compensated by the primary
beam energy thanks to the Lorentz boost of the secondary products. The Lorentz
boost also shifts their angle distribution into the acceptance of downstream de-
tectors, giving an opportunity to study the following:

o heavy neutral leptons;

« dark photons (heavy vectors);

o scalar (Higgs-like) particles;
 pseudo-scalar (axion-like) particles

in a new way beside the parasitic modd']

The general conditions in the beam-dump mode, incorporating changes with
respect to the conditions described in previous three chapters, will be summa-
rized in the following section [7.1} A more specific study for ALPs is outlined in
the section [7.2l

7.1 General data taking conditions and status

When running the NA62 experiment in the beam-dump mode, several special
data-taking conditions have to be incorporated:

o the beam momentum selecting TAX apertures are closed;

o the beryllium target T10 is removed and hence the proton beam is impinged
directly onto 1.6 m thick copper TAXes;

« only the downstream part of the experiment is used as the measurement of
the original beam properties (or the beam itself) are ill-defined in this case;

o a different trigger setup of the trigger masks is used.

The trigger for the beam-dump mode incorporates only two detectors as a pos-
itive trigger (no veto is used): the NewCHOD as a physics and the LKr as a con-
trol trigger. More specifically, any of the trigger primitives defined in the following
table has to be received by the LOTP so it sends a signal for the transition
of the data to the PC-farm.

I By parasitic mode is meant a possible production of hidden sector particles from interactions
of remaining protons in the secondary beam with the material of TAX in the kaon data-taking
mode.
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detector | trigger word(bit) definition downscaling
NewCHOD | physics (bit 14) Q1 (hit in one quadrant) 5
NewCHOD | physics (bit 10) Q2 (hit in two quadrants) 1

LKr control (bit 10) Erkr = 2 GeV A Ny = 2 1

Table 7.1: Overview of the trigger primitives.

There were several occasions during the data-taking in years 2016-2018 when it

was not possible to run the experiment in the ‘standard’ data-taking mode but it
was possible to fulfill other conditions necessary for exotic searches. An overview
of runs taken in the beam-dump mode together with the occasion and other
information is summarized in the following table [7.2]

Run number || Npor (10'°) | revision occasion TO run
6814 (2016) 2.4 r1982 LHC Pb 6793
6912 (2016) 0.6 v1.04 LIC Pb 6903
7858 (2017) 2.4 11082 GTK off 7847
7859 (2017) 1.1 r1982 GTK off 7847
7980 (2017) 0.2 v1.04 MNP33 unstable 7978
7981 (2017) 1.3 v1.04 | MNP33 unstable | 7978
8179 (2017) 0.1 v1.04 GTK off 8177
8278 (2017) 0.3 v1.04 in/close 8274
8279 (2017) 0.3 v1.04 out/close 8274
8280 (2017) 0.11 v1.04 out /open 8274
8477 (2018) 27 V104 HASC off 8470
8478 (2018) 115 v1.04 HASC off 8470
8762 (2018) 1.2 v1.04 GTK off 8778
8763 (2018) 1.8 v1.04 GTK off 8778
8764 (2018) 2.4 v1.04 GTK off 8778
8765 (2018) 0.8 v1.04 GTK off 8778
8768 (2018) 0.1 v1.04 GTK chip 8 8778
8769 (2018) 2.3 v1.04 GTK chip 8 8778
8770 (2018) 2.3 v1.04 GTK chip 8 8778
8771 (2018) 2.0 v1.04 GTK chip 8 8778
8773 (2018) 0.7 v1.04 GTK chip 8 8778
8774 (2018) 2.7 v1.04 GTK chip 8 8778

Table 7.2: A summary of runs taken in the beam-dump mode in a 2016-2018
period. Runs taken during 2016 had a trigger set only for charged particles [73].

By summarizing the number of protons-on-target Npor for the whole pe-
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7.2 Production and detection of ALPs at NA62

The search for ALPs in the NA62 beam-dump mode is dedicated to the de-
cay to two photons, which means a restriction to the neutral channel depicted in
the previous sectionf]

Estimated production of ALPs via the Primakoff effect by 400 GeV /¢ proton
beam on a copper target, as is the case of NA62, has been evaluated in [55] for

Jary = 107 GeV ™' see figure .

do /dE, d6 m 5 = 500 MeV
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do /dE, d6
pbGeV-"

1.0
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Figure 7.1: Predicted ALP production angle distribution of differential cross-
section for Cu target and 400 GeV /¢ proton beam for cases m, = 50 MeV /c* and
ma = 500 MeV /c? [5)].

A simple guess of the probability that the produced ALP will decay within
the detector acceptance will be given by the probability of a decay in the decay
region distant D from the target. Also the angle between photons 6 has to be
within the acceptance of the LKr 0,,,, = R/(D + L), where R is the LKr radius
and L is the length of the decay region (or in terms of Lorentz factor v > L/R).
On the other side the opening angle between photons must allow separation of
their clusters (or in terms of distance between clusters d,,;, and Lorentz factor
v < 2L/dnin). The overall probability guess for an ALP with decay length [,,
derived in , is then

Dl ) = {exp(—D/la), if y < 'L/R, v < 2L /dpin and 0 < Opas 1)

0, otherwise
and the fiducial cross-section is then given by the product of the detection prob-
ability and the production cross-section as

doy do

dB.d 7 (la,7,0) - dE.df°

A more sophisticated approach would be an MC simulatiorﬂ where a prelimi-
nary simulation has been performed in [55]. For the resulting fiducial cross-section

(7.2)

20ther decay modes (leptons) are restricted from the parasitic mode, where in spite of
a tremendous statistics, the S/B is too small for the neutral channel.

3 Actually, it is a necessary approach in order to evaluate the single event sensitivity (SES),
which will be further discussed in chapter The overall experiment geometry can be then
taken into account within the NAG2FW.
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Figure 7.2: Predicted fiducial cross-section for deposited energy and opening
angle for fixed values of axion mass and coupling [55].

see figure which shows the first estimates of the signal regions for given axion
masses and photon couplings.

These estimates are considering a faultless detection, i.e. 100% efficiency of
the trigger and the readout logic but a real response of the hardware has to be
checked. Luckily the beam-dump data are rich on charged events and hence one
can cross-check the response of different systems as these events are both physics-
triggered and control-triggered. The corresponding analysis will be performed in
the following chapter

To check the data-quality of neutral events in the beam-dump mode would
be more challenging as the statistics is much lower. Nevertheless, as one expects
a similar data quality of the beam-dump run with the preceding (or succeeding)
standard run (TO run marked in the table , the detector response can be
checked for known decays with two photons in the final state in these runs.
Luckily, kaon runs are rich on the production of 7°, which will be studied in
the chapter [9]
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8. Trigger efficiency study

According to MC simulations, muons are the most common background in
the beam-dump mode [74]. They, however, trigger Q1 and also depose only little
energy in the LKi|and hence cannot be directly used for the study of the Control
trigger, which is defined by two ‘non-MIP’ LKr clusters (see tablewith trigger
definitions in BD). Nevertheless, these muons can easily produce in the material
of the detector ete™ pairs, which trigger both Physics(Q2) and Control trigger.

In this chapter the ete™ pairs will be selected primarily for the study of
the trigger efficiency. However, it proves useful also for the determination of
interactions of the muon halo with the detector material as for charged events
the source can be tracked and a coincidence between data and MC can be tested.
Such procedure is much more challenging for neutral events.

The analysis is performed on runs 8762-8774 (v1.0.4) as they represent a high
statistics with stable data-taking conditions. Both LKrClusterCorrections and
SpectrometerTrackCorrections preanalyzers are used.

8.1 Event selection

The eTe™ selection conditions and performed cuts will be listed further to-
gether with the corresponding plots. It is required that:

o at least two charged tracks downstream are present;

50
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Figure 8.1: Z position of vertex and corresponding CDA of matched tracks.

« exactly two charged tracks have a common vertex (CDA < 15 mm);

'Muon presents so-called minimum ionizing particle (MIP).
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Figure 8.2: Left: Time difference and corresponding CDA of matched tracks;
Right: Distance of the track projection from the associated cluster with respect
to the time difference.

o charged tracks with a common vertex are in time within 3 ns and have
opposite charges;

« LKr clusters have to be geometrically associated to these tracks (a maximum
distance 50 mm from the track projection);

associated LKr clusters must have at least 1 GeV;
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Figure 8.3: EoP for selected tracks with respect to the deposited energy.

« E/p (EoP) of the tracks is above 0.85}

2EoP presents the most efficient selection criterion for the identification of a high-energetic
electron as it is the lightest charged particle and unlike p and 7 it leaves all its energy in LKr.
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8.1.1 Vertex position

By comparison of figures [8.1] and [4.2 one can distinguish the detector compo-
nents, where the products of muon halo interactions could origin. The dominant
source is typically the region between the final collimator and CHANTI. Next,
one can see individual LAV stations with the dominant LAV5, the spectrometer
magnet and sharp peaks at spectrometer chamberﬂ. A cut through the z-y plane
of vertex position for the collimator/CHANTTI region and for LAV5 is projected
in following figures.

— 1000 . 12
E - {Entries 84340 z I | Entries 14112
=500 E T ' 10
B 102 75001
: - 8
0- i 0 6
E 10 :
s i 4
: —500/-
-500- i b
L R D Lo 1 ~100 R R B 0
-500 0 500 oo =500 0 500 1000
X [mm] X [mm]

Figure 8.4: Vertex x-y position in CHANTI (left) and LAV station 5 (right).

8.2 'Trigger efficiency

The trigger efficiency e is defined for the ete™ selected sample (as described
in the previous section) as follows

_ Physics(Q2) A Control (8.1)
B Physics(Q2) ' '
By asking for the corresponding trigger word and mask from the LOTPData,
the resulting efficiency with respect to the total energy is poor (see figure .
Nevertheless, if trigger primitives of L0Calo and LONewCHOD are asked for in-
steadﬁ, the resulting efficiency distribution seems correct (see figure .

Different results for the primitives and the trigger could be indicating a misbe-
haviour of LOTP during the trigger decision. This phenomenon has been recently
independently validated by comparison of the primitives stored within triggered

3Tracks originating in the spectrometer could be fake tracks (fake signal) [75], but are usually
automatically vetoed during analysis (e.g. Ko, in next chapter) by choosing the allowed decay
region.

4A configuration, where LONewCHOD Q2 is allowed in the 25 ns (£12.5 ns) wide trigger
slot only and LOCalo is allowed also in adjacent time slots (together £37.5 ns), is chosen.
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Figure 8.5: ete™ trigger efficiency when asking for trigger masks.
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Figure 8.6: ete™ trigger efficiency when asking for trigger primitives.

data and the primitives stored separately in so-called primitive dum;ﬂ Appre-
ciable losses of data, which should have been triggered, were observed [70].

5The primitive dump serves as a storage of all L0 primitives, which are saved irrespective to
the trigger decision for each tenth burst for control reasons.
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8.2.1 LOTP misbehaviour

The described phenomenon has been found as a consequence of a defect in
the LOTP firmware, which escaped observation in kaon runs due to higher primi-
tive rates but were fully revealed in the beam-dump mode. The defect itself was
localized in the merging process of reference_FIFO and control FIFO of MMU
described in the section [5.2.3] The defect description can be summarized as:
the first FIFO reaching the end of the frame does not send the last primitive
to the merged_FIFO [77]. This behaviour results in a loss of the corresponding
trigger and hence if there is no other condition triggering the event, it will not
be stored. In the case that the event is triggered with more primitives indepen-
dently (case of charged events), the written trigger mask has wrong values but
the primitives themselves are untouched, which explains the difference between

figures 8.5 and [8.6]

While the code of the LOTP has been corrected for future runs (starting in
2021), the amount of data gathered during 2016-2018 has been inevitably affected.
Due to the high rate of primitives in the standard data-taking the overall number
of lost events is almost undetectable. However, in the beam-dump mode are
N ~ 10% Control trigger primitives and N ~ 10% Physics trigger primitives per
tyurst = 4.6 s long burst. This means that if one looks for the Control triggered
ones, there is effectively at maximum one LKr primitive in the t¢qme = 6.4 s
long frame, while for the NewCHOD one gets for each frame an average p =
N -t frame/tourst = 1.4 prim/frame. Thus, the probability given by the exponential
distribution f(¢, ) = pe #* that the Physics primitive is earlier in a frame than
the Control one (and hence the Control mask is correct and the corresponding
event is stored) will be

1 00 1 1 — e H
Pu~18) = /0 dT(1 — /T dtpe ") = /0 dTe T = ; ~50%.  (8.2)

8.3 Intensity dependence

The hypothesis uttered in the previous section also implies that with a higher
beam intensity (and thus higher rate of NewCHOD primitives) the losses of data
in BD mode should be higher as well. Hence, the gathered beam-dump runs
(summarized in table will be revised in the following by comparison of beam-
dump data and the primitive dump together with an evaluation of the impact of
the LOTP defect and the possible intensity dependence. The intensity is expressed
as usual in the number of protons on target (PoT), while by the efficiency in this
section will be meant the portion of purely neutral events passing the LOTP de-

fect®l

Run 8769, which was not very stable in terms of intensity has, however, proven
the hypothesis of the scaling of the efficiency with the intensity (see figure |8.7))
as well as it proves a relative stability of the efficiency.

6Charged events are usually stored even if the trigger mask is wrong as they produce both
Control and Physics primitives.
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Figure 8.7: Beam intensity and efficiency for neutral events during the run 8769.

Since runs 8762-8774 were taken during the same period under the same data-
taking conditions the scaling of efficiency with respect to the intensity follows
continuously the same trend, see figure [8.8]

o 1 = ——run 8762
> 0 9:_ ——run 8763
2 ZE ——run 8764
Y= ——run 8765
is = ——run 8768
Mk 0.7 ——run 8769
= . ——run 8770
0.6 . ——run 8771
= S ——run 8773
0.5F Tl — run 8774
- * *}* 'r*") R
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0.1E
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Intensity [E*11]
Figure 8.8: The intensity dependence of the efficiency for runs 8762-8774.

Finding of such stability of the efficiency for runs 8762-8774 presents a favou-
rable result as these runs represent a majority of the statistics. In comparison,
the 2017 data do not follow the same trend, but one has to take into consid-
eration that they were taken during various data-taking periods. In summary,
they evince lower efficiency for the same intensities but they still present a stable
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Figure 8.9: The intensity dependence of the efficiency for all 2017 and 2018 runs.

sample (see figure with values roughly corresponding to the predicted 50%
by the equation ({8.2]).

The ‘tail’” in 2018 sample in figure is due to the remaining 2018 runs
8477 and 8478. The situation for these runs, which also represent a significant
statistics, seems to be quite different and while the intensity was very stable
the efficiency was not (see figure [8.10)).
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Figure 8.10: The intensity dependence of the efficiency for runs 8477 and 8478.
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Similar tail is present in 2017 data and corresponds to the run 8280 with very
low statistics. Almost zero efficiency evinces the run 8278.

This indicates that other factors could internally influence the stability of
data-taking via the LOTP defect. It can be anticipated that similar factors could
influence the data quality of kaon runs from the same data-taking period, which
will be confirmed in the following chapter in the context of “T0 runs’

8.4 Results of primitive dump study

By summarizing the efficiency for all beam-dump runs as studied in the pre-
vious section (see the following table , one gets the overall number = 43.3%.
Thus, from the number of 2.6 - 106 PoT for neutral runs ~ 1.13 - 10'6 PoT were
effectively measured.

The efficiency error in the table was evaluated with respect to the corre-
sponding statistics as a binomial error

\/5(1 - E)Npassed

o Npassed 7 (83)
where Npgsseq is the number of events, which passed the defect.

Run number || Npor (10") | efficiency (%) occasion TO run
7858 (2017) 2.4 (42.6 +0.3)% GTK off 7847
7859 (2017) 1.1 (38.4+0.5)% GTK off 7847
7980 (2017) 0.2 42+ 1)% MNP33 unstable 7978
7981 (2017) 1.3 (44.7+£0.4)% | MNP33 unstable 7978
8179 (2017) 0.1 (45 + 3)% GTK off 8177
8278 (2017) 0.3 (0.3+1.9)% in/close 8274
8279 (2017) 0.3 (40 £ )% out/close 8274
8280 (2017) 0.11 (29.2 +0.5)% out/open 8274
8477 (2018) 2.7 30+ 1)% HASC off 8470
8478 (2018) 1.15 (33+2)% HASC off 8470
8762 (2018) 1.2 (49.3 +£0.4)% GTK off 8778
8763 (2018) 1.8 (43.3+0.3)% GTK off 8778
8764 (2018) 2.4 (40.4 +0.3)% GTK off 8778
8765 (2018) 0.8 (42.3+0.5)% GTK off 8778
8768 (2018) 0.1 42+ 1)% GTK chip 8 8778
8769 (2018) 2.3 (48.3+0.2)% GTK chip 8 8778
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Run number || Npor (10'°) | efficiency (%) | occasion | TO run

2.3 46.6 £0.3 GTK chip 8 8778

8770 (2018) ( )%

8771 (2018) 2.0 (475+03)% | GTK chip 8 | 8778
8773 (2018) 0.7 (30.3£0.5)% | GTK chip 8 | 8778
8774 (2018) 2.7 (41.3+£0.3)% | GTK chip 8 | 8778

Table 8.1: An updated table for neutral runs with assessed efficiency.

By run-by-run comparison the small contribution of runs 8278 and 8280 to
the final efficiency can be seen, but also these runs should be investigated more
in the future.
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9. TO runs data quality

As BR(KT — 7% = (20.67 £ 0.08)% and BR(m° — 2v) = (98.823 +
0.034)% [14], kaon runs close (in time) to the beam-dump ones, are a good op-
portunity to cross-check the detector behaviour for events with 2+ in final state.
As most of the statistics, as well as the whole statistics from 2018, is covered by
means of TO and correction parameters by runs 8470 (129 bursts) and 8778 (913
bursts), currently reconstructed with version v1.0.5 - see table a simple Ko,
analysis will be performed for these two runs.

For this study the Control trigger, which is defined for these runs as a signal
in CHOD downscaled by 400, will be selected. The LKrClusterCorrections and
the SpectrometerTrackCorrections will not be applied as the necessary coefficients
were not provided yet for these newly reconstructed runs.

9.1 Event selection (run 8778)

Unlike in the case of previous chapter, strictly one charged track downstream
will be required here, by which following decay modes are predominantly selected:
phoy, mta® wletv, (K%), n°utv, (Kf3) and 7t 7%7° [14]. In order to distinguish
7t from leptons a more sophisticated particle identification (PID) method (than
e.g. EoP ratio used before for electrons) will be required.

9.1.1 Particle identification

From the track direction projection onto RICH PMTs, one is able to measure
the radius of a circle cast by Cherenkov light and by comparison with the mo-
mentum determine the likelihood that the track belongs to 7" (see figure [0.1).

Entries 3.091154e+07

1 1 1 1 I 1 1 1 I 1 I--I 1 I 1 1 1 I-I 1 F I--I- I--I-I-I- I--I 1 1 1 I:I I--I-‘-I- 1
0O 10000 20000 30000 40000 50000 60000 70000 80000 !
p [MeV/c]

Figure 9.1: RICH ring radius of the track with respect to its momentum.
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As already discussed in section [4.8] and as is apparent from the figure above,
it is possible to distinguish ;™ and 7+ at RICH only for momenta from 15 GeV /¢
to 35 GeV/c. Thus, RICH will be used only for a selection in this region and
other steps for PID in the whole momentum spectrum will take place. Thanks
to a very good time resolution of RICH, its time will be used as a referential one
for the downstream track in the rest of the analysis.

To cut off the pu component, track will be projected further onto MUV3 and
matched with the signal from the geometrically closest tile (see figure(9.2). A cut
is performed on matched tiles with the signal time within 5 ns from the track
referential one.

Entries 2.028744e+07
Mean x —-0.1225
Mean y 82.81
Std Dev x 3.67
Std Dev y 35.09

dISttrack—tile [

__ o

track-tile

30 20 20
dt

Figure 9.2: Time difference between the track and the associated MUV3 tile with
respect to the distance of the track projection from the tile.

In order to clean the remaining sample, a PID using calorimeters can be per-
formed as each particle type leaves a specific shape of the shower and can vary in
a number of parameters. For this purpose will be used the SpectrometerCalorime-
tersAssociation tool of NA62FW [3], which employs Boosted Decision Trees (BDT)
as an MVA technique provided by the TMVA of ROOT [4].

Parameters from associated LKr, MUV1 and MUV2 clusters as the total
energy, number of cells, energy of the seed and energy deposited in each of
the calorimeters are used to determine probabilities that the particle is e, u
or m. Specifically, for our case P(mw) > 90% (see figure is required, which
suppresses the ;. component to the order of 10~* and the electron component to
about 5 - 1072, but even bigger suppresion is reached thanks to the MUV3 veto
condition [78].
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Figure 9.3: Probability that the track is m with respect to its momentum.

9.1.2 Matching with K+

The GTK candidates first need to be matched with KTAG candidated!} which
is based on a time cut |dt| < 0.6 ns (for the time distribution between GTK and
kaon tagged KTAG candidates see figure [9.4)).
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Figure 9.4: Time difference between GTK and KTAG candidates.

In the next step, the selected upstream kaons are matched with the down-
stream track and the track with the minimum combined value of CDA and mutual

IKTAG candidate is considered to be kaon if there is a coincidence of at least 6 sectors.
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Figure 9.5: CDA and mutual time difference of matched upstream candidates
with our selected 7™ downstream track.

time difference is selected. See the following figure[0.5]for the results of the match-
ing. A cut for |dtx_,| < 1 ns of matched K+ and 7™ is further performed.

From the reconstructed set the events with K decays in the fiducial region
105000 < 2y, < 165000 mm and CDA < 15 mm are selected.
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Figure 9.6: Z position of vertex and CDA of selected 7" track for matched up-
stream K.
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9.1.3 7' kinematic selection

From the four momenta of both K™ and 7", the missing invariant mass can
be constructed as (Pg+ — Pr+)? = m2, ... As m2, = (134.977)? MeV?/c*, one can

select the decay mode K+ — 777" by choosing 16000 < m?,,,, < 21000 MeV?/c*,
see figure [0.7]
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Figure 9.7: The missing invariant mass for 7° of predicted momentum.

As can be seen in the figure by this selection also the 75 GeV /¢ remnants
of the beam as well as the products of the three-particle K+ — 7t7%7% decay are
cut off.

9.2 Study of photon clusters (run 8778)

The aim of this study is to cross-check the reconstruction of 2 photon clus-
ters with a common vertex by reconstructing 7° — 7y decay from the known
four-momenta P = P,; + P,5. Thus, at least three LKr clusters, where one
belongs to the 7+ track, are required. A loop is performed over the rest, where
maximum =1 ns time difference from 7% is allowed, in order to select the photons.

By selecting one photon cluster and assigning its four-momentum P, the 4-
momentum of the searched second v cluster P, = Px+ — Pr+ — P,; can be con-
structed. As additional photons can be radiated in the decay via an internal
bremsstrahlung, a selection of the corresponding clusters can occur instead of
the 70 — vy ones. But as P2, = m2, = 0 is expected, one can kinematically

distinguish the correct photon cluster from the internal bremsstrahlung one, see

figure 9.8
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Figure 9.8: The missing invariant mass for searched photon of predicted momen-
tum.

The low energy tail in the figure 0.8 can be further cleansed by a restriction on
the distance of the second ~y cluster from an expected position dezp—cius < 100 mm,

see figure
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Figure 9.9: The difference between expected and reconstructed energy of the asso-
ciated second photon cluster with respect to its distance from expected position.

The correctness of the reconstruction of photon energy is apparent from the x-
axis of the figure and the result is satisfactory if one takes into consideration
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that the expected value was determined purely kinematically. Even if the cases
|dE| > 2 GeV are suppressed by the order 10™2 with respect to the correct ones
(see z-axis values for different z-axis ones in figure , a possibility of a system-
atic error has to be excluded. Thus, it has to be checked if the ‘incorrect’ energies
are not fixed to some location at LKr. The position of the seed of the searched ~
cluster weighted by the value dFc;p— s and normalized to the number of occur-
rences is depicted in the following figure (9.10}
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Figure 9.10: Position of the seed of the associated second photon cluster weighted
by the difference of the reconstructed energy from the expected one (the z-axis
of this figure corresponds to the x-axis of figure .

One can see a uniform distribution over the whole LKr, excluding some ‘mis-
calibration’ of specific channels with the only exception of seeds adjacent to
the dead cells, which is due to an improper reconstruction of the cluster. Hence,
a minimum distance of the seed of selected clusters of 20 mm will be required in
the ALP — ~~ analysis discussed in the following chapter [10]

9.3 Event selection (run 8470)

The event selection for run 8470 follows the same prescription as is described
for 8778 with the only difference of about nine times lower statistics. While
the PID and upstream-downstream matching figures evince the expected be-
haviour consistent with 8778, the missing invariant mass figure [9.11| shows an in-
correct ¥ reconstruction (splitting of the 7% peak) and reveals some possible
miscalibration of one of the detectors involved. This result together with a suspi-
cious behaviour of runs 8477 and 8478 found in the previous chapter may indicate
some deeper systematic error in the given data-taking period and demands a more
thorough study.
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10. Data analysis procedure

A strategy for the ALP — 7~ analysis will be outlined in this chapter with
a discussion in the section and a sample selection based on the findings from
the previous chapters performed in the section [10.2]

10.1 Single event sensitivity

To avoid the observer bias a blind analysis technique is used for the study,
where the signal region in the selected sample is kept blinded until the analysis of
the selected sample and the background estimation are finished. In our specific
case, the signal region is set by comparison of MC simulations of the ALP — ~~
mode and the background. As we are ‘scanning’ some region of the (ggy-, mq) pa-
rameter space, we have to evaluate the signal with some fixed parameter and hence
the position of the signal region depends on the parameter’s value. The back-
ground on the other hand has a fixed shape given by known phenomena.

In the case of beam-dump mode, the background does not originate from some
specific decay but as already discussed in chapter |8 it is generated by interactions
of the muon halo in the material of the detector. This in our case means a contin-
uous spectrum of photons mostly generated by bremsstrahlung. For this reason
the background estimation in the beam-dump mode becomes quite challenging
as one has to consider all possible targets for the muon halo. The MC simula-
tions were beyond the reach of this thesid'| but examples of dominant targets were
shown in the figure from the study of eTe™ pairs.

The position of the signal region is limited by the signal acceptance on one
side and by the background contamination on the other side, which determines
the region where the apparatus is sensitive towards the searched decay. The single
event sensitivity (SES) can be evaluated as

SES = ! (10.1)

5
NPOT : Asignal * €RV * €trigger

where Npor is the number of protons on target, €;igqer is the already discussed
trigger efficiency, Agigna is the signal acceptance as given by the MC simulation
for the selected signal region and egy is the random veto efficiencyf}

10.2 (Inverted) sample selection

Keeping in mind the possible corruption of the trigger information rendered
by the LOTP, LO trigger primitives will be asked for instead of the trigger word
to reach the full possible trigger efficiency. To select a neutral event, we require

!Preliminary MC simulations for given set of parameters fixing the signal region were pre-
sented in section proceeding from [55], while background MC simulations are ongoing.

2By random veto efficiency we mean the probability that the searched event is not lost due
to an accompanying background (e.g. signal in LAV from a passing muon). The value has to
be independently measured on the data as it is not easy to be simulated on MC.
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the Control primitive in any trigger slot and no Physics primitive. The following
selection conditions for the sample were established:

no charged tracks downstream;
exactly two LKr clusters;

minimum distance of clusters from the beampipe and the edge (cluster
location dgys within 150 mm < dy,s < 1130 mm);

distance from dead cells > 20 mm;

no in-time association of clusters with signals in MUV1, MUV3, SAV,
CHOD, RICH and ‘downstream’ LAV stations (LAVID > 8);

mutual distance of clusters > 100 mm to avoid overlap of showers;

no in-time association of clusters with CHANTT and ‘upstream’ LAVs (1-8).

These conditions eliminate almost all statistics and hence are not suitable for
the background estimation and comparison with MC. However, due to the LOTP
defect, no charged particle can be allowed in the acceptance of downstream de-
tectors as one would risk the loss of accompanying neutral event. A compromise
between these two is an inversion of the last condition from the list. By allowing
a signal in the CHANTT or upstream LAVs, one increases the background statis-
tics and yet cuts off the charged particles entering the ‘downstream’ area. Such
selected sample will be referred as an inverted sample.

As a relative stability of runs 8762-8774 was validated in previous chapters,
the ‘inverted sample’ will be selected from these by applying the above conditions
following the same order of cuts. The full statistics can be seen in the figure [10.1
as well as the values entering the first cut condition requiring 0 charged tracks.

| Entries 1.250927¢+07

—_
o
=~
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o b b b b b b b Ly
10 2 4 6 8 10 12 14 16 18 20

Ntracks [_]

Figure 10.1: Number of charged tracks in the ‘Control triggered’ sample.
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Figure 10.2: Number of LKr clusters for events with no reconstructed charged

tracks.

Next, strictly two LKr clusters are asked for, which reduces the statistics about
five times (compare figures and and cuts on the distance of clusters
from the beampipe, the edges and dead cells are performed (compare figures
and . The geometry cut results in another reduction of factor 5 due to a

Nclusters [_]

noisy channel at the edge of LKr (|10.3).
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Figure 10.3: Position of LKr clusters for events with exaclty two clusters.

A series of time cuts on the association with a signal from detectors used
as a veto reduces the statistics significantly (compare figures [10.4] and |10.8]).
Cut on signals within 10 ns in CHOD and MUV1 is applied, 5 ns in MUV3,
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Figure 10.4: Position of LKr clusters after applying ‘position cuts’

SAV and downstream LAVs and 2 ns cut for RICH, see figures for the
corresponding distributions. The cut values were estimated from the shapes of
these distributions but a more efficient selection might be achieved by using MVA
techniques instead, which is worthy to be tested in the future on MC samples.
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Figure 10.5: Mutual time difference between LKr and MUV1 (left) and LKr and
MUV3 (right) with respect to the number of candidates in given detector.
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Figure 10.6: Mutual time difference between LKr and RICH (left) and LKr and
downstream LAV stations (right) with respect to the number of candidates in
given detector.
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Figure 10.7: Mutual time difference between LKr and upstream LAV stations
(left) and LKr and CHANTTI (right) with respect to the number of candidates in
given detector used for in-time selection (condition inversion).

The last inverted condition is applied as an in-time candidate (|dt| < 10 ns)
in CHANTI or any upstream LAV station (see figure [10.7]).
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Figure 10.8: Mutual distance of two selected clusters.

The last cut performed is for the mutual distance of both clusters dq». For
the resulting final energy distribution of the inverted sample, see figure [10.9]
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Figure 10.9: The combined energy (£ = E,; + E,3) distribution in the inverted
sample.

From the reconstructed photon cluster energies, the invariant mass of the orig-
inal decaying particle can be simply derived from the angle 6 under which the pho-
tons are radiated. For given position of the vertex z,, (or distance L of the vertex
from the detector zy, = zpxr — L), we get

0 \JEpEpdn
My = \/2E71E72(1 —cosf) =2/E,1E»sin 5~ Yoo (10.2)

L
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Conclusion

In the course of the study of the trigger efficiency for beam-dump data gath-
ered during 2016-2018 data-taking period using e™e™ pairs, a significant ineffi-
ciency was observed. Performed comparison of gathered data with the primitive
dump has pointed to a malfunction of the level zero trigger processor firmware.
With better understanding of the issue, we were able to map the consequences,
among which is a loss of data, which was determined to be around 57.7%, effec-
tively reducing the number of gathered data for ALP — ~~ analysis to 1.13-106
PoT.

Apart from the data loss, the trigger efficiency was proven to be standard
(reaching 100% within the standard deviation) when different trigger variables
are used. The trigger efficiency study has also revealed a different behaviour (with
respect to the expected effect of the LOTP defect) of two statistically significant
runs 8477 and 8478 (together statistics of 3.85-10' PoT) and runs 8278 and 8280
with lower statistics (together 0.41 - 10'® PoT).

Further, a K™ — 77 analysis was performed on ‘kaon runs’ 8778 (resp.
8470), which are close in time to a beam-dump sample 8762-8774 (resp. 8477-
8478), in order to test the data quality of runs from given time periods. By
selecting the 7 — v+ mode, we were able to test the detector behaviour with
a high intense flux of photon pairs, which is useful for ALP — ~v studies per-
formed in a mode with much lower statistics. The study of the run 8778 has
manifest a correct reconstruction of photon clusters, which supports the idea
that runs 8762-8774 were stable, as was observed during the trigger efficiency
study. The study of the run 8470, on the other hand, has proven some miscali-
bration during the corresponding data-taking period and has to be investigated
further.

Following the facts revealed in the preceding, a strategy for the search for
ALP — vv has been determined. An analysis on the ‘stable’ sample 8762-8774
was performed with inverted conditions on the upstream veto detectors in order
to see the ‘background sample’, which is to be compared with the MC simulations
in the future.
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BRST - Becchi-Rouet-Stora-Tyutin
MS - Minimal subtraction
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PQWW - Peccei-Quinn-Weinberg-Wilczek
DM - Dark matter
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KK - Kaluza-Klein
BBN - Big Bang Nucleosynthesis
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EBL - Extragalactic Background Light
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PS - Proton Synchrotron
SPS - Super Proton Synchrotron
LHC - Large Hadron Collider
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TDC - Time-to-Digital Converter
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LAV - Large Angle Veto
RICH - Ring Imaging Cherenkov Counter
CHOD - Charged Hodoscope
WLS - Wavelength Shifting
LKr - Liquid Krypton
MUYV - Muon Veto
SAV - Small Angle Veto
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IRC - Intermediate Ring Calorimeter
HASC - Hadronic Sampling Calorimeter
PoT - Protons on Target
TDAQ - Trigger and Data Acquisition
LOTP - Level Zero Trigger Processor
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FADC - Flash Analog-to-Digital Converter
FPGA - Field-Programmable Gate Array
HPTDC - High-Performance Time-to-Digital Converter
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SRB - Straw Readout Board
CREAM - Calorimeter Readout Module
MMU - Memory Management Unit
FIFO - First-In-First-Out
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PID - Particle Identification
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