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A bstract

This thesis consists of three papers that focus on risk modelling and empirical asset pric­
ing. In the first paper, we introduce a new model for multivariate volatility modelling and 
forecasting. By building a system of seemingly unrelated heterogenous autoregressions, 
we obtain more precise and efficient estimates of the covariance matrices. The complex 
forecasting exercise carried out on data from the turbulent period of the global finan­
cial crisis 2007-2008 demonstrates direct economic benefits of our approach. The second 
paper moves our research from expected utility to quantile preferences. We concentrate 
on commonalities in the volatility series that influence the distribution of asset returns. 
Specifically, we develop a Panel Quantile Regression Model for Returns that can control 
for otherwise unobserved heterogeneity among financial assets, and allows us to exploit 
common factors in the panel of volatilities. Results of our empirical application highlights 
the benefits of our newly proposed model from an economic and statistical point of view. 
The last paper generalizes our previous results. We show that quantile Euler equation 
can be transformed into a basic quantile pricing equation and has a stochastic discount 
factor/pricing kernel representation. We also provide an important link to quantile fac­
tor models. The empirical part of this paper demonstrates the validity of our theoretical 
foldings using data of the US and German Treasury futures contracts.
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Czech A bstract

Tato práce se skládá ze tří článků, které se zaměřují na modelování rizik a empir­
ické oceňování aktiv. V prvním článků představujeme nový model pro modelování a 
prognózování vícerozměrné volatility. Budováním systému zdánlivě nesouvisejících het­
erogenních autoregresí získáme přesnější a účinnější odhady kovariančních matic. Kom­
plexní prognózování dat z turbulentního období globální finanční krize roků 2007-2008 
ukazuje přímé ekonomické přínosy našeho přístupu. Druhý článek posouvá náš výzkum 
z očekávaného užitku na kvantilové preference. Zaměřujeme se na společné rysy řady 
volatility, které ovlivňují rozdělení výnosů aktiv. Konkrétně jsme vyvinuli Panel Quan­
tile Regression Model for Returns, kterým můžeme kontrolovat jinak nepozorovanou 
heterogenitu mezi finančními aktivy a umožňuje nám zachytit společné faktory v pan­
elu volatility. Výsledky naší empirické analýzy ukazují výhody našeho nově navrženého 
modelu jak z ekonomického, tak i statistického hlediska. Poslední článek zobecňuje naše 
předchozí výsledky. Ukazujeme, že kvantilová Eulerova rovnice může být transformována 
na základní kvantilovou cenovou rovnici a má reprezentaci stochastického diskontního 
faktoru /  cenového jádra. Poskytujeme také důležité spojení s kvantilovými modely. 
Empirická část této práce demonstruje platnost našich teoretických poznatků s využitím 
údajů z termínovaných kontraktů z USA a Německa.
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Introduction

This dissertation consists of three papers that focus on risk modelling and empirical 
asset pricing. Specifically, the first paper contributes to the literature by providing a 
method of obtaining more efficient estimates and forecasts of covariance matrices. The 
second paper identifies common risk factors in panels of volatilities that drives the dis­
tribution of asset returns and the third paper introduces basic quantile asset pricing 
equation with an application to factor pricing. All papers result from the natural collab­
oration with my supervisor Jozef Barunik who is also co-author of the papers. Therefore, 
in the rest of the text I stick to “we” when referring to the author. A short summary of 
the papers follows.

In Chapter 1 - On the modelling and forecasting multivariate realized volatility: Gen­
eralized Heterogeneous Autoregressive (GHAR) model, we introduce a multivariate ex­
tension of the popular Heterogeneous Autoregressive model. This paper is published in 
Journal of Forecasting (Cech and Barunik, 2017).

Volatility modeling and forecasting are key issues in the area of financial econometrics. 
In empirical work, researchers and practitioners often study stock market data and find 
dependencies in the second moment of these data. As shown by Engle (1982), Bollerslev 
(1986), Nelson (1991) and many others, volatility of financial time series is anything but 
constant. To deal with this problem, a new family of parametric univariate condition­
ally heteroscedastic models represented by the Generalized Autoregressive Conditional 
Heteroscedasticity (GARCH) was developed in the eighties and nineties.

While the search for more accurate volatility models has been the focal point of 
many researchers, interdependencies among assets and subsequent comovements are of 
great importance in practice (e.g., asset allocation, portfolio management, risk manage­
ment, etc.). The natural extension of the family of volatility models is to model the 
whole covariance structure of the given assets. This gives rise to the development of the 
multivariate GARCH models. Although the transition from univariate to multivariate 
GARCH models might seem to be straightforward, it possesses several challenges. Multi­
variate volatility modeling nowadays offers numerous research opportunities in the form 
of extension to, or innovation of, current methodologies; as well as developing techniques 
for solving drawbacks of current approaches (e.g., reduction of dimensionality). Our 
research contributes to these efforts by introducing a generalization of Heterogeneous 
Autoregressive (HAR) Model of Corsi (2009).
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Increased availability of high-frequency data in the last decade resulted in the develop­
ment of the new non-parametric approach of treating volatility. In particular, model-free 
estimator of Realized Volatility in Andersen et al. (2001) makes volatility observable. 
Theoretical properties of this estimator have been further studied in Andersen et al. 
(2003) and Barndorff-Nielsen and Shephard (2004a). Barndorff-Nielsen and Shephard 
(2004a) moreover introduce the concept of Realized Covariation, which is a multivariate 
extension of Realized Volatility. Market microstructure noise can significantly affect Re­
alized Covariance estimates resulting in not positive semi-dehnite matrices. A solution to 
this problem is offered by Barndorff-Nielsen et al. (2011) and their Multivariate Realized 
Kernels estimator that guarantees the positive semi-dehniteness of the covariance matrix.

All the realized measures, univariate or multivariate, are ex-post measures of return 
(co)variation. These measures need to be further modeled, so they are of some practical 
use. The research devoted to entire covariance structure modelling is ongoing and grow­
ing. Part of the researchers makes use of variants of the Wishart distribution to model 
the structure of the realized covariances (Gourieroux et ah, 2009; Bonato, 2009; Bonato 
et ah, 2013; Jin and Maheu, 2013). Another stream of researchers decompose realized 
covariance matrices by matrix exponential-logarithm transformation or Cholesky decom­
position and use standard time-series techniques afterwards (Bauer and Vorkink, 2011; 
Chiriac and Voev, 2011). The advantage of the decomposition approach is a guarantee of 
the positive-semidehniteness of the covariance matrix forecasts. Our work contributes to 
the literature by introducing Generalized Heterogeneous Autoregressive Model (GHAR), 
a multivariate extension of the popular HAR Model intended for covariance matrix mod­
elling and forecasting.

In our work, we stick to the covariance decomposition stream of literature. Specifi­
cally, we model Cholesky factors of the realized covariance matrices as a system of the 
seemingly unrelated heterogeneous autoregressions. Motivation to build a system of the 
seemingly unrelated regression (Zellner, 1962) over HAR is the contemporaneous correla­
tion in the residuals of the simple HAR model. The advantage of this approach is that we 
estimate a multivariate HAR model, which will capture the separate dynamics of the vari­
ances and covariances, but also possible common structure. Moreover, it will also yield 
more efficient estimates - the error terms from simple HAR are heteroscedastic (Corsi 
et ah, 2008), which makes the coefficient estimates less efficient. Furthermore, when there 
is no information about dependence between equations left in the residuals estimator will 
converge to a simple Ordinary Least Squares (OLS) estimates, as the diagonal weighting 
matrix in generalized regression will reduce the estimates to OLS. Therefore, using gen­
eralized least squares, we capture dependencies hidden in the residuals delivering more 
efficient estimates.

In the empirical application, we study portfolios consisting of five, ten and fifteen1 
highly liquid stocks from New York Stock Exchange. We begin our analysis with the one-

1 Apple Inc. (AAPL), Exxon Mobile Corp. (XOM), Google Inc. (GOOG), Wal-Mart Stores (WMT), 
Microsoft Corp. (MSFT), General Electric Co (GE), International Business Machines Corp. (IBM), 
Johnson & Johnson (JNJ), Chevron Corp. (CVX), Procter & Gamble (PC), Pfizer Inc. (PFE), AT&T 
Inc. (T), Wells Fargo & Co (WFC), JP Morgan Chase & Co (JPM) and Coca-Cola Co. (KO).
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step-ahead forecasts for the portfolio consisting of five stocks, whereas we leave portfolios 
of ten and fifteen stocks and also five- and ten-step ahead forecasts as a robustness check 
showing that the proposed methodology also works well at larger dimensions and different 
forecasting horizons. Our dataset consists of tick data and covers the period of Global 
Financial Crisis, i.e. July, 1 2005 to January, 3 2012 with 1623 trading days. As it is 
standard in the literature we explicitly exclude weekends and bank holidays (New Year’s 
Day, Independence Day, Thanksgiving Day, Christmas) to ensure sufficient liquidity. 
From the tick data, we calculate realized covariance matrices using Multivariate Realized 
Kernels estimator at one-minute frequency, Realized Covariance at one and five-minute 
frequencies and Sub-Sampled Realized Covariance at five, ten, fifteen and twenty minute 
frequency. Moreover, we calculate also open-close daily returns. The model estimation 
and forecasting exercise are carried out using rolling window estimation with a fixed 
length of 750 days, i.e. three years.

We compare the performance of the GHAR against two covariance based benchmark 
models (HAR, Vector ARFIM A (Chiriac and Voev, 2011)), and two return based bench­
marks (Dynamic Conditional Correlation GARCH (Engle, 2002), RiskMetrics (Longer- 
staey and Spencer, 1996)) primarily according to economic criteria, i.e. Mean-Variance 
efficient portfolio of Markowitz (1952) and Global Minimum Variance Portfolio (GM VP) 
using cumulative and annualized risk. The rationale behind is the importance of well- 
conditioned and invertible forecasts rather than focusing on unbiasedness, as an unbiased 
forecast does not necessarily translate into an unbiased inverse (Bauwens et ah, 2012). 
As a robustness check we also provide a ranking of the models based on the Root Mean 
Squared Error (RMSE) loss functions based on the Frobenius norm and to test the 
significant differences of competing models, we use the Model Confidence Set (MCS) 
methodology of Hansen et al. (2011). The MCS procedure sequentially eliminates the 
worst-performing model from the full set of competing models when the null about the 
same forecasting performance is rejected.

Overall, the results of our analysis suggest that GHAR provides more precise and 
more efficient covariance matrix forecasts and they translates to economic gains directly. 
Specifically, in the one-step-ahead forecasting exercise using portfolio of five stocks, the 
GHAR shows the best performance according to all economic criteria, i.e. GHAR achieves 
the best risk-return trade-off in Markowitz optimization, and has the lowest risk accord­
ing to both cumulative and annualized versions of GMVP. The robustness check, the 
portfolio of ten/ffiteen stocks and hve/ten-step-ahead forecasts qualitatively match our 
previous findings. Moreover, we document the economic benefit of estimating the real­
ized covariance with more efficient multivariate realized kernel and sub-sampled realized 
covariance estimators using ten to twenty minutes sub-sampling. In the statistical com­
parison, we obtain a bit mixed results. While in the one-step-ahead forecasts GHAR 
always belongs to MCS in case of the portfolio of five and ten stocks, it is in MSC only 
when 5-minutes RCOV is used in case of fifteen stocks portfolio. For the forecasting 
horizon of hve/ten days results do not change substantially. The only notable difference 
is absence of GHAR in MCS in the case of ten-step ahead forecasts of portfolio consist­
ing of fifteen stocks. We address unambiguous results of the statistical evaluation to a
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problem of selecting the “correct” proxy for unobservable “true” covariance matrix.

In Chapter 2 - Measurement of Common Risk Factors in Tails: A Panel Quantile 
Regression Model for Returns, we introduce an innovative approach of modelling com­
monalities in the quantiles of future returns using information from panels of realized 
measures. The earlier version of the paper was published in Institute of Economic Stud­
ies Working Paper series as IES Working Paper 20/2017 and currently is under review 
in the Journal of Financial Econometrics.

During the last two decades, global financial markets were hit by several crises. The 
most well-known and important ones are Dot-com Bubble and the Global Financial Crisis 
of 2007-2012 that includes Icelandic financial crisis and European sovereign debt crisis. 
The aftermath of these events highlights the necessity of proper risk identification and 
mitigation. The need for accurate risk measures is important not only from the regulatory 
point of view to prevent a future crisis but is also crucial for many applications within 
portfolio and risk management. Recently, the increased availability of high-frequency 
data resulted in the development of the more accurate volatility estimators commonly 
referred as Realized Measures. Whether is original Realized Volatility (Andersen et ah, 
2001), Realized Semivariance (Barndorff-Nielsen et ah, 2010), for which the sign of the 
price change matters, or the adjusted Bi-Power Variation (Andersen et ah, 2011) that 
is robust to jumps in the prices and the certain types of microstructure noise, all these 
realized measures help us to understand the nature of the data, identify sources and 
potentially predict the risk.

Although volatility forecasting is essential for many financial applications, it does not 
help us to specify the conditional distribution of future returns. The classical portfolio 
theory rather concentrates on the risk-return relationship that has a long history and 
is well documented. For example in the Capital Asset Pricing Model, the risk of the 
asset is measured by the covariance between asset return and market return. Market 
return is just one of the many possible factors affecting an asset’s risk. Among other 
factors, the volatility of the asset plays an essential role in explaining expected returns. 
The classical asset pricing moreover assumes an economic agent maximizing expected 
utility. However, the expected utility framework might be too restrictive to describe 
the real/actual behavior of the economic agents. Recent studies thus assume agents to 
maximize their quantile utilities, e.g. de Castro and Galvao (2018).

In finance, the Conditional Autoregressive Value-at-Risk (CAViaR) model of Engle 
and Manganelli (2004) is one of the first examples that focus on the estimation of quan­
tiles of various asset returns, Baur et al. (2012) use quantile autoregressions to study 
conditional return distributions and Cappiello et al. (2014) detects comovement between 
random variables with time-varying quantile regression. The work of Zikes and Barunik 
(2016), who combine the quantile regression framework (Koenker and Bassett Jr, 1978) 
with realized volatility, is another important example in this held. In their work, it has 
been shown that various realized measures are useful in forecasting quantiles of future 
returns without making assumptions about underlying conditional distributions.

While Zikes and Barunik (2016) provided an important link between future quantiles 
of return distribution and its past/ex-ante variation, they concentrate on the univariate
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time series. Effective risk diversification techniques work not only with the single con­
ditional asset return distribution, but require a deeper knowledge of the dependencies 
in the joint distributions. In the standard mean-regression framework, Bollerslev et al. 
(2018) show that realized volatility of the financial time series share many commonali­
ties. In the quantile regression set-up, however, there is no similar study that will try 
to uncover information captured in the panels of volatility series. To the best of our 
knowledge, there is no study dealing with estimates of conditional distribution of return 
series in a multivariate setting that explores ex-post information in volatility.

In this paper, we contribute to the literature by introducing a Panel Quantile Re­
gression Model for Returns - we propose to model the panel of assets returns via its 
past and/or ex-ante volatility using panel quantile regression techniques. This approach 
allows us to exploit common factors in volatility series that directly affect quantiles of 
return series. Moreover, we can control for otherwise unobserved heterogeneity among 
financial assets. Furthermore, using the fixed effects estimator, we can disentangle overall 
market risk into the systematic part and idiosyncratic risks. In a sense, we revisit a large 
literature connecting volatility with the cross-section of returns we model tail events of 
the conditional distributions via volatility.

In the empirical application, we show that the newly proposed model delivers more 
accurate estimates than benchmark methods using various data-sets. The gain in accu­
racy translates into better forecasting performance of Panel Quantile Regression Model 
for Returns. We test the performance of our model in a portfolio Value-at-Risk fore­
casting exercise where we concentrate on the statistical and economic evaluation. In 
the statistical comparison, we distinguish between the absolute and relative performance 
of the given model. The absolute performance in our work is assessed by the so-called 
CAViaR test of Berkowitz et al. (2011) and tests whether the model is dynamically cor­
rectly specified. For the relative performance, we employ a standard Diebold-Mariano 
test and we pairwise compare all the competing models. In the economic comparison, 
we study Global Minimum Value-at-Risk Portfolio(GMVaRP) and the Markowitz like 
efficient frontiers of the Value-at-Risk Return trade-off. The economic and relative sta­
tistical performance is tested against three benchmark models - RiskMetrics (Longerstaey 
and Spencer, 1996) and two versions of Univariate Quantile Regression Model for Returns 
(Zikes and Barunik, 2016).

Our analysis starts with the well-behaved simulated data from Monte-Carlo experi­
ments. Specifically, we simulate 29 continuous price process series using four error distri­
butions - Multivariate normal/fat-tailed Student-t distributions both with the given cor­
relation structure obtained from the stock market data and Univariate normal/fat-tailed 
Student-t distributions. In total, we run 500 simulations for each error distribution and in 
each simulation step we use rolling window estimation with a length of 1000 observations. 
The results of the Monte-Carlo simulation study shows that our model is dynamically 
well specified and outperforms all the benchmarks in direct statistical comparison when 
we use more heterogeneous data generated from the univariate error distributions.

Next, we analyze 29 highly liquid stocks2 from the New York Stock Exchange during

2Apple Inc. (AAPL), Amazon.com, Inc. (AMZN), Bank of America Corp (BAC), Comcast Cor-
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the period July 1, 2005, to December 31, 2015. In the empirical analysis, we hypoth­
esise that quantile of open-close returns depends on the various ex-post risk measures 
calculated from the tick data, i.e. Realized Variance, Realized Semivariances and Real­
ized Bi-Power Variation. For the portfolio Value-at-Risk construction we also proxy the 
covariance structure by the Realized Covariance estimates. Similar to simulation study 
we use rolling window estimation procedure with the same window length (1000 days) 
for the estimation and forecasting purposes. In the in-sample analysis, we document 
unobserved heterogeneity in far quantiles that needs to be controlled. Moreover, all the 
risk measures show the asymmetric impact on the quantiles of returns, e.g. impact is 
higher in the bellow median quantiles. In the out-of-sample forecasting exercise, we have 
found that all the panel quantile regression models are dynamically correctly specified. 
Importantly, the panel quantile regressions consistently outperform the benchmarks in 
various quantiles and they are not outperformed by any of the benchmarks. From the 
economic point of view, newly proposed modeling strategy performs best in all but me­
dian quantiles according to GMVaRP criteria and provide us with the best Value-at-Risk 
Return trade-off.

Our next step was the analysis of the common exogenous risk factor in tails of the 
returns distribution. We have selected ex-ante measure of the market uncertainty, widely 
used VIX Index which measures the expectations about the 30-day market volatility, as 
the exogenous factor. Results of the analysis confirm that VIX carries an important part 
of the information about risk that is not fully captured by any of the realized measures. 
Moreover, by controlling for the unobserved heterogeneity and idiosyncratic volatility, 
VIX proves to be a strong common factor driving the tails of the return distributions. 
Our findings also hold in the economic comparison where panel quantile regression model 
with VIX achieves the best performance using both evaluation criteria.

In the last section of the paper, we test the robustness of our previous findings using 
high dimensional portfolio (496 assets) consisting of the constituents of the S&P 500 
index. We found that the VIX Index plays an important role in the high-dimensional 
application and that anticipation of the future market volatility translates directly to the 
conditional distribution of future returns.

Overall, the results of our analysis suggest that the Panel Quantile Regression Model 
for Returns is dynamically correctly specified. Moreover, it dominates benchmark models 
in the economically important quantiles (5%, 10% or 95%) and we find that none of the 
benchmark models is able to outperform our model consistently. Furthermore, the Panel 
Quantile Regression Model for Returns provides us with direct economic gains according 
to both economic evaluation criteria.
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In Chapter 3 - Dynamic Quantile Model for Bond Pricing, we concentrate on the 
quantile pricing of bond future contracts.

In this work, we study the bond pricing in the tails of the returns distributions. 
As opposed to classical asset pricing (Sharpe, 1964; Lintner, 1965; Merton, 1973; Ross, 
1976), we make a step forward and move from the expected utility set-up to quantile 
preferences. This transition allows us to study asset pricing given the economic agents 
differing in their level of risk aversion. In particular, we build on work of de Castro and 
Galvao (2018) who derive quantile Euler equation using properties of quantile preferences 
as defined in Manski (1988) and Rostek (2010). We also utilize the advantages of quantile 
preferences such as robustness to fat tails and the ability to capture heterogeneity through 
the quantiles. We further extend the results of de Castro and Galvao (2018) into a 
stochastic discount factor representation of the quantile asset pricing equation and present 
a link to the factor models.

In the empirical application, we focus on quantile pricing of the two, five, ten and 
thirty years US and German government bond futures contracts from the Chicago Board 
of Trade and the EUREX exchanges. The US Treasuries dataset consists of the individual 
assets tick prices from the period July 1, 2003, to November 30, 2017 during regular 
trading hours - Sunday to Friday, 5:00 p.m. - 4:00 p.m. Chicago Time. We further 
consider selected maturities of US forward rates estimates to play an important role in 
the bond pricing as it is common in the literature, e.g. Cochrane and Piazzesi (2005). 
These data are obtained from the dataset of Gurkaynak et al. (2007) where the detailed 
estimation procedure of data creation is described. In the case of German treasury 
futures, we are working with tick prices from the period October 1, 2005, to November 30, 
2017 during standard trading hours - Monday to Friday, 8:00 a.m. - 10:00 p.m. Central 
European Time. To ensure sufficient liquidity, we explicitly exclude public holidays and 
days with less than 5 hours of trading. From the raw tick data, we extract 5 minutes 
prices, and we calculate open-close returns, Realized Volatility (Andersen et ah, 2003) 
and Realized Semi-variance (Barndorff-Nielsen et ah, 2010).

For estimation purposes, we adopt recently developed smoothed (Generalized) Method 
of Moments quantile estimator of de Castro et al. (2018) and the quantile regression of 
Koenker and Bassett Jr (1978). First, we study single-factor-model with Realized Volatil­
ity being the risk factor. In this set-up, we illustrate the proximity of the GMM quantile 
estimator and the standard quantile regression. Second, relying on the similarity of both 
methods we study multi-factor-model where we rely solely on the quantile regression ap­
proach since the implementation of multiple moment conditions in quantiles is not trivial 
and is subject to further research. We consider two multi-factor specifications in our 
work. In the first specification positive and negative Realized Semivariance serve as a 
risk factor. The second specification is motivated by the Cochrane and Piazzesi (2005) 
and we consider two to five years forward rates.

Results of our analysis demonstrate a significant influence of the Realized Volatility 
on the quantiles of the treasury returns. In both US and German treasuries, we ob­
tain qualitatively similar results using both GMM and quantile regression estimators. 
Quantitatively, however, results differ a bit and we attribute these differences to lower
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liquidity of the German treasuries. When we concentrate on the comparison of GMM 
and quantile regression we again obtain qualitatively and also quantitatively similar re­
sults. Specifically, the majority of the GMM coefficients estimates lies almost always 
in the 95% confidence intervals of the quantile regression and vice versa. Interestingly, 
while in German treasuries quantile regression in almost all quantiles underestimates 
the influence of the Realized Volatility compared to GMM estimates, in the US Trea­
suries, GMM and quantile regression estimates intersect frequently, and there is no clear 
under/overestimation pattern.

In the multi-factor model, our results depend heavily on the factors used for analysis. 
In case Realized Semivariances are considered being risk factors results of our analysis 
share many commonalities with single-factor models, e.g. coefficient estimates for quan­
tiles below/above the median have negative/positive signs, the majority of coefficients 
are statistically significant. Besides similarities, we also document a unique influence of 
semivariances. In the US Treasuries case, negative semivariance influence lower quantiles 
relatively more than the upper quantiles while the opposite is true for positive semivari­
ance. Moreover, in the upper quantiles, positive semivariance dominates negative semi­
variance whereas in the lower quantiles the results are mixed. In contrast, the influence 
of Realized Semivariances on the quantiles of German government bonds returns is more 
symmetric and German treasuries look more homogeneous as the coefficient estimates 
closer to each other.

In the last part of the paper, we study the multi-factor model when forward rates serve 
as the risk factors. In this part, we concentrate on the US Treasuries only since the data 
for the German market are not available at the desired (daily) frequency. Our analysis 
shows that forward rates carry very limited information about bond returns distributions. 
Specifically, for all the treasuries and all the forward rates, the vast majority of the 
estimates is statistically insignificant. Hence, the risk-averse investor optimizing quantiles 
bellow median finds forward rates of limited use since their coefficients are not statistically 
different from zero. The only exception where a risk-loving investor might consider 
forward rates to be valid risk factors is the shortest maturity treasury where selected 
forward rates show partial explanatory power in the upper quantiles of the bond returns 
distribution.
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C hapter  1

On the modelling and forecasting 
multivariate realized volatility: 

Generalized Heterogeneous
Autoregressive (GHAR) model

Recent multivariate extensions of popular heterogeneous autoregressive model 
(HAR) for realized volatility leave substantial information unmodelled in 
residuals. We propose to employ a system of seemingly unrelated regressions 
to model and forecast realized covariance matrix to capture this informa­
tion. We find that the newly proposed generalized heterogeneous autoregres­
sive (GHAR) model outperforms competing approaches in terms of economic 
gains, providing better mean-variance trade-off, while, in terms of statistical 
precision, GHAR is not substantially dominated by any other model. Our re­
sults provide a comprehensive comparison of the performance when realized 
covariance, sub-sampled realized covariance and multivariate realized kernel 
estimators are used. We study the contribution of the estimators across differ­
ent sampling frequencies, and show that the multivariate realized kernel and 
sub-sampled realized covariance estimators deliver further gains compared to 
realized covariance estimated on a 5-minutes frequency. In order to show the 
economic and statistical gains, portfolio of various sizes is used.

1.1 Introduction
The risk of individual financial instruments is crucial for asset pricing, portfolio and risk 
management. Besides volatility of individual assets, knowledge of covariance structure be-

9
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tween assets in portfolio is of great importance. Accurate forecasts of variance-covariance 
matrices are particularly important in asset allocation and portfolio management.

The traditional approach of obtaining covariance matrix estimates relays on multivari­
ate generalized autoregressive conditional heteroskedasticity (MGARCH) models such as 
the constant conditional correlation GARCH of Bollerslev (1990), the dynamic condi­
tional correlation GARCH of Engle (2002) or the BEKK of Engle and Kroner (1995) 
(for a survey of MGARCH models see Bauwens et ah (2006)). These models are popular 
in the literature although they suffer from curse of dimensionality problem. Increased 
availability of high-frequency data in the last decade resulted in development of the 
new non-parametric approach of treating multivariate volatility. A milestone for covari­
ance matrix modelling is the work of Barndorff-Nielsen and Shephard (2004a) where 
the theory of “realized covariation” is introduced. Realized covariance matrices are ex­
post measures of daily covariation and they need to be further modelled. The research 
dedicated to modelling the entire covariance matrices is still lively. From the already 
established methods, let us mention Wishart Autoregression (WAR) of Gouriéroux et al. 
(2009) with numerous extensions presented in Bonato (2009) and Bonato et al. (2013). 
A different approach of realized volatility modelling can be found in Bauer and Vorkink 
(2011), who model realized stock market volatility using matrix-logarithm transforma­
tion and primarily concentrate on forecasting performance of the factor model. A more 
common approach of obtaining positive definite forecasts of covariance matrices is the 
use of Cholesky decomposition. The use of Cholesky factors, further estimated by Vec­
tor Autoregressive Fractionally Integrated Moving Average (VARFIMA), Heterogeneous 
Autoregression (HAR) or W AR-HAR can be found in the work of Chiriac and Voev 
(2011). More recently, Amendola and Storti (2015) consider combining predictions from 
multivariate GARCH models and realized covariance matrices.

In this chapter, we contribute to the literature by proposing a new model for dy­
namic covariance matrix modelling and forecasting. We model Cholesky factors of the 
realized covariance matrix as a system of seemingly unrelated heterogeneous autoregres­
sions. The main motivation is that we may expect the residuals from simple HAR model 
to be contemporaneously correlated and, moreover, heteroscedastic due to well known 
volatility in the volatility effect (Corsi et ah, 2008). Estimating the system of HAR equa­
tions using generalized least squares allows us to capture these dependencies. Hence the 
generalised HAR (GHAR) may provide more precise and more efficient forecasts, which 
will translate to economic gains directly. On the portfolios of various sizes, we show that 
GHAR model delivers significant economic gains and, statistically, is not substantially 
outperformed, when compared to natural benchmark models based on high frequency 
data (HAR, VARFIMA), as well as daily data (DCC-GARCH, RiskMetrics). In addi­
tion, we study the economic benefits of estimating the realized covariance with more 
efficient sub-sampled realized covariance and multivariate realized kernel estimators.

The rest of the chapter is structured as follows. We provide background for estimation 
of realized covariation from high frequency data in the next section. The third section 
describes frameworks for modeling multivariate volatility, and it presents our GHAR 
model. The fourth section provides description of dataset and research design, including
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economic as well as statistical evaluation criteria. In the fifth section we discuss out-of- 
sample forecast evaluation, and sixth section concludes.

1.2 Estimation of covariation from high frequency 
data

We assume that the ^-dimensional efficient price process pt evolves over time 0 < t < T  
according to the following dynamics

dpt =  p td t+  YltdWt +  d J t, (1.1)

where p t is predictable component, E t is real-values q x q volatility process, W±,. . . ,  Wq 
is a ^-dimensional Brownian motion, and d.Jt is a jump process. A central object of 
interest is the integrated covariation, which measures the covariance of asset returns over 
a particular period. Andersen et al. (2003) and Barndorff-Nielsen and Shephard (2004a) 
suggest estimating the quadratic covariation matrix analogously to the realized variance, 
by taking the outer product of the observed high-frequency return over the period. This 
estimation, however, assumes synchronised equidistant data.

In practice, trading is non-synchronous, delivering fresh prices at irregularly spaced 
times which differ across stocks. In order to estimate the covariance, the data need 
to be synchronized, meaning that the prices of the q assets need to be collected at 
the same time stamp. Research of non-synchronous trading has been an active field of 
financial econometrics in past years: see, for example, Hayashi and Yoshida (2005) and 
Voev and Lunde (2007). This practical issue induces bias in the estimators and may 
be partially responsible for the Epps effect (Epps, 1979), a phenomenon of decreasing 
empirical correlation between the returns of two different stocks with increasing data 
sampling frequency. Ait-Sahalia et al. (2010) compare various synchronization schemes 
and find that the estimates do not differ significantly from the estimates using the so 
called refresh time scheme when dealing with highly liquid assets. The data used further 
in our study consists of the most liquid U.S. stocks; hence we can restrict ourselves to 
the refresh time synchronization scheme in our work.

Let be the counting process governing the number of observations in the g-th 
asset up to time t, with times of trades t(9)i,t(9)2, • • • • Following Barndorff-Nielsen et al. 
(2011), we define the first refresh time as

TX =  max(t(i ) i , . . .  , t ((i)i), (1.2)

for d =  1 , . . . ,  q assets, and all subsequent refresh times as

A+i =  max(i(i)w(1)T.+i, • • • d(<i)»(i)T.+i). (1-3)

with the resulting refresh time sample being of length N . iq is thus the first time that 
all assets record prices, while is the first time that all asset prices are refreshed. In the 
following analysis, we will always set our clock time to Tj when using the estimators.
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Having synchronized the data, let us denote A k P t  =  P t - i+ r k/N  — P t - x + T ^ / N  a dis­
cretely sampled vector of fc-th intraday log-returns in [t — 1, t], with N  intraday ob­
servations available for each asset q. A simple estimator of realized covariance is then 
constructed as

N
^ tRC) = • (L4)

fc=l

As shown by Barndorff-Nielsen and Shephard (2004a), realized covariance is a consistent 
estimator of integrated covariance and is asymptotically mixed normal. However, the 
estimator is biased and becomes inconsistent in the case that micro-structure noise is 
present in the data. Sparse sampling is used to mitigate the trade-off between the bias 
due to noise and variance of the estimator.

To effectively use all available high-frequency data, Zhang et al. (2005) propose to use 
sub-sampling and averaging for realized variance calculation. In their set-up whole sample 
is divided into M  non-overlapping sub-samples, in each sub-sample realized variance is 
calculated and averaged across the sub-sampled estimates form the final estimate:

M

E.(R C SS) (RC)
t,i

i= l
(1.5)M

In addition, the covariance matrix estimated by realized covariance might not necessary 
be positive semi-dehnite. To overcome these problems, Barndorff-Nielsen et al. (2011) in­
troduced multivariate realized kernels (MRK) estimator, which guaranties the covariance 
matrix to be positive semi-dehnite. Moreover, MRK is more efficient, and it is able to 
deal with noise. Following Barndorff-Nielsen et al. (2011), the MRK estimator is defined 
as

£<"“ ■ > = £  A M  r ,  (1.6)

h= —n  '

where T/j stands for h-th realized autocovariance and fc(x) is a non-stochastic weight 
function. In the empirical implementation, we need to choose the kernel function and 
bandwidth parameter. Following Barndorff-Nielsen et al. (2011), we use a Parzen kernel,1 
which satisfies the smoothness conditions, JC(0) =  =  0, and guarantees '¿tMRK'1
to be positive semi-dehnite. We use the optimal bandwidth derived in Barndorff-Nielsen 
et al. (2011).

Recently, many new approaches to covariance matrix estimation using high frequency 
data have emerged in the literature. In addition to estimators used in this study, Realized 
Co-Range (Bannouh et ah, 2009) or Two Scale Realized Covariance (Zhang, 2011) are also 
becoming increasingly popular. Nowadays, literature also pays attention to disentangling 
jumps, common jumps and true covariation (see Boudt et al. (2012) or Elst and Veredas 
(2015)). When the dimension of the problem is high, the estimator of Hautsch et al.

1 — 6x2 + 6x
2 (1—x)3
0

:3 0 < a: < 1/2
1/2 < x  < 1. 
x > 1

1The Parzen kernel function is given by k(x) = <
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(2012), which estimates covariance using block-wise Multivariate Realized Kernels, might 
be of interest.

While the number of recently proposed estimators is growing, we restrict our study 
on the comparison of the main estimators used in the literature,2 and focus on the actual 
estimator of the proposed model.

1.3 Modeling and forecasting multivariate volatility
Modelling and forecasting a conditional covariance matrix of asset returns Et is pivotal 
to asset allocation, risk management, and option pricing. In order to have a valid mul­
tivariate forecasting model, one needs to specify a model that produces symmetric and 
positive semi-dehnite covariance matrix predictions. Whereas it is still relatively scarce 
to use high frequency data in multivariate modelling, the literature dealing with chal­
lenging issues is growing quickly. There are three types of approaches proposed recently: 
modelling the Cholesky factorisation of covariance matrix (Chiriac and Voev, 2011), its 
matrix-log transformation with the use of latent factors (Bauer and Vorkink, 2011), and 
direct modelling of the covariance dynamics as a Wishart autoregressive model (Bonato, 
2009; Jin and Maheu, 2013).

To ensure positive semi-dehniteness of covariance matrix forecasts, we adopt the ap­
proach from Chiriac and Voev (2011): we apply the Cholesky decomposition on the 
covariance matrix. This approach is attractive, as it also helps to reduce the curse of 
dimensionality, especially in the model structures we are going to use in this study. Fol­
lowing Chiriac and Voev (2011), we model the lower triangular elements of the Cholesky 
factorization:

X t = vech(Pt), (1.7)

where Pt are Cholesky factors Pt'Pt =  Et and X t is m  x 1 vector, with m  = .
Forecasts of the covariance matrix are then obtained by reverse transformation.

1.3.1 Generalized heterogeneous autoregressive (GHAR) model
A simple approximate long-memory model for realized volatility, heterogeneous autore­
gression (HAR), has been introduced by Corsi (2009). Whereas the approach has been 
introduced for the univariate volatility modeling, its extension to multivariate volatility 
has been recently used in the literature (see e.g. Chiriac and Voev (2011) or Bauer and 
Vorkink (2011)). The original HAR model has an autoregressive structure, and combines 
volatilities measured at different frequencies (daily, weekly, monthly). Chiriac and Voev 
(2011) propose a multivariate extension of the HAR to model vector of Cholesky factors 
AJ, as

X ^ ^ c  + ^ X ^ + ^ x i 5)+ ^ x i 22)+et , (1.8)

2Realized Covariance sampled at 5 min frequency is the industry standard; Sub-Sampled Realized 
Covariance enable us to use all data points, resulting in a more efficient estimator, and Multivariate 
Realized Kernels is able to handle noise and non-synchronous trading
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where 1,5, and 22 stands for day, week (5 days) and month (22 days) respectively, c is an 
m  x 1 vector of constants, ¡3^ are scalar parameters, and X ^  are averages of lagged daily

4
volatility e.g. x A  =  j  A  Xt_j. To obtain parameter estimates, ordinary least squares 

(OLS) is used.
One of the disadvantages of this modeling strategy is that we are assuming the same 

structure for all elements of the Cholesky factors in X t. Much more importantly, we are 
leaving a significant amount of information in the error term. One can expect the error 
term to be heteroscedastic due to volatility of volatility (Corsi et ah, 2008) present in the 
realized measures. More importantly, a common structure of X t elements may be left 
unmodelled in residuals. Hence, it may be more natural to estimate the model in Eq. 
1.9 as system of equations with some covariance structure of the error terms.

To deal with this problem, we propose to build a system of seemingly unrelated HAR 
regressions (Zellner, 1962) for all elements of X t. The advantage of this approach is that 
we estimate a multivariate HAR model, which will capture the separate dynamics of the 
variances and covariances, but also possible common structure. Moreover, it will also 
yield more efficient estimates. As we know, error terms from HAR are heteroscedastic 
(Corsi et ah, 2008), which makes the coefficient estimates less efficient. Moreover, when 
there is no information about dependence between equations left in the residuals from 
regression Eq. 1.9, estimator will converge to a simple OLS estimates, as the diagonal 
weighting matrix in generalized regression will reduce the estimates to OLS. On the other 
hand, the possible disadvantage is in larger number of parameters to be estimated, which 
may yield the model unreliable with highly dimensional portfolios.

Let us consider the system of i =  1, ...,m  equations, where m = d^±±i

X,(i)i,t+ i = A"’ + V ’V ” A 5) A 5)i.t i.i.d.

There are m  equations representing elements of the Cholesky factors, with T  observations. 
Define the m T  x 1 vector of dis

Mi,A A Aw ••• 0 \
v C + i / x,

p (2 2 )x (22)
*-i,t (1-9)

m .t

d )'• • "> ^mJ and rewrite the model as

Ax A
+ (1-10)

where Xi;t =  (e X $  X $  X ^  J is z-th element of Xt and e being vector of ones, =

(j3^ /3-1) ¡3^ and ¡3^ being estimates of the intercept. It is more convenient

to work with this system in the following form:

y = Z/3 + e, (1.11)

where y = (x A +i, ■ ■ ■, An,t+i) and e are °f dimension m T  x 1, Z  = diag{Xl t , . . . , XTO;t} 

is a block diagonal matrix of dimension m T  x 4m, and the matrix of parameters ¡3 = 
(4i, • • • ,/3m) is of dimension 4m x 1.
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The disturbances will satisfy strict exogeneity E[e\Z] = 0, but will be correlated 
across equations, E[e'iej\Z] = a ^ Ir  or

/  <7nh i!t \Tl,T

Q E ® I t } (1-12)
\ V m l l T IT )(7  n

where E =  for i, j  = 1,..., to, 0  is a Kronecker product and It  is an identity matrix of 
dimension T  x T. The model parameters are estimated in two step feasible generalized 
least squares. We run OLS regression in the first step to obtain estimates from 
residuals. In the second step, we run generalized least squares regression using the 
variance matrix Q =  E 0  I t  as

/3=(^Z,Q -1Z) (1.13)

The estimator ¡3 is unbiased, and a consistent estimator of ¡3 with asymptotically normal 
limiting distribution

vV (J-/3) 0  (o, ( I z 's r ’z ) } (1.14)

While this is a standard estimation technique, we will refrain from discussing any further 
details about the properties of the generalized least squares estimator.

1.3.2 Com peting models
To show the contribution of the GHAR model, we compare the forecasts to several 
competing alternatives. The first natural choice of benchmark model is a multivariate 
extension of original HAR. By comparing these two models, we will see the portion of 
the contribution brought by allowing for correlated residuals in the estimation. Another 
natural candidate is vector ARFIMA, as Chiriac and Voev (2011) find it to outperform 
the HAR model slightly, but conclude that HAR performs reasonably well in comparison 
to VARFIMA. Hence we may have reason to believe that our approach will provide better 
results than VARFIMA model.

These three main models share the same framework of modeling elements of Cholesky 
factors from realized covariance matrix. Hence, we also contrast them to two benchmark 
models, namely popular DCC GARCH 3 of Engle (2002) and risk metrics standard widely 
used in the business industry. These benchmark models operate on the daily data, so we 
will have a direct comparison of gains from high-frequency data.

3 DCC GARCH is an industry standard and we decided to implement it in its original form despite 
the known problem with consistency of the estimator. For more information about the inconsistency of 
the DCC see Aielli (2013) an Caporin and McAleer (2013)
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H A R

A first, natural competing model to our generalized HAR strategy is multivariate exten­
sion of an original HAR, which models vector of Cholesky factors X t, as

X ^  =  c + f d ^ X ^  +  fd ^ X ^  +  f d ^ X ^ + e t , et ~  i.i.d. (1.15)

where 1,5, and 22 stands for day, week (5 days) and month (22 days) respectively, c is 
m  x 1 vector of constants, jd̂  is m  x 1 vector of parameters and X ^  are averages of lagged

4
daily volatility e.g. X ^  =  j  ¿ X t_j. To obtain parameter estimates, OLS is used.

i=0

Vector A R FIM A  model

A second competing model to the HAR family is the vector autoregressive fractionally 
integrated moving average (VARFIMA) model of Chiriac and Voev (2011), who use a 
restricted VARFIMA(1, d, 1) specification to model and forecast dynamics of X t directly. 
The authors find that ARFIMA provides a slightly better forecast in comparison to 
HAR model, which makes it natural candidate to our modeling strategy. We consider 
the vector ARFIM A model

(1 -  (j>U) D (L ) [Xt -  c] =  (1 -  0L) et, et ~ X ( 0 ,E )  (1.16)

where (/) and 0 are scalars, c is an m  x 1 vector of constants and D(Id) =  (1 — L )dIm with 
a common parameter of fractional integration d for all constituents of X t. In our case 
we reject the hypothesis about equality of d; thus we estimated each element of X t using 
unique dt : D(Id) =  diag {(1  — L )dl, • • •, (1 — L )dm } .  Hence, we use the model 1 in Chiriac 
and Voev (2011). In addition, we have experimented with a general VARFIMA(p, d, q), 
not restricting p =  q =  l .4 Comparing the models through information criteria decisively 
yields VARFIMA(1, d, 1) as the best model; hence we use it as a benchmark to our 
modeling strategy in the empirical section of the chapter.

RiskM etrics

RiskMetrics of J.P. Morgan Chase, based on an exponentially weighted moving average 
(EW M A), is a financial industry standard and common benchmark for any volatility 
model (univariate or multivariate). In our work we use the specification from Longerstaey 
and Spencer (1996) with decay factor A set to 0.94. We assume a q x 1 vector of daily 
returns rt =  (A fcpt) f°r t =  such that rt ~  N  where pt is the
conditional mean and erf the conditional variance of daily returns. Moreover if we assume 
pt =  0, conditional covariance has the form

T
°i,j =  (1 -  A)

t=i
(1.17)

4These results are available upon request from the authors.
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The previous equation can be rewritten in recursive form:

+  (1 -  (1.18)

where the expression stands for covariance between assets i and j  in time t.

DCC-GARCH

The dynamic conditional correlation generalized autoregressive conditional heteroscedas- 
ticity (DCC-GARCH) of Engle (2002) is a widely used multivariate GARCH model 
in practice. It is a generalization of Bollerslev (1990) constant conditional correlation 
GARCH, with time-varying correlation matrix R. The model is defined as

Ht — D tRtD t, (1.19)

where D t is a diagonal matrix of conditional time varying standard deviations, D t =
Pi Qi

diag (y/hi~t), and are univariate GARCH processes, =  u y + E  aitPr^t_p+  E Pi,qhitt-q 
p = i <?=i

The dynamics of the correlation matrix are given by transformation:

(i.2O)

/  M  N  \  _  M  N
where Qt =  I 1 -  E  M  ~  E m  Q E E ,  (et_me^_m) +  E  BnQt_n ,Q is the un-

\  m = l n = l /  m = l n = l
conditional covariance matrix of the standardized residuals from the univariate GARCH 
processes and Qt =  diag (Q q^ t) . In our work we use the two-stage estimator presented 
in Engle (2002) or Engle and Sheppard (2001).

1.4 Data and research design
The dataset consists of tick prices of 15 S&P 500 index constituents with highest liq­
uidity and market capitalization. Final portfolio thus consists5 of Apple Inc. (AAPL), 
Exxon Mobile Corp. (XOM ), Google Inc. (GOOG), Wal-Mart Stores (W M T), Microsoft 
Corp. (MSFT), General Electric Co (GE), International Business Machines Corp. (IBM), 
Johnson & Johnson (JNJ), Chevron Corp. (CVX), Procter & Gamble (PG), Pfizer Inc. 
(PFE), AT&T Inc. (T), Wells Fargo & Co (W FC), JP Morgan Chase & Co (JPM) 
and Coca-Cola Co. (KO). We obtain 390, 78, 39, 26 and 19 time-synchronized intraday 
observations using refresh-time, resulting in 1, 5, 10, 15 and 20 minute intraday returns. 
Besides 1 to 20 minute returns we also construct open-to-close returns that are used for 
RiskMetrics and DCC-GARCH models. Moreover, we create sub-portfolios consisting of 
5, 10, and 15 assets (assets chosen according to market capitalization). Hence, in total, 
we study 18 different datasets.

The sample covers the period from July, 1 2005 to January, 3 2012 (1623 trading days), 
and we consider trades between 9:30 to 16:00 EST time. To ensure sufficient liquidity on

5 Assets are ordered according to market capitalization.
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the market we explicitly exclude weekends and holidays (New Year’s Day, Independence 
Day, Thanksgiving Day, Christmas). For estimation and forecasting purposes we divide 
our sample into in-sample, spanning from July, 1 2005 to July, 9 2008 and out-of-sample 
July, 10 2008 to January, 3 2012. For the forecasting, we use rolling window estimation 
with fixed length of 750 days. Summary statistics of all returns are presented in the 
Appendix D.

Accuracy of the forecasts is evaluated primarily according to economic criteria. The 
rationale behind is the importance of well-conditioned and invertible forecasts rather than 
focusing on unbiasedness, as an unbiased forecast does not necessarily translate into an 
unbiased inverse (Bauwens et ah, 2012). As a robustness check we also provide ranking 
of the models based on statistical loss functions.

1.4.1 Economic forecasts evaluation
For economic evaluation of volatility forecasts, we use the approach of Markowitz (1952). 
There are two possibilities of constructing an optimal portfolio. In the first one we specify 
expected portfolio return and try to find assets weights minimizing the risk. In the second 
one the expected return of the portfolio is maximized according to a certain risk. Asset 
weights, w =  (w i, . . . ,  wqy , maximizing utility of risk averse investor can be found by 
solving the following problem:

min w't+1Y,t+i\tWt+1 (1.21)Wf+l

S.t. fw t+i =  1

wt+l^t+l\t P’P

where wt+i is a q x 1 vector of assets weights, Et+i|t represents a covariance matrix 
forecast, I denotes a q x 1 vector of ones, is a vector of mean forecasts and fjp
stands for portfolio return. Once the optimization problem is solved for different risk 
levels we are able to construct efficient frontier. Markowitz-type portfolio relies heavily 
on mean forecasts. As these forecasts might be noisy, portfolio weights and variance 
can become notably sensitive to changes in assets mean. To overcome these difficulties 
we also consider problem of finding the Global Minimum Variance Portfolio (GM VP). 
Specification of the optimization problem is similar to Markowitz set-up:

min w't+1Y,t+1\twt+1 (1.22)Wf+l

S.t. l/wt+l =  1

which can be solved analytically6

wG M V
i+1

y - i  7

fo+ll?
/ / y - 1 f  1 fo+ifo

(1.23)

6Kempf and Memmel (2006)
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with expected return variance being

2g m v  
V  t+ 1

G M V '
i+1

G M V£ t+i|t< + ï / / y - 1 / 1 M +il?
(1-24)=  w

1.4.2 Statistical forecasts evaluation
For statistical evaluation of covariance forecasts, we employ Root Mean Squared Error 
(RMSE) loss functions based on the Frobenius norm 7. As a volatility proxy we use 
Realized Covariance, Sub-Sampled Realized Covariance (RCOV SS) and Multivariate 
Realized Kernels estimates at given frequencies i.e. to calculate loss function for forecasts 
based on 5 minutes Realized Covariance we use Realized Covariance estimates based on 
5 minutes data as a benchmark. In case of DCC-GARCH and RiskMetrics forecasts we 
calculate loss functions using all RCOV, RCOV SS and MRK estimates at all frequencies. 
The measures are calculated for the t =  1 , . . .  ,T  forecasts as

&t,t+h ^t+h Et+/l|t (1.25)

1
T  — 1

£ R M S E EEC (1.26)2

N
where Et+/j|t is a covariance matrix forecast and Et+/l is the volatility proxy.

To test the significant differences of competing models, we use the Model Confidence
Set (MCS) methodology of Hansen et al. (2011). Given a set of forecasting models, Ado, 
we identify the model confidence set Ad(_n C  Ado, which is the set of models that contain 
the “best” forecasting model given a level of confidence a. For a given model i E Ado, 
the p-value is the threshold confidence level. Model i belongs to the MCS only if pi >  a. 
MCS methodology repeatedly tests the null hypothesis of equal forecasting accuracy

H OtM : E [C i>t -  =  0, for all z j  G Ad

with being an appropriate loss function of the z-th model. Starting with the full set 
of models, Ad =  Ado, this procedure sequentially eliminates the worst-performing model 
from Ad when the null is rejected. The surviving set of models then belong to the model 
confidence set Ad)_n. Following Hansen et al. (2011), we implement the MCS using a 
stationary bootstrap with an average block length of 10 days.8

7Ftobenius norm of m  x n  matrix A  is defined as ||A||F 2 =  22 laij| 2

8We have used different block lengths, including those dependent on the forecasting horizons, to 
assess the robustness of the results, without any change in the final results. These results are available 
from the authors upon request.
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1.5 Results
For clarity of presentation, we begin with a discussion of the results of one-step-ahead 
forecasts for the portfolio of five stocks (AAPL, XOM, GOOG, WMT, MSFT), whereas 
we leave portfolios of ten and fifteen stocks and also five- and ten-step ahead forecasts as 
a robustness check showing that the methodology also works well at larger dimensions 
and different forecasting horizons. Focusing on the economic evaluation, we first discuss 
the results from GMVP,9 followed by Markowitz approach and statistical evaluation.

We present GMVP comparison through cumulative and annualized risk. In the cu­
mulative approach we use covariance forecasts for daily rebalancing of our portfolio: at 
each step we calculate optimal asset weights and using these weights we calculate cor­
responding daily portfolio risk. The results presented in Table 1.1 are sums of portfolio 
risk a cum. for the whole out-of sample period. Table 1.1 is divided into seven parts ac­
cording to realized measures and frequencies used for the calculation. For RiskMetrics 
and DCC-GARCH corresponding a cum. are constant for all frequencies because they are 
calculated using open-close returns. We present the results of DCC-GARCH and Risk- 
Metrics in all columns of Table 1.1 so we can compare performance of covariance based 
models estimated on different frequencies with daily data based models.

From the Table 1.1 we can see that the model with the best performance and thus 
lowest level of risk is GHAR. We can also observe that for various frequencies on which 
realized measures are calculated DCC-GARCH outperformed covariance based models. 
However, these results do not indicate superiority of DCC-GARCH compared to covari­
ance based models, but highlight the importance of selecting realized measures properly.

Table 1.1: Cumulative version o f GMVP - portfolio of 5 stocks

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min :20 min

DCC 30.50 30.50 30.50 30.50 30.50 30.50 30.50
RiskMetrics 40.64 40.64 40.64 40.64 40.64 40.64 40.64
VARF1MA 30.76 34.47 32.44 32.84 31.04 29.86 29.31
GHAR 30.60 34.14 32.22 32.53 30.83 29.65 | 29.08
HAR 31.42 34.84 33.05 33.35 31.61 30.50 29.99

Note: Model with the overall best performance is highlighted; for the given frequency 
model with the lowest risk is presented in bold; values represents percentage level of risk

A disadvantage of model comparison according to cumulative risk is daily rebalancing 
implying high transaction costs. A more comprehensive method of model comparison is 
to use annualized portfolio risks. For annualized GMVP calculation we use annualized 
realized covariance of the whole out-off-sample period calculated as RCOVannuauzed =

9With shortselling allowed.
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In Table 1.2 we present the results for annualized version of GMVP.

Table 1.2: Annualized version of GMVP - portfolio of 5 stocks

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 17.38 17.38 17.38 17.38 17.38 17.38 17.38
RiskMetrics 23.13 23.13 23.13 23.13 23.13 23.13 23.13
VARFIMA 17.62 19.39 18.44 18.61 17.68 17.04 16.77
GHAR 17.32 19.08 18.08 18.27 17.36 16.69 | 16.38
HAR 18.01 19.61 18.79 18.91 18.01 17.40 17.14

Note: Model with the overall best performance is highlighted; for the given frequency 
model with the lowest risk is presented in bold; values represents percentage level of risk

Similar to cumulative GMVP, model with the overall lowest achievable risk is GHAR. 
Remaining results from the Table 1.1 and Table 1.2 partly match the results presented in 
Chiriac and Voev (2011). The model that scored second is VARFIMA followed by HAR 
for Sub-Sampled RCOV estimated at 15- and 20- minute frequencies. For the remaining 
frequencies and realized measures, DCC-GARCH outperform covariance based models. 
Overall we can say that covariance-based models with proper choice of realized measure 
outperform return-based models.

To assess the performance of the models not only from the risk minimizing point of 
view but also return maximization, we present efficient frontiers. In contrast to GMVP 
we do not allow short selling here.10 For the calculation of the efficient frontiers we use 
annualized forecasts of covariance matrices and annualized returns.

Similar to the results from the GMVP evaluation model with the best risk-return 
tradeoff is the model proposed in this chapter: GHAR. The second-best-performing model 
is VARFIMA, followed by HAR. From Figure 1.1 we can see that for estimates at 1 minute 
RCOV and 5 minutes RCOV the score of DCC-GARCH is better than all covariance 
based models, which is not in line with results presented in Chiriac and Voev (2011) 
where DCC-GARCH ended in the penultimate position. We can attribute this difference 
to a different dataset and period that includes financial crisis during which periods of 
high intraday volatility are observable.

As a robustness check to the economic evaluation, we also provide results from a 
statistical comparison of forecasting performance of the competing models. In the Table 
1.3 a comparison based on the RMSE loss function is presented.

From the RMSE perspective the lowest error is shown by the HAR model, followed 
by VARFIMA and GHAR. These models always belong to 5% MCS irrespective of the 
realized measure used for comparison. The worst performance has RiskMetrics, which 
does not belong to 5% MCS in two cases and it has the highest RMSE in 5 out of 7 cases.

ioIn case the short-selling is allowed the ranking of the models is unchanged only the magnitude differ.
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(a) RCOV 5min vs. MRK (b) RCOV 5 min vs. RCOV 1 min
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Figure 1.1: Efficient frontiers - portfolio of 5 stocks

(c) RCOV 5 min vs. RCOV SS 5 min

RCOV 5 min vs. RCOV SS 15 min

(d) RCOV 5 min vs. RCOV SS 10 min

(f) RCOV 5 min vs. RCOV SS 20 min

(g) legend

■■+■ DCC
RiskMetrics

OVARFIM A RCOV 5 min
-*- VARFIMA alternative Realized Measure
-e-HAR RCOV 5 min
-^-HAR alternative Realized Measure
-h-GHAR RCOV 5 min
-VGHAR alternative Realized Measure

Note: Figure displays efficient frontiers of various competing models of portfolio of five stocks based on 
one-step-ahead forecasts.
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Table 1.3: RMSE -  portfolio of 5 stocks

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 1.593 1.730 1.914 1.707 1.547 1.481 1.474
RiskMetrics 1.668 1.728 1.866 1.709 1.646 1.636 1.633
VARFIMA 1.406 1.537 1.682 1.473 1.363 1.331 1.328
GHAR 1.490 1.401 1.740 1.509 1.438 1.430 1.445
HAR 1.190 1.100 1.380 1.162 1.125 1.144 1.158

Note: Values are scaled by 10 3; highlighted cells belongs to 5% MCS

1.5.1 Robustness check

Having discussed the results of one-step-ahead forecasts for portfolio consisting of five 
stocks, we now turn to evaluation of one-step-ahead forecasts for portfolio consisting 
of ten (AAPL, XOM, GOOG, W M T, MSFT, GE, IBM, JNJ, CVX, PG), and fifteen 
(AAPL, XOM, GOOG, W M T, MSFT, GE, IBM, JNJ, CVX, PG, PFE, T, WFC, JPM, 
KO) stocks and five and ten-step ahead forecasts for portfolios consisting of five, ten 
and fifteen stocks. We will concentrate on the main differences compared to the smaller 
portfolio, as we use these results as a robustness check. We also relegate the Tables and 
Figures to Appendix A: 1 step ahead forecasts, Appendix B: 5 step ahead forecasts and 
Appendix C: 10 step ahead forecasts.

P o rtfo lio  o f 10 a n d  15 s to ck s

According to GMVP criteria for portfolio consisting of ten stocks, results do not differ 
from results obtained in portfolio of five stocks. The model with the lowest cumulative 
and annualized risk is GHAR, estimated on 20-minute Sub-Sampled RCOV. In the case 
of the portfolio consisting of fifteen stocks, the only difference is that GHAR estimated 
on MRK covariance matrices outperformed DCC-GARCH.

From the risk-return trade-off point of view there is notable difference for portfolio 
consisting of ten stocks when the data of higher frequencies (1,5 and 10 minutes) are used. 
For these frequencies, the model with the best risk-return trade-off is DCC-GARCH. The 
order of the remaining models is identical to the portfolio of five stocks: GHAR followed 
by VARFIMA and HAR. If the 15-minute data are used for optimization, GHAR share 
first place with DCC-GARCH. These two models are closely followed by VARFIMA and 
HAR. For the 20-minute data ordering of the models is similar to the portfolio consisting 
of 5 stocks.

Concentrating on statistical evaluation, results of RMSE model comparison for the 
portfolio consisting of ten stocks are almost identical to results for the portfolio of five 
stocks, the only difference beeing that RiskMetrics does not belong to 5% MCS in any of 
the cases. On the other hand, a notable difference occurs in a comparison of the portfolio 
consisting of fifteen stocks, where GHAR belongs to 5% MCS only in one case (estimated 
at 5-minute RCOV) and DCC-GARCH and RiskMetrics do not belong to 5% MCS at
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all. We address unambiguous results of statistical evaluation to problem of selecting the 
“correct” proxy. These results are also consistent with findings in Kyj et al. (2010), who 
show that for large portfolios, the pure high frequency based covariance forecasts need 
to be conditioned in order to achieve the benefits of the high frequency data.

This points us to the result, that unmodelled dependence from HAR and VARFIMA 
models is increasing with increasing dimension of the portfolio. Hence the GHAR model 
delivers significant economic gains with increasing dimension of portfolio.

5-step & 10-step ahead forecasts 11

Extension of forecasting horizon from one to hve/ten days does not substantially change 
the results of our analysis. The only notable difference is absence of GHAR in 5% MCS 
in the case of ten-step ahead forecasts of portfolio consisting of fifteen stocks. Remaining 
results supports our previous findings that application of seemingly unrelated regression 
for HAR estimation delivers significant economic gains regardless the size of the portfolio 
and/or forecasting horizon.12

1.6 C onclusion
In this chapter we propose to employ the seemingly unrelated regression of Zellner (1962) 
to estimate multivariate extension of the heterogeneous autoregression model in order to 
improve the variance matrix forecasts. The resulting model, generalized HAR (GHAR), 
inherit all the favourable properties of HAR, and provides us with more efficient estimator 
that accounts for otherwise hidden dependencies among variables.

In our setup we closely follow Chiriac and Voev (2011) and model elements of Cholesky 
decomposed covariance matrices to test the economic and statistical value of the pro­
posed modelling strategy. Moreover, we perform our analysis on portfolios consisting 
of five, ten and fifteen assets, we include three covariance matrix estimators (realized 
covariation, sub-sampled realized covariation and multivariate realized kernels), and we 
obtain covariance matrix estimates using high-frequency data of five different frequen­
cies (1,5,10,15 and 20 minutes). Overall, we test the performance of GHAR estimator 
on 15 different high-frequency datasets. The resulting forecasts of GHAR prove to per­
form significantly better than benchmark models according to Global Minimum Variance 
Portfolio and Mean-Variance evaluation criteria irrespective of frequency or size of the 
portfolio. Whereas our study focuses on more important economic evaluation of the 
forecasts, statistical evaluation is used as a robustness check of the results. According 
to statistical criteria for comparison of models, we find that GHAR is not systematically 
dominated by any benchmark model, which is supportive result for economic evaluation.

11 To make the results comparable we scale them according to forecasting horizon 
12To make the results comparable, we scale them according to the forecasting horizon.
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Appendix A: 1 step ahead forecasts

Table l.f.: GMVP - portfolio of 10 stocks

Cumulative

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 22,14 22,14 22,14 22,14 22,14 22,14 22,14
RiskMetrics 42,15 42,15 42,15 42,15 42,15 42,15 42,15
VARFIMA 23.34 27.70 24.75 25.64 23.82 22.52 21.85
CHAR 22.50 26.71 23.90 24.79 22.98 21.66 | 20.98
HAR 24.28 28.30 25.66 26.40 24.63 23.39 22.79

Annualized

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 13.12 13.12 13.12 13.12 13.12 13.12 13.12
RiskMetrics 24.32 24.32 24.32 24.32 24.32 24.32 24.32
VARFIMA 13.74 15.76 14.40 14.84 13.90 13.21 12.88
CHAR 12.82 15.00 13.53 14.04 13.03 12.30 11.91
HAR 14.31 16.14 14.96 15.31 14.40 13.74 13.43

Note: Model with the overall best performance is highlighted; for the given frequency model 
with the lowest risk is presented in bold; values represents percentage level of risk

Table 1.5: RMSE -  portfolio of 10 stocks

MRK RCOV

1 min 1 min 5 min

DCC 3.242 3.624 3.896
RiskMetrics 3.808 4.006 4.167
VARFIMA 2.592 3.028 3.228
CHAR 3.101 3.109 3.639
HAR 2.295 2.271 2.837

Sub-Sampled RCOV

5 min 10 min 15 min 20 min

3.600 3.162 3.044 3.085
3.949 3.803 3.822 3.846
2.903 2.551 2.494 2.539
3.237 2.988 2.965 3.057
2.405 2.181 2.213 2.307

Note: Values are scaled by 10 3; highlighted cells belongs to 5% MCS
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Figure 1.2: Efficient frontiers - portfolio of 10 stocks 

(a) RCOV 5min vs. MRK (b) RCOV 5 min vs. RCOV 1 min

(c) RCOV 5 min vs. RCOV SS 5 min

RCOV 5 min vs. RCOV SS 15 min

(d) RCOV 5 min vs. RCOV SS 10 min

35

10 15 20 25 30
Standard Deviation

(f) RCOV 5 min vs. RCOV SS 20 min

Standard Deviation Standard Deviation

(g) legend

■+■ DCC
RiskMetrics

-o-VARFIMA RCOV 5 min
VARFIMA alternative Realized Measure

-h-HAR RCOV 5 min
-^-HAR alternative Realized Measure
-H-GHAR RCOV 5 min
-V-GHAR alternative Realized Measure

Note: Figure displays efficient frontiers of various competing models of portfolio of ten stocks based on 
one-step-ahead forecasts.



1.6. Conclusion 27

Table 1.6: G MVP - portfolio of 15 stocks

Cumulative

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 20.72 20.72 20.72 20.72 20.72 20.72 20.72
RiskMetrics 56.67 56.67 56.67 56.67 56.67 56.67 56.67
VARFIMA 21.34 25.63 22.71 23.71 21.91 20.62 19.93
CHAR 20.37 24.46 21.75 22.59 20.90 19.66 | 18.97
HAR 22.25 26.21 23.52 24.42 22.69 21.47 20.83

Annualized

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 12.64 12.64 12.64 12.64 12.64 12.64 12.64
RiskMetrics 32.19 32.19 32.19 32.19 32.19 32.19 32.19
VARFIMA 12.88 14.80 13.52 13.99 13.06 12.40 12.07
CHAR 11.64 13.82 12.39 12.86 11.91 11.22 10.83
HAR 13.43 15.21 14.06 14.45 13.56 12.92 12.62

Note: Model with the overall best performance is highlighted; for the given frequency model 
with the lowest risk is presented in bold; values represents percentage level of risk

Table 1.7: RMSE -  portfolio of 15 stocks

MRK RCOV

1 min 1 min 5 min

DCC 5.323 5.601 6.064
RiskMetrics 11.905 11.881 12.030
VARFIMA 4.555 4.809 5.207
CHAR 5.881 5.352 6.342
HAR 4.285 3.599 4.832

Sub-Sampled RCOV

5 min 10 min 15 min 20 min

5.793
11.902

5.158
11.952

5.023
12.044

5.058
12.030

4.900 4.374 4.276 4.323
5.918 5.565 5.521 5.677
4.226 3.948 4.005 4.150

Note: Values are scaled by 10 3; highlighted cells belongs to 5% MCS
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Figure 1.3: Efficient frontiers - portfolio of 15 stocks

(a) RCOV 5 min vs. MRK (b) RCOV 5 min vs. RCOV 1 min
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Standard Deviation

(c) RCOV 5 min vs. RCOV SS 5 min

RCOV 5 min vs. RCOV SS 15 min

(d) RCOV 5 min vs. RCOV SS 10 min

%  15 20 25 30 35
Standard Deviation

(f) RCOV 5 min vs. RCOV SS 20 min

(g) legend

■+■ DCC
RiskMetrics

-o-VARFIMA RCOV 5 min
VARFIMA alternative Realized Measure

-h-HAR RCOV 5 min
-^-HAR alternative Realized Measure
-H-GHAR RCOV 5 min
-V-GHAR alternative Realized Measure

Note: Figure displays efficient frontiers of various competing models of portfolio of fifteen stocks based 
on one-step-ahead forecasts.
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Appendix B: 5 step ahead forecasts

Table 1.8: GMVP - portfolio of 5 stocks

Cumulative

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 30.50 30.50 30.50 30.50 30.50 30.50 30.50
RiskMetrics 40.61 40.61 40.61 40.61 40.61 40.61 40.61
VARFIMA 30.53 34.06 32.09 32.49 30.78 29.64 29.10
GHAR 30.49 33.88 32.07 32.36 30.72 29.54 28.96
HAR 31.30 34.62 32.86 33.19 31.47 30.38 29.87

Annualized

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 17.38 17.38 17.38 17.38 17.38 17.38 17.38
RiskMetrics 23.17 23.17 23.17 23.17 23.17 23.17 23.17
VARFIMA 17.28 19.02 18.06 18.24 17.35 16.73 16.73
GHAR 17.18 18.87 17.93 18.12 17.23 16.57 16.57
HAR 17.85 19.45 18.63 18.75 17.86 17.25 17.25

Note: Model with the overall best performance is highlighted; for the given frequency model 
with the lowest risk is presented in bold; values represents percentage level of risk; values are 
scaled by forecasting horizon

Table 1.9: RMSE -  portfolio of 5 stocks

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 1.193 1.293 1.376 1.288 1.152 1.081 1.079
RiskMetrics 1.296 1.317 1.330 1.314 1.290 1.288 1.285
VARFIMA 1.043 1.023 1.153 1.055 0.993 0.968 0.978
GHAR 1.261 1.195 1.382 1.273 1.206 1.174 1.189
HAR 1.024 0.980 1.100 1.028 0.968 0.951 0.966

Note: Values are scaled by 10 3 and by forecasting horizon; highlighted cells belongs to 
5% MCS
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Figure l . f :  Efficient frontiers - portfolio of 5 stocks 

(a) RCOV 5min vs. MRK (b) RCOV 5 min vs. RCOV 1 min
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(c) RCOV 5 min vs. RCOV SS 5 min (d) RCOV 5 min vs. RCOV SS 10 min

RCOV 5 min vs. RCOV SS 15 min (f) RCOV 5 min vs. RCOV SS 20 min

(g) legend

■+■ DCC
RiskMetrics

-o-VARFIMA RCOV 5 min
VARFIMA alternative Realized Measure

-h-HAR RCOV 5 min
-^-HAR alternative Realized Measure
-H-GHAR RCOV 5 min
-V-GHAR alternative Realized Measure

Note: Figure displays efficient frontiers of various competing models of portfolio of five stocks based on 
five-step-ahead forecasts.
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Table 1.10: GMVP - portfolio of 10 stocks

Cumulative

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 22.10 22.10 22.10 22.10 22.10 22.10 22.10
RiskMetrics 42.12 42.12 42.12 42.12 42.12 42.12 42.12
VARFIMA 23.11 27.25 24.44 25.27 23.55 22.30 21.65
GHAR 22.33 26.45 23.72 24.59 22.80 21.50 | 20.82
HAR 24.25 28.14 25.56 26.30 24.57 23.35 22.75

Annualized

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 13.07 13.07 13.07 13.07 13.07 13.07 13.07
RiskMetrics 24.36 24.36 24.36 24.36 24.36 24.36 24.36
VARFIMA 13.38 15.36 14.03 14.44 13.54 12.88 12.54
GHAR 12.67 14.80 13.38 13.87 12.88 12.16 | 11.78
HAR 14.15 15.99 14.81 15.15 14.24 13.59 13.28

Note: Model with the overall best performance is highlighted; for the given frequency model 
with the lowest risk is presented in bold; values represents percentage level of risk; values are 
scaled by forecasting horizon

Table 1.11: RMSE -  portfolio of 10 stocks

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 2.487 2.683 2.773 2.690 2.402 2.290 2.309
RiskMetrics 3.232 3.250 3.217 3.222 3.242 3.278 3.267
VARFIMA 1.952 1.966 2.166 2.024 1.867 1.833 1.872
GHAR 2.598 2.480 2.759 2.611 2.481 2.445 2.501
HAR 1.950 1.881 2.103 1.984 1.845 1.826 1.877

Note: Values are scaled by 10 3 and by forecasting horizon; highlighted cells belongs to 
5% MCS
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Table 1.12: GMVP - portfolio of 15 stocks

Cumulative

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 20.70 20.70 20.70 20.70 20.70 20.70 20.70
RiskMetrics 56.64 56.64 56.64 56.64 56.64 56.64 56.64
VARFIMA 21.23 25.28 22.52 23.44 21.75 20.52 19.86
CHAR 20.31 24.30 21.65 22.45 20.83 19.62 | 18.92
HAR 22.31 26.13 23.51 24.40 22.72 21.51 20.89

Annualized

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 12.60 12.60 12.60 12.60 12.60 12.60 12.60
RiskMetrics 32.25 32.25 32.25 32.25 32.25 32.25 32.25
VARFIMA 12.53 14.43 13.17 13.60 12.72 12.07 11.74
CHAR 11.53 13.66 12.26 12.70 11.79 11.12 | 10.73
HAR 13.29 15.07 13.94 14.31 13.42 12.78 12.48

Note: Model with the overall best performance is highlighted; for the given frequency model 
with the lowest risk is presented in bold; values represents percentage level of risk; values are 
scaled by forecasting horizon

Table 1.13: RMSE -  portfolio of 15 stocks

MRK RCOV

1 min 1 min 5 min

DCC 4.110 4.251 4.384
RiskMetrics 11.404 11.318 11.262
VARFIMA 3.453 3.223 3.596
CHAR 4.913 4.490 4.961
HAR 3.575 3.216 3.644

Sub-Sampled RCOV

5 min 10 min 15 min 20 min

4.329
11.260

3.992
11.487

3.919
11.599

3.949
11.573

3.422 3.239 3.201 3.283
4.821 4.644 4.590 4.706
3.489 3.331 3.314 3.421

Note: Values are scaled by 10 3 and by forecasting horizon; highlighted cells belongs to 
5% MCS
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Figure 1.5: Efficient frontiers - portfolio of 10 stocks 

(a) RCOV 5min vs. MRK (b) RCOV 5 min vs. RCOV 1 min

(c) RCOV 5 min vs. RCOV SS 5 min
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(g) legend

■+■ DCC
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VARFIMA alternative Realized Measure

-h-HAR RCOV 5 min
-^-HAR alternative Realized Measure
-H-GHAR RCOV 5 min
-V-GHAR alternative Realized Measure

Note: Figure displays efficient frontiers of various competing models of portfolio of ten stocks based on 
five-step-ahead forecasts.
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Figure 1.6: Efficient frontiers - portfolio of 15 stocks

(a) RCOV 5min vs. MRK (b) RCOV 5 min vs. RCOV 1 min
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-^-HAR alternative Realized Measure
-h-GHAR RCOV 5 min
-VGHAR alternative Realized Measure

Note: Figure displays efficient frontiers of various competing models of portfolio of fifteen stocks based 
on five-step-ahead forecasts.
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Appendix C: 10 step ahead forecasts

Table 1.14: GMVP - portfolio of 5 stocks

Cumulative

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 30.50 30.50 30.50 30.50 30.50 30.50 30.50
RiskMetrics 40.58 40.58 40.58 40.58 40.58 40.58 40.58
VARFIMA 30.30 33.75 31.80 32.20 30.53 29.41 28.88
GHAR 30.35 33.66 31.94 32.21 30.58 29.40 28.81
HAR 31.16 34.40 32.68 33.01 31.30 30.24 29.74

Annualized

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 17.39 17.39 17.39 17.39 17.39 17.39 17.39
RiskMetrics 23.22 23.22 23.22 23.22 23.22 23.22 23.22
VARFIMA 17.07 18.82 17.84 18.02 17.15 16.54 16.26
GHAR 17.11 18.74 17.86 18.04 17.15 16.49 16.16
HAR 17.72 19.32 18.49 18.62 17.73 17.13 16.86

Note: Model with the overall best performance is highlighted; for the given frequency model 
with the lowest risk is presented in bold; values represents percentage level of risk; values are 
scaled by forecasting horizon

Table 1.15: RMSE -  portfolio of 5 stocks

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 1.208 1.294 1.375 1.291 1.173 1.107 1.101
RiskMetrics 1.389 1.401 1.431 1.404 1.388 1.384 1.380
VARFIMA 1.153 1.147 1.266 1.173 1.106 1.072 1.078
GHAR 1.287 1.256 1.409 1.307 1.237 1.197 1.205
HAR 1.138 1.133 1.242 1.163 1.091 1.058 1.067

Note: Values are scaled by 10 3 and by forecasting horizon; highlighted cells belongs to 
5% MCS
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Figure 1.7: Efficient frontiers - portfolio of 5 stocks 

(a) RCOV 5min vs. MRK (b) RCOV 5 min vs. RCOV 1 min

(c) RCOV 5 min vs. RCOV SS 5 min (d) RCOV 5 min vs. RCOV SS 10 min
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(e) RCOV 5 min vs. RCOV SS 15 min (f) RCOV 5 min vs. RCOV SS 20 min

(g) legend

■+■ DCC
RiskMetrics

-o-VARFIMA RCOV 5 min
VARFIMA alternative Realized Measure

-h-HAR RCOV 5 min
-^-HAR alternative Realized Measure
-H-GHAR RCOV 5 min
-V-GHAR alternative Realized Measure

Note: Figure displays efficient frontiers of various competing models of portfolio of five stocks based on 
ten-step-ahead forecasts.
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Table 1.16: GMVP - portfolio of 10 stocks

Cumulative

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 22.05 22.05 22.05 22.05 22.05 22.05 22.05
RiskMetrics 42.08 42.08 42.08 42.08 42.08 42.08 42.08
VARFIMA 22.89 26.91 24.17 24.97 23.31 22.09 21.45
CHAR 22.16 26.23 23.55 24.40 22.61 21.33 | 20.66
HAR 24.15 27.94 25.42 26.14 24.45 23.25 22.66

Annualized

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 13.03 13.03 13.03 13.03 13.03 13.03 13.03
RiskMetrics 24.40 24.40 24.40 24.40 24.40 24.40 24.40
VARFIMA 13.16 15.13 13.80 14.20 13.32 12.67 12.33
CHAR 12.56 14.67 13.28 13.75 12.76 12.06 11.69
HAR 14.01 15.85 14.67 15.01 14.10 13.45 13.14

Note: Model with the overall best performance is highlighted; for the given frequency model 
with the lowest risk is presented in bold; values represents percentage level of risk; values are 
scaled by forecasting horizon

Table 1.17: RMSE -  portfolio of 10 stocks

MRK RCOV

1 min 1 min 5 min

DCC 2.437 2.609 2.687
RiskMetrics 3.445 3.461 3.455
VARFIMA 2.139 2.165 2.327
CHAR 2.605 2.514 2.729
HAR 2.114 2.110 2.276

Sub-Sampled RCOV

5 min 10 min 15 min 20 min

2.610 2.362 2.260 2.271
3.448 3.458 3.487 3.481
2.208 2.057 2.011 2.041
2.607 2.494 2.449 2.491
2.174 2.026 1.986 2.024

Note: Values are scaled by 10 3 and by forecasting horizon; highlighted cells belongs to 
5% MCS
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(a) RCOV 5min vs. MRK (b) RCOV 5 min vs. RCOV 1 min
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Figure 1.8: Efficient frontiers - portfolio of 10 stocks

(c) RCOV 5 min vs. RCOV SS 5 min
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(d) RCOV 5 min vs. RCOV SS 10 min

(f) RCOV 5 min vs. RCOV SS 20 min

(g) legend

■+■ DCC
RiskMetrics

-o-VARFIMA RCOV 5 min
VARFIMA alternative Realized Measure

-h-HAR RCOV 5 min
-^-HAR alternative Realized Measure
-H-GHAR RCOV 5 min
-V-GHAR alternative Realized Measure

Note: Figure displays efficient frontiers of various competing models of portfolio of ten stocks based on 
ten-step-ahead forecasts.
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Table 1.18: GMVP - portfolio of 15 stocks

Cumulative

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 20.67 20.67 20.67 20.67 20.67 20.67 20.67
RiskMetrics 56.60 56.60 56.60 56.60 56.60 56.60 56.60
VARFIMA 21.08 25.00 22.33 23.21 21.56 20.36 19.72
GHAR 20.21 24.13 21.54 22.30 20.72 19.53 | 18.83
HAR 22.31 26.00 23.46 24.32 22.68 21.49 20.88

Annualized

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 12.56 12.56 12.56 12.56 12.56 12.56 12.56
RiskMetrics 32.32 32.32 32.32 32.32 32.32 32.32 32.32
VARFIMA 12.32 14.21 12.95 13.38 12.50 11.86 11.53
GHAR 11.44 13.55 12.16 12.59 11.70 11.04 10.66
HAR 13.19 14.95 13.82 14.19 13.31 12.68 12.37

Note: Model with the overall best performance is highlighted; for the given frequency model 
with the lowest risk is presented in bold; values represents percentage level of risk; values are 
scaled by forecasting horizon

Table 1.19: RMSE -  portfolio of 15 stocks

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5 min 10 min 15 min 20 min

DCC 4.141 4.258 4.385 4.323 4.054 3.989 4.010
RiskMetrics 11.806 11.735 11.720 11.719 11.884 11.981 11.961
VARFIMA 3.690 3.542 3.821 3.680 3.496 3.439 3.509
GHAR 4.807 4.514 4.859 4.746 4.571 4.508 4.613
HAR 3.666 3.471 3.767 3.635 3.468 3.424 3.512

Note: Values are scaled by 10 3 and by forecasting horizon; highlighted cells belongs to 
5% MCS
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(a) RCOV 5min vs. MRK (b) RCOV 5 min vs. RCOV 1 min
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Figure 1.9: Efficient frontiers - portfolio of 15 stocks

Standard Deviation

(c) RCOV 5 min vs. RCOV SS 5 min (d) RCOV 5 min vs. RCOV SS 10 min

(f) RCOV 5 min vs. RCOV SS 20 min

(g) legend

■+■ DCC
RiskMetrics

-o-VARFIMA RCOV 5 min
VARFIMA alternative Realized Measure

-h-HAR RCOV 5 min
-^-HAR alternative Realized Measure
-H-GHAR RCOV 5 min
-V-GHAR alternative Realized Measure

Note: Figure displays efficient frontiers of various competing models of portfolio of fifteen stocks based 
on ten-step-ahead forecasts.



>Table 1.20: Descriptive statistics of returns over the period 01.07.2005 -  03.01.2012

AAPL CVX GE GOOG IBM JNJ JPM KO MSFT PFE PG T WFC WMT XOM

CD
P
CLMean

1 m in

-0.105 0.086 -0.218 -0.204 0.215 -0.035 -0.036 0.011 -0.040 -0.150 0.133 -0.079 -0.049 -0.018 0.099
Max 0.046 0.043 0.050 0.022 0.030 0.044 0.032 0.020 0.019 0.032 0.032 0.039 0.042 0.030 0.040
Min -0.037 -0.027 -0.032 -0.041 -0.020 -0.033 -0.060 -0.038 -0.025 -0.028 -0.028 -0.038 -0.049 -0.021 -0.034 X
SD 1.046 0.891 1.088 0.936 0.749 0.559 1.336 0.619 0.833 0.825 0.616 0.834 1.464 0.685 0.827
Skewness 0.037 0.262 0.181 -0.369 0.077 0.394 -0.144 -0.482 -0.063 0.103 -0.066 -0.122 0.068 0.365 -0.188 o
Kurtosis 37.100 44.353 43.467 34.940 40.526 126.707 41.663 70.490 18.848 30.256 71.747 52.025 40.587 39.587 50.690

1.6. 
C

o
n

c
lu

sio
n

5 m in

Mean -0.629 0.423 -0.994 -1.037 1.177 -0.132 -0.165 0.113 -0.138 -0.745 0.741 -0.353 -0.252 -0.057 0.526
Max 0.065 0.061 0.052 0.046 0.053 0.032 0.069 0.028 0.030 0.030 0.050 0.034 0.066 0.048 0.053
Min -0.048 -0.068 -0.046 -0.069 -0.036 -0.040 -0.068 -0.037 -0.028 -0.038 -0.062 -0.073 -0.077 -0.042 -0.059
SD 2.258 1.916 2.280 2.023 1.580 1.174 2.871 1.297 1.756 1.694 1.316 1.779 3.151 1.478 1.779
Skewness -0.008 -0.062 0.268 -0.509 0.121 -0.127 0.059 -0.300 -0.091 0.109 -0.460 -0.518 0.095 0.432 -0.098
Kurtosis 28.079 37.935 31.858 39.555 37.413 44.133 35.720 33.284 17.395 18.627 86.196 46.840 34.793 42.507 40.512

10 m in

Mean -0.960 1.129 -1.740 -1.820 2.856 0.118 -0.611 0.387 0.350 -1.416 1.832 -0.444 -0.827 0.289 1.410
Max 0.050 0.039 0.052 0.043 0.029 0.030 0.067 0.031 0.029 0.029 0.024 0.038 0.069 0.053 0.051
Min -0.079 -0.034 -0.058 -0.073 -0.036 -0.025 -0.102 -0.040 -0.038 -0.027 -0.031 -0.043 -0.092 -0.035 -0.067
SD 3.150 2.630 3.168 2.776 2.169 1.592 3.937 1.793 2.399 2.297 1.765 2.412 4.372 1.999 2.423
Skewness -0.301 0.229 0.256 -0.373 -0.161 0.310 0.035 -0.321 -0.018 0.244 -0.042 -0.114 0.082 0.435 -0.098
Kurtosis 24.897 15.055 29.864 25.773 20.025 21.991 31.039 27.228 15.157 12.988 20.916 21.321 30.512 23.805 27.665

15 m in

Mean -1.415 2.229 -2.493 -2.598 4.830 0.250 -0.769 0.643 0.765 -1.986 2.917 -0.370 -1.003 0.712 3.193
Max 0.058 0.046 0.071 0.049 0.038 0.025 0.113 0.030 0.032 0.039 0.028 0.046 0.099 0.051 0.047
Min -0.053 -0.037 -0.070 -0.068 -0.053 -0.024 -0.086 -0.041 -0.042 -0.029 -0.034 -0.053 -0.075 -0.035 -0.037
SD 3.801 3.186 3.877 3.350 2.630 1.946 4.896 2.175 2.921 2.794 2.138 2.951 5.335 2.445 2.925
Skewness -0.012 0.237 0.161 -0.242 -0.159 0.332 0.314 -0.319 -0.050 0.264 0.086 -0.052 0.421 0.562 0.263
Kurtosis 16.529 15.547 31.899 22.586 21.422 19.781 35.685 22.721 14.785 13.138 21.422 21.883 30.411 20.882 19.090

20 m in

Mean -1.950 2.227 -4.353 -3.743 5.912 -0.276 -1.903 0.412 0.445 -2.604 3.494 -0.812 -2.259 0.542 3.371
Max 0.050 0.059 0.062 0.043 0.036 0.034 0.074 0.035 0.034 0.041 0.026 0.053 0.086 0.053 0.069
Min -0.048 -0.037 -0.068 -0.118 -0.040 -0.021 -0.102 -0.040 -0.038 -0.029 -0.029 -0.049 -0.080 -0.024 -0.067
SD 4.245 3.608 4.350 3.775 2.939 2.159 5.381 2.446 3.259 3.131 2.380 3.300 6.064 2.741 3.325
Skewness -0.075 0.252 0.130 -0.867 -0.034 0.420 -0.051 -0.148 -0.044 0.256 0.087 -0.086 0.161 0.510 0.177
Kurtosis 13.207 14.377 26.975 42.831 17.258 17.410 23.170 19.581 12.493 11.697 15.784 19.932 25.774 17.183 25.829

Note: The means are scaled by 10s , the standard deviations are scaled by 103



C hapter  2

Measurement of Common Risk 
Factors in Tails: A Panel Quantile

Regression Model for Returns

This chapter investigates how to measure common market risk factors in tails 
of the return distributions using newly proposed Panel Quantile Regression 
Model for Returns. By exploring the fact that volatility crosses all quantiles 
of the return distribution and using a penalized fixed effects estimator, we 
are able to control for otherwise unobserved heterogeneity among financial 
assets. Direct benefits of the proposed approach are revealed in a portfolio 
Value-at-Risk forecasting application, where our modeling strategy performs 
significantly better than several benchmark models according to both statisti­
cal and economic comparison. In particular Panel Quantile Regression Model 
for Returns consistently outperforms all the competitors in the 5% and 10% 
quantiles. Sound statistical performance translates directly into economic 
gains which is demonstrated in the Global Minimum Value-at-Risk Portfolio 
and Markowitz-like comparison. Overall results of our research are important 
for correct identification of the sources of systemic risk, and are particularly 
attractive for high dimensional applications.

2.1 Introduction
Many studies document cross-sectional relations between risk and expected returns, gen­
erally measuring a stock’s risk as the covariance between its return and some factor. 
In this laborious search for proper risk factors,1 volatility still plays a central role in

1See for example Harvey et al. (2016); Feng et al. (2019) for recent very complete overviews. This 
research dates back to French et al. (1987).
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explaining expected stock returns for decades. Most recent efforts explore increasingly 
available datasets, and make measurement of ex-post volatility more precise than ever 
before. In turn, these measures can be used for more precise identification of market risk. 
Although predictions about expected returns are essential for understating of classical 
asset pricing, little is known about potential of the factors to precisely identify extreme 
tail events of the returns distribution. More importantly, even less is known about com­
monalities between more assets with this respect. Our research attempts to contribute 
in this direction.

Asset pricing models explaining risk valuation theoretically assume an economic agent 
who decides based on the preference about her consumption by maximizing expected 
utility function. However, these preferences may be too restrictive to deliver satisfactory 
description of the real behavior of agents. Instead of working with standard expected util­
ities, recent literature strives to incorporate heterogeneity into dynamic economic models 
assuming agents maximize their stream of future quantile utilities (Chambers, 2007; Ros- 
tek, 2010; de Castro and Galvao, 2018). We contribute to these efforts by developing a 
Panel Quantile Regression Model for Returns that is able to control for otherwise unob­
served heterogeneity among financial assets and allows us to exploit common factors in 
volatility that directly affect future quantiles of returns. In a sense, we revisit a large 
literature connecting volatility with the cross-section of returns, as by construction, we 
model tail events of the conditional distributions via volatility.

Since the seminal work of Koenker and Bassett Jr (1978), quantile regression models 
have been increasingly used in many disciplines. In finance, Engle and Manganelli (2004) 
were among the first to use quantile regression to develop the Conditional Autoregressive 
Value-at-Risk (CAViaR) model and capture conditional quantiles of the asset returns. 
Baur et al. (2012) use quantile autoregressions to study conditional return distributions, 
Cappiello et al. (2014) detects comovement between random variables with time-varying 
quantile regression. Zikes and Barunik (2016) show that various volatility measures 
are useful in forecasting quantiles of future returns without making assumptions about 
underlying conditional distributions. The resulting semi-parametric modeling strategy 
captures conditional quantiles of financial returns well in a flexible framework of quantile 
regression. Moving towards a multivariate framework, and concentrating on interrelations 
between quantiles of more assets, White et al. (2015) pioneer the extension. Different 
stream of multivariate quantile regression based literature concentrates on the analysis 
using factors (Gonzalo et ah, 2017; Ando and Bai, 2018).2 From a theoretical point of 
view, Giovannetti (2013) derives an asset pricing model in which equity premium is no 
longer based on the covariance between return and consumption. Instead, Giovannetti 
(2013) argue that under optimism, higher volatility can be connected to high chance 
of high returns leading to increased prices, hence decreasing expected returns, and vice

2Panel quantiles methods are useful in the other areas of economics besides finance. They are mostly 
applied in the labour economics (Billger and Lamarche (2015), Dahl et al. (2013), Toomet (2011)), 
banking and economic policy analysis (Covas et al. (2014), Klomp and De Haan (2012)), economics of 
education (Lamarche (2008), Lamarche (2011)), energy and environmental economics (You et al. (2015), 
Zhang et al. (2015)) or international trade (Dufrenot et al. (2010), Foster-McGregor et al. (2014), Powell 
and Wagner (2014)).
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versa under pessimism. Based on Choquet utility functions, Bassett et al. (2004) show 
that pessimistic optimization may be formulated as a linear quantile regression problem, 
and can lead to optimal portfolio allocation.

In this respect, work by Zikes and Barunik (2016) is important as it provides link 
between future quantiles of return distribution and its past variation. As the financial 
sector is highly connected and the co-movements in asset prices are common, there is 
a need for proper identification of dependencies in joint distributions. In the classical 
mean-regression framework, Bollerslev et al. (2018) showed that realized volatility of 
financial time series shares many commonalities. In the quantile regression set-up, how­
ever, there is no similar study that attempts to uncover information captured in the 
panels of volatility series. Moreover, to the best of our knowledge there is no study es­
timating the conditional distribution of returns in a multivariate setting that explores 
ex-post information in the volatility.

In this chapter, we contribute to the literature by introducing a Panel Quantile Re­
gression Model for Returns that allows to measure common risk factors in tails of the 
return distributions. Our model utilize all the advantages offered by panel quantile re­
gression and financial market datasets. In particular, we are able to control for otherwise 
unobserved heterogeneity among financial assets and reveal common factors in volatility 
that have direct influence on the future quantiles of returns. To the best of our knowledge 
this is one of the first applications of the panel quantile regression using a dataset where 
the time dimension T  is much greater than cross-sectional dimension N, i.e. T  »  N. 
As a result we are able to obtain estimates of quantile specific individual fixed effects 
that represents the idiosyncratic part of market risk.

In an empirical application, we hypothesize that newly proposed model will deliver 
more accurate estimates compared to currently established methods. These estimates 
moreover translates into better forecasting performance of the Panel Quantile Regression 
Model for Returns. In addition, using a penalized fixed effect estimator we will be 
able to disentangle overall market risk into systematic and idiosyncratic parts. Actual 
performance of our model is tested in a portfolio Value-at-Risk forecasting exercise. 
Before the analysis of the empirical dataset (29 highly liquid stocks from the New York 
Stock Exchange), we run a small Monte-Carlo experiment that enable us to study well- 
behaved data. For the robustness reasons we evaluate forecasts from both a statistical and 
economic perspective. In the statistical comparison we furthermore distinguish between 
absolute and relative performance of the given model.

Results of our analysis suggest that the Panel Quantile Regression Model for Returns 
is dynamically correctly specified. Moreover it dominates the benchmark models in the 
economically important quantiles (5%, 10% or 95%). Overall we find that according to 
statistical comparison none of the benchmark models is able to outperform our model 
consistently. Furthermore the model we introduce in this chapter provide us with direct 
economic gains according to both economic evaluation criteria.
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2.2 Risk Measurement using High Frequency Data
We naturally begin with the definition of risk measures used in the study. Let’s assume 
that the efficient logarithmic price process of zth asset evolves over time 0 < t < T  
according to the following dynamics

d p i tt  P i , t d t  T cy/dll)/ T d J i t t , (2.1)

where p,itt is a predictable component, cq;t is a cadlag process, Wiit is a standard Brownian 
motion, and is a jump process.

The volatility of the logarithmic price process can be measured by quadratic return 
variation which can be decomposed into integrated variance (IV) of the price process and 
the jump variation (JV):

where 2Vi;t is total number of jumps during day t and K i t  i represents magnitude 
of the jumps. As shown by Andersen et al. (2003) Realized Variance estimator can be 
simply constructed by squaring intraday returns:

N

R V i , t =  (Afcpi;i)2 , (2.3)
fc=i

where A k P i , t  =  P i , t - i+ v k / N  — P i , t - i+ v k_ r/ N  is a discretely sampled vector of fc-th intraday 
log-returns of zth asset in [t — l,t], with N  intraday observations. Realized Variance 
estimator moreover converges uniformly in probability to QVitt as the sampling frequency 
goes to infinity

RV.i.t
N —toc

(7, „ds
t-i

N t

E
1=1

2
i,t,l

Building on the concept of Realized Variance Barndorff-Nielsen and Shephard (2004b) 
and Barndorff-Nielsen and Shephard (2006) introduced the bipower variation estimator 
that is robust to jumps and thus able to consistently estimate Furthermore, Ander­
sen et al. (2011) adjust original estimator, which helps render it robust to certain types 
of microstructure noise:

IV.
■_BPV
i.t V l2 E lN  - 2 P i , t \ \ ^ k P -'i,t I 5

k = 3

N N

K

N  — 2

where pa = A(|Z"|), and Z  ~  7V(0,1). Having an estimator of I V it in hand, jump 
variation can be consistently estimated3 as a difference between Realized Variance and

3Asymptotic behaviour and further details of the estimator can be found in Barndorff-Nielsen and 
Shephard (2006).
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the bipower variation:

R V it -  IV
B P V P

N ^ a c

Nt

1=1

For many financial applications not only the magnitude of the variation, but also 
its sign is important. Therefore Barndorff-Nielsen et al. (2010) introduce an innovative 
approach for measuring negative and positive variation in data called Realized Semi­
variance. They showed that Realized Variance can be decomposed to realized downside 
semivariance (RS~t) and realized upside semivariance (/VQ):

RV,t = RS+ + RS,

where RS+t and R Sit are defined as follows,

— + W i Nt
RRi,t = (Afcpyt)2 I  (&kPi,t > 0) A  + y ?  N,t,i > o) (2-4)

k=l 1=1

_ N Nt
RS~t = £  (Afcpi;t)21 ^ kPl>t < 0) A  - i v >t + £  J  K t;Z < 0). (2.5)

k=l 1=1
Consequently, the negative and positive semivariance provides information about vari­

ation associated with movements in the tails of the underlying variable. Similar to Patton 
and Sheppard (2015) and Bollerslev et al. (2017), we use negative semivariance as a proxy 
to the bad state of the returns, and positive semivariance as an empirical proxy of the 
good state of the underlying variable.

Since correlation is inevitably important in portfolio applications, and we use it later 
in our portfolio Value-at-Risk application, we also define Realized Covariance estimator 
(Barndorff-Nielsen and Shephard, 2004a) as

N
(A kpt) (Akpt)',

fc=i

where A kpt =  (A^pi,*,..., A kpqj) ' is vector containing log-returns of q individual assets.

2.3 Panel Quantile Regression Model for Returns
Having briefly described realized measures that we need for model construction, we now 
propose simple linear models for cross-section of quantiles of future returns. We base 
our model in a recent theoretical endeavor to move from expected values to quantiles, 
thereby understanding heterogeneity in asset prices. Based on the risk preferences of 
quantile maximizers defined by Manski (1988); Rostek (2010) and de Castro and Galvao 
(2018) develop a dynamic model of rational behavior under uncertainty, in which an agent 
maximizes streams of future quantile utilities. This is in sharp contrast to the mainstream



2.3. P anel Q uantile  R egression  M odel  fo r  R eturns 47

literature that assumes the decision making process to be driven by maximization of the 
expected utility instead. In the spirit of Bassett et al. (2004), general version of our 
model can be viewed as linear asset pricing equation

Qo,t+i (TK u M T)) =  M jO +  , T G ( 0 ,1),
U n o b se rv e d  H e t e r o g e n e ity  Id io s y n c r a t ic  R is k  C o m m o n  F a c t o r s

(2.6)
where r^t+i =  Pi,t+i — P i , t  are logarithmic daily returns, cq(r) represents individual fixed 
effects that accounts for unobserved heterogeneity, are measures of quadratic variation 
as defined in previous section and accounts for the firm specific (idiosyncratic) risk and 
Ft represents exogenous common factors. This model enables us to study influence of the 
various sources of risk on the specific quantiles of the future returns. Further, in case of 
q(r) I  0 for a given t , the model allows to capture the common risk factors in the tails.

While Equation 2.6 accommodates many possible specifications, we are interested in 
the set of following models. In the first set of model specifications, quantiles of the return 
series depends on the unobserved heterogeneity and idiosyncratic risk measured by one 
of the realized measures:

• PQR-RV  with Realized Volatility defined as

Qri,t+i W(T)) =  W(t ) +/3W l/2(T)JRViy 2,

• PQR-RSV  with Realized Semivariance defined as

f t , . ,«  ( r lB S S 1" , R S - P - a M ')  = a M  +  i W A C f i s + P

+ ^Rs-ii2(T^RRi,t1 ■

(2.7)

(2.8)

• PQ R-BPV  with Realized Bi-Power Variation defined as

Qritt+1 (T \B P V ^ 2, J V ^ , a i U ))  = c U T ) + IBPVi/d ^ B P V ^ +
V 7 (2.9)

+  /3jyi/2(r) JV jJ  .

In the second set of model specifications, we study role of the ex-ante measure of market 
volatility, i.e. VIX index, that we consider to be a good proxy for the common exogenous 
factor. These specifications will measure the direct influence of the common market factor 
once we control for the asset specific volatility as well as unobserved heterogeneity:

• PQR-RV-VIX  defined as

Qo.t+i w (T)) =  +  R v i x ( T W I x t , (2-10)
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• PQR-RSV- VIX defined as

Qri,t+1 (T\RS+t1/2,R S -t1/2,ai(R)} =Ui(T)+/3B<?+i/2(T)JRS+t1/2+
V 7 (2.11)

+  ^ R S - 1/ 2 (T ) R S r,t1/2 +  R vix

• PQR-BPV-VIX  defined as

Qw  ( t \B P V ^2, = cu(t) + pBPVl/2(r )B P V tf+
V 7 (2.12)

■ v . ■ , / r  a  ■ ■ r / \ . .

Details of this specifications are described in the Section Results: Common Risk Factors 
in Tails. Generally, Equation 2.6 can be easily extend by another exogenous variables 
such as factors used in Fama and French (1993), as already attempted by Galvao et al. 
(2017), however, this is beyond the scope of this chapter.

2.3.1 Estim ation
In our work, we concentrate on commonalities in the quantiles of several return series. 
To obtain parameters estimates of the general model defined in Equation 2.6 we use 
panel quantile regression as introduced in Koenker (2004). In the seminal work, Roger 
Koenker proposed a penalized fixed effects estimator as a general way of estimating 
quantile regression models in the panel data framework. Recently Lamarche (2010) 
studied penalized quantile regression estimator, and Galvao (2011) introduced a fixed 
effects model for dynamic panels. Galvao and Montes-Rojas (2010) moreover shown that 
bias in dynamic panels can be reduced using a penalty term. Further, Canay (2011) 
introduced a simple two-step approach to the estimation of panel quantile regression 
and showed consistency and asymptotic normality of the proposed estimator. Other 
influential works developing theory of panel quantile methods are Harding and Lamarche 
(2009), Galvao and Montes-Rojas (2015), Galvao and Wang (2015), Galvao and Kato 
(2015), Graham et al. (2015), Harding and Lamarche (2014) or Kato et al. (2012).

Although literature devoted to panel quantile estimators is growing and many interest­
ing alternatives have been introduced, we use original penalized fixed effects estimator. 
The advantage of this approach is the ability to account, and control for, unobserved 
heterogeneity among financial assets, which will yield more precise quantile specific es­
timates. As a consequence these estimates will translate into better forecasting perfor­
mance directly. Moreover one can use this approach to obtain precise estimates of the 
Value-at-Risk (VaR) which is commonly used financial industry risk measure. In the 
VaR application panel data will utilize all the favorable properties of the standard time 
series. In addition, the cross-sectional dimension will help us to account for common 
shocks among the assets.
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To obtain parameter estimates we solve following optimization problem

n  ti

min
«(GAO),70) ¿=1 i = l

n

+ A ^2 |cu(t)|,
í = í

(2.13)

where pT(w) =  u (t  — 7(w(< 0))) is the quantile loss function (Koenker and Bassett Jr, 
1978) and J3™=1|cq| is li penalty that controls variability introduced by the large number 
of estimated parameters. The general form of our model consider penalty term A from 
range (0, co). In case A =  0, we obtain full set of asset specific fixed effects, for A >  0 
fixed effects of some assets shrink toward zero and as A —> co we have model without 
fixed effects. One might consider shrinking some of the fixed effects toward zero in a high 
cross-sectional dimension problems thus keeping the number of estimated parameters 
reasonable.

In the empirical application we choose the penalty term by minimizing Bayesian 
Information Criterion (BIC) as proposed in Galvao and Montes-Rojas (2010)

B IC (Px) =  logax +  1/2 (2VT)-1 pxlogNT,

where ax =  N T - 1 ^ =1 )T/T=1 pT (r iit+1 -  a^r, A) -  v^fj3(r, A) -  F ^ ( t , A)) , and px is a 

measure of the effective dimension of the fitted model with penalty parameter A. In the 
px calculation we consider both Method 1 and 2, where

• Method 1: px is the dimension of the set {/3 U 7 U {z||cq|>  u }}

<T• Method 2: px =  ^ =l E L i 1 I l&,t+i(u A)|< d  , where %;i+i(T, A) =  ryi+i- fo (T , A ) -  

RTt/5(T, A) — / /T7 (t . A) is the r-quantile residual sequence for a given A.

We have set tolerance parameter u to various values ranging from 10-2 to 10-7 and 
it turns out to be the crucial part of the analysis. Unlike the results of Galvao and 
Montes-Rojas (2010) where model selection was not affected by the values of u, in our 
empirical application, the optimal lambda differ substantially for different A. Moreover, 
results from Method 1 and 2 sometimes contradict each other, i.e. for u =  10-4 Method 
1 suggests to shrink all the fixed effects while Method 2 suggest zero penalization in the 
75% quantile. Furthermore, using both methods for px calculation, the differences in the 
BICs of unpenalized model and the model with “optimaly” selected A are very small, i.e 
no greater than 4 x 10-3 or 0.4%.

Since the results of penalty selection are inconclusive and the increasing time dimen­
sion reduces the usefulness of the shrinkage method (Galvao and Montes-Rojas, 2010), 
we concentrate in our further analysis on the model without penalty, i.e. A =  0, and we 
apply standard pure fixed effects model. This approach allows us to obtain estimates 
of all individual quantile specific fixed effects, i.e. account for unonserved heterogenity 
among assets. As a robustness check4 we also carried out the analysis with values of A

4Results are presented in Appendix.
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from range (0; 1) as in Damette and Delacote (2012) and Covas et al. (2014) and with 
A =  1 as in Koenker (2004), Bache et al. (2008), Matano and Naticchioni (2011), Lee 
et al. (2012) and You et al. (2015). Overall we find that the choice of A does not affect 
precision of our analysis. We address this finding to the structure and characteristics of 
the dataset (high time dimension T  compared to low cross-section dimension V).

In the Equation 2.13 we further consider individual fixed effects to have distributional 
effects and we concentrate on each quantile separately rather than solving optimization 
problem through several quantiles simultaneously. In contrast, Koenker (2004) and vast 
majority of the theoretical and applied works consider to have a pure location shift 
effect on the conditional quantiles. This restriction is a consequence of the structure 
of the usual panel-datasets where cross-sectional dimension is much larger than time 
dimension5. This problem is not so severe in our application since majority of assets 
have a long history and thus consist of thousands of observations. Moreover analysis 
of the specific quantiles is essential for many financial applications including popular 
Value-at-Risk in which we are most often interested in finding 1-day 5% VaR or 10-day 
1% VaR, as historically recommended by Basel Committee on Banking Supervision.

2.4 Competing Models and Evaluation
In the previous section we introduce Panel Quantile Regression Model for Returns which 
will be used in the applied part of the chapter to analyze simulated and empirical data. In 
this section, we describe alternative approaches that can be viewed as the direct competi­
tors to our model. Benchmarks in our work includes popular and widely used RiskMetrics 
model that is the industry standard for the risk evaluation in high-dimensional problems 
and two applications of the Univariate Quantile Regression Model for Returns.

2.4.1 RiskM etrics
Based on Exponentially Weighted Moving Average, J.P. Morgan Chase in 1996 intro­
duced new methodology for accessing the financial risk called RiskMetrics. It is consid­
ered to be the baseline benchmark model for numerous fiancial applications. For our 
benchmark purposes, we adopt the specification in its original form as defined in Longer- 
staey and Spencer (1996) with decay factor, A set to 0.94. We assume a q x 1 vector 
of daily returns rt = EZ=1 for t  =  1, •••,T such that rt ~  N  where /q is
conditional mean and af is conditional variance of daily returns. We also assume that 
¡j,t =  0 and therefore conditional covariance has the form

where denotes covariance between assets i and j  at time t.

5As detailed in Koenker (2004) it is not advisable to estimate r-specific cp in problems with 
small/medium T.
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2.4.2 Univariate Quantile Regression Model for Returns
As already mentioned Zikes and Barunik (2016) introduced an elegant framework for 
modelling and obtaining forecasts of the conditional quantiles of future returns in a 
univariate setting. They proposed to model quantiles of return series according to:

Qo,t+i(Tk o  zt) =  «¿(t) + (2.14)

/-------1/2 --------1/2 -— 1/2
where ryt+i =  pi;t+i — Pi,t is return series of zth asset, viyt =  [Q V if  , QVit_ i , . . .  , IV it , 
-—-1 / 2  '  -1/ 2  -  -1/ 2 \
IV i f_ l , . . . ,  J V i f , J V i f_ l , ...j are components of quadratic variation and zt is vector 
of vector of weakly exogenous variables. Estimates of asset i quantile specific (3 from 
Equation 2.14 are obtained by minimizing following objective function:

min E
¿= 1

P-T n.i+i -  -  / A M  -  A ï M ) . (2.15)
n

where pT(w) =  u(r — I(u  < 0))) is the quantile loss function defined in Koenker and 
Bassett Jr  (1978). The application of the model in a multivariate setting is further 
described in the following section.

2.4.3 Forecasting Exercise and Forecast Evaluation
In order to evaluate the performance of the newly proposed Panel Quantile Regression 
Model for Returns we conduct forecasting exercise in which we study portfolio Value- 
at-Risk from a statistical and economic point of view. We decided to concentrate on 
both statistical and economic evaluation in order to get a complete picture of behavior 
of the new model. Moreover concentrating on statistical evaluation only might get us 
into trouble because good statistical performance might not necessarily translate into 
economic gains. Therefore to make our results robust we apply two statistical and two 
economic evaluation criteria.

In the statistical comparison we focus on the absolute and relative performance of 
the considered models in an equally weighted portfolio set-up. By focusing on an equally 
weighted portfolio, we refrain from specifying complicated weighting schemes which might 
affect the overall performance.

In the economic comparison, we study the efficient frontier of the Value-at-Risk - 
return trade-off and also Global Minimum Value-at-Risk Portfolio (GMVaRP). As both 
approaches by definition tries to f o l d  optimal weights of the assets we are not using 
equally weighted portfolio here anymore.

Portfolio Value—a t—Risk

Value-at-Risk is an elegant way of quantifying the risk of an investment. Its simplicity 
makes it popular in the financial industry because it provides us with single number that 
represents the potential loss we can incur, at a certain probability level during pre-defined
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period of time. Using VaR as the only risk measure however has some limitations. There 
are well known problems of VaR generally not being a coherent risk measure because it 
violates the subadditivity criteria (Artzner et ah, 1999). However, Danielsson et al. (2013) 
show that under reasonable assumptions VaR might be subadditive. In this chapter we 
decided to use a VaR framework because forecasts we obtain from the Panel Quantile 
Regression Model for Returns are by definition semi-parametric VaRs6. Moreover we are 
not trying to introduce new measures of financial risk, rather we want to show accuracy 
of the model we proposed in the standard set-up.

Having briefly discussed our motivation to concentrate on the VaR in our analysis we 
now turn to Value-at-Risk framework itself. Generally there are two main approaches of 
calculating VaR: (semi)parametric estimation vs. historical simulation. In our work we 
will concentrate on the parametric approach because it directly enables us to compare 
forecasts from several benchmark models.

The original parametric VaR calculation was introduced by J.P.Morgan. In their 
set-up, VaR is derived from the quantile of a standard normal distribution,

VaRi = 'yTai, (2.16)

where is the t  quantile of the standard normal distribution and ai is the volatility of 
the asset i. If we would like to study VaR of the portfolio instead of the individual assets, 
ai is replaced by the portfolio volatility ap. Under the assumption of the multivariate 
normality ap is calculated as

a p  = V wt Sw,
where E is the covariance matrix and w is the vector of asset weights. We can therefore 
calculate percentage Value-at-Risk (%UaR) of the given portfolio as a

%VaRp = (2-17)

We can rewrite Equation 2.17 in terms of VaRs of the individual assets as

%VaRP = Q %VaRT)tt(w © %VaR), (2.18)

where %VaR is a vector of individual percentage VaR estimates, Q stands for correlation 
matrix and © is the Hadamar product. Alternatively we can also write it as

N N  N

%VaRp \
£ ( mi%yafl.)2 + 2£ £  Wi Wj % VaRi %V aRj pitj
i= i i = l

where Wi is the weight of asset i, %VaRi is the percentage VaR of the ith asset and pitj 
represents correlation between asset i and j.

In the forecasting exercise we will study portfolio Value-at-Risk performance of the 4 
benchmark model specifications:

6According to Jorion (2007) p.17 ’’Value-at-Risk describes the quantile of the projected distribution 
of gains an losses over the targeted horizon.” Since the VaR is a quantile of returns, and we model 
quantiles of returns directly by panel quantile regression, we therefore obtain semi-parametric VaR 
estimates.
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• RiskMetrics,

• Panel Quantile Regression(PQR) Model for Returns,

• Univariate Quantile Regression(UQR) Model for Returns,

• portfolio version of Univariate Quantile Regression(Portfolio UQR) Model for Re­
turns.

For calculation of portfolio VaR using the RiskMetrics approach, we directly apply Equa­
tion 2.17 where E is the covariance matrix obtained from RiskMetrics and y- is a cut-off 
point of standard normal distribution at a given quantile r.

In case of PQR  and UQR, forecasts of quantiles of return series are considered to be a 
semi-parametric percentage VaR. The correlation matrix Q is obtained from the Realized 
Covariance matrix estimate, E, as

Q =  (dzap(E))“ 1/2 E (dzap(E))“ 1/2

and therefore Equation 2.18 can be used for VaR calculation.
In contrast to previous approaches, Portfolio UQR is calculated in a different fashion. 

We first create portfolio returns and portfolio volatility series using individual returns 
and correlation structure obtained from Realized Covariance matrix, E, as

rt,p =  nJ rt

and
(?t,p =  \/ uPPpw,

where rt,p and at,p is portfolio return and portfolio volatility at time t respectively and 
rt is vector of individual returns at time t. Series rttp and attP are further modeled using 
Univariate Quantile Regression Model for Returns and the forecasts of the quantiles of 
the portfolio return series are considered to be semi-parametric percentage portfolio VaR.

Statistical Evaluation

In the statistical comparison, we study absolute performance which tells us whether a 
model is dynamically correctly specified, i.e. we study goodness-of-ht, and relative per­
formance in which we compare models against each other. For the absolute performance 
evaluation we use modified version of the Dynamic Quantile test (Engle and Manganelli, 
2004), referred to as the CAViaR test by Berkowitz et ah (2011). In their work, Berkowitz 
et ah (2011) define a “hit” variable in a way that

h -, S 1 U+i <  Qrt+1(u)
i+1 | 0 otherwise

i.e. hitt+i is a binary variable taking values 1 if conditional quantile is violated and 0 
otherwise. Hit series of a dynamically correctly specified series should be i.i.d Bernoulli 
distributed with parameter r

hitt+i ~  iid(r, t(1 — t)).
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By construction, hit is a binary variable, therefore Berkowitz et al. (2011) propose to 
test the hypothesis of correct dynamic specification using following logistic regression

n  n

hitt =  c + E fixdhitt-l +  (^2dQrt-d+l (T) +  Ut
d= 1 d= 1

where ut is assumed to have a logistic distribution 

verify null hypothesis that /3‘s are equal to zero and P(hRt =  1)

We use a likelihood ratio test to
ec

=  t . Exact
1 +  ec

finite sample critical values for the likelihood ratio test are obtained from Monte Carlo 
simulation as suggested by Berkowitz et al. (2011).

Relative performance of benchmark models is tested using expected tick loss for pair­
wise model comparison (Giacomini and Komunjer, 2005; Clements et ah, 2008). The loss 
function is defined as

=  E  ( (r  -  I  (e™, <  0) e” '+,)  ,

where /(•) is indicator function, e™x =  rt+i — Q™+1(t) and Q™+1(t ) is the m ‘th model 
quantile forecast. Forecasting accuracy of two models is assessed using Diebold and 
Mariano (1995) test. Null hypothesis of the test that expected fosses of two models are 
equal i.e. Ho : CTtl =  CT̂  is tested against general alternative.

Economic Evaluation

In the economic evaluation, we study portfolio Value-at-Risk forecasts in the modifed 
Markowitz (1952) approach. From the original work of Markowitz (1952) it differs in a 
way that we concentrate on the relationship of the return and Value-at-Risk compared to 
original risk-return trade-off 7. To overcome the difficulties of specifying a proper model 
for returns and covariance/correlation matrices we decide to use their ex-post realizations
i.e. for day T  we use returns realized in day T , realized covariance/correlation matrix in 
day T  and forecasts of univariate VaR for day T.

In general, the efficient frontier of the optimal portfolio can be constructed in two 
equivalent ways:

1. Expected portfolio return is maximized for various levels of portfolio Value-at-Risk

2. Portfolio Value-at-Risk is minimized for various levels of expected portfolio return

In both approaches asset weights, w =  (wx, . . . ,  wq)', maximizing utility of risk averse 
investor can be found by solving following problem:

min w't+1Et+1\twt+1 (2.19)Wf + l

S.t. l/wt+l =  1

7Note that if we assume that quantiles of returns are standard normally distributed and we use 
standard cut-off points, i.e. -1.645 for the 5% quantile, both approaches are equivalent
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wi+i > 08 

wt+ilJ't+i =  gp

where wt+i is n  x 1 vector of assets weights, I denotes a n x  1 vector of ones, /zi+i is a 
vector of ex-post returns, jap stands for portfolio return and S t+1|t =  diag (% VaRt+1\t  ̂ * 

Qt+i * diag (% V aRt+1\t  ̂ represents a correlated Value-at-Risk covariance matrix where

%VaRt+i\t is n x 1 vector of univariate %VaR forecast and Qt+i is correlation matrix ob­
tained from realized covariance matrix estimate. Once we solve the optimization problem 
for different levels of risk, we construct efficient frontier. In the Markowitz-type portfolio 
optimization exercise we do not allow short-selling in order to meet restrictions imposed 
mainly by regulators on certain types of investors (pension funds etc.).

The second economic evaluation criteria used in our study is the Global Minimum 
Value-at-Risk Portfolio. The basic problem of GMVaRP is similar to Markowitz, there 
are only two differences in the set-up. The first one is the existence of the closed- 
form solution. As a consequence we are not restricting asset weights because the global 
minimum of the optimization problem might require negative weights of some assets. 
The second difference is the absence of a targeted portfolio return. Therefore in some 
cases we might get negative portfolio return for the asset weights minimizing the overall 
risk of the portfolio. GMVaRP optimization problem can be written as

m in w't+1~t+1\twt+1 (2.20)
R̂t+1

S.t. l’wt+l =  1.

In the Kempf and Memmel (2006) paper, it was shown that the analytical solution of 
the problem is

GM VaR
w t+ l (2.21)

and portfolio Value-at-Risk corresponding to calculated asset weights is finally obtained
as

%VaR GM VaR
i+1

_  G M V aR 1
wt+l

? GM VaR
++l|iwt+l

r

2.5 Simulation Study
Before we analyze the empirical data we would like to show performance of the newly 
proposed model in a controlled environment. Our aim is to show how various error 
distributions used for continuous price process simulation affect the performance of the 
Panel Quantile Regression for Returns model.

8We do not allow short-selling in this set-up.
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As it is common in the literature, let’s assume that the price processes follow jump 
diffusion processes with stochastic volatility:

cudpt = ( p -  —  }dt + atdWu + ctdNt
(2.22)

daf = k, {a — a2) dt + yatdW2t,

where Wi and 11% are Brownian motions, ctdNt is a compound Poisson process with 
random jump size distributed as V (0 ,aj) and a j = 0.01. Parameters in Equation 2.22 
are set to the values which are reasonable for a stock price, i.e. a = 0.04, u =  5, 7 =  0.5 
as in Zhang et al. (2005) and p =  0 because we assume that returns are zero-mean. 
The volatility parameters satisfy Feller’s condition 2 /vj > y2. which keeps the volatility 
process away from the zero boundary. Moreover we assume that comes from one of 
the following distributions with E being Realized Covariance matrix obtained from the 
empirical data:

• Multivariate normal distribution, 2V(0,E).

• Multivariate Student-t distribution with 9 degrees of freedom, t9(0, E).

• Univariate normal distribution, 7V(0,1).

• Univariate Student-t distribution with 9 degrees of freedom, t9(0,1).

To work with a similar environment as the empirical data, each simulation step con­
sists of 29 time series containing of 7 hours of 1 minutes intra-day prices for 2613 days. 
From the intra-day prices we calculate daily returns and all the realized measures. In case 
of multivariate normal and multivariate Student-t distribution we use empirical estimate 
of Realized Covariance matrix for given day as the input for multivariate random number 
generation. For each error distribution we run 500 simulations. In each simulation step 
we use same estimation procedure as in case of empirical data - rolling window of length 
1000.

2.5.1 In-Sample Fit
We start with a description of the results with data generated from Multivariate Normal 
Distribution i.e. 7V(0,E). Table 2.1 shows detailed estimation results for 5%, 10%, 90% 
and 95% quantiles that are most important from an economic point of view for all three 
model specifications. To get a better view of quantile dynamics we also report lower and 
upper quartile together with median. The results of the other distributions are presented 
in the Appendix - Table 2.11, 2.12, 2.13 and we comment here only main differences from 
Multivariate Normal Distribution.

Table 2.1 reveals significant estimates (except median) for PQR-RV model, with pa­
rameter values increasing in quantiles. The median coefficient is zero as a consequence of 
setting p in Equation 2.22. Similar to the PQR-RV model, all but median quantiles are
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statistically significant also for the second model, PQR-RSV. We can notice differences 
in smaller magnitudes of coefficients in comparison to PQR-RV. Since both positive and 
negative semivariance should carry equal information in Multivariate Normal distribu­
tion, we expect equal coefficients. Finally, PQR-BPV model shows insignificant estimates 
for jump component, while coefficients for the volatility component are equal to PQR-RV 
model. This again is consistent with our expectation, as simulated jump variation in the 
simulations is too small. We conclude with observation that results for all three models 
are symmetric, as expected.

Tables 2.11, 2.12, and 2.13 reveal similar patterns. Heavy tails introduced to the data 
with Student-t distribution cause higher coefficients on both tails.

Table 2.1: Multivariate Normal Distribution -  Mean of coefficients estimates from Monte-Carlo 
simulations

T 5% 10% 25% 50% 75% 90% 95%

PQR-RV

Dr v 1/2 -1.54
(-18.9)

-1.15
(-18.37)

-0.57
(-12.51)

0
(-0.06)

0.56
(11.85)

1.14
(17.72)

1.55
(17.97)

PQR-RSV
^ R S + 1/2 -1.12

(-2T7)
-0.83

(-2.35)
-0.43

(-2.23)
-0.02

(-0.18)
0.36

(1.96)
0.76

(2.29)
1.04

(2.07)

Dr s - î/2 -1.06
(-2.06)

-0.79
(-2-21)

-0.38
(-1.95)

S
'

Oo
 o 0.44

(2.42)
0.86

(2.63)
1.15

(2.32)

PQR-BPV

I ^ B P V 1/ 2 -1.55
(-18.9)

-1.15
(-18.46)

-0.57
(-12.49)

0
(-0.06)

0.57
(11.83)

1.15
(17.81)

1.55
(17.87)

Dj v 1/2 0.06
(0.49)

0.04
(0.56)

0.02
(0.45)

0
(0.01)

-0.03
(-0.47)

-0.05
(-0.63)

-0.06
(-0.52)

Note: Table displays mean of coefficient estimates with corresponding t-statistics in parentheses. 
Individual fixed effects affr) are not reported for brevity.

2.5.2 Out-of-Sample Performance
In the out-of-sample forecasting exercise we start with comparison of absolute per­
formance represented by various measures of unconditional coverage ( r a v g , ^ m a x ,  'r im ,,-  

N v g - d e v )  and dynamic quantile CAViaR test (D Q violatians) followed by pair-wise relative 
comparison according to Diebol-Mariano test (D M ). For the unconditional coverage
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we report average unconditional coverage ( r ^ )  from the Monte-Carlo simulation which 
indicates how close our model was to theoretical quantile hit rate (i.e. for 5% quantile 
we expect unconditional coverage to be somewhere around 5%), maximum and mini­
mum unconditional coverage (rmax, Tmin) which show the range of possible movements 
of unconditional coverage rate and average deviation from the theoretical quantile hit 
rate (ravg-dev) that shows on average how close our estimates were to theoretical values. 
Results of Diebold-Mariano test shows us percentage values when the benchmark model 
was outperformed by its competitors.

In the Panel A A and Panel A.2 of the Table 2.2 we present absolute performance of 
the PQR and benchmark models respectively. Overall we can say that all the models are 
dynamically correctly specified in the majority of simulation trials for all the quantiles but 
median. Models with the lowest average deviation from studied quantile r  are all PQR 
specifications and UQR for all but median quantile. In case of median Portfolio UQR 
is the winner. Similarly to in-sample fit we obtain qualitatively identical results when 
we study data simulated from Multivariate Student-t distribution. When we switch to 
univariate error distributions the situation changes and the Portfolio UQR seems to be the 
model with lowest average deviation and the lowest number of dynamically not correctly 
specified models. However, we must stress that for all but median quantile, all the 
results are close to each other which indicates that none of the models are systematically 
misspecihed.

A more interesting comparison comes from PanelBA  and PanelBA  of Table 2.2 
where PQR models are compared to benchmarks directly. All the PQR variants outper­
form significantly Portfolio UQR in all studied quantiles and RiskMetrics in all quantiles 
but median. Median RiskMetrics performance is overall the best which we attribute to 
the fact that median cut-off point for VaR calculation is zero and by construction series 
we simulated are supposed to be zero mean. When we concentrate on the comparison of 
the PQR to UQR situation is identical in both tails - UQR outperforms slightly all PQR 
specifications. We address this result to the nature of simulated data - data generating 
process is driven by generated random numbers and contains just little heterogeneity 
that could possibly translate into the gains using PQR. Median performance however is 
better for PQR which is result of the averaging in the PQR median calculation. Moreover 
as the number of estimated parameters is significantly lower in case of PQR compared 
to UQR, median forecasts are less noisy which translates to better median PQR perfor­
mance directly. Qualitatively similar results are obtained also for Multivariate Student-t 
distribution. If we turn to the comparison with univariate distributions, PQR outper­
form UQR significantly in all studied quantiles. The source of this interesting fact lies 
in the degree of heterogeneity present in the data. The only source of heterogeneity 
in our simulated data is the random number generation process. In case of univariate 
distributions each generated time series has errors that are independent from remaining 
time series. However, in the multivariate distributions all error terms are affected by each 
other because we assume some correlation/covariance structure. As a result multivariate 
random numbers are less heterogeneous compared to univariate one.

Generally, results obtained from the Monte-Carlo simulations helps us justify the



2.5. Simulation Study 59

use of panel quantile regressions for modelling quantiles of future returns. Our main 
results are that whatever error distribution for simulation we use, PQR models are spec­
ified well dynamically and they dominate RiskMetrics and Portfolio UQR benchmark 
models. When we use univariate error distributions for random data generation PQR 
also outperform UQR. In case multivariate error distributions are used, PQR is slightly 
outperformed by UQR because the simulated data are less heterogeneous compared to 
univariate error distributions. We also show the importance of covariance structure in 
the comparison of the results of multivariate and univariate distributions.



Table 2.2: Models performance using data simulated from Multivariate Normal Distribution

PQR-RV PQR-RSV PQR-BPV

Panel A .l 5% 10% 50% 90% 95% 5% 10% 50% 90% 95% 5% 10% 50% 90% 95%

Q v io la tio n s 6.2 4.8 12.2 2.8 7.8 6.8 5 13 2.8 7.8 6.2 5.2 12.4 2.6 7
d~avg 5.0 10.1 51.4 90.1 95.1 5.0 10.1 51.4 90.1 95.0 5.1 10.1 51.4 90.1 95.0
B n a x 6.5 11.8 55.4 91.6 96.4 6.5 11.7 55.6 91.7 96.4 6.3 11.7 55.4 91.7 96.2
7~min 3.6 8.4 47.5 88.5 93.7 3.5 8.3 47.4 88.5 93.7 3.5 8.5 47.4 88.5 93.6

B x v g —dev 0.0 0.1 1.4 0.1 0.1 0.0 0.1 1.4 0.1 0.0 0.1 0.1 1.4 0.1 0.0

RiskMetrics UQR Portfolio UQR

Panel A .2 5% 10% 50% 90% 95% 5% 10% 50% 90% 95% 5% 10% 50% 90% 95%

DQ v io la tio n s 9.2 14 6.6 18.8 7.4 6.8 5.2 14.2 3 8.2 7 4.8 3 4.2 7
d~avg 5.2 9.3 50.5 91.1 95.0 5.0 10.1 51.5 90.1 95.1 4.8 9.6 49.9 90.4 95.2
B r ia x 7.1 11.2 54.1 92.7 96.4 6.3 11.7 55.6 91.8 96.4 6.1 11.5 52.5 91.8 96.3
7~min 3.3 7.1 46.5 89.3 93.6 3.5 8.4 47.7 88.5 93.5 3.7 8.1 47.4 88.5 94.0

B x v g —dev 0.2 -0.7 0.5 1.1 0.0 0.0 0.1 1.5 0.1 0.1 -0.2 -0.4 -0.1 0.4 0.2

2.5. 
S
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benchmark

RiskMetrics UQR Portfolio UQR

Panel B .l 5% 10% 50% 90% 95% 5% 10% 50% 90% 95% 5% 10% 50% 90% 95%

PQR-RV DM 58.8 62.6 0.2 65.6 54.8 3.4 2.6 9.4 4.4 4.2 47.4 43.6 20.4 44.8 48.6
PQR-RSV DM 58.4 62.2 0.2 64.4 54 2.8 2 9.4 2.6 3 46.6 42.6 20.4 44.2 47.2
PQR-BPV DM 58 61.8 0.2 63.8 54 1.6 1 8.8 1.6 1.2 44.2 40.4 20.6 42.4 44.8

PQR-RV PQR-RSV PQR-BPV

Panel B.2 5% 10% 50% 90% 95% 5% 10% 50% 90% 95% 5% 10% 50% 90% 95%

RiskMetrics DM 0.2 0 13.8 0 0 0.2 0 14.2 0 0 0.2 0 13 0 0
UQR DM 6.8 8.8 2.6 9.2 9 12 13.6 2.8 15.2 12.2 8.8 11.2 3 12.4 12
Portfolio UQR DM 0.2 1 0.6 0 0.6 0.2 1.6 0.6 0 0.6 0.2 1 0.6 0 0.8

Note: Table displays abso lu te  and relative perform ance of P Q R  m odels for re tu rn s w ith RV, RSV and B PV  as regressors and benchm ark m odels. All values are in %.

Panel A . l  repo rts abso lu te  perform ance of P Q R  models, Panel A .2 rep o rts abso lu te  perform ance of benchm ark models. For each m odel and quantile  t , percentage of 
violations of th e  CAViaR te s t for correct dynam ic specification (D Q vioiatiOn s ) ’ average unconditional coverage (raVg),m axim um  unconditional coverage ( 7 ^ 0 ) ,  m inim um  
unconditional coverage (Tmin ) and  average deviation  of unconditional coverage from given quantile  t  (ravg—dev)

Panel B . l  and Panel B .2  rep o rt relative perform ance of Panel Q uantile  Regression M odels for R e tu rn s in com parison to  benchm ark m odels and relative perform ance of 
benchm ark m odels in com parison to  Panel Q uantile  Regression M odels for R etu rns respectively. For each specification and  quantile  t  we rep o rt percentage of sta tistica lly  
b e tte r  perform ance according to  D iebold-M ariano(D A l) te s t a t 5% significance level.
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2.6 Results: the Role of Unobserved Heterogeneity 
in Tails

Confident about the performance of our modeling strategy in a controlled environment, 
we turn to applications of the proposed models on empirical data. First, we describe the 
in-sample fit of the PQR-RV, PQR-RSV and PQR-BPV model specifications. Second, 
we present results for our out-of-sample Value-at-Risk forecasting exercise. Third, we 
complement our statistical evaluation by computing a simple portfolio allocation exercise 
where we study Global Minimum Value-at-Risk Portfolios and Markowitz like relation­
ships between Value-at-Risk and return of the portfolio.

Our empirical application is carried out using 29 U.S. stocks9 that are traded at New 
York Stock Exchange. These stocks have been chosen according to market capitalization 
and their liquidity. Sample we study spans from July 1, 2005 to December 31, 2015 and 
we consider trades executed within U.S. business hours (9:30 -  16:00 EST). In order to 
ensure sufficient liquidity and eliminate possible bias we explicitly exclude weekends and 
bank holidays (Christmas, New Year’s Day, Thanksgiving Day, Independence Day). In 
total, our final dataset consists of 2613 trading days. Basic descriptive statistic of the 
data can be found in Table 2.10 in Appendix.

For estimation and forecasting purposes we use a rolling window with fixed length 
of 1000 observations,10 hence our model is always calibrated on a 4 year history. Our 
analysis is restricted to 5 minutes intraday log-returns that are used for computation of 
the daily returns and realized measures.

All the results presented in this section were obtained using pure fixed effects panel 
quantile regression, i.e. penalty parameter A set to 0. In the Appendix11 we present also 
estimation results when A =  1 which serves as a robustness check.

2.6.1 In-Sample Fit
Estimation results are detailed in the Table 2.3. In addition, to get a better view of the 
dynamics, we show results of the PQR-RV, PQR-RSV and PQR-BPV also graphically 
in the Figures 2.1, 2.2 and 2.3 respectively.

9Apple Inc. (AAPL), Amazon.com, Inc. (AMZN), Bank of America Corp (BAC), Comcast Cor­
poration (CMCSA), Cisco Systems, Inc. (CSCO), Chevron Corporation (CVX), Citigroup Inc. (C), 
Walt Disney Co (DIS), General Electric Company (GE), Home Depot Inc. (HD), International Business 
Machines Corp. (IBM), Intel Corporation (INTC), Johnson & Johnson (JNJ), JPMorgan Chase & Co. 
(JPM), The Coca-Cola Co (KO), McDonald’s Corporation (MCD), Merck & Co., Inc. (MRK),Microsoft 
Corporation (MSFT), Oracle Corporation (ORCL), PepsiCo, Inc. (PEP), Pfizer Inc. (PFE), Procter 
& Gamble Co (PC), QUALCOMM, Inc. (QCOM), Schlumberger Limited. (SLB), AT&T Inc. (T), 
Verizon Communications Inc. (VZ), Wells Fargo & Co (WFC), Wal-Mart Stores, Inc. (WMT), Exxon 
Mobil Corporation (XOM).

10We have tried different length of rolling window with the qualitative results of our analysis remaining 
unchanged. These results are available from authors upon request.

n Table 2.17, Figure 2.11, Figure 2.12 and Figure 2.13

Amazon.com
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Table 2.3: Coefficient estimâtes of Panel Quantité Régressions

T 5% 10% 25% 50% 75% 90% 95%

PQR-RV

i^ R V 1/ 2 -1.5
(-23.5)

-1.16
(-20.62)

-0.6
(-15.65)

-0.01
(-0-2)

0.56
(20.37)

1.11
(24.84)

1.42
(20.7)

PQR-RSV

@ R S+ 1/2 -0.97
(-12.74)

-0.75
(-11.98)

-0.44
(-8.31)

-0.16
(-2.73)

0.18
(2.69)

0.41
(4.55)

0.53
(4.51)

f ^ R S - i / 2 -1.18
(-11.72)

-0.9
(-14.05)

-0.41
(-9.9)

0.14
(2-7)

0.62
(9.17)

1.14
(13.66)

1.49
(10.39)

PQR-BPV

Pbpv1/2 -1.55
(-19.5)

-1.18
(-18.15)

-0.62
(-16.27)

0
(-0.13)

0.59
(23.84)

1.15
(23.22)

1.44
(25.72)

f i j v 1/ 2 -0.25
(-3.24)

-0.21
(-3.54)

-0.14
(-3.39)

-0.03
(-0.58)

0.06
(1.11)

0.21
(1-9)

0.44
(2.56)

Note: Table displays coefficient estimates with bootstraped t-statistics in parentheses. Individual fixed 
effects cq(T) are not reported for brevity - they are available from authors upon request.

Table 2.3 reveals that parameters of the first model specification (PQR-RV) where 
lagged volatility is used to explain conditional quantiles of returns are significantly differ­
ent from zero for all quantiles except median. Moreover, signs of the estimated parameters 
correspond to our expectations -  coefficients at lower (upper) quantiles are negative (pos­
itive). Note that these values can be interpreted directly as semi-parametric estimates of 
Value-at-Risk. Our model hence shows that standard VaR from RiskMetrics in which 
quantiles of standard normal distribution are rescaled by volatility overestimates both 
left as well as right tails (corresponding values for the 5% and 95% quantiles of standard 
normal distribution are -1.645 and 1.645 respectively). Furthermore, insignificant param­
eter estimate at median confirms the hypothesis about the randomness/unpredictability 
of the short-term returns.

In the Table 2.3, we can also see that absolute values of parameter estimates are not 
symmetric around median which highlight the relative importance of the realized volatil­
ity on the estimation of the lower quantiles of returns. We arrive to a similar conclusion 
also when looking at the Figure 2.1 that compares and displays PQR-RV estimates to­
gether with their corresponding 95% confidence intervals and individual UQR-RV param­
eter estimates plotted in boxplots. Importantly, Figure 2.1 shows that once we control for 
unobserved heterogeneity by the PQR-RV, past volatility has a larger influence on both 
the lower and the upper quantiles of returns than the majority of individual UQR-RV.
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This is highlighted in far quantiles, e.g. coefficient of PQR-RV in 5% quantile is -1.5 
whereas median of individual UQR-RV coefficient is -1.33 (mean -1.36) or 95% quantile 
PQR-RV coefficient is 1.42 and median of individual UQR-RV is only 1.30 (mean 1.31).

This finding constitutes an important empirical result, as we document unobserved 
heterogeneity in far quantiles that needs to be controlled.

Figure 2.1: PQR-RV parameter estimates

quantiles

Note: Parameter estimates with corresponding 95% confidence intervals from the PQR-RV 
specification are plotted by solid and dashed lines respectively. Individual UQR-RV estimates are 

plotted in boxplots.

Coefficients from the second model specification (PQR-RSV), where Realized Vari­
ance is decomposed into realized downside (RS~) and upside (R S+) semivariance are 
significantly different from zero for all considered quantiles. The magnitude of the co­
efficients driving impact of both variables is highest at far quantiles showing strongest 
impact of both negative, and positive semivariance on tails of the returns distributions. 
However, influence of RS~  is far more important in the upper quantiles where it dom­
inates R S +. On the contrary, in the lower quantiles, values of parameters are close to 
each other and therefore we cannot draw the similar conclusion as in upper quantiles. 
Median performance is bit different from PQR-RV case.

We can see that coefficients for both RS~ and R S + are statistically significant and 
in the case that magnitude of RS~ and R S + is equal, they sum to -0.02 which translates 
into loss in 50% of cases. However as theory and stylized facts about financial time series 
suggest influence of negative returns and subsequently negative semivariances should be 
greater than the effect of positive ones. Therefore one can not draw straightforward 
conclusions about the sign and magnitude of median return.
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(b) 1/2R S + 1/2

Figure 2.2: PQR-RSV parameter estimates

Note: For both realized upside and downside semivariance parameters estimates with corresponding 
95% confidence intervals are plotted by solid and dashed lines respectively. Individual UQR-RSV 

estimates are plotted in boxplots.

The careful reader might also notice that median coefficient of is negative
and opposite is true for /3RS_i/2. Explanation of this feature rely on short and long term 
mean-reversion nature of the returns and the fact that we are using lagged values of 
realized semi variances as regressors. If we put it together negative return at day t — 1 
will cause that RS^_1 >  RS^_1 and prediction of the median quantile for day t will be 
positive because (3rs_-l/2 is positive and vice versa for positive return and subsequent 
RSRi <  RS^-i- This behaviour leads to mean-reversion. Results of our analysis are also 
supported by the Figure 2.2.

Similar to the PQR-RV specification, we can see in Figure 2.2 that controlling for 
unobserved heterogeneity among financial assets is important because the influence of 
both downside and upside semivariance is greater in the lower quantiles than in individ­
ual UQR-RSV. For example in 5% quantile coefficients obtained by PQR-RSV are -0.97 
and -1.18 for R S+ and RS~ respectively, however median values of individual UQR-RSV 
are -0.82 (mean -0.84) for R S+ and -0.95 (mean -1.1) for RS~. Moreover, in the upper 
quantiles of negative semivariance (Figure 2.2b) PQR-RSV coefficients differs substan­
tially from individual UQR-RSV (95% quantile (3rs_-l/2 coefficient of 1.49 vs. individual 
UQR-RSV median/mean coefficient of 1.28/1.27), however, the opposite is true for R S+ 
(95% quantile /S^+i/2 coefficient of 0.54 vs. individual UQR-RSV median/mean coeffi­
cient of 0.55/0.55). These findings support our previous conclusion that RS~ influences 
future upper quantiles of returns more than R S+.

Finally, Table 2.3 reveals interesting results about parameter estimates of the third 
model specification (PQR-BPV), where the Bi-Power Variation and Jump Component 
are used to drive the return quantiles. We can infer that jumps have significant impact
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on both far upper and lower quantiles of future returns. To be precise, magnitude of 
the jump coefficient (3jv i/2 is highest for 95% quantile with the value of 0.44. For the 
remaining above median quantiles, jumps are not statistically significant and therefore 
the influence of the Quadratic Variation reduces to Integrated Variance represented by 
Bi-Power Variation. We observe the opposite situation for the below median quantiles 
where (3jv i/2 coefficients are always significant.

Figure 2.3 helps us to confirm results of our previous analysis graphically. If we 
compare Figure 2.3a to Figure 2.1 we get an almost identical picture. Moreover, in 
Figure 2.3b, we can see that from the 45% to 85% quantiles confidence intervals of the 
jump component are getting wider and include zero. Once we combine these two findings, 
we can state that for these quantiles Quadratic Variation reduces to Integrated Variance. 
In contrast none of the confidence intervals of the 5% to 40% quantiles contain zero which 
highlights the relative importance of the jump component in the modelling lower future 
quantiles of returns.

Overall, results of the in-sample analysis show asymmetric impact of the regressors on 
the quantiles of future returns. This impact is higher in the below median quantiles. We 
have also found evidence for positive/negative news asymmetry. This asymmetry is the 
highest in the 95% quantile (0.53 coefficient of R S + vs. 1.49 of RS~) while 5% quantile 
shows only little asymmetry (-0.97 in case of R S + vs. -1.18 for RS~). In addition we show 
importance of jumps for below median and far above median quantiles. Importantly, we 
document unobserved heterogeneity in far quantiles. We have also tested all three models 
(PQR-RV, PQR-RSV, PQR-BPV) for correct dynamic specification and we have found 
that none of them is systematically misspecified.

(a) f i g p y  1/2

Figure 2.3: PQR-BPV parameter estimates

(b) f3 jy l/2

Note: For both realized bi-power variation and jump component parameters estimates with 
corresponding 95% confidence intervals are plotted by solid and dashed lines respectively. Individual 

UQR-BPV estimates are plotted in boxplots
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2.6.2 Out-of-Sample Performance
We now turn to results of our out-of-sample forecasting exercises. Similar to our sim­
ulation study, we are analyzing the Value-at-Risk performance of an equally weighted 
portfolio of the 29 stocks described earlier. Results of our analysis are presented in the 
following way: first we comment on the absolute performance of the PQR models; second 
the absolute performance of the benchmark models is discussed; third we concentrate on 
the most interesting relative performance comparison of the PQR models with respect 
to the benchmark models. All results are summarized in the Table 2.4.

The unconditional coverage, r , shown in Panel A .l  and Panel A .2 of Table 2.4 reveals 
that almost all models underestimate risk. Specifically, values of unconditional coverage 
are higher than corresponding quantiles t , with few exceptions. Median quantiles, as well 
as the 5% quantile of Portfolio UQR and 90% quantile of the PQR-RSV overestimate 
risk. We must also stress here that the deviation from nominal quantile rates is generally 
lower than 1%, and we can not reject hypothesis of correct unconditional coverage.

If we turn to median performance, we can see that all the models overestimate risk. 
Moreover we can see that deviations from the nominal quantiles are higher compared 
to off-median quantiles. We address this finding to the nature of financial time series 
especially to stylized fact about the unpredictability of the returns. More importantly, 
this result corresponds to our motivation of explaining quantiles of the cross-section of 
market returns instead of expected value. This is in line with our previous result that 
median estimates are not statistically significant.

If we concentrate on the correct dynamic specification of the models represented 
by CAViaR test (i.e. the second and third line of the Panel A .l  and A. 2), we see 
that all the models in all quantiles are dynamically correctly specified except for the 
median of RiskMetrics. In this case we strongly reject null hypothesis of proper dynamic 
specification given p-value<0.01. We attribute the poor median RiskMetrics performance 
to the construction of Equation 2.17 where the cut-off point at 50% quantile, 750% , is  0 12.

Relative performance of the PQR models is summarized in the Panel B 13. Results of 
our analysis indicate good relative performance of PQR models. All three Panel Quan­
tile model specifications (PQR-RV, PQR-RSV and PQR-BPV) significantly outperform 
RiskMetrics in all studied quantiles. Moreover, all PQR specifications consistently out­
perform Portfolio UQR in upper quantiles and UQR in several quantiles i.e. PQR-RV 
outperform individual UQR estimates in 10% quantile, however performance of PQR- 
RSV is significantly better in the 95% quantile and PQR-BPV delivers significantly more 
accurate forecasts than individual UQR in 5% and 10% quantiles. If we concentrate on 
the full pair-wise comparison, the most important is the performance of the UQR as the 
main competitor of the PQR specifications. In all of the studied quantiles, UQR is not 
able to outperform any of the PQR specification. This fact highlights the importance 
to control for unobserved heterogeneity among the assets. Moving from comparison of 
PQR and UQR models to the relative performance of the Portfolio UQR, we can see that

12 The median of standard normal distribution is 0.
13For brevity we report in Table 2.4 only pair-wise comparison against benchmark models, full matrix 

of pairwise comparison is available from authors upon request.
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it outperforms RiskMetrics only at 5% and 10% quantiles. In contrast UQR, similar to 
PQR, outperform RiskMetrics in all studied quantiles. These results reveal the impor­
tance of the asset specific contribution to overall future portfolio risk as the approach 
of firstly aggregating data and secondly modeling them is not able to capture dynamics 
creating variation in the distribution of future portfolio returns.



Table 2.4: Out-of-sample performance of various specifications of Panel Quantile Regression Model for Returns

Panel A .l T

PQR-RV PQR-RSV PQR-BPV

5% 10% 50% 90% 95% 5% 10% 50% 90% 95% 5% 10% 50% 90% 95%

T 0.060 0.108 0.465 0.901 0.959 0.059 0.107 0.465 0.899 0.960 0.058 0.107 0.465 0.902 0.960
DQ 8.917 3.373 10.157 6.939 5.686 8.180 3.339 10.129 1.476 9.152 7.956 4.625 10.157 5.298 6.210

p-val 0.178 0.761 0.118 0.326 0.459 0.225 0.765 0.119 0.961 0.165 0.241 0.593 0.118 0.506 0.400

RiskMetrics UQR Portfolio UQR

Panel A .2 T 5% 10% 50% 90% 95% 5% 10% 50% 90% 95% 5% 10% 50% 90% 95%

T 0.061 0.094 0.451 0.919 0.958 0.061 0.107 0.467 0.902 0.960 0.043 0.099 0.491 0.909 0.955
DQ 9.652 3.096 20.600 9.452 10.899 8.323 3.041 9.067 7.174 6.796 9.426 5.988 3.273 4.507 3.238

p-val 0.140 0.797 0.002 0.150 0.092 0.215 0.804 0.170 0.305 0.340 0.151 0.425 0.774 0.608 0.778

benchmark

RiskMetrics UQR Portfolio UQR

Panel B T 5% 10% 50% 90% 95% 5% 10% 50% 90% 95% 5% 10% 50% 90% 95%

PQR-RV DM -2.430 -2.259 -3.347 -2.127 -1.935 0.125 -1.734 1.350 0.801 -0.362 -0.733 -1.590 -0.310 -2.053 -2.260
p-val 0.008 0.012 0.000 0.017 0.027 0.550 0.041 0.911 0.788 0.359 0.232 0.056 0.378 0.020 0.012

PQR-RSV DM -2.368 -2.249 -3.561 -2.367 -2.242 1.244 -1.569 -0.438 -1.268 -2.023 -0.558 -1.580 -0.758 -2.921 -3.099
p-val 0.009 0.012 0.000 0.009 0.012 0.893 0.058 0.331 0.102 0.022 0.289 0.057 0.224 0.002 0.001

PQR-BPV DM -2.540 -2.422 -3.304 -2.055 -1.851 -1.796 -1.887 1.424 0.839 0.703 -1.191 -1.887 -0.294 -1.978 -1.705
p-val 0.006 0.008 0.000 0.020 0.032 0.036 0.030 0.923 0.799 0.759 0.117 0.030 0.384 0.024 0.044

Note: Table displays abso lu te  and relative perform ance of P Q R  m odels for re tu rn s w ith RV, RSV and B PV  as regressors and benchm ark models.

Panel A . l  repo rts absolute  perform ance of P Q R  models, Panel A .2 repo rts abso lu te  perform ance of benchm ark m odels. For each m odel and quan tile  t , unconditional 
coverage ( r ) ,  th e  value of th e  CAViaR te s t for correct dynam ic specification (D Q ) w ith  corresponding M onte Carlo based p-value. Not correctly  dynam ically  specified 
m odels are underlined.

Panel B  rep o rts relative perform ance of Panel Q uantile  Regression M odels for R eturns. For each specification and quantile  t  we report D iebold-M ariano te s t s ta tistics 
for pairw ise com parison w ith benchm ark m odels(D A l) w ith corresponding p-value. Significantly more accu rate  forecasts w ith respect to  benchm ark m odels a t  th e  5% 
significance level are in bold. Full m atrix  of pairw ise com parison is available from au th o rs  upon request
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2.6.3 Economic Evaluation
We would like to see if statistical gains also translate to economic value. We concentrate 
on the comparison of 3 models -  PQR-RV, UQR and RiskMetrics, and refrain from 
presenting results for PQR-RSV and PQR-BPV for the sense of brevity. The construction 
of Portfolio UQR rules out economic evaluation in our set-up because asset weights will 
be set before applying the quantile regression, and therefore results will be driven by 
covariance structure only.

We start description of the results by Global Minimum Value-at-Risk Portfolio fol­
lowed by Markowitz like optimization where we show Value-at-Risk -  Return relationship. 
In both approaches, we use annualized portfolio returns 14 and annualized portfolio Value- 
at-Risks 15 of the whole out-of-sample period. In the GMVaRP comparison, we focus 
on both left and right tail together with median because we do not set any constraints 
regarding asset weights - according to Equation 2.21 GMVaRP has a closed form solu­
tion. On the contrary, the Markowitz like optimization is purely numeric and does not 
offer a closed form solution. Therefore we restrict our analysis on long only positions. 
As a result we concentrate on the left tail of the return distribution only which shows 
potential loss for the investor.

Results of the GMVaRP analysis are displayed in Table 2.5. The PQR-RV model 
performs best in all quantiles except for the median, where UQR has the lowest VaR. 
RiskMetrics ended last, and we must note that for the median quantile we were not 
able to calculate value of GMVaRP due to the problem of singularity of the correlated 
Value-at-Risk matrix.16

Table 2.5: Global Minimum Value-at-Risk Portfolio

T 5% 10% 50% 90% 95%

PQR-RV 11.76 8.69 0.02 9.46 12.37
UQR 11.85 8.79 0.01 9.52 12.43
RiskMetrics 12.77 9.95 NaN 9.95 12.77

Note: Table displays absolute percentage values of Global Minimum Value-at-Risk Portfolio for given 
quantile t . Best model for given quantile is reported in bold.

Efficient frontiers of Value-at-Risk -  return trade-off are plotted in Figure 2.4a for 5% 
and Figure 2.4b for 10% quantile. In both quantiles the model with the best performance 
is PQR-RV. Similarly to GMVaRP analysis second best performance is achieved by UQR 
and the model with the worst VaR-return trade-off is RiskMetrics. In Figure 2.4b we 
can also see that benefits from using PQR are greater for lower values of Value-at-Risk.

11 (n r  ( i + g )
250
T

15
16If we set cut-off point in Equation 2.17 to zero we get a singular matrix of zeros that is not invertible.
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Overall we can say that Panel Quantile Regression Model for Returns generates better 
economic performance than the remaining benchmark models.
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Figure 2-4-' Value-at-Risk -  Return efficient frontiers 

(a) 5%Va,R (b) !0%Va,R

Note: Percentage values of portfolio VaR and returns are displayed.



2.7. R esults: Common R isk Factors in Tails 71

2.7 Results: Common Risk Factors in Tails
Further, we select VIX Index as exogenous factor that have a potential to drive the tails 
of the return distributions. VIX is often used as the measure of the ex-ante/anticipated 
uncertainty and it well complements the realized volatility used in our previous analysis. 
It is also referred to as the “fear gauge” since it measure the expectations about the 
30-day volatility using the weighted and aggregated prices of the call and put options 
with various strike prices on the S&P 500 Index. The value of the index is calculated 
according to VIX methodology17 as

=  • (2-23)

where T  is time to expiration; F  is the forward index level derived from index option 
prices; K o is the first strike below the forward index level F; K i is the strike price of ith 
out-of-the-money option (call if Ki >  K ,. put if Ki <  K oy, X K  is the interval between 
strike prices; R  is the risk-free interest rate to expiration; and Q (K i) is the midpoint of 
the bid-ask spread for each option with strike Ki.

The value of the Volatility Index represents the annual percentage volatility and it is 
reported by CBOE as

V I X  =  100<7y/x- (2.24)

The daily counterpart of the annual option implied volatility measure is constructed 
by dividing index by -\/250. We further divide daily VIX by 100 to scale it to units 
of Realized Volatility, i.e. V I X dauy =  pyp The historical data can be freely
downloaded from the Federal Reserve Bank at Saint Louis.18. Moreover, since the index 
was launched at 1993 it effectively covers sample period previously used in our empirical 
analysis.

In the empirical application, we estimate panel quantile regression models containing 
VIX Index as defined in Equation 2.10, 2.11 and 2.12. In the optimization we have set 
penalty A to zero since the minimization of the Bayesian Information Criteria produce 
almost identical result as in the models without VIX. The results of the in-sample fit are 
summarized in the Table 2.6 and Figure 2.5, 2.6 and 2.7

17Full details of the VIX calculation can be found at http://w w w .cboe.com /m icro/vix/vixw hite. 
pdf

18https://fred.stlouisfed.org/series/VIXCLS

http://www.cboe.com/micro/vix/vixwhite
18https://fred.stlouisfed.org/series/VIXCLS
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Table 2.6: Coefficient estimâtes of Panel Quantité Régressions

T 5% 10% 25% 50% 75% 90% 95%

PQR-RV-VIX

(Ir v 1/ 2 -1.33 -0.99 -0.53 -0.04 0.4 0.81 1.12
(-10.87) (-9.65) (-8.77) (-0.83) (11) (7.76) (9.09)

S v i x -0.32 -0.29 -0.12 0.05 0.26 0.44 0.44
(-4.39) (-4.49) (-3.45) (1-9) (9.58) (6-3) (5.38)

PQR-RSV-VIX

@RS+1/2 -0.78
(-9.46)

-0.65
(-5.91)

-0.4
(-6-12)

-0.18
(-3.07)

0.08
(1-22)

0.28
(3-5)

0.52
(4.45)

i f f i s - i / 2 -1.09 -0.75 -0.35 0.11 0.49 0.89 1.1
(-7.76) (-10.54) (-6-9) (2) (6.32) (5.63) (5.83)

S v ix -0.33 -0.28 -0.12 0.06 0.26 0.41 0.42
(-4.63) (-4.58) (-3.35) (1.99) (9.28) (5.73) (4-7)

PQR-BPV-VIX

I^BPV1/ 2 -1.35
(-9.88)

-0.99
(-9-5)

-0.54
(-7.94)

-0.03
(-0.65)

0.42
(9.42)

0.82
(7.68)

1.14
(10.34)

(Ij v 1/ 2 -0.21
(-2.76)

-0.14
(-2.43)

-0.14
(-2.79)

-0.04
(-0.77)

0.07
(1.03)

0.17
(1.39)

0.44
(2.58)

S v ix -0.33
(-4-1)

-0.3
(-4-9)

-0.12
(-3.57)

0.04
(1-87)

0.26
(8.35)

0.45
(6.87)

0.44
(5-7)

Note: Table displays coefficient estimates with bootstraped t-statistics in parentheses. Individual fixed 
effects cq(T) are not reported for brevity - they are available from authors upon request.

Table 2.6 documents stability of the relative influence of the VIX on the quantiles of 
future returns - the VIX coefficient estimates are of the same magnitude for all realized 
measures model specifications. Although market participants perceive VIX as the fear- 
index, our analysis reveals higher relative influence in the upper quantiles compared to 
lower ones, e.g. in R V  + V IX  model specification 0.44 coefficient estimate of 95% quantile 
vs. -0.32 of 5% quantile. Moreover, when we compare Table 2.6 to Table 2.3 (PQR 
models with and without VIX) we can see th a t VIX index reduce relative influence of 
the realized measures more in the upper than  in lower quantiles. In the “R V  + V IX ” and 
“B P V  + V IX ” specifications the coefficients are reduced by 0.17 and 0.20 respectively in 

5% quantile while in the 95% quantile the reduction is 0.30 in both  specifications. In the 
“R S V  + V IX ” specification the to tal reduction in the coefficients is higher than  in the 

previous two cases (0.28 and 0.40 in 5% and 95% quantiles respectively) and the influence
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reduction of the positive semivariance is higher than that of negative semivariance in the 
5% quantile and vice-versa in 95% quantile where positive semivariance is almost not 
reduced and the influence of the negative semivariance is lowered by 0.39. Figure 2.5, 
2.6 and 2.7 support our findings also graphically - in all three figures, the patterns of the 
7VJV coefficient estimates are almost identical.

Overall, we conclude that VIX carries an important part of the information about 
risk that is not fully captured by any of the realized measures, and the expectations 
about the future risk affects higher quantiles more than the lower quantiles. Controlling 
for the unobserved heterogeneity and idiosyncratic volatility, VIX proves to be a strong 
common factor driving the tails of the return distributions.

(a) /tjjyl/2 (b) 5 v iX

Figure 2.5: PQR-RV-VIX parameter estimates

Note: For both realized volatility and V IX  index parameters estimates with corresponding 95% 
confidence intervals are plotted by solid and dashed lines respectively. Individual UQR-RV-VIX 

estimates are plotted in boxplots.
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(a) ¡6R S + 1/2

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

Figure 2.6: PQR-RSV-VIX parameter estimates

(b) (3r s _-l/2

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

(c ) 7 v ix

Note: For all realized upside semivariance, downside semivariance and VIX index parameters estimates 
with corresponding 95% confidence intervals are plotted by solid and dashed lines respectively. 

Individual UQR- RSV-VIX estimates are plotted in boxplots.

( a ) f i B p y l / 2

Figure 2.7: PQR-BPV-VIX parameter estimates

(b) f t j y i / 2

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

(c) F i x

Note: For all realized bi-power variation, jump component and VIX index parameters estimates with 
corresponding 95% confidence intervals are plotted by solid and dashed lines respectively. Individual 

UQR-BPV-VIX estimates are plotted in boxplots.

The out-of-sample performance of the models containing VIX index is summarized 
in Table 2.7. In the absolute performance, Panel A .l and Panel A .2 of the Table 2.7, 
there is only one change compared to models without VIX - the 5% quantile of the PRQ- 
RV-VIX specification is not dynamically correctly specified. All the remaining results of 
absolute performance qualitatively match the results of the models without VIX index 
presented in Table 2.7, i.e. unconditional coverage t  is close to the nominal quantile 
rates and all the models in all quantiles are dynamically correctly specified except for the 
median of RiskMetrics.
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In the relative performance comparison presented in Panel B of the Table 2.7, all the 
PQR model specifications significantly outperforms RiskMetrics in all studied quantiles 
and Portfolio UQR in the upper quatiles similarly to models without VIX (see Panel B, 
Table 2.4). We can also see that PRQ-RSV-VIX specification outperforms UQR in the 
95% quantile and PRQ-BPV-VIX outperform Portfolio UQR in the 10% quantile. In 
contrast to results without VIX, UQR significantly outperforms both PRQ-RV-VIX and 
PRQ-BPV-VIX specifications in the median quantile.



Table 2.7; Out-of-sample performance of various specifications of Panel Quantile Regression Model for Returns with VIX Index

PQR-RV-VIX PQR-RSV-VIX PQR-BPV-VIX

Panel A .l 5% 10% 50% 90% 95% 5% 10% 50% 90% 95% 5% 10% 50% 90% 95%

T 0.060 0.107 0.462 0.896 0.956 0.060 0.107 0.464 0.895 0.956 0.059 0.106 0.462 0.898 0.957
DQ 12.928 3.081 11.825 3.475 5.230 12.309 3.081 11.425 2.060 5.230 11.030 2.470 11.825 3.973 5.881

p-val 0.044 0.799 0.066 0.747 0.515 0.055 0.799 0.076 0.914 0.515 0.087 0.872 0.066 0.680 0.437

RiskMetrics UQR Portfolio UQR

Panel, A .2 5% 10% 50% 90% 95% 5% 10% 50% 90% 95% 5% 10% 50% 90% 95%

T 0.061 0.094 0.451 0.919 0.958 0.043 0.099 0.491 0.909 0.955 0.061 0.094 0.451 0.919 0.958
DQ 9.652 3.096 20.600 9.452 10.899 8.323 3.041 9.067 7.174 6.796 9.426 5.988 3.273 4.507 3.238

p-val 0.140 0.797 0.002 0.150 0.092 0.215 0.804 0.170 0.305 0.340 0.151 0.425 0.774 0.608 0.778

benchmark

RiskMetrics UQR Portfolio UQR

Panel, B 5% 10% 50% 90% 95% 5% 10% 50% 90% 95% 5% 10% 50% 90% 95%

PQR-RV-VIX DM -2.320 -2.339 -2.452 -■2.825 -2.370 1.460 -0.463 1.871 ■-1.981 -1.426 -0.310 -1.624 0.051 -4.574 -3.045
p-val 0.010 0.010 0.007 0.002 0.009 0.928 0.322 0.969 0.024 0.077 0.378 0.052 0.520 0.000 0.001

PQR-RSV-VIX DM -2.278 -2.319 -2.254 --2.942 -2.630 1.838 -0.356 1.335 ■-2.194 -2.192 -0.207 -1.568 -0.039 -4.676 -3.503
p-val 0.011 0.010 0.012 0.002 0.004 0.967 0.361 0.909 0.014 0.014 0.418 0.058 0.484 0.000 0.000

PQR-BPV-VIX DM -2.440 -2.464 -2.433 -■2.755 -2.348 0.056 -0.890 1.888 ■-1.786 -1.291 -0.703 -1.919 0.058 -4.357 -2.860
p-val 0.007 0.007 0.007 0.003 0.009 0.522 0.187 0.971 0.037 0.098 0.241 0.028 0.523 0.000 0.002

Note: Table displays absolute and relative performance of PQR models for returns with RV, RSV and BPV as regressors combined with VIX and benchmark models.

Panel A .l  reports absolute performance of PQR models, Panel A .2 reports absolute performance of benchmark models. For each model and quantile t , unconditional 
coverage (r) and the value of the CAViaR test for correct dynamic specification (DQ) with corresponding Monte Carlo based p-value. Not correctly dynamically specified 
models are underlined.

Panel B reports relative performance of Panel Quantile Regression Models for Returns. For each specification and quantile t  we report Diebold-Mariano test statistics 
for pairwise comparison with benchmark models(DAl) with corresponding p-value. Significantly more/less accurate forecasts with respect to benchmark models at the 5% 
significance level are in bold/italic. Full matrix of pairwise comparison is available from authors upon request
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2.7.1 Economic Evaluation
Further, we report the results from economic evaluation of the models. Table 2.8 and 
Figure 2.8 reveals qualitatively similar patterns to models without VIX (Table 2.5 and 
Figure 2.4). In the Global Minimum Value-at-Risk Portfolio application panel quan­
tile regression PQR-RV-VIX specification achieve the lowest values of VaR in all stud­
ied quantiles. It also provides us with the best Value-at-Risk -return  trade-off in the 
Markowitz like set-up since the efficient frontiers of PQR-RV-VIX model are to the right 
of the competitors.

In the comparison of models with and without exogenous factor we can see direct 
economic benefits of using the VIX index. In the GMVaRP comparison (Table 2.5 vs. 
Table 2.8) the reductions in the Value-at-Risks are 0.34, 0.173, 0.014, 0.422 and 0.609 
percentage points or 2.89, 1.99, 68.54, 4.46, 4.92 percent for 5%, 10%, 50%, 90% and 
95% quantiles respectively. In the visual comparison we can see that efficient frontiers of 
model with VIX shifts to the right thus having superior VaR-return trade-off. Generally 
we document direct economic benefits of the ex-ante volatility measure.

Table 2.8: Global Minimum Value-at-Risk Portfolio - PQR with VIX

T 5% 10% 50% 90% 95%

PQR-RV-VIX 11.42 8.51 0.007 9.04 11.76
UQR-RV 11.85 8.79 0.011 9.52 12.43
RiskMetrics 12.77 9.95 NaN 9.95 12.77

Note: Table displays absolute percentage values of Global Minimum Value-at-Risk Portfolio for given 
quantile t . Best model for given quantile is reported in bold.

Figure 2.8: Value-at-Risk -  Return efficient frontiers - PQR with VIX 

(a) 5% VaR  (b) !0% V aR

Note: Percentage values of portfolio VaR and returns are displayed.
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2.7.2 Robustness Check: Portfolio of S&P 500 Constituents
To see how robust the findings are on the portfolio with large number of stocks, we apply 
our methodology on the constituents of the S&P 500 index. Since the firms included in 
S&P 500 vary substantially over time, we include in our analysis firms that

• were included in the index at least once during period July 1, 2005 to December 
31, 2015

• have full history for the period July 1, 2005 to December 31, 2015

• were liquid enough, i.e. there were at least five active trading hours during a day.

Similar to previous analysis, we consider trades executed within U.S. business hours and 
we explicitly exclude weekends and bank holidays. In total, our dataset consists of 496 
firms over 2613 trading days.

In our analysis we concentrate on two Panel Quantile Regression specification: PQR- 
RV and PQR-RV-VIX. In both specification we estimates models with A =  0 since the 
results of minimization of the Bayesian Information Criteria were again inconclusive19. 
Results of our analysis are summarized in the Table 2.9, Figure 2.9 and Figure 2.10a 
and they reveal interesting finding about the role of the ex-ante volatility. In the PQR- 
RV specification the coefficient estimates /3Byi/2 are almost identical to one obtained 
using portfolio of 29 stocks (Table 2.3). In contrast, in the PQR-RV-VIX case, both 
/3w i /2 and ~x ,x differ substantially for 496 and 29 stocks. Specifically, the relative 
influence of the realized volatility is lower as we move from 29 to 496 stocks in the bellow 
median quantiles, e.g. 5% quantile coefficient estimate of 29 stocks (3RVi/2 =  —1.33 
vs. 496 stocks of /3Byi/2 =  —1.17, while it remains at the same level in the above 
median quantiles. In contrast, the ~x ,x coefficient of the large portfolio almost doubled 
in all bellow median quantiles and raised by fifty percent in the above median quantiles. 
Moreover, relative influence of the VIX index become almost symmetric, while in the 
29-stocks portfolio the upper quantiles were influenced more. Overall, results of our 
analysis suggest that anticipation of the future market volatility translates directly to 
the conditional distribution of future returns of the firms listed in the New York Stock 
Exchange.

19 The differences in the BICs of unpenalized model and the model with “optimaly” selected A are 
higher than that we obtain in analysis of 29 stocks, however, they are still rather small i.e no greater 
than 6 x 10 3' or 0.6%.
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Table 2.9: Coefficient estimates of Panel Quantile Regressions

T 5% 10% 25% 50% 75% 90% 95%

PQR-RV

PrY1/2 -1.51 -1.15 -0.58 -0.01 0.55 1.1 1.45

(-96.03) (-94.56) (-78.79) (-1-73) (60.04) (90.56) (88.03)

PQR-RV-VIX

PrY1/2 -1.17
(-42.81)

-0.88
(-43.89)

-0.46
(-38.05)

-0.04
(-4-5)

0.38
(37.12)

0.81
(39.23)

1.11
(40.67)

2viX -0.67
(-21.62)

-0.54
(-21-9)

-0.26
(-20.25)

0.06
(7.23)

0.36
(27.85)

0.57
(26.06)

0.63
(25.04)

Note: Table displays coefficient estimates with bootstraped t-statistics in parentheses. Individual fixed 
effects a.ifr) are not reported for brevity - they are available from authors upon request.

Figure 2.9: PQR-RV parameter estimates

Note: Parameter estimates with corresponding 95% confidence intervals from the PQR-RV 
specification are plotted by solid and dashed lines respectively. Individual UQR-RV estimates are 

plotted in boxplots.
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Figure 2.10: PQR-RV-VIX parameter estimates

(a) ^RV1/2 (b) 2 v ix

quantiles quantiles

Note: For both realized volatility and V IX  index parameters estimates with corresponding 95% 
confidence intervals are plotted by solid and dashed lines respectively. Individual UQR-RV-VIX 

estimates are plotted in boxplots.

2.8 Conclusion
In this chapter, we employ a series of panel quantile regressions together with non- 
parametric measures of quadratic return variation and ex-ante measure of market volatil­
ity as the common factor, to model conditional quantiles of financial assets return series. 
For estimation purposes we use penalized fixed effects estimator as introduced in Koenker 
(2004). Resulting Panel Quantile Regression Model for Returns inherit all favorable prop­
erties offered by panel data and quantile regression. A key attraction of the proposed 
methodology is the ability to control for otherwise unobserved heterogeneity among fi­
nancial assets so it is possible to disentangle overall market risk into its systemic and 
idiosyncratic parts. Another attraction is the dimensionality reduction because the num­
ber of estimated parameters is always less than or equal to k +  n, where k is the number 
of regressors and n number of assets. Last but not least, to the best of our knowledge, 
this is one of the first applications of the panel quantile regression using dataset where 
T  > >  N. As a result we are able to obtain estimates of quantile specific individual fixed 
effects that accounts for unobserved heterogeneity and represents the idiosyncratic part 
of market risk. Moreover, these estimates translate into better forecasting performance 
compared to traditional benchmarks. Overall, we test accuracy and performance of the 
Panel Quantile Regression Model for Returns in a simple portfolio Value-at-Risk forecast­
ing exercise using simulated and empirical data. The Monte-Carlo experiment shows that 
our model is dynamically well specified. Moreover when we use heterogeneous data it is 
able to outperform benchmark models in direct statistical comparison. In our empirical 
application, the in-sample model fit highlights the importance of different components of 
quadratic variation and ex-ante volatility measure for various quantiles of return series. 
Out-of-sample statistical comparison shows superiority of the new approach. Better sta­
tistical performance moreover translates directly into economic gains as shown by Global
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Minimum Value-at-Risk Portfolio set-up and efficient frontiers of the Value-at-Risk - 
Return trade-off.

Our results make the model attractive not only from an academic but also from the 
practitioners point of view. In particular it is highly attractive for portfolio and risk 
managers, because of its ability to handle high-dimensional problems. More importantly, 
it can be easily used to obtain Value-at-Risk measures of portfolios consisting of a high 
number of assets.
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2.9 Appendix

Table 2.10: Descriptive statistics of dally returns: ID .2005 - 31.12.2015

Mean Max Min St. Dev. Skewness Kurtosis

AAPL -0.05 10.62 -12.29 1.72 -0.14 7.09
AMZN 0.09 12.32 -12.96 1.95 0.33 8.27

BAC -0.17 19.09 -25.09 2.77 -0.20 20.64
CMCSA 0.03 12.77 -13.63 1.57 -0.33 12.09
CSCO -0.02 7.26 -8.69 1.35 -0.14 7.34
CVX 0.02 11.01 -10.50 1.31 -0.08 11.29

C -0.27 19.92 -40.33 2.93 -2.48 38.66
DIS 0.06 11.03 -10.29 1.36 0.34 11.11
GE -0.03 10.96 -10.52 1.51 -0.36 14.16
HD 0.03 11.03 -7.68 1.47 0.62 9.40
IBM 0.05 6.19 -5.93 1.06 -0.10 7.36

INTO 0.01 9.20 -9.43 1.42 0.13 7.41
JNJ 0.01 11.19 -7.77 0.85 0.75 21.90
JPM 0.01 13.85 -19.75 2.08 0.15 16.17
KO 0.02 7.14 -7.37 0.93 -0.08 11.52

MCD 0.03 8.76 -7.53 1.02 0.17 9.26
MRK 0.00 9.75 -8.09 1.29 -0.08 9.72
MSFT 0.02 9.96 -7.01 1.28 0.06 7.88
ORCL 0.04 7.56 -8.90 1.36 -0.09 6.85
PEP 0.04 8.44 -6.27 0.90 0.32 10.24
PFE -0.03 6.49 -7.46 1.14 -0.07 7.02

PG 0.05 7.07 -5.62 0.86 0.00 9.50
QCOM -0.01 9.04 -8.15 1.45 -0.10 6.31
SLB 0.00 11.34 -15.62 1.85 -0.33 9.57
T -0.01 11.42 -6.56 1.11 0.50 13.58
VZ 0.01 8.62 -7.72 1.12 0.40 10.41

WFC 0.00 18.29 -18.73 2.23 0.45 18.50
W MT 0.00 7.71 -10.60 0.97 -0.08 14.66
XOM 0.03 8.90 -11.76 1.22 -0.11 13.33

Note: Values for Mean, Max, Min and St. Dev are displayed in %.
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Table 2.11: Univariate Normal Distribution -  Mean of coefficients estimates from Monte-Carlo 
simulations

T 5% 10% 25% 50% 75% 90% 95%

PQR-RV

f n v 1/ 2 -1.56
(-44.19)

-1.22
(-43.75)

-0.64
(-30.85)

-0.01
(-0.6)

0.62
(30.86)

1.2
(44.63)

1.54
(46.36)

PQR-RSV

P r s +1/'2 -1.12
(-5.38)

-0.87
(-6.06)

-0.46
(-5.34)

-0.01
(-0.12)

0.45
(5.55)

0.84
(5.66)

1.07
(5.28)

-1.09
(-5.29)

-0.86
(-6.07)

-0.46
(-5.44)

-0.01
(-0.18)

0.45
(5.58)

0.86
(5.78)

1.11
(5-5)

PQR-BPV

f ^ B R Y 1/ 2 -1.58
(-45.75)

-1.25
(-45.44)

-0.67
(-31.71)

-0.01
(-0.6)

0.65
(32.26)

1.23
(46.06)

1.56
(47.31)

f j v 1/ 2 0.08
(1-1)

0.06
(1-14)

0.03
(0.74)

0
(-0.03)

-0.03
(-0.83)

-0.06
(-1-1)

-0.08
(-1.05)

Note: Table displays mean of coefficient estimates with corresponding t-statistics in parentheses. 
Individual fixed effects a f r )  are not reported for brevity.
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Table 2.12: Multivariate Student-t Distribution -  Mean o f coefficients estimates from Monte- 
Carlo simulations

T 5% 10% 25% 50% 75% 90% 95%

PQR-RV

h v 1/'2 -1.56
(-18.43)

-1.16
(-19.14)

-0.58
(-13.3)

-0.01
(-0.17)

0.57
(12.9)

1.15
(18.73)

1.55
(19.43)

PQR-RSV
f t n . S + 1/ 2 -1.12

(-2-55)
-0.83

(-2.66)
-0.42
(-2-2)

-0.01
(-0.12)

0.39
(2-05)

0.82
(2-55)

1.09
(2.43)

f t p s - 1/ 2 -1.09
(-2.48)

-0.82
(-2.62)

-0.4
(-2.13)

0
(0.04)

0.41
(2-15)

0.81
(2-52)

1.1
(2.42)

PQR-BPV

/3B p v 2/ 2 -1.62
(-18.27)

-1.21
(-19)

-0.6
(-13.14)

-0.01
(-0.17)

0.59
(12.64)

1.19
(18.41)

1.6
(19.05)

f i j v 2/ 2 -0.06
(-0.45)

-0.04
(-0.45)

-0.02
(-0.29)

0
(0.04)

0.02
(0.29)

0.05
(0.47)

0.06
(0.45)

Note: Table displays mean of coefficient estimates with corresponding t-statistics in parentheses. 
Individual fixed effects «.¿(t ) are no1 reported for brevity.

Figure 2.11: PQR-RV parameter estimates: X =  1

Note: Parameter estimates with corresponding 95% confidence intervals from the PQR-RV 
specification are plotted by solid and dashed lines respectively. Individual UQR-RV estimates are 

plotted in boxplots.
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(b) !/2(%') '̂ _RS’+1/2

Figure 2.12: PQR-RSV parameter estimates: X =  1

Note: For both realized upside and downside semivariance parameters estimates with corresponding 
95% confidence intervals are plotted by solid and dashed lines respectively. Individual UQR-RSV 

estimates are plotted in boxplots.

Figure 2.13: PQR-BPV parameter estimates: X =  1 

(a) f3ppVi/2 (b) (3j V i /2

Note: For both realized bi-power variation and jump component parameters estimates with 
corresponding 95% confidence intervals are plotted by solid and dashed lines respectively. Individual 

UQR-BPV estimates are plotted in boxplots
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Table 2.13: Univariate Student-t Distribution -  Mean of coefficients estimates from Monte- 
Carlo simula tions

T 5% 10% 25% 50% 75% 90% 95%

PQR-RV

S r v 1/ 2 -1.56
(-52.18)

-1.23
(-52.37)

-0.65
(-36.12)

-0.01
(-0.53)

0.63
(35.09)

1.21
(55.55)

1.54
(52.99)

PQR-RSV

P r s +1/'2 -1.12
(-6.47)

-0.89
(-6.84)

-0.47
(-5.75)

-0.01
(-0.25)

0.44
(5.48)

0.85
(6.39)

1.08
(6.13)

P r s - 1' 2 -1.09
(-6.23)

-0.86
(-6.57)

-0.45
(-5.65)

0
(0.01)

0.46
(5.84)

0.87
(6.55)

1.12
(6.39)

PQR-BPV

S b P V 1/ 2 -1.64
(-51.41)

-1.29
(-52.71)

-0.69
(-36.1)

-0.01
(-0.52)

0.67
(35.3)

1.27
(55.28)

1.62
(52.55)

f j v 1/2 -0.02
(-0.3)

-0.01
(-0.21)

0
(-0.11)

0
(-0.02)

0
(0.01)

0.01
(0.16)

0.02
(0.24)

Note: Table displays mean of coefficient estimates with corresponding t-statistics in parentheses. 
Individual fixed effects a f r )  are not reported for brevity.



Table 2.14: Models performance using data simulated from Multivariate Student-t Distribution

PQR-RV PQR-RSV PQR-BPV

P an el A .l 5% 10% 50% 90% 95% 5% 10% 50% 90% 95% 5% 10% 50% 90% 95%

DQ v io la tio n s 6.4 5.8 11 5.6 7.8 6 6.2 11.4 5.2 7 6.8 5.8 10.6 5.2 7.6
7~avg 5.1 10.2 51.3 90.0 95.0 5.1 10.2 51.4 90.0 95.0 5.1 10.2 51.4 90.0 95.0

^ m a x 6.5 12.4 55.3 91.7 96.3 6.5 12.4 55.1 91.7 96.2 6.5 12.5 55.3 91.8 96.3
'T m in 3.8 7.9 48.1 87.8 93.7 3.7 7.9 48.2 88.0 93.8 3.8 7.9 48.2 88.1 93.7

^ a v g —dev 0.1 0.2 1.3 0.0 0.0 0.1 0.2 1.4 0.0 0.0 0.1 0.2 1.4 -0.1 0.0

RiskMetrics UQR Portfolio UQR

P an el A. 2 5% 10% 50% 90% 95% 5% 10% 50% 90% 95% 5% 10% 50% 90% 95%

DQ v io la tio n s 5.6 12.4 5.6 18.6 8.2 6.4 5 13.4 6.2 7.6 5.8 6.2 4.2 6.8 6.6
B xvg 5.2 9.2 50.4 91.0 94.9 5.0 10.2 51.5 90.0 95.0 4.8 9.6 50.0 90.4 95.2

^ m a x 6.8 11.7 54.0 92.8 96.3 6.4 12.3 55.2 91.7 96.5 6.1 11.2 53.1 92.2 96.3
m in 4.0 7.2 46.2 89.1 93.4 3.7 7.9 48.0 87.9 93.9 3.7 7.8 46.8 88.1 93.7

B x vg —dev 0.2 -0.8 0.4 1.0 -0.1 0.0 0.2 1.5 0.0 0.0 -0.2 -0.4 0.0 0.4 0.2

2.9. 
A
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n
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ix

benchmark

RiskMetrics UQR Portfolio UQR

P an el B .l 5% 10% 50% 90% 95% 5% 10% 50% 90% 95% 5% 10% 50% 90% 95%

PQR-RV DM 54 58.2 0.2 62.6 57.8 2.4 2.4 12 3.6 3.6 43 40 18.4 46.4 49.2
PQR-RSV DM 54.2 57.4 0.2 62.2 57.4 1.4 1.2 9.6 1.4 3 41 39 19.2 45 48.2
PQR-BPV DM 53 57.6 0.2 62.4 57.4 1.6 2 10 3 5.2 42.4 38.6 18.8 44.8 45.4

PQR-RV PQR-RSV PQR-BPV

P an el B .2 5% 10% 50% 90% 95% 5% 10% 50% 90% 95% 5% 10% 50% 90% 95%

RiskMetrics DM 0 0 14.4 0 0 0 0 14.8 0 0 0 0 14.6 0 0
UQR DM 9 10.6 2.8 9.8 10.6 10.4 11 2.8 11.2 9.6 10.4 11.6 2.8 8.2 7.8
Portfolio UQR DM 0.8 0.4 1 0.6 0.4 1 0.4 1.4 0.6 0.4 0.8 0.6 1.2 0.8 0.2

Note: Table displays abso lu te  and relative perform ance of P Q R  m odels for re tu rn s w ith RV, RSV and B PV  as regressors and benchm ark models.

Panel A . l  repo rts abso lu te  perform ance of P Q R  models, Panel A .2 rep o rts abso lu te  perform ance of benchm ark models. For each m odel and quantile  t , percentage of 
violations of th e  CAViaR te s t for correct dynam ic specification (D Q vioiatiOn s ) ’ average unconditional coverage (ravg),m axim um  unconditional coverage (Tm ax), m inim um  
unconditional coverage (Tmin ) and  average deviation  of unconditional coverage from given quantile  t  (Tavg—dev)

Panel B . l  and Panel B .2  rep o rt relative perform ance of Panel Q uantile  Regression M odels for R e tu rn s in com parison to  benchm ark m odels and relative perform ance of 
benchm ark m odels in com parison to  Panel Q uantile  Regression M odels for R etu rns respectively. For each specification and  quantile  t  we rep o rt percentage of sta tistica lly  
b e tte r  perform ance according to  D iebold-M ariano(D A l) te s t a t 5% significance level.

00



Table 2.15: Models performance using data simulated from Univariate Normal Distributions

PQR-RV PQR-RSV PQR-BPV

P an el A .l 5% 10% 50% 90% 95% 5% 10% 50% 90% 95% 5% 10% 50% 90% 95%

violations 8.2 7.4 26 4.4 8.6 9 8.4 26.6 4.6 7.4 9.4 9.6 26.4 4.2 6.8
7~avg 5.3 10.6 52.5 90.3 95.2 5.4 10.6 52.5 90.3 95.2 5.4 10.7 52.5 90.3 95.2

P n a x 7.1 12.7 55.6 92.9 96.9 7.1 12.6 55.7 92.8 96.8 7.2 12.8 55.7 92.7 96.8
'Tmin 3.8 8.8 49.3 88.1 93.5 3.9 8.8 49.3 88.1 93.4 3.8 8.6 49.3 88.1 93.5

^a vg —dev 0.3 0.6 2.5 0.3 0.2 0.4 0.6 2.5 0.3 0.2 0.4 0.7 2.5 0.3 0.2

RiskMetrics UQR Portfolio UQR

P an el A. 2 5% 10% 50% 90% 95% 5% 10% 50% 90% 95% 5% 10% 50% 90% 95%

violations 18.8 13.4 10 5.4 9.8 7.4 8.2 47.6 4.2 7.4 5.4 4.4 3 3 4.4
7~avg 5.8 11.0 51.2 90.2 94.9 5.3 10.6 53.3 90.3 95.2 5.1 10.1 50.0 89.9 94.9

P n a x 7.3 12.7 54.1 92.1 96.2 7.1 12.6 56.4 92.9 96.9 6.3 11.6 52.3 91.7 96.1
^ m in 4.3 9.1 47.8 88.0 93.4 3.8 8.7 50.2 88.3 93.4 4.1 8.4 47.7 88.2 93.7

^a vg —dev 0.8 1.0 1.2 0.2 -0.1 0.3 0.6 3.3 0.3 0.2 0.1 0.1 0.0 -0.1 -0.1

2.9. 
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benchmark

RiskMetrics UQR Portfolio UQR

P an el B .l 5% 10% 50% 90% 95% 5% 10% 50% 90% 95% 5% 10% 50% 90% 95%

PQR-RV DM 62.6 56.6 0 57 60.6 9 6 72.4 6.6 7.4 16.4 17.4 4.6 17.4 16.4
PQR-RSV DM 63.2 57.6 0 56.8 61.8 12 7 71.8 9.2 12.4 18.4 18.8 4.6 17.2 17.4
PQR-BPV DM 65.4 58.8 0 58.6 62.2 12.8 11.2 71.4 12.4 14.4 19.2 18.6 4.6 19.4 16.4

PQR-RV PQR-RSV PQR-BPV

P an el B .2 5% 10% 50% 90% 95% 5% 10% 50% 90% 95% 5% 10% 50% 90% 95%

RiskMetrics DM 0 0 44.2 0 0 0 0 44.2 0 0 0 0 44.4 0.2 0
UQR DM 2.8 2.8 0 2.8 2.8 2.2 2 0 2.2 1.8 2.4 1.8 0 3 1.2
Portfolio UQR DM 0.2 0.4 2.4 0.6 1 0.2 0.4 2.4 0.6 0.8 0.2 0.2 2.4 1.2 0.4

Note: Table displays abso lu te  and relative perform ance of P Q R  m odels for re tu rn s w ith RV, RSV and B PV  as regressors and benchm ark models.

Panel A . l  repo rts abso lu te  perform ance of P Q R  models, Panel A .2 rep o rts abso lu te  perform ance of benchm ark models. For each m odel and quantile  t , percentage of 
violations of th e  CAViaR te s t for correct dynam ic specification (D Q vioiatiOn s ) ’ average unconditional coverage (ravg),m axim um  unconditional coverage (Tm ax), m inim um  
unconditional coverage (Tmin ) and  average deviation  of unconditional coverage from given quantile  t  (Tavg—dev)

Panel B . l  and Panel B .2  rep o rt relative perform ance of Panel Q uantile  Regression M odels for R e tu rn s in com parison to  benchm ark m odels and relative perform ance of 
benchm ark m odels in com parison to  Panel Q uantile  Regression M odels for R etu rns respectively. For each specification and  quantile  t  we rep o rt percentage of sta tistica lly  
b e tte r  perform ance according to  D iebold-M ariano(D A l) te s t a t 5% significance level.

00
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Table 2.16: Models performance using data simulated from Univariate Student-t Distributions

PQR-RV PQR-RSV PQR-BPV

Panel A .l 5% 10% 50% 90% 95% 5% 10% 50% 90% 95% 5% 10% 50% 90% 95%

Q v io la tio n s 7.2 8.0 23.4 4.0 6.4 7.0 8.2 23.2 4.0 6.6 7.6 8.2 23.6 4.2 6.8
d~avg 5.3 10.5 52.3 90.2 95.2 5.3 10.5 52.3 90.2 95.2 5.3 10.5 52.4 90.2 95.1
B n a x 7.0 12.8 56.0 92.0 96.6 7.0 12.8 56.0 91.9 96.6 7.0 12.7 56.1 91.9 96.6
7~min 3.9 8.3 47.7 87.8 93.6 3.8 8.2 47.7 87.8 93.6 4.0 8.1 47.8 87.8 93.4

T a v g —dev 0.3 0.5 2.3 0.2 0.2 0.3 0.5 2.3 0.2 0.2 0.3 0.5 2.4 0.2 0.1

RiskMetrics UQR Portfolio UQR

Panel A .2 5% 10% 50% 90% 95% 5% 10% 50% 90% 95% 5% 10% 50% 90% 95%

DQ v io la tio n s 14.8 10.0 7.6 5.6 6.4 6.8 7.4 46.4 5.0 7.0 3.4 4.2 2.6 3.8 3.2
d~avg 5.8 10.9 51.2 90.1 94.8 5.3 10.5 53.2 90.2 95.2 5.1 10.1 50.0 89.9 94.9
B r ia x 7.3 12.8 55.0 91.7 96.3 7.0 12.6 56.9 91.9 96.5 6.8 12.5 52.2 91.2 96.0
7~min 4.3 8.9 46.8 88.1 93.4 3.9 8.3 48.5 87.9 93.5 4.0 8.2 47.4 88.0 93.7

B x v g —dev 0.8 0.9 1.2 0.1 -0.2 0.3 0.5 3.2 0.2 0.2 0.1 0.1 0.0 -0.1 -0.1
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RiskMetrics UQR Portfolio UQR

Panel B .l 5% 10% 50% 90% 95% 5% 10% 50% 90% 95% 5% 10% 50% 90% 95%

PQR-RV DM 66.4 57.8 0.4 57.4 59.4 6.4 6.4 67.4 9.2 7.8 18.6 17.0 7.6 23.2 20.4
PQR-RSV DM 65.8 58.2 0.4 58.0 59.6 6.8 7.8 68.6 10.2 8.2 17.2 17.4 7.4 23.2 21.6
PQR-BPV DM 67.0 59.6 0.4 59.4 61.2 9.0 6.8 66.8 10.6 10.8 20.6 16.6 7.6 22.4 21.6

PQR-RV PQR-RSV PQR-BPV

Panel B.2 5% 10% 50% 90% 95% 5% 10% 50% 90% 95% 5% 10% 50% 90% 95%

RiskMetrics DM 0.0 0.0 39.6 0.0 0.0 0.0 0.0 39.8 0.0 0.0 0.0 0.0 39.6 0.0 0.0
UQR DM 4.0 4.0 0.0 4.0 4.4 4.6 3.2 0.2 3.8 3.6 3.4 2.4 0.0 2.6 3.0
Portfolio UQR DM 0.2 0.0 2.6 0.0 0.4 0.2 0.0 2.8 0.0 0.2 0.2 0.0 2.8 0.0 0.4

Note: Table displays abso lu te  and relative perform ance of P Q R  m odels for re tu rn s w ith RV, RSV and B PV  as regressors and benchm ark models.

Panel A . l  repo rts abso lu te  perform ance of P Q R  models, Panel A .2 rep o rts abso lu te  perform ance of benchm ark models. For each m odel and quantile  t , percentage of 
violations of th e  CAViaR te s t for correct dynam ic specification (D Q vioiatiOn s ) ’ average unconditional coverage (raVg),m axim um  unconditional coverage ( 7 ^ 0 ) ,  m inim um  
unconditional coverage (Tmin ) and  average deviation  of unconditional coverage from given quantile  t  (ravg—dev)

Panel B . l  and Panel B .2  rep o rt relative perform ance of Panel Q uantile  Regression M odels for R e tu rn s in com parison to  benchm ark m odels and relative perform ance of 
benchm ark m odels in com parison to  Panel Q uantile  Regression M odels for R etu rns respectively. For each specification and  quantile  t  we rep o rt percentage of sta tistica lly  
b e tte r  perform ance according to  D iebold-M ariano(D A l) te s t a t 5% significance level.

00<0
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Table 2.17: Coefficient estimates of Panel Quantile Regressions: X =  1

T 5% 10% 25% 50% 75% 90% 95%

PQR-RV

const 0
(-1.47)

0
(-1-27)

0
(-0.61)

0
(-0.58)

0
(0-9)

0
(1.64)

0
(2.08)

i^ R V 1/ 2 -1.51
(-24.24)

-1.16
(-21.41)

-0.6
(-16.36)

-0.01
(-0.24)

0.56
(20.15)

1.11
(24.62)

1.42
(21.11)

PQR-RSV

const 0
(-1-6)

0
(-1-21)

0
(-0.63)

0
(-0.44)

0
(0.97)

0
(2.07)

0
(2.41)

@ RS+1/2 -0.97 -0.74 -0.44 -0.15 0.18 0.41 0.54
(-12.92) (-13.02) (-8.54) (-2-9) (2.82) (4.39) (4-3)

f3RS-i/2 -1.18 -0.91 -0.41 0.14 0.62 1.15 1.49
(-11.14) (-14.29) (-10.12) (2.78) (9.23) (13.91) (10.06)

PQR-BPV

const 0
(-1-4)

0
(-1.36)

0
(-0-6)

0
(-0.67)

0
(0.77)

0
(1.86)

0
(2.67)

Pbpv1/2 -1.55
(-20.25)

-1.18
(-17.58)

-0.62
(-16.49)

0
(-0.15)

0.59
(24.16)

1.15
(22.79)

1.44
(25.91)

f i jv 1/2 -0.24
(-3-2)

-0.2
(-3-41)

-0.14
(-3-41)

-0.03
(-0.62)

0.06
(1.03)

0.21
(1.88)

0.44
(2.73)

Note: Table displays coefficient estimates with bootstraped t-statistics in parentheses. Individual fixed 
effects «¿(t ) are not reported for brevity - they are available from authors upon request.



C hapter  3

Dynamic Quantile Model for Bond 
Pricing

This chapter introduces a dynamic quantile model for bond pricing with an 
agent who values securities by maximizing the quantile level of her utility 
function. The transition from traditional to quantile preferences allows us to 
study the pricing of the term structure of interest rates by economic agents 
differing in their levels of risk aversion. Moreover, the framework is robust 
to fat tails commonly observed in the empirical data. In the application, we 
focus on the quantile pricing of the two, five, ten and thirty years US and 
German government bonds. For the analysis, we use flexible quantile regres­
sion framework which is applied over highly liquid bond futures contract from 
the Chicago Board of Trade and EUREX exchanges.

3.1 Introduction
Asset pricing theory a,ll stems from one simple concept... : price equals expected 
discounted payoff. The rest is elaboration, special cases, and a closet full of tricks 
that make the central equation useful for one or another application

— Cochrane (2009)

Asset pricing theory has a long history in economic and finance literature. Whether 
it is work of Markowitz (1952), who set the foundation of the modern portfolio theory, 
Sharpe (1964) and Lintner (1965) and their Capital Asset Pricing Model further devel­
oped in Merton (1973), the Arbitrage Pricing Theory of Ross (1976) or the factor pricing 
represented by Fama and French (1993) they all work within expected utility framework. 
In our work, we move from traditional expected utility asset pricing to a more general 
quantile preferences. The advantages of quantile preferences are for example: robustness
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to fat tails and the ability to capture heterogeneity through the quantiles. This frame­
work also allows us to study asset pricing given economic agents who differ in their levels 
of risk aversion.

This chapter introduces the dynamic quantile factor assets pricing model. We build 
on the work of de Castro and Galvao (2018) who derive the quantile Euler equation, 
and we modify it to a basic quantile pricing equation. In our empirical application, 
we focus on the quantile pricing of the two, five, ten and thirty years US and German 
government bonds. For the analysis, we use a flexible quantile regression framework which 
is applied over highly liquid bond futures contract from the Chicago Board of Trade and 
the EUREX exchanges. In particular, we employ the recently developed smoothed GMM 
quantile estimator of de Castro et al. (2018) and the quantile regression of Koenker and 
Bassett Jr (1978).

Results of our analysis demonstrate a significant influence of different Realized Mea­
sures on the quantiles of the treasury returns. In contrast, forward rates as used in 
Cochrane and Piazzesi (2005) to forecast short term returns are of limited use in quantile 
asset pricing.

3.2 Asset pricing
The basic idea of classical asset pricing is that price equals discounted payoff (Cochrane, 
2009). Formally we can summarize this relationship by the equation

Pt =  E (m t+1 * xt+i), (3.1)

where pt is the asset price, x i+i is a payoff of the asset and mt+i is a stochastic discount 
factor. Often the (3.1) is referred to as the basic pricing equation and it applies to all 
kind of assets (stocks, bonds, options, etc.) Moreover, it can be seen as a generalization 
of the popular consumption-based asset pricing or the factor pricing (e.g., Capital Asset 
Pricing Model).

The logic behind (3.1) can be traced back to the concept of utility, applied to the 
agent who is deciding how much to consume now, and how much to save for the next 
period. Formally we can describe this problem by the agents utility function as

U(ct,c i+i) =  w(ct) +  (5 E t[u(ct+1)}, (3.2)

where ct is consumption at a time t, w(-) is period utility function which is increasing 
and concave in consumption, Et[-] are the expectations made at time t, and (3 represents 
discount factor. Since our agent wants to maximize her utility from the consumption, we 
solve (3.2) subject to her budget constraints

m ax u(ct) +  At/3w(ct+i) (3.3)

s.t. ct =  yt -  pti  

ct+i =  yt+i +  Tt+i£,
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where yt is the initial income/wealth, pt is the price of the asset, £ is the amount of asset 
agent is willing to buy and xt+i is the payoff of the asset at a time t +  1. Often it is 
assumed that xt+i =  pt+i +  dt+i, i.e., payoff equals price of the asset plus dividend. First 
order conditions of the agent are obtained by substituting budget constraints into the 
utility function and differentiating it w.r.t. £:

0 =  - p tu'(yt - p t£ ) +  E t[/3u'(yt+1 +  xi+i<)xi+i], (3.4)

which results in
Ptu'(ct') =  E t[j3u' (ci+i)xi+i], (3.5)

where «'(•) is interpreted as marginal utility. Equation 3.5 tells us that a decrease in the 
utility from the purchase of £ units of the asset at time t must be compensated by the 
increase in expected utility from the payoff at time t +  1. After rearranging we obtain 
the basic (fundamental) pricing equation

Pt =  E t
' A(q+i ) 

ufct) Tt+l (3.6)

Substituting mt+i =  give us exactly (3.1) and the term m t+i is called stochastic
discount factor, marginal rate o f substitution or pricing kernel. In practice, it is more 
convenient to work with returns instead of prices. Defining asset return as

1 +  A+i
Pt+i +  dt+i 

Pt
(3-7)

and substituting it into (3.6) we arrive at convenient form of the Euler equation

1 — Et /3 + ) (1 +  rt+i) . (3.8)
L m (d ) J

Moreover, substituting m t+1 =  , using a definition of covariance E (m x ) =
E (m )E (x) +  cov{mx) and after rearranging (3.8) becomes

E[1 +  ri+i] 1 _  con(w+i( l  +  n +i))
(3-9)

Further more defining a  =  , ¡3 =  CCT,(w + i(i+ n + i)) anj  y _  _  ™ A w +i) we arrjve to
E t [mt+i\ ’ ' var[m t+i\ E t [mt+i\

beta representation for asset i

- [̂1 +  rt+i] _  a  +  A.w+i^w+i- (3.10)

If we now assume that m t+i =  can be approximated by linear function a +
^i/t+i +  we get factor pricing model

A[1 +  — ct +  ¡3 A. (3.H)
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3.2.1 From Classical to Quantile A sset Pricing
The previous section describes classical asset pricing in an expected utility framework. 
To be more precise von-Neumann-Moregenstehs expected utility is applied.

Von-Neumann-Moregenster‘s theorem states that under completeness, transitivity, 
continuity, and independence there exists preferences A, if and only if there exists utility 
function «'(•) such that

X  A Y  o  E[u'(X')} > E[ul(Y')}. (3.12)

Using quantile preferences, a similar result was obtain by Manski (1988) and later by 
Rostek (2010)

X  A U ^ Q tK(A)] > Q T[n'(K)], (3.13)

where Qr [-] is the r-quantile function. The importance of quantile preferences also lies in 
linking risk-aversion to quantiles. Manski (1988) showed that agents maximizing different 
quantiles have different risk aversion, i.e., agent maximizing lower quantile is more risk- 
averse than agent maximizing higher quantile.

Analogously to transition from von-Neuman Moregenster‘s preferences to quantile 
preferences, de Castro and Galvao (2018) show that we can move from the Euler equation 
in expectations to quantile Euler equation. In particular we can rewrite (3.4) as

0 =  - p tu'(yt - p t£} + /3TQT[w/(?/i+i + xt+iOxt+ilQt], (3.14)

which after substituting asset returns from (3.7) results in

l =  Qr A(ct) (1 + U+i)|^t , (3.15)

where Qt denotes information set.
The previous equation can be estimated using Smoothed (G)MM Quantile estimator 

of de Castro et al. (2018). In their paper de Castro et al. (2018) estimate the elasticity of 
intertemporal substitution of the consumption-based model of the agent with isoelastic 
utility,

w(ct) =  (3.16)
1 -  7

with corresponding marginal utilities

RZ(Q+1) _  ( q +i V 7 
u'(ct) \  Ct J

Combining (3.15) and (3.17) they arrive to Euler equation in form

1 = Q?
—713 ( t t )  (1 + r ‘+ iM

(3.17)

(3.18)
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Using Q t(J7) =  Q i_t(—J7) and Zn(QT(J7)) =  QT(Zn(J7))(i.e., log-lineariztion), where T  
is a general random variable, the equation they estimate is

0 =  Q7 ’ M l  + (3.19)

Here we show that from (3.14) we can arrive at the quantile version of the fundamental 
pricing equation. Rearranging (3.14) we get

Ptw^ct) =  QT[/3Tw/(ci+i)x i+i|Qi].

Using m t+i =  4 " (,c,t+P finally we have
« '( c t )

or in terms of returns

By log-linearizing we get

Pt =  QT[TOt+iXt+i|Qt],

1 =  Q T[mt+1(l  +  rt+i)|Qt].

0 =  Qt [ln(m t+i) +  ln ( l  +  ri+i)|Qt]

(3.20)

(3-21)

(3.22)

(3.23)

—7
which is a generalized version of the (3.18). Indeed if we substitute m t+i =  ¡3

into (3.23) and use QT(J7) =  Q i_t(—J7) we get (3.19).
Importance of the log-linearization of the quantile fundamental pricing equation is

that now we can create a family of quantile factor pricing models. Analogously to factor 
models in expectation, we can define

Zn(mt+i) =  a +  b f , or m t+i =  e a+ b f (3.24)

where f  is vector of factors /  with corresponding vector of parameters b. The final form 
of quantile factor pricing equation is

0 =  Q T [ln (l +  ri+i) +  a +  bf|Qt] . (3.25)

We can also log-linearize the quantile pricing equation by dropping conditioning of 
the whole formula on information set, Qt, and instead condition only returns. As a result, 
we rewrite (3.23) in the form of a standard quantile regression of Koenker and Bassett Jr 
(1978)

Q t [Zn(l +  ri+i)|Qt] =  Zn(mi+i), (3.26)

which after substitution for Zn(mt+i) and approximating Zn(l +  ri+i) by rt+i we get

Qt [ri+i|Qi] =  a +  bf. (3.27)

The equation in a similar form was studied by Zikes and Barunik (2016) who showed 
that quantiles of future returns depend on their past quadratic variation and weakly 
exogenous variables. Formally

QT(ri+i|Qt) =  ck(t ) + (3.28)
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( -------1/2 --------1/2 — 1/2 — -1/2 -- I/2 — -1/ 2 \
where vt =  lQ V t ,Q V t_1, . . . ,  IV t , IV t_ i , . . . ,  J V t , J V f_ l , ...j are components of 
quadratic variation and zt is vector of weakly exogenous variables. Estimates of quantile 
specific ¡3 from (3.28) are obtained by minimizing the following objective function:

min A -  ¿ P t (n+i -  u(t) -  /SQQQt -  /A(T)M  , (3-29)
«(t ) ,/(t ) n

where pT(u) =  u (t  — I(u  < 0))) is the quantile loss function defined in Koenker and 
Bassett Jr  (1978).

An application of (3.23) and (3.27) can be also illustrated within a simple CAPM 
example. If we set Zn(mt+i) =  a +  (3ln(l +  r“ x) where r“ x is market return and using 
the approximation Zn(l +  x) =  x we get

0 =  Qr [n+i +  a +  |Qt]
(3.30)

QT [rt+i|Qt] =  a +  /3r“ x

which are quantile and approximated quantile version of CAPM respectively.

3.3 Smoothed (Generalized) Method of Moments Quan­
tile Estimator

We estimate the quantile pricing equation using the Smoothed (Generalized)Method of 
Moments Quantile Estimator introduced in de Castro et al. (2018) h Smoothed MM and 
GMM estimator differ in identification restriction - the former can be applied to exactly 
identified models while the later is used in case of over-identification.

It was shown in de Castro et al. (2018) that the nonlinear quantile model

Q t [A (Yi, Xi, /30t) \Zi\ =  0, (3.31)

where h) is an endogenous variable vector, Zj is the full instrument vector, W is subset of 
Zj, and A(-) is the residual function. The above can be rewritten in terms of conditional 
quantile moments as

0 =  E [l{A (y „ W ,^ o Q  < 0 }-T | Z ,] , (3.32)

where l(-) is indicator function and estimates of /3oT can be obtain by unconditional 
moments

0 =  E {Z Q l{A (y „ W ,^ o Q  < 0 } - T ] } .  (3.33)

de Castro et al. (2018) also argue that the discontinuity of the indicator function l(-) 
makes the GMM minimization problem computationally difficult. To overcome this is­
sue they suggest to smooth the indicator function so the smoothed population moment

Tor estimation, we use R code of M. Kaplan available at his web-page: h t tp s : / / f a c u l ty . 
m isso u ri. edu/~kaplandm/code/dCGKL_2018_code.zip

https://faculty
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conditions are

9ni =  gn (Y i,X i, =  Z i î  (-A (Yi, X iJ J )  /hra) -  t

M n (ft, =  E"=1 gni (ft, t) ,
(3.34)

where hn is a bandwidth and /(•) is smoothed version of indicator function 1(- > 0).
In case of exact identification, the method of moments estimator solves the smoothed

sample moment conditions
Mn (/3MM,T^=Q  (3.35)

If the model is over-identified, however, there is no guarantee that the solution of method 
of moments estimator is global, and not the local minimum. Thus for the over-identified 
model, the generalized method of moments estimator is used

ficMM = arg min
n

^ 2  9m (J3,t)
/

IT
n

^ 2 g m ( / 3 , T )

geB _ i= l _ i= i

argm in Mn (fi, t )' W M n (J3, t) , 
I3&B

(3.36)
where IT is a symmetric, positive-definite weighting matrix, de Castro et al. (2018) 
proposed to use an estimator of the inverse long-run variance of the sample moments 
W* =  Q_1 A  Q_1 with Q depending on initial estimates from the method of moments
estimator. The final estimator

A - step gm m = argmin  Q 1Mn (f3,r') (3.37)
¡3&B

uses a simulated annealing algorithm for finding global minimum.
In our work, we concentrate on exactly identified models due to the relative time-

consuming estimation of the GMM model via simulated annealing algorithm.

3.4 Empirical Application
In our empirical application, we study the pricing of US and German government bonds. 
In particular, we are concentrating on factor pricing of futures contracts using both the 
Method of Moments estimator, and its approximation by standard quantile regression.

The majority of the literature devoted to bond pricing concentrates on monthly, 
quarterly or yearly data (e.g., Cochrane and Piazzesi (2005)). Our approach, however, 
concentrates on high-frequency data which also affect factors included in pricing kernel 
we use in our analysis. Zikes and Barunik (2016) identified realized volatility to play 
an important role in the pricing of future return quantiles of S&P 500 and W TI Crude 
oil future contracts. Not to fully deviate from bond pricing literature we also study the 
influence of forward rates as in Fama and Bliss (1987) or Cochrane and Piazzesi (2005).
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3.4.1 D ata
Tick prices for both US and German government bonds were obtained from Tick Data2. 
For both countries two, five, ten and thirty years treasury futures are considered. Through 
out the text, we use following abbreviations

Table 3.1: Treasuries abbreviations

Name Maturity Abbreviation

US Treasury

Euro - Schatz
Euro - Bobl

EURO treasury y? n .i J Euro - Bund
Euro - Buxl

2-years TU
5-years FV
10-years TY
30-years US

2-years BZ
5-years BL
10-years BN
30-years BX

US treasuries futures considered in our work are traded at CME Globex platform 
under Chicago Board of Trade rules. We consider trades from the period July 1, 2003 
until November 30, 2017 during regular trading hours - Sunday to Friday, 5:00 p.m. - 
4:00 p.m. Chicago Time. 3. Euro bond futures are traded at EUREX exchange and we 
study period October 1, 2005 until November 30, 2017 during regular trading hours - 
Monday to Friday, 8:00 a.m. - 10:00 p.m.. To ensure sufficient liquidity, we explicitly 
exclude public holidays (Christmas, Thanksgiving, Independence Day, etc.) and days 
with less than 5 hours of trading. From the raw tick data, we extract 5 minutes prices 
using the last-tick method. For the analysis we calculate open-close returns, Realized 
Volatility (Andersen et ah, 2003) and Realized Semi-variance (Barndorff-Nielsen et ah, 
2010).

Daily US forward rates are taken from the dataset of Gurkaynak et al. (2007)4. In 
particular we are working with two, three, four and five year forwards as in Cochrane and 
Piazzesi (2005). We synchronize the forward rate data with the treasury futures data 
resulting in 22 days without no forward rate available. These missing data are replaced 
using linear interpolation.

2h t t p s : //w w w .tic k d a ta .c o m /
3Monday to Thursday 4:00 p.m. - 5:00 p.m. Chicago Time is the maintenance period
4h t t p s : / /w w w .fe d e ra lr e s e rv e . g o v /p u b s /fe d s /2 0 0 6 /2 0 0 6 2 8 /2 0 0 6 2 8 a b s . h tm l

2https://www.tickdata.com/
https://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html
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3.4.2 Model Specification
We now describe the structure of quantile factor models used in the empirical application. 
We begin by computationally easier, at least from the quantile method of moments 
perspective, single factor model. We then follow by approximated multi-factor models 
since the implementation of multiple moment conditions in quantiles is not trivial and is 
subject to further research.

The single factor quantile pricing model in our work summarizes classical risk-return 
relationship. In particular we concentrate on relationship between returns and corre­
sponding realized volatility so we rewrite (3.25) as

Q =  Qr
---- 1/2

ln (l +  rt+i) +  a +  /3AVt+1|Qt , (3.38)

where RV t+1 =  y^2k=i denotes realized volatility computed from a dis­
cretely sampled vector of fc-th intraday log-returns in [t — 1, t] with N  intraday obser­
vations, i.e. AkPt =  Pt-i+vk/N — P t-i+ v^ /N • Since we have two parameters a  and (3 to 
be estimated we use two instruments to have exactly identified model which allows us 
to use the smoothed method of moments estimator. The instruments we consider for 
estimation are lagged values of returns and realized volatility. Since the extension of 
single factor model into the multi-factor framework is computationally challenging, we 
illustrate the proximity of results of the method of moments estimation and standard 
quantile regression. We further build on these results and illustrate the estimation of 
multi-factor models in quantile regression framework.

Using theoretical results from Section 3.2.1 we rewrite single-factor (3.38) in the form 
of the classic quantile regression as

QT [rt+1\Qt] = a  +  ^R V 1t/2. (3.39)

Extension to multi-factor is straightforward and for the realized semivariances we esti­
mate

---------1/2 ---------1/2
QT [rt+1\nt\ =  a  +  (3RS+RS+ R fa s -R S ^  , (3.40)

where RS+  and RS/~ are realized positive and negative semivariance respectively. For­
mally we define semivariances as RVt =  RS^+RS/~ with R Sf =  ^2k=i (AfcPt)2 I  (A-kPt > 0) A
V K + E z= ‘i (jRi > 0) and R S t =  £)^=1 (Afcpt)2 I  (A kpt < 0) A  j/ U + E zm  (Kt,i < 0) 
where IVt stands for integrated variance, Ai;t is total number of jumps during day t and 
IZz^i ti represents magnitude of the jumps.

The final set of multi-factor models is based on forward rates which are frequently 
used in bond pricing literature. The general form of the forward rates factor model is

Q t [A+i| t̂] =  a +  /3FW'F W t , (3.41)

where /3FW is p  x 1 parameter vector and F W t is p  x T  matrix of p  forward rates of 
length T.
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The estimation of all classical quantile regression single and multi-factor models (3.39, 
3.40, 3.41) is carried in R using package quantreg 5.

3.5 Results
The presentation of results starts with a single-factor model for both US and German 
treasuries. Next, the multi-factor model based on Realized Semivariances is described. 
Finally the results of US forward rates multi-factor model are presented.

3.5.1 Single Factor Model

Results of Method of Moments estimator and Quantile Regression for the US treasuries 
are presented in left and right panels of Table 3.2 respectively. We also show the visual 
comparison for individual treasuries in Figure 3.1.

Concentrating on results of Method of Moments estimator displayed in the MM part 
of the Table 3.2 we can see that all but median coefficients are statistically significant 
which is in line with the theory of unpredictability of returns. Second, for all the assets, 
signs of the l3RVi/2 coefficients are consistent with classical risk-return trade-off (e.g., 
Value-at-Risk). In particular, we observe negative coefficients for quantiles below the 
median and positive coefficients for quantiles above the median. Financially speaking we 
can say that a risk-averse investor who optimizes the 5% quantile of asset TU, is not going 
to face loss higher than —1.76 x R V ^ 2. Similarly, a risk-taking investor optimizing at 
the 95% quantile of the same asset, will not have profit higher than 2.12 x R V ^ 2. Third, 
there is an asymmetric influence of Realized Volatility on the quantiles of returns. The 
relative influence is stronger in upper quantiles than in lower quantiles, e.g., the absolute 
value of 1.76 of 5% quantile compared to 2.12 of 95% quantile. Fourth, unconditionally 
the least volatile asset TU 6 has the highest conditional relative risk-return trade-off, i.e., 
the absolute values of TU i3RVt/2 coefficients are the highest among US Treasuries.

After the description of MM results, we now turn to estimates obtained by Quantile 
Regression. Generally, results are very similar to the one obtained by Method of Mo­
ments estimator. In particular we can see in the QR part of the Table 3.2 that coefficient 
estimates are significant for all but median quantile, signs of the coefficients are as ex­
pected (negative sign for below median quantile, positive sign for above median quantile) 
and the least volatile asset has the highest conditional relative risk-return trade-off in the 
extreme quantiles (e.g. 5%, 10%, 90% and 95%). There is also asymmetry in the influ­
ence of Realized Volatility on the quantiles of returns. However, in contrast to the MM 
estimates for all assets except TU, there is a higher relative influence in lower quantiles 
than in higher quantiles.

We arrive to similar conclusions as presented in previous paragraphs also by visual 
inspection of Figure 3.1. In particular, all figures of slope coefficients are upward-sloping, 
and there is asymmetric influence of the Realized Volatility in the lower and upper

5h t t p s : / / c r a n . r - p r o j  e c t . o rg /w e b /p a c k a g e s /q u a n tre g /in d e x .h tm l
6The unconditional standard deviation of TU returns is the lowest among US treasuries.

https://cran.r-proj
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Table 3.2: US Treasuries - Method of Moments and Quantile Regression estimates

0 .0 5 0 .1 0 .2 5 0 .5 0 .7 5 0 .9 0 .9 5 0 .0 5 0 .1 0 .2 5 0 .5 0 .7 5 0 .9 0 .9 5

M M Q R

2-years m a tu r ity  (T U )

c o n s t  0 0 0 0 0 0 0 0 0 0 0 0 0 0
(0 ) (0 ) (0 ) ( 0 ) (0 ) (0 ) (0 ) (0 ) ( 0 ) (0 ) (0 ) (0 ) (0 ) ( 0 )

' T v - 1 / 2  - 1 ' 76 - 1 .3 7 - 0 .7 5 0 .0 5 1 .0 1 1 .6 9 2 .1 2 - 1 .6 2 - 1 .2 5 - 0 .5 2 0 .0 8 0 .8 3 1 .4 1 1 .7 9
( 0 .1 2 ) ( 0 .1 6 ) ( 0 .0 9 ) ( 0 .0 9 ) ( 0 .0 7 ) ( 0 .1 4 ) ( 0 .1 6 ) ( 0 .1 3 ) ( 0 .1 ) ( 0 .0 7 ) ( 0 .0 7 ) ( 0 .0 7 ) ( 0 .0 8 ) ( 0 .1 4 )

5 -years m a tu r ity  (F V )

c o n s t  0 0 0 0 0 0 0 0 0 0 0 0 0 0
(0 ) (0 ) (0 ) ( 0 ) (0 ) (0 ) (0 ) (0 ) ( 0 ) (0 ) (0 ) (0 ) (0 ) ( 0 )

/ y , , i / 2  - i - 4 2 - 1 .1 3 - 0 .6 6 0 .0 2 0 .8 5 1 .4 1 .6 5 - 1 .5 6 - 1 .1 6 - 0 .5 2 0 .0 3 0 .6 3 1 .2 1 1 .3 9

( 0 .1 1 ) ( 0 .1 ) ( 0 .0 8 ) ( 0 .0 9 ) ( 0 .0 6 ) ( 0 .1 1 ) ( 0 .1 1 ) ( 0 .1 3 ) ( 0 .0 8 ) ( 0 .0 7 ) ( 0 .0 7 ) ( 0 .0 7 ) ( 0 .1 ) ( 0 .1 )

10-years m a tu r ity  ( T Y )

c o n s t  0 0 0 0 0 0 0 0 0 0 0 0 0 0
(0 ) (0 ) (0 ) ( 0 ) (0 ) (0 ) (0 ) (0 ) ( 0 ) (0 ) (0 ) (0 ) (0 ) ( 0 )

/ y , , i / 2  - i - 3 6 - 1 .1 3 - 0 .6 5 - 0 .1 3 0 .8 6 1 .4 7 1 .5 9 - 1 .4 7 - 1 .2 4 - 0 .6 5 - 0 .0 1 0 .6 4 1 .1 5 1 .4 2
( 0 .1 ) ( 0 .0 8 ) ( 0 .0 8 ) ( 0 .1 3 ) ( 0 .1 ) ( 0 .1 4 ) ( 0 .1 3 ) ( 0 .1 4 ) ( 0 .0 8 ) ( 0 .0 8 ) ( 0 .0 8 ) ( 0 .0 8 ) ( 0 .1 ) ( 0 .1 1 )

30-years m a tu r ity  (U S)

c o n s t  0 0 0 0 0 0 0 0 0 0 0 0 0 0
(0 ) (0 ) (0 ) ( 0 ) (0 ) (0 ) (0 ) (0 ) ( 0 ) (0 ) (0 ) (0 ) (0 ) ( 0 )

/3r v - 1 / 2  - 1 .5 8 - 1 .2 4 - 0 .8 7 - 0 .1 0 .6 9 1 .4 1 .7 7 - 1 .6 1 - 1 .2 5 - 0 .8 8 - 0 .1 2 0 .5 7 1 .1 3 1 .3 8

( 0 .1 4 ) ( 0 .1 3 ) ( 0 .1 ) ( 0 .1 3 ) ( 0 .1 2 ) ( 0 .1 8 ) ( 0 .2 1 ) ( 0 .1 4 ) ( 0 .1 ) ( 0 .0 8 ) ( 0 .0 9 ) ( 0 .0 7 ) ( 0 .1 2 ) ( 0 .1 4 )

Note: Table displays coefficient estimates with corresponding standard errors in parentheses.

quantiles of returns. In these figures, it is also visible that quantile regression estimates 
(in red) underestimate the relative influence of RV in the upper quantiles compared to 
MM estimates. Moreover, the majority of quantiles of the Method of Moments estimates 
lies in the 95% confidence intervals of the Quantile Regression and vice-versa. This 
pattern is clearly visible in lower quantiles.

Figure 3.1: US Treasuries estimates - MM and QR 

2-years maturity

(a) TU intercept (b) TU slope

quantile quantile
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5-years maturity
(c) F V  intercept (d) F V  slope

RV, MM coefficients 
MM confidence intervals 
RV,1'2 OR coefficients 
OR confidence intervals

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

quantile quantile

10-years maturity
(e) T Y  intercept (f) T Y  slope

quantile quantile
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30-years maturity
(g) US intercept (h) US slope

Note: Parameter estimates (solid lines) with corresponding 95% confidence intervals (dashed lines) 
from the MM and QR specification are plotted in black and red respectively.

Having described results of the US Treasuries analysis, we now turn to the case 
of German government bonds. In both Method of Moments and Quantile Regression 
estimators, we can spot similarities with US Treasuries results. First, all but some 
median coefficients are statistically significant. These significant median estimates are 
Method of Moments coefficient estimate of asset BZ (coefficient of 0.14 with standard 
error 0.05), Quantile Regression coefficient estimates of assets BN (coefficient of -0.19 
with standard error 0.07) and BX (coefficient of -0.24 with standard error 0.07). These 
median anomalies deserve further research because they are in slight dispute with the 
efficient market hypothesis which states that returns should be unpredictable since prices 
follow random-walk. Second, (3RVi/2 coefficients have expected signs, i.e., quantiles below 
the median are negative, above the median are positive. Third, quantiles of returns 
are influenced asymmetrically by Realized Volatility. In the MM case, upper quantiles 
of short-term securities (maturity two and five years) are influenced more than lower 
quantiles (absolute value of 1.78 and 1.56 of 5% quantile compared to 1.87 and 1.74 of 
95% quantile of assets BZ and BL) while situation in long-term securities (maturity ten 
and thirty years) is opposite (absolute value of 1.69 and 1.51 of 5% quantile compared to 
1.59 and 1.37 of 95% quantile of assets BN and BX). In contrast, the relative influence 
of Realized Volatility in the Quantile Regression estimates is always greater in the lower 
quantiles. Fourth, the shortest maturity bond (BZ) is unconditionally the least volatile 
asset, however, conditionally it has the highest relative risk-return trade-off.
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Table 3.3: EIJ Treasuries - Method of Moments and Quantile Regression estimates

0 .05 0.1 0 .25 0.5 0 .75 0.9 0 .95 0 .05 0.1 0 .2 5 0.5 0 .75 0.9 0 .95

M M Q R

S-years m a tu r ity  (B Z )

co n st 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(0) (0 ) (0) (0 ) (0) (0 ) (0 ) (0) (0) (0 ) (0 ) (0) (0 ) (0)

U v l / 2  - 1 ' 78 -1 .3 8 -0 .7 4 0 .1 4 0 .99 1 .54 1 .87 -1 .9 5 -1 .5 5 -0 .7 1 0 .0 9 0 .82 1 .43 1 .78
(0 .1 2 ) (0 .1 ) (0 .0 8 ) (0 .0 5 ) (0 .1 1 ) (0 .1 4 ) (0 .1 1 ) (0 .1 5 ) (0 .1 ) (0 .0 7 ) (0 .0 6 ) (0 .0 8 ) (0 .1 ) (0 .1 2 )

5-years m a tu r ity  (B L )

co n st 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(0) (0 ) (0) (0 ) (0) (0 ) (0 ) (0) (0) (0 ) (0 ) (0) (0 ) (0)

U v l / 2  - 1 ' 56 -1 .2 6 -0 .6 5 0 .0 7 0 .9 3 1 .48 1 .74 -1 .7 8 -1 .4 4 -0 .6 8 0 .0 1 0 .7 3 1 .37 1 .64
(0 .0 7 ) (0 .0 9 ) (0 .1 ) (0 .0 7 ) (0 .1 ) (0 .1 2 ) (0 .0 8 ) (0 .1 1 ) (0 .1 1 ) (0 .0 8 ) (0 .0 7 ) (0 .0 8 ) (0 .1 ) (0 .1 )

10-years m a tu r ity  (B N )

co n st 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(0) (0 ) (0) (0 ) (0) (0 ) (0 ) (0) (0) (0 ) (0 ) (0) (0 ) (0)

U v l / 2  - 1 ' 69 -1 .2 8 -0 .6 6 -0 .0 5 0 .79 1 .41 1.59 -1 .7 -1 .4 4 -0 .8 7 -0 .1 9 0 .4 8 1.31 1.5
(0 .1 3 ) (0 .1 2 ) (0 .1 1 ) (0 .1 1 ) (0 .1 5 ) (0 .1 7 ) (0 .1 4 ) (0 .1 1 ) (0 .1 2 ) (0 .0 9 ) (0 .0 7 ) (0 .1 ) (0 .1 2 ) (0 .1 2 )

30-years m a tu r ity  (B X )

co n st 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(0) (0 ) (0) (0 ) (0) (0 ) (0 ) (0) (0) (0 ) (0 ) (0) (0 ) (0)

U v l / 2  - 1 ' 51 -1 .3 3 -0 .6 3 -0 .1 6 0 .61 1.3 1 .37 -1 .7 4 -1 .4 2 -0 .8 3 -0 .2 4 0 .4 7 1.12 1 .39
(0 .1 2 ) (0 .0 9 ) (0 .0 8 ) (0 .1 ) (0 .1 2 ) (0 .1 2 ) (0 .1 ) (0 .1 ) (0 .1 1 ) (0 .0 9 ) (0 .0 7 ) (0 .0 9 ) (0 .1 ) (0 .1 4 )

Note: Table displays coefficient estimates with corresponding standard errors in parentheses.

Visual inspection of the results presented in Figure 3.2 reveals similarity but also an 
interesting difference from the US Treasuries. The similarity is in the width of the con­
fidence intervals of the slope estimates. Specifically, Method of Moments estimates lies 
almost always in the confidence intervals of Quantile Regression estimates and vice-versa. 
The difference from the US Treasuries is that Quantile Regression (3RVi/2 estimates for 
almost all the quantiles of all the assets relatively underestimate the influence of the Real­
ized Volatility compared to Method of Moments Estimates. In contrast, MM and QR es­
timates of US Treasuries intersects frequently, and there is no clear under/overestimation 
of any estimator.
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Figure 3.2: German Treasuries estimates - MM and QR 

2-years maturity

(a) BZ intercept (b) BZ slope

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

quantile

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

quantile

5-years maturity

(c) B L  intercept (d) B L slope

quantile quantile



3.5. R esults 106

10-years maturity

(e) BN  intercept (f) BN  slope

30-years maturity

(g) B X  intercept (h) B X  slope

Note: Parameter estimates (solid lines) with corresponding 95% confidence intervals (dashed lines) 
from the MM and QR specification are plotted in black and red respectively.

3.5.2 Multi Factor Model
After the description of the single-factor models results, we now turn to multi-factor 
models. We present two-factor models of the Realized Semivariances for both US and 
German Treasuries and the forward rates factor model for US Treasuries. Specifically, 
we study four-factor forward rate model similar to one in Cochrane and Piazzesi (2005). 
As previously mentioned in the Section 3.4.2 we will concentrate on Quantile Regression 
estimation only.
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Realized Semivariance

Results of the analysis when the Realized Semivariances are used as factors share many 
commonalities with single-factor models. For both US and German Treasuries, coefficient 
estimates of (3 r s + l/2 and (3 r s _ -l/2 have negative signs for quantiles below the median, pos­
itive for quantiles above the median. Moreover, figures of (3 R S + i/2 and (3 r s _ -l/2 are upward 
sloping. Furthermore, all the coefficients are statistically significant for all but median 
quantiles in US Treasuries, while ten and thirty years German treasuries have statistically 
significant median coefficients of the j3 R S + i/ 2 . In addition, the shortest maturity treasuries 
TU and BZ have the highest conditional influence of the Realized Semivariances on the 
quantiles of returns.

Besides commonalities, there are also features specific to Realized Semi variances. In 
the US Treasuries case, negative semi variance influence lower quantiles relatively more 
than the upper quantiles (-1.24, -1.13 or -1.61 coefficients of 5% quantiles vs. 0.34, 0.88 
or 0.51 of 95% quantiles of TU, TY, and US respectively) while the opposite is true 
for positive semivariance. We can also see that for upper quantiles RS+ clearly dom­
inates RS~ whereas in the lower quantiles the results are mixed. To illustrate, let us 
consider FV in which RS+ has higher influence than RS~ in 5 and 10% quantiles while 
the opposite is true for T Y  and finally in case of TU, 5% quantile is dominated by RS~ 
whereas 10% quantile is dominated by RS+ . Turning to German Treasuries, we comment 
the main differences from US Treasuries. In the German government bonds, we observe 
more symmetric influence of Realized Semivariances on the quantiles of returns, particu­
larly in the shortest and the longest maturity bonds. Moreover, German treasuries look 
more homogeneous as the estimates of all the bonds for given quantiles are closer to each 
other. Furthermore, the relative influence of the negative semi variance is dominant in 
upper quantiles (exact opposite to US Treasuries) while in the lower quantiles neither 
of the semivariances plays dominant role similarly to US Government bonds. Asymmet­
ric influence documented in this multi-factor specification has many potential sources. 
Besides difference of the Realized Volatility and Realized Semi variance, we attribute it 
also to the institutional differences of the US and EU markets, e.g. different trading 
hours (US market 23 hours a day vs 14 hours EU market), investors‘ perception of US 
Treasury futures being well established investment instruments (history of 30-years US 
Tresury futures date back to October 1982 while 30-year German Treasury futures were 
introduced in September 2005), etc.. Last but not least, liquidity connected to different 
trading hours also plays a role.

The important difference is also in the median estimates. While in the US Treasuries 
majority of estimates are either zero or close to zero with high standard errors this is 
not the case of the German Treasuries. We can see in the EU part of the Table 3.4 that 
none of the median coefficient (except constant terms) are zero, moreover, some of the 
estimates are statistically significant as we mentioned at the beginning of the section.
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Table 3.4: US & EU Treasuries - Quantile Regression Realized Semivariances estimates

0 .05 0.1 0 .25 0.5 0 .7 5 0.9 0 .95 0 .05 0.1 0 .25 0.5 0 .75 0.9 0 .95

U SA E U

S-years m a tu r ity  (T U ) S-years m a tu r ity  (B Z )
co n st 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(0) (0 ) (0 ) (0) (0) (0 ) (0 ) (0 ) (0 ) (0) (0 ) (0 ) (0) (0 )
-1 .0 8 -1 .1 5 -0 .3 8 0 .12 0 .86 1 .39 2 .06 -1 .4 9 -1 .4 4 -0 .6 4 -0 .1 7 0 .1 9 0 .6 8 1 .04
(0 .2 5 ) (0 .1 8 ) (0 .1 4 ) (0 .1 6 ) (0 .1 4 ) (0 .1 8 ) (0 .2 2 ) (0 .3 5 ) (0 .1 9 ) (0 .1 8 ) (0 .1 2 ) (0 .2 ) (0 .2 3 ) (0 .2 6 )

U s ~  U 2 -1 .2 4 -0 .6 7 -0 .3 9 0 0 .3 4 0 .71 0 .3 4 -1 .3 -0 .7 4 -0 .3 7 0 .3 0 .9 7 1.3 1.5

(0 .1 7 ) (0 .2 1 ) (0 .1 3 ) (0 .1 6 ) (0 .1 2 ) (0 .0 9 ) (0 .2 5 ) (0 .3 5 ) (0 .2 4 ) (0 .1 6 ) (0 .1 4 ) (0 .1 9 ) (0 .2 2 ) (0 .3 2 )

5-years m a tu r ity  (F V ) 5-years m a tu r ity  (B L )
co n st 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(0) (0 ) (0 ) (0) (0) (0 ) (0 ) (0 ) (0 ) (0) (0 ) (0 ) (0) (0 )
U s + U 2 -0 .4 9 -0 .3 9 -0 .1 5 0 0 .2 7 0 .42 0 .55 -1 -1 .0 5 -0 .7 6 -0 .1 7 0 .3 4 0 .66 0 .79

(0 .0 2 ) (0 .0 8 ) (0 .0 5 ) (0 .0 4 ) (0 .0 5 ) (0 .0 8 ) (0 .0 9 ) (0 .2 1 ) (0 .1 7 ) (0 .1 7 ) (0 .1 4 ) (0 .1 6 ) (0 .1 9 ) (0 .1 8 )

Pr S ~  V 2 -0 .3 6 -0 .2 2 -0 .1 4 0 0 .1 4 0 .36 0 .51 -1 .5 9 -1 .0 2 -0 .3 0 .19 0 .7 2 1 .31 1.55
(0 .0 7 ) (0 .0 8 ) (0 .0 5 ) (0 .0 4 ) (0 .0 5 ) (0 .0 8 ) (0 .1 1 ) (0 .2 4 ) (0 .2 2 ) (0 .1 5 ) (0 .1 4 ) (0 .1 8 ) (0 .2 2 ) (0 .2 )

10-years m a tu r ity  ( T Y ) 10-years m a tu r ity  (B N )
co n st 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(0) (0 ) (0 ) (0) (0) (0 ) (0 ) (0 ) (0 ) (0) (0 ) (0 ) (0) (0 )
U s + U 2 -0 .9 8 -0 .8 -0 .5 9 -0 .0 5 0 .56 1 .1 8 1 .17 -1 .1 6 -1 .1 5 -0 .9 3 -0 .3 6 -0 .1 6 0 .42 0 .52

(0 .2 3 ) (0 .1 7 ) (0 .1 6 ) (0 .1 5 ) (0 .1 4 ) (0 .1 7 ) (0 .2 ) (0 .1 9 ) (0 .2 ) (0 .1 6 ) (0 .1 4 ) (0 .1 6 ) (0 .1 9 ) (0 .2 3 )
U s ~  U 2 -1 .1 3 -0 .9 9 -0 .3 0 .06 0 .3 8 0 .4 9 0 .8 8 -1 .3 -0 .8 7 -0 .3 6 0 .1 2 0 .86 1 .44 1 .63

(0 .2 7 ) (0 .1 7 ) (0 .1 6 ) (0 .1 6 ) (0 .1 3 ) (0 .1 4 ) (0 .2 ) (0 .2 4 ) (0 .2 1 ) (0 .1 7 ) (0 .1 6 ) (0 .1 8 ) (0 .2 1 ) (0 .1 6 )

30-years m a tu r ity  (U S) 30-years m a tu r ity  (B X )
co n st 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(0) (0 ) (0 ) (0) (0) (0 ) (0 ) (0 ) (0 ) (0) (0 ) (0 ) (0) (0 )
-0 .7 7 -0 .7 5 -0 .6 1 -0 .1 1 0 .4 3 1.2 1 .58 -1 .3 3 -1 .1 7 -0 .8 3 -0 .4 5 0 .0 9 0.6 1 .09
(0 .2 7 ) (0 .1 6 ) (0 .1 4 ) (0 .1 6 ) (0 .1 4 ) (0 .1 9 ) (0 .1 9 ) (0 .2 2 ) (0 .2 1 ) (0 .1 6 ) (0 .1 6 ) (0 .1 8 ) (0 .2 ) (0 .2 7 )

U s -  X/2 -1 .6 1 -1 .0 7 -0 .6 7 -0 .0 3 0 .4 4 0 .4 8 0 .51 -1 .1 5 -0 .8 5 -0 .4 1 0 .1 3 0 .5 6 1 .04 0.9
(0 .2 5 ) (0 .2 ) (0 .1 6 ) (0 .1 7 ) (0 .1 3 ) (0 .1 5 ) (0 .0 8 ) (0 .2 2 ) (0 .2 2 ) (0 .1 7 ) (0 .1 6 ) (0 .1 8 ) (0 .1 9 ) (0 .2 9 )

Note: Table displays coefficient estimates with corresponding standard errors in parentheses.

Results of our analysis are also confirmed by visual inspection of Figure 3.3 and 
Figure 3.4. In all of the R S + and RS~ subfigures, we can see the upward sloping 
pattern. In the US Treasuries, the dominance of negative semi variance in lower quantiles 
and positive semi variance in the upper quantiles is well documented in Figure 3.3k and 
Figure 3.31. The opposite is true for EU Treasuries where comparison of Figure 3.4b 
and Figure 3.4c suggest that the below median quantiles are more influenced by positive 
semivariance and the above median quantiles by the negative one. When we compare 
total dispersion of the R S + and RS~ the US Treasuries seems to be more heterogeneous 
(figures 3.3b, 3.3c vs 3.3e, 3.3f) than all the R S + and RS~ pairs of the German Treasuries. 
As a possible source of this heterogeneity, we identify the overall higher dispersion of the 
average liquidity of the US Treasuries. While the average daily volume of EU bond 
futures is around 340, 400 and 704 thousand for 2,5 and 10 years maturity respectively, 
the US volumes are 190, 500, 980 thousand. However, the liquidity of the 30-years bonds 
is a bit puzzling for us - 13 thousands of EU bond vs 270 thousand in the US case.
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Figure 3.3: US Treasury estimates - QR RSV

(a) TU intercept
2-years maturity 
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(d) FV intercept
5-years maturity 

(e) FV RS+ (f) FV RS~
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quantile

0.05 0.2 0.35 0.5 0.65 0.8 0.95
quantile

10-years maturity

(g) TY  intercept (h) TY  RS+ (i) TY  RS~
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(j) US intercept

30-years maturity 
(k) US RS+ (1) US RS~

Note: Parameter estimates with corresponding 95% confidence intervals are plotted in solid and dashed 
lines respectively.

Figure 3.4-' EU Treasury estimates - QR RSV

(a) B Z  intercept
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(b) B Z  RS+ (c) B Z  RS~
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(g) BN intercept
10-years maturity 

(h) BN RS+ (i) BN RS~

quantile

(j) BX intercept
30-years maturity

(1) BX RS~

quantile quantile quantile

Note: Parameter estimates with corresponding 95% confidence intervals are plotted in solid and dashed 
lines respectively.

US Treasuries - Forward rates

We finalize results of our analysis by four-factor forward rates model applied on the US 
Treasuries. We are working with two, three, four and five years forwards and we adopt 
naming from the original paper of Gürkaynak et al. (2007) e.g., the name of two-years 
forward is SVENF02, etc..

At first sight, results presented in Table 3.5 differ substantially from all the results 
presented so far. The biggest difference is the statistical significance of the coefficient 
estimates.For all the treasuries and all the forward rates, the vast majority of the esti­
mates is statistically insignificant. On one side, for the risk-averse investor who optimizes 
lower quantiles of the returns distribution, forward rates are of limited use since their 
coefficients are not statistically different from zero. On the other side, a risk-taking in­
vestor might find forward rates useful when concentrating on the upper quantiles of the 
shortest maturity treasury TU. For the rest of the treasuries, forward rates do not seem 
to play a very important role in determining the behavior of the quantiles of the returns. 
This is in contrast with Cochrane and Piazzesi (2005) who use monthly data and show 
that linear combination of the short-term forward rates can be useful in forecasting ex­
cess returns of the short-term bonds. We address this difference to the structure of the
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dataset. The theory suggests that lower frequency returns (e.g., monthly, quarterly) ex­
hibit certain degree of predictability (e.g. Cochrane and Piazzesi (2005),Fama and French 
(1993)), however, returns at higher frequencies (e.g., daily) should not be forecastable 
as suggested by Efficient Market Hypothesis (Fama, 1970) what median results of our 
analysis confirm.

Table 3.5: US treasuries - QR forward rates

0 .05 0.1 0 .25 0.5 0 .7 5 0.9 0 .95 0 .05 0.1 0 .25 0.5 0 .75 0.9 0 .95

S-years m a tu r ity  (T U ) 5-years m a tu r ity  (F V )

co n st 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(0) (0 ) (0) (0 ) (0) (0) (0 ) (0) (0) (0 ) (0) (0 ) (0 ) (0)

S V E N F 0 2 -0 .0 2 0 .0 3 0 .02 0 .01 0 .06 0 .1 8 0 .29 0 .15 0 .29 0 .09 0 .1 3 0 .21 0 .1 7 0 .39

(0 .0 8 ) (0 .0 7 ) (0 .0 4 ) (0 .0 4 ) (0 .0 4 ) (0 .0 8 ) (0 .0 9 ) (0 .2 5 ) (0 .2 2 ) (0 .1 2 ) (0 .1 1 ) (0 .1 2 ) (0 .2 1 ) (0 .2 6 )

S V E N F 0 3 0 .0 7 -0 .0 7 -0 .0 8 -0 .0 5 -0 .2 3 -0 .6 3 -1 -0 .2 7 -0 .8 -0 .1 9 -0 .4 9 -0 .8 2 -0 .7 6 -1 .4 9

(0 .2 8 ) (0 .2 4 ) (0 .1 4 ) (0 .1 2 ) (0 .1 4 ) (0 .2 6 ) (0 .3 3 ) (0 .8 5 ) (0 .7 4 ) (0 .4 2 ) (0 .3 8 ) (0 .4 2 ) (0 .7 3 ) (0 .8 9 )

S V E N F 0 4 -0 .1 0 .0 4 0 .0 7 0 .06 0 .2 8 0 .75 1 .18 0 .3 7 0 .89 0 .1 3 0 .5 4 0 .92 0 .8 7 1 .65

(0 .3 5 ) (0 .2 9 ) (0 .1 6 ) (0 .1 4 ) (0 .1 7 ) (0 .3 1 ) (0 .4 ) (1 .0 3 ) (0 .8 8 ) (0 .6 1 ) (0 .4 6 ) (0 .5 1 ) (0 .8 9 ) (1 .0 8 )

S V E N F 0 5 0 .01 -0 .0 3 -0 .0 3 -0 .0 2 -0 .0 9 -0 .2 6 -0 .4 2 -0 .3 2 -0 .4 3 -0 .0 6 -0 .1 9 -0 .2 8 -0 .2 2 -0 .4 7

(0 .1 4 ) (0 .1 2 ) (0 .0 7 ) (0 .0 6 ) (0 .0 7 ) (0 .1 3 ) (0 .1 6 ) (0 .4 2 ) (0 .3 6 ) (0 .2 1 ) (0 .1 9 ) (0 .2 1 ) (0 .3 6 ) (0 .4 5 )

10-years m a tu r ity  ( T Y ) 30-years m a tu r ity  (U S)

co n st 0 0 0 0 0 0 0 -0 .0 1 -0 .0 1 0 0 0 0 .01 0 .01

(0 ) (0 ) (0) (0 ) (0) (0) (0 ) (0) (0) (0 ) (0) (0 ) (0 ) (0)

S V E N F 0 2 0.2 0 .5 3 0 .19 0 .21 0 .1 9 0 .05 0 .1 8 0 .4 8 0.9 0 .31 0 .2 1 -0 .1 8 0 .01 0 .11

(0 .3 9 ) (0 .3 2 ) (0 .1 9 ) (0 .1 8 ) (0 .2 ) (0 .3 2 ) (0 .3 4 ) (0 .6 7 ) (0 .4 9 ) (0 .2 9 ) (0 .3 3 ) (0 .3 1 ) (0 .4 2 ) (0 .5 6 )

S V E N F 0 3 -0 .3 9 -1 .6 4 -0 .5 1 -0 .7 3 -0 .6 3 -0 .2 3 -0 .6 4 -0 .8 6 -2 .8 2 -0 .9 5 -0 .6 8 0 .6 6 -0 .3 2 -0 .2 9

(1 .3 6 ) (1 .1 ) (0 .6 6 ) (0 .6 4 ) (0 .7 1 ) (1 .1 ) (1 -2 ) (2 .4 ) (1 -7 1 ) (1 .0 6 ) (1 .1 5 ) (1 .0 8 ) (1 .5 1 ) (1 .9 9 )

S V E N F 0 4 0 .7 4 2 .09 0 .61 0 .8 0 .4 6 -0 .0 8 0 .2 4 1 .13 3 .6 4 1 .33 0 .7 1 -1 .1 8 0 .0 3 -0 .6 1

(1 .6 3 ) (1 .3 3 ) (0 .8 ) (0 .7 8 ) (0 .8 5 ) (1 .3 3 ) (1 -4 6 ) (2 .9 7 ) (2 .1 ) (1 -3 1 ) (1 -4 1 ) (1 -3 2 ) (1 .8 8 ) (2 .4 8 )

S V E N F 0 5 -0 .6 1 -1 .0 2 -0 .3 2 -0 .2 9 0 .02 0 .3 1 0 .29 -0 .7 2 -1 .7 -0 .7 1 -0 .2 5 0 .6 9 0 .2 8 0 .75

(0 .6 6 ) (0 .5 5 ) (0 .3 3 ) (0 .3 2 ) (0 .3 5 ) (0 .5 5 ) (0 .6 ) (1 -2 4 ) (0 .8 8 ) (0 .5 5 ) (0 .5 8 ) (0 .5 5 ) (0 .7 9 ) (1 -0 4 )

Note: Table displays coefficient estimates with corresponding standard errors in parentheses.

The visual inspection of the results presented in Figure 3.5 confirm the results dis­
played in the Table 3.5. In almost all but intercept figures, parameters estimates are close 
to zero. Moreover, confidence intervals are rather wide, so we can not say that parameter 
estimates are not zero. We can also see that coefficient estimates lack the dynamic and 
are stable across quantiles (e.g. Figure 3.5b, subplot F V  SVENF05). This suggests 
that forward rates might not drive the dynamics of the quantiles of the US treasury 
returns as it was the case in the single-factor Realized volatility or multi-factor Realized 
Semi variance models.
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Figure 3.5: US Treasuries - QR forward rates estimates
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5-years maturity estimates 
(b) FV

FV intercept FV SVENF02

quaril,e quantile

FV SVENF03

quantile

quantle quartile

10-years maturity estimates 
(c) TY
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Note: Parameter estimates with corresponding 95% confidence intervals are plotted in solid and dashed 
lines respectively.

3.6 Conclusion
In this chapter, we show that basic pricing equation (Cochrane, 2009) can be easily 
extended from the expected to the quantile utility framework. We transform quantile 
Euler equation of de Castro and Galvao (2018) into stochastic discount factor/pricing 
kernel representation and present link to the quantile factor asset pricing.

In the empirical application, we study the behavior of the quantiles of the US and 
German Treasury returns. Our analysis demonstrates a significant influence of the Real­
ized Volatility and Realized Semivariance on the distribution of the returns. Specifically, 
Realized Volatility plays an important role in all but median quantiles of the return dis­
tribution, whereas Realized Semi variances also partly explain the median variation of 
two German Treasuries. In contrast, we fail to find such significant relationship for the 
forward rates.

From the estimation point of view, we adopt recently developed Smoothed Method of 
Moments estimator (de Castro et ah, 2018) and traditional quantile regression (Koenker 
and Bassett Jr, 1978). In the single-factor quantile asset pricing model we illustrate 
proximity of both methods. This proximity is further applied in the multi-factor models
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where we rely solely on the quantile regression approach.

3.7 Appendix

Table 3.6: Descriptive statistic open-close returns - US & German Treasuries

Mean St.dev Median Min Max Skew Kurt JB ARCH-LM Volume

TU 0.0000 0.0009 0.0000 -0.008 0.008 -0.024 7.98 9668.28 570.48 166697
FV 0.0001 0.0025 0.0001 -0.016 0.017 0.010 3.05 1415.91 396.94 492719
TY 0.0002 0.0038 0.0002 -0.020 0.033 0.101 3.10 1462.84 322.63 953719
US 0.0002 0.0065 0.0005 -0.029 0.047 0.077 2.12 685.47 301.90 289027

BZ 0.0000 0.0007 0.0000 -0.005 0.005 -0.142 6.68 5616.75 491.84 343470
BL 0.0001 0.0020 0.0001 -0.011 0.010 -0.060 3.20 1285.15 422.11 403728
BN 0.0001 0.0035 0.0002 -0.019 0.019 -0.122 2.41 737.60 284.82 704011
BX 0.0002 0.0076 0.0002 -0.040 0.035 -0.191 2.27 668.30 340.10 13195

Note: Volume denotes average daily volume of trades. Time span of US and German Treasuries 
are July 1,2003-November 30,2017 and October 1, 2005-November 30, 2017 respectively.

Table 3.7; Descriptive statistic selected forward rates

Mean St.dev Median Min Max Skew Kurt JB ARCH-LM

SVENF02 0.0215 0.0134 0.0169 0.003 0.051 0.616 -0.89 350.56 3606.18
SVENF03 0.0270 0.0118 0.0239 0.006 0.051 0.172 -1.13 212.21 3601.48
SVENF04 0.0319 0.0111 0.0310 0.010 0.052 -0.134 -1.23 240.46 3598.10
SVENF05 0.0361 0.0110 0.0382 0.014 0.056 -0.227 -1.29 284.28 3597.56

Time span: July 1,2003-November 30,2017.



Table 3.8: Descriptive statistic Realized Measures

Mean St.dev Median Min Max Skew Kurt JB ARCH-LM

RV

TU 0.0000 0.0000 0.0000 0.000 0.000 6.769 67.99 728653.24 1323.89
FV 0.0000 0.0000 0.0000 0.000 0.000 7.280 100.74 1571018.84 132.67
TY 0.0000 0.0000 0.0000 0.000 0.001 11.910 302.96 14003348.42 11.59
US 0.0000 0.0000 0.0000 0.000 0.002 16.876 569.64 49372998.31 3.07

BZ 0.0000 0.0000 0.0000 0.000 0.000 5.877 49.66 326734.21 813.17
BL 0.0000 0.0000 0.0000 0.000 0.000 4.205 28.13 108172.50 865.00
BN 0.0000 0.0000 0.0000 0.000 0.000 12.596 349.86 15436397.10 5.81
BX 0.0001 0.0001 0.0000 0.000 0.001 4.102 28.27 108732.91 622.70

RVOL

TU 0.0010 0.0005 0.0008 0.000 0.005 3.050 13.71 34167.50 1886.08
FV 0.0023 0.0011 0.0020 0.001 0.014 2.382 10.63 20561.85 1186.47
TY 0.0036 0.0016 0.0032 0.001 0.025 2.627 16.10 43487.57 974.88
US 0.0062 0.0023 0.0057 0.002 0.044 2.723 23.01 84808.44 779.43

BZ 0.0007 0.0004 0.0006 0.000 0.004 2.612 9.97 326734.21 1647.20
BL 0.0018 0.0008 0.0016 0.001 0.008 1.844 5.23 108172.50 1640.83
BN 0.0032 0.0012 0.0029 0.001 0.020 2.389 15.77 15436397.10 934.25
BX 0.0072 0.0029 0.0066 0.002 0.029 1.780 5.37 108732.91 1510.55

RSV-P

TU 0.0007 0.0004 0.0006 0.000 0.005 3.609 20.25 70107.23 1422.80
FV 0.0016 0.0008 0.0014 0.000 0.010 2.697 13.36 31474.21 960.15
TY 0.0025 0.0012 0.0022 0.001 0.016 2.514 12.05 25865.67 943.94
US 0.0044 0.0018 0.0040 0.002 0.023 2.211 10.13 18515.70 843.37

BZ 0.0005 0.0003 0.0004 0.000 0.004 3.011 14.37 30452.68 1265.93
BL 0.0013 0.0006 0.0011 0.000 0.006 2.100 7.22 8762.03 1291.95
BN 0.0022 0.0009 0.0020 0.001 0.015 2.465 15.52 33265.93 727.08
BX 0.0050 0.0021 0.0046 0.002 0.024 1.891 6.39 6928.07 1306.90

RSV-N

TU 0.0007 0.0004 0.0006 0.000 0.005 3.093 14.49 37642.92 1555.67
FV 0.0016 0.0008 0.0014 0.000 0.013 2.862 17.88 53435.57 723.78
TY 0.0025 0.0012 0.0022 0.001 0.024 3.595 37.94 226074.95 475.96
US 0.0043 0.0017 0.0040 0.002 0.039 3.758 49.38 378238.91 421.14

BZ 0.0005 0.0003 0.0004 0.000 0.003 2.637 10.27 16715.77 1464.02
BL 0.0013 0.0006 0.0011 0.000 0.006 1.960 6.01 6454.57 1385.40
BN 0.0022 0.0009 0.0020 0.001 0.014 2.370 14.04 27569.95 843.11
BX 0.0050 0.0020 0.0046 0.001 0.022 1.795 5.93 6028.92 1250.21

Note: Time span of US and German Treasuries Realized measures are July 1,2003-November 
30,2017 and October 1, 2005-November 30, 2017 respectively.
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Conclusion

In the presented dissertation we show innovative approaches to risk modelling and 
empirical asset pricing. Specifically, we propose a method of obtaining more efficient 
estimates and forecasts of covariance matrices by generalizing already popular method 
(HAR); we demonstrate the possibility to identify common risk factors in the tails of 
panels of volatilities that drives the distribution of asset returns; and we formalize the 
basic quantile asset pricing equation and show its connection to factor asset pricing.

Chapter 1 introduces the Generalized Heterogeneous Autoregressive model intended 
for covariance matrix modelling and forecasting. We show that building a system of 
seemingly unrelated heterogenous autoregressions over Cholesky decomposed elements 
of realized covariance matrices delivers more accurate estimates and subsequent fore­
casts. Motivation to switch from Ordinary Least Squares to Generalized Least Squares 
estimation is the contemporaneous correlation in the residuals of the original HAR model. 
Using generalized least squares, we capture dependencies hidden in the residuals deliver­
ing more efficient estimates. In the empirical application, we study portfolios consisting 
of five, ten and fifteen stocks and we compare the performance of the GHAR against 
several benchmark models (HAR, Vector ARFIMA, Dynamic Conditional Correlation 
GARCH, RiskMetrics) during the period of the financial crisis. Results of our analysis 
suggest that GHAR provides more precise and more efficient covariance matrix forecasts 
and they translates to economic gains directly. Moreover, we study the economic benefit 
of estimating the realized covariance with more efficient multivariate realized kernel and 
sub-sampled realized covariance estimators.

Chapter 2 introduces the Panel Quantile Regression Model for Returns, an innovative 
approach of modelling commonalities in the quantiles of future returns using information 
from panels of realized measures and anticipated volatility. We build on the classical 
portfolio theory risk-return trade-off well documented in the literature. In the proposed 
approach, the panel of assets returns is modelled via ex-post and/or ex-ante volatility 
using panel quantile regression techniques. The penalized fixed effects estimator allows 
us to control the unobserved heterogeneity among financial assets and disentangle overall 
market risk into the systematic and idiosyncratic risks. In the empirical application, we 
study datasets containing the period of global financial crisis and compare the perfor­
mance against several benchmark models (RiskMetrics, Univariate Quantile Regression 
Model for Returns, portfolio version of Univariate Quantile Regression Model for Re-
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turns). We document more accurate estimates of our model that also translates into 
better forecasting performance. Overall, Panel Quantile Regression Model for Returns 
is dynamically correctly specified, its forecasting performance is statistically better than 
those of benchmark models in the economically important quantiles and it provides us 
with direct economic gains according to Global Minimum Value-at-Risk Portfolio and 
the efficient frontiers of the Value-at-Risk Return trade-off evaluation criteria.

Chapter 3 formalizes the basic pricing equation in the quantile set-up and concentrates 
on the quantile pricing of bond futures contracts. We work with quantile preferences 
instead of expectations and study asset pricing of economic agents differing in their level 
of risk aversion. In particular, we extend the results of de Castro and Galvao (2018) 
who derive quantile Euler equation using properties of quantile preferences as defined 
in Manski (1988) and Rostek (2010). We show that the quantile Euler equation can be 
extended into a stochastic discount factor representation of the quantile asset pricing 
equation. Moreover, we present a link to the factor models. In the empirical application, 
we focus on quantile pricing of the two, five, ten and thirty years US and German 
government bond futures contracts from the Chicago Board of Trade and the EUREX 
exchanges using ex-post measures of asset uncertainty and US forward rates. Results of 
our analysis demonstrate a significant influence of the Realized Measures on the quantiles 
of the treasury returns. In particular, Realized Volatility plays an important role in all 
but the median quantiles of the return distribution, whereas Realized Semivariances also 
partly explain the median variation of two German Treasuries. In contrast, forward rates 
are of very limited use in quantile asset pricing.
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R esponse to referees reports

I am grateful to all opponents for the discussion, valuable suggestions and all points 
raised. The opponents’ reports helped to improve dissertation significantly. The response 
to individual comments is reported below.

prof. Fredj Jawadi

Q: The introduction to the thesis needs to be improved to clarify the motivation behind 
the study. Why should we focus on these topics related to Risk Modelling and Empirical 
Asset Pricing?
A: Thank you for this general comment. In the final version of dissertation, we have 
improved the introduction by more detailed description of our motivation and main 
findings of each paper.

Q: The literature review in all three studies is rather short and does not make the con­
tribution of these new studies to the related literature clear enough.
A: We have tried to balanced the length of the literature review sections according to 
the comments/suggestions we have received from the referees in the peer-review process.

Q: In Chapter 1, given that the author uses HFD, why was it not possible to augment 
the CHAR with jump proxies and continuous volatility?
A: GHAR is a general way of covariance matrix modelling and can accommodate any 
proxy of the covariance matrix. In our work, we consider in literature already well estab­
lished methods such as Realized Covariance (Barndorff-Nielsen and Shephard, 2004a), 
Sub-Sampled Realized Covariance (Zhang et ah, 2005) and Multivariate Realized Ker­
nels Covariance estimator (Barndorff-Nielsen et ah, 2011). Certainly, covariance matrix 
estimates obtained from Realized Co-Range (Bannouh et ah, 2009), Two Scale Real­
ized Covariance (Zhang, 2011), jumps robust covariance estimator (Boudt et ah, 2012), 
block-wise Multivariate Realized Kernels (Hautsch et ah, 2012) and many other can be 
subsequently modeled by the GHAR, however, it is not the purpose of the paper to do 
the horse-race between various measures of realized covariation.

Q: In Chapter 1, is it possible to generalize the approach even for non-synchronous data?

128
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A : Yes - if we use estimator of the realized covariation that can handle non-synchronous 
data, we can model this estimates by GHAR.

Q: Why does the volatility proxy or estimate differ in Chapter 1 and Chapter 2?
A : The first chapter focuses on the multivariate volatility modelling and adopt vari­
ous estimates of the realized covariation, while the second chapter adopts univariate 
volatility measures. Since the development of new measures of realized covariation is 
challenging, not all univariate volatility measures have multivariate counterparts, e.g. 
Realized Semivariances were introduced in Barndorff-Nielsen et al. (2010) while Realized 
Semicovariances (Patton et ah, 2017) are still subject to research.

Q: In Chapter 2, I  would prefer the Harvey et al. (1997) test to the Diebold and Mariano 
(1995) test to evaluate the forecasting performance of the estimated model.
A : According to Harvey et al. (1997) modified version of Diebold-Mariano statistic is of 
following form:

a: n + 1 — 2h +  n m ff  — 1) n 1/2

Si
n

where St is original Diebold-Mariano statistic, h is the forecasting horizon and n  is the 
length of the evaluated sample. In our application we consider one-step-ahead forecast, 
i.e. h =  1, and out-off-sample length is 1613 days, i.e. n =  1613. Hence modified test 
statistic is S( =  0.9997 * St, which does not change results of our analysis.

Q: In Chapter 2, which test was applied to use fixed effect assumption?
A : Thank you for this excellent question. Currently, we are not aware of any reliable 
test for fixed effects that would be directly applicable in the panel quantile regression 
set-up. Panel quantile regression techniques are relatively new in the literature and are 
still subject to research.

Q: In Chapter 3, I  would like to see the results of the normality test, the ARCH test in 
Table 3.7, etc.
A : We have added results of the tests to the tables.

Q: Page I f .  What do you mean by Economic Criteria?
A : We evaluate covariance forecasts in terms of economic gains. In contrast to statistical 
evaluation where numbers of loss functions can be used to study unbiasedness of the 
forecasts, in the economic evaluation we directly compare profitability of the studied 
models. In our work, we consider Markowitz-like optimization where we study risk- 
return trade-off by plotting efficient frontiers; and Global Minimum Variance Portfolio, 
where we set assets weights in a way that total risk of the portfolio is minimized.

Q: The thesis includes a short general introduction and while it provides a concise in­
troduction to the three essays, it does not contain a conclusion. The conclusion always 
helps to give an overview of the different essays, recalls the assumption of the results and 
provides some criticisms, limitations and suggests potential future extensions.
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A: We have added short conclusion summarizing our main findings to the text.

M inor Comments:

Q: Page 104, the reference of De Castro and Galvao appears incomplete. Needs checking. 
A: Corrected.

Q: Page 6, page fO. Replace “paper” by “chapter”. The same remark applies for all 
chapters.
A: Corrected.

Q: Page 88, check the text fo r typos.
A: Corrected.

Q: Page 93. You need to adjust the size of the graphs.
A: Corrected.
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prof. Evzen Kocenda

Q: In order to obtain parameter estimates, optimization problem (2.2) is solved. Part 
of the optimization problem is the penalty term lambda that influences precision of the 
estimates alpha and beta. It is found that the choice of the lambda does not affect precision 
of beta estimates. The wording suggests that the choice of the lambda affects precision 
of alpha estimates. Would the precision of the alpha estimates change if the lambda was 
not set arbitrarily (as is the case in the paper) but based on a theoretical approach of 
the lambda selection? From the formal point, the sentence structure could be polished at 
places, and some typos are remaining in the text.
A: We have rewritten whole section 2.3 and added paragraphs about the theoretical 
selection of the penalty parameter A.

Q: Some references are incomplete.
A: Corrected.

Q: Abbreviations of the bonds of different length are provided in Table 1. These abbrevi­
ations are again used throughout the text and in Tables 2 and 3. Abbreviations in tables 
should be changed to year-length labels of bonds because when a reader gets to Table 2 
and Table 3, abbreviations are already forgotten.
A: Year-length information have been added to all tables and figures.

Q: The author notes that the signs of the beta “coefficients are consistent with classical 
risk-return trade-off (e.g., Value-at-Risk)”, meaning that there are “negative coefficients 
for quantiles below the median and positive coefficients for quantiles above the median. ” 
Empirical results then show a stronger influence in upper quantiles than in lower quan­
tiles for the US bonds, but reverse result is shown for the German bonds. Theoretically, 
coefficients at median should be zero. Is this true? It might be (based on the Figures 1 
and 2), but a more direct numerical assessment would be welcome given the asymmetry 
in empirical results between upper and lower quantiles. The asymmetries might also be 
more elaborated on. Results of the analysis where the Realized Semivariances are used 
bring even more asymmetries. One sort is due to the use of the Realized Semivariance 
instead of the Realized Variance. Another sort (dominance of results at different quan­
tiles for different bonds) cannot be explained with the different variance/semivariance 
measure only. It would be nice to see some, at least tentative, economic reasons for these 
asymmetries. Are they due to the differences in trading rules, issuing structure, liquidity, 
quantity of bonds issued, etc. ?
A: Thank you for this discussion. The median coefficients should be zero (or statis­
tically not different from zero) according to Efficient Market Hypothesis (Fama, 1970) 
which states that returns should be unpredictable since prices follow random-walk. The 
asymmetries in the tail behavior of the conditional return distribution when Realized 
Volatility serve as risk factor are partly due to differences in the estimation procedures. 
When we look at the Method of Moments estimates, there is higher absolute influence in 
the upper quantiles in all the maturities of both US and German Treasuries. In contrast, 
the quantile regression estimates indicate higher absolute influence in the lower quantiles
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in all the maturities of both US and German Treasuries except 2-years US bond. In case 
of multi-factor analysis with Realized Semivariances being risk factors, the asymmetries 
can be partly explained by the differences in Realize Measures and different risk assess­
ment by the Realized Semi variance. We agree with prof. Kocenda that institutional 
set-up (trading rules, issuing structure, etc.) will be important source of asymmetry and 
we will concentrate on it more in our future research.

To improve the understanding of our results we have added following text to disser­
tation: “Asymmetric influence documented in this multi-factor specification has many 
potential sources. Besides difference of the Realized Volatility and Realized Semivari­
ance, we attribute it also to the institutional differences of the US and EU markets, e.g. 
different trading hours (US market 23 hours a day vs I f  hours EU market), investors1 
perception of US Treasury futures being well established investment instruments (history 
of 30-years US Tresury futures date back to October 1982 while 30-year German Treasury 
futures were introduced in September 2005), etc.. Last but not least, liquidity connected 
to different trading hours also plays a role. ”

Q: The author states that the theory suggests that lower frequency returns exhibit certain 
degree of predictability while this is not valid for higher frequency returns. It would be 
useful to cite the source(s) to better back the claim.
A: We have added references to the text.

Q: Finally, careful editing would benefit the final version of the essay as it contains some 
errors in sentences structure and typos.
A: Corrected.
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Dr. M ichael E llington

Comments on the Frontmatter of the Thesis
Q: The abstract requires some rewording in order to enhance its readability. My recom­
mended changes can be found on the paper copy you receive at the pre-defence.
A: Corrected.

Q: Following the Contents, please insert a List of Tables and List of Figures followed by 
the page number each are located.
A: Corrected.

Q: Introduction, page 2, paragraph 2, sentence 5. Please reword, ending the sentence 
with in further work does not read well.
A: Corrected.

Q: The author might also consider finishing the thesis with a “Conclusion” that briefly 
summarises each paper followed by two or three paragraphs discussing directions for future 
research. In my opinion, having the frontmatter and an introduction with no concluding 
section is not logical.
A: We have added short conclusion summarizing our main findings to the text.

Comments for: On the Modelling and Forecasting Multivariate Realized 
Volatility: Generalized Heterogeneous Autoregressive (GHAR) Model.
Q: Section 1.5, page 16 concisely explains how the global minimum variance portfolio 
is obtained as cumulative measures. However, there lacks detail on how the annualised 
versions are obtained. Please clarify, and state the sample used as it is unclear if they 
are for the whole out of sample period, or not.
A: Corrected. Explanation of procedure added in text: ’’For annualized GMVP calcula­
tion we use annualized realized covariance of the whole out-off-sample period calculated 
as RC OVannualized = ZLiFFFMp

250

Q: How are the assets chosen for the 5 and 10 asset portfolios? Given the 15 stocks, there 
are 10 combinations of 5 asset portfolios and f5  combinations of 10 asset portfolios. I  
realise that f5  combinations of the 10 asset portfolios is inefficient, but examining the 
forecasting performance of all possible combinations of 5 asset portfolios might be worth 
considering and reporting within the appendix.
A: We have chosen assets included in portfolios according to market capitalization. De­
tails of procedure are following:

• we dived assets into three groups according to their market capitalization, e.g. first 
group contains assets with the highest market capitalization

• the portfolio consisting of five stocks contains assets from the first group

• the portfolio consisting of ten stocks contains assets from the first and second group
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• the portfolio consisting of fifteen stocks contains all assets in our dataset.

Since there is (x55) =  (151_5J)!5! =  3003 and (x®) =  =  3003 possible asset combina­
tions to create five and ten assets portfolios respectively we stick to simple ’’expanding” 
portfolio as described before.

Q: With regards the model confidence set, is ex =  0.95 or ex =  0.05? This needs to be 
clarified. I  would also like to see a justification fo r  using this to promote the benefits o f 
the GHAR model. In Table 1.3, the HAR model delivers a lower RMSE across MRK, 
RCOV, and Sub-Sampled RCOV. This is even more apparent fo r  the 10 and 15 asset 
portfolios in Table 1.6 and 1.7; where in the latter, the GHAR model only enters the 95% 
model confidence set fo r  RCOV 5min. To me this suggests that the HAR model delivers a 
better forecast than all models, and therefore this is the model that should be used; at least 
fo r  your data and sample. What happens i f  you examine the 99% model confidence set, 
does the GHAR model remain in the set o f the best forecasting models fo r  1 step ahead 
forecasts ?
A: We set alpha to 0.05 thus in notation of Hansen et al. (2011) we have 95% MCS, i.e. 
M % a =  M*95%. However, to make our results directly comparable with Chiriac and Voev 
(2011) we stick to their notation and report our results as 100*a MCS, i.e. 5% MCS. 
Since the Model Confidence Set is analogous to a confidence interval for a parameter 
estimates, all models included in the 95% MSC will be included also in the 99% MCS - 
Table 7, p. 490 in Hansen et ah (2011) shows that all models in 75% MSC are also in 
90% MCS.

Q: When looking at forecasting a longer time horizon, all models are in the model con­
fidence set fo r  a portfolio o f 5 stocks. To me, this test only allows you to drop certain 
forecasting models, whilst being unable to distinguish which model should be used. I  re­
alise that the differences in RMSEs are negligible, but with vast sums o f wealth at stake, 
practitioners would like to minimise losses.
A: Practitioners are mainly involved in applications that invole inverse of the covariance 
matrix forecasts. Since the RMSE is a statistical loss function that measures deviation of 
the forecast (not inverse of forecast) from the proxy, it does not tells us how the inverse of 
covariance matrix will look like and whether it exists. On the other hand, in the economic 
evaluation we work with inverse of covariance matrices and we get direct comparison of 
economic benefits. Disadvantage of statistical evaluation in high-dimensional problems 
is summarized in Bauwens et ah (2012) - ’’Virtually, all evaluation of covariance forecasts 
in high dimensional problems utilize ’’economic” loss functions, as opposed to statistical 
loss functions. The obvious rational for this choice is that the goal of high dimensional 
forecasts is to provide improvements over simple estimators such as the rolling window co- 
variance estimator. A less obvious reason is that unbiased forecasts are often undesirable 
since other considerations, namely that the forecast is well conditioned and invertible, 
are more important. Moreover, unbiasedness of the covariance does not translate into 
unbiasedness of the inverse”.
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Q: All Figures and Tables should be self contained. It is difficult to follow what the 
Figures and Tables are showing without detailed notes to accompany them.
A: Corrected.

Com m ents for: M easurem ent o f Com m on Risk Factors: A Panel Quantile 
Regression M odel fo r  Returns.
Q: On page f f ,  there is a discussion of the penalty term X within equation 2.2 reported 
on page f3. As stated, you arbitrarily pick this term and have conducted some robustness 
analysis regarding this. You also mention that there is a theoretical approach to selecting 
the value of this parameter, please clarify this method. Furthermore have you also tried 
this approach of selecting X outlined in Galvao and Montes-Rojas (2010)?
A: We have rewritten whole section 2.3 and added paragraphs about the theoretical 
selection of the penalty parameter A.

Q: There are typos in equations 2.3, 2.f, and 2.5. All the realised volatility measures are 
missing the i subscripts.
A: Corrected.

Q: Page 45, you refer to equation 3.28, yet there is no equation 3.28 in this paper. Please 
refer to correct equation.
A: Corrected.

Q: On page 46, you state you decided to use a Value at Risk (VaR) framework because 
forecasts we obtain from the Panel Quantile Regression Model for Returns are by defini­
tion semi-parametric VaRs. To the unfamiliar reader it is unclear that this is the case. 
Therefore you should explicitly state why they are semi-parametric VaRs in a footnote, 
or within the main text.
A: We have added footnote wit following text “According to Jorion (2007) p.17 ’’Value- 
at-Risk describes the quantile of the projected distribution of gains an losses over the 
targeted horizon. ” Since the VaR is a quantile of returns, and we model quantiles of 
returns directly by panel quantile regression, we therefore obtain semi-parametric VaR 
estimates. ”

Q: In Section 2.5 you conduct a simulation study to examine the in and out of sample 
fit of the model under a variety of different error distributions. Could you please clarify 
the number of stocks you include within the simulation study. Presumably it is 29 to 
maintain consistency with your empirical application.
A: Corrected - we have added to main text that we are simulating 29 time series.

Q: Page 53, paragraph 1, final sentence you state that multivariate random numbers 
are more homogeneous than the univariate case. I  realise that you impose a covariance 
structure which induces dependence, but does this really translate into an increase in the 
degree of homogeneity? This seems to conflict the final paragraph on page 53, where you 
state that PQR outperform UQR in more heterogeneous data created by univariate error



R esponse  to  r e fer ee s  repo rts 136

distributions. Currently these paragrahs are slightly confusing to the reader. Please clarify 
what you mean, and reword accordingly.
A : In our approach, we apply panel quantile regression to capture unobserved hetero­
geneity among the data. If there is no/limited heterogeniety in the data present, benefits 
of using PQR will be limited and the univariate quantile regression should provide bet­
ter fit. When we simulate 29 time series using univariate error distribution, for all the 
series errors will be independent. In contrast, when we simulate data from the multi­
variate error distribution with the given covariance structure we impose certain degree 
of dependence in the data. Therefore, the data simulated from univariate error distri­
bution might show higher degree of unobserved heterogeneity as we document in the 
Monte-Carlo experiment.

Q: Why do you use only 29 stocks based on market capitalisation and liquidity? Can you 
please clarify the criteria adopted that filters out stocks based on market capitalisation 
and liquidity? I  realise that you will need sufficient liquidity in order to adequately fit the 
model, but does this not mean that the proposed model will not work well for stocks with 
lower liquidity levels?
A : We have chosen 29 stocks with the highest market capitalization at the NYSE in our 
original application that have full day of continuous trading without periods of trade 
interruption. As a robustness check we have added new section that study almost all 
constituents of the S&P 500 index, i.e. we have analyzed 496 assets.

Q: Page 58, paragraph 1. This does not read well. Please reword.
A : Corrected.

Q: On page 59, you relate the findings of your in-sample analysis to new asymmetry. 
I  would like to see a discussion of what the implications of this news asymmetry is for 
investors. I  would also like to see your results linked to those within the literature. Ob­
viously this phenomenon is not new so it should be trivial to find papers that relate well 
with your findings.
A : Thank you for the comment. Actually, we did not find new asymmetry, we just doc­
ument the validity of the so called “bad news effect”. As stated by Soroka (2006) “There 
is a growing body of work suggesting that responses to positive and negative information 
are asymmetric that negative information has a much greater impact on individuals1 at­
titudes than does positive information ...”. In our work, positive semivariance is formed 
by the positive news, i.e. positive returns, and the negative semivariance is formed by 
the negative news, i.e. negative returns. Since our results show higher influence of the 
negative semivariance on the quantiles of future returns we document positive/negative 
news asymmetry. The same logic was previously applied in building asymmetric GARCH 
models, e.g. TGARCH(Rabemananjara and Zakoian, 1993), EGARCH (Nelson, 1991) 
etc..

Q: In Figures 2.1, 2.2, and 2.3 there are o on each of the plots that are not defined. 
What are these? they should be noted in the legend and the notes.
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A: Circles, o, represents outliers in the boxplots.

Q: Page 60, paragraph 2, sentence 2: you describe unconditional coverage of 89.9% might 
be better described as perfect fit for PQR-RSV. No model is perfect, please remove this. 
I  understand what you are saying, but following sentence stressing that you cannot reject 
the null hypothesis of correct unconditional coverage is sufficient.
A: Corrected.

Q: When you forecast using the PQR model, are you assuming that the stock will remain 
in is current quantile? presumably this is case since when fitting the model a(r) and /3(t) 
are used to generate the forecast.
A: We do not explicitly assume that the stock will remain in a certain quantile, we forecast 
conditonal return distribution and we condition these forecasts on the past volatility.

Q: Section 2.6.3, paragraph 3, sentence 2, reword to Except for the median, the PQR-RV 
model performs best in all quantiles.
A: Corrected.

Q: For the Value at Risk application. As stated in the text the %VaR are the forecasts of 
the asset returns in a given quantile. Is the portfolio VaR for a given quantile therefore 
made up of assets that belong only to this quantile at the given period or all 29 assets? 
I f so, is the covariance matrix therefore just the realised covariances of these assets on a 
given day?
A: In this application, portfolio is always composed of the 29 assets, and for each day 
we use Relaized Covariance estimates.

Q: As stated in section 2.6.3 the Mean-Variance analysis is carried out using annualised 
returns and variance. It is not clear what sample is being used to span Figure 2.f. Please 
clarify exactly how this optimisation is computed. For instance, is the model estimated 
using the full sample (i.e. July 1, 2005 to December 31, 2015? which means the efficient 
frontier is calculated at December 31 2015 and then annualised?).
A: We have added details of annualised returns and VaR calculation to the text. The 
sample used in the comparison is whole out-of-sample period.

Q: It might be worth reporting, within the appendix, the efficient frontiers calculated at 
the following dates:

1. December 31, 2006

2. December 31, 2008

3. December 31, 2010

These periods correspond to boom, bust and recovery periods. In each case my recom­
mendation would be to estimate the model using all data available (i.e. July 1, 2005- end 
date).
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A: Unfortunately, the suggested estimation procedure will not work in our set-up as 
we are using rolling window procedure and always make one-step-ahead forecasts, these 
forecasts are further annualized and used as input for efficient frontier computation.

Q: Should the global minimum VaR presented in Table 2.5 correspond to the global min­
imum VaR figures presented in Figure 2-4? If not, why not?
A: In our set-up, no. Since we do not allow short-selling in the Markowitz like opti­
mization, the results of GMVaRP and efficient frontiers are not going to be exactly the 
same.

Q: Within section 2.6.3, I  would like to see a discussion of the implications these results 
have for investors from an economic perspective. It seems to me that the major benefits 
are realised within this section.
A: The direct implication of our results is the better Value-at-Risk - return trade-off, 
hence, the economic agent facing restrictions/limits on the riskiness of her position might 
be better off using our approach. The other implications (e.g. building a trading strategy) 
depend on the context of application of our general approach and are beyond the scope of 
the presented paper. For example, the trading strategy will require incorporation of the 
transaction costs, limits on the risky position, short-selling restriction and many other 
consideration not connected to our original intention of modelling tail risk in panels of 
returns via volatility.

Q: Table 2.6, page 66. Please provide notes for the table of descriptive statistics. What 
sample is used to compute these statistics?
A: Corrected.

Com m ents for: D ynam ic Quantile M odel fo r  Bond Pricing.
Q: In equations 3.14-3.23, Tlt is not defined. While I  realise this is the information 
set, it should be defined prior to paragraph 3 sentence 1 on page 80 where you discuss 
conditioning only on returns. I  would also consider using Ft to denote the information 
set so as not to confuse readers with Q.
A: We decided to stick to Qt notation for information set because we use T  to denote 
general random variable. We have defined Qt right after equation 3.15.

Q: Have you considered models that are over-identified? I  realise that you state this is 
computationally demanding, but in my opinion this is not an excuse and I  imagine a 
referee for a journal with impact factor would ask for this.
A: We have considered also over-identified models with varying number of lagged Re­
alized Volatility serving as instruments and we obtained qualitatively and also almost 
quantitatively identical results, therefore we are not presenting it explicitly in the text.

Q: The results of your single factor models using the Method of Moments Estimator (MM) 
and standard Quantile Regression (QR) across both bond markets are qualitatively similar. 
Given that you then move on to multi-factor models estimated only using conventional 
QR methods, I  think the MM estimator of de Castro et al. (2018) can relegated to the
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appendix, as well as the discussion of the GMM estimator in detail. To me, it is important 
to be consistent with the estimation method of your single and multi factor models. The 
MM estimator of your single factor models, as well as an investigation of over-identified 
models can be provided in the appendix as a robustness exercise. To me, the contribution 
of your paper is not the estimation method, but the modification of the theoretical results 
of de Castro and Galvao (2018) to an asset pricing framework.
A: Thank you for this comment. While we agree that our contribution is the modification 
of the theoretical results of de Castro and Galvao (2018) it is also the empirical application 
using proper estimation method. As it is common in the Classical Asset Pricing to work 
within GMM framework because it offers you great flexibility, we want to show that 
currently also quantile version of the estimator is available, although it has some limits. 
Therefore, we show that using “proper” (GMM) method we obtain results that are very 
similar to less complicated standard quantile regression framework.

Q: Page 88, you state that the median anomalies require future research since they are 
in violation of the Efficient Market Hypothesis. Can you please clarify how and why this 
is the case? What are the implications for this violation?
A: Efficient Market Hypothesis states that returns should be unpredictable since prices 
follow random-walk. In our case, however, we document that for certain assets median 
coefficient estimates are statistically different from zero which might translates to theo­
retical predictability of median returns.

Q: Following up from the above comment, It is not satisfactory to state that this requires 
further research without specifying exactly what could/should be done. I  think a useful 
extension to this project would be a to devise a trading strategy that takes advantage of 
this violation. I f this is indeed correct, a footnote stating how further research could be 
conducted should be included.
A: While we agree that natural extension of this project might be a trading strategy 
utilizing advantages of quantile asset pricing, it is well beyond the scope of this paper to 
formulate it.

Q: In Section 3.5.2 you present results from multi-factor models using the QR estimation 
method only. I f you do not relegate the MM (and recommended GMM) results of single 
factor models to the Appendix, please justify why you are using only QR methods here. 
A: In the multi-factor model we rely on the quantile regression only since the imple­
mentation of multiple moment conditions in quantiles is still the open question in the 
literature.

Q: Page 92, you state that comparing the total dispersion of RS+, RS- that US Treasuries 
seem to be more heterogeneous relative to German Treasuries. There is no economic 
reasoning behind why this might be the case. There should be a few sentences spent 
convincing the reader of possible justification for this. Does the literature find results 
supporting your findings?
A: We have tried to identify possible source the heterogeneity and we have added expla­
nation to the text. We will elaborate on this issue in our future research.
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Q: When you estimate models in the spirit of Cochrane and Piazzesi (2005), your results 
directly contradict their findings. You address this by stating it is the structure of the 
dataset, can you confirm this by converting your results to a monthly frequency and 
re-estimating the models to make sure?
A: Our dataset converted to monthly frequency results in 174 months. We have re- 
estimated our multifactor model and find out that three-year and five-year forward rates 
might by useful in modeling condition bond returns distributions. Our results thus partly 
match findings of Cochrane and Piazzesi (2005).



Ta,ble 3.9: US treasuries - QR forward rates - monthly frequency

0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.05 0.1 0.25 0.5 0.75 0.9 0.95

TU FV

const 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)

SVENF02 -0.45 -0.18 -0.44 -0.3 -0.06 -0.05 -0.06 -0.86 -1.15 -0.73 -0.7 -0.27 -1.02 -1.85
(-0.83) (-0.55) (-0.67) (-0.53) (-0.45) (-0.77) (-1.03) (-2.36) (-1.85) (-1-37) (-1-28) (-1-76) (-3.24) (-3.06)

SVENF03 1.57 0.53 1.45 1.03 0.29 0.13 0.35 2.79 3.48 2.44 2.46 1.17 3.77 7.15
(-1.39) (-1-41) (o.n) (0.24) (-0.41) (-2.63) (-3.91) (-0.03) (-5.35) (1-16) (-0.48) (-1.94) (-1.83) (-3.47)

SVENF04 -1.86 -0.57 -1.73 -1.28 -0.46 -0.17 -0.61 -2.77 -3.64 -2.88 -3.02 -1.75 -5.01 -9.76
(-3.66) (-2.44) (-2.64) (-2.28) (-2.03) (-4.16) (-5.75) (-5.54) (-8.06) (-6.06) (-4.79) (-7.43) (-15.74) (-17.83)

SVENF05 0.69 0.19 0.71 0.56 0.25 0.11 0.36 0.71 1.25 1.18 1.29 0.9 2.3 4.48
(-0.66) (-0.28) (0.09) (0.17) (-0.21) (-0.75) (-1-74) (-0.59) (-2-57) (0.28) (0.01) (-0.78) (0.31) (-1-52)

TY US

const 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(0) (0) (0) (0) (0) (0) (0) (0) (-0.01) (-0.01) (0) (0) (0) (0)

SVENF02 -0.64 0.03 -0.83 -1.16 0.16 -1.01 -2.73 3.59 -0.02 -0.28 -2.91 -1.58 -2.36 -2.9
(-1-76) (-1-67) (-2-45) (-2.21) (-2.87) (-4.46) (-5.62) (-1.56) (-2.22) (-2-31) (-4.08) (-4.79) (-6.6) (-6.23)

SVENF03 1.74 -0.63 2.74 3.98 -0.3 3.86 10.21 -13.93 -1.83 0.56 10.1 6.8 9.53 11.76
(-5.43) (-9-4) (-0.65) (-0.63) (-2.28) (-1-12) (-3.23) (-18.13) (-19.95) (-6.31) (-2.17) (-0.6) (1-45) (2-2)

SVENF04 -0.87 1.56 -3.06 -4.81 0.01 -5.62 -13.69 20.34 4.85 -0.05 -11.94 -9.68 -13.93 -16.91
(-5-27) (-6.91) (-10.93) (-10.63) (-12.49) (-20.88) (-26.62) (-2.63) (-8.99) (-8.97) (-16.97) (-18.91) (-31.11) (-32.29)

SVENF05 -0.4 -1.01 1.15 2.02 0.18 2.85 6.23 -10.07 -2.94 -0.23 4.81 4.52 6.85 8.08
(-3.75) (-3.76) (-1-24) (0.35) (-0.85) (1.36) (-0.26) (-12.13) (-10.97) (-3.62) (-1-18) (0.74) (2-6) (2.96)
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Q: I  would like to see a 5 and a 6-factor model combining realised volatility with the 
four forward rates, and realised semi-variances with the four forward rates. Provided the 
coefficients for volatility are consistent with your single factor models, you would be able 
to state the following: At higher frequencies volatility drives bond prices after controlling 
for forward rates. Therefore, the implication for investors possibly re-balancing on a daily 
basis and optimising quantiles of their utility function is that volatility matters.
A: Below we provide results of the 5 and 6 factor models. Overall we can see that results 
of our previous analysis where we estimate quantile regressions using realized measures 
only do not change much. There are some minor differences, but they do not change our 
previous conclusions.



Table 3.10: US treasuries - QR forward rates + Realized Volatility - 5 factor model

0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.05 0.1 0.25 0.5 0.75 0.9 0.95

TU FV

const 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)

SVENF02 0.12 0.07 0.04 0.01 0 0.01 -0.04 0.41 0.26 0.03 0.15 0.16 0.2 -0.04
(0.08) (0.05) (0.04) (0.04) (0.04) (0.06) (0.07) (0.25) (0.16) (0.12) (o.n) (0.12) (0.15) (0.2)

SVENF03 -0.4 -0.22 -0.14 -0.07 -0.01 -0.06 0.11 -1.3 -0.74 -0.02 -0.56 -0.62 -0.75 0.02
(0.26) (0.16) (0.13) (0.12) (0.13) (0.19) (0.22) (0.85) (0.54) (0.41) (0.38) (0.42) (0.5) (0.69)

SVENF04 0.4 0.21 0.15 0.08 0.02 0.11 -0.1 1.44 0.74 -0.07 0.62 0.7 0.86 -0.02
(0.31) (0.19) (0.15) (0.15) (0.15) (0.23) (0.27) (1-02) (0.65) (0.49) (0.46) (0.5) (0.6) (0.83)

SVENF05 -0.14 -0.07 -0.06 -0.03 0 -0.04 0.05 -0.56 -0.27 0.04 -0.22 -0.23 -0.29 0.06
(0.12) (0.08) (0.06) (0.06) (0.06) (0.09) (o.n) (0.42) (0.27) (0.2) (0.19) (0.2) (0.25) (0.34)

RV -1.47 -1.05 -0.44 0.11 0.69 1.2 1.32 -1.51 -1.08 -0.47 -0.03 0.46 0.93 1.17
(0.13) (o.n) (0.06) (0.08) (0.08) (o.i) (o.n) (0.16) (o.i) (0.07) (0.08) (0.08) (0.09) (0.08)

TY US

const 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)

SVENF02 0.63 0.23 -0.04 0.2 0.12 0.01 0.06 0.67 0.33 0.1 0.26 -0.25 -0.28 0.33
(0.33) (0.23) (0.2) (0.18) (0.18) (0.23) (0.31) (0.56) (0.42) (0.28) (0.33) (0.29) (0.42) (0.48)

SVENF03 -2.03 -0.83 0.2 -0.71 -0.27 0.07 -0.23 -2.47 -1.01 -0.33 -0.94 0.9 1.15 -1.01
(1-14) (0.79) (0.69) (0.65) (0.63) (0.81) (1-07) (1.96) (1-45) (0.98) (1-15) (i.oi) (1-51) (1.69)

SVENF04 2.33 1.01 -0.29 0.75 0.04 -0.3 0.19 3.24 1.05 0.39 1.01 -1.28 -1.72 0.79
(1.36) (0.97) (0.83) (0.78) (0.75) (0.98) (1-3) (2.39) (1-79) (1-2) (1-41) (1-24) (1-87) (2.06)

SVENF05 -0.95 -0.42 0.12 -0.25 0.12 0.24 0.02 -1.42 -0.36 -0.19 -0.35 0.63 0.85 -0.11
(0.55) (0.4) (0.34) (0.32) (0.31) (0.41) (0.54) (0.99) (0.75) (0.5) (0.59) (0.52) (0.78) (0.85)

RV -1.38 -1.19 -0.59 -0.07 0.49 0.98 1.24 -1.52 -1.24 -0.86 -0.16 0.48 1.06 1.2
(0.15) (o.i) (o.i) (0.09) (0.08) (o.n) (0.12) (0.17) (o.n) (0.09) (0.09) (0.09) (0.12) (0.15)
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Ta,ble 3.11: US treasuries - QR forward rates + Realized Semivariances - 6 factor model

0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.05 0.1 0.25 0.5 0.75 0.9 0.95

TU FV

const 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)

SVENF02 0.13 0.06 0.03 0.02 0.01 -0.02 -0.06 0.4 0.3 0.06 0.16 0.17 0.15 -0.01
(0.07) (0.05) (0.04) (0.04) (0.04) (0.05) (0.06) (0.21) (0.15) (0.12) (o.n) (o.n) (0.17) (0.2)

SVENF03 -0.42 -0.19 -0.12 -0.08 -0.04 0.04 0.2 -1.26 -0.91 -0.11 -0.59 -0.67 -0.57 -0.14
(0.24) (0.16) (0.13) (0.12) (0.13) (0.18) (0.21) (0.74) (0.51) (0.41) (0.39) (0.39) (0.6) (0.68)

SVENF04 0.42 0.18 0.13 0.1 0.06 -0.02 -0.21 1.4 0.96 0.04 0.65 0.77 0.64 0.22
(0.29) (0.19) (0.15) (0.14) (0.15) (0.21) (0.25) (0.89) (0.62) (0.49) (0.46) (0.47) (0.71) (0.82)

SVENF05 -0.15 -0.06 -0.05 -0.04 -0.02 0.01 0.1 -0.55 -0.36 0.01 -0.23 -0.27 -0.21 -0.05
(0.12) (0.08) (0.06) (0.06) (0.06) (0.09) (0.1) (0.36) (0.25) (0.2) (0.19) (0.19) (0.29) (0.34)

RSV P -0.71 -0.76 -0.4 0.13 0.82 1.32 1.47 -1.01 -0.67 -0.38 -0.08 0.63 1.04 1.27
(0.26) (0.2) (0.13) (0.17) (0.14) (0.19) (0.19) (0.27) (0.16) (0.13) (0.14) (0.13) (0.19) (0.19)

RSV N -1.37 -0.8 -0.26 0.05 0.18 0.44 0.5 -1.16 -0.89 -0.31 0.05 0.1 0.44 0.3
(0.14) (0.21) (o.n) (0.15) (0.14) (o.n) (0.12) (0.23) (0.17) (0.12) (0.14) (0.1) (0.18) (0.09)

TY US

const 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)

SVENF02 0.55 0.21 -0.09 0.21 0.07 0.03 0.05 0.87 0.36 0.09 0.24 -0.28 -0.25 0.16
(0.32) (0.22) (0.19) (0.18) (0.18) (0.24) (0.32) (0.54) (0.4) (0.27) (0.33) (0.29) (0.39) (0.47)

SVENF03 -1.8 -0.76 0.35 -0.74 -0.12 0.03 -0.2 -3.37 -1.16 -0.3 -0.83 0.95 1.04 -0.38
(1.08) (0.76) (0.66) (0.64) (0.62) (0.84) (1-11) (1.88) (1-41) (0.96) (1-15) (i.oi) (1.39) (1.65)

SVENF04 2.06 0.93 -0.45 0.79 -0.11 -0.26 0.15 4.49 1.27 0.36 0.85 -1.29 -1.53 -0.02
(1-28) (0.93) (0.8) (0.78) (0.74) (1) (1.35) (2-3) (1-74) (1-18) (1-4) (1-23) (1-73) (2.02)

SVENF05 -0.84 -0.39 0.19 -0.27 0.17 0.23 0.04 -1.98 -0.46 -0.17 -0.27 0.61 0.74 0.24
(0.52) (0.38) (0.33) (0.32) (0.3) (0.41) (0.56) (0.96) (0.74) (0.49) (0.58) (0.52) (0.73) (0.84)

RSV P -0.98 -0.78 -0.61 -0.03 0.52 1.05 1.14 -0.64 -0.77 -0.63 -0.11 0.39 1.19 1.53
(0.25) (0.16) (0.16) (0.16) (0.13) (0.18) (0.2) (0.27) (0.16) (0.13) (0.15) (0.15) (0.19) (0.26)

RSV N -1.04 -0.95 -0.26 -0.06 0.26 0.44 0.57 -1.54 -1.05 -0.63 -0.14 0.34 0.39 0.27
(0.23) (0.19) (0.17) (0.16) (0.12) (0.15) (0.13) (0.23) (0.22) (0.16) (0.16) (0.15) (0.12) (0.26)
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Q: All Figures and Tables in paper 3 should be self-contained. Therefore, I  recommend 
providing a more detailed set of notes associated to each one to enhance the readability of 
this paper. Specifically for all figures in this paper, please state whether the % confidence 
intervals.
A: Corrected.

Q: Tables presenting the descriptive statistics should state the sample used.
A: Corrected.

Comments for Bibliography Q: There are some inconsistencies within your bibliog­
raphy. For example, on page 102 Journal of Financial Econometrics is cited as Journal 
of Financial Econometrics and Journal of financial econometrics. In other cases, papers 
published in Econometrica sometimes read Econometrica: Journal of the Econometric 
Society or Econometrica. There are other typos and inconsistencies outlined in the paper 
copy that will be provided to you at the pre-defence.
A: Corrected.
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