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Abstract: The surveillance cameras serve various purposes ranging from se-
curity to traffic monitoring and marketing. However, with the increasing
quantity of utilized cameras, manual video monitoring has become too labo-
rious. In recent years, a lot of development in artificial intelligence has been
focused on processing the video data automatically and then outputting the
desired notifications and statistics. This thesis studies the state-of-the-art
deep learning models for object detection in a surveillance video and takes
an in-depth look at SSD architecture. We aim to enhance the performance
of SSD by updating its underlying feature extraction network. We propose
to replace the initially used VGG model by a selection of modern ResNet,
Xception and NASNet classification networks. The experiments show that
the ResNet50 model offers the best trade-off between speed and precision,
while significantly outperforming VGG. With a series of modifications, we
improved the Xception model to match the ResNet performance. On top of
the architecture-based improvements, we analyze the relationship between
SSD and a number of detected classes and their selection. We also designed
and implemented a new detector with the use of temporal context provided
by the video frames. This detector delivers enhanced precision while meeting
real-time requirements.

Keywords: object detection, video surveillance, deep neural networks, SSD
architecture
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Introduction
In recent years, security cameras have become widely used for indoor and
outdoor surveillance. Covering more and more public space in cities, the
cameras start to serve various smart city purposes ranging from security to
traffic monitoring and marketing. However, with the increasing quantity of
utilized cameras and recorded streams, manual video monitoring and analysis
becomes too laborious. Hence, developments in artificial intelligence and the
broader availability of computing power are necessary to benefit from such
rich data sources. Instead of monitoring by people, the goal is to train an
effective and efficient artificial intelligence model to process the video data
automatically and then output the desired notifications and statistics.

The automatization in video surveillance has evolved rapidly in the last
decades. Not so long ago, state-of-the-art detection relied on motion detec-
tion based on the principle of frame difference. Frame difference methods
either compare successive frames with each other or use background subtrac-
tion to detect changes in the video. This is a fast and simple method for
detecting moving objects and can be nowadays commonly found embedded
directly in the security cameras. However, the frame difference approach is
prone to false detections as it is sensitive to every movement regardless of
the object type. Hence, it is no longer used as a standalone detector.

An object detector with classification capability can not only enhance the
detection by providing the means for class-based filtering but also removes a
significant deficiency of frame differencing methods, detection of stationary
objects. Modern detectors gain this capability by relying on feature vectors
for a class description. The first such algorithm with competitive real-time
results was a face detector by Viola et al.. A few years later, another sig-
nificant step in detection came from Dalal and Triggs using the histogram
of oriented gradients for human detection. The last breakthrough in object
detection that has become the dominant approach of the current decade is
the application of deep learning. In the ImageNet Large Scale Visual Recog-
nition Challenge, deep learning approaches have been winning consistently
since 2012 and surpassed human performance in 2015.

Goals

The goal of this thesis is to review state-of-the-art deep learning models for
object detection and implement a real-time detection model based on the SSD
approach. The objective is not only to re-implement a selected model but to
improve that model for purposes of surveillance while using the information
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gathered from the review. This thesis aims to test proposed improvements
experimentally.

On top of the optimization of the SSD, we aspire to design and imple-
ment a second model, a real-time video detector with enhanced precision by
exploiting the temporal information provided by the video.

The focus of this thesis is limited to the detection component of a more
extensive video detection pipeline. We do not concern ourselves with opti-
mizing pre- and post-processing operations. Although many interesting tasks
are based on object detection, e.g., tracking and re-identification, they are
not in the scope of this thesis.

Thesis Structure

Chapter 1 defines the metrics needed for the evaluation of classification and
object detection models, and notation used throughout this thesis.

In chapter 2, we present a brief overview of the history of convolutional
neural networks used for image classification and region-based object detec-
tors.

Chapter 3 is dedicated to providing an in-depth review of real-time detec-
tors. We began by explaining the transition from region-based detectors to
one-stage detectors and then described two such networks, namely SSD and
YOLO. The second part of the chapter is focused on reviewing two methods
for video detection with the use of temporal information, i.e., Tube-CNN and
Temporal SSD.

We present our contributions in chapter 4. We propose a set of improve-
ments of SSD aimed at real-time detection for video surveillance and test
them experimentally. Our contributions include a comparison of SSD imple-
mented on a multitude of base networks (ResNet, Xception, NASNet), a test
of the relationship between detector performance and a number of detected
classes, and an improved version of Xception modified to suit the needs of
SSD detector. Our final contribution is an extension of SSD detector by the
addition of three-dimensional convolutions using the temporal dimension,
called a Single Shot Detector with Temporal Convolution (SSDTC).

Chapter 5 provides details on the methodologies used in this work. It
also presents supplementary results acquired during the experiments.
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1. Preliminaries
In the last few years, there has been a rapid development in the field of
deep learning application to computer vision and object detection. With
each model being an iterative improvement on its predecessors, we review a
broad spectrum of neural networks to properly understand the structure and
the reasoning behind current state-of-the-art models. This amount of infor-
mation compels us to leave an explanation of the inner workings of neural
networks out of the scope of this thesis. We, therefore, expect prior knowl-
edge from the reader in the area of deep learning, namely in understanding
standard modules such as fully connected, convolutional and pooling layers,
activation functions, soft-max classifier, batch normalization and principle
behind backpropagation and loss functions. All required knowledge can be
obtained from the book by Goodfellow et al. [11].

A large part of this thesis is focused on describing and comparing clas-
sification and object detection models, in order to do so, this chapter is
dedicated to describing used evaluation metrics and notations.

1.1 Evaluation metrics
In order to evaluate and compare multiple approaches, we require clearly
defined evaluation metrics. A state-of-the-art model presented without full
specification of used evaluation metrics makes comparing multiple results
impossible. Thankfully, there are competitions and challenges with precisely
defined rules that are often used to make such comparisons.

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC)1 is
most often used to benchmark classification. Object detection is commonly
evaluated in two challenges: the PASCAL Visual Object Classes Challenge2,
and the COCO Object Detection Task3. Each challenge also provides a public
dataset, ImageNet, PASCAL VOC, and COCO respectively.

In this section, we define metrics used to evaluate those challenges, but
also other, not considered qualities. Most notably, none of the mentioned
challenges is evaluated based on the speed of the model. Since our work is
focused on real-time video analysis, we are interested in finding a balance
between accuracy and the number of images processed per second (fps). One
more factor to consider would be the physical size of the model, usually

1http://www.image-net.org/challenges/LSVRC/
2http://host.robots.ox.ac.uk/pascal/VOC/
3http://cocodataset.org/
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represented by the number of parameters and directly impacting the amount
of needed memory.

1.1.1 Classification
The most common and intuitive evaluation metric for classification problems
is the ratio of correctly classified samples. This ratio is referred to as a
classification accuracy. However, a complement to the accuracy, top-1 error,
is also often used. In ILSVRC, alongside top-1 error, a top-5 error is used
as another major criterion. The top-5 error represents the fraction of test
samples in which the correct label does not appear in the top 5 predicted
results.

1.1.2 Object Detection
Evaluating a localization and classification of multiple objects in an image is
a more complex task than classification, mainly because there is no simple
one-to-one mapping between ground-truths and predictions. A ground-truth
data are a set of N boxes with labels, and detector generates a set of M boxes
with labels and class confidence values.

Because predicted boxes do not perfectly match ground-truths, a match-
ing algorithm is needed to decide whether a prediction is true positive or
false positive. Matching is usually done by computing intersection over
union (IoU) value for each pair of ground-truth and predicted boxes, and
then selecting positive detections based on predetermined threshold.

IoU = Area(Prediction ∩ Ground truth)
Area(Prediction ∪ Ground truth)

With predictions sorted into true positives (TP), false positives (FP) and
false negatives (FN) (no predictions matching a ground-truth box) we are
able to calculate precision and recall.

Precision = TP
TP + FP

Recall = TP
TP + FN

Now we can define the first metrics used for object detection. Note that
all following metrics depend on precision and recall, and therefore depend on
the IoU threshold.

8



Precision-Recall Curve (PRC)

PRC is a plot showing the relationship between values of precision and recall.
It is plotted separately for each class and reveals how a change in confidence
influences the precision and recall values.

Every point on PRC represents a chosen confidence threshold used for
determining positive predictions for a given class. The curve does not show
this threshold. Instead, it shows precision and recall received by applying
this threshold.

An object detector of a particular class can be considered reliable if its
precision stays high while recall increases, which means that predictions with
lower confidence score can be considered good predictions.

Average Precision (AP)

Comparing curves is not an easy task, particularly if they cross each other
frequently, as it often happens with PR curves. However, we can use the
area under the PR curve as numerical metrics, called average precision. It
is usually calculated by interpolation, either on all data points or a small
number of equally spaced points (earlier versions of PASCAL VOC Challenge
use 11).

Interpolation equation for all points:

1∑
r=0

(rn+1 − rn)pinterp(rn+1)

with
pinterp(rn+1) = max

r̃≥rn+1
p(r̃)

where p(r̃) is precision at recall r̃.

Mean Average Precision (mAP)

Comparing two models class by class is impractical, especially with the clas-
sifiers for hundreds of classes. Therefore, the most often used metrics for
object detectors is a mean average precision. As the name suggests, it is a
mean of AP across all classes.

Most common notation, mAP@[0.5] means mAP with IoU threshold 0.5.
The mAP can also be averaged over multiple IoU thresholds, mAP@[.5, .95]
denotes the average mAP from IoU 0.5 to 0.95 usually with step 0.05.

We use mAP@[0.5] for all evaluations in this thesis.
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1.1.3 Inference Time
Inference time is a significant factor to consider for the model in real-time
application use. With the state-of-the-art models, images are often processed
under a second, often in a few milliseconds. Such small numbers can be hard
to comprehend. Therefore a more intuitive metric is used. That being the
number of processed frames per second (fps). However, unlike precision met-
rics, the fps values are heavily dependant on hardware, software framework,
batch size and amount of pre- and post-processing included in the measure-
ment. Hence, only the measurements performed in the identical hardware
and software environment are suitable for comparison.

1.2 Notation and Convention
To avoid any confusion, we define the standard notation used throughout
this thesis. We tried to follow the general convention, but there can be some
variance compared to other works.

Data

To represent the size of the multidimensional data (tensors), we use bracket
notation with dimensional sizes separated by × sign (not to be confused with
multiplication).

A two-dimensional matrix represented as [a×b], is most often used to
represent spatial dimensions of an image or a feature map.

In three dimensional data, denoted as [a×b×c], the first two numbers
represent the spatial dimension and c represents the number of channels,
e.g., standard RGB image has three channels. For convenience, we may use
[a×c] notation if a and b are equal, while explicitly stating the fact.

The next dimension used in neural networks is the batch size n. We will
be adding this dimension as the last one to our notation, [a×b×c×n].

We will also be using three-dimensional convolutional layers, that produce
five-dimensional tensors. However, we will not add this dimension d to the
end of the list, but instead, keep channels and the batch size at the end:
[a×b×d×c×n].

We sorted the values to allow for unambiguous reference of data without
listing every dimension, provided the context of two (2d) or three-dimensional
(3d) convolution. For example, data passing between two-dimensional convo-
lutional layers is in the form of four-dimensional tensor, but we will often use
only spatial dimensions or spatial and channel dimension to describe given
tensor.
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Convolution

Since convolutional layers are usually chained together, and always work with
the data with channel dimension, we do not need to state the channel depth
of the input data explicitly. We know that if previous convolution outputs
data with the size of [a×b×c], and we need to apply k×k kernel, the actual
size of the kernel is [k×k×c]. However, we must expressly state the number of
channels outputted from the convolution to receive the full information. This
number determines how many times we perform the convolution operation
with different kernels.

The output of a convolutional layer is commonly called a feature map.
This output can be either viewed as a set of c two-dimensional maps or a
single three-dimensional multi-channel feature map. In this thesis, we are
not interested in singular feature maps outputted by the convolutional layer
but rather look at them as a unified three-dimensional map with spatial and
channel dimensions.

Unless stated otherwise, the default parameters for the convolutional layer
is stride of one, dilation of one, and sufficient padding to allow the spatial
dimensions of the output feature map to stay equal to the input ones. The
effects of these parameters are illustrated on fig. 1.1.

• Conv. k×k×c : 2d convolutional layer with kernel size k×k and
output channel depth of c, while using default values for padding, stride
and dilation.

• Conv. k×k×c /s P:p D:d : 2d convolutional layer with stride s,
padding p and dilation d.

• Conv3d. k×k×k3×c P:0 : 3d convolutional layer with kernel spatial
size k×k and temporal size k3, and output channel depth of c and zero
padding in all dimensions.

• Conv3d. k×k×k3×c P:p,p,p3 : 3d convolutional layer with spatial
dimensions padded by p elements and third dimension padded by p3
elements.

Other Layers

• Max-pool. k×k /s P:p : maximum pooling with kernel size k×k,
stride s and padding p. Default value for stride and padding is 1.

• Fully connected / FC - N : fully connected layer with N neurons
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Figure 1.1: Effect of padding, stride and dilation on two-dimensional con-
volutional layer (left to right). Blue maps represent inputs, and cyan maps
outputs. Images adopted from Dumoulin and Visin [8].
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2. Neural Networks for Image
Processing
In recent years, there has been an upsurge in the use of neural networks.
We can partially attribute it to the evolution of hardware allowing for the
implementation of network models with multiple layers. Deep neural net-
works (DNN) are now finding their use in many applications, e.g., classifica-
tion, time series prediction, and optimization tasks, and are replacing many
older machine learning methods. Some of the benefits of neural networks
include their ability to find and learn complex non-linear relationships in
provided data and subsequent generalization to unseen data. However, some
applications do not allow for so-called ’black box’ models and require logical
reasoning behind the decisions.

Image processing is one of the fields where DNNs are heavily utilized and
outperform traditional machine learning approaches with big margins. Uses
of DNNs for image processing vary from classification and object detection to
auto-encoders for noise removal, and generative networks. A surge in DNN
based image processing started in the 2010s with an implementation of a
multi-layer convolutional network trained on GPU [6].

In this chapter, we take a closer look at how are DNNs applied in object
detection. The goal of such a detector is to localize and classify multiple
objects of interest in the given image. There are multiple ways of local-
ization, such as semantic segmentation, which categorizes individual pixels,
or key-point and skeleton detections. However, we are interested in a more
straightforward, axis-aligned bounding box (bbox) predictions. Each of the
predicted bounding boxes needs a corresponding class prediction.

Considering the importance of classification in object detection, we dedi-
cate a significant portion of this chapter to describing multiple classification
network models. Many detection models directly utilize or are inspired by
those classification networks.

2.1 Classification Networks
A fundamental building block for a modern state-of-the-art image classifi-
cation network is a convolutional layer. Accordingly, we call this type of
networks a convolutional neural networks (CNN) [11, ch. 9]. CNN based
classifier is a network that given the input image, extracts a feature map
from this image and then applies classification layers to produce a confidence
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score for each possible class. Usually, the soft-max function is applied to the
confidence score to get a probability distribution.

We use this section to take a walk through the history of classification
CNNs and outline some of the most influential models. Some of those models
are still used, and others are responsible for inspiring the next generations of
even better networks.

2.1.1 AlexNet (2012)
AlexNet designed by Krizhevsky et al. [16] is the first CNN that won the
ILSVRC challenge over traditional computer vision and machine learning
approaches. It created a foundation on which today’s state-of-the-art models
are built, and set a new standard for image recognition. AlexNet is created
from a stack of five convolutional layers interleaved by max-pooling layers,
followed by two fully connected layers and a softmax layer. A local response
normalization [16, section 3.3] is applied after first two convolutional layers.
AlexNet also popularized the use of ReLU non-linearity in CNNs.

2.1.2 VGG (2014)
The network architecture, mostly known as VGG, by Simonyan and Zisser-
man [26], is built on the deep CNN concept behind AlexNet. It managed
to prove the feasibility of even deeper network utilizing small convolution
filters.

Each of the VGG’s convolutional filters employs a 3×3 kernel with the
depth of the feature map gradually increasing through the network. The
convolutions are followed by three fully connected layers and softmax layer,
see fig. 2.1.

Multiple versions of the VGG architecture can be constructed, depending
on the number of convolutional layers. The most popular is the 16 layer
version, titled VGG16.

Today the VGG network is considered to be a general architecture for a
classification network due to its linear architecture with a decreasing area of
the features, and an increasing number of channels.

2.1.3 Inception (2014)
Predating architectures suggest that increasing the number of layers and
layer size, leads to better precision. Szegedy et al. introduced Inception v1
[27], also known as GoogLeNet, with the goal of increasing precision while
improving utilization of computing resources.
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Figure 2.1: Architecture of VGG network version D, commonly called VGG-
16. Other versions in [26, table 1].

Although stacking more convolutional layers improves the accuracy, an
increasing computational cost of those layers quickly overpowers the bene-
fits. To avoid the aforementioned cost, Inception introduces the concept of
sparsity in convolutional layers. The sparsity is achieved by using inception
modules that approximate a sparse structure by utilizing multiple convolu-
tions with different kernel sizes and concatenating the outputs together (see
fig. 2.2).

To reduce the computational cost further, each convolution is preceded
with additional 1×1 convolution, used for a dimensionality reduction. An
alternate path in the inception module is provided by max-pooling operation
and concatenating it to the output.

Inception begins with a sequence of convolution, pooling, and local re-
sponse normalization operations. This ’stem’ is followed by a chain of nine
inception modules, topped by a fully connected soft-max classifier. Two aux-
iliary classifiers are added to intermediate layers of the network to help prop-
agate gradients and provide regularization during the training.

Inception v2, v3 (2015)

A set of improvements to the Inception network is introduced in later ver-
sions of the network. Most notably a factorization of convolution layers in
Inception v2 and v3, Szegedy et al. [28]. Factorization replaces larger convo-
lutions with a network of many smaller ones. They found this method very
effective, e.g., replacing a 5×5 convolution with two layers of 3×3 results in
a relative gain of 28% and replacing 3×3 layer with 3×1 and subsequent 1×3
layer is 33% cheaper.
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Figure 2.2: Inception module, picture from [27, figure 2].

2.1.4 ResNet (2015)
A trend of adding more layers to CNNs to achieve better accuracy has pushed
the limit towards networks with hundred or more layers. Theoretically,
adding more layers to a model should produce equal or better results, based
on the fact that shallow model is the subspace of the deeper one. There-
fore, additional layers can learn to forward the data. In practice, however,
observations suggest that this is not the case, and very deep networks can
experience eventual degradation. A solution to this problem was proposed by
Kaiming He and Sun [14] in the ResNet architecture by directly introducing
identity functions to the network.

Basic principles of ResNet are directly inspired by the VGG. Most of the
convolutional layers use 3×3 filters and follow two simple rules: keep the
number of filters the same, unless changing the output size and double the
filters if the feature size is halved.

Newly introduced residual connections bypass each pair of the convolu-
tional layers and forms residual blocks. These connections can be an identity
function or, if the input and output feature map depths of the residual block
do not match, a 1×1 convolution can be used.

We can see the high level architecture of this model in fig. 2.3 (left).
Each of four Layers represents a sequence of multiple residual blocks, exact
numbers of blocks can be found in [14, table 1]. Previously described residual
block with two convolutional layers, known as Basic block, is used for smaller
ResNet models (ResNet18, ResNet34). Deeper ResNet models (ResNet50,
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Conv. 1×1×256*N

BatchNorm.

+

Figure 2.3: Architecture of the ResNet network and residual blocks. Each of
the four Layers is created by stacking multiple residual blocks.
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ResNet101, ResNet152) use the Bottleneck block with three convolutional
layers. In Bottleneck block, the 1×1 layers are responsible for reducing and
then restoring dimensions, allowing for faster 3×3 layer with reduced input
and output dimensions. Thanks to the efficient architecture, the 152-layer
ResNet has lower computational complexity than the 16-layer VGG network.

2.1.5 Xception (2017)
Xception architecture by Chollet [5], is heavily inspired by previous architec-
tures, mainly Inception and ResNet. It is built on the hypothesis claiming:
”the mapping of cross-channel correlations and spatial correlations in the fea-
ture maps of convolutional neural networks can be entirely decoupled.” This
hypothesis expands upon the hypothesis underlying Inception architectures.
Therefore the name ’Extreme Inception.’

The hypothesis is realized in the form of depthwise separable convolu-
tion layers (shortly separable convolution). Depthwise separable convolution
consists of two steps: a depthwise convolution and pointwise convolution. A
depthwise convolution is a convolution performed independently over each
channel, i.e., a convolution without changing the number of channels. The
second step is a pointwise convolution that uses 1×1 kernel to map the output
of depthwise convolution into new channel space.

The model is formed by linearly stacking separable convolution layers with
the addition of residual connections as seen on fig. 2.4. Convolutional layers,
non-linearity, and poolings are structured into residual blocks similarly to
ResNet architecture.

2.1.6 NASNet (2017)
This architecture stands out from others mentioned because Zoph et al. [34]
used a machine learning algorithm to design the network. It is a result of a
AutoML1 project. Unlike manually designing the network by trial and error,
AutoML searches the space of all possible models, e.g., using reinforcement
learning and evolutionary algorithms. This approach is limited by the com-
putational cost and therefore limited to small datasets.

NASNet is a result of taking an architecture designed for small CIFAR-
10 2 dataset by AutoML and using it to create larger model for ImageNet
dataset. The model is composed of two types of learned cells, a Normal Cell

1https://ai.googleblog.com/2017/05/using-machine-learning-to-explore.
html

2https://www.cs.toronto.edu/˜kriz/cifar.html
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Figure 2.4: Structure of Xception architecture. Taken from [5, fig. 5].

and Reduction Cell (see fig. 2.5). A general structure of the network is then
created by alternating a Reduction Cell and N Normal Cells.

2.1.7 Classifier Comparison

At the beginning of this chapter, we mentioned that the classification net-
works are often compared based on performance on the ImageNet dataset.
Newer models, like Xception, NASNet, and modifications of ResNet reach
excellent accuracy. However, there is a large discrepancy in their perfor-
mance considering inference speed. In fig. 2.6 we provide an overview of
fps–accuracy relationship taken from an independent benchmark by Bianco
et al. [2]. Although the experiment was performed with batch size 1, we ex-
pect a universal increase of fps with a bigger batch and only small changes to
the relative performance of different models. We can observe a clear trade-off
between speed and accuracy for the classification task.
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Figure 2.5: Modules used in NASNet-A, designed by AutoML. Image from
ai.googleblog.com/2017/11/automl-for-large-scale-image.

2.2 Detection Networks
The goal of the detection network is to localize all objects of chosen categories.
There is a simple logical step from classification task to detection. It is to
classify selected regions in the image as one of the classes or as a background.
A classification applied to every possible box in the image would undoubt-
edly produce great detection results but at the extreme computational cost.
This section describes a family of algorithms based on this simple idea while
managing limited computational resources.

We will see that this family of so-called region based approaches can
reach state-of-the-art results, with increasing efficiency by each generation.
Considering precision, Faster R-CNN is still used as one of the most reliable
detectors. However, although it can process a few frames per second, we do
not consider it to be a truly real-time detector and applicable for demanding
tasks, such as video surveillance. We devote section 3.2 to detection networks
performing in real-time constraints.

2.2.1 R-CNN (2014)
Region-based Convolutional Network (R-CNN) by Girshick et al. [10] is the
first member of the family of region-based detection models. The foundation
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Figure 2.6: Benchmark of state-of-the-art classification deep neural networks
on ILSVRC dataset. Performed on NVIDIA Titan X GPU with batch size
1. Taken from [2, fig. 3]
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Figure 2.7: R-CNN architecture. Taken from [10, fig. 1].

idea is simple: select regions in the picture and classify each region. This
approach leads to a combination of three modules: region proposal algorithm,
feature extraction using CNNs on those regions and subsequent classification.

A naive approach would use a sliding window and classify each cutout
of the image. However, examining all the windows for different sizes and
aspect ratios of possible objects would be extremely slow. R-CNN solves this
problem by applying a region proposal algorithm that selects about 2000
most likely locations of objects. Regions are selected using the Selective
search (SS) [30] algorithm and serve as candidates for bbox predictions. In
addition, bounding box regression can be trained to improve bbox prediction
accuracy.

Each region is processed separately by a CNN into a feature map (the
original architecture uses Alexnet, but any classification network can be sub-
stituted). Finally, each feature map can be scored. R-CNN uses class specific
linear support-vector machines instead of a soft-max classification provided
by CNNs. Figure 2.7 illustrates the architecture.

2.2.2 Fast R-CNN (2015)
Even though R-CNN was a major step in the right direction, its performance
is far from real-time. Girshick [9] introduces Fast R-CNN with a series of
innovations to its predecessor, aimed at improving speed and accuracy. Pro-
vided benchmark on the NVIDIA K40 GPU suggests improvements from 47
seconds per image using R-CNN with VGG16 feature extractor, to 320 mil-
liseconds with Fast R-CNN using the same feature extractor (not including
time for SS proposals).

Similarly to R-CNN, this architecture also utilizes region proposal al-
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Figure 2.8: Fast R-CNN architecture. Taken from [9, fig. 1]

gorithm and a CNN to produce a feature map. A significant drawback of
R-CNN was computing feature map for each region, despite overlaps. Fast
R-CNN processes whole input image into a feature map, and then, using a
region of interest (RoI) pooling layers, extracts a feature vector for each re-
gion. All extracted feature vectors are pooled to the same size and are passed
through a series of fully connected layers, leading to the softmax classifier
and bounding box regression layer. An illustration of this process can be
seen on fig. 2.8.

2.2.3 Faster R-CNN (2015)
Faster R-CNN by Ren et al. [24] expands on the Fast R-CNN with the as-
piration to achieve real-time performance. Fast R-CNN managed to build
a fast feature extraction and subsequent classification usable in a real-time
environment. However, it is heavily slowed down by a region proposal SS
algorithm. Faster R-CNN expands on the idea of sharing resources and re-
places SS with region proposal network (RPN). RPN is built on top of a
feature map generated by the feature extractor. As suggested, the feature
map is shared between RPN and object detection. This approach is able to
achieve 5 fps, which can find limited use in a real-time environment. Whole
architecture can be seen on fig. 2.9.

Region Proposal Network

RPN is designed as a small, sliding-window network, with negligible cost
compared to the feature extractor. It is composed of 3×3 convolutional layer
with 512 filters and two sibling 1×1 convolutional layers for region regres-
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sion and classification. Classification in RPNs determines whether proposed
region contains an object or a background (cls score). Region regression
part of the network is tied to the concept of anchors (the anchor is a pre-
defined box centered at a location of sliding-window). Assuming k anchors
with different sizes and aspect ratios are used, regression produces 4k rela-
tive parameters and classifier 2k scores. Regression parameters are used to
modify the position and size of their corresponding anchor. The number of
regions is then reduced by eliminating proposals with high overlap using a
non-maximum suppression (NMS) based on cls score [20]. After NMS, top-N
ranked proposal regions are used for detection.

To calculate loss and train RPN, a matching between ground-truth boxes
and generated region proposals needs to be determined. A positive label is
assigned to two kinds of regions: the one with the highest IoU overlap with
ground-truth box; regions that have IoU higher than 0.7 with any ground-
truth box. A negative label is assigned to a non-positive box if its IoU is
lower than 0.3 for all ground-truth boxes. Rest of the boxes do not contribute
to training.

4-step alternating training:

1. train RPN with feature extractor initialized by ImageNet pre-trained
model

2. train separate Fast R-CNN using proposals generated by RPN from
step 1

3. train RPN with feature extractor initialized by weights learned by the
detector in step 2, fine-tune only layers unique to RPN

4. using the model from step 3, fine-tune layers unique to Fast R-CNN

Thanks to the modular architecture, R-CNN family networks can exploit
any CNN as a feature extractor. Therefore Faster R-CNN can achieve state-
of-the-art detection results exploiting the latest advances in classification
networks and is often used as a benchmark of their performance.

2.2.4 Mask R-CNN (2017)
Previous R-CNN based architectures used bounding boxes to localize individ-
ual objects. He et al. [12] adds a localization based on semantic segmentation,
where the goal is to classify each pixel into a category.

Mask R-CNN is built upon Faster R-CNN and combines both bound-
ing box localization and semantic segmentation by predicting segmentation
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Figure 2.9: The architecture of Faster R-CNN. From https:
//researchgate.net/figure/The-architecture-of-Faster-R-
CNN_fig2_324903264.

masks for each RoI. The product of this approach is a bounding box and
class for each object, together with a binary segmentation mask. Unlike the
semantic segmentation on whole input, applying it on RoIs allows for instan-
tiated segmentation where selected pixels correspond to a given instance of a
class.

Implementation and architecture are very similar to Faster R-CNN, with
two exceptions. One of them is already described, fully convolutional seg-
mentation branch which works in parallel with classification and bounding
box regression heads. The other difference is a replacement of RoI pooling
layer with RoI alignment layer. The problem of RoI pooling for this purpose
is quantization of floating-number RoI to discrete feature map grid and con-
sequent imprecision. RoI alignment mitigates this problem by using bi-linear
interpolation to compute exact values of features at four sampled locations
in each of RoIs locations and aggregating the results. High-level architecture
and the RoI alignment layer are visualized on fig. 2.10.
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Figure 2.10: Left: The architecture of Mask R-CNN. Right: RoI align, grid
represents feature map, solid lines an RoI and the dost are the sampling
points. From [12, fig. 1, 3]
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3. Related Work
In this chapter, we provide an overview of the methods used for detections
in the video. There are two types of approaches that can be used for video
detection, a high-speed single frame detector, or a detector designed for a
sequence of frames. Although there is no standardized definition of how
many fps are real-time, we can consider 25fps as a minimum. However, in
practice, we need as much fps as possible not only to keep up with one video
stream but to process multiple video streams on one GPU.

Currently, the detectors designed for image detection hold an edge over
detectors with temporal information, mostly because available methods for
image detection are faster than temporal methods. However single-frame
detectors are unstable and require a lot of post-processing for smooth tracking
in video.

3.1 One-Stage Detection
From our experience, the step from the region-based networks to one-stage
detectors can be hard to comprehend. To ease the transition, this section
offers a thorough explanation of the one-stage detector building process based
on the knowledge of Faster R-CNN network (section 2.2.3).

At this point, we do not concern ourselves with the optimal model but
rather present general ideas. We start by defining the input and desired
output of such a detector and then explain how to implement it.

Detection Input
Similarly to Faster R-CNN, we start by processing the input image into a
feature map. This process can be done by any feature extraction network,
e.g., a classification network up to the fully connected layer. Such a network
produces a feature map of [n×n×c] size that will serve as a base for our
detector.

Desired Output
To perform a bounding-box detection, we need a parametric representation
of both bbox and classification. Since bbox is a rectangle, it can be spec-
ified by four parameters: a center position (X,Y), width W and height H.
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These values can be either relative with respect to predefined anchor boxes
or absolute values.

For a standard soft-max classification, a confidence score for each of the C
classes is required. However, the network also needs the ability to classify the
bbox as a background. An additional parameter with background confidence
score B can provide the means by being either viewed as a boolean value
deciding the presence of an object, or a part of a soft-max classification.

We ended up defining a set of C+5 parameters [c1, ..., cC , B, X, Y, W, H].
In the region-based network, this would represent an output for one region.
However, there are no given regions in a one-stage detector, or should we
say, every position on a feature map is a region. Given the map [n×n×c], we
expect to predict described vector of C+5 parameters for [n×n] cells. This
gives us an expected tensor of [n×n×(C+5)] size.

Anchor Boxes

In region proposal networks, we saw the use of multiple anchor boxes. Ex-
periments suggest that it is easier for the network to accept a set of proposed
boxes and refine them, rather than regress absolute values by itself. It also
helps the generalization if the network can associate boxes with certain aspect
rations with certain classes.

There are multiple options to include this feature in our model. For
each position, we can either predict K anchor box parameters and one set of
confidence scores or a separate classification for each box. In the first case, we
receive the prediction tensor of [n×n×(K*4+C+1)] shape and in the latter
case of [n×n×(K*(C+5))] shape. For simplification, as the details of the
implementation are not necessary, let us call this number of parameters P.

Detection

Now that we know what the input and output of the detector are, we can
design the network layers to meet the defined criteria. We will look at both
fully connected and convolutional options.

Before we start, however, we feel the need to emphasize, that the detec-
tor does not have any information about the purpose of output values. It is
designed to generate P values for given feature map position, but the infor-
mation about the association with anchor boxes and classes is provided only
during the training process by the correct organization of the ground-truth
data and the loss function.
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Figure 3.1: A convolutional layer with kernel size equal to feature map size
and no padding performs an equivalent operation as fully connected (FC)
layer. While the FC layer is parametrized by the number of neurons and
produces the output of size [N], convolution is parametrized by the number
of output channels and therefore produces [1×1×N] shaped tensor. Kernels
are color-coded to match the produced channel.

Fully Connected Detector

The simplest means of getting from [n×n×c] map to [n×n×P] values using
a fully connected layer is to connect each input value to each output value.
It is a functional but clearly a very inefficient solution that requires train-
ing of n4cP parameters. An improvement can be made using an additional
fully connected layer with a smaller number of neurons (b) and reducing the
number of trainable parameters to n2b(c + P ).

Notice that this detector is not only unaware of the order of P parameters,
but the association of parameters with the feature map position is also not
present. As a matter of fact, each predicted parameter is calculated with
the information from the entire feature map, and it is only via the training
process that the spatial relations are formed.

Convolutional Detector

Before we start with a convolutional detector, we need to demonstrate the
concept by showing the possibility of using a convolutional layer as a classifier
equivalent to a fully connected layer. In a classification network with C
classes, a layer with C neurons is connected to the last feature map with
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Figure 3.2: A single convolutional layer can generate multiple class and lo-
cation predictions. For every convolutional window it predicts K = 2 classi-
fied bounding boxes. Each prediction composes of four location parameters
(height H, width W and center position X, Y ), predictions for C = 1 class
(A) and object confidence score (B). Kernels of convolution are color-coded
to match the produced channel.

[n×n×c] shape. This layer takes an input of all n2c values and outputs a
class distribution. On the other hand, let us deploy a convolutional layer
with a kernel size of n×n and C output channels. From the definition, we
know that the actual size of the kernel includes the channel depth equal to the
depth of input data and the output number of channels specify the number
of such kernels. Now we can see that the application of one convolutional
kernel, is in this case equal to one fully connected neuron. The only difference
in both approaches is the shape of input and output data. This comparison
is illustrated on fig. 3.1.

Now that we know that the convolution can perform the same tasks as
a fully connected layer, no matter whether it is classification or regression,
we can change the naive fully connected detector to a naive convolutional
detector. Of course, this has no benefits other than proving the point.

However, if we decrease the size of the convolutional filter to k×k, where
k ≪ n, we can use the convolution as a spatially localized detector. The
resulting convolutional operation performs detection equivalent to a fully
connected detector for each of [n×n] positions on a feature map, using only
local information and producing the P parameters for each position. We
illustrate the convolutional detector on fig. 3.2.

Thanks to the convolution, we reduced the number of trainable parame-
ters from n4cP in naive approach to k2cP , where k is usually a small number,
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e.g. k = 3, and number of multiplications to n2k2cP . The other benefit is
that convolution performs equivalent detection at each position on the image,
where a fully connected detector can acquire some positional biases.

3.2 Real-Time Detectors
In section 2.2 we took a look on a series of two-stage detectors, with separate
region proposals and classification. A few years later, a new type of detec-
tors has been developed, with faster one-stage design. One-stage detectors
combine classification and bbox regression into a single pass of the network
and are able to achieve real-time performance without problems. Also, the
trade-off between speed and precision is continually diminishing in favor of
one-stage approach. In this section, we show off two popular approaches You
Only Look Once and Single Shot MultiBox Detector.

3.2.1 YOLO: You Only Look Once (2016)
Building on the success of neural network detectors from R-CNN family.
Redmon et al. [23] introduced a new approach to object detection. They
unify networks for localization and classification into a new single network
that predicts both bounding box positions and class probabilities in a single
evaluation. This approach also simplifies the training process, as YOLO can
be directly trained end-to-end.

Thanks to straightforward single-pass architecture YOLO claims to per-
form at 45 frames per second on Titan X GPU. Although it has to sacrifice
some precision compared to region proposal methods, it out-performs other
real-time systems of its time [25].

Detection

Prediction in YOLO works in a grid-based system. It divides the image
into S×S grid with each cell responsible for detecting the object centered in
that cell. Each cell produces predictions for B bboxes and one set of class
confidence predictions.

Bbox prediction is composed of four positional parameters and confidence
score. Center coordinates relate to the grid cell while width and height are
represented relative to the whole image. Confidence score reflects IoU with
ground-truth box. Class confidence prediction represents the conditional
probability of a said class, given the presence of the object in that cell.
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Figure 3.3: Detection process of YOLO. From [23, fig. 2].

Final confidence for each box is the product of both conditional class
probabilities and the individual box confidence predictions. We can see the
illustration of this process on fig. 3.3.

Architecture

YOLO is designed as a single network that takes the input image and outputs
bbox and class predictions. Design of the network is inspired by Inception
classification network. Although it does not use inception modules, it relies
on the 1×1 reduction layers to speed up 3×3 convolutions. YOLO uses 24
convolutional layers followed by two fully connected layers. Full architecture
is shown on fig. 3.4.

Various other versions and modifications are possible. A smaller and
faster version, called Fast YOLO, has a similar architecture but uses only 9
convolutional layers. Another possibility to improve YOLO is to replace the
custom architecture with a more common feature extractor from a classifica-
tion network. YOLO build on top of a VGG16 achieves better precision at
the cost of half of the frames per second.
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Figure 3.4: YOLO architecture for evaluating PASCAL VOC. It uses 7 by
7 grid with 2 bboxes per cell. Detecting 20 categories, the output’s shape is
[7×7×30]. From [23, fig. 3].

Training

Although the network can be trained end-to-end, it is common for CNN
to pre-train on ImageNet dataset. This is also the case for YOLO. First,
convolutional layers are pre-trained on the ImageNet dataset, then the de-
tection layers are added, and the whole network is trained for detection. The
model is optimized using the sum-squared error between predictions and
ground-truths. The loss function is a sum of three parts, classification loss,
localization loss, and bbox confidence loss.

Classification loss

Lcls =
S2∑
i=0

1
obj
i

∑
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(pi(c) − p̂i(c))2

Localization loss
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Confidence loss

Lcnf =
S2∑
i=0

B∑
j=0

1
obj
ij (Ci − Ĉi)2 + λnoobj

S2∑
i=0

B∑
j=0

1
noobj
ij (Ci − Ĉi)2

where 1
obj
i denotes if object appears in cell i and 1

obj
ij denotes that the jth

bounding box predictor in cell i is responsible for that prediction.
The gradient of cells that do contain the object can be overpowered with

the cells that do not. Therefore, the loss from negative confidence predic-
tions is decreased by λnoobj = 0.5. And to emphasize the bbox predictions,
localization loss is increased using λcoord = 5. In the localization loss, we can
see that the center coordinates are handled differently to width and height.
The square root of width and height is used to equalize the impact of the
absolute value of error in small and large boxes.

Properties

A primary virtue of YOLO is its speed for real-time applications, and its
simple architecture allows for easy training and end-to-end optimization.
YOLO’s detection layer is provided with context from the whole image which
leads to less false detections than in region proposal methods.

On the other hand, a significant problem with YOLO’s grid-based detec-
tion system is a limitation to one class per cell. This limitation results in the
inability to detect multiple objects in close proximity, such as people in the
crowd.

YOLO also suffers from multiple problems with precise localization. It
learns to detect arbitrary shapes, which can be hard to generalize to objects
in new and unusual aspect ratios. Also, it predicts the bboxes on the heavily
down-sampled image which leads to further imprecision.

YOLO v2 (2017)

The second version of YOLO architecture by Redmon and Farhadi [22], in-
troduces a series of improvements to the original network. Compared to
original 45fps on [448×448] image, v2 achieves 59fps on [480×480] images.

A selection of changes to YOLO architecture:

• batch normalization [13] improves precision and helps regularization

• fully convolutional architecture shortens the inference time

• class and confidence predictions are no longer tied to grid locations,
instead five anchor boxes are used
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• detection on multiple feature maps with different sizes concatenated
into channels

3.2.2 SSD: Single Shot MultiBox Detector (2016)
SSD is another real-time detector, aiming to outperform Faster R-CNN by
using a single network with one-time evaluation. Liu et al. [18] presented
this model just months after YOLO. Even though these networks are built
on similar principles, there are multiple key differences. SSD manages to
outperform Faster R-CNN and YOLO both in speed and precision.

Detection

One of the main features of SSD is that the detector network is fully con-
volutional and does not utilize any fully connected layers. Predictions are
therefore generated for every position of a convolutional window. SSD adopts
similar concept to Faster R-CNN’s anchor boxes, this time called default or
prior boxes. For each position of the feature map, multiple prior boxes with
different aspect ratios are proposed. By default, six boxes are used. Con-
trary to YOLO, both bbox and classification predictions are made for each
position and each prior box.

Bboxes are predicted relative to prior box locations which are them-
selves relative to a feature map location. There is no bbox or region confi-
dence value. Instead, SSD uses an additional background class in classifica-
tion predictions. Considering B prior boxes and C classes, SSD generates
[m×n×(B*(C+5))] parameters on feature map of [m×n] size.

SSD detects objects on multiple feature maps at different scales, to accom-
modate detection of different sized objects. Moreover, this allows detectors
on each level to focus on predicting a smaller range of bbox sizes. For the
illustration of this process see fig. 3.5.

Architecture

The SSD architecture can be described as a set of three modules. A base
network, extra convolutional layers and detection layers.

• Base network’s task is to take the input image and produce a feature
map. To this end, a feature extractor build from classification network
is an ideal candidate. SSD’s base is built from VGG16 network with
some modifications. First of all, all fully connected layers are removed
and replaced with another pair of convolution layers. Pool5 layer is
also changed from 2×2/2 to 3×3/1 pooling.
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Figure 3.5: SSD detection. (a) Input image with ground-truth boxes. (b)
and (c) Predictions based on prior boxes on multiple scales of feature maps.

• Extra layers serve the purpose of providing more feature maps on
decreasing scale to the detector. Smaller feature maps aggregate more
information to a smaller area and allow for the detection of larger ob-
jects with small convolutional window. On the other hand, information
about small objects can be lost. Therefore the use of gradually decreas-
ing series of feature maps. Extra layers are implemented as a sequence
of convolution layers connected to the end of the base.

• Detection layers are the final layers of the network. There is a pair of
classification and localization convolutions for each feature map. Con-
sidering SSD300, where 300 stands for the width and height of input
image. Detection is performed on 6 feature maps of sizes [38, 19, 10,
5, 3, 1], using [4, 6, 6, 6, 4, 4] prior boxes respectively, producing 8732
predictions per class. First, two of those feature maps are pulled from
the VGG network, and the extra layers provide the rest. All detection
layers are implemented using 3×3 convolutions with an appropriate
number of filters, as seen on fig. 3.6.

Training

SSD pre-trains the base network on ImageNet dataset, and after that removes
the classification layers and replaces them with extra and detection layers.
The model is than trained for detection end-to-end. SSD utilizes smooth L1
loss for localization and cross-entropy loss for classification. The final loss is
the sum of those two components.

Before the training, we need to figure out which prior boxes match the
ground-truth annotations. For each ground-truth box, two criteria are used:
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Conv. 3×3×6*C
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Conv. 3×3×4*4
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Figure 3.6: SSD architecture based on modified VGG16 network. VGG’s
three fully connected layers are replaced with two new convolutional layers,
and Pool5 layer is changed from 2×2/2 to 3×3/1 pooling. Detection on the
first and last two feature maps uses four prior boxes, while the rest uses six
boxes. See more details on VGG in section 2.1.2.
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a prior box with highest IoU is selected, and then, the ground-truth box is
also matched to all prior-boxes with IoU higher than a threshold (0.5). Let
the xp

ij = 0, 1 be an indicator that ith prior box matches jth ground-truth
box with class p.

To keep the balance between positive and negative samples, hard negative
mining algorithm is employed. Only top negative samples, with the highest
confidence score, are chosen. The goal is to keep the ratio of positives and
negatives below 1:3.

Localization loss expresses the error between predicted boxes (l) and
ground-truths (g). Predictions are generated in respect to corresponding
prior boxes. Therefore, after matching the boxes, a ground-truths also need
to be represented in respect to prior box (d), with center (cx, cy) and width
(w) and height (h).

Lloc(x, l, g) =
N∑

i∈P os

∑
m∈(cx,cy ,w,h)

xk
ijsmoothL1(lm

i − ĝm
j )

ĝcx
j = (gcx

j − dcx
i )/dw

i ĝ
cy

j = (gcy

j − d
cy

i )/dh
i

ĝw
j = log(
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j

dw
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j
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Confidence loss or classification loss, is the softmax loss over class confi-
dences (c).

Lcls(x, c) = −
N∑

i∈P os

xp
ijlog(ĉp

i ) −
∑

i∈Neg

log(ĉ0
i ) where ĉp

i = exp(cp
i )∑

p exp(cp
i )

Total loss is then a weighted sum of both losses. The weight parameter α
is set to 1. The loss is also divided by the number of matched prior boxes to
keep it independent of the number of objects.

L(x, c, l, g) = 1
N

(Lcls(x, c) + αLloc(x, l, g))

3.3 Detection with Temporal Information
In this section, we present two recent models designed specifically for de-
tecting objects in the video. Videos can provide more information to the
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detector, compared to a set of single independent frames, thanks to the addi-
tion of temporal information. Theoretically, using multiple consecutive video
frames can provide a large improvement regarding detector instability, and
occlusions.

A time-space series of detected bounding boxes is usually referred to as a
tube or a tublet. If such a series is generated at once for every object, it can
provide smooth tracking and reduce the need for post-processing matching
of detections. We use the term chunk to refer to a series of consecutive video
frames, to differentiate from the batch of independent images.

However, adding another dimension to the detection model has a perfor-
mance impact. It is also much harder to create a dataset suitable for training
of detectors with a temporal dimension because a whole series of frames need
to be precisely annotated. Of course we can find a few public datasets e.g.
ImageNet VID1, YouTube-8M 2 and some smaller ones like HollywoodHeads3.

This section presents two approaches to adding temporal information to
an object detector. First presented method adopts the approach of region
proposal methods and the second one is based on a single-stage detector.

3.3.1 Tube-CNN (2018)
The architecture of this detector is very similar to Fast-RCNN with the added
temporal dimension. The main idea is based on region/tube proposals and
the following classification network for those regions. Vu et al. [32] proved
that using a temporal information provided by continuous video frames en-
hances a precision of the detector. On the other hand, this approach adds
more complexity to slower than real-time Faster-RCNN detector. The result-
ing network achieves only low single digit frame per second values, depending
on the configuration.

Tube Proposal Network

Tube proposal generation begins with a feature extraction on a chunk of
video frames. After the processing of all frames individually, feature maps are
stacked together in the temporal dimension. Then, volumetric convolutional
layers (conv3d) are applied to produce a feature volume.

Analogously to Faster-RCNN, each position in this feature volume is used
to create tube proposals using K anchor tubes. The proposal for each anchor
consists of the objectness and position parameters. The objectness score

1http://image-net.org/challenges/LSVRC/2017/#vid
2https://research.google.com/youtube8m
3https://www.di.ens.fr/willow/research/headdetection
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reflects the probability of the presence of the same objects as opposed to a
background.

IoU value for tubes is defined as a minimum of spatial IoU at the ends of
tubes. The number of proposals is reduced by eliminating tubes with high
overlap using a non maximum suppression based on objectness score.

A provided data for the training usually consists of a series of ground-
truth boxes for individual frames. During the training of TPN, a series of
ground-truth boxes is approximated by a ground-truth tube. Those tubes
are then matched against the tube proposals using an IoU threshold. A tube
proposal network is designed only to consider tubes corresponding to linear
motion in order to limit the complexity.

Detection Network

Tube-CNN, as the name suggests, is a fully convolutional network with the
task to extract feature maps from the incoming chunk of images, and using
the given tube proposals, classify the tubes and refine the object positions.

Same as in TPN, the feature extraction is done independently on each
frame using some general extractor, e.g., ResNet. Feature maps are then
stacked to form a spatio-temporal feature volume. Unfortunately, the pro-
vided research paper does not clarify whether the proposal and detection
networks share the same extraction layers or not.

A Tube-of-Interest (ToI) pooling is employed on feature volume to select
the sub-volume corresponding to each tube proposal. The selected volume is
then max-pooled into a fixed-size feature and subsequently used as an input
for a classifier. A general convolutional classifier with soft-max activation is
used.

The regression branch of the network predicts the exact position of the
object in the first and last frame of the tube. Both regressions begin with RoI
pooling on the corresponding feature maps and continue with convolutional
layers to produce the positional parameters.

The detection process is illustrated in fig. 3.7.

3.3.2 TSSD (2019)
Chen et al. combine the SSD with recurrent networks [11, chpt. 10], namely
ConvLSTM cells introduced by Xingjian et al. [33], to create a temporal
single-shot detector (TSSD) [4]. They also proposed a tracking module with
Online Tubelet Analysis working on top of the TSSD. Compared to SSD’s
45fps, TSSD achieves 27fps on ImageNet VID dataset.
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Figure 3.7: Architecture of Tube-CNN for object detection. Taken from [32,
fig. 2].

Architecture

TSSD is based on a standard backbone of SSD implemented on fully convo-
lutional VGG16 base with extra layers (see section 3.2.2). This base provides
six feature maps that are used for classification and bbox regression in SSD.
However, TSSD applies one more layer on the feature maps before detection.
This is where the temporal information comes into effect, using the aforemen-
tioned convolutional LSTM cells. Two Attentional ConvLSTM (AC-LSTM)
cells are deployed, one for the bottom three feature maps and one for the
top three. Only a small adjustment has been made to the underlying VGG
network, that being lowering the number of channels in the second feature
map to 512, to equalize the channels in all low-level feature maps. The out-
puts of both cells are then used for classification and regression in the same
way the SSD would do. Details of TSSD implementation, including details
on AC-LSTM, can be seen on fig. 3.8.

Features contributing to positive object detections are usually unevenly
distributed in feature maps and through the scales. Authors proposed the
Attentional ConvLSTM cell with the goal of background and scale suppres-
sion. The temporal attention module in AC-LSTM provides the rest of the
cell with object-aware features.

Training

Similarly to SSD, the loss function of TSSD has multiple objectives weighted
by α, β, γ and ξ constants.

L = 1
N

(αLloc + βLcls) + γLatt + ξLasc

Where Lcls and Lloc are defined according to SSD (section 3.2.2) and N
is the number of matched boxes.
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Figure 3.8: Architecture of TSSD (left) and AC-LSTM cell (right). c de-
notes concatenation; Chw-x, Elw-x represent channel-wise and element-wise
multiplication, respectively; + is element-wise summation. From [4, fig. 2, 3].

Attention loss is calculated as a binary cross-entropy loss between ground-
truth attention map Ag and prediction maps Asc for each scale sc. Ag is a
binary map with ones on positions inside ground-truth boxes. Each predicted
attention map is up-scaled (Aup

psc
) to match the dimensions of the Ag.

Latt =
6∑

sc=1
µ(−Aup

psc
log(Ag) − (1 − Aup

psc
)log(1 − Ag))

Video frames are generally temporally consistent. Therefore we also ex-
pect consistency in detections on short sequences of frames. We can suppress
fluctuations in temporal detections by defining association loss. We use class-
discriminative score list (sl) to represent detection in a frame. sl sums up
top-k predictions after application of NMS.

Lasc = (
seq∑
t=1

slt − slavg)/seq

Where slt denotes the score list in frame t, slavg denotes the average list
in a sequence and seq represents the sequence length.

42



4. Analyzing the Single Shot
Detector
Our goal is to improve SSD detector proposed by Liu et al. and adjust it
to fit the needs of video surveillance. We look for possible improvements by
analyzing the network and other performance impacting factors. We take
an especially close look at the underlying convolutional network in SSD and
compare multiple alternatives. The other important factor we consider is
that the SSD was designed for detection on individual frames instead of a
continuous video stream.

We base our work on the implementation of SSD by Liu et al.. However,
since the performance of the neural network is heavily dependant on the used
framework and hardware, and the precision depends on the training data, we
had to re-implement and train the baseline SSD for our comparisons.

Although we did not manage to reach the same precision as authors (41.2
mAP@[0.5]), we are aware of deficiencies in our implementation, that if re-
solved, should equalize the results. To speed up the training process we
used fast and simple data augmentation algorithms and trained our mod-
els end-to-end without freezing the weights of pre-trained feature extractor
and subsequent fine-tuning. We leave both of those issues to future work
and instead focus on the relative comparison of models in the equivalent
environment.

4.1 Feature Extraction Network
Looking at the structure of the network, we found the best candidate for
improvement to be the underlying feature extractor. The feature extractor
provides the data on which SSD performs detection and is, therefore, the
integral part of the model. SSD uses relatively old VGG16 network that
compared to more modern CNNs lacks in speed and precision. The feature
extractor is in the context of object detectors often called the base network.

To explore the options, we started by implementing the SSD on multiple
base networks and training them on the COCO dataset to analyze the impact
on SSD’s performance. We decided to implement SSD on three post-VGG
networks, namely ResNet, Xception and NASNet.

We chose ResNet because it is a well-known network with a simple design
and easy scalability. Xception got our attention for its performance in the
benchmark by Bianco et al. (section 2.1.7), placing it around the optimal spot
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between speed and precision. NASNet, or precisely NASNet-A-Mobile, was
chosen out of curiosity for its unique, machine learning designed structure.

We will be referring to ResNet networks by their number of layers, e.g.,
ResNet50. Also, Xception will be called Xception version A, or shortly Xcep-
tionA, to avoid confusion with versions we are going to introduce later. To
emphasize the base of SSD network, we will be calling it base-SSD, e.g.,
VGG16-SSD.

4.1.1 Connecting SSD to Classification CNNs
To implement the SSD on other base networks, we first needed to decide
how to create the interface between the networks. We needed to define
which features of SSD and the base network architectures we wanted to keep
unchanged and which would have to be adjusted.

SSD uses six feature maps, two extracted from the VGG16 network and
four from extra layers. For input image of [300×300] pixels, the feature map
sizes are: [38×38×512], [19×19×1024], [10×10×512], [5×5×256], [3×3×256]
and [1×1×256]. We decided to preserve the spatial resolution of those feature
maps as close as possible to the original, without changing the structure of
base networks. Meaning, we did not keep the number of channels equal to
SSD’s. This approach certainly poses some risks. Not enough channels could
negatively impact the precision, and too many channels would surely have
an impact on the detection speed.

To find the most suitable layers for feature map extraction, we started
with the strategy of finding the deepest possible layer with feature size as
close as possible for every original feature map. This approach proved itself
to be very straightforward since feature map sizes in convolutional networks
decrease in resolution with the increasing depth, and the reduction is usually
made by halving the size. After exhausting the network, we added the extra
layers as needed, similarly to VGG16-SSD. The final feature map sizes are
listed in table 4.1.

After determining the layers for feature extraction, we implemented the
rest of the SSD without alteration. Each feature map is fed into both classi-
fication and localization layers with the corresponding scale, as described in
fig. 3.6.

ResNet-SSD

Different sizes of ResNet network can be created by parameterizing its high
level, four Layer architecture. Ideally, we wanted a single ResNet-SSD archi-
tecture that would support 34, 50 and 101 layer version without alterations.
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VGG-16 ResNet34 ResNet50/101 XceptionA NASNet*
[38×512] [38×128] [38×512] [37×256] [28×264]
[19×1024] [19×256] [19×1024] [19×728] [14×528]
[10×512] [10×512] [10×2048] [10×2048] [7×1056]
[5×256] [5×512] [5×512] [5×512] [4×512]
[3×256] [3×256] [3×256] [3×256] [2×256]
[1×256] [1×256] [1×256] [1×256]

Table 4.1: Feature map sizes used in SSD’s detection. The dimensions are
calculated for the input image of [300×300] pixels, except for NASNet, which
only accepts [224×224] inputs. First values represent spatial dimensions of a
square feature map and the second ones represents the number of produced
channels.

Thankfully, this is exactly how the ResNet is designed, with consistent spa-
tial feature map sizes between high-level Layers. Those sizes are [75×75],
[38×38], [19×19] and [10×10]. The latter three are exactly matching the
VGG16-SSD prototype.

After being provided with three feature maps by the network, we re-
moved poolings and fully connected classifier and replaced it with an appro-
priate set of extra layers to produce the other three maps. The architecture
of ResNet34-SSD, with highlighted detection feature maps is illustrated on
fig. 4.1.

XceptionA-SSD

Similarly to ResNet, Xception can also be viewed in multiple layers of ab-
straction, the highest-level structure with entry, middle and exit flow, or
lower-level twelve block structure with preceding and tailing convolutional
layers (see fig. 2.4). After we removed the classifier from the exit flow, the
three parts of the network provided feature maps of [19×19], [19×19] and
[10×10] sizes. The latter two feature maps met our expectations. However,
we had to dive deeper inside entry flow to find larger feature map, analogous
to the original [38×38] map. The best option was to select the feature map
produced by the second block of the network, with the [37×37] size.

We managed to extract three feature maps for detection from the net-
works, meaning that we had to add enough extra layers for the generation
of remaining three maps. The illustration of XceptionA-SDD can be seen on
fig. 4.1.
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ResNet34-SSD

Input [300×300]

Conv. 7×7×64 /2 P:3

Layer 1

Layer 2
[38×38×128]

Layer 3
[19×19×256]

Layer 4
[10×10×512]

Conv. 1×1×256

Conv. 3×3×512 /2
[5×5×512]

Conv. 1×1×128

Conv. 3×3×256 /2
[3×3×256]

Conv. 1×1×128

Conv. 3×3×256 P:0
[1×1×256]

Classification

Localization

XceptionA-SSD

Input [300×300]

Conv. 3×3×32 /2 P:0

Conv. 3×3×64 P:0

Blocks 1, 2
[37×37 ×256]

Blocks 3-11
[19×19 ×728]

Block 12

SepConv. 3×3×1536

SepConv. 3×3×2048
[10×10 ×2048]

Conv. 1×1×256

Conv. 3×3×512 /2
[5×5 ×512]

Conv. 1×1×128

Conv. 3×3×256 /2
[3×3×256]

Conv. 1×1×128

Conv. 3×3×256 P:0
[1×1×256]

Classification

Localization

Figure 4.1: Resnet34-SSD(left) and XceptionA-SSD (right). For details on
Layers and Blocks see fig. 2.3 and fig. 2.4 respectively. Extra layers are
highlighted with a red dashed rectangle.

46



NASNet-SSD

Transition of SSD to NASNet-A-Mobile has proven itself to be the most com-
plex of the three. In the beginning, we ran into the restriction on input image
size. Due to the complex structure of the network with a lot of branching
and subsequent concatenations and additions we decided against modifying
the NASNet part of the detector and continuing with the given input size of
[224×224] pixels.

Nevertheless, the input size was not the only problem. Since the mobile
version of NASNet uses only four Reduction Cells, two of which are subse-
quent, and the stacks of Normal Cells do not change the spatial dimensions
of feature maps, there are only three available sizes of feature maps. We had
no option other than choosing to use feature maps of [28×28], [14×14] and
[7×7] sizes. Keeping with the general formula for adding extra layers, i.e.,
using 3×3 convolutions with stride 2, we decided against advancing beyond
[2×2] feature map and reduce the number of extracted feature maps to five.
See fig. 4.2 for illustration.

4.1.2 Performance Results
In order to compare the performance of our SSD networks, both in terms
of precision and speed, we trained them on the COCO dataset. We tested
the prototype VGG16-SSD, and SSDs implemented on the ResNet34, the
ResNet50, the ResNet101, the XceptionA, and the NASNet-A-Mobile. After
the training, we tested the networks for speed and precision and plotted the
results to fig. 4.3. The results show that VGG16-SSD is the slowest one.
However, in terms of precision, it surpasses both the XceptionA and the
NASNet SSDs.

With the knowledge gained from implementing the NASNet-SDD and the
acquired results, we believe that the network, or at least its mobile version, is
not suited for this task. The results exposed the significance of the trade-offs
we were forced to implement, in order to build SSD on this network.

Although the results of the XceptionA-SSD were disappointing, we be-
lieved that the simple structure of the network would allow us to make the
necessary changes and outperform VGG16. We formulated the hypothesis
that the main reason for the poor precision is the fact that the first feature
map is extracted from too shallow of a layer. The depth of the network at
the point of the extraction is only six convolutional layers, granted some are
split into depthwise separable convolution, we believed it is not enough for
the first feature map of the detector. We will test our hypothesis and try to
rectify the shortcomings of Xception-SSD in section 4.3.
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NASNet-A-Mobile-SSD
Input [224×224]

Conv. 3×3×32 /2
Reduction Cell

Reduction Cell
Normal Cell

Normal Cell
Normal Cell

Normal Cell
[28×28×264]

Reduction Cell
Normal Cell

Normal Cell
Normal Cell

Normal Cell
[14×14×528]

Reduction Cell
Normal Cell

Normal Cell
Normal Cell

Normal Cell
[7×7×1056]

Conv. 1×1×256

Conv. 3×3×512 /2
[4×4×512]

Conv. 1×1×128

Conv. 3×3×256 /2
[2×2×256]

Classification

Localization

Figure 4.2: NASNet-SSD based on NASNet-A-Mobile. For detailed descrip-
tion of cells see section 2.1.6. Extra layers are highlighted with a red dashed
rectangle.
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Figure 4.3: Performance of SSD detector on multiple base networks. Circle
radii demonstrate relative difference of network parameter counts.

4.2 Training Data and Classes
The principal difficulty in solving problems with neural networks is the lack of
available data. Although some networks can be trained using reinforcement
learning, object detection is one of those that requires supervision. However,
the creation of a problem-specific dataset requires a lot of human resources.
The other option is to use public datasets like the COCO dataset.

The problem of such datasets is that if they include every required class,
they also often include many classes that are not needed for a particular
application. For surveillance, we are only interested in classes such as people
and vehicles.

We compared the performance and precision of SSD trained on full COCO
dataset and a subset for surveillance. We expected significant performance
improvement by lowering the number of detected classes. However, we were
not sure how would this change impact precision. We hypothesized that
by removing classes with similar features to the detected ones, there is a
possibility of increasing the error by means of false detections.

Surveillance Dataset Classes
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• person

• bicycle

• motorcycle

• car

• bus

• truck

• train

4.2.1 Precision Impact

Before we get to the comparison of the training results, we will explain our
hypothesis on an example. Consider that we want to detect people in a ZOO
and we have access to the dataset with people and animals. Would it be
better to train the network only to detect people or to detect both humans
and animals, and then filter out the animals in post-processing? In the latter
case, the network would ideally detect people as people, animals as animals,
and everything else as a background. However, in the case where we train
the network only to recognize people, how would such a network classify a
monkey? Would similar features prevail and shift the classifier towards the
person, or would negative examples of a monkey in dataset be strong enough
for teaching the network that it is not a person?

The problem we describe is, of course, part of a broader difficulty with
non-exhaustive datasets. Our question is, therefore: If we have an available
set of annotations for the classes we are not interested in, but that can be
present in our input images and share similarities with detected classes, would
it not be better to learn to detect those classes?

Results

Table 4.2 shows that in our case, it is possible to remove unnecessary classes
from the dataset without impacting the performance. It is worth mentioning
that we tried to precautiously counter-measure our hypothesis by creating
the Surveillance dataset by only filtering the annotations and keeping all
images of the original dataset.

We tested the approach on multiple architectures, and the results do
not conclusively favor one dataset over the other. However, based on this
experiment, we are not able to conclusively confirm or deny our hypothesis.
Even if we wanted to make a conclusion for the COCO dataset using the
provided training and validation data, the experiment is still dependant on
the choice of classes.
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COCO Surveillance
ResNet34 47.3 47.3
ResNet50 46.6 48.7
ResNet101 47.2 45.7
XceptionA 39.4 37.8
NASNet 36.4 36.9

Table 4.2: Mean average precision of Surveillance classes. Comparing net-
works trained on all 80 classes of COCO dataset and Surveillance subset of
COCO.

4.2.2 Performance Impact
We expected a proportional increase in performance with the elimination of
unwanted classes. We saw in fig. 3.6 that the channel depth of the clas-
sification layers in SSD is dependent on the number of classes. Shallower
classification layers are not only processed faster in the neural network but
also produce less data that will result in faster post-processing, mainly, non-
maximum suppression.

We illustrate the effect that the number of detected classes has on perfor-
mance in fig. 4.4. Although the relationship of frames per second and classes
is hyperbolic, on the interval between 7 and 80 classes, we approximate the
loss of 0.8fps with each additional class on ResNet50-SSD. Considering the
dataset can contain tens or hundreds of classes, we showed that the filtering
out the unwanted classes could produce significant performance benefit.

4.3 Modifying Xception
We managed to successfully re-implement SSD on other architectures and
boost the speed of surveillance by removing unnecessary classes. We can
confidently say that ResNet50-SSD with 48.7% mAP and 108fps or ResNet34-
SSD with 47.3% mAP and 125fps outperform original SSD on VGG16 with
46.1% mAP and 42fps. However, we believed that the underwhelming result
of XceptionA-SSD could be used as a stepping stone and the results could
be pushed further with modifications to the Xception architecture.

We already mentioned the hypothesis that the major factor limiting the
precision of XceptionA-SSD is the extraction of [37×37] feature map after the
second block of the network. To rectify this problem, we decided to make
adjustments to the network, in such a way that we could extract [37×37]
feature map after block 7, and keep the [19×19] map after block 11 as previ-
ously dictated by network architecture. The reasoning behind choosing block
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Figure 4.4: Impact of the number of classes on SSD performance. Inference
time values (1/fps) are linearly interpolated, the result is therefore hyper-
bolic approximation of frames per second.

7 was that it is deep enough in the network and leaves four blocks between
the feature map extractions. It is perhaps a bit arbitrary decision and blocks
6 or 8 would do just as well, or better. In order to achieve the correct sizes of
feature maps, we moved the max-pooling with stride 2 from block 3 to block
8. This resulted in outputs of blocks 2-7 to be the [37×37] size and block 8
to output [19×19] feature map.

The proposed change to the pooling, and thus feature map sizes results
in the increased complexity of the network as the [19×19×728] features now
grew to the [37×37×728] size. To remedy this, we decreased the number
of channels for concerned blocks to 256. We also decided to continue with
trimming layers in the rest of the network. In the end, we got the [37×37]
map with 256 channels, [19×19] map with 512 channels and [10×10] map
with 1024 channels. The architecture with highlighted changes is illustrated
on fig. 4.6.

Our modification not only helped to improve Xception-SSD to overcome
VGG16, but we also outperformed ResNet50-SSD’s 48.7% mean average pre-
cision with 49.8 % mAP. However, despite our best efforts to save computa-
tion, we managed to outperform XceptionA only slightly, by achieving 105fps.
The relative performance of XceptionH based SSD to other SSDs using the
Surveillance dataset can be seen on fig. 4.5.
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XceptionA

Input [300×300]

Conv. 3×3×32 /2 P:0

Conv. 3×3×64 P:0

Block 1 | S:2
[74×74×128]

Block 2 | S:2
[37×37×256]

Block 3 | S:2
[19×19×728]

Blocks 4-7 | S:1
[19×19×728]

Blocks 8 | S:1
[19×19×728]

Blocks 9-11 | S:1
[19×19×728]

Block 12 | S:2
[10×10×1024]

SepConv. 3×3×1536

SepConv. 3×3×2048
[10×10×2048]

XceptionH

Input [300×300]

Conv. 3×3×32 /2 P:0

Conv. 3×3×64 P:0

Block 1 | S:2
[74×74×128]

Block 2 | S:2
[37×37×256]

Block 3 | S:1
[37×37×256]

Blocks 4-7 | S:1
[37×37×256]

Block 8 | S:2
[19×19×512]

Blocks 9-11 | S:1
[19×19×512]

Block 12 | S:2
[10×10×728]

SepConv. 3×3×1024

SepConv. 3×3×1024
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Figure 4.6: XceptionH architecture (right) compared to XceptionA (left).
Changes are highlighted with bold font. Connection to SSD’s detection layers
are indicated by the arrows on the sides, extra layers are appended to the
bottom of the network. S represents stride of the block, implemented using
max-pooling. Blocks are also color-coded based on the feature map size.
Extra, classification and localization layers are unchanged from fig. 4.1. For
details on Blocks see fig. 2.4.
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4.4 SSDTC: SSD with Temporal Convolution
Since our main priority is video surveillance, we wanted to explore the options
of video detection, exploiting the additional information a video can provide
over still images. In section 3.3 we have already examined two approaches
of utilizing the continuity of video frames to achieve higher precisions. One
approach used architecture similar to Faster R-CNN with use of temporal
tubes-of-interest. The other one used convolutional LSTM cells to harness
the temporal information inside a modified SSD. However, the major draw-
back of both approaches was their inference speed.

Inspired by the two approaches, we decided to implement our version of
video detector with temporal information. To this end, we chose to expand
on the SSD. We already have an understanding of the model, and the one-
stage detectors are currently the only relevant choice considering speed. We
also wanted to avoid adding complex, time-consuming structures like LSTM
cells used in TSSD. Instead, we decided to use three-dimensional convolu-
tional layers (conv3d), to aggregate the information from multiple images.
We named our approach Single Shot Detector with Temporal Convolution
(SSDTC).

Of course, we need to prove our concept by training it on some data and
comparing it to unmodified SSD. Since we require a dataset with consecutive
frames, we decided to start with the HollywoodHeads dataset. This set
annotates heads in sections of movies. Considering that dataset has only one
class and previous results of SSD testing suggests ResNet34-SSD would be
more than sufficient for this task, we trained it as a baseline. Consequently,
we also based SSDTC on ResNet34-SSD.

Architecture

In standard SSD, the detection is performed on a batch of independent im-
ages. We expect to perform detection on a single batch, or a chunk, of
consecutive frames.

We start by extracting the feature maps, as we would in SSD, indepen-
dently on each frame with the same network (ResNet34 with extra layers).
Starting with the chunk n = 16, we get 16 sets of feature maps. For the
ease of explanation, consider only the first feature map of [38×38×c] size.
Stacking those maps from the chunk, we get a temporal feature volume of
[38×38×c×n] size, where c is the number of channels.

At this point, we apply the temporal convolutional layers, realized using
conv3d layers. We apply two conv3d layers on each feature volume, both fol-
lowed by batch normalization and ReLU activation. The first one, Conv3d.
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1×1×3×ch operates only on temporal and channels dimensions. The sub-
sequent one works with all dimensions of feature volume, applying Conv3d.
3×3×3×(2*ch) layer.

No padding is used in the temporal dimension of conv3d layers, therefore
we only receive n-4 detections for n input frames. This may seem inefficient
because five frames are needed for detection on one frame, but the impact of
this constant overhead can be minimized with bigger chunks.

After the temporal layers, we can again view the created feature volume
as an array of independent feature maps corespondent to frames and apply
SSD’s detection layers.

In simple terms, we add temporal information from neighboring frames
to each feature map, before executing the detection. This allows for reuse of
most of the SSD’s architecture and simple transition on other base networks.
The illustration of SSDTC’s architecture can be seen on fig. 4.7. To our
best knowledge, this is a unique combination of SSD and three-dimensional
convolution for object detection with temporal information.

Results

A previously mentioned, ResNet34-SSD was trained on the same dataset to
serve as s baseline for comparison. This SSD achieved the precision of 81.16%
while performing at 156 frames per second.

Our SSDTC architecture managed to reach the precision of 86.73% with
processing speed of 148 fps. However, considering that detection is not per-
formed for every processed frame, the effective speed of the network is 111
frames per second with the chunk size of 16 frames. In fig. 4.8, we can
see that SSDTC helped to remove many false detections and stabilized the
detections.

Meanwhile, the Tube-CNN method we reviewed in section 3.3.1 reports
the precision of 86.8% while reaching less than 10 fps. Therefore, we consider
this result a successful proof of our concept. We managed to reach the
precision of temporal region-based network while exploiting the speed of one-
stage detector.
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ResNet34-SSDTC
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Conv3d P:1,1,0
3×3×3×512

Conv3d P:1,1,0
3×3×3×512
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3×3×3×512
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Conv3d P:1,1,0
3×3×3×256

Conv3d P:1,1,0
3×3×3×256 Conv. 3×3×4*4

Conv. 3×3×4*C

Conv. 3×3×6*4

Conv. 3×3×6*C

Conv. 3×3×6*4

Conv. 3×3×6*C

Conv. 3×3×6*4

Conv. 3×3×6*C

Conv. 3×3×4*4

Conv. 3×3×4*C

Conv. 3×3×4*4

Conv. 3×3×4*C

Temporal layers
Input [300×300]

Conv. 7×7×64 /2 P:3

Layer 1

Layer 2
[38×38×128]

Layer 3
[19×19×256]

Layer 4
[10×10×512]

Conv. 1×1×256

Conv. 3×3×512 /2
[5×5×512]

Conv. 1×1×128

Conv. 3×3×256 /2
[3×3×256]

Conv. 1×1×128

Conv. 3×3×256 P:0
[1×1×256]

Figure 4.7: SSDTC architecture on ResNet34 base. All temporal layers are
followed by batch normalization and ReLU activation functions, no padding
is used in temporal dimension.
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Figure 4.8: Comparison of detections by SSDTC (top) and SSD (bottom).
Performed on the sequence of nine frames, ordered from left to right, top to
bottom. Frames were cropped after detection.
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5. Experiments
In this chapter, we provide details on the techniques used to gather the data
presented in the previous chapter. We also present additional experimental
results.

5.1 SSD Training

Liu et al. implemented SSD model1 from their research paper using the Caffe2

deep learning framework. We decided against performing our experiments
in this, by now outdated framework, and implemented our version in newer
PyTorch3 framework (more detailed technical specification of used libraries
is available in appendix A).

We started by implementing a common framework for SSD detectors,
that would support SSD models with many modifications. Although SSDTC
inference is possible in the same framework, we had to create a separate
environment for the training (more on SSDTC in section 5.4).

The main characteristics of our framework are the use of SGD optimizer
[3] and the loss function defined for SSD, also called MultiBox loss (sec-
tion 3.2.2). Another essential element of the detection pipeline, used for
inference, is the non-maximum suppression algorithm. The parametrization
of these modules can be seen in table 5.1. It is also worth mentioning that for
the sake of consistency, all experimental models were trained for 401 epochs
with a batch size of 32, using those default parameters.

1https://github.com/weiliu89/caffe/tree/ssd
2http://caffe.berkeleyvision.org/
3https://pytorch.org/

MultiBox loss SGD optimizer NMS
IoU threshold 0.5 learning rate 10−3 IoU threshold 0.5

positive/negative
sample ratio 1:3 momentum 0.9 confidence

threshold 0.2

weight decay 5 × 10−4

Table 5.1: A selection of default values for most important parameters in our
framework. We used these values for training and evaluation in all experi-
ments. Note that the learning rate decreases during the training.
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mean AP person car bicycle truck train bus motorcycle
XceptionH 49.8 57.4 31.6 34.7 32.8 72.9 64.2 55.1
XceptionE 49.3 58.2 33.1 32.4 32.0 72.2 62.4 54.5
ResNet50 48.7 56.2 30.2 33.2 32.2 71.3 62.8 54.8
XceptionB 48.4 59.5 36.3 29.8 28.7 71.7 60.0 52.8
ResNet34 (COCO) 47.3 57.2 30.3 30.5 28.5 71.4 58.7 54.3
ResNet34 47.3 55.8 30.5 29.9 30.4 70.2 60.5 53.8
ResNet101(COCO) 47.2 55.7 28.1 29.6 29.3 73.7 59.9 54.2
XceptionJ 46.9 54.7 28.2 29.9 29.2 72.1 61.7 52.5
XceptionC 46.7 57.0 32.2 29.7 27.4 71.0 59.1 50.7
ResNet50 (COCO) 46.6 54.7 26.2 33.1 29.1 69.0 58.7 55.2
VGG-16 (COCO) 46.1 56.8 29.8 31.0 27.6 67.1 58.8 51.8
ResNet101 45.7 54.3 27.2 30.0 30.3 69.0 59.0 50.3
XceptionD 43.4 56.4 33.7 28.4 23.4 61.3 52.8 47.8
XceptionF 42.9 47.5 19.8 27.6 25.3 69.5 59.3 51.5
XceptionG 40.2 43.2 18.5 24.4 24.4 68.4 55.7 46.8
XceptionA (COCO) 39.4 43.0 14.3 26.5 24.0 67.3 56.5 44.6
XceptionA 37.8 40.7 13.1 22.2 22.0 67.2 54.8 44.9
NASNet 36.9 46.7 21.1 17.0 16.0 63.2 51.4 42.7
NASNet (COCO) 36.4 44.1 17.4 17.7 17.4 63.7 50.6 43.8

Average Precision

Table 5.2: Average precision of all tested networks on Surveillance classes.
COCO indicates that the network was trained on COCO dataset, otherwise
only Surveillance data were used for training.

5.2 Measurements

To make our work comparable to other similar studies and future works, we
explain methods used for both precision and performance measurements.

5.2.1 Precision

Rather than implementing a copy of the precision evaluation, our precision
measurements were taken using an external tool. Using the external tool,
independent on our implementation, allows us to easily compare our results
with other works with little to no modifications. We used the implementa-
tion by Padilla [21] that mirrors the evaluation process of the PASCAL VOC
Challenge. The test setup used default parameters, meaning that the inter-
polation of AP was calculated using all data points and the IoU threshold
was set to 0.5.

We present all the measurements taken on Surveillance dataset while
performing multiple experiments described in this thesis in table 5.2.
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5.2.2 Inference Speed
The absolute values of the inference speed measurement would not provide
any information without the knowledge of the environment in which they
have been taken. In this section, we provide the details of both software and
hardware environments used for measurements.

Testing was done by processing a total of 10 000 images in batches of 16.
This process was timed, and the average fps value was calculated. Since we
do not consider scaling and cropping the images to be part of the network,
we did not need to include this process in the measurement. The set of
[300×300] pixel images was pre-loaded into memory before the timer was
started. On the other hand, non-maximum suppression is a critical part of
the algorithm and is included in the measurement.

All our testing was done on the following hardware:

• AMD EPYC 7401P CPU @ 2GHz ×24

• NVIDIA GeForce GTX 1080 Ti

• 128GB DDR4 RAM

5.3 Improving the Xception-SSD
In section 4.3 we introduced a hypothesis about XceptionA-SSD. Based on
this hypothesis, we presented the improved XceptionH model. However, as
suggested by the name, it was not our first modification, and we needed some
trial-and-error testing to achieve this result.

We will describe every iteration of the Xception-SSD model we trained
and the reasoning behind the particular modifications. For clarity, we will
refer to the XceptionX models in this section only by their version letters.
The performance of mentioned models on Surveillance dataset is plotted on
fig. 5.1, and more details on precision in table 5.2. Also, the feature map
sizes inside the models are shown in table 5.3.

Versions B, C, D

We examine this trio at once, since version C adds modifications to version B,
and version D further modifies version C. Notably, we trained these models
in parallel and therefore had no results from concurrent models to inform on
the design.
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Figure 5.1: Performance of multiple Xception modification on Surveillance
dataset. Circle radii demonstrate relative difference of network parameter
counts.

A B (C, D) E (F, G) H J
B1 [74×128] [74×128] [74×128] [74×128] [74×128]
B2 [37×256] [37×256] [37×256] [37×256] [37×256]
B3 [19×728] [19×256] [37×256] [37×256] [37×256]

B4-6 [19×728] [19×256] [37×256] [37×256] [37×256]
B7 [19×728] [19×256] [37×256] [37×256] [37×256]

B8-10 [19×728] [19×728] [19×728] [19×512] [19×512]
B11 [19×728] [19×728] [19×728] [19×512] [19×512]
B12 [10×1024] [10×1024] [10×1024] [10×728] [10×512]
S1 [10×1536] [10×1536] [10×1536] [10×1024] [10×512]
S2 [10×2048] [10×2048] [10×2048] [10×1024] [10×512]

Table 5.3: A table of feature map sizes on the output of layers of the Xception
networks. Bx stand for Xception blocks, S1 and S2 stand for separable con-
volution layers that follow the block structure (see fig. 2.4). The first number
represents spatial dimensions of a square feature, expecting [300×300] input,
and the second one represents the number of channels. The highlighted fea-
ture maps are used for the detections. The versions C, D, and F, G share the
feature maps sizes with their parent versions, if the given layers are present,
but do not match the highlighted feature extraction.
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Starting with the assumption that the problem of the version A is the
position of the first feature extraction for detection, we moved the extraction
from block 2 to block 7. We also reduced the number of output filters on
blocks 2 to 7 from 728 to 256. As a result, the first detection is performed on
a [19×19×256] feature map as opposed to the [37×37×256] map of A. The
main factor here, it that the feature map is extracted after the data pass five
additional blocks.

Due to a reduction of feature map size, we considered this modification a
half-measure in our plan to move the first feature extraction deeper into the
network. However, it proved to be a successful step in the right direction.
The network has significantly gained in both speed and precision values.

Both versions C and D were designed for observation of the impact of
the removal of parts of the network. We designed the modifications in such
a way that they would not affect other layers. For clarity, the removals of
blocks and layers do not alter the numbering scheme.

Version C omits blocks 5, 6 and 7 and extracts the [19×19] feature map
after block 10 instead of block 11. However, we did not observe a satisfying
performance boost to justify received loss of precision.

Version D was designed to test the need for six detection layers, mainly
the layers for detecting large objects. It is based on C and removes the
feature layers produced by extra layers. Although the observed performance
boost from C to D was more significant than the one from B to C, it was
also coupled with a major precision penalty.

Versions E, F, G

Similarly to the previous trio, these versions are also based on each other,
with the main architectural change being applied in E. Versions F and G
were designed to perform independent experiments.

Version E is the one, where we finally implemented our original intention
of moving the first extracted feature map of [37×37] size to a deeper layer.
Implementation-wise, the only difference between B and E, is the removal
of max-pooling with stride 2 from block 2 and placing it to block 8. This
movement results in the increase of feature size to the desired [37×37] map
up to block 8.

We observed a noticeable drop-off in performance compared to version B
and a slight increase in precision. Although the number of parameters in the
network is the same, the change from [19×19] to [37×37] requires about four
times more computation per convolutional layer.

Version F modifies E in the same way, C modified B. It skips the blocks
5, 6 and 7 and extracts the second feature map after block 10. Although
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the received performance boost in relation to E is significant, the precision
is also significantly impacted in a negative way.

Version G repeated the experiment from version D, but instead of remov-
ing the last three detection feature maps, we removed every other one, thus
keeping the first, third and fifth ones. It is based on version F, and again we
see the precision loss we cannot justify by performance gain.

Version H

Since we managed to gain the best precision result with version E, we decided
to try and increase its performance. To this end, we designed the version H.
However, tests C, F, D and G showed that the removal of blocks or detection
layers from the network is detrimental for the result. Therefore we decided
for a less radical solution of trimming the channel depth of the network. We
ended up trimming the [19×19] feature map to 512 channels and [10×10]
map to 1024 channels.

Experiments show that this adjustment not only put the performance of
the model halfway between E and B but also slightly boosted the precision.

Version J

After the success of version H, we decided to try the limits of channel removal
approach. We started with the setup of H, and set the number of channels
of every layer following block 7 up to extra layers, to 512.

Version J, showed us, that this is also not a viable solution. The results
are underwhelming in both, precision and performance.

Conclusion

In conclusion, we managed to receive the best precision results from the ver-
sion H. Our first implementation, A, managed only 37.8% mAP on Surveil-
lance dataset. Meanwhile version H achieved 49.8% mA on the same data
while keeping the performance equivalent.

5.4 SSDTC Implementation and Training
We have already described the architecture of SSDTC in section 4.4; however,
the actual implementation and training process proved to be more compli-
cated than SSD. In this section, we go through the challenges brought by
SSDTC.
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As mentioned, we based the SSDTC on ResnNet34-SSD. We used the
SSD initialized by the weights we learned on Surveillance dataset. We did
not need the detection layers of SSD, so we removed them from the model.
The resulting ResNet34 with extra layers served as a feature extractor for
both SSDTC and also for training the baseline SSD on HollywoodHeads
dataset. For training of both networks, we froze the weights in the extractor
and trained only temporal and detection layers. It is important to note that
every image processed by SSDTC, passes through the same extractor.

The SSDTC design we created, has different input data requirements for
training and inference. To properly train, it needs a large number of smallest
possible chunks in a batch for the network. However, one large chunk is the
most effective way for inference and the most natural way as we expect a
continuous video stream.

This, however, poses conflicting requirements for the implementation of
the network, namely in the passing of data between the modules. For the
purposes of explanation, lets call the ResNet34 network with extra layers the
Extractor, the two conv3d layers the Temporal module, and the localization
and classification layers the Detection module. We will also consider the
detection process for only one of six feature map layers of the Extractor.

During training, the network starts with feature extraction on seemingly
independent n*c frames in a batch (c being the minimal possible chunk, in
our case 5, and n the batch size). Coming to the temporal layers, the feature
maps need to be reshaped to represent n chunks of size c to allow for conv3d
layers. After the temporal layers, the feature maps come out in the batch size
of n, but due to the nature of temporal layers, the chunk size is reduced to 1.
This data then has to be reshaped again, to remove the temporal dimension,
and create a batch of size n for the detection layers.

On the other hand, during inference, the input is a single chunk of con-
secutive frames, that is equivalent to a single batch. This batch can be
simply passed thorough feature extraction layers, and the only modification
needed for the temporal layers is to encapsulate the whole tensor in addi-
tional dimension to represent a temporal batch of size one. After the temporal
convolution, we remove the encapsulation and continue with the detection;
however, the batch size in this step is smaller than at the beginning.

We can see the difference between training and inference feature sizes
in table 5.4. This behavior forced us into two separate implementations
for inference and training. Although both implementations share the same
network models, the differences are in the handling of the data between
the modules. In the table, we can see that during training, it is the chunk
dimension that gets eliminated in temporal layers, and during the inference,
it is the batch dimension.
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Module Training
Input Output

Extractor [H0×W0×3×5*N] [H1×W1×F1×5*N]
Temporal [H1×W1×F1×5×N] [H2×W2×F2×1×N]
Detector [H2×W2×F2×N]

Inference
Input Output

Extractor [H0×W0×3×C] [H1×W1×F1×C]
Temporal [H1×W1×F1×C×1] [H2×W2×F2×C-4×1]
Detector [H2×W2×F2×C-4]

Table 5.4: Data shapes and sizes on the input and output of the SSDTC
modules. The output of the Detector complies with SSD definitions (sec-
tion 3.2.2).

Although it is possible to use both versions for training and inference,
each has a significant disadvantage if not used as intended. The inference
module does not allow for the use of the batch normalization in conv3d
layers, because it operates with temporal volume in a batch size one. The
fact that the ability to use batch normalization is vital for the training was
also experimentally tested. Without normalization, we were not able to over-
perform standard SSD with the temporal version. There is a better chance
for the training module to be modified for efficient inference, although with
some performance hit inherent from our implementation.
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Conclusion
Our work can be summarized in five segments. We started by reviewing re-
lated work and other relevant image processing models based on deep learn-
ing. We continued by weighting the options for improving SSD, where we
decided to replace VGG feature extractor by a more modern network. Then
we took a look at the relationship between detected classes and detector per-
formance. In the fourth part, we returned to improving SSD, this time we
focused on one base network, and instead of using the classification network
as is, we make a series of adjustments aimed at improving the performance.
We dedicated the final part of this work to designing and implementing a
version of SSD detector with the use of temporal information.

Model review

We began by briefly summarizing the development of classification networks
by presenting a selection of models while describing their architecture and
historical significance. After we covered the bases of image processing, we
moved on to region-based object detection and compiled a brief overview of
R-CNN family of networks.

Since the focus of this thesis is to optimize the SSD detector for video
surveillance, we presented an in-depth examination of this detector. However,
it would not be right to present SSD without mentioning its contemporary
counterpart, YOLO. Because both SSD and YOLO are one-stage detectors
and our experience shows that the one-stage approach can be challenging to
comprehend, we compiled a detailed examination of this approach.

In order to gain more extensive knowledge about video detection and
inspiration for our work, we also examined a pair of video detectors exploiting
the temporal information in the video.

Feature Extraction Network

We know, from the research paper introducing SSD, that the precision of the
model can be improved by implementing a sophisticated data augmentation
algorithm. Since augmentation algorithms slow down the training process,
we decided to advance with a fast and simple augmentation and instead focus
on the relative comparison of model performances. To obtain a benchmark
baseline, we began our work by re-implementing SSD in PyTorch framework
and trained it on COCO dataset.

Our first steps towards optimizing SSD led to a search for a replacement
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for the underlying outdated VGG classifier. We tried out ResNet networks,
Xception and NASNet-Mobile. The testing revealed that all versions of SSD
based on ResNet are capable of outperforming standard SSD, but Xception
and NASNet only outperform VGG in terms of speed. Although this result
suggested ResNet as a clear winner, achieving 32.7% mAP and 50fps over
original 29.7% mAP and 45fps, we were not satisfied with all the results and
further pursued the possibilities for improvement, mainly for the Xception-
SSD.

Classes

Before we continued with testing of architecture modifications, we decided
to take a side-step toward the training data. As stated before, our baseline
SSD is trained on COCO dataset. However, we are not interested in every
class provided by COCO. As a matter of fact, we are only interested in seven
of those eighty classes.

Before we moved to this smaller dataset, we took this opportunity and
performed two tests concerning the impact of limiting the number of detected
classes. The first experiment was based on our hypothesis, according to which
the removal of the unwanted classes from the training process can harm the
precision of the detector. The second test was to observe the relationship
between the number of detected classes and the speed of the network.

The results of the precision test on were inconclusive for our test setup
and did not favor one dataset over the other. However, the inference speed
test clearly shows the benefits of a lower number of classes. With ResNet50-
SSD, we managed to speed up the network from 50 fps on 80 classes to 123
fps on 7 classes. Based on the results of those tests, we decided to continue
further testing with this limited dataset.

Model Modifications

Although ResNet was the best performer in our first tests, we decided to try
and improve the Xception-based SSD, since Xception looked promising in
classification benchmarks and our SSD implementation showed disappointing
precision. We already ruled out the option of keeping both SSD and Xception
unmodified. We performed some experiments with modified detection but
did not receive any positive results. Therefore we decided to adjust the
feature extraction part of the network to fit the needs of SSD better.

We took an experimental approach and designed multiple versions of
Xception to test. After a few iterations, we arrived at the Xception ver-
sion H. This version managed to reach 49.8% mAP and perform on par with
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ResNet50-SSD’s 48.7% mAP while being about 15% slower.
Although this experiment did not result in the model that would manage

to outperform ResNet substantially, we learned a lot about the relationship
between classification models and detection ones. The fact is that not every
state-of-the-art classification network is fit to serve as a feature extractor for
an object detector like SSD, mainly if said detector uses multiple feature maps
at different scales. Some networks like NASNet-Mobile may be downright
unfit, and others need adjustment to fit the needs of the detector.

Temporal Detection

In the final chapter of this thesis, we turned our attention to video detectors
with the use of temporal information provided by the continuity of surveil-
lance video. Based on the knowledge we gained from the experiments with
SSD and reviewing the temporal models, we designed our version of the tem-
poral detector. We based it on ResNet34 feature extractor, with SSD-like
detection, extended by three-dimensional temporal convolution for consec-
utive frames. We named our approach Single Shot Detector with Temporal
Convolution (SSDTC).

Testing our design, we observed a significant precision improvement over
regular ResNet34-SSD on HollywoodHeads dataset. SSD reached 81.2%
mAP, while SSDTC managed to achieve 86.8%. This result is compara-
ble to 86.7% of reviewed Tube-CNN. Furthermore, Tube-CNN performs at
less than 10 fps which is significantly less than our speed of 111 fps.

We believe our model to be a successful proof of concept and see a lot of
opportunities for future work to further enhance its performance.

Future Work
Although our experiments were successful in both improving the SSD detec-
tor and proving the viability of more advanced temporal detection, it left a
lot of room for further improvements. Here, we provide a few suggestions for
future work.

• Explore further optimizations of ResNet architecture for SSD.

• Improve the precision by expanding the dataset and implementing a
more sophisticated and varied augmentation algorithm for training.

• Explore the options of redesigning the SSDTC architecture to avoid
repetitive processing of frames.
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• Measure the impact of temporal window size in SSDTC and a possibil-
ity of adding padding in the temporal dimension of three-dimensional
convolution.

• Speed up the detection through implementation improvements. For
example, implement pre- and post-processing operations on GPU or
re-implement the network in a fast framework optimized for inference,
e.g., TensorRT.

Applications
In the introduction, we mentioned many interesting and useful applications
of object detectors. In this section, we present a selection of additional appli-
cations that directly use object detection and build on top of it to generate
more complex information about the processed video.

Tracking Thanks to the nature of the video, we expect to be able to lo-
cate and track objects in time, observe their direction and speed. The
purpose of the tracking is to connect detections from individual frames
into a set of continuous trajectories. A tracker can use the centralized
bounding-box positions and match those points into a trajectory using
a recursive probability estimation, i.e., the Kalman filter [15].

Re-Identification Re-identification is an extension of the tracking problem
to objects passing between fields of view of multiple cameras. Regions
inside bounding boxes predicted by an object detector can be used by
the DeepReID [17] or other similar algorithms, to find the matching
object.

Search An automatic annotation of video frames by an object detector can
also be used for interactive video retrieval [19] in large video collections.
For example, the ability of the detector to learn to recognize a set of
classes with bounding boxes can be used for sketch based search [29]
[1].
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A. Implementation
This appendix provides an overview of the implementation we have used for
the experiments. We describe the distribution of the source code into modules
and specify the runtime environment requirements. We also provide a short
guide into running the code and training the network.

A.1 Code structure
The logical structure of the implementation is illustrated in fig. A.1. The
figure shows different modules used for training and inference, including the
shared core. This entire structure is common to both SSD and SSDTC,
except for SSDTC training, where the ssdtc.py replaces the ssd.py file.

Physically, the code is organized in the ssd/ folder as follows:

lib/ SSD and SSDTC implementations with loss function, prior box gener-
ation module and other utility functions.

lib/data/ Dataset classes for loading the data and annotations for both
COCO and HollywoodHeads datasets and an augmentation module.

lib/models/ Detector network models.

train/ Training scripts.

test/ Inference and evaluation scripts.

A.2 Runtime Environment
We performed our experiments on a remote server with the use of Docker1

containers for deployment. The use of the GPUs requires an addition of the
nvidia-docker2. Unfortunatelly, nvidia-docker is currently supported only on
Linux platforms, of which we tested Ubuntu 16.04 and 18.04.

The following list of the software requirements is stringent because of the
nvidia-docker limitations. On the other hand, the hardware limitations are
hard to specify, the faster the GPU and CPU the better. CPU is responsible
for feeding the data into the network and their augmentation. The speed of

1https://www.docker.com/
2https://github.com/nvidia/nvidia-docker/wiki/Installation-(version-

2.0)
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SSD
ssd.py

Network Model
models/*

Ground-Truth Matching
box utils.py

Loss
multibox loss.py

Optimizer
torch.optim.SGD

Non Maximum
Suppression
detection.py

Input imagesData Loader
torch.utils.data.DataLoader

Augmentation
data/preprocess.py

Dataset
data/coco detection.py

Figure A.1: Implementation pipeline of SSD modules. Training pipeline
(green) and inference pipeline (purple) with shared core elements (orange).
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the storage medium then limits the CPU and so on. Nonetheless, the optimal
setup should be bottlenecked by the GPU. The size of the GPU memory is
a limiting factor for the model size and the batch size.

Software requirements
NVIDIA driver >=396
docker-ce 18.06.1
nvidia-docker 2.0

Minimal HW requirements
NVIDIA GPU 6 GB
RAM 16 GB
CPU 8 threads

We strongly recommend using this project via a Docker container, how-
ever, it is possible to follow the steps inside provided Docker files to set up
the native environment (docker/ssd and docker/pytorch). The unavoid-
able fact is, that compatible versions of PyTorch, CUDA Toolkit3, cuDDN
library4 and operating system are needed. Our implementation uses PyTorch
0.4.1 with CUDA 9.2, cuDDN 7 in a Ubuntu 16.04 based Docker image.

We streamlined the process of building the Docker container into running
a single docker build.sh script.

With the image built, we can start the container:

docker run -it --ipc=host --runtime =nvidia -v
data_loc :/ data -v save_loc :/ save ssd:v1.0

We recommend mounting the directory with training or input data and the
directory for output data into the Docker container.

A.3 Training and Evaluation
In ssd/train/ and ssd/test/, we provide all scripts used to get the results
in this thesis and a few additional inference modules.

Training

Assuming the previous steps were followed, we can change into a SSD direc-
tory inside the running Docker container and train the network by executing
the following:

python3 -m ssd.train. train_resnet_small --size 50
--export /save/ --loc /data/ --resume imgnet

3https://developer.nvidia.com/cuda-toolkit
4https://developer.nvidia.com/cudnn
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Separate scripts are provided for each model and each dataset with al-
most identical parameters. The most important is to specify dataset location
(--loc), location for saving the trained weights (--export) and the loaded
checkpoint (--resume). The ResNet models are further specified by --size
parameter and Xception by --type parameter. It is also important to set
batch size (--batch) depending on the available memory.

Evaluation

Evaluation script is run very similarly to the training one, except for the
need to specify the network type as the parameter:

python3 -m ssd.test.eval --net resnet --size 50 --
loc /data/ --resume weights --batch 16

The evaluation is not set up to calculate the precision by itself, but in-
stead to export detections and ground-truth boxes into detections and
groundtruths folders. The exported data are then evaluated by exter-
nal algorithm (https://github.com/rafaelpadilla/Object-Detection-
Metrics).

Inference

We have prepared a two-part inference module. One part processes the video
and outputs a file with the detections. The other one takes the video and
the generated file and produces a new video with detected boxes drawn on.
Those files are test/detect video.py and test/tag video.py and the user
guide can be found inside those files.
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