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Introduction

The study of deformations of solid bodies brings benefit to diverse areas of human ac-
tivity. Architecture, mechanical engineering, materials science or biomedical research
can all profit from achievements of mathematical modelling in solid-state physics. Nu-
merical simulations on supercomputers efficiently deal with problems whose solution
would otherwise remain out of reach. However, the tasks of developing realistic material
models and of their mathematical analysis are still topical as well.

A workable approximation of material behaviour in situations where the acting
forces are not strong enough to cause irreversible changes (e.g. cracks) is provided by
elasticity theory. Although mathematical elasticity is commonly used, a fair number of
open problems are unsolved as of now [2]. Chapter 1 goes through the basic concepts
in mathematical elasticity and continuum mechanics, which is a more general theory
in the sense that it also applies to fluids.

If the forces affecting a solid body exceed a specific limit, the body undergoes a
plastic deformation and the elastic description must be upgraded to an elastoplastic

one. There exists a rich spectrum of plastic effects that may take place and a compre-
hensive treatise of those would definitely be long. Chapter 2 contains an introduction
to plasticity and the most relevant (by the author’s judgement) plastic phenomena are
mentioned. At the end of the chapter, the idea of energetic solutions (cf. [28]) for rate-
independent systems arising in elastoplasticity is presented. This weaker concept of
solutions can be advantageous when one needs to overcome the lack of differentiability
of the appearing physical quantities.

In Chapter 3, it is explained what gradient polyconvexity ([5]) is and how it can be
utilised in mathematical elasticity and plasticity. The chapter is mainly based on two
recent articles [5] and [20].

The contribution of this thesis is an extension of the gradient polyconvex model
from [5] to gradient plasticity at finite strains and the use of methods from [15], [25] to
prove the existence of a solution to an associated energetic rate-independent system.
Especially in Theorems 6, 7 and 11, the previously published ideas had to be adjusted
to fit into the elastoplastic framework. In literature, a generalised Helly’s selection
theorem from [24] is often used without mentioning the particular assumptions needed
to make it applicable. This work devotes more space to this argument (Theorem 14), so
that such an important step becomes more comprehensible. Claim 2 in Chapter 3 can
also be seen as a moderately interesting new inference, since it specifies the particular
Sobolev exponents for which deformations of class W

2,p are also regular enough for a
gradient polyconvex energy functional.

To facilitate reading of this thesis, a summary of used notation is integrated at the
very beginning and an appendix with necessary facts from mathematical analysis can
be consulted at the end.
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Figure 2.1: An elastoplastic rod undergoing a tension test. (All figures in this
chapter were created following [18].)

Figure 2.2: A stress-strain curve which exhibits hardening.

The effect depicted in Figure 2.2 is called hardening. The stress increases with
increasing strain, even though the curve’s slope in the segment AB is less than in the
linearly elastic region.

Whereas softening occurs if the slope becomes negative (Figure 2.3). In reality,
stress-strain curves can be more complicated, e.g. with hardening behaviour for a
certain range of strains, but showing softening when the strain is larger. To name some
examples, this last phenomenon happens in soil or concrete.

Another possibility is that the loaded material fractures on leaving the elastic
regime.

In some applications, it is enough to consider an idealised curve with zero hardening
(Figure 2.4); the case is known as perfect plasticity.

The value σ0 bears the name initial yield stress, where the adjective ‘initial’ is
related to the fact that the whole loading process started in a state with no stress and
no strain.
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Figure 2.3: A stress-strain curve which exhibits softening.

Figure 2.4: The stress-strain curve of a perfectly plastic material.

Rate-independence

To explain the assumption of rate-independence, let us now focus on the rate at which
the force is applied to the body Ω [18, p. 46]. First, we can increase the stress σ slowly
all the time, then the corresponding stress-strain curve will be the darkest one in Figure
2.5. Or we can perform the whole loading faster – and we get the lighter curve in the
figure. We might still be dissatisfied with the speed and repeat an identical experiment
once more, but with an even faster loading, resulting in the lightest curve in Figure
2.5. The message of this series of three experiments is that the material behaviour in
the plastic range depended on the rate of the external force.

We may not trouble ourselves about this material property and will simply neglect
it. Such rate-independence is a reasonable assumption for some particular materials or
for the modelling of processes with low rates of external loading.

The theory of viscoplasticity deals with rate-dependent situations (more can be
found in [23]).

Decomposition of strain

On a microscopic scale, we discern elastic behaviour from plastic effects by the nature
of changes they inflict on the crystal lattice. Elastic deformation is responsible for
stretch and rotation of the crystal lattice, while plastic phenomena involve the local
deformation of material, caused by defects (such as dislocations) flowing through the
microscopic structure [16, p. 423]. The overall strain has an elastic and a plastic com-
ponent. How these components are defined in the mathematical description, depends
on the preferred theory. For small deformations, linearised elastoplasticity can be used.
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• D : Z × Z → [0, +∞] is the dissipation distance, which measures the minimal
amount of energy that is dissipated by changing the internal state from one
value in the space Z to another.

A state (ŷ, ẑ) ∈ Y × Z =: Q of the material body Ω supplies information about the
deformation ŷ : Ω → IRd and the internal state ẑ ∈ Z that groups together the plastic
distortion P̂ and the values of internal variables ξ1, ξ2, . . . , ξκ. It is customary to call the
triple (Q, E , D) an energetic rate-independent system, which indicates that the theory
is developed under the assumption of rate-independent behaviour. Both definitory
properties (2.S), (2.E) of energetic solutions are compatible with rate-independence, as
explained in [28, p. 25].

Definition 3. A function (y, z) : [0, T ] → Q is called an energetic solution of the

energetic rate-independent system (Q, E , D) if it satisfies the stability condition (2.S)
and the energy balance (2.E) for all t ∈ [0, T ]

∀ (ỹ, z̃) ∈ Y × Z : E(t, y(t), z(t)) ≤ E(t, ỹ, z̃) + D(z(t), z̃), (2.S)

E(t, y(t), z(t)) + DissD(z; [0, t]) = E(0, y(0), z(0)) +

∫

t

0

∂tE(τ, y(τ), z(τ))dτ.

(2.E)

The dissipation DissD(z; [t, t′]), t, t′ ∈ [0, T ], t < t′, along a part of the curve z is
defined analogously to the total variation (Definition A.2):

DissD(z; [t, t′]) = sup
{

N
∑

k=1

D(z(tk−1), z(tk)); N ∈ N, t = t0 < · · · < tN = t′
}

.

One advantage of the energetic formulation is that it avoids derivatives of constitu-
tive equations and of the solution itself [26]. The usual form of the involved functionals
also enables utilising known methods of the calculus of variations, including homogeni-
sation and relaxation (see Chapter 3 for a short note on the latter).

The mechanical idea behind (2.S) is the following: imagine first that z̃ := z(t),
then D(z(t), z̃) vanishes, since no change in the plastic variables implies no dissipation.
Consequently, (2.S) simplifies to E(t, y(t), z(t)) ≤ E(t, ỹ, z(t)) for all ỹ ∈ Y and y is a
global minimiser of E(t, ·, z(t)) over Y. So we observe that in this case, (2.S) expresses
the elastic equilibrium (cf. Chapter 1) [26]. If z̃ ̸= z(t), then the amount of dissipated
energy between the states z̃ and z(t) must, by (2.S), at least compensate for, if not
outweigh the associated loss in the total energy. Such a property is known as the
principle of maximum dissipation and is nowadays a widely accepted part of theories
of elastoplasticity [18, p. 57].

The last term in (2.E) has the meaning of the work done by external forces, hence
a physical interpretation of (2.E) is also available.

In [26], it is shown that for sufficiently smooth solutions and with an appropriate
choice of E , D, one can derive from (2.S), (2.E) a weak formulation of the elastic
equilibrium equations and a plastic flow rule.

It is worth noticing that the dissipation distance D is not supposed to be symmetric,
as it would contradict hardening [25].

Examples of total energy functionals E and dissipation distances D in finite-strain
elastoplasticity are brought forward e.g. in [26], [25] and for the case of a gradient

polyconvex energy functional, in Chapter 4.
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The symbol DissD(P; [t, t′]), t, t′ ∈ [0, T ], t < t′, denotes the (total) dissipation along
a part of the curve P and its definition reads

DissD(P; [t, t′]) = sup
{

N
∑

k=1

D(P(tk−1),P(tk)); N ∈ N, t = t0 < · · · < tN = t′
}

.

Further, the total dissipation is additive [28, p. 47]:

DissD(P; [t, t′′]) = DissD(P; [t, t′]) + DissD(P; [t′, t′′]) for all t < t′ < t′′. (4.5)

To start with the existence proof for an energetic solution, we perform a time-
incremental minimisation. Let us break the interval [0, T ] into N subintervals by taking
a partition {tk}N

k=1, 0 = t0 ≤ t1 ≤ · · · ≤ tN = T . Given an initial plastic tensor P̂0 ∈ Z,
there exists a minimiser ŷ0 of E(0, ·, P̂0) over Y, which can be proved analogously to
Section 4.5 (only D is missing). Then for every k ∈ {1, 2, . . . N}, let us find

ŷk ∈ Y, P̂k ∈ Z such that E(tk, ŷk, P̂k) + D(P̂k−1, P̂k) =

min{E(tk, ŷ, P̂) + D(P̂k−1, P̂); ŷ ∈ Y, P̂ ∈ Z}.
(4.6)

A solution of such an incremental problem exists as we will also see in Section
4.5. Before that, it will be good to have some further properties of the problem, in
our hands. To keep track of the particular assumptions on the Lebesgue exponents
qF, qY, qc, qP, qg, qz and qa, the conditions which they must fulfil are restated in the
formulations of theorems in Sections 4.2–4.3, where appropriate.

Figure 4.1: An illustration of the incremental minimisation. The figure is not

accurate, as pictures in functional analysis can hardly be accurate, but it can still

give some insight.

4.2 Compactness and closedness

The proof of Theorem 6 is inspired by Theorem 3 (i.e. Proposition 5.1 in [5]), but here
we obtain convergence properties even in our elastoplastic framework.
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6. The results of this theorem and of Theorem 7 together assert that ŷ is an element
of Y and P̂ ∈ Z.

It remains to prove that the functional under consideration attains a minimum at
(ŷ, P̂). As ŷ ∈ Y, P̂ ∈ Z, it is clearly true that E(t, ŷ, P̂) + D(P̃, P̂) ≥ Mt.

In order to obtain the opposite inequality, we argue by Theorem 11 (with a constant
sequence of time values).

Also, property (4.4a) of D combined with (4.14b) and Fatou’s lemma ensure that

D(P̃, P̂) ≤ lim inf
j→+∞

D(P̃, P̂nj
).

Recalling (4.33), we combine the conclusion of Theorem 11 with the above inequality:

E(t, ŷ, P̂) + D(P̃, P̂) ≤ lim inf
j→+∞

E(t, ŷnj
, P̂nj

) + D(P̃, P̂nj
) = Mt,

which finishes the proof for incremental problem (4.6).
Therefore let us continue searching for an energetic solution of the introduced rate-

independent system. Throughout the remaining part of the proof, which is presented
in the rest of this chapter, we follow Section 3 in [15].

4.6 A priori estimates

The result below was established by A. Mielke and F. Theil and its proof can be found
in [15] (Theorem 3.2).

Theorem 13. Assume (ŷ0, P̂0) ∈ S(0), then every solution (ŷk, P̂k) of (4.6) satisfies

the discrete versions (Sd) and (Ed) of stability (S) and energy equality (E), namely for

all k ∈ {1, 2, . . . N} we have

(ŷk, P̂k) ∈ S(tk), (Sd)

E(tk, ŷk, P̂k) − E(tk−1, ŷk−1, P̂k−1) + D(P̂k−1, P̂k) ∈
[

∫ tk

tk−1

∂tE(s, ŷk, P̂k)ds,

∫ tk

tk−1

∂tE(s, ŷk−1, P̂k−1)ds
]

. (Ed)

Moreover, we have the a priori estimates

E(tk, ŷk, P̂k) ≤ (E(0, ŷ0, P̂0) + c
(0)
E )ec

(1)
E tk − c

(0)
E and

N
∑

j=1

D(P̂j−1, P̂j) ≤ (E(0, ŷ0, P̂0) + c
(0)
E )ec

(1)
E T .

Properties (Sd) and (Ed) are consequences of minimisation and triangle inequality
for D. To show the a priori estimates, it is advantageous to use results from Section
4.4.

So far, we only have minimisers at discrete time levels. The next step is to define
piecewise constant interpolants (yN ,PN ) : [0, T ] → Y × Z via

(yN (t),PN (t)) =

∮

(ŷk, P̂k) for t ∈ [tk, tk+1) with k ∈ {0, 1, . . . , N − 1}

(ŷN , P̂N ) for t = tN = T.
(4.34)

These step functions are uniformly bounded in a way and this will help us find
convergent subsequences as the norm of the partition of [0, T ] approaches zero. More
precisely, choose t ∈ [0, T ), then there exists a j ∈ {0, 1, . . . , N − 1} such that t ∈
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Theorem 14. Let Z ⊂ W 1,qP(Ω; IRd×d) and let Z ′ ⊂ Z be a weakly sequentially
compact subset. Assume that D and Z satisfy the following compatibility conditions:

The functional D(·, ·) : Z × Z → [0, +∞] is weakly sequentially

lower semicontinuous. (C1)

If (tk, P̂k) ∈ [0, T ] × Z ′, k ∈ N, with tk → t and min¶D(P̂k, P̂), D(P̂, P̂k)♦ → 0,

then P̂k⇀ P̂, k → +∞. (C2)

Consider a sequence of functions PN : [0, T ] → Z ′ such that there exists a constant
C > 0 such that DissD(PN ; [0, T ]) ≤ C for all N ∈ N. Then, there exists a subsequence
¶PNk♦k∈N and functions δ∞ ∈ BV([0, T ], IR), P ∈ BVD([0, T ], Z) such that the following
holds:

(a) δNk
(t) := DissD(PNk ; [0, t]) → δ∞(t) for all t ∈ [0, T ] and k → +∞,

(b) PNk(t)⇀P(t) for all t ∈ [0, T ], k → +∞.

(c) DissD(P; [t, t′]) ≤ δ∞(t′) − δ∞(t) for all 0 ≤ t < t′ ≤ T .

Proof. By additivity of total dissipation (4.5), the functions

δN (t) = DissD(PN ; [0, t])

are nondecreasing with values in [0, C]. Helly’s selection theorem A.1 provides a sub-
sequence ¶δNl

♦∞
l=1 which converges to a function δ∞ pointwise in [0, T ]. Hence we have

shown (a).

The function δ∞ is monotone and bounded, hence the set J ⊂ [0, T ] of all its points
of discontinuity is countable [31, Th. 8.13]. Write Q = [0, T ] ∩ Q, R = J ∪ Q, then the
set R is still countable and dense in [0, T ]. So we can arrange all elements of R in a
sequence ¶tm♦∞

m=1. We first need to get convergence of the plastic tensors in R, by a
diagonal argument.

Since ¶PN (t1)♦N∈N lie in the weakly sequentially compact set Z ′ ⊂ Z, there is
an index set I1 ⊂ N such that the subsequence ¶PN (t1)♦N∈I1 is weakly convergent in
W 1,qP(Ω; IRd×d). Let us denote by P(t1) its limit. Moving on to t2, we similarly obtain
an index set I2 ⊂ I1 such that PN (t2) converge weakly to some limit P(t2) for N ∈ I2.
Gradually we construct infinite index sets Im, m = 1, 2, 3, . . . , with the property that
Im+1 ⊂ Im, and a mapping P : R → Z whose values are the corresponding pointwise
weak limits, i.e. PN (tm)⇀P(tm) for N ∈ Im. Picking an Nk ∈ Ik for every k ∈ N, we
find a diagonal sequence with PNk(t)⇀P(t) for every t ∈ R.

Now we wish to extend P to [0, T ]\R. Let t ∈ [0, T ]\R. As ¶PNk(t)♦∞
k=1 ⊂ Z ′ and

Z ′ is a compact Hausdorff topological space, there is a cluster point P(t) of ¶PNk(t)♦∞
k=1

[11, Th. 3.1.23].

If this cluster point were unique, we would have PNk(t)⇀P(t) and (b) would follow.

To establish the uniqueness of the cluster point, we notice that even though P(t)
was chosen arbitrarily among all cluster points of ¶PNk(t)♦∞

k=1, any sequence ¶P(t̃i)♦
∞
i=1,

with t̃i ∈ R, t̃i → t, converges to it. If there were two distinct clusters points, then by
the previous property, there would exist a sequence converging to both of them, which
is impossible in the weak topology (being a Hausdorff topology).

It remains to show that property. Given t̃i ∈ R, limi→+∞ t̃i = t, we have to justify
that P(t̃i)⇀P(t). By a property of cluster points, there is a subsequence ¶Ñγ♦∞

γ=1 ⊂

¶Nk♦∞
k=1 such that PÑγ (t)⇀P(t) as γ tends to infinity.

Choose some i ∈ N, then either t̃i < t or t̃i > t.
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In the case t̃i < t, (C1), additivity (4.5) of DissD and (a) imply that

0 ≤ D(P(t̃i),P(t)) ≤ lim inf
γ→+∞

D(PÑγ (t̃i),P
Ñγ (t)) ≤

lim inf
γ→+∞

DissD(PÑγ ; [t̃i, t]) = lim inf
γ→+∞

δÑγ
(t) − δÑγ

(t̃i) = δ∞(t) − δ∞(t̃i).

Analogously, if t̃i > t, it can be derived that 0 ≤ D(P(t),P(t̃i)) ≤ δ∞(t̃i) − δ∞(t). So
whichever case we are in, it is true that

0 ≤ min¶D(P(t̃i),P(t)), D(P(t),P(t̃i))♦ ≤ ♣δ∞(t) − δ∞(t̃i)♣ → 0 for i → +∞

by continuity of δ∞ at t. (The points of discontinuity of δ∞ were cleverly moved into
the set R and treated separately.)

It is now clear that it suffices to apply (C2), whereby we get P(t̃i)⇀P(t), which
was to be shown to prove (b).

Assertion (c) has DissD(P; [t, t′]) on the left-hand side of the inequality and this
term is a supremum of certain sums. So it is enough to show the inequality for one
such sum – take L ∈ N and any partition ¶t̂j♦L

j=0 of [t, t′], then by (C1), (4.5) and (a),

L−1
∑

j=0

D(P(t̂j),P(t̂j+1)) ≤ lim inf
k→+∞

L−1
∑

j=0

D(PNk(t̂j),PNk(t̂j+1)) ≤

lim inf
k→+∞

DissD(PNk ; [t, t′]) = lim inf
k→+∞

δNk(t′) − δNk(t) = δ∞(t′) − δ∞(t)

and (c) is proved.

Let us examine whether Theorem 14 can help us find a convergent subsequence of
the piecewise constant approximations.

The set of plastic tensors Z is weakly sequentially closed (if P̂k ∈ Z, P̂k⇀P in
W 1,qP(Ω; IRd×d), then by compact embedding into LqP(Ω; IRd×d) we get strong con-
vergence and pointwise convergence a.e. for a subsequence P̂kj

, which implies that

1 = det P̂kj
→ det P̂ a.e. in Ω). However, to apply Theorem 14, we need a smaller set

Z ′ ⊂ Z that is weakly sequentially compact. The existence of such a set is a consequence
of a priori bound (4.38) and the reflexivity of W 1,qP(Ω; IRd×d).

Property (C1) holds (one can proceed similarly to Lemma 10). To verify (C2), we
use Lemma 4.1 from [25] (the properties of D easily ensure those of D):

Lemma 15. If (4.4) and (C1) hold, then we also have the following:
if ¶P̂k♦k∈N is bounded and if min¶D(P̂k, P̂), D(P̂, P̂k)♦ → 0, then P̂k⇀ P̂.

Proof. For a proof, see [25].

The boundedness of DissD(PN ; [0, T ]) is a consequence of (4.37). So the assumptions
of Theorem 14 are satisfied.

Theorem 14 gives rise to a subsequence ¶PNk♦k∈N and a limit function

P ∈ L∞((0, T ); W 1,qP(Ω; IRd×d)) ∩ BV([0, T ]; L1(Ω; IRd×d))

such that

∀t ∈ [0, T ] : PNk(t) → P(t) strongly in LqP and weakly in W 1,qP .

Besides, another part of that theorem establishes the existence of

lim
k→+∞

DissD(PNk ; [0, t]) =: δ∞(t) (4.40)
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for all t ∈ [0, T ]. Let us point out that P ∈ L∞((0, T ); W 1,qP(Ω; IRd×d)) was obtained
by (4.38) and the weak lower semicontinuity of ♣♣ · ♣♣W 1,qP ; whereas

P ∈ BV([0, T ]; L1(Ω; IRd×d))

is due to (4.4e).

The functions θNk , k ∈ N, are contained in a bounded subset of L∞((0, T )), thanks
to (4.30) and (4.36). Since L∞((0, T )) has a separable predual, we deduce a (non-
relabelled) subsequence ¶θNk♦∞

k=1 such that

θNk
∗

⇀ θ∗ in L∞((0, T )) (4.41)

by Claim A.8. In quest of a pointwise limit, let us define for every t ∈ [0, T ]

θ(t) = lim sup
k→+∞

θNk(t) ∈ IR.

Applying reverse Fatou’s lemma A.4 and the lemma of Du Bois-Reymond, we obtain
θ∗(t) ≤ θ(t) a.e.

The limit superior is a cluster point of a sequence. Thus t-dependent subsequences
¶N t

l ♦∞
l=1 of ¶Nk♦∞

k=1 can be chosen so that

θNt
l (t) → θ(t) for all t ∈ [0, T ] and l → +∞. (4.42)

On the basis of (4.38) and Theorem 6, the t-dependent subsequence ¶N t
l ♦∞

l=1 could
be chosen so that additionally

yNt
l (t)⇀ y(t) in W 1,qY(Ω; IRd), l → +∞ for all t ∈ [0, T ] and some y(t)

and y(t) ∈ Y by Theorems 6 and 7 (it may involve returning to (4.38) to extract
auxiliary subsequences). Likewise, P(t) ∈ Z, since Z is weakly sequentially closed. The
function y : [0, T ] → Y is bounded but possibly non-measurable. It remains to check
that (y,P) is an energetic solution.

4.8 Stability of the limit process

One property of energetic solutions is (S). To prove that (y(t),P(t)) fulfils it for every
t ∈ [0, T ], consider another pair (ỹ, P̃) ∈ Y × Z.

Set τ t
l = max¶t̃ ∈ ΠNt

l ; t̃ ≤ t♦, then τ t
l ↗ t for l → +∞. From (Sd) and the fact

that yNt
l (t) = yNt

l (τ t
l ), PNt

l (t) = PNt
l (τ t

l ), it is easily seen that

(yNt
l (t),PNt

l (t)) ∈ S(τ t
l ). (4.43)

Using Theorem 11, (yNt
l (t),PNt

l (t)) ∈ S(τ t
l ), continuity of E in t and Lemma 10,

we get

E(t, y(t),P(t)) ≤ lim inf
l→+∞

E(τ t
l , yNt

l (t),PNt
l (t)) ≤

lim inf
j→+∞

E(τ t
l , ỹ, P̃) + D(PNt

l (t), P̃) = E(t, ỹ, P̃) + D(P(t), P̃)

and this is what (S) requires. Note that the first inequality above, together with
(4.36), implies that E(t, y(t),P(t)) < +∞.
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4.9 Upper energy estimate

The second property of energetic solutions is (E) and we show it as a conjunction of
two inequalities.

From the weak sequential lower semicontinuity of E(t, ·, ·), t ∈ [0, T ] arbitrary, we
already know that

E(t, y(t),P(t)) ≤ lim inf
l→+∞

E(t, yNt
l (t),PNt

l (t)).

A question is whether we can strengthen this to an equality and replace the limit
inferior by a limit. The answer is yes, if we employ the continuity of E in time, weak
sequential continuity of D (Lemma 10) and (4.43):

E(t, y(t),P(t)) = lim
l→+∞

E(τ t
l , y(t),P(t)) + D(PNt

l (t),P(t)) ≥

lim sup
l→+∞

E(τ t
l , yNt

l (t),PNt
l (t)) = lim sup

l→+∞
E(t, yNt

l (t),PNt
l (t)).

The last equality was due to the properties of ℓ. Proving the convergence of the power,

∂tE(t, y(t),P(t)) = −⟨∂tℓ(t), y(t)⟩ = − lim
l→+∞

⟨∂tℓ(t), yNt
l (t)⟩ =

lim
l→+∞

∂tE(t, yNt
l (t),PNt

l (t))
(4.44)

is even easier (in our case of time-independent Dirichlet data).
Hence pointwise convergence (4.42) gives

θ(t) = lim
l→+∞

θNt
l (t)

def

= lim
l→+∞

∂tE(t, yNt
l (t),PNt

l (t)) = ∂tE(t, y(t),P(t)).

Note that we have also shown that the mapping t ↦→ ∂tE(t, y(t),P(t)) is measurable,
for θ was defined as a pointwise limit superior of measurable functions.

Lemma 16. Provided t ∈ [0, T ], there is a constant C > 0 such that for all l ∈ N,

E(t, yNt
l (t),PNt

l (t)) + DissD(PNt
l ; [0, t]) ≤

E(τ t
l , yNt

l (τ t
l ),PNt

l (τ t
l )) + DissD(PNt

l ; [0, τ t
l ]) + C ν(ΠNt

l ).
(4.45)

Proof. First let us note that DissD(PNt
l ; [0, t]) = DissD(PNt

l ; [0, τ t
l ]) since PNt

l

\

\

\

[τ t
l
,t]

is

constant.
Then we compute, with (4.30), (4.31) in mind,

E(t, yNt
l (t),PNt

l (t)) − E(τ t
l , yNt

l (τ t
l ),PNt

l (τ t
l )) =

∫ t

τ t
l

∂sE(s, yNt
l (s),PNt

l (s))ds ≤

∫ t

τ t
l

c
(1)
E (c

(0)
E + E(s, yNt

l (s),PNt
l (s))ds ≤

∫ t

τ t
l

c
(1)
E (c

(0)
E + E(0, ŷ0, P̂0))ec

(1)
E sds =

(c
(0)
E + E(0, ŷ0, P̂0))(ec

(1)
E t − ec

(1)
E τ t

l ) ≤ C(t − τ t
l ).

In view of (4.39) and the boundedness of ∂tE by some C ′ > 0 on the corresponding
interval, we continue estimating from above:

E(τ t
l , yNt

l (τ t
l ),PNt

l (τ t
l )) + DissD(PNt

l ; [0, τ t
l ]) + Cν(ΠNt

l ) ≤

E(0, y(0),P(0)) +

∫ τ t
l

0
θNt

l (s)ds + Cν(ΠNt
l ) ≤

E(0, y(0),P(0)) +

∫ t

0
θNt

l (s)ds + (C + C ′)ν(ΠNt
l ).
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For a fixed t, let l → +∞ in inequality (4.45) combined with the previous one. The
limit inequality so obtained reads

E(t, y(t),P(t)) + δ∞(t) ≤ E(0, y(0),P(0)) +

∫ t

0
θ∗(s)ds,

because of (4.41) and (4.40). The weak seq. lower semicontinuity of the dissipation
results in DissD(P; [0, t]) ≤ δ∞(t) (Theorem 14(c)). Applying it, alongside the inequality
θ∗(t) ≤ θ(t) = ∂tE(t, y(t),P(t)), which belongs to fruit of Section 4.7 and to that of
(4.44), we finally get the upper energy estimate

E(t, y(t),P(t)) + DissD(P; [0, t]) ≤ E(0, y(0),P(0)) +

∫ t

0
∂tE(τ, y(τ),P(τ))dτ.

4.10 Lower energy estimate

To obtain the lower energy estimate

E(t′, y(t),P(t′)) + DissD(P; [t, t′]) ≥ E(t, y(t),P(t)) +

∫ t′

t
∂tE(τ, y(τ),P(τ))dτ (4.46)

for arbitrary 0 ≤ t < t′ ≤ T (in particular for t := 0, t′ := T ), we use approximations
by Riemann sums as in [15]. For this purpose, consider any partition ΠM = ¶τM

j ♦jM

j=0

of [0, T ] (which is in no relation with the partitions used in Section 4.7). By stability
of (y(τM

j−1),P(τM
j−1)), derived in Section 4.8, and the fundamental theorem of calculus

E(τM
j−1, y(τM

j−1),P(τM
j−1)) ≤ E(τM

j−1, y(τM
j ),P(τM

j )) + D(P(τM
j−1),P(τM

j )) =

E(τM
j , y(τM

j ),P(τM
j )) + D(P(τM

j−1),P(τM
j )) −

τM
j

∫

τM
j−1

∂tE(s, y(τM
j ),P(τM

j ))ds, 1 ≤ j ≤ jM .

If we sum over j = 1, 2, . . . , jM , the values of energy at intermediate time levels mutu-
ally cancel out and

∑jM

j=1 D(P(τM
j−1),P(τM

j )) can be estimated from above by the total
dissipation:

E(t′, y(t′),P(t′)) + DissD(P; [t, t′]) − E(t, y(t),P(t)) ≥

jM
∑

j=1

τM
j

∫

τM
j−1

∂tE(s, y(τM
j ),P(τM

j ))ds =

jM
∑

j=1

∂tE(τM
j , y(τM

j ),P(τM
j ))(τM

j − τM
j−1) +

jM
∑

j=1

(τM
j − τM

j−1)ρM
j . (4.47)

The values ρM
j are defined as

ρM
j =

1

τM
j − τM

j−1

∫ τM
j

τM
j−1

[∂tE(s, y(τM
j ),P(τM

j ))−∂tE(τM
j , y(τM

j ),P(τM
j ))]ds, 1 ≤ j ≤ jM ,

and satisfy for all j ∈ ¶1, 2, . . . , jM ♦

\

\

\ρM
j

\

\

\ ≤
1

τM
j − τM

j−1

∫ τM
j

τM
j−1

♣∂tℓ(s, y(τM
j )) − ∂tℓ(τ

M
j , y(τM

j ))♣ds ≤

1

τM
j − τM

j−1

∫ τM
j

τM
j−1

♣♣∂tℓ(s) − ∂tℓ(τ
M
j )♣♣(W 1,qY (Ω;IRd))∗ ♣♣y(τM

j )♣♣W 1,qY (Ω;IRd)ds.
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Given an ε > 0, there exists a δ > 0 such that if s1, s2 ∈ [0, T ], ♣s1 − s2♣ < δ, we
have ♣♣∂tℓ(s1)−∂tℓ(s2)♣♣(W 1,qY (Ω;IRd))∗ < ε (this is the uniform continuity of ∂tℓ : [0, T ] →

(W 1,qY(Ω; IRd))∗). Therefore, if the partition ΠM has norm ν(ΠM ) < δ, then

\

\

\

\

\

\

jM
∑

j=1

(τM
j − τM

j−1)ρM
j

\

\

\

\

\

\

≤
jM
∑

j=1

τM
j − τM

j−1

τM
j − τM

j−1

∫ τM
j

τM
j−1

ε♣♣y(τM
j )♣♣W 1,qY (Ω;IRd)ds ≤ C∗εT.

Since ε > 0 was arbitrary, we infer that the last sum in (4.47) goes to zero if ν(ΠM )
tends to 0 with M → +∞.

Now we turn to the first sum in (4.47). We know from Section 4.9 that the mapping
τ ↦→ −∂tℓ(τ, y(τ)) is measurable and by

ℓ ∈ C([0, T ]; (W 1,qY(Ω; IRd))∗), y ∈ B([0, T ]; W 1,qY(Ω; IRd))

it follows that it is even in L1((0, T )).
Hence Theorem A.5 on approximation of (here Lebesgue) integrals via Riemann

sums establishes the existence of a sequence ¶ΠM ♦∞
M=1 of partitions of [t, t′], ΠM =

¶τj♦jM

j=0, M ∈ N, with limM→+∞ ν(ΠM ) = 0 for which

lim
M→+∞

\

\

\

\

\

\

jM
∑

j=1

−∂tℓ(τ
M
j , y(τM

j ))(τM
j − τM

j−1) −
∫ τM

j

τM
j−1

−∂tℓ(τ, y(τ))dτ

\

\

\

\

\

\

= 0.

In consequence, (4.47) yields lower energy estimate (4.46) in the limit.

4.11 Improved convergence and summary

In [15], it is pointed out that it is possible to get stronger convergence and dispose of
the t-dependence of index subsequences, at least for some of the previously introduced
sequences of functions.

The result that has been proved in this chapter can be summarised in

Theorem 17. Suppose that Ω ⊂ IRd, d > 1, Ω ∈ C0,1 and T > 0. Let W be mea-
surable, nonnegative, lower semicontinuous and satisfying (4.1); W (·,P∗) satisfying
(1.1) for every P∗ ∈ SL(d). Further, assume that ℓ ∈ C1([0, T ]; (W 1,qY(Ω; IRd))∗),
D has properties (4.4), hypothesis (4.32) holds, all Lebesgue exponents are as above,

ŷDir ∈ W
1− 1

qY
,qY(ΓD; IRd) and Y ̸= ∅.

Then, for each (ŷ0, P̂0) ∈ S(0) there exists an energetic solution (y,P) : [0, T ] →
Y × Z of (S) and (E) with (y(0),P(0)) = (ŷ0, P̂0) and

y ∈ B([0, T ]; W 1,qY(Ω; IRd)) and

P ∈ L∞((0, T ); W 1,qP(Ω; IRd×d)) ∩ BV([0, T ]; L1(Ω; IRd×d)).
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Conclusion

13. Looking back. (. . . ) There
remains always something to do;
with sufficient study and
penetration, we could improve any
solution, and, in any case, we can
always improve our understanding
of the solution.

George Polya, How to Solve It
(1945)

Finite-strain elastoplasticity with a multiplicative decomposition of the deformation
gradient F into the elastic part Fel and the plastic part P

F = FelP

has been around for a few decades, but the field is still a ‘work in progress’ [10].
Nowadays there exist a number of approaches and many proposed ideas are a matter
of ongoing discussion.

This thesis falls into the theory of variational rate-independent evolutions, which
has been developed by Mielke [26], Francfort [15] and others, and has been applied to
brittle fracture, damage etc. [10].

When one elaborates on minimisation of energy functionals, sufficient conditions for
the existence of minimisers are crucial. A widespread sufficient condition is Ball’s poly-
convexity from [1], but e.g. for the modelling of shape-memory alloys, this property
is not appropriate. Benešová, Kruž́ık and Schlömerkemper [5] set up gradient poly-
convexity which can better accommodate multiwell stored energies and has a physical
interpretation of limiting strong spatial variation in area/volume changes.

The novelty of this master’s thesis is the extension of a material model with gradient
polyconvex stored energy from [5] to an elastoplastic body and proving the existence
of an energetic solution to a rate-independent evolution in the material. Perfect finite-
strain gradient elastoplasticity is considered, but as [25] indicates, addition of hardening
variables to the model would not require many changes and the existence result would
still hold in a suitable version. The same would apply to stored energy densities W ,
which also depend on F−1 and the spatial variable X ∈ Ω (see [5]), and incorporation
of locking constraints is likewise possible. Further work would be necessary to allow a
time-dependent Dirichlet boundary condition as in [25].

Energetic solutions, as presented in Chapter 2, are not the only possibility in rate-
independent systems. In particular, S. Schwarzacher (Department of Mathematical
Analysis of Charles University) remarked that using balanced-viscosity solutions (cf.
[28, p. 222]) would be desirable, as they ‘do not overlook local minima’ of the total
energy functional.
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A. Appendix – facts from

mathematical analysis

Definition A.1. We call a finite sequence of points ¶tk♦N
k=0, tk ∈ IR, N ∈ N a partition

of the interval [a, b] if

a = t0 < t1 < · · · < tN = b.

By the norm of the partition Π = ¶tk♦N
k=0, we mean the number

ν(Π) = max¶tk+1 − tk; k = 0, 1, . . . , N − 1♦.

Let ΠN , N ∈ N, be partitions of [a, b]. We say that ¶ΠN ♦∞
N=1 is a sequence of nested

partitions if for every N ∈ N, we have ΠN ⊂ ΠN+1.

Further we recall a selection theorem known e.g. from courses on nonlinear analysis.

Theorem A.1 (Helly). Let C > 0 and suppose fn : IR → [0, C], n ∈ N, are nondecreas-
ing functions. Then there is a subsequence ¶fnk

♦∞
k=1 ⊂ ¶fn♦∞

n=1 and a nondecreasing
function f : IR → [0, C] such that fnk

→ f pointwise in IR.

We also need two generalisations of scalar-valued functions of bounded variation.

Definition A.2. [28, p. 603] Let T > 0 and let X be a Banach space. The variation
of P : [0, T ] → X with respect to the norm of X is defined as

VarX (P, [0, T ]) = sup
{

N−1
∑

i=1

\

\

\

\P(ti+1) − P(ti)
\

\

\

\

X
; N ∈ N,

t1, t2, . . . , tN ∈ [0, T ], t1 < t2 < · · · < tN

}

.

A subspace of mappings P ∈ B([0, T ], X ) with bounded variation VarX (P, [0, T ]) < +∞,
endowed with the norm ♣♣P♣♣BV([0,T ];X ) = sup0≤t≤T ♣♣P(t)♣♣X +VarX (P, [0, T ]), is denoted
by BV([0, T ]; X ).

Definition A.3. [24, p. 4] Let Z be a Hausdorff topological space, D a dissipation
distance as in Chapter 4 and T > 0.

We write BVD([0, T ]; Z) = ¶P : [0, T ] → Z; DissD(P; [0, T ]) < +∞♦.

For the definition of other function spaces, where the functions take values in some
Banach space X , e.g. C1([0, T ]; X ), T > 0, the reader is referred to [21, p. 40].

A.1 Measure and integration theory

Lemma A.2. Let (X , ρ) be a metric space and f : X → IR∞ a lower semicontinuous
function. Then the set f−1((a, +∞]) ⊂ X is open for any a ∈ IR.

Proof. Given any a ∈ IR, it is enough to prove that the set

S := X \f−1((a, +∞]) = ¶x ∈ X ; f(x) ≤ a♦

is closed. To do this, consider any sequence ¶xn♦∞
n=1 ⊂ S such that xn

ρ
−→ x ∈ X ,

n → +∞. Then f(x) ≤ lim infn→+∞ f(xn) ≤ a, so x ∈ S.
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In the below versions of Fatou’s lemma, measurability of sets or functions is meant
with respect to Borel σ-algebras in the respective measure spaces.

Theorem A.3 (Fatou’s lemma). [14, p. 42] Suppose d ∈ N and E ⊂ IRd is a
measurable set. If fn : E → [0, +∞] is a sequence of measurable functions, then
f := lim infn→+∞ fn is a measurable function and

∫

E
f(x)dx ≤ lim inf

n→+∞

∫

E
fn(x)dx.

Theorem A.4 (reverse Fatou’s lemma). [14, p. 42] Under the assumptions of the
Fatou lemma above, let f̃n : E → IR∞ be a sequence of measurable functions such that
f̃n ≤ g for some measurable function g : E → [0, +∞] with

∫

E g(x)dx < +∞. Then
f̃ := lim supn→+∞ f̃n is a measurable function and

∫

E
f̃(x)dx ≥ lim sup

n→+∞

∫

E
f̃n(x)dx.

The theorem to be stated now enables approximation of Bochner (all the more,
Lebesgue) integrals by Riemann sums and is cited e.g. in [9, Section 4.4].

Theorem A.5. Let [a, b] be a closed bounded interval, let X be a Banach space, and let
f : [a, b] → X be a Bochner-integrable function. Then there exists a sequence ¶ΠM ♦∞

M=1

of partitions of the interval [a, b], with ΠM = ¶τM
j ♦jM

j=0,

lim
M→+∞

ν(ΠM ) = 0,

such that

lim
M→+∞

\

\

\

\

\

\

\

\

\

\

\

\

jM
∑

j=1

(τM
j − τM

j−1)f(τM
j ) −

∫ b

a
f(t)dt

\

\

\

\

\

\

\

\

\

\

\

\

= 0.

A.2 Calculus of variations

In (4.4a), D was supposed to be a Carathéodory mapping. A generalisation of the
model presented in Chapter 4, which suggests itself, would merely require D to be
a normal integrand (with some additional assumptions as in [25]), so both terms are
defined here subsequently.

Definition A.4 (normal integrand). [25] If E ⊂ IRd is Lebesgue-measurable, U is a
topological space and B(U) its Borel σ-algebra, then a function f : E × U → IR∞ is
called a normal integrand if

f is LE × B(U)-measurable and (NI1)

for a.a. x ∈ E : f(x, ·) : U → IR∞ is lower semicontinuous, (NI2)

where LE denotes the Lebesgue-measurable subsets of E.

Definition A.5 (Carathéodory mapping). [28, p. 598] Under the hypotheses of Defi-
nition A.4, assume that U := IRdc, where dc ≥ 1. A special case of a normal integrand
f : E × IRdc → IR∞ with f(x, ·) : IRdc → IR continuous for a.a. x ∈ E is called a
Carathéodory mapping.

Definition A.6 (weak coercivity). Let X be a Banach space. We say that F : X → IR∞

is weakly coercive with respect to A ⊂ X if

lim
x∈A

♣♣x♣♣→+∞

F (x) = +∞.
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Strong coercivity could be defined by a similar condition, requiring a faster growth
to infinity, but we do not need the term.

Claim A.6. [14, p. 563] Let X be a Banach space. If a sequence ¶xn♦ ⊂ X converges
weakly to x ∈ X , then it is bounded and

♣♣x♣♣ ≤ lim inf
n→+∞

♣♣xn♣♣.

Definition A.7 (quasiconvexity). [8, p. 156] A Borel-measurable and locally bounded
function W : IRd×d → IR is said to be quasiconvex if

W (A) ≤
1

Ld(E)

∫

E
W (A +➎ϕ(X))dX

for every bounded open set E ⊂ IRd, every A ∈ IRd×d and every ϕ ∈ W
1,∞
0 (E; IRd).

A.3 Partial differential equations

Next we state Grönwall’s lemma, in a form due to Bellman [30, p. 11].

Theorem A.7 (Grönwall’s lemma). Let u and f be continuous and nonnegative func-
tions defined on [a, b], a, b ∈ IR, a < b, and let c be a nonnegative constant. Then the
inequality

u(t) ≤ c +

∫ t

a
f(s)u(s)ds, t ∈ [a, b],

implies that

u(t) ≤ c exp
(

∫ t

a
f(s)ds

[

, t ∈ [a, b].

It is known from functional analysis that norm-bounded sets in reflexive normed
linear spaces are relatively weakly sequentially compact. The following theorem can be
utilised to get weak∗ limits in non-reflexive Banach spaces.

Claim A.8. [28, p. 586] In a Banach space with a separable predual, every bounded
sequence contains a weakly* convergent subsequence.

It is supposed that the reader is acquainted with the usual Sobolev spaces W k,p(Ω),
k ∈ N, 1 ≤ p ≤ +∞, Ω ⊂ IRd open (defined e.g. in [12]), as well as their vector-valued
counterparts W k,p(Ω; IRd) (see [6, p. 282]). More facts about Sobolev–Slobodeckĭı
spaces W s,p(∂Ω), s > 0, s ̸∈ N, can be found in [21, p. 330–332].

For the compact embedding below, which is heavily used in the modern theory of
PDEs, Ω does not need to be a Lipschitz domain; the class C0 is sufficient.

Theorem A.9 (compact embedding of Sobolev spaces). Let Ω ⊂ IRd be a bounded
domain of class C0 and 1 ≤ q < +∞. Then W 1,q(Ω) is compactly embedded into
Lq(Ω).

In [6], the next inequality can be found as Theorem 6.1-8(b). It would not be
difficult to derive a variant valid for vector-valued functions.

Theorem A.10 (Poincaré inequality). Let Ω ⊂ IRd be a bounded domain with Lips-
chitz boundary and let 1 ≤ q < +∞. Let Γ be a Hd−1-measurable subset of ∂Ω with
Hd−1(Γ) > 0. Then there exists a constant CP such that

∫

Ω
♣u♣qdX ≤ CP

⎤
∫

Ω
♣∇u♣qdX +

\

\

\

\

∫

Γ
u dS

\

\

\

\

q⎣

for all u ∈ W 1,q(Ω).
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The following theorem on multiplication of Sobolev functions (Theorem 7.5) from
[3] gives sufficient conditions on the exponents to ensure that the product lies in a
Sobolev space as well.

Theorem A.11. Let Ω be a bounded domain in IRd with Lipschitz boundary. Assume
si, s and 1 ≤ pi, p < +∞ (i = 1, 2) are real numbers satisfying

(i) si ≥ s,

(ii) s ≥ 0,

(iii) si − s ≥ d
(

1
pi

− 1
p

[

,

(iv) s1 + s2 − s > d
(

1
p1

+ 1
p2

− 1
p

[

.

In the case where max¶p1, p2♦ > p instead of (iv) assume that s1 + s2 − s > d
min¶p1,p2♦ .

Claim: If u ∈ W s1,p1(Ω) and v ∈ W s2,p2(Ω), then uv ∈ W s,p(Ω) and moreover the
pointwise multiplication of functions is a continuous bilinear map

W s1,p1(Ω) × W s2,p2(Ω) → W s,p(Ω).
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