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Notation

A:B

a®b tensor product of vectors a, b [18, p. 9]
B([0,T7];.A) bounded (possibly non-measurable) functions
with values in A C X, X is a normed linear space
cof F the cofactor matrix of F (cof F = (adjF) T, see [19, p. 356])
e, e, ..., ey canonical basis vectors in IR? [19, p. 115]
HE k-dimensional Hausdorff measure [13], p. 81]
I the identity matrix
Int A interior of a set A in a metric space [11], p. 14, 248]
c4 d-dimensional Lebesgue measure [13, p. 34]
L (% RF) locally integrable functions (i.e. componentwise locally
integrable as in [14], p. 39])
Lr(Q; RY) Lebesgue spaces (of IR¥-valued functions) [28, p. 595]
n unit outward normal vector [0, p. 37]
o zero vector in IR¥
R4xd d by d real matrices
R4 {A € R4 det A > 0}
Roo R U {+o0}
SL(d) {P € R detP = 1}
SO(d) {R € SL(d); RRT =RTR =1}
Tr A the trace of a matrix [19 p. 301]
X* dual space to the normed linear space X' [31] p. 108]
X1 — Xy continuous embedding of normed linear spaces
X —>— Xy compact embedding of normed linear spaces |21} p. 12]
0J(y;9) the directional derivative of a functional J
at the point y in the direction 9 [6, p. 10]
0A boundary of a set A in a metric space [I1], p. 24, 248]
Qecot domain with Lipschitz boundary [6, p. 32]
Vf, Vf, VF Vxf, Vxf, VxF for f, f, F depending on space
and time
A closure of a set A in a metric space [I1}, p. 13, 248]
Tp—T weak convergence in a normed linear space [21, p. 14]
o f weak™® convergence in the dual space 28] p. 586]
|A| Frobenius norm of a matrix [28], p. 277]

matrix and its components
usual scalar product of matrices [18, p. 9]

Bold letters (y, X, ...) denote vector quantities, blackboard bold letters (F, P, @,
€, ...) are used for second-order tensor quantities (which are identified with matrices)
and an underline denotes a third-order tensor (H, VP). A double underline forms
part of the symbol for the generalised stress 3 and the generalised plastic strain P.
We write Vf for the gradient of a scalar field, Vf = (68)]2’] )f,jzl
a vector field (i.e. its Jacobian matrix) and VA if A is a second-order tensor. (For
A e WhH(Q, IR (Q c R? open, 1 < ¢ < +00) let us define its gradient as

for the gradient of

0Ay; .
[WA]’Uk = 87)(2’ Z,],]C < {1,2, R ,d})

The second gradient V2 f := V(Vf) for f smooth enough.







Introduction

The study of deformations of solid bodies brings benefit to diverse areas of human ac-
tivity. Architecture, mechanical engineering, materials science or biomedical research
can all profit from achievements of mathematical modelling in solid-state physics. Nu-
merical simulations on supercomputers efficiently deal with problems whose solution
would otherwise remain out of reach. However, the tasks of developing realistic material
models and of their mathematical analysis are still topical as well.

A workable approximation of material behaviour in situations where the acting
forces are not strong enough to cause irreversible changes (e.g. cracks) is provided by
elasticity theory. Although mathematical elasticity is commonly used, a fair number of
open problems are unsolved as of now [2]. Chapter (1| goes through the basic concepts
in mathematical elasticity and continuum mechanics, which is a more general theory
in the sense that it also applies to fluids.

If the forces affecting a solid body exceed a specific limit, the body undergoes a
plastic deformation and the elastic description must be upgraded to an elastoplastic
one. There exists a rich spectrum of plastic effects that may take place and a compre-
hensive treatise of those would definitely be long. Chapter [2| contains an introduction
to plasticity and the most relevant (by the author’s judgement) plastic phenomena are
mentioned. At the end of the chapter, the idea of energetic solutions (cf. [28]) for rate-
independent systems arising in elastoplasticity is presented. This weaker concept of
solutions can be advantageous when one needs to overcome the lack of differentiability
of the appearing physical quantities.

In Chapter 3| it is explained what gradient polyconvexity ([5]) is and how it can be
utilised in mathematical elasticity and plasticity. The chapter is mainly based on two
recent articles [5] and [20].

The contribution of this thesis is an extension of the gradient polyconvex model
from [5] to gradient plasticity at finite strains and the use of methods from [15], [25] to
prove the existence of a solution to an associated energetic rate-independent system.
Especially in Theorems [6] 7 and 11, the previously published ideas had to be adjusted
to fit into the elastoplastic framework. In literature, a generalised Helly’s selection
theorem from [24] is often used without mentioning the particular assumptions needed
to make it applicable. This work devotes more space to this argument (Theorem 14), so
that such an important step becomes more comprehensible. Claim [2| in Chapter [3] can
also be seen as a moderately interesting new inference, since it specifies the particular
Sobolev exponents for which deformations of class W?2P are also regular enough for a
gradient polyconvex energy functional.

To facilitate reading of this thesis, a summary of used notation is integrated at the
very beginning and an appendix with necessary facts from mathematical analysis can
be consulted at the end.






1. Continuum mechanics
overview

For the reader’s convenience, basics of continuum mechanics are briefly summarised,
following [6], occasionally [16].

1.1 Basic quantities in continuum mechanics

Continuum mechanics studies the motion and deformation of solid or fluid bodies. It
turns out that it is a workable and useful idealisation to treat the matter which the
body consists of as continuously spread in space, rather than to focus on its underlying
particle structure.

Thus in continuum mechanics, we assume the body B under consideration to occupy
and fill up to the boundary a bounded connected set Q C RY, where © is open, with
Lipschitz boundary{'| and usually d € {2, 3}.

The body B lies in  when no forces are applied, therefore € is called the reference
configuration. To describe translation, rotation and deformation incurred by B due to
applied forces, we use a mapping y :  — IR? and imagine that B is transformed from
Q to a deformed configuration y(Q).

In order to have a physically sound movement, y has to satisfy certain properties:
it belongs to a suitable smoothness class, preserves orientation and y| q Is injective.

We define the deformation gradient as F(X) = Vy(X), X € Q, and extend it by
continuity to €.

1.2 Stress and response of the material

Physical principles of conservation of mass, momentum and energy for the continuous
body B translate into a system of partial differential equations (see e. g. [16l pages 128,
140, 185]) which governs the mechanical and thermodynamic state of 5. However, we
need to add so-called constitutive equations to it which express the material-specific
behaviour of B. For example, if B is a fluid body, in the most simple case we add a
relation between the velocity field of imaginary fluid particles and the corresponding
mechanical stress.

Stress is generated by contact forces that are exerted on the boundary of €2 (or on
some internal surface). The stress might even lead to internal changes in the material
such as cracks in buildings after an earthquake.

There are different tensor quantities that describe the stress distribution in the
body.

The first of them is the Cauchy stress tensor T : y(Q) — IR™?. For any x € y(Q),
a surface S that x lies on and n(x) being the unit normal to S at x, T(x) gives the
surface density T'(x,n(x)) of contact forces acting upon S at  via

T(x)n(x) = T(x,n(x)).

Another such quantity is the first Piola—Kirchhoff stress tensor T : 0 — IR¥*9_ which
represents the stress measured per unit area in the reference body [16 p. 173]. The

Tt means that the boundary can be locally described as a graph of a Lipschitz function, see
e.g. [6, p. 32] for the exact definition.



two stress tensors are interlinked by
TM(X) = T(y(X))cof F(X), for every X € Q.
Let us explore some constitutive equations in the mechanics of solids.

Definition 1 (Cauchy elastic material). We call a material elastic if there exists a
response function T : € x ]R‘Jier — R™? such that

T (X) = T(X,F(X))
for every X € Q.

Definition 2 (hyperelastic material). An elastic material is said to be hyperelastic if
there is a function W : £ x ]Rixd — R such that

A oW (X ,F
T(x,F) = (a]F )

for every X € Q and F € IRiXd. The function W is called the stored energy density.

At the microscopic level, it is the energy stored in interatomic links of the atomic
lattice that inspires this phenomenological description [28] p. 238]. In the following, we
restrict ourselves to homogeneous stored energies, i.e. w =0, X € Q. Thus we
may drop the dependence on X. We place the following restrictions on W:

W R - R is continuous, (1.1a)
W (F) = W(RF) for all R € SO(d) and all F € IR%*¢

(a consequence of material frame-indifference, see [16]), (1.1b)
W(F) — 400 if det F — 0+ (large strain implies a large stress) , (1.1c)
W(F) = +o0 if det F < 0 (non-physical deformation). (1.1d)

To reflect better some material properties or for mathematical purposes (see later),
one can consider more general constitutive equations, involving stored energies W such
as

W =W (F,H),

where H is a placeholder for V2y. A relation such as the above one was coined
by R. Toupin in [32]. Materials where the stored energy density depends on higher
gradients of the motion mapping y are now referred to as non-simple materials.

1.3 Minimisation of total energy

As it was said in the beginning of Section the motion of a material body is subject
to a set of partial differential equations (PDEs).

Namely, the conservation of momentum yields the equations of equilibrium (in case
there is no acceleration). In the reference configuration, the boundary value problem
reads

divT(X)+ f(X) =0, X €Q
Yy =1yp;, onlyC I, (1.2)
g=TWn onl;con.

8



Here f : Q — IR? denotes the density of applied body force (e.g. gravity), yp, :
I'y — IR? a given deformation of one part of the boundary and g : I'; — IR? the density
of applied contact force.

The equations of equilibrium admit a variational formulation. If we assume that
the material is hyperelastic and introduce the total energy functional

Jy) = [ Woyx)ax - [ foydX - [ g-yds, (13)
Q Q Iy
we observe that the system is formally equivalent to

§J(y;9) =0 for all ¥ : Q@ — IR? smooth that vanish on T'g. (1.4)

If J attains a local minimum at y and y is smooth enough, then we recover the
equilibrium equations from , being a necessary condition for a local extremum of
J. In the other direction, does not automatically guarantee that y is a minimiser
of J. That being said, we rule out such y’s as metastable states, which the body B
leaves upon a small perturbation of the external forces [4]. Hence finding minima of J
turns out to be a plausible alternative to solving .

In pursuance of proving the existence of a minimiser of J, we may suppose W
to be a polyconver function (Definition 5). A short discussion about other possible
assumptions, which can replace polyconvexity, follows in Chapter 3.

1.4 Linear elasticity

In case the difference F — I is small (the deformation gradient is not far from identity),
we formally arrive at the simplified theory of linearised elasticity.

To explain where the theory stems from, let us define two quantities, the displace-
ment

wX)=y(X)-X, XeQ, (1.5)
and the Green—Saint Venant strain tensor
1 _
E(X) = §(FT(X)]F(X) ~-I), XecQ (1.6)

The Green—Saint Venant tensor is one possible quantity which measures strain. Its
advantage is that it equals zero when F is a mere rotation, which obviously does not
generate strain.

Taking the gradient of (|1.5)) yields
F=1+Vu inQ

and substituting for F in (1.6 leads to
1
2

If Vu is ‘close to the zero matrix’ (the case of so-called small deformations), we
neglect the second-order term (Vau)'Vu in the above equation and instead of E work
with the infinitesimal strain

E=—-(Vu+ (Vu)' +(Vu) Vu) inQ.

£ = %(Wu + (V).

Since for small deformations, the reference and deformed configurations have almost
the same shape, we do not distinguish them and use only one stress tensor

og=T" ~ T.
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2. Plasticity and
rate-independent processes

The constitutive equations that we saw in Definitions [I] and 2] had been designated for
elastic materials. Elasticity theory can describe the response of rubber-like materials
(even for large deformations) or metals provided the strain is very small [16]. But if we
increase the strain, different plastic phenomena can occur that are no longer tractable
by mere elastic models. In this chapter, an excursion to mathematical elastoplasticity
is given.

For an exposition on the historical development of plasticity, starting with the first
paper by Tresca (1864), see Section 1.2 in [I8].

2.1 Internal variables

According to Han and Reddy [I8], p. 34], ‘plasticity is most conveniently described in
the framework of materials with internal variables’ Those material models are not only
governed by usual variables, such as temperature or strain, but also incorporate several
internal variables, which describe e.g. an ongoing chemical reaction or elastoplastic
behaviour. Details can be found in [I7] or in more recent works on the subject listed
in [I8, p. 39]. On the basis of this idea, we may borrow the stored energy density W
from Definition [2| and let it depend not only on the deformation gradient, but also on
k internal variables &,&,, ..., £, [28, p. 244]. Some of them may be scalars and some
vectors or tensors:

W= W(F7£17" '755)'

Such a constitutive equation is insufficient to treat the complexity of plastic effects and
must be accompanied with evolution equations of the type

dg;
dt

=n;(F.&,....€), 1<i<k

2.2 Motivation: a one-dimensional example

Researchers in plasticity have amassed an astonishing amount of abstract concepts
(e.g. yield surfaces, the postulate of maximum plastic work...) as well as advanced
mathematical tools from convex analysis.

Not to becloud some key characteristics of elastoplastic materials from the very
beginning, let us start with a simple example [I8] p. 42]. Imagine a thin rod Q C IR3,
with its longest side parallel to the x1-axis, subject to simple tension T(x) = o11e1 @ ey
for every & € Q (Figure . Of course, this is an idealisation; in reality, exerting
forces at the ends of the rod would create an inhomogeneous stress field. The symbol
O denotes the stress tensor, as in Chapter |1} (For the moment, linearised description
is used, see Section ) Gradually increasing the loading ¢ = o011, we can measure
the infinitesimal strain € = €17 incurred by the rod and plot o against € (Figure .
As long as the stress does not exceed a certain value oy > 0, the elastoplastic material
obeys Hooke’s law (portion 0A of the curve in the figure). For o > 0¢, the stress-strain
relation is not given by linear dependence any more and the material is affected by
irreversible changes due to plastic deformation.

11
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Figure 2.1: An elastoplastic rod undergoing a tension test. (All figures in this
chapter were created following [18].)

+

0 £

Figure 2.2: A stress-strain curve which exhibits hardening.

The effect depicted in Figure 2.2 is called hardening. The stress increases with
increasing strain, even though the curve’s slope in the segment AB is less than in the
linearly elastic region.

Whereas softening occurs if the slope becomes negative (Figure 2.3). In reality,
stress-strain curves can be more complicated, e.g. with hardening behaviour for a
certain range of strains, but showing softening when the strain is larger. To name some
examples, this last phenomenon happens in soil or concrete.

Another possibility is that the loaded material fractures on leaving the elastic
regime.

In some applications, it is enough to consider an idealised curve with zero hardening
(Figure 2.4); the case is known as perfect plasticity.

The value og bears the name initial yield stress, where the adjective ‘initial’ is
related to the fact that the whole loading process started in a state with no stress and
no strain.

12



Figure 2.3: A stress-strain curve which exhibits softening.

A
o

Figure 2.4: The stress-strain curve of a perfectly plastic material.

Rate-independence

To explain the assumption of rate-independence, let us now focus on the rate at which
the force is applied to the body €2 [18, p. 46]. First, we can increase the stress o slowly
all the time, then the corresponding stress-strain curve will be the darkest one in Figure
2.5. Or we can perform the whole loading faster — and we get the lighter curve in the
figure. We might still be dissatisfied with the speed and repeat an identical experiment
once more, but with an even faster loading, resulting in the lightest curve in Figure
2.5. The message of this series of three experiments is that the material behaviour in
the plastic range depended on the rate of the external force.

We may not trouble ourselves about this material property and will simply neglect
it. Such rate-independence is a reasonable assumption for some particular materials or
for the modelling of processes with low rates of external loading.

The theory of wviscoplasticity deals with rate-dependent situations (more can be
found in [23]).

Decomposition of strain

On a microscopic scale, we discern elastic behaviour from plastic effects by the nature
of changes they inflict on the crystal lattice. Elastic deformation is responsible for
stretch and rotation of the crystal lattice, while plastic phenomena involve the local
deformation of material, caused by defects (such as dislocations) flowing through the
microscopic structure [16, p. 423]. The overall strain has an elastic and a plastic com-
ponent. How these components are defined in the mathematical description, depends
on the preferred theory. For small deformations, linearised elastoplasticity can be used.

13



increase in rate of loading

0 5

Figure 2.5: The material’s response depends on the rate of loading.

There it is assumed that € = € + €, where €, stands for the elastic component of
strain and €, for the plastic one. For the description of large deformations (we use
the term finite strain or finite elastoplasticity), it is the deformation gradient F, not
a strain tensor, that is split, and a multiplicative decomposition is usually employed:
F = FalP [25]. We will call Fej, P the elastic and plastic distortion (or plastic strain),
respectively.

Experiments carried out on metals have shown that changes in volume happen
almost exclusively in an elastic manner [I8 p. 53]. Thus in finite-strain theory, it is
assumed that det P = 1, which means that the plastic distortion preserves volume. The
linearised analogy of this property is Tr &, = 0.

Plastic flow rule

Similarly as in Section [I.2], a mathematical model of an elastoplastic material would
be incomplete without constitutive relations, which determine the deformation corre-
sponding to a given stress state. In particular, such a model must be able to recognise
whether plastic deformation occurs and if so, describe it.

At the outset, let us explain why even in linearised elastoplasticity, one cannot
expect any simple relations of the type @ = @(&;) or &, = €,(0) [I8, p. 46]. In Figure
we can see what happens if the rod from is loaded from the stress-free state
into the hardening range and then unloaded on attaining ¢ = o7 > 0¢. We observe
that the unloading is an elastic process, which does not follow the original path 0AB
but a straight line segment from the point B with the same slope as 0A. This shows
that the strain induced by given stress does not only depend on this stress but also on
the previous loading history.

It is visible from Figure that the stress-strain curves can be extended to the
lower half-plane; negative values of o then express compression instead of tension. The
interval (—o(), 00) represents the initial elastic range (starting from zero stress and zero
strain, the material behaves elastically for o € (—0o{), 0¢)). Plastic deformations change
the elastic range of the material, e.g. the deformation along the path 0AB enlarged
the elastic range to (—of,01).

Even though direct relations between @ and €}, are unavailable, we can still find a

14
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Figure 2.6: Plastic loading and elastic unloading.

law interconnecting their rates (time-derivatives). This can be done in the linearised
setting as well as in large deformations. A seed of the idea is already present in our
one-dimensional example. For instance, the plastic strain rate %Ep at the point B in
Figuredepends on the sign of %0. Here €, = (€p)11. If the loading o is increasing at
o = o1, plastic deformation will take place. If %o < 0, we expect an elastic unloading
along the line BC. As put together in [I8] p. 47],

(S (—0'/1,0'1)
=0if <or a:aland%‘;<0 (2.1)

or o=—ofand ¥ >0

dep
dt

and

d
%:ldijf o = o1 and d—id>0 (2.2)
dt h dt or J:—Ui and£<0.
The positive variable h measures the degree of hardening. Such relations as ([2.1)—(2.2))

(and their generalisations) are called a plastic flow rule.

2.3 Three-dimensional plasticity with internal
variables

In three dimensions of space, there are many other types of loading than simple ten-
sion (shear, torsion...). The caused stress is described by the stress tensor @ in the
linearised theory or the Cauchy stress tensor T at large strains. It is expectable that
the plastic flow rule will involve tensorial quantities, too.

We noticed in Section that elastoplastic constitutive equations must take into
account previous irreversible changes incurred by the material. Therefore we introduce

a set of internal variables &1, §,, ..., &§,, which are scalars or second-order tensors and
characterise e.g. hardening.
Further we accompany the set of internal variables by internal forces x1, Xa, - - - Xx

that ‘are generated as a result of the internal restructuring that occurs during plastic
deformation’ [I8, p. 49].

15



Then the (k+1)-tuple 3 := (T,£,&,, . .. ,€,.) " can be thought of as the generalised
stress and P := (€p, X1, X2, - - - .X,) | as the generalised plastic strain.

In the one-dimensional example from Section the elastic range was simply
described by an interval, say (—o(,00) C IR. If the stress tensor has more nonzero
components than one, a more general sort of elastic domain will arise. In particular,
we assign to the studied material a closed convex set K in the space of generalised
stresses so that [I8] p. 54, 83]:

e for > € Int KC, all effects are purely elastic,
e for 3 € OK, plastic phenomena can occur,
e the complement of the set K is unreachable.

The interior Int IC of K called the elastic region and the boundary 0/ is known as the
yield surface. These terms are used in finite-strain elastoplasticity as well.
The plastic flow rule can be stated in several forms. One of its versions in linearised

plasticity, which resembles (2.1)—(2.2)), is (see [18, p. 85])

K closed, convex, contains o,

d
—P € N ().
2 € Nl )

A similar flow law can be found in |26, Equation (2.5)], where finite-strain plasticity
is considered. By Nx(X) we mean the normal cone to the convex set IC at > € K. It
generalises the notion of a normal vector for sets with nonsmooth boundaries. The
precise definition is given e.g. in [I8 p. 72], where basic results from convex analysis
are also summarised. For > € IntKC, we have Nx(X) = {o}, so indeed no plastic
deformation takes place in the elastic region.

Let us finish our outline of elastoplasticity by briefly mentioning gradient plasticity.
In those models, gradients of plastic variables (i.e. {§;}_;, P) appear. They provide
compactness and prevent formation of microstructures [25]. This idea is common in
the engineering literature [28] p. 250].

Not including gradients of plastic variables hinders existence proofs for energetic
solutions (see below for a definition) [25] Sec. 1, 6].

2.4 Energetic solutions

In finite-strain elastoplastic processes, discontinuities in space or time can develop [26].
Hence it is useful to seek a weaker concept of solution to elastoplastic problems, which
could encompass discontinuities, yet remain physically admissible. One contribution in
this direction is energetic solutions (let us name [29] as an early reference; other related
sources are cited in [28]).

We saw in Chapter [1| that a natural way how to sidestep derivatives (whereby, the
regularity of solutions) is a variational formulation. Energetic solutions have certain
functionals as their cornerstones, too — these are the total energy functional and the
dissipation distance. Without specifying their form, let us content ourselves with noting
that:

e £:]0,7T] x Y x Z — IRy is the total energy functional, similar to J in ,
but depending on time ¢ € [0,7] through a time-evolving loading. The set )
contains all admissible deformations of the material body (e.g. satisfying some
boundary condition) and Z is the space of attainable plastic deformations, which
are characterised by P and internal variables.

16



o D: Zx Z — [0,+00] is the dissipation distance, which measures the minimal
amount of energy that is dissipated by changing the internal state from one
value in the space Z to another.

A state (9, 2) € ¥ x Z =: Q of the material body € supplies information about the
deformation : Q — IR? and the internal state 2 € Z that groups together the plastic
distortion P and the values of internal variables £€1,&y, ..., &, Itiscustomary to call the
triple (Q, &, D) an energetic rate-independent system, which indicates that the theory
is developed under the assumption of rate-independent behaviour. Both definitory
properties , of energetic solutions are compatible with rate-independence, as
explained in [28, p. 25].

Definition 3. A function (y,z): [0,T] — Q is called an energetic solution of the
energetic rate-independent system (Q,E, D) if it satisfies the stability condition (2.S)
and the energy balance (2.E) for allt € [0,T]

V(g,2) e Y xZ: Eyt) 2(t) <&y, 2) +D(2(1), 2), (2.5)

£(6, (1), 20)) + Dissn(z:[0,1) = £0,9(0),2(0) + [ (r, (), 2(7))dr
(2.E)

The dissipation Dissp(z;[t,t]), t,t' € [0,T], t < t/, along a part of the curve z is
defined analogously to the total variation (Definition |A.2)):

Dissp(z; —sup{ZD (tg—1),z(tr)); NeN,t:t0<---<tN:t’}.

One advantage of the energetic formulation is that it avoids derivatives of constitu-
tive equations and of the solution itself [26]. The usual form of the involved functionals
also enables utilising known methods of the calculus of variations, including homogeni-
sation and relaxation (see Chapter (3| for a short note on the latter).

The mechanical idea behind (2.9) is the following: imagine first that z := z(t),
then D(z(t), ) vanishes, since no change in the plastic variables implies no dissipation.
Consequently, (2.9]) simplifies to E(t,y(t), z(t)) < E(t,y,2(t)) for all y € Y and y is a
global minimiser of £(t, -, 2(t)) over Y. So we observe that in this case, expresses
the elastic equilibrium (cf. Chapter [1)) [26]. If Z # z(¢), then the amount of dissipated
energy between the states Z and z(t) must, by , at least compensate for, if not
outweigh the associated loss in the total energy. Such a property is known as the
principle of maximum dissipation and is nowadays a widely accepted part of theories
of elastoplasticity [I8), p. 57].

The last term in has the meaning of the work done by external forces, hence
a physical interpretation of is also available.

In [26], it is shown that for sufficiently smooth solutions and with an appropriate
choice of £, D, one can derive from , a weak formulation of the elastic
equilibrium equations and a plastic flow rule.

It is worth noticing that the dissipation distance D is not supposed to be symmetric,
as it would contradict hardening [25].

Examples of total energy functionals £ and dissipation distances D in finite-strain
elastoplasticity are brought forward e.g. in [26], [25] and for the case of a gradient
polyconver energy functional, in Chapter
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3. Gradient polyconvexity

In 2018 B. Benesova, M. Kruzik and A. Schlémerkemper introduced gradient polycon-
vexity. To provide some motivation for this mathematical property, this short chapter
serves as an excerpt from the article [5], where the concept was presented for the first
time.

The authors proceed from the variational formulation of equilibrium equations for a
hyperelastic material, which is a common starting point in modern nonlinear elasticity.
As pointed out in the previous chapter, it is important to have a property of W that
would ensure weak sequential lower semicontinuity of the total energy functional, like J
in Equation , so that existence of minimisers can be proved. Usually, the property
is a variation on the theme of convexity (e.g. polyconvexity, quasiconvexity. . . ).

Gradient polyconvexity is indeed a property of the stored energy that guarantees a
successful minimisation process. Roughly speaking, it means ‘convexity in the gradient
of cof F (and optionally, in the gradient of detF)’, where F = Vy is the deformation
gradient.

The exact definition in IR? (the most physically meaningful case) goes as follows:

Definition 4 (gradient polyconvexity). Let Q C R? be a bounded domain. Let W :
R x R3*3*3 x IR? — Ry be a lower semicontinuous function. The functional

/ W (Vy(X), Vlcof Vy(X)], V[det Vy(X)])dX, (3.1)

defined for any measurable function y: Q — IR® for which the weak derivatives Vy,
Vicof Vy|, V[det Vy] exist and are integrable, is called gradient polyconvex if the func-

tion W (F,-,-) is convex for every F e R?*3.

The most mathematically important attribute is the dependence on Vcof Vy (th
Vdet Vy can be dropped for the purpose of minimisation). Although e.g. W =
satisfies the above definition, in the premises of existence theorems there are coercw1ty
conditions, which exclude such degenerate energies.

The term ‘gradient polyconvexity’ originates from polyconvexity, which J. M. Ball
proposed to achieve existence results applicable to various models in nonlinear elasticity

.

Definition 5 (polyconvexity). Y| We call a function W: R3**® — R4, polyconvex if
there is a convex function h: IR3*3 x R3*3 x R — Reo such that

W (F) = h(F,cof F,det F) for every F € TR3*3,

Let us mention that gradient polyconvexity could not be defined for the integrand
W = W(F, ...) but required a functional, since taking the spatial gradient of cof F,
det F needs F to be a tensor field F: Q — IR3*3, not just a matrix F € IR3*3,

In some situations, polyconvexity is not a good assumption, though [20]. To give
an example, in the modelling of shape-memory alloys (SMA), multiwell stored energies
of the form

W (F) {: 0 if F = RF; for some i € {1,...,m} and some R € SO(3),

> (0 otherwise,

I This is not Ball’s original definition, but a modified one, in order to enable easy comparison
with gradient polyconvexity while retaining the definition’s idea.
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are encountered [4]. Such energies, in general, fail to be polyconvex. The matrices
Fi,...,F,, € R®*3 represent different crystallographic variants of the material.

There exist alternative assumptions on W to polyconvexity that still lead to the
existence of minimisers of the total energy functional. For instance, if a finite W is
polyconvex, then it is quasiconvex (see Definition , but not vice versa (quasicon-
vexity is more general in this case). Quasiconvexity, as well as polyconvexity, ensures
the weak seq. lower semicontinuity of the functional to be minimised, as was shown by
Morrey, Acerbi, Fusco and others (see [8, p. 369)):

Theorem 1. Let Q c R? be a bounded open set and1 < p < +oo. Let W: R>3® - R
be quasiconver and satisfying the growth condition

0 < W(F) < C(1+|F|P) for every F € R3*3,

where C > 0. Then I(y) := [ W(Vy(X))dX is weakly sequentially lower semicon-
tinuous in WHP(Q; IR3).

However, it is clear from the assumptions that W must not escape to infinity as in
, not to mention that multiwell energies of SMA are generally not even quasicon-
Vex.

Interestingly, it is unknown up to now if quasiconvex energies with property
guarantee existence of minimisers [5].

One can also regularise multiwell energies by adding a dependence on ||[V2y||1»
(Toupin’s model in Section . This is beneficial from the mathematical point of
view, as ‘differentiability brings compactness’ and it is easier to pass to the limit in
terms depending on the deformation gradient thanks to strong convergence. Gradient
polyconvexity shows that bounding the whole V?y in some LP is not necessary — it is
enough to suppose the integrability of the distributional derivatives of certain polyno-
mials in the components of Yy (the polynomials are det Vy and the components of
cof Vy). Existence of minimisers, even with so-called locking constraints, is obtained,
see later sections of this chapter.

To name one last approach to non-quasiconvex energies, we remark that relazation
techniques replace the original energy by its quasiconvex envelope, which is a problem
on its own, with difficulties and limitations [§].

3.1 Interpretation

The stored energy of a gradient polyconvex functional can depend on Vdet F. Together
with the dependence on Vcof F, it creates a model with a possible physical interpreta-
tion. Since det F measures the local change in volume between the reference and current
conﬁgurationﬁ and similarly, cof F describes the transformation of area [16], p. 78], the
stored energy W depending on their gradients offers a control of how abruptly these
changes vary in space.

Remarkably, Ball also writes in his paper [1] that F governs the deformation of line
elements [16], p. 65] and is aware of the geometric meaning of minors of F when defining
polyconvexity.

2The result is only stated here for illustration and could be strengthened.
3Substitution theorem for multiple integrals.
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3.2 Advantages

The definition of gradient polyconvexity admits a nonconvex dependence of W on the
deformation gradient. This is important in applications to nonlinear elasticityﬂ

Another advantage of gradient polyconvex stored energies is that they allow for
general locking constraints. Material locking expresses the physical body’s resistance
against full compression or large strain in general. This is an idea proposed by W.
Prager.

Gradient polyconvex energies are easy to construct, too. For example, the model of
the Saint Venant—Kirchhoff material can be adjusted in such a way that it is gradient
polyconvex (Example 5.2 in [5]).

3.3 In general dimension

The previous discussion was taking place in the case that y: @ — IR3, Q ¢ IR?. Now
let us investigate what changes if we consider y: Q — R%, Q c RY, d € N.

In the scalar case d = 1, we have ¢y = Vy = det Vy and cof Vy £ 1. Thus
Vdet Vy = ¢, Veof Vy = 0 and W is, in fact, convex in y”.

In case d = 2, it is pointed out in [5] that

Fpo  —Fn
cof F = ,
(-F 12 Fu )
so, as well as if d = 1, the functional I from Def. 4| depends on V?y.
For d > 3, the authors of [5] suggest maintaining the dependence of I on Vcof Vy.

It would be theoretically possible to involve gradients of minors of any order k, 1 <
k < d — 1, were it useful for some purpose.

3.4 Regularity of deformations

We have noticed that if d = 1 or d = 2, there is no difference between deformations of
class W2P(Q;IRY) (for some p € [1, +0oc]) and elastic deformations y entering a gradient
polyconvex functional (with a suitable choice of the Sobolev exponents for the minors).
Nonetheless, for d > 2 this is not the case. First, let us observe that W?2P-
deformations y have Sobolev cof Vy and det Vy, provided certain conditions hold.

Claim 2. Letd > 2, Q C R¢, Q € CO! and y € W?%(Q; RY), 1 < g5 < +00. Further,
assume that T' C 0Q, H"HT) > 0, yp;, € W2t (T; RY) and Yl = Ypir in the trace
sense.

(a) Suppose that % < g < d, qgg = m > 1, gy = dcflzs, gp =
ﬁtﬁl*l) > 1 and gp = min{sz,édg%qZS}. Then y € WY (Q;RY), cof Vy €
Whis(Q; RY) and det Vy € WhHo ().

(b) If g5 = d and if gy € [1,400), ¢z € [1,d), gp € [1,d) are arbitrary, then
y € Whey (Q:R?), cof Vy € Whis(Q; RY) and det Vy € WhHin (Q).

(c) If g5 > d, then y € WL (Q:R?), cof Vy € Whe(Q;IRY) and det Vy €
Whas ().

4Unquestionably, convexity in the deformation gradient leads to weakly sequentially lower
semicontinuous functionals as well — and it can be proved even more easily than e.g. for
quasiconvex integrands. Yet, convexity is excluded by (1.1d)) in elasticity.
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Proof. Jacobi’s formula ([6, p. 20]) says that for any A € IR%*4

Odet A
O0A

= cof A. (3.2)

If I € C°°(Q; IR?*Y), then

& . OF
detF = Z(cofIF)jk—] i=1,2,...,d and
k=

d R 4 9(cof 7)1, DFy,
ax; (i = 2. —He oy

I,m=1

by the chain rule and (| . The symbol w denotes the partial derivative of the

mapping F — (cof ) j; with respect to the (l, m)-th component of F € R, For any
7 € C®°(Q; RY) this gives

1=1,2,...,d and (3.3a)

(3.3b)

We need to extend formulas (3.3a)—(3.3b) to g € W% (Q; IR?) as mentioned (without
a proof) in [5]. Let y, be the standard mollification of yl Then y, € C®°(Q;RY),
Q. :={X € Q; dist(X,00) > ¢}, and y, —» y, Vy, — Vy ae. in Q as ¢ — 0+ [12]
p. 250, 629-631]. For y_ in place of g, f are valid. Integration by parts
and Lebesgue’s dominated convergence theorem prove the equalities for y in the sense
of weak derivatives, since

_ Op o _ (9(detvy5 ) / ! 9*(y.);
/ (det Vy.) aXidX = Q/ ( X dX = > (cof Vy ) jpmoril IX X, ed X

Q 7,k=1
_ / (det Vi) 22 a.x / zd: (cof V) =2V | pax
J X, =t *9XL0X;

with ¢ — 0+ and for any ¢ € C3°(Q), ¢ € {1,2,...,d}. The integrable majorant for
the left-hand side could be found by Hadamard’s determinant inequality (see e.g. [22])
and the property ||Vy,|lq < Cn||Vyl|q for some constant Cy, > 0 independent of &
(Vy € LYQ; R?) because gs > % > 4 jmplies W (Q; R™*Y) — L4(Q; RT*)).
The integrable majorant for the right-hand side could be found by general Hoélder’s
inequality ([12, p. 623], gs > % ensures that % + q—ls < 1). Analogously for
(here, the restrictions on Lebesgue exponents are weaker, since at most (d — 1)-fold
products of partial derivatives of y are involved). In this way, we have shown that the

equalities hold for y in lieu of §.

o(X) = Jpa (X — X)y(x)dx, where 7.(x) = 0 for |x| > = and 7.(x) =
C’Eexp(—ﬁ) otherwise; the positive constant C; is chosen so that ||n:||s =1, € > 0.
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Now we focus on the regularity of y, cof Vy and det Vy. The continuous embedding
of W24 (Q; IR?) into W19¥ (Q;IR?) gives y € Whav (Q; R?) [3, Th. 3.6-3.8]. By general
Holder’s inequality and (3.3D)), we get Vcof Vy € L (Q; R4 with

qy Qs

< W& 3.4
qg_qy+qs(d—2) (34)

since the condition to be verified was i + % < é. Note that if g5 > d, the property
gg > 1 follows automatically, but for ¢s < d, this has to be assumed. The exact values
of g, are obtained by substituting for ¢y in (3.4).

Since Vy € Whe(Q;IR*9) and either ¢, > d or dg%qzs > (d — 1)gg, we have
(Vy)|, € LD (T; IR ?) on account of the trace theorem (see [28, p. 601]). Thus
(cof Vy)‘r e L%(I; IR™?) by Hoélder’s inequality for surface integrals. Furthermore,
Poincaré’s inequality

[lcof Yyl s qpmetty < Cros qi/ / lcof Vyp, | ddS + /ﬂ | Weof Wy|™ ax
: g Veof Vy

with a constant Cpe; > 0 shows that cof Vy € W (Q; IR4*9).

To prove that Vdet Vy € L (Q; IR?Y), we discuss cases (a), (b), (¢) separately.

In (a), we have two possibilities how to apply Holder’s inequality to (3.3a]) (its
absolute value being raised to the power ¢p and integrated over ). We may either
regard (cof V)i, 7,k € {1,2,...,d}, as a product of partial derivatives of y, or take
into account the continuous embedding of W% (Q; IR%*?) so that (cof V), € L% (Q),

where ¢, = dd_qsg = d(dil)cf];(dil), as ¢z < d. We remark that ¢, > 1 thanks to ¢z > 1.
In the first situation, we obtain a Holder exponent ¢p; satisfying qél
> 1. In the second situation, there is another exponent

We observe that the two

= (715 + %, or
equivalently, ¢p1 = #’Zﬂh
q%, which means that gps = #‘1&_1).
exponents ¢pi, Gpz are equal. Altogether, Vdet Vy € LI (Q;R?), where §p = §p; =
Gpe is greater than one by assumption.

Case (b) is easier, we similarly use Holder’s inequality in , relying on the

continuous embedding W4 (Q; R4 — L& (Q;IR¥*?), ¢, = dd_qgg = 5. As a result,

Vdet Vy € L (Q; RY) for q% = q% + q%, so ¢p € [1,¢5) = [1,4d).

We proceed likewise in case (c¢), using cof Vy € L (; ]RdXd) in (3.3a)).

The final piece of the puzzle is to show that det Vy € L (). This is a consequence
of (Vy)|. € L4 (D; R4 (by the trace theorem) and of Poincaré’s inequality

~ . 1 _ 1
qD2 Wlthﬁ_‘h—i_

||det Vyl|yrap ) < Cpoi q?// |det VyDir|QDdS+/ |Vdet Vy|od X, Cpoi > 0,
r Q

analogously to the part where we proved cof Vy € W14 (Q; IRdXd). O

Example 5.1 from [5] shows that there exist mappings y: Q — IR% d > 2, such
that y € Whav(Q;RY) N L®(Q;RY) for some gy > 1, cof Vy € W°(Q; R¥?) and
det Vy € Whe(Q), but V2y ¢ W21(Q;IR%). This means that the class of admissible
deformations for gradient polyconvex energies is wider than the one of second-grade
materials. The example is formulated in three dimensions, but generalising it to any
d > 2 could be done with ease. It is also worth remarking that Example 2.1 in [20]
offers a hint on how to construct similar mappings y which have Sobolev minors but
do not belong to W21(; RY).
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3.5 Recent existence results

Eventually, two examples of existence results with gradient polyconvex functionals are
cited, to give an idea of possible applications.

Theorem 3. (see [3]) Let Q C IR? be a bounded Lipschitz domain, and let T1 UTy be
a measurable partition of O with H*(To) > 0. Let further £: WP(Q;R3) — TR be a
linear bounded functional and J(y) := I(y) — {(y) with

I(y) ::/QW(Wy,W[cony])dX

being gradient polyconvexr and such that the coercivity condition

W(F,Ay) >

c(|FP + |cof F|? + (det F)" + (detF)~* + | Ay |?)  if detF > 0,
|+ otherwise,
holds true. Let L: R**® — R be lower semicontinuous. Finally, let p > 2, ¢ > p%l ,
r>1, s >0 and assume that for some given map Yp;, € Wl’p(Q;IR3), the following
set

A= {y ¢ WHP(Q; IR?), cof Vy € WHI(Q; R?*3), det Vy € L"(Q),
(det Vy)~* € L'(Q), det Vy > 0 a.e. in Q, L(Vy) <0 a.e. in Q,
Y = Ypir on Lo}

is nonempty and that inf 4 J < 400. Then the following holds:

(i) The functional J has a minimiser on A, i.e. inf 4 J is attained.

(ii) Moreover, if ¢ > 3 and s > q6fq3, then there is € > 0 such that for every
minimiser y € A of J, it holds that det Vy > ¢ in .

The mapping L in the above theorem realises the locking constraint.

The authors of [20] use gradient polyconvex stored energy in an evolutionary model
of SMA. They define a mapping A: IR¥? — R™ X: F — X(F) called a volume
fraction, to determine which microstructural variant of the material the deformation
gradient F corresponds to. There are m martensitic variants plus a high-temperature
one, referred to as the austenite. The stored energy functional I in the model takes
form .The growth condition of W includes the gradient of the determinant as well.
Namely, it is supposed that there are numbers ¢, 7 > 1 and ¢, s > 0 such that for every
F e R33 A, € R®*®*3 and every A, € R?

A

W(Fvgla AQ) >
c(|FP + |cof F|? + (det F)" + (det F)™* + | A; |74 |Ag|")  if detF > 0, (3.5)
400 otherwise.

One challenge for elasticity theory is to prevent the modelled moving matter from
interpenetration. This translates, mathematically speaking, into the injectivity of y.
The article [20] settles this issue as well, by prescribing the Ciarlet-Necas condition

/Q det Vy(X)dX < L3(y(Q)), (3.6)

which appeared in [7]. With this in mind, the set of admissible deformations is defined
as

A= {y € WHP(Q;IR3), cof Vy € Wh4(Q; R3*?), det Vy € W (Q),
(det Vy)~* € L'(Q), det Vy > 0 a.e. in Q, y = yp;, on T, (3.6) holds}
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and assumed nonempty. The given measurable function yp;.: I'o — IR? describes a
boundary displacement.

Now the volume fraction A comes into play again, since the dissipative variable
z € IR™*! is given the meaning of the volume fractions of the m+ 1 material’s variants.

Q:={(y,z) e Ax Z: A(Vy) = z a.e. in Q},

where Z := L>(Q; IR™*!) denotes the set of internal variables. The dissipation distance
is defined as

D(z!, 2?) :/ 121 X) - 2%(X)|dX, 2!, 22: Q — R™"! measurable,
Q
and the total energy functional, for (¢,y,2) € [0,T] x A x Z, by

I(y) — L(t,y) if z=A(Vy) a.e. in Q,

400 otherwise.

E(ty,z) = {

Here ¢(t, ) is a functional on deformations, which expresses the loading of the specimen.
For each t € [0,T7], the stable set is defined to be

S(t) ={(y,z) € Q; &(t,y,2) < +o0, V(7,2) € Q:
E(t,y,z) <E(t,9,2) +D(z,2)}.

The main result of [20] is the next

Theorem 4. Let Q@ C IR? be a bounded Lipschitz domain, and let T = Ty UT; be
an H2-measurable partition of T' = 0Q with the area of Tg > 0. Let I be gradient

polyconvexr on 0 and such that the stored energy density 1474 satisfies (3.5)). Further, let
¢ € CH[0,T]; WP(Q;IR?))*) be such that, for some C >0 and 1 < a < p,

E(tay) S CHyH%/LPa fOT' all t € [OvT]a T > 07

and y — —L(t,y) is weakly sequentially lower semicontinuous on WP(Q;R3) for all
t € [0,T]. For the Lebesque exponents, assume that p > 6, ¢ > p%l, r>1ands> p%%.
Finally, let infy 2)e0 £(t,y,2) + D(2,2) < 400 for every t € [0,T], 2 € Z, and let
the initial condition be stable, i.e. q° := (y°, 2") € S(0).

Then there is an energetic solution to (Q,&,D) satisfying q(0) = q° and such that
y € B([0,T]; A), z € BV ([O,T];Ll(Q;IRmH)) N L>®(0,T; Z), and such that for all
t € [0,T] the identity X(Vy(t,-)) = z(t,-) holds a.e. in Q. Moreover, for all t € [0,T],
the deformation y(t) is injective everywhere in Q.

In Chapter [4, gradient plasticity is considered in the model of a material with
gradient polyconvex stored energy.
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4. Existence of solutions in
plasticity

This chapter shows how rate-independent finite-strain gradient plasticity can be added
to the elastic model from [5] with a gradient polyconvex stored energy functional. The
formulation is based on [25] and the existence proof for an energetic solution adheres
to the structure from [15].

4.1 Formulation of the problem

Suppose that Q@ ¢ R?, d > 1, is a domain with Lipschitz boundary. Its closure 2
represents the reference configuration of a material body, like in Chapter [I} We wish
to establish the existence of a motion mapping y : [0,7] — Y, T € (0,400), where the
set ) of admissible deformations of {2 will be specified later. Thus, contrary to Chapter
we study the whole process of deformation as an evolution problem (not only the
initial and final state). We work under the assumption of rate-independent material
behaviour (explained in Section and consider a so-called quasistatic evolution,
where acceleration (inertial effects) is neglected. Also we suppose that the evolution is
isothermal, i.e. with no flow of heat and no temperature changes.

For notational simplicity, we sometimes write y(¢, X) instead of [y(¢)](X), t €
[0,T], X € Q (analogously for other mappings from [0, 7] into a space of functions on

Furthermore, we wish to incorporate plasticity in the model. Therefore we split the
deformation gradient F(¢, X) = Vy(t, X) as

F(t,X)=Fq(t, X)P(t,X), tel0,7T], X €Q,

where Fey @ [0,7] — {Fey : Q — RY*?} is the elastic distortion and P : [0,T] — Z
the plastic distortion (or plastic strain). This multiplicative decomposition is used in

the framework of finite strains (as opposed to an additive split in the linearised setting).
The set Z will be defined in Subsection [£.1.2]

Remark. Sometimes a different notational convention appears in literature: [, is the
plastic component of the deformation gradient and the plastic tensor P means F L (ef.
[26]).

We do not have any internal variables in the model, but the addition of some
hardening parameters would be feasible (see [25]).

The stored energy density W : IR¥? x R¥Y — IR, is supposed to be lower
semicontinuous and W (-, IP,) to satisfy properties for every P, € SL(d). Moreover,
the growth condition below is assumed to hold for any Fe, € R%*? and P, € R%*? with
real constants qr > qv, gc > d, g4 >0, qp > 1, ¢ > O:

qF qc —dqd
C(|Fes |7 + l\;of Fex|% + |det Fe.| if det Fe, > 0,
I n otherwise.

We notice that the dependence of W on F, takes place only through the elastic part
Fes.

Remark (notation). In this chapter, physical quantities such as y, P or F; appear
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(i) as constant values,
(ii) as spatial fields defined in €2, but independent of time,
(iii) as mappings defined in a subset of time-space.

One option would be to use the same symbol y, P or F. to denote all three versions
(i)—(iii) (as it is done in [25]). In the hope of a clearer notation, this convention is
not followed here and symbols with an asterisk subscript (e.g. Fe. € IR¥?) stand for
constants, letters with a hat (e.g. ¢ : Q — ) are used in case (ii) and unmarked letters
y, P etc. in case (iii).

4.1.1 Boundary conditions

Let the boundary of Q be decomposed as 92 = I'p U I'y where I'p, I'y are open in
09 and H4H(Tp) > 0. For each t € [0,T], we impose this boundary condition on

g = y(t):
Y=19Ypi onlp.

_1
The boundary displacement ¢yp;,. € w' v ™ (I'p; RY) is a given function. The expo-
nent

o € [1, 4] if gy < d,
! [1,00) if +00>¢qy>d

so that we can use the continuous embedding (see [28, p. 601])

1
W' ™ (Tp; RY) s L9 (Tp; RY).

On the Neumann part I'y of the boundary, a surface load T can be prescribed, as
n [15] but independent of time:

oW
OF s

n=T on I'y.

This would lead to the following definition of the functional 1 expressing the work of
external forces:

,y /f de+ T g dS,

where f : Q — IR? is the density of body force as in (L.2)).
However, we are not limited to external forces of this form, so later, a more general
time-dependent functional ¢ is considered.

4.1.2 Elastoplastic energy functional

Define the set of admissible deformations (cf. Theorem
Y = {g € WhY(Q;RY); cof Vg € Whie(Q; R9), (det Vi) % e L1(Q),
d
det Vg > 0 a.e. in Q, Q‘FD =Ypit, qy >d—1,qc>qs > >

the set of plastic tensors

Z = {P e Wh (Q; R™9); P(X) € SL(d) for a.a. X € Q},
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and the elastoplastic energy functional

I(@,I@’):/QW(WQ(X)I@)*l(X),I@’(X))dX+a/Q‘W[(cofV@(X))I@’T(X)] *AX+

,3/ VEXO)|"dX, §eV.Pez ap>0.
ol—=
It is assumed that the following condition is fulfilled:

gp >d A qg < qp. (4.2)

Besides, application of Holder’s inequality to some terms later necessitates that

qcqpr qray
G =—-—2>1, gi=—-7-"7-—-"2>1, 4.3a
wd—1) T ap ST - 1)ty (4.32)
111
qr qp qy

Throughout this chapter, we suppose that the set ) is nonemptyﬂ

Remarks

(i) For an arbitrary ¢ € [0, 7], write § = y(t), Fe = Fa(t), P = P(¢). By the product
rule for cofactor matrices [6, p. 4], we have

cof By = cof (VHP1) = cof (Vi)cof (P71) a.e. in
and as P! is invertible with det (I@’_l) =1, we get
cof (P~Y) =det (P~ H(P YT =P,
Thus (cof V)P = cof F.

(ii) It was supposed that gy > d—1 for weak continuity of cofactor matrices (equation

#-9))-

(iti) The term [, |V[(cof V§(X))PT(X)]|%d X is what makes the functional I gradient
polyconvex.

Observation 5. The functional I(-,P) : Y — R is well-defined for any P € Z.

Proof. The function W is lower semicontinuous and thus measurable (by Lemma
— it suffices to show that all sets of the form W~1((a, +00]), a € IR, are measurable).
The growth condition then ensures that the respective integral exists (finite or
infinite).

Both cof Vg and PT are Sobolev functions. However, we must investigate if their
product is also weakly differentiable. Theorem and the aforementioned assump-
tions on g, and gp imply that (cof V§)PT e L' (9 R¥™?). Choosei € {1,2,...d}. Then
(cof W@)(%I@’T) € an(Q;]RdXd) by Holder’s inequality and . Holder’s inequal-
ity also gives (%Xicof V§)PT € LY (Q; R (for d > 3, this follows from ¢p' + gz ' <
d=! +2d7! < 1; for d = 2, we use the continuous embedding of WP (Q); IRdXd) into
L>®(Q; IR¥4)). Now the function (%cof V)P + (cof W@)(aixiﬁﬂ) is the weak partial

At present it is unknown (apart from some special cases) which §p,;, € W1=1/4v9v(I'p; RY)
are compatible with the assumption det Vg > 0 a.e. in 2 , so the nontriviality of ) has to be
explicitly assumed [5]. For more details, see also [4].
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derivative of (cof W@)]IADT with respect to X;. (This can be shown for any component
(i, k) of the matrices by approximation with mollified functions ((cof Vg);;)_, (pkj)a,
€>0,1<4,j,k <d, cf. the proof of Claim )

This implies that V[(cof V§)PT] exists and so does (in Rs) the integral of the
g.-th power of the Frobenius norm of this term.

Note that if both g > d and gp > d, we could get at least

(cof V§)PT € Wh1(Q; R*9)
directly by Theorem [A71]] reasoning componentwise. O

4.1.3 Energetic solution and incremental minimisation

The total energy functional is given by

A A

Et,9,P) =1(9,B) - (t.9), te[0,T], gV PeZ.

For every time t € [0,T], £(t,-) is a continuous linear functional on W1 (Q; IRY), repre-
senting the work of applied forces (compare with the classical elastic case (1.3))). To ob-
tain certain estimates later, it is useful to assume that £ is in C1([0, T]; (W54v (Q; IR9))*).

Remark. In fact, the functionals I(-,]IS’) and &£(t, -, I@’), PeZandte [0, T fixed, can be
defined (by the same formulas) for a larger class of mappings ¢ than )). Nevertheless,
if e.g. det Vg < 0 in a nonnull subset of €2, condition (4.1)) causes (g, P) to be infinite.

Further we introduce the dissipation distance D as in [25]:
D(f1,By) = [ DX, B1(X),B(X))AX, BrBrez.
Q

We require that the function D: Q x (SL(d))? — [0, +00) satisfy:

D: Q x (SL(d))? — [0, +00) is a Carathéodory mapping, (4.4a)

VX € Q, Py, Pus € SL(d) : D(X, Py, Po) = 0 <= P, = Py, (4.4b)
VX € QPP Pg e SL(d) :

D(X,P.1,P.3) < D(X,Pyr, Pus) + D(X, Pyo, Po3), (4.4c)

D(X, Py, Pho) < h(X) + |Pur || + [Pz for some h € L}(Q), (4.4d)

oy — Poo| < D(X, Py, Pyo). (4.4e)

Under the conditions stated above, D is a quasimetric on Z (we may not have
symmetry). Asymmetry is necessary for modelling in elastoplasticity. [28], p. 47]
Next let us define the sets S(t) of stable states at time t for every t € [0,T] by

St ={(@,P) e Y x 2; £t,9,P) < +oo, V(§,P) € Y x Z:
E(t, 9, P) < E(t,9,P) + D(P,P)}.

We are looking for an energetic solution of our evolutionary problem (definition
according to [15]).

Definition 6. A function (y,P): [0,T] — Y x Z is called an energetic solution of
the rate-independent problem associated with € and D, if t — 0,E(t,y(t),P(t)) lies in
LY((0,T),R) and if for all t € [0,T] we have

stability: (y(t),P(t)) € S(t), (S)

energy balance:

E(t,y(t),P(t)) + Dissp(P; [0,t]) = £(0,y(0),P(0)) + /Ot HE(T,y(7),P(r))dr. (E)
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The symbol Dissp(P; [t,t']), t,t" € [0,T], t < t, denotes the (total) dissipation along
a part of the curve P and its definition reads

N
Dissp (P; [t,]) = sup{ }_ D(P(tx1),P(tx)); N €N, t=tg < -+ <ty =1'}.
k=1

Further, the total dissipation is additive [28, p. 47]:
Dissp(P; [t, t"]) = Dissp(P; [t, t']) + Dissp(P; [t',t"]) for all t < ¢ < ¢". (4.5)

To start with the existence proof for an energetic solution, we perform a time-
incremental minimisation. Let us break the interval [0, 7] into N subintervals by taking
a partition {tk}szl, 0=ty <t; <--- <ty =T. Given an initial plastic tensor Py € Z,
there exists a minimiser g, of £(0, ~,I@>0) over ), which can be proved analogously to
Section 4.5 (only D is missing). Then for every k € {1, 2,... N}, let us find

9. € YV, Py € Z such that E(ty, 9., Py) + D(Py_1,Pp) =

X A X 46
min{€ (ty, ¥, P) + DPr_,P); g € Y, P e 2} (46)

A solution of such an incremental problem exists as we will also see in Section
4.5. Before that, it will be good to have some further properties of the problem, in
our hands. To keep track of the particular assumptions on the Lebesgue exponents
qF, 9v, Gc, qP, Ggs Gz and ga, the conditions which they must fulfil are restated in the
formulations of theorems in Sections [1.2}-4.3, where appropriate.

¢ * o I

—— | -
0 T to tn-1 T

Figure 4.1: An illustration of the incremental minimisation. The figure is not
accurate, as pictures in functional analysis can hardly be accurate, but it can still
give some insight.

4.2 Compactness and closedness

The proof of Theorem |§| is inspired by Theorem 3| (i.e. Proposition 5.1 in [5]), but here
we obtain convergence properties even in our elastoplastic framework.
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Theorem 6. Suppose Q € CO' d—1 < gp < 400, 1 < gc < 400, d—1 < gy < +00,

qz = ﬁ >1,q, = % > 1. Let {g,}5°, C Y, {P,}5°, C Z be sequences

and C. > 0 a constant such that for allm € N

HW@TZHQY < CC, HIPTLHWL‘IP(Q;]RdXd) < Cc, H(COf W@n)PIHWLQC(Q;IRdXd) < C’C,
||(detvlgn)_qd||1 < C’c~

Then there exist subsequences {§,,, 1721 C {¥n}nt1, {I@)nj 521 C {P,}22, and func-
tions § € Whav (Q; RY), P e whar (Q; R¥9) satisfying for j — 400

5 5 . H—1 . —1 .
Py, = P a.e. in Q, IP’nj — P a.e. in €,

I@’n]. — P in L% (Q; R9), WI@’W;@ in L (Q; R9*4xd),

¥, =9 in WY (R, Vg, — Vg ae in Q
and (cof Vg, B, — (cof V)P in W (Q;R&).
Moreover, it follows that det Vg > 0 a.e. in Q and (det Vg)~% € L1(9Q).

Proof. Invoking the Poincaré inequality (see Theorem |[A.10)), we first observe that
@n|FD = Ypir» n € N, implies that the whole Sobolev norms |[g,[ly 1.y (re) < Ce

for some C, > 0. Since W (Q; R¥*9), W14 (Q; IR¥?) and Whv (Q; IR?) are reflex-
ive Banach spaces (see [28, p. 599]) and the sequences {#,,}5%, {(cof V§, )P} 1>,
{Pr}5Z, are bounded, we can extract subsequences {g, };2;, {(cof W@nj)P;j};’il,

{I@’nj }521 such that

B, —P in W (Q; R for some P € Whir(Q; R4),
(cof W@nj)]f";lrjéﬂ in Whae (Q; R¥*?) for some H € W (Q; IR¥*9),

,,,— 9 in WHY(Q;RY) for some § € WHY (% RY),  j — 400, (4.7a)

By compact embedding,

P, — P in L% (Q; RY), (4.8a)

~ il ar s c(O). TRAXd
(cof Vg, )P, — H in L%(Q;IR), (4.8b)
¥, = § in LY RY), j— +o0. (4.8¢)

Weak sequential continuity of the minors of gradients ([8], Th. 8.20) implies that
cof Vg, — cof Vg in Lo (Q; IR*4), (4.9)

and using the fact that the components of cof I@’nj are linear combinations of (d — 1)-
tuples of components of I@)n]., we deduce the convergence

5 5. g R dxd
cof Pp,; — cof P in LT (£; IR"*7). (4.10)
Multiplying (4.9) with transposed (4.8a]), we get
(cof Vg1, )P, — (cof V)P T in L% (Q; R (4.11)

because it is a product of a weakly and a strongly convergent sequence [14], p. 183].
Trivial embedding of Lebesgue spaces on a bounded domain together with (4.8b)), (4.11))
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leads to H = (cof W@)I@)T. Consequently, (4.11)) is even true for ¢y, := max{qc, ¢} in
place of ¢,2.

In remark (i) in Subsection we noticed that cof (P~1) = PT, whenever P €
SL(d). Thanks to this, can be written as

Byl B! in LT (R, (4.12)

Let us multiply (4.8b) with the transpose of (4.12) (we already know that H =
(cof VH)PT):

cof Vi, = (cof Vi, )P, B, T — (cof V§)PTP™ T = cof V§ in L% (0 R¥Y). (4.13)

This convergence of cofactor matrices is very useful and provides pointwise convergence
of {Vy,, } as we shall see soon. The procedure was presented in [5].
By (4.8a]) and (4.13), we pass to subsequences such that
cof Vg, — cof Vg pointwise a.e. in £, (4.14a)
I@’nj — P pointwise a.e. in Q. (4.14b)

Even though it is not entirely correct, we shall not relabel the subsequences, for writing
out all the indices would soon become tedious.

As det Vg, = 4Y/det cof Vg, a.e. [5], we obtain

det Vg,,, — det Vg pointwise a.e. in . (4.15)

From this, we infer that det Vg > 0 a.e. in €2, since @nj € Y. However, a strict
inequality would be desirable here. To see that it indeed takes place, let us use

1
C. > liminf

dx
oo /Q |det Vg, (X))

from the assumptions of the theorem. Applying Fatou’s lemma (Theorem to
the right-hand side of the above inequality, we deduce that (det V§)~% € L'(Q2) and
det Vg > 0 a.e. in Q (otherwise the integral of (det Vg)~% could not be convergent).

By the formula for an inverse matrix (cf. [19, p. 356]), we get for almost every
XcQ

(cof Vi, (X7 (cof V§(X))T

det Vg, (X) | detVy(X) = (Vy(X))~". (4.16)

(Vg,, (X))~ =

It is known from functional analysis that if X' is a Banach space and J(X) denotes
the set of all bounded linear invertible operators on X, then the mapping ~': J(X) —
J(X), assigning to any invertible operator its inverse, is continuous [31], p. 353]. We
would like to use this result to derive pointwise convergence (in a subset of Q of full
measure) of {Vg,, } from (4.16). But first we need to check that all matrices involved
are in J(R¥?).

Fix X € Q so that det Vi (X ) > 0 and pointwise convergence (4.16) holds at X .
Hence V§(X () € J(IR™?). We already know that Vy,,(Xo), j € N, have positive

2 An associated question is whether strong convergence also holds with ¢. replaced by
¢m. Apparently, the answer is positive when g. > ¢, and we can claim that g. can be chosen
such, since it is a constant of the model. Another way how to achieve strong convergence in
some better (i.e. with a higher Lebesgue exponent g) L? space is to use compact embedding
Whte sy L since in the end ¢, > d.
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determinants, therefore they are invertible as well. This implies that (W@nj)_l(X 0) €
JRP>Y), j e N, (Vi) 1(X) € I(IRP?). The necessary result

V@nj —-Vy, j— +oo, a.e. in(

then follows. Continuity of the inversion mapping similarly implies pointwise conver-
gence of ]P’,;j1 a.e. O

Theorem 7. Let 1 < gp < +o00, 1 < gy < +00, d < qc < +00 and 1 < ¢z < ¢c.
Provided P, € Z, P € Whor(Q;R™Y), g, =g in W (G R™), g,/ = i

_ 1
Yo € W'Y (T RY) and

P, » P a.e. inQ, (4.17)

then P € Z and gl = Ypy- If, additionally, (cof VP € Whee(Q; IR™Y) and (£.2)
is true, then cof Vi € Whis(Q; IR*?),

Proof. If is applicable, then both ¢. and gp are greater than d and W% (Q),
Whae () are algebras (i.e. closed under multiplication of functions belonging to them,
see [6, p. 278]). In the first place, this gives P~ = cof P € W P (€ R¥?) " as the
components of cof P consist of sums of products of components of P. In the second
place, we get cof Vi = [(cof V§)PT|P~T ¢ Wwihmintaear}(Q; R?*9). Since ¢, < g. and
¢z < gp here, we see that cof Vg € Wl’q%'(Q;IRdXd).

Using the trace operator’s continuity, we conclude that @|FD = Yp;- 1o see that

Pez, apply the continuity of the determinant function to (4.17)). 0

4.3 Coercivity and weak (semi)continuity

First we need a consequence of Young’s inequality, mentioned in [25] at the beginning
of Subsection 5.1.

Lemma 8. Suppose that a >0,b>0,6 >0, r > 1. Then
7'2

3 > rériar — (r—1)6¢-v? =

S|

Proof. Young’s inequality (cf. [I2] p. 622]) states that given a pair of positive numbers
f,gand 1 < p,q < +0o0, %—Fé: 1, then

fo< 4o (4.18)
P g

Set p=r, f= a%, g=46m1bin (4.18). Then ¢ = -5 and Young’s inequality yields

2

re eyt 4 e > avrats,
T

r

which after multiplying by 7 implies the desired result. 0

Lemma 9. Let t €1[0,7] and P e Z be given. Additionally, let qr; qp, qy € 1, —|—oo),
ti L — L 4p>qy and gy > 1. Then the functional (§,P) — E(t,4,P) + D(P,P)
1s bounded from below and weakly coercive with respect to Y x Z.
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Proof. Choose ¢ € Y and P € Z. The growth condition on W (4.1) gives

qC+

/. W(W@(X)P*(X),I@(X»dnc( | 1780B 1 + |(cof T5(X))BT (X)

—94d

’(detV'g(X))(det(If”_l(X)))‘ +|ED(X)|QPdX>.

(4.19)

The stated assumption ensures that &£ + 9 = 1, Thus by Hoélder’s inequality and
multiplicativity of the Frobenius norm (see [25]) it follows that

9aF
(Jo [Vg|TdX) ™
~ gaF *
(Jo [P(X)|oPd X) e

If V§P~! ¢ LI the corresponding integral is infinite, but it does not invalidate (4.20]).
Taking r = QF > 1, a=||VY||IE, b= ||P||ZF in Lemma we get for any § > 0

/ Vg(X)P |7 dX > (4.20)
Q

qy’

9F
(fglvy’quX)qu > qquF/(qquy)HWQHg_ qv — 9Y s /(ar—av) Bl (4.21)
(Jo PX)|rd X))o T¥ Y

From the definition of the dissipation distance, we have D(P,P) > 0.
Thus, using (4.19)) and the property det (P~1) =1 a.e.,

E(t,9,P) + DEB,P) > I(t,5,P) — £(t,9) >
cr (VR I + | (cot V)T [[2 + ||(det Vg) % ||y + [[ ]|+ (4.22)
IV [(cof V)P T]|[g + [[VR(|) — cal|gllyrav

where ¢; = min{c, a, 8}, co = ||{(t, ‘)||(W1,qy(Q;Rd))*.
Poincaré’s inequality implies that

19llyror < cpe(V8llay + Gl lov (rpmey) for a constant cpe > 0.
We can combine (4.20) with (4.21]) and take 6 small enough to achieve
1 — qr — qY&Q}%/(QF*QY)Q =:1cp >0
ay
and infer from (|4.22))

gt)@ap +DP71@> >0175QF qY Wy + cp ]P) + WP
(t,9,P) +D®F) = e1” - IVIIGE + clIPllgs + crl[VE[GE (4.23)

_CQCPCHW@HQY — Co,

where ¢y = cacpe||Ypicl| fav (PpyRY)- Hence the examined functional is bounded from
below.

Moreover, if ||g]|y 1.0y (o,ra) = +00, 2]y ap (Q;Réxd) = 100, (§, P) € Y x Z, then
the left-hand side in (4.23)) also tends to infinity, which proves that the functional is
weakly coercive with respect to ) x Z (see Definition . O

Lemma 10. Under assumptions (&.4)), the mapping D(-,P) is weakly sequentially con-
tinuous on Z for any P € Z.
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Proof. Let P—P in Whae (Q; IR™?), then by compact embedding P, — P in L% and
there is a subsequence that converges a.e. in . Assumptions (4.4al), ensure that
we can use the dominated convergence theorem. The limit D(P, P) is the same for any
subsequence, thus we draw the conclusion for the whole sequence. ]

Theorem 11. Under the hypotheses on Lebesque exponents from the beginning of
the chapter, from Theorem [0 and from Lemma[9, assume W to be measurable, non-
negative and lower semicontinuous, satisfying the growth condition and let ¢ €
C([0,T); (Whav (Q; IRY)*). Further, let t, € [0,T], 9, € V, P, € Z and assume there is
a constant E, > 0 such that for every n € N, we have &(ty, @n,]fbn) < E.. Ift, —tin
R, §,— ¢ in W (Q;IRY) and P,—P in W (Q;IR*Y), then

E(t,,P) < liminf E(ty, §,,, Py).

n—-4o0o

Proof. In the beginning, let us find a subsequence {(tnj,_@nj,@’nj)} such that

A

lim inf €(tn, §, Pn) = lim E(tn, 9y, Pr)).

n—+oo Jj—+oo

Al t,, 9, P, lie in a sublevel set of & (i.e. 8(75”,@”,[@’”) < E,). Like in the proof
of Lemma [9} we get from this fact the estimate

- 5 5 S BT S ABT
SUD [|V@nllay + IPaller +11VPnllge +[[(cof V) Py llg. +[[VI(cof VG, )Py [lg. < F-o0.
n

Hence Theorem |§| gives subsequences (for which we do not explicitly change nota-
tion) {Pp,}, {g,,} with

(
(
VP, — VP in L (Q; R>*4), (
(
(
(

¥, — § in WHY(Q;RY),
Vg, — Vg ae. in Q,
(COf W@n])ﬁpq——;—\ (COf W’g)]fﬂ— in Wl’qC(Q;RdXd)7 ] s 1o
Now we proceed term by term.

Firstly, pointwise convergences (4.24)), (4.28) and (4.25), non-negativity and lower
semicontinuity of W, and Fatou’s lemma yield

/W(W@(X)I@—l(X),I@(X))dXghminf W((W@nj(X)P;jl(X),Pnj(X)) dx.
Q J—+o0 JQO

Secondly, we obtain

/ | Vl(cof Vi(X)BT (X)) ‘% dX < liminf/ | Vl(cof Vi, (X))B, (X)] *ax,
Q J—=0 JQ
~ qp .. ~ qp
/ | VB(X)|" dX < liminf / | B, (X) [ dx
Q J—oo JOQl———————

by (4.29)), (4.26) and weak sequential lower semicontinuity of norm on a Banach space.
Thirdly, weak convergence (4.27)) and the continuity of ¢ in time lead to

lim O(tn,, i) = 0(5,9).

Jj—+oo
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In total,

Et,y, ]P’) < liminf E(¢ n],@nj,]f”nj) = lim &(t ns Un, ,Pn]) = liminf £(t n,yn,@’ ).

j—+o0 J—+oo n—+00

4.4 Power — the time-derivative of energy

In physics, (instantaneous) power is a quantity that describes how energy of a physical
system changes in time (this can be done by work or heat transfer). Therefore we will
refer to the partial time-derivative 0;€ of £ as the power.

We will need several mathematical properties of this quantity (i.e. an analogy
of Theorem 5.3 in [25], which, in the case of a time-independent Dirichlet boundary
condition, will be easier to show). The main idea of the proof is taken from [27], Section
2.2.

Theorem 12. There exist constants cg]) € R and cg) > 0 such that for (t,9,P) €
0,T] x Y x Z with £(t,4,P) < +00, we have E(-,4,P) € C([0,T]) and the estimate

0:E(t, 5, B) < (&t 9, B) + &) (4.30)

holds. The constant CI(_E) can be found such thatV (t,§,P) € [0,T]x Y x Z : E(t,§,P) >

O,

Proof. Let (t,4,P) € [0,T] x Y x Z be such that £(¢,4,P) < +oo. Then I(§,P) < +oo
all the more.

As E(t, gy, P A) = I(9,P) — £(t, %) and ¢ € ([0, T]; (W (Q; IRY))*), differentiation
gives 0:E(t,y,P) = —0,L(t,¥). Moreover, we see that we can take any t € [0, 7] for the
differentiation to be still correct (with one-sided derivatives considered at the endpoints
of the interval). This shows that £(-,§,P) € C*([0, T]).

We have already observed in the proof of Lemma [J that

E(t,9,P) = CLlVallgy — Callet, )l wrav (iray)- [[V8lay — Co,
which yields, by a subsequent estimate from below
g(tv v, ]fb) > C’lHWQHQY - C’O

for certain non-negative constants Cs, Cp, Cp and C; > 0, C; > 0, independent of ¢.
We used the fact that £ € L®((0,T); (Whav (€; R9))*).
Hence, with cpo > 0 from the Poincaré inequality and Cs = [|[§pil| oy (rpy.m)

0E(t, 9. )| = [(0e(t), 9)] < 106t )| wrtsox ) [ Bl lprray <
cpol|Oc| oo ((0,1);(wrav )+ ([ VBl lgy + C3) <

1 . C,
O Cy).

0,l)|oo (=—E (L, 9, P
cpo||0¢l|| (01 (t,y )+C

This shows estimate (4.30). The last assertion is a direct consequence of Lemma [9]
O
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Whenever t1 < so < 1o and S(SO,Q,I@’) < 400, then from the previous theorem
we get 5( L9, P) e cY([o, T]) and by the fundamental theorem of calculus £(t1,4,P) =

E(ta, 9, ) + fttf 0s€(s, 9, )ds. Adding 01(30) to both sides and estimating the power by

(4.30]), we obtain
0 B 4 O ON o
g(tQ)yulP)) +CE < g(tlaya + CE (Sayv]P)))dS'
t1
Gronwall’s lemma (Theorem |A.7)) then provides (cf. [I5])

E(ta, 5, 8) < (2 + £ty 5, B))ect Mt2=tal _ O, (4.31)

4.5 Existence of a solution to the incremental
problem

In this section, we prove the existence of a solution to incremental problem (4.6) by
the direct method of the calculus of variations.
From now on, we shall assume that

M;:= inf [E(t,§,P)+D(P,P)] < +oo for all t in [0,7] and P € Z.  (4.32)
(9,P)eyxz

Fix P € Z and t € [0,7]. Having assumed that the infimum M; is not +oo in ([#.32),
we deduce from the boundedness from below (Lemma [J) that M; € IR. We may take
a minimising sequence {(¢,,,,)}°%, in Y x Z such that

lim Et,9,,P,) +D(P,P,) = M, (4.33)

by the definition of infimum. In this section, the symbols 3, P with numeral subscripts
denote elements of the minimising sequence (the time being fixed), whereas after this
section, we use the same notation for minimisers at dlfferent discrete time levels.

Our goal now is to find a subsequence with limit (g, PP) and show that the functional
attains a minimum at (§,P), i.e. £(t,9,P) + D(P,P) = M,.

Similarly as in the proof of Lemma [9] we derive that

Sgg\lv.@n\lqy + |[Pallgp + [ VPn]lgp + [[(cof Vg, By llg. + |[V[(cof V)P, [[g < +oo.
n

(The upper bound follows from the boundedness of the (convergent) sequence
(8,9, Bn) + D(B.B,)}.)

In this situation, we would like to use Theorem [6]

Let us return to the growth condition (4.1)), which yields

sup E(t, ¥, Pn) + D(P,P,) + £(t,§,,) >

n>ngo

1 1
su ~ dX = su / — dX
nzfo/g et (Vi (X)Br (X))[a o Jo [det 7, (X) 44

for a certain ng € N. The left-hand side of the above inequality is finite because of
and the boundedness of {#,,}°, in Whav (Q; RY).

ThlS means that the assumptions of Theorem [f] are satisfied and we get convergent
subsequences {g,, }72;, {IP’n] }521 with respective limits 9, P in the sense of Theorem
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[6l The results of this theorem and of Theorem 7 together assert that g is an element
of Yand P € Z.

It remains to prove that the functional under consideration attains a minimum at
(4,P). As § €Y, P e Z, it is clearly true that £(¢, 9, P) + D(P,P) > M,.

In order to obtain the opposite inequality, we argue by Theorem 11 (with a constant
sequence of time values).

Also, property of D combined with and Fatou’s lemma ensure that

D(P,P) < liminf D(P,P,,,).

Jj—+oo
Recalling (4.33), we combine the conclusion of Theorem 11 with the above inequality:

E(t,§,P) + D(P,P) < liminf (t, §,,, By;) + D(B, ;) = M,

Jj—+oo

which finishes the proof for incremental problem .

Therefore let us continue searching for an energetic solution of the introduced rate-
independent system. Throughout the remaining part of the proof, which is presented
in the rest of this chapter, we follow Section 3 in [I5].

4.6 A priori estimates

The result below was established by A. Mielke and F. Theil and its proof can be found
n [I5] (Theorem 3.2).

Theorem 13. Assume (4o, o) € S(0), then every solution (g5, Pr) of [@.6) satisfies
the discrete versions (Sq) and (Eq) of stability and energy equality , namely for
all k€ {1, 2,... N} we have

(1, Pr) € S(ty), (Sa)
Ethy Upr Pr) — E(to1, Y1, Pr_1) + D(Pyp_1, ) €
tk N tk "
QE (s, §p 1) ds, /t O (s, 91, Bio1)ds].  (Ea)
k—1

te—1

Moreover, we have the a priori estimates
) ~ (1)
Etr: Yo Bre) < (€00, 90, Fo) +C£30))GCE b — C,(EO) and

N

. A oA (1)
S D(B;o1,B)) < (E(0, 90, Bo) + cfy)er T
j=1

Properties (S4) and (E4) are consequences of minimisation and triangle inequality
for D. To show the a priori estimates, it is advantageous to use results from Section
4.4.

So far, we only have minimisers at discrete time levels. The next step is to define
piecewise constant interpolants (y™,PN): [0,7] — Y x Z via

(95, Pp)  for t € [t,tri1) with k € {0,1,..., N — 1}

P 4.34
(@N,]P)N) fort=ty=T. ( )

(y™ (), PY (1) = {

These step functions are uniformly bounded in a way and this will help us find
convergent subsequences as the norm of the partition of [0,7] approaches zero. More
precisely, choose ¢ € [0,T), then there exists a j € {0,1,..., N — 1} such that t €
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[tistj+1). The definition of (yV,PY) and the fundamental theorem of calculus then
imply

A A t A
E(ty™ (1), PV (1) = E(t,5,,B)) = £(t;,9,, ;) +/t 0.E(5,9;,P;)ds. (4.35)
J

By virtue of (4.30)) and (4.31)), let us write

! 5 e 5y 4 0
/ 0sE(s,9;,Pj)ds < / ey (E(8,95,Pj) +cp’)ds <
t; ;

t]
t oA BN oA 1 Wy t
[ et €0, g0, Bo) + el e ds = (00,50, Bo) + o) e ] =

j EOR

o 1) (1)
(£(0,90,Po) + cg))(eCE1 t_ eCE1 b,

Inserting this back into (4.35), where we replace £(t;, 9, Pj) using the a priori estimate
from Theorem [I3] we see that we have derived the bound

E(t,yN (£), PV (8) < (E(0, 59, Po) + V)t — 0. (4.36)

For the total dissipation along PV, the a priori bound from Theorem [13|shows that

~ (1)
Dissp(PY; [0, T]) = 3" D(Pj_1,P;) < (£(0, 50, Po) + ¢ P)ee 7. (4.37)

N
J=1

The weak coercivity of £ (Lemma ED guarantees the boundedness of its sublevel
sets. Owing to this, we infer from (4.36: that

N N
1y e (o @imey < Cor PV oo o, ryswrtioe (umeay) < G

[1(cof Vy™) (BM) | oo (0 1y (umextyy < Ches [[(det Vy™) ™9 oo o 1y;210) < Cs
(4.38)

where C, is independent of N (see the proof of Lemma |§| for the last two inequalities).
Let us note that if we write (E4)) for all indices k between n+1and 7,0 <n < j < N,
and add up the resulting inequalities, we obtain a discrete upper energy estimate

E(t,y™ (1), PV (t;)) + Dissp (PV; [tn, t5]) <

Etmy™ () P () + [ 6% (s)ds, (4.39)

where 0V (s) = 0,€ (s, y™ (), PV (s)).

4.7 Selection of subsequences

Take a sequence {IIV}%_; of nested partitionsﬁ of the interval [0, 7], IV = {tN}V .
such that limy_ 400 I/(HN ) = 0. The piecewise constant approximation on IV is de-
noted by (y™,PV), N € N, as in (4.34).

Let us cite a generalisation of Helly’s theorem from [24] (Theorem 3.2) and slightly
adapt the statement to our setting. For the sake of completeness, we prove it again
here in our more specific case.

3See Definition
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Theorem 14. Let Z ¢ W (Q; R and let 2’ C Z be a weakly sequentially
compact subset. Assume that D and Z satisfy the following compatibility conditions:

The functional D(-,-): Z x Z — [0, +00| is weakly sequentially

lower semicontinuous. (C1)
If (tg,Pr) € [0,T] x 2, k € N, with t;, — t and min{D(P}, ), D(P,P})} — 0,
then Py—P, k — +o0. (C2)

Consider a sequence of functions PN : [0,7] — Z’ such that there exists a constant
C > 0 such that Dissp(PV;[0,T]) < C for all N € N. Then, there exists a subsequence
{PNk}ren and functions 0o, € BV([0,T],IR), P € BVp([0,T], Z) such that the following
holds:

(a) 6N, (t) := Dissp(PV;[0,t]) — oo (t) for all t € [0,T] and k — +oo,
(b) PNe(t)—~P(t) for allt € [0,T), k — +oo.
(c) Dissp(P;[t,t]) < doo(t') — duo(t) for all0 <t < t' < T.
Proof. By additivity of total dissipation , the functions
dn(t) = Dissp(PN; [0,1])

are nondecreasing with values in [0, C]. Helly’s selection theorem provides a sub-
sequence {dy, }7°, which converges to a function d, pointwise in [0,7"]. Hence we have
shown (a).

The function d is monotone and bounded, hence the set J C [0, T of all its points
of discontinuity is countable [31, Th. 8.13]. Write Q@ = [0,7]NQ, R = J U Q, then the
set R is still countable and dense in [0,7]. So we can arrange all elements of R in a
sequence {t,,}>>_;. We first need to get convergence of the plastic tensors in R, by a
diagonal argument.

Since {PV(t1)}nen lie in the weakly sequentially compact set Z/ C Z, there is
an index set I; C N such that the subsequence {P"(t1)}ner, is weakly convergent in
Whar (Q; IR™*?). Let us denote by P(t;) its limit. Moving on to ty, we similarly obtain
an index set I C I; such that PV (t3) converge weakly to some limit P(ty) for N € Is.
Gradually we construct infinite index sets I,,,, m = 1,2,3, ..., with the property that
In4+1 C I, and a mapping P: R — Z whose values are the corresponding pointwise
weak limits, i.e. PV (t,,)—P(t;,) for N € I,,. Picking an N, € I} for every k € N, we
find a diagonal sequence with Pk (¢)—~P(t) for every t € R.

Now we wish to extend P to [0, T]\R. Let t € [0,T]\R. As {PN*()}22, C 2’ and
Z'is a compact Hausdorff topological space, there is a cluster point P(t) of {PVx(¢)}22
[IT, Th. 3.1.23].

If this cluster point were unique, we would have Pk (t)—P(t) and (b) would follow.

To establish the uniqueness of the cluster point, we notice that even though P(t)
was chosen arbitrarily among all cluster points of {PV*(¢)}22 |, any sequence {P(#;)}22,,
with t; € R, t; — t, converges to it. If there were two distinct clusters points, then by
the previous property, there would exist a sequence converging to both of them, which
is impossible in the weak topology (being a Hausdorff topology).

It remains to show that property. Given ¢; € R, lim; . t; = t, we have to justify
that P(¢;)—P(t). By a property of cluster points, there is a subsequence {Nw}?yozl -
{Ni}22, such that PN (¢)—P(¢) as 7 tends to infinity.

Choose some i € N, then either #; < t or t; > t.
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In the case t; < t, (C1)), additivity (4.5) of Dissp and (a) imply that

0 < D(PE),P(t)) < liminf D(PV (), PV (¢)) <

Y—+00
e . N. 7 o T T
EgingssD(P 75t t]) = lvlgi{g 5Nw(t) - 51\77(752‘) = oo (t) — doo (7).
Analogously, if #; > t, it can be derived that 0 < D(P(t), P(#)) < doo(#;) — doo(t). So
whichever case we are in, it is true that

0 < min{D(P(£;),P(t)), D(P(t),P(#;))} < |00 (t) — doo ()| — 0 for i — +o0

by continuity of do, at t. (The points of discontinuity of do, were cleverly moved into
the set R and treated separately.)

It is now clear that it suffices to apply , whereby we get P(#;)—P(t), which
was to be shown to prove (b).

Assertion (c¢) has Dissp(PP; [t,¢']) on the left-hand side of the inequality and this
term is a supremum of certain sums. So it is enough to show the inequality for one
such sum — take L € N and any partition {fj}]LZO of [t, '], then by (CI)), and (a),

L—1 L—1
> D(P(E)), P(ij11)) < lim inf Y D®Ne(t)), PV (Ej11)) <
=0 i=0

lim inf Dissp (PVF; [t,']) = Jimn inf SNE(t) — 8Nk () = Gao (1)) — oo (t)

k—4o00 —4o00
and (¢) is proved. O

Let us examine whether Theorem [14] can help us find a convergent subsequence of
the piecewise constant approximations.

The set of plastic tensors Z is weakly sequentially closed (if I@’k € Z, I@’kAIP in
Whee (Q; IR™?), then by compact embedding into L% (Q;IR¥*9) we get strong con-
vergence and pointwise convergence a.e. for a subsequence I@’kj, which implies that

1 =det I@’k]. — detP a.e. in Q). However, to apply Theorem , we need a smaller set
Z' C Z that is weakly sequentially compact. The existence of such a set is a consequence
of a priori bound and the reflexivity of Whee (€; R*9).

Property holds (one can proceed similarly to Lemma . To verify , we
use Lemma 4.1 from [25] (the properties of D easily ensure those of D):

Lemma 15. If (4.4) and (C1)) hold, then we also have the following:
if {Px}ren is bounded and if min{D(Py,P), D(P,Py)} — 0, then Ppy—P.

Proof. For a proof, see [25]. O

The boundedness of Dissp(PV; [0, T]) is a consequence of (£.37)). So the assumptions
of Theorem [[4] are satisfied.
Theorem [14] gives rise to a subsequence {PV*},cn and a limit function

P € L>((0, T); Whr (Q; R*%)) n BV([0, T; L' (Q; R**4))
such that
vt € [0,T]: PYe(t) — P(t) strongly in LI and weakly in W1,
Besides, another part of that theorem establishes the existence of

lim Dissp(P*;[0,#]) =: 600 (t) (4.40)

k—+o0
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for all t € [0,7). Let us point out that P € L>((0,T); W (Q; IR¥?)) was obtained
by (4.38)) and the weak lower semicontinuity of || - ||yy1.ap ; Whereas

P € BV([0, T]; L*(Q; IR*%))

is due to (4.4€)).

The functions 6§V, k € N, are contained in a bounded subset of L*>((0, 7)), thanks
to (4.30) and (4.36]). Since L*°((0,7)) has a separable predual, we deduce a (non-
relabelled) subsequence {#"+}2° | such that

oNe X9, in L°((0,T)) (4.41)
by Claim [A.8 In quest of a pointwise limit, let us define for every ¢ € [0, T

0(t) = lim sup 0% (t) € R.

k—+o0

Applying reverse Fatou’s lemma[A-4 and the lemma of Du Bois-Reymond, we obtain
0.(t) < 6(t) a.e.

The limit superior is a cluster point of a sequence. Thus ¢-dependent subsequences
{N}}72, of {N}32, can be chosen so that

oNi(t) = 6(t) for all t € [0,T] and | — +oo. (4.42)

On the basis of (4.38) and Theorem @ the t-dependent subsequence { N/}, could
be chosen so that additionally

YN () —y(t) in WHY(Q;RY), | — +oo for all ¢ € [0,7] and some y(t)

and y(t) € Y by Theorems |§| and [7] (it may involve returning to (4.38) to extract
auxiliary subsequences). Likewise, P(t) € Z, since Z is weakly sequentially closed. The
function y: [0,7] — Y is bounded but possibly non-measurable. It remains to check
that (y,P) is an energetic solution.

4.8 Stability of the limit process

One property of energetic solutions is (5). To prove that (y(t), P(¢)) fulfils it for every

t € [0,T], consider another pair (g,P) € Y x Z.
Set 7/ = max{t € IV, # < t}, then m} /'t for | — +oo. From and the fact
that y™i (¢) = y™ (), PNl (t) = PN (t}), it is easily seen that

(y™i (), PV (1)) € S(r). (4.43)

Using Theorem (yNi (8), PN (1)) € S(7}), continuity of £ in ¢ and Lemma
we get

E(t,y(1),P(1)) < lim inf £(=f,y™ (), PV (1)) <

—+00
lim inf (v, §,P) + DEN (1), B) = £(t,9.F) + D(P(1). P)
Jj—+oo
and this is what requires. Note that the first inequality above, together with
(4.36]), implies that (¢, y(t),P(t)) < +o0.
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4.9 Upper energy estimate

The second property of energetic solutions is and we show it as a conjunction of
two inequalities.
From the weak sequential lower semicontinuity of £(t,-,-), t € [0,T] arbitrary, we
already know that
E(t,y(t),P(1)) < liminf £(t,y™ (), PNL(1)).
=400

A question is whether we can strengthen this to an equality and replace the limit
inferior by a limit. The answer is yes, if we employ the continuity of £ in time, weak
sequential continuity of D (Lemma and (4.43):

E(t,y(1) (1) = lim_E(rf,y(1), P(1) + D (), P(1)) >

lim sup € (rf, ™ (£), PV () = limsup £(t, 5™ (1), BN (1)),

l—+o00 l—+o00

The last equality was due to the properties of £. Proving the convergence of the power,

OE(t,y (1), B(t) = —(0:t(t), y (1)) = — lim <0t€(t)7ny () =
lim 9:E(t,y™ (1), PN (1))

l—+o00

(4.44)

is even easier (in our case of time-independent Dirichlet data).
Hence pointwise convergence (4.42)) gives

6(t) = lim 6 (1) = lim O£ (1, y™ (1), PV (1) = L y (1), B(1)).

Note that we have also shown that the mapping t — 9,£(t, y(t),P(t)) is measurable,
for 0 was defined as a pointwise limit superior of measurable functions.

Lemma 16. Provided t € [0,T], there is a constant C > 0 such that for alll € N,
E(t,y™ (t), PN () + Dissp(PN; [0,1]) < (45

£ty (7). BN (x})) + Dissp (BN [0, 7]) + C (1), |

Proof. First let us note that Dissp(PN';[0,#]) = Dissp (PN ; [0, 7}]) since PN

constant.

Then we compute, with (4.30), (4.31) in mind,

E(t,y™ (1), PN (1)) — £(xF, ™ (), PN (1) /855y 5), PN (s))ds <

is
[},t]

t
[+ €0,y 61, (5))ds < [ el el +£00, 0, Bo))ers s =

1 T
W et

(i) + £(0, 41, o)) (et — e ') < Ot — 7).

O

In view of (4.39)) and the boundedness of 9;€ by some C’ > 0 on the corresponding
interval, we continue estimating from above:

E(rt,y™ (), P (1)) + Dissp (P [0, 7f]) + Cr(IIM) <
£(0.9(0).P(©) + [ 0¥ (s)ds + Cu(m) <

£(0,y(0),P(0)) + /Ot oNi (s)ds + (C + C")v(IIND).
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For a fixed ¢, let | — 400 in inequality (4.45) combined with the previous one. The
limit inequality so obtained reads

£t y(0) B(0) + dc(t) < £00,9(0),BO)) + [ 0,05

because of and . The weak seq. lower semicontinuity of the dissipation
results in Dissp (P; [0,¢]) < doo(t) (Theorem|14fc)). Applying it, alongside the inequality
0.(t) < 0(t) = 0:&(t,y(t),P(t)), which belongs to fruit of Section and to that of
, we finally get the upper energy estimate

E(t,y(t),P(t)) + Dissp(P; [0, 1]) < £(0,y(0 / HE (T, y(7),P(7))dr.

4.10 Lower energy estimate

To obtain the lower energy estimate

t/

E',y(t),P(t")) + Dissp(P; [t,t']) > E(t,y(t),P(t)) + t HE(T,y(7),P(7))dr (4.46)

for arbitrary 0 < ¢t < ¢’ < T (in particular for ¢ := 0, ¢’ := T'), we use approximations
by Riemann sums as in [I5]. For this purpose, consider any partition IIy; = {TM J Mo
of [0,7] (which is in no relation with the partitions used in Section . By btabﬂlty

of (y(Tjj\f 1), ]P’(Tf\f 1)), derived in Section and the fundamental theorem of calculus

5(T%1,y(TJA{1),P( )) < 8( ] lvy( ) P(TjM)) +D(P(TJA{1)7P(TJZ\4)) =

M
Tj

E(m,y(m"), B(7)) + D(B(riLy), P(7})) — / & (s, y(r]"), P(7}"))ds, 1 < j < jar.

M
ijl

If we sum over j = 1,2,..., ju, the values of energy at intermediate time levels mutu-
ally cancel out and Zj-]‘:ﬂ D(JP’(TJN;[ 1), IP’(TJM )) can be estimated from above by the total
dissipation:

E(t',y(t'),P(t")) + Dissp(P; [t, ¢']) — E(t, y(t), P(t)) >

JM ZV
/at (5, y(rM), P(rM))ds =
j=1 1\{
Zat Moy PN = M)+ (M = M)l (4.47)
j=1

The values p]- are defined as

M

1 7 .
pj'\/[ - TM—TMl/Ai [8t5(3>y(TJM)7P(TJM)>_8155(7—JM7y(TJM)’P(TJM))]dS’ 1 SJ SJM’
J =171

and satisfy for all j € {1,2,...,jm}

1 g
o} SM_T.Ml/;f 19:(s, y(7}")) = Buk(m}" y (7" )lds <
J=17Tj-1

7j
1 e
— 0 0, d
T]M_T]g\ijl .- |10¢£(s) — Oel(T; )H (Whay (Q;R4))* Aly(T; )leqy(Q]Rd) 5
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Given an € > 0, there exists a § > 0 such that if s1,s9 € [0,T7], |s1 — s2| < ¢, we
have [[0p0(s1) = 0pl(s2) || 1.0y (,mey)+ < € (this is the uniform continuity of 9;¢: [0,T] —
(Whav (Q;1RY))*). Therefore, if the partition ITy; has norm v(Il;) < J, then

JMm M . 7_M TM

M J
E :(Tj a‘Hy( )le 9y (O ]Rd)ds < CieT.
j=1 j= lT] ]—1 7

Since € > 0 was arbitrary, we infer that the last sum in goes to zero if v(ITyy)
tends to 0 with M — +o0.

Now we turn to the first sum in . We know from Section that the mapping
T+ —0l(1,y(7)) is measurable and by

Cec(0,T); W (RY)Y),  yeB(0,T;WH (2 RY))

it follows that it is even in L1((0,7)).

Hence Theorem on approximation of (here Lebesgue) integrals via Riemann
sums establishes the existence of a sequence {II5/}37_; of partitions of [¢,¢], Iy =
{Tj}gﬁ“:fo, M € N, with limps— oo v(IIpr) = 0 for which

M
. M M J
Jim ; 0y () - ) - /M ~0ul(r, y(r))dr | = 0.

In consequence, (4.47)) yields lower energy estimate (4.46) in the limit.

4.11 Improved convergence and summary

In [I5], it is pointed out that it is possible to get stronger convergence and dispose of
the t-dependence of index subsequences, at least for some of the previously introduced
sequences of functions.

The result that has been proved in this chapter can be summarised in

Theorem 17. Suppose that @ € R, d > 1, Q € CO and T > 0. Let W be mea-
surable, nonnegative, lower semicontinuous and satisfying ; W(-,P,) satisfying
for every P, € SL(d). Further, assume that ¢ € C'([0,T]; (Whav(€;R%))*),
D has properties , hypothesis holds, all Lebesgue exponents are as above,
Iy € WY (T RY) and Y # 0,

Then, for each (@9, Po) € S(0) there exists an energetic solution (y,P): [0,T] —
YV x Z of and with (y(0),P(0)) = (@0,]@’0) and

y € B([0, T]; Wh (Q: RY)) and
P e L®((0,T); W (©; R™4)) n BV ([0, T]; L' (Q; R™*Y)).
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Conclusion

13. Looking back. (...) There
remains always something to do;
with sufficient study and
penetration, we could improve any
solution, and, in any case, we can
always improve our understanding
of the solution.

George Polya, How to Solve It
(1945)

Finite-strain elastoplasticity with a multiplicative decomposition of the deformation
gradient F into the elastic part F and the plastic part P

F =FgP

has been around for a few decades, but the field is still a ‘work in progress’ [10].
Nowadays there exist a number of approaches and many proposed ideas are a matter
of ongoing discussion.

This thesis falls into the theory of variational rate-independent evolutions, which
has been developed by Mielke [26], Francfort [I5] and others, and has been applied to
brittle fracture, damage etc. [10].

When one elaborates on minimisation of energy functionals, sufficient conditions for
the existence of minimisers are crucial. A widespread sufficient condition is Ball’s poly-
convexity from [I], but e.g. for the modelling of shape-memory alloys, this property
is not appropriate. Benesova, Kruzik and Schlémerkemper [5] set up gradient poly-
convexity which can better accommodate multiwell stored energies and has a physical
interpretation of limiting strong spatial variation in area/volume changes.

The novelty of this master’s thesis is the extension of a material model with gradient
polyconvex stored energy from [5] to an elastoplastic body and proving the existence
of an energetic solution to a rate-independent evolution in the material. Perfect finite-
strain gradient elastoplasticity is considered, but as [25] indicates, addition of hardening
variables to the model would not require many changes and the existence result would
still hold in a suitable version. The same would apply to stored energy densities W,
which also depend on F~! and the spatial variable X € Q (see [5]), and incorporation
of locking constraints is likewise possible. Further work would be necessary to allow a
time-dependent Dirichlet boundary condition as in [25].

Energetic solutions, as presented in Chapter [2] are not the only possibility in rate-
independent systems. In particular, S. Schwarzacher (Department of Mathematical
Analysis of Charles University) remarked that using balanced-viscosity solutions (cf.
[28, p. 222]) would be desirable, as they ‘do not overlook local minima’ of the total
energy functional.
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A. Appendix — facts from
mathematical analysis

Definition A.1. We call a finite sequence of points {tk}fy:o, tx € IR, N € N g partition
of the interval [a,b] if
a=ty<ti <---<ty=b.

By the norm of the partition I1 = {t; }4_,, we mean the number
v(Il) = max{tg41 — tx; k=0,1,...,N — 1}.

Let IV, N € N, be partitions of [a,b]. We say that {IIV}_, is a sequence of nested
partitions if for every N € N, we have IIN < IIN*!,

Further we recall a selection theorem known e.g. from courses on nonlinear analysis.

Theorem A.1 (Helly). Let C' > 0 and suppose f, : IR — [0,C], n € N, are nondecreas-
ing functions. Then there is a subsequence {fn, }721 C {fnu}ne: and a nondecreasing
function f: IR — [0,C] such that f,, — f pointwise in IR.

We also need two generalisations of scalar-valued functions of bounded variation.

Definition A.2. [28, p. 603] Let T > 0 and let X be a Banach space. The variation
of P:]0,T] — X with respect to the norm of X is defined as

N-1

Vary (P, [0,7]) = sup{ 3 [[P(ti11) — P(t)|| i N €N,

=1

tl,tg,...,tNG[0,T],t1<t2<"'<tN}.

A subspace of mappings P € B([0,T], X) with bounded variation Vary (P, [0,T]) < 400,
endowed with the norm ||P||gv(jo,11;x) = SuPo<i<r ||[P(t)||x + Varx (P, [0,T7]), is denoted
by BV([0,T]; X).

Definition A.3. [2], p. 4] Let Z be a Hausdorff topological space, D a dissipation
distance as in Chapter[f] and T > 0.
We write BVp([0,T]; Z2) = {P: [0,T7] — Z; Dissp(P;[0,7]) < +00}.

For the definition of other function spaces, where the functions take values in some
Banach space X, e.g. C1([0,T]; X), T > 0, the reader is referred to [21, p. 40].

A.1 Measure and integration theory

Lemma A.2. Let (X,p) be a metric space and f : X — Roo a lower semicontinuous
function. Then the set f~1((a,+o0]) C X is open for any a € R.

Proof. Given any a € IR, it is enough to prove that the set
S = X\f((a, +o0)) = {x € X; f(z) < a}

is closed. To do this, consider any sequence {,}°°, C S such that z, -+ = € X,
n — +o00. Then f(z) <liminf, 1o f(xy) <a,soz € S. a

49



In the below versions of Fatou’s lemma, measurability of sets or functions is meant
with respect to Borel o-algebras in the respective measure spaces.

Theorem A.3 (Fatou’s lemma). [T4, p. 42/ Suppose d € N and E C RY is a
measurable set. If f, : E — [0,+00] is a sequence of measurable functions, then
f:=liminf, | fn is a measurable function and

[E f(@)de < lim inf /E ful@)da.

n—-+0o

Theorem A.4 (reverse Fatou’s lemma). [1], p. 42] Under the assumptions of the
Fatou lemma above, let f,, : E — Roo be a sequence of measurable functions such that
fn < g for some measurable function g : E — [0, +00] with Jp9(x)de < +o00. Then
f:=lim SUD;, s 400 fn is a measurable function and

/ f(x)dx > limsup/ fu(x)da.
E n—+oo JE

The theorem to be stated now enables approximation of Bochner (all the more,
Lebesgue) integrals by Riemann sums and is cited e.g. in [9, Section 4.4].

Theorem A.5. Let [a,b] be a closed bounded interval, let X be a Banach space, and let
f :]a,b] = X be a Bochner-integrable function. Then there exists a sequence {I1yr}37_,

of partitions of the interval [a,b], with 11y = {’TJN[ §A=JO>

lim v(Ily) =0,

M—+o0
such that
JMm u y y b
pim ;(Tj -7 f(7; )*/a f(t)ydt|| =o.

A.2 Calculus of variations

In , D was supposed to be a Carathéodory mapping. A generalisation of the
model presented in Chapter [ which suggests itself, would merely require D to be
a normal integrand (with some additional assumptions as in [25]), so both terms are
defined here subsequently.

Definition A.4 (normal integrand). [25] If E C IR? is Lebesgque-measurable, U is a
topological space and B(U) its Borel o-algebra, then a function f : E x U — Reo is
called a normal integrand if
fis £ x B(U)-measurable and (NI1)
fora.a.x € E:  f(x,): U — Reo is lower semicontinuous, (NI2)

where £ denotes the Lebesgue-measurable subsets of E.

Definition A.5 (Carathéodory mapping). [28, p. 598] Under the hypotheses of Defi-
nition assume that U := IR%, where d. > 1. A special case of a normal integrand
f: ExIR* - Ry with f(z,-) : R%* — R continuous for a.a. € E is called a
Carathéodory mapping.

Definition A.6 (weak coercivity). Let X' be a Banach space. We say that F : X — IReo
is weakly coercive with respect to A C X if

lim F(z)=+o0.
rcA

||| =00
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Strong coercivity could be defined by a similar condition, requiring a faster growth
to infinity, but we do not need the term.

Claim A.6. [T}, p. 563] Let X be a Banach space. If a sequence {x,} C X converges
weakly to x € X, then it is bounded and

< limi .
[lzll < lim inf ||z.,]]

Definition A.7 (quasiconvexity). [8, p. 156] A Borel-measurable and locally bounded
function W : R™% — 1R is said to be quasiconvex if

W(A) < Ed}E)/EW(A—FWgo(X))dX

for every bounded open set E C RY, every A € R gnd every ¢ € Wol’OO(E;]Rd).

A.3 Partial differential equations

Next we state Gronwall’s lemma, in a form due to Bellman [30, p. 11].

Theorem A.7 (Gronwall’s lemma). Let u and f be continuous and nonnegative func-
tions defined on [a,b], a, b € R, a < b, and let ¢ be a nonnegative constant. Then the
inequality

u(t) <c+ /:f(s)u(s)ds, t € [a,b],
implies that .
u(t) < cexp(/a f(s)ds), te€[a,b].

It is known from functional analysis that norm-bounded sets in reflexive normed
linear spaces are relatively weakly sequentially compact. The following theorem can be
utilised to get weak™® limits in non-reflexive Banach spaces.

Claim A.8. [28, p. 586] In a Banach space with a separable predual, every bounded
sequence contains a weakly* convergent subsequence.

It is supposed that the reader is acquainted with the usual Sobolev spaces Wk’p(Q),
keN,1<p<+o0, QC R?open (defined e.g. in [12]), as well as their vector-valued
counterparts W*»(Q;1RY) (see [6, p. 282]). More facts about Sobolev-Slobodeckit
spaces W*P(0Q), s > 0, s ¢ N, can be found in |21, p. 330-332].

For the compact embedding below, which is heavily used in the modern theory of
PDEs, Q does not need to be a Lipschitz domain; the class C? is sufficient.

Theorem A.9 (compact embedding of Sobolev spaces). Let @ C IR? be a bounded
domain of class C° and 1 < q¢ < +oo. Then WH4(Q) is compactly embedded into
L9(9).

In [6], the next inequality can be found as Theorem 6.1-8(b). It would not be
difficult to derive a variant valid for vector-valued functions.

Theorem A.10 (Poincaré inequality). Let Q € RY be a bounded domain with Lips-
chitz boundary and let 1 < q < +o0o. Let T' be a H* '-measurable subset of O with
HI(T) > 0. Then there exists a constant Cp such that

)

/ u9dX < Cp (/ Vul9dX + ‘/ wds
Q Q T

for all uw € WH4(Q).
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The following theorem on multiplication of Sobolev functions (Theorem 7.5) from
[3] gives sufficient conditions on the exponents to ensure that the product lies in a

Sobolev space as well.

Theorem A.11. Let Q be a bounded domain in RY with Lipschitz boundary. Assume
si, s and 1 < pi,p < 400 (i =1,2) are real numbers satisfying

(7“) 5i257

(i) s >0,

cee L i_l

(iii) s; szd(pi p),

(iv) 81+82—S>d(p%+pi2—%).

In the case where max{p1,p2} > p instead of (iv) assume that s; + so — s > m.

Claim: If u € W*PL(Q) and v € W*2P2(Q), then uwv € W5P(Q) and moreover the
pointwise multiplication of functions is a continuous bilinear map

WHIPL(Q) x WS2P2(Q) — WHP(Q).
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