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ABSTRACT

This thesis consists of three papers that focus on risk modelling and empirical asset pric-
ing. In the first paper, we introduce a new model for multivariate volatility modelling and
forecasting. By building a system of seemingly unrelated heterogenous autoregressions,
we obtain more precise and efficient estimates of the covariance matrices. The complex
forecasting exercise carried out on data from the turbulent period of the global finan-
cial crisis 2007-2008 demonstrates direct economic benefits of our approach. The second
paper moves our research from expected utility to quantile preferences. We concentrate
on commonalities in the volatility series that influence the distribution of asset returns.
Specifically, we develop a Panel Quantile Regression Model for Returns that can control
for otherwise unobserved heterogeneity among financial assets, and allows us to exploit
common factors in the panel of volatilities. Results of our empirical application highlights
the benefits of our newly proposed model from an economic and statistical point of view.
The last paper generalizes our previous results. We show that quantile Fuler equation
can be transformed into a basic quantile pricing equation and has a stochastic discount
factor/pricing kernel representation. We also provide an important link to quantile fac-
tor models. The empirical part of this paper demonstrates the validity of our theoretical
findings using data of the US and German Treasury futures contracts.



CZECH ABSTRACT

Tato prace se skladd ze t¥i clanku, které se zaméruji na modelovani rizik a empir-
ické ocenovani aktiv. V prvnim ¢lanku pfedstavujeme novy model pro modelovani a
prognézovani vicerozmérné volatility. Budovanim systému zdanlivé nesouvisejicich het-
erogennich autoregresi ziskdme presnéjsi a uc¢innéjsi odhady kovarian¢énich matic. Kom-
plexni prognézovani dat z turbulentntho obdobi globdln{ finanéni krize roka 2007-2008
ukazuje ptimé ekonomické piinosy naseho pristupu. Druhy ¢lanek posouva nas vyzkum
z ocekdvaného uzitku na kvantilové preference. Zamétrujeme se na spolecné rysy rady
volatility, které ovliviiuji rozdélenf vynost aktiv. Konkrétné jsme vyvinuli Panel Quan-
tile Regression Model for Returns, kterym muzeme kontrolovat jinak nepozorovanou
heterogenitu mezi finanénimi aktivy a umozinuje nam zachytit spolecné faktory v pan-
elu volatility. Vysledky nasi empirické analyzy ukazuji vyhody naseho nové navrzeného
modelu jak z ekonomického, tak i statistického hlediska. Posledni ¢lanek zobectiuje nase
predchozi vysledky. Ukazujeme, ze kvantilova Eulerova rovnice muize byt transformovana
na zakladni kvantilovou cenovou rovnici a ma reprezentaci stochastického diskontniho
faktoru / cenového jadra. Poskytujeme také dulezité spojeni s kvantilovymi modely.
Empirickd ¢dst této prace demonstruje platnost nasich teoretickych poznatkua s vyuzitim
udaju z terminovanych kontraktu z USA a Némecka.
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INTRODUCTION

This dissertation consists of three papers that focus on risk modelling and empirical
asset pricing. Specifically, the first paper contributes to the literature by providing a
method of obtaining more efficient estimates and forecasts of covariance matrices. The
second paper identifies common risk factors in panels of volatilities that drives the dis-
tribution of asset returns and the third paper introduces basic quantile asset pricing
equation with an application to factor pricing. All papers result from the natural collab-
oration with my supervisor Jozef Barunik who is also co-author of the papers. Therefore,
in the rest of the text I stick to “we” when referring to the author. A short summary of
the papers follows.

In Chapter 1 - On the modelling and forecasting multivariate realized volatility: Gen-
eralized Heterogeneous Autoregressive (GHAR) model, we introduce a multivariate ex-
tension of the popular Heterogeneous Autoregressive model. This paper is published in
Journal of Forecasting (Cech and Barunik, 2017).

Volatility modeling and forecasting are key issues in the area of financial econometrics.
In empirical work, researchers and practitioners often study stock market data and find
dependencies in the second moment of these data. As shown by Engle (1982), Bollerslev
(1986), Nelson (1991) and many others, volatility of financial time series is anything but
constant. To deal with this problem, a new family of parametric univariate condition-
ally heteroscedastic models represented by the Generalized Autoregressive Conditional
Heteroscedasticity (GARCH) was developed in the eighties and nineties.

While the search for more accurate volatility models has been the focal point of
many researchers, interdependencies among assets and subsequent comovements are of
great importance in practice (e.g., asset allocation, portfolio management, risk manage-
ment, etc.). The natural extension of the family of volatility models is to model the
whole covariance structure of the given assets. This gives rise to the development of the
multivariate GARCH models. Although the transition from univariate to multivariate
GARCH models might seem to be straightforward, it possesses several challenges. Multi-
variate volatility modeling nowadays offers numerous research opportunities in the form
of extension to, or innovation of, current methodologies; as well as developing techniques
for solving drawbacks of current approaches (e.g., reduction of dimensionality). Our
research contributes to these efforts by introducing a generalization of Heterogeneous
Autoregressive (HAR) Model of Corsi (2009).



Increased availability of high-frequency data in the last decade resulted in the develop-
ment of the new non-parametric approach of treating volatility. In particular, model-free
estimator of Realized Volatility in Andersen et al. (2001) makes volatility observable.
Theoretical properties of this estimator have been further studied in Andersen et al.
(2003) and Barndorff-Nielsen and Shephard (2004a). Barndorff-Nielsen and Shephard
(2004a) moreover introduce the concept of Realized Covariation, which is a multivariate
extension of Realized Volatility. Market microstructure noise can significantly affect Re-
alized Covariance estimates resulting in not positive semi-definite matrices. A solution to
this problem is offered by Barndorff-Nielsen et al. (2011) and their Multivariate Realized
Kernels estimator that guarantees the positive semi-definiteness of the covariance matrix.

All the realized measures, univariate or multivariate, are ex-post measures of return
(co)variation. These measures need to be further modeled, so they are of some practical
use. The research devoted to entire covariance structure modelling is ongoing and grow-
ing. Part of the researchers makes use of variants of the Wishart distribution to model
the structure of the realized covariances (Gouriéroux et al., 2009; Bonato, 2009; Bonato
et al., 2013; Jin and Maheu, 2013). Another stream of researchers decompose realized
covariance matrices by matrix exponential-logarithm transformation or Cholesky decom-
position and use standard time-series techniques afterwards (Bauer and Vorkink, 2011;
Chiriac and Voev, 2011). The advantage of the decomposition approach is a guarantee of
the positive-semidefiniteness of the covariance matrix forecasts. Our work contributes to
the literature by introducing Generalized Heterogeneous Autoregressive Model (GHAR),
a multivariate extension of the popular HAR Model intended for covariance matrix mod-
elling and forecasting.

In our work, we stick to the covariance decomposition stream of literature. Specifi-
cally, we model Cholesky factors of the realized covariance matrices as a system of the
seemingly unrelated heterogeneous autoregressions. Motivation to build a system of the
seemingly unrelated regression (Zellner, 1962) over HAR is the contemporaneous correla-
tion in the residuals of the simple HAR model. The advantage of this approach is that we
estimate a multivariate HAR model, which will capture the separate dynamics of the vari-
ances and covariances, but also possible common structure. Moreover, it will also yield
more efficient estimates - the error terms from simple HAR are heteroscedastic (Corsi
et al., 2008), which makes the coefficient estimates less efficient. Furthermore, when there
is no information about dependence between equations left in the residuals estimator will
converge to a simple Ordinary Least Squares (OLS) estimates, as the diagonal weighting
matrix in generalized regression will reduce the estimates to OLS. Therefore, using gen-
eralized least squares, we capture dependencies hidden in the residuals delivering more
efficient estimates.

In the empirical application, we study portfolios consisting of five, ten and fifteen?
highly liquid stocks from New York Stock Exchange. We begin our analysis with the one-

! Apple Inc. (AAPL), Exxon Mobile Corp. (XOM), Google Inc. (GOOG), Wal-Mart Stores (WMT),
Microsoft Corp. (MSFT), General Electric Co (GE), International Business Machines Corp. (IBM),
Johnson & Johnson (JNJ), Chevron Corp. (CVX), Procter & Gamble (PG), Pfizer Inc. (PFE), AT&T
Inc. (T), Wells Fargo & Co (WFC), JP Morgan Chase & Co (JPM) and Coca-Cola Co. (KO).



step-ahead forecasts for the portfolio consisting of five stocks, whereas we leave portfolios
of ten and fifteen stocks and also five- and ten-step ahead forecasts as a robustness check
showing that the proposed methodology also works well at larger dimensions and different
forecasting horizons. Our dataset consists of tick data and covers the period of Global
Financial Crisis, i.e. July, 1 2005 to January, 3 2012 with 1623 trading days. As it is
standard in the literature we explicitly exclude weekends and bank holidays (New Year’s
Day, Independence Day, Thanksgiving Day, Christmas) to ensure sufficient liquidity.
From the tick data, we calculate realized covariance matrices using Multivariate Realized
Kernels estimator at one-minute frequency, Realized Covariance at one and five-minute
frequencies and Sub-Sampled Realized Covariance at five, ten, fifteen and twenty minute
frequency. Moreover, we calculate also open-close daily returns. The model estimation
and forecasting exercise are carried out using rolling window estimation with a fixed
length of 750 days, i.e. three years.

We compare the performance of the GHAR against two covariance based benchmark
models (HAR, Vector ARFIMA (Chiriac and Voev, 2011)), and two return based bench-
marks (Dynamic Conditional Correlation GARCH (Engle, 2002), RiskMetrics (Longer-
staey and Spencer, 1996)) primarily according to economic criteria, i.e. Mean-Variance
efficient portfolio of Markowitz (1952) and Global Minimum Variance Portfolio (GMVP)
using cumulative and annualized risk. The rationale behind is the importance of well-
conditioned and invertible forecasts rather than focusing on unbiasedness, as an unbiased
forecast does not necessarily translate into an unbiased inverse (Bauwens et al., 2012).
As a robustness check we also provide a ranking of the models based on the Root Mean
Squared Error (RMSE) loss functions based on the Frobenius norm and to test the
significant differences of competing models, we use the Model Confidence Set (MCS)
methodology of Hansen et al. (2011). The MCS procedure sequentially eliminates the
worst-performing model from the full set of competing models when the null about the
same forecasting performance is rejected.

Overall, the results of our analysis suggest that GHAR provides more precise and
more efficient covariance matrix forecasts and they translates to economic gains directly.
Specifically, in the one-step-ahead forecasting exercise using portfolio of five stocks, the
GHAR shows the best performance according to all economic criteria, i.e. GHAR achieves
the best risk-return trade-off in Markowitz optimization, and has the lowest risk accord-
ing to both cumulative and annualized versions of GMVP. The robustness check, the
portfolio of ten/fifteen stocks and five/ten-step-ahead forecasts qualitatively match our
previous findings. Moreover, we document the economic benefit of estimating the real-
ized covariance with more efficient multivariate realized kernel and sub-sampled realized
covariance estimators using ten to twenty minutes sub-sampling. In the statistical com-
parison, we obtain a bit mixed results. While in the one-step-ahead forecasts GHAR
always belongs to MCS in case of the portfolio of five and ten stocks, it is in MSC only
when 5-minutes RCOV is used in case of fifteen stocks portfolio. For the forecasting
horizon of five/ten days results do not change substantially. The only notable difference
is absence of GHAR in MCS in the case of ten-step ahead forecasts of portfolio consist-
ing of fifteen stocks. We address unambiguous results of the statistical evaluation to a



problem of selecting the “correct” proxy for unobservable “true” covariance matrix.

In Chapter 2 - Measurement of Common Risk Factors in Tails: A Panel Quantile
Regression Model for Returns, we introduce an innovative approach of modelling com-
monalities in the quantiles of future returns using information from panels of realized
measures. The earlier version of the paper was published in Institute of Economic Stud-
ies Working Paper series as [ES Working Paper 20/2017 and currently is under review
in the Journal of Financial Econometrics.

During the last two decades, global financial markets were hit by several crises. The
most well-known and important ones are Dot-com Bubble and the Global Financial Crisis
of 2007-2012 that includes Icelandic financial crisis and Furopean sovereign debt crisis.
The aftermath of these events highlights the necessity of proper risk identification and
mitigation. The need for accurate risk measures is important not only from the regulatory
point of view to prevent a future crisis but is also crucial for many applications within
portfolio and risk management. Recently, the increased availability of high-frequency
data resulted in the development of the more accurate volatility estimators commonly
referred as Realized Measures. Whether is original Realized Volatility (Andersen et al.,
2001), Realized Semivariance (Barndorff-Nielsen et al., 2010), for which the sign of the
price change matters, or the adjusted Bi-Power Variation (Andersen et al., 2011) that
is robust to jumps in the prices and the certain types of microstructure noise, all these
realized measures help us to understand the nature of the data, identify sources and
potentially predict the risk.

Although volatility forecasting is essential for many financial applications, it does not
help us to specify the conditional distribution of future returns. The classical portfolio
theory rather concentrates on the risk-return relationship that has a long history and
is well documented. For example in the Capital Asset Pricing Model, the risk of the
asset is measured by the covariance between asset return and market return. Market
return is just one of the many possible factors affecting an asset’s risk. Among other
factors, the volatility of the asset plays an essential role in explaining expected returns.
The classical asset pricing moreover assumes an economic agent maximizing expected
utility. However, the expected utility framework might be too restrictive to describe
the real/actual behavior of the economic agents. Recent studies thus assume agents to
maximize their quantile utilities, e.g. de Castro and Galvao (2018).

In finance, the Conditional Autoregressive Value-at-Risk (CAViaR) model of Engle
and Manganelli (2004) is one of the first examples that focus on the estimation of quan-
tiles of various asset returns, Baur et al. (2012) use quantile autoregressions to study
conditional return distributions and Cappiello et al. (2014) detects comovement between
random variables with time-varying quantile regression. The work of Zikes and Barunik
(2016), who combine the quantile regression framework (Koenker and Bassett Jr, 1978)
with realized volatility, is another important example in this field. In their work, it has
been shown that various realized measures are useful in forecasting quantiles of future
returns without making assumptions about underlying conditional distributions.

While Zikes and Baruntk (2016) provided an important link between future quantiles
of return distribution and its past/ex-ante variation, they concentrate on the univariate



time series. Effective risk diversification techniques work not only with the single con-
ditional asset return distribution, but require a deeper knowledge of the dependencies
in the joint distributions. In the standard mean-regression framework, Bollerslev et al.
(2018) show that realized volatility of the financial time series share many commonali-
ties. In the quantile regression set-up, however, there is no similar study that will try
to uncover information captured in the panels of volatility series. To the best of our
knowledge, there is no study dealing with estimates of conditional distribution of return
series in a multivariate setting that explores ex-post information in volatility.

In this paper, we contribute to the literature by introducing a Panel Quantile Re-
gression Model for Returns - we propose to model the panel of assets returns via its
past and/or ex-ante volatility using panel quantile regression techniques. This approach
allows us to exploit common factors in volatility series that directly affect quantiles of
return series. Moreover, we can control for otherwise unohserved heterogeneity among
financial assets. Furthermore, using the fixed effects estimator, we can disentangle overall
market risk into the systematic part and idiosyncratic risks. In a sense, we revisit a large
literature connecting volatility with the cross-section of returns we model tail events of
the conditional distributions via volatility.

In the empirical application, we show that the newly proposed model delivers more
accurate estimates than benchmark methods using various data-sets. The gain in accu-
racy translates into better forecasting performance of Panel Quantile Regression Model
for Returns. We test the performance of our model in a portfolio Value-at-Risk fore-
casting exercise where we concentrate on the statistical and economic evaluation. In
the statistical comparison, we distinguish between the absolute and relative performance
of the given model. The absolute performance in our work is assessed by the so-called
CAViaR test of Berkowitz et al. (2011) and tests whether the model is dynamically cor-
rectly specified. For the relative performance, we employ a standard Diebold-Mariano
test and we pairwise compare all the competing models. In the economic comparison,
we study Global Minimum Value-at-Risk Portfolio(GMVaRP) and the Markowitz like
efficient frontiers of the Value-at-Risk Return trade-off. The economic and relative sta-
tistical performance is tested against three benchmark models - RiskMetrics (Longerstaey
and Spencer, 1996) and two versions of Univariate Quantile Regression Model for Returns
(Zikes and Barunik, 2016).

Our analysis starts with the well-behaved simulated data from Monte-Carlo experi-
ments. Specifically, we simulate 29 continuous price process series using four error distri-
butions - Multivariate normal/fat-tailed Student-t distributions both with the given cor-
relation structure obtained from the stock market data and Univariate normal /fat-tailed
Student-t distributions. In total, we run 500 simulations for each error distribution and in
each simulation step we use rolling window estimation with a length of 1000 observations.
The results of the Monte-Carlo simulation study shows that our model is dynamically
well specified and outperforms all the benchmarks in direct statistical comparison when
we use more heterogeneous data generated from the univariate error distributions.

Next, we analyze 29 highly liquid stocks? from the New York Stock Exchange during

2Apple Inc. (AAPL), Amazon.com, Inc. (AMZN), Bank of America Corp (BAC), Comcast Cor-
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the period July 1, 2005, to December 31, 2015. In the empirical analysis, we hypoth-
esise that quantile of open-close returns depends on the various ex-post risk measures
calculated from the tick data, i.e. Realized Variance, Realized Semivariances and Real-
ized Bi-Power Variation. For the portfolio Value-at-Risk construction we also proxy the
covariance structure by the Realized Covariance estimates. Similar to simulation study
we use rolling window estimation procedure with the same window length (1000 days)
for the estimation and forecasting purposes. In the in-sample analysis, we document
unobserved heterogeneity in far quantiles that needs to be controlled. Moreover, all the
risk measures show the asymmetric impact on the quantiles of returns, e.g. impact is
higher in the bellow median quantiles. In the out-of-sample forecasting exercise, we have
found that all the panel quantile regression models are dynamically correctly specified.
Importantly, the panel quantile regressions consistently outperform the benchmarks in
various quantiles and they are not outperformed by any of the benchmarks. From the
economic point of view, newly proposed modeling strategy performs best in all but me-
dian quantiles according to GMVaRP criteria and provide us with the best Value-at-Risk
Return trade-off.

Our next step was the analysis of the common exogenous risk factor in tails of the
returns distribution. We have selected ex-ante measure of the market uncertainty, widely
used VIX Index which measures the expectations about the 30-day market volatility, as
the exogenous factor. Results of the analysis confirm that VIX carries an important part
of the information about risk that is not fully captured by any of the realized measures.
Moreover, by controlling for the unobserved heterogeneity and idiosyncratic volatility,
VIX proves to be a strong common factor driving the tails of the return distributions.
Our findings also hold in the economic comparison where panel quantile regression model
with VIX achieves the best performance using both evaluation criteria.

In the last section of the paper, we test the robustness of our previous findings using
high dimensional portfolio (496 assets) consisting of the constituents of the S&P 500
index. We found that the VIX Index plays an important role in the high-dimensional
application and that anticipation of the future market volatility translates directly to the
conditional distribution of future returns.

Overall, the results of our analysis suggest that the Panel Quantile Regression Model
for Returns is dynamically correctly specified. Moreover, it dominates benchmark models
in the economically important quantiles (5%,10% or 95%) and we find that none of the
benchmark models is able to outperform our model consistently. Furthermore, the Panel
Quantile Regression Model for Returns provides us with direct economic gains according
to both economic evaluation criteria.

poration (CMCSA), Cisco Systems, Inc. (CSCO), Chevron Corporation (CVX), Citigroup Inc. (C),
Walt Disney Co (DIS), General Electric Company (GE), Home Depot Inc. (HD), International Business
Machines Corp. (IBM), Intel Corporation (INTC), Johnson & Johnson (JNJ), JPMorgan Chase & Co.
(JPM), The Coca-Cola Co (KO), McDonald’s Corporation (MCD), Merck & Co., Inc. (MRK),Microsoft
Corporation (MSFT), Oracle Corporation (ORCL), PepsiCo, Inc. (PEP), Pfizer Inc. (PFE), Procter
& Gamble Co (PG), QUALCOMM, Inc. (QCOM), Schlumberger Limited. (SLB), AT&T Inc. (T),
Verizon Communications Inc. (VZ), Wells Fargo & Co (WFC), Wal-Mart Stores, Inc. (WMT), Exxon
Mobil Corporation (XOM).



In Chapter 3 - Dynamic Quantile Model for Bond Pricing, we concentrate on the
quantile pricing of bond future contracts.

In this work, we study the bond pricing in the tails of the returns distributions.
As opposed to classical asset pricing (Sharpe, 1964; Lintner, 1965; Merton, 1973; Ross,
1976), we make a step forward and move from the expected utility set-up to quantile
preferences. This transition allows us to study asset pricing given the economic agents
differing in their level of risk aversion. In particular, we build on work of de Castro and
Galvao (2018) who derive quantile Euler equation using properties of quantile preferences
as defined in Manski (1988) and Rostek (2010). We also utilize the advantages of quantile
preferences such as robustness to fat tails and the ability to capture heterogeneity through
the quantiles. We further extend the results of de Castro and Galvao (2018) into a
stochastic discount factor representation of the quantile asset pricing equation and present
a link to the factor models.

In the empirical application, we focus on quantile pricing of the two, five, ten and
thirty years US and German government bond futures contracts from the Chicago Board
of Trade and the EUREX exchanges. The US Treasuries dataset consists of the individual
assets tick prices from the period July 1, 2003, to November 30, 2017 during regular
trading hours - Sunday to Friday, 5:00 p.m. - 4:00 p.m. Chicago Time. We further
consider selected maturities of US forward rates estimates to play an important role in
the bond pricing as it is common in the literature, e.g. Cochrane and Piazzesi (2005).
These data are obtained from the dataset of Giirkaynak et al. (2007) where the detailed
estimation procedure of data creation is described. In the case of German treasury
futures, we are working with tick prices from the period October 1, 2005, to November 30,
2017 during standard trading hours - Monday to Friday, 8:00 a.m. - 10:00 p.m. Central
European Time. To ensure sufficient liquidity, we explicitly exclude public holidays and
days with less than 5 hours of trading. From the raw tick data, we extract 5 minutes
prices, and we calculate open-close returns, Realized Volatility (Andersen et al., 2003)
and Realized Semi-variance (Barndorff-Nielsen et al., 2010).

For estimation purposes, we adopt recently developed smoothed (Generalized) Method
of Moments quantile estimator of de Castro et al. (2018) and the quantile regression of
Koenker and Bassett Jr (1978). First, we study single-factor-model with Realized Volatil-
ity being the risk factor. In this set-up, we illustrate the proximity of the GMM quantile
estimator and the standard quantile regression. Second, relying on the similarity of both
methods we study multi-factor-model where we rely solely on the quantile regression ap-
proach since the implementation of multiple moment conditions in quantiles is not trivial
and is subject to further research. We consider two multi-factor specifications in our
work. In the first specification positive and negative Realized Semivariance serve as a
risk factor. The second specification is motivated by the Cochrane and Piazzesi (2005)
and we consider two to five years forward rates.

Results of our analysis demonstrate a significant influence of the Realized Volatility
on the quantiles of the treasury returns. In both US and German treasuries, we ob-
tain qualitatively similar results using both GMM and quantile regression estimators.
Quantitatively, however, results differ a bit and we attribute these differences to lower



liquidity of the German treasuries. When we concentrate on the comparison of GMM
and quantile regression we again obtain qualitatively and also quantitatively similar re-
sults. Specifically, the majority of the GMM coefficients estimates lies almost always
in the 95% confidence intervals of the quantile regression and vice versa. Interestingly,
while in German treasuries quantile regression in almost all quantiles underestimates
the influence of the Realized Volatility compared to GMM estimates, in the US Trea-
suries, GMM and quantile regression estimates intersect frequently, and there is no clear
under /overestimation pattern.

In the multi-factor model, our results depend heavily on the factors used for analysis.
In case Realized Semivariances are considered being risk factors results of our analysis
share many commonalities with single-factor models, e.g. coefficient estimates for quan-
tiles below/above the median have negative/positive signs, the majority of coefficients
are statistically significant. Besides similarities, we also document a unique influence of
semivariances. In the US Treasuries case, negative semivariance influence lower quantiles
relatively more than the upper quantiles while the opposite is true for positive semivari-
ance. Moreover, in the upper quantiles, positive semivariance dominates negative semi-
variance whereas in the lower quantiles the results are mixed. In contrast, the influence
of Realized Semivariances on the quantiles of German government bonds returns is more
symmetric and German treasuries look more homogeneous as the coefficient estimates
closer to each other.

In the last part of the paper, we study the multi-factor model when forward rates serve
as the risk factors. In this part, we concentrate on the US Treasuries only since the data
for the German market are not available at the desired (daily) frequency. Our analysis
shows that forward rates carry very limited information about bond returns distributions.
Specifically, for all the treasuries and all the forward rates, the vast majority of the
estimates is statistically insignificant. Hence, the risk-averse investor optimizing quantiles
bellow median finds forward rates of limited use since their coefficients are not statistically
different from zero. The only exception where a risk-loving investor might consider
forward rates to be valid risk factors is the shortest maturity treasury where selected
forward rates show partial explanatory power in the upper quantiles of the bond returns
distribution.



CHAPTER 1

On the modelling and forecasting
multivariate realized volatility:
Generalized Heterogeneous

Autoregressive (GHAR) model

Recent multivariate extensions of popular heterogeneous autoregressive model
(HAR) for realized volatility leave substantial information unmodelled in
residuals. We propose to employ a system of seemingly unrelated regressions
to model and forecast realized covariance matrix to capture this informa-
tion. We find that the newly proposed generalized heterogeneous autoregres-
sive (GHAR) model outperforms competing approaches in terms of economic
gains, providing better mean-variance trade-off, while, in terms of statistical
precision, GHAR is not substantially dominated by any other model. Our re-
sults provide a comprehensive comparison of the performance when realized
covariance, sub-sampled realized covariance and multivariate realized kernel
estimators are used. We study the contribution of the estimators across differ-
ent sampling frequencies, and show that the multivariate realized kernel and
sub-sampled realized covariance estimators deliver further gains compared to
realized covariance estimated on a 5-minutes frequency. In order to show the
economic and statistical gains, portfolio of various sizes is used.

1.1 Introduction

The risk of individual financial instruments is crucial for asset pricing, portfolio and risk
management. Besides volatility of individual assets, knowledge of covariance structure be-
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tween assets in portfolio is of great importance. Accurate forecasts of variance-covariance
matrices are particularly important in asset allocation and portfolio management.

The traditional approach of obtaining covariance matrix estimates relays on multivari-
ate generalized autoregressive conditional heteroskedasticity (MGARCH) models such as
the constant conditional correlation GARCH of Bollerslev (1990), the dynamic condi-
tional correlation GARCH of Engle (2002) or the BEKK of Engle and Kroner (1995)
(for a survey of MGARCH models see Bauwens et al. (2006)). These models are popular
in the literature although they suffer from curse of dimensionality problem. Increased
availability of high-frequency data in the last decade resulted in development of the
new non-parametric approach of treating multivariate volatility. A milestone for covari-
ance matrix modelling is the work of Barndorff-Nielsen and Shephard (2004a) where
the theory of “realized covariation” is introduced. Realized covariance matrices are ex-
post measures of daily covariation and they need to be further modelled. The research
dedicated to modelling the entire covariance matrices is still lively. From the already
established methods, let us mention Wishart Autoregression (WAR) of Gouriéroux et al.
(2009) with numerous extensions presented in Bonato (2009) and Bonato et al. (2013).
A different approach of realized volatility modelling can be found in Bauer and Vorkink
(2011), who model realized stock market volatility using matrix-logarithm transforma-
tion and primarily concentrate on forecasting performance of the factor model. A more
common approach of obtaining positive definite forecasts of covariance matrices is the
use of Cholesky decomposition. The use of Cholesky factors, further estimated by Vec-
tor Autoregressive Fractionally Integrated Moving Average (VARFIMA), Heterogeneous
Autoregression (HAR) or WAR-HAR can be found in the work of Chiriac and Voev
(2011). More recently, Amendola and Storti (2015) consider combining predictions from
multivariate GARCH models and realized covariance matrices.

In this chapter, we contribute to the literature by proposing a new model for dy-
namic covariance matrix modelling and forecasting. We model Cholesky factors of the
realized covariance matrix as a system of seemingly unrelated heterogeneous autoregres-
sions. The main motivation is that we may expect the residuals from simple HAR model
to be contemporaneously correlated and, moreover, heteroscedastic due to well known
volatility in the volatility effect (Corsi et al., 2008). Estimating the system of HAR equa-
tions using generalized least squares allows us to capture these dependencies. Hence the
generalised HAR (GHAR) may provide more precise and more efficient forecasts, which
will translate to economic gains directly. On the portfolios of various sizes, we show that
GHAR model delivers significant economic gains and, statistically, is not substantially
outperformed, when compared to natural benchmark models based on high frequency
data (HAR, VARFIMA), as well as daily data (DCC-GARCH, RiskMetrics). In addi-
tion, we study the economic benefits of estimating the realized covariance with more
efficient sub-sampled realized covariance and multivariate realized kernel estimators.

The rest of the chapter is structured as follows. We provide background for estimation
of realized covariation from high frequency data in the next section. The third section
describes frameworks for modeling multivariate volatility, and it presents our GHAR
model. The fourth section provides description of dataset and research design, including
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economic as well as statistical evaluation criteria. In the fifth section we discuss out-of-
sample forecast evaluation, and sixth section concludes.

1.2 Estimation of covariation from high frequency
data

We assume that the g-dimensional efficient price process p; evolves over time 0 <t < T
according to the following dynamics

dpt — utdt + Etth + th, (11)

where 1 is predictable component, 3, is real-values ¢ x ¢ volatility process, Wy,..., W,
is a g-dimensional Brownian motion, and d.J; is a jump process. A central object of
interest is the integrated covariation, which measures the covariance of asset returns over
a particular period. Andersen et al. (2003) and Barndorff-Nielsen and Shephard (2004a)
suggest estimating the quadratic covariation matrix analogously to the realized variance,
by taking the outer product of the observed high-frequency return over the period. This
estimation, however, assumes synchronised equidistant data.

In practice, trading is non-synchronous, delivering fresh prices at irregularly spaced
times which differ across stocks. In order to estimate the covariance, the data need
to be synchronized, meaning that the prices of the ¢ assets need to be collected at
the same time stamp. Research of non-synchronous trading has been an active field of
financial econometrics in past years: see, for example, Hayashi and Yoshida (2005) and
Voev and Lunde (2007). This practical issue induces bias in the estimators and may
be partially responsible for the Epps effect (Epps, 1979), a phenomenon of decreasing
empirical correlation between the returns of two different stocks with increasing data
sampling frequency. Ait-Sahalia et al. (2010) compare various synchronization schemes
and find that the estimates do not differ significantly from the estimates using the so
called refresh time scheme when dealing with highly liquid assets. The data used further
in our study consists of the most liquid U.S. stocks; hence we can restrict ourselves to
the refresh time synchronization scheme in our work.

Let N be the counting process governing the number of observations in the g-th
asset up to time ¢, with times of trades ¢(4)1,¢(g)2, . ... Following Barndorff-Nielsen et al.
(2011), we define the first refresh time as

T1 :max(t(l)la---yt(d)l)a (1.2)
ford =1,...,q assets, and all subsequent refresh times as
Ti+1 — maX(t(l)N(l)T],Jrl; ce 7t(d)N(d)T],+1)7 (1-3)

with the resulting refresh time sample being of length N. 7 is thus the first time that
all assets record prices, while 7, is the first time that all asset prices are refreshed. In the
following analysis, we will always set our clock time to 7; when using the estimators.
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Having synchronized the data, let us denote Arp; = pi—i4r /N — Dimi4r_ /N & dis-
cretely sampled vector of k-th intraday log-returns in [t — 1,¢], with N intraday ob-
servations available for each asset ¢. A simple estimator of realized covariance is then
constructed as

=3 (Aep) (Aepr) (1.4)

As shown by Barndorff-Nielsen and Shephard (2004a), realized covariance is a consistent
estimator of integrated covariance and is asymptotically mixed normal. However, the
estimator is biased and becomes inconsistent in the case that micro-structure noise is
present in the data. Sparse sampling is used to mitigate the trade-off between the bias
due to noise and variance of the estimator.

To effectively use all available high-frequency data, Zhang et al. (2005) propose to use
sub-sampling and averaging for realized variance calculation. In their set-up whole sample
is divided into M non-overlapping sub-samples, in each sub-sample realized variance is
calculated and averaged across the sub-sampled estimates form the final estimate:

1 M
RCSS - ZRc (1.5)

=1

In addition, the covariance matrix estimated by realized covariance might not necessary
be positive semi-definite. To overcome these problems, Barndorff-Nielsen et al. (2011) in-
troduced multivariate realized kernels (MRK) estimator, which guaranties the covariance
matrix to be positive semi-definite. Moreover, MRK is more efficient, and it is able to
deal with noise. Following Barndorff-Nielsen et al. (2011), the MRK estimator is defined

) SIMRE) Zk( > (1.6)

h=—n
where '), stands for h-th realized autocovariance and k(x) is a non-stochastic weight
function. In the empirical implementation, we need to choose the kernel function and
bandwidth parameter. Following Barndorfl-Nielsen et al. (2011), we use a Parzen kernel,'
which satisfies the smoothness conditions, K'(0) = K'(1) = 0, and guarantees E<MRK>
to be positive semi-definite. We use the optimal bandwidth derived in Barndorff-Nielsen
et al. (2011).

Recently, many new approaches to covariance matrix estimation using high frequency
data have emerged in the literature. In addition to estimators used in this study, Realized
Co-Range (Bannouh et al., 2009) or Two Scale Realized Covariance (Zhang, 2011) are also
becoming increasingly popular. Nowadays, literature also pays attention to disentangling
jumps, common jumps and true covariation (see Boudt et al. (2012) or Elst and Veredas
(2015)). When the dimension of the problem is high, the estimator of Hautsch et al.

(1—62>4+62> 0<a<1/2
!The Parzen kernel function is given by k(z) = { 2(1 —z)? 1/2<x<1.
0 z>1
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(2012), which estimates covariance using block-wise Multivariate Realized Kernels, might
be of interest.

While the number of recently proposed estimators is growing, we restrict our study
on the comparison of the main estimators used in the literature,? and focus on the actual
estimator of the proposed model.

1.3 Modeling and forecasting multivariate volatility

Modelling and forecasting a conditional covariance matrix of asset returns >; is pivotal
to asset allocation, risk management, and option pricing. In order to have a valid mul-
tivariate forecasting model, one needs to specify a model that produces symmetric and
positive semi-definite covariance matrix predictions. Whereas it is still relatively scarce
to use high frequency data in multivariate modelling, the literature dealing with chal-
lenging issues is growing quickly. There are three types of approaches proposed recently:
modelling the Cholesky factorisation of covariance matrix (Chiriac and Voev, 2011), its
matrix-log transformation with the use of latent factors (Bauer and Vorkink, 2011), and
direct modelling of the covariance dynamics as a Wishart autoregressive model (Bonato,
2009; Jin and Maheu, 2013).

To ensure positive semi-definiteness of covariance matrix forecasts, we adopt the ap-
proach from Chiriac and Voev (2011): we apply the Cholesky decomposition on the
covariance matrix. This approach is attractive, as it also helps to reduce the curse of
dimensionality, especially in the model structures we are going to use in this study. Fol-
lowing Chiriac and Voev (2011), we model the lower triangular elements of the Cholesky
factorization:

X = vech (P), (1.7)
where P, are Cholesky factors PP, = >; and X; is m X 1 vector, with m = @.

Forecasts of the covariance matrix are then obtained by reverse transformation.

1.3.1 Generalized heterogeneous autoregressive (GHAR) model

A simple approximate long-memory model for realized volatility, heterogeneous autore-
gression (HAR), has been introduced by Corsi (2009). Whereas the approach has been
introduced for the univariate volatility modeling, its extension to multivariate volatility
has been recently used in the literature (see e.g. Chiriac and Voev (2011) or Bauer and
Vorkink (2011)). The original HAR model has an autoregressive structure, and combines
volatilities measured at different frequencies (daily, weekly, monthly). Chiriac and Voev
(2011) propose a multivariate extension of the HAR to model vector of Cholesky factors
Xy, as

X = e BOXNY 4 pOXD 4 pPIXP 4 6 ~iid. (1.8)

2Realized Covariance sampled at 5 min frequency is the industry standard; Sub-Sampled Realized
Covariance enable us to use all data points, resulting in a more efficient estimator, and Multivariate
Realized Kernels is able to handle noise and non-synchronous trading
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where 1,5, and 22 stands for day, week (5 days) and month (22 days) respectively, ¢ is an

()

mx 1 vector of constants, 31 are scalar parameters, and X, are averages of lagged daily

4
volatility e.g. Xt<5> = % > X ;. To obtain parameter estimates, ordinary least squares

i=0
(OLS) is used.

One of the disadvantages of this modeling strategy is that we are assuming the same
structure for all elements of the Cholesky factors in X;. Much more importantly, we are
leaving a significant amount of information in the error term. One can expect the error
term to be heteroscedastic due to volatility of volatility (Corsi et al., 2008) present in the
realized measures. More importantly, a common structure of X; elements may be left
unmodelled in residuals. Hence, it may be more natural to estimate the model in Eq.
1.9 as system of equations with some covariance structure of the error terms.

To deal with this problem, we propose to build a system of seemingly unrelated HAR
regressions (Zellner, 1962) for all elements of X;. The advantage of this approach is that
we estimate a multivariate HAR model, which will capture the separate dynamics of the
variances and covariances, but also possible common structure. Moreover, it will also
yield more efficient estimates. As we know, error terms from HAR are heteroscedastic
(Corsi et al., 2008), which makes the coefficient estimates less efficient. Moreover, when
there is no information about dependence between equations left in the residuals from
regression Eq. 1.9, estimator will converge to a simple OLS estimates, as the diagonal
weighting matrix in generalized regression will reduce the estimates to OLS. On the other
hand, the possible disadvantage is in larger number of parameters to be estimated, which
may yield the model unreliable with highly dimensional portfolios.

Let us consider the system of ¢ = 1, ..., m equations, where m = %
Xith = B+ 80X + 80X + 87X b en~iid (19)
There are m equations representing elements of the Cholesky factors, with T" observations.
Define the m7" x 1 vector of disturbances € = (¢}, ..., ¢..)’, and rewrite the model as
Xi,lt)Jrl Xl,t T 0 51 €1t
o= 3 R (1.10)
Xfr},)tJrl 0 e Xm,t 5m Emt

where X, ; = (e Xf? Xf‘? Xﬁ2>) is 1-th element of X; and e being vector of ones, §; =

/
(51@ 5;” 555) ﬁim)) and ﬁz@ being estimates of the intercept. It is more convenient

to work with this system in the following form:
y=Z0+e, (1.11)

/
where y = (Xf}tlrl, . ,Xg}tﬂ) and e are of dimension m1'x 1, Z = diag{ X4, ..., Xy}
is a block diagonal matrix of dimension mT x 4m, and the matrix of parameters § =
(B1,...,Bm) is of dimension 4m x 1.
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The disturbances will satisfy strict exogeneity FEl¢|Z] = 0, but will be correlated
across equations, Fleje;| 7] = o4l or

ol - odr
Q= : : =@ 17, (1.12)

UmllT T UmmIT

where 3 = o, for 4,7 = 1,...,m, ® is a Kronecker product and Ir is an identity matrix of
dimension 7" x T'. The model parameters are estimated in two step feasible generalized
least squares. We run OLS regression in the first step to obtain estimates 0;; from
residuals. In the second step, we run generalized least squares regression using the
variance matrix Q = X ® It as

5= (Z/ﬁ‘lZ)_l 70y (1.13)

The estimator E is unbiased, and a consistent estimator of § with asymptotically normal
limiting distribution

ﬁ(ﬁ—ﬁ) 4N <o, <%Z’§‘1Z>_1> (1.14)

While this is a standard estimation technique, we will refrain from discussing any further
details about the properties of the generalized least squares estimator.

1.3.2 Competing models

To show the contribution of the GHAR model, we compare the forecasts to several
competing alternatives. The first natural choice of benchmark model is a multivariate
extension of original HAR. By comparing these two models, we will see the portion of
the contribution brought by allowing for correlated residuals in the estimation. Another
natural candidate is vector ARFIMA, as Chiriac and Voev (2011) find it to outperform
the HAR model slightly, but conclude that HAR performs reasonably well in comparison
to VARFIMA. Hence we may have reason to believe that our approach will provide better
results than VARFIMA model.

These three main models share the same framework of modeling elements of Cholesky
factors from realized covariance matrix. Hence, we also contrast them to two benchmark
models, namely popular DCC GARCH ? of Engle (2002) and risk metrics standard widely
used in the business industry. These benchmark models operate on the daily data, so we
will have a direct comparison of gains from high-frequency data.

3DCC GARCH is an industry standard and we decided to implement it in its original form despite
the known problem with consistency of the estimator. For more information about the inconsistency of
the DCC see Aielli (2013) an Caporin and McAleer (2013)
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HAR

A first, natural competing model to our generalized HAR strategy is multivariate exten-
sion of an original HAR, which models vector of Cholesky factors X;, as

X = et pOXY 4 gOXE 4 gIXP g~ (1.15)

where 1,5, and 22 stands for day, week (5 days) and month (22 days) respectively, ¢ is
mx 1 vector of constants, 30 is m x 1 vector of parameters and Xt<> are averages of lagged

4
daily volatility e.g. Xt<5> = % > Xi—;. To obtain parameter estimates, OLS is used.
i=0

Vector ARFIMA model

A second competing model to the HAR family is the vector autoregressive fractionally
integrated moving average (VARFIMA) model of Chiriac and Voev (2011), who use a
restricted VARFIMA(1, d, 1) specification to model and forecast dynamics of X; directly.
The authors find that ARFIMA provides a slightly better forecast in comparison to
HAR model, which makes it natural candidate to our modeling strategy. We consider
the vector ARFIMA model

(1— L) D(L)[X;— ] = (1 —0L) e, e ~ N(0,%) (1.16)

where ¢ and @ are scalars, ¢ is an m x 1 vector of constants and D(L) = (1 — L)¢I,,, with
a common parameter of fractional integration d for all constituents of X;. In our case
we reject the hypothesis about equality of d; thus we estimated each element of X, using
unique dy : D(L) = diag {(1 — L)*,---, (1 — L)*"}. Hence, we use the model 1 in Chiriac
and Voev (2011). In addition, we have experimented with a general VARFIMA(p, d, q),
not restricting p — ¢ = 1. Comparing the models through information criteria decisively
yields VARFIMA(1,d, 1) as the best model; hence we use it as a benchmark to our
modeling strategy in the empirical section of the chapter.

RiskMetrics

RiskMetrics of J.P. Morgan Chase, based on an exponentially weighted moving average
(EWMA), is a financial industry standard and common benchmark for any volatility
model (univariate or multivariate). In our work we use the specification from Longerstaey
and Spencer (1996) with decay factor A set to 0.94. We assume a g X 1 vector of daily
returns r, = » ., (Agpy) for t = 1,...,T such that r, ~ N (u;,07), where p, is the
conditional mean and o7 the conditional variance of daily returns. Moreover if we assume
i = 0, conditional covariance has the form

T
0445 — (1 — )\) Z )\t_lr,'rj. (117)
t=1

4These results are available upon request from the authors.
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The previous equation can be rewritten in recursive form:
Oijt = ATiji—1+ (1 - )\)Tz',t—lrj,t—l (1.18)

where the expression o, ;; stands for covariance between assets ¢ and j in time ¢.

DCC-GARCH

The dynamic conditional correlation generalized autoregressive conditional heteroscedas-
ticity (DCC-GARCH) of Engle (2002) is a widely used multivariate GARCH model
in practice. It is a generalization of Bollerslev (1990) constant conditional correlation
GARCH, with time-varying correlation matrix R. The model is defined as

Ht — DthDt, (119)
where D, is a diagonal matrix of conditional time varying standard dev1at10ns Dy =

diag (« /R t) and h; ¢+ are univariate GARCH processes, h;+ = w;+ Z Ozzpr, i p+ Z Bighit—q-

The dynamics of the correlation matrix are given by transformatlon

= Q' (1.20)
where Q; = <1— Z Ol — Zﬁn> Q + Z A, (et m€r m) + Z B,Q:_, ,Q is the un-

conditional covarlance matrix of the standardlzed residuals from the univariate GARCH

processes and ()} = diag (1 /qii,t). In our work we use the two-stage estimator presented
in Engle (2002) or Engle and Sheppard (2001).

1.4 Data and research design

The dataset consists of tick prices of 15 S&P 500 index constituents with highest lig-
uidity and market capitalization. Final portfolio thus consists® of Apple Inc. (AAPL),
Exxon Mobile Corp. (XOM), Google Inc. (GOOG), Wal-Mart Stores (WMT), Microsoft
Corp. (MSFT), General Electric Co (GE), International Business Machines Corp. (IBM),
Johnson & Johnson (JNJ), Chevron Corp. (CVX), Procter & Gamble (PG), Pfizer Inc.
(PFE), AT&T Inc. (T), Wells Fargo & Co (WFC), JP Morgan Chase & Co (JPM)
and Coca-Cola Co. (KO). We obtain 390, 78, 39, 26 and 19 time-synchronized intraday
observations using refresh-time, resulting in 1, 5, 10, 15 and 20 minute intraday returns.
Besides 1 to 20 minute returns we also construct open-to-close returns that are used for
RiskMetrics and DCC-GARCH models. Moreover, we create sub-portfolios consisting of
5, 10, and 15 assets (assets chosen according to market capitalization). Hence, in total,
we study 18 different datasets.

The sample covers the period from July, 1 2005 to January, 3 2012 (1623 trading days),
and we consider trades between 9:30 to 16:00 EST time. To ensure sufficient liquidity on

5 Assets are ordered according to market capitalization.
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the market we explicitly exclude weekends and holidays (New Year’s Day, Independence
Day, Thanksgiving Day, Christmas). For estimation and forecasting purposes we divide
our sample into in-sample, spanning from July, 1 2005 to July, 9 2008 and out-of-sample
July, 10 2008 to January, 3 2012. For the forecasting, we use rolling window estimation
with fixed length of 750 days. Summary statistics of all returns are presented in the
Appendix D.

Accuracy of the forecasts is evaluated primarily according to economic criteria. The
rationale behind is the importance of well-conditioned and invertible forecasts rather than
focusing on unbiasedness, as an unbiased forecast does not necessarily translate into an
unbiased inverse (Bauwens et al., 2012). As a robustness check we also provide ranking
of the models based on statistical loss functions.

1.4.1 Economic forecasts evaluation

For economic evaluation of volatility forecasts, we use the approach of Markowitz (1952).
There are two possibilities of constructing an optimal portfolio. In the first one we specify
expected portfolio return and try to find assets weights minimizing the risk. In the second
one the expected return of the portfolio is maximized according to a certain risk. Asset

weights, w = (wy,...,w,)’, maximizing utility of risk averse investor can be found by
solving the following problem:
mi? Wy X 1)W1 (1.21)
W+

st lw — 1
/ - _
Wy M1 = Up

where w1 is a ¢ X 1 vector of assets weights, §t+1|t represents a covariance maftrix
forecast, | denotes a ¢ x 1 vector of ones, L1 is a vector of mean forecasts and pp
stands for portfolio return. Once the optimization problem is solved for different risk
levels we are able to construct efficient frontier. Markowitz-type portfolio relies heavily
on mean forecasts. As these forecasts might be noisy, portfolio weights and variance
can become notably sensitive to changes in assets mean. To overcome these difficulties
we also consider problem of finding the Global Minimum Variance Portfolio (GMVP).
Specification of the optimization problem is similar to Markowitz set-up:

. I s
AN Wy 21 Wi (1.22)
W41

st. Twi =1

which can be solved analytically®

S
wilV = (1.23)
U

6Kempf and Memmel (2006)
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with expected return variance being

oGMV. | aMVIS GMV __ 1
0 1 = Wiyt 2 Wiy S (1.24)

t+1t

1.4.2 Statistical forecasts evaluation

For statistical evaluation of covariance forecasts, we employ Root Mean Squared Error
(RMSE) loss functions based on the Frobenius norm 7. As a volatility proxy we use
Realized Covariance, Sub-Sampled Realized Covariance (RCOV SS) and Multivariate
Realized Kernels estimates at given frequencies i.e. to calculate loss function for forecasts
based on 5 minutes Realized Covariance we use Realized Covariance estimates based on
5 minutes data as a benchmark. In case of DCC-GARCH and RiskMetrics forecasts we
calculate loss functions using all RCOV, RCOV SS and MRK estimates at all frequencies.
The measures are calculated for the t = 1,...,T forecasts as

Cti+h — Yith — it+h|t (1-25)

2

(1.26)

T
[RMSE _ % Z Z s,

i=1 45

where §t+h|t is a covariance matrix forecast and >, is the volatility proxy.

To test the significant differences of competing models, we use the Model Confidence
Set (MCS) methodology of Hansen et al. (2011). Given a set of forecasting models, Mo,
we identify the model confidence set M i_o € My, which is the set of models that contain
the “best” forecasting model given a level of confidence . For a given model i € My,
the p-value is the threshold confidence level. Model i belongs to the MCS only if p; > «.
MCS methodology repeatedly tests the null hypothesis of equal forecasting accuracy

H()’M : E[ﬁz”t — ﬁjﬂg] — O, for all Z,] - ./\/l

with L;; being an appropriate loss function of the i-th model. Starting with the full set
of models, M = My, this procedure sequentially eliminates the worst-performing model
from M when the null is rejected. The surviving set of models then belong to the model
confidence set M?__ . Following Hansen et al. (2011), we implement the MCS using a
stationary bootstrap with an average block length of 10 days.®

"Frobenius norm of m x n matrix A is defined as ||A||F2 => |ai7j|2
4,J
#We have used different block lengths, including those dependent on the forecasting horizons, to

assess the robustness of the results, without any change in the final results. These results are available
from the authors upon request.
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1.5 Results

For clarity of presentation, we begin with a discussion of the results of one-step-ahead
forecasts for the portfolio of five stocks (AAPL, XOM, GOOG, WMT, MSFT), whereas
we leave portfolios of ten and fifteen stocks and also five- and ten-step ahead forecasts as
a robustness check showing that the methodology also works well at larger dimensions
and different forecasting horizons. Focusing on the economic evaluation, we first discuss
the results from GMVP,? followed by Markowitz approach and statistical evaluation.

We present GMVP comparison through cumulative and annualized risk. In the cu-
mulative approach we use covariance forecasts for daily rebalancing of our portfolio: at
each step we calculate optimal asset weights and using these weights we calculate cor-
responding daily portfolio risk. The results presented in Table 1.1 are sums of portfolio
risk oeum. for the whole out-of sample period. Table 1.1 is divided into seven parts ac-
cording to realized measures and frequencies used for the calculation. For RiskMetrics
and DCC-GARCH corresponding o...,. are constant for all frequencies because they are
calculated using open-close returns. We present the results of DCC-GARCH and Risk-
Metrics in all columns of Table 1.1 so we can compare performance of covariance based
models estimated on different frequencies with daily data based models.

From the Table 1.1 we can see that the model with the best performance and thus
lowest level of risk is GHAR. We can also observe that for various frequencies on which
realized measures are calculated DCC-GARCH outperformed covariance based models.
However, these results do not indicate superiority of DCC-GARCH compared to covari-
ance based models, but highlight the importance of selecting realized measures properly.

Toble 1.1: Cumulative version of GMVP - portfolio of 5 stocks

MRK RCOV Sub-Sampled RCOV
1 min 1 min 5 min 5min 10 min 15 min 20 min
DCC 30.50 30.50 30.50 30.50 30.50 30.50 30.50

RiskMetrics  40.64 40.64  40.64 40.64 40.64 40.64 40.64
VARFIMA 30.76 34.47  32.44 32.84 31.04 29.86 29.31
GHAR 30.60 34.14  32.22 32.53 30.83 29.65  29.08
HAR 31.42 34.84  33.05 33.35 31.61 30.50 29.99

Note: Model with the overall best performance is highlighted; for the given frequency
model with the lowest risk is presented in bold; values represents percentage level of risk

A disadvantage of model comparison according to cumulative risk is daily rebalancing
implying high transaction costs. A more comprehensive method of model comparison is
to use annualized portfolio risks. For annualized GMVP calculation we use annualized
realized covariance of the whole out—off-sample period calculated as RC OV, nuatized =

YWith shortselling allowed.
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. In Table 1.2 we present the results for annualized version of GMVP.

Table 1.2: Annualized version of GMVP - portfolio of & stocks

MRK RCOV Sub-Sampled RCOV
1 min 1 min 5 min 5min 10 min 15 min 20 min
DCC 17.38 17.38 17.38 17.38 17.38 17.38 17.38

RiskMetrics  23.13 23.13 2313 23.13 23.13 23.13 23.13
VARFIMA 17.62 19.39  18.44 18.61 17.68 17.04 16.77
GHAR 17.32 19.08  18.08 18.27 17.36 16.69 16.38
HAR 18.01 19.61 18.79 18.91 18.01 17.40 17.14

Note: Model with the overall best performance is highlighted; for the given frequency
model with the lowest risk is presented in bold; values represents percentage level of risk

Similar to cumulative GMVP, model with the overall lowest achievable risk is GHAR.
Remaining results from the Table 1.1 and Table 1.2 partly match the results presented in
Chiriac and Voev (2011). The model that scored second is VARFIMA followed by HAR
for Sub-Sampled RCOV estimated at 15- and 20- minute frequencies. For the remaining
frequencies and realized measures, DCC-GARCH outperform covariance based models.
Overall we can say that covariance-based models with proper choice of realized measure
outperform return-based models.

To assess the performance of the models not only from the risk minimizing point of
view but also return maximization, we present efficient frontiers. In contrast to GMVP
we do not allow short selling here.!® For the calculation of the efficient frontiers we use
annualized forecasts of covariance matrices and annualized returns.

Similar to the results from the GMVP evaluation model with the best risk-return
tradeoff is the model proposed in this chapter: GHAR. The second-best-performing model
is VARFIMA, followed by HAR. From Figure 1.1 we can see that for estimates at 1 minute
RCOV and 5 minutes RCOV the score of DCC-GARCH is better than all covariance
based models, which is not in line with results presented in Chiriac and Voev (2011)
where DCC-GARCH ended in the penultimate position. We can attribute this difference
to a different dataset and period that includes financial crisis during which periods of
high intraday volatility are observable.

As a robustness check to the economic evaluation, we also provide results from a
statistical comparison of forecasting performance of the competing models. In the Table
1.3 a comparison based on the RMSE loss function is presented.

From the RMSE perspective the lowest error is shown by the HAR model, followed
by VARFIMA and GHAR. These models always belong to 5% MCS irrespective of the
realized measure used for comparison. The worst performance has RiskMetrics, which
does not belong to 5% MCS in two cases and it has the highest RMSE in 5 out of 7 cases.

19Tn case the short-selling is allowed the ranking of the models is unchanged only the magnitude differ.
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(a) RCOV 5min vs. MRK

Figure 1.1: Efficient frontiers - portfolio of 5 stocks

(b) RCOV 5 min vs. RCOV 1 min
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Note: Figure displays efficient frontiers of various competing models of portfolio of five stocks based on

one-step-ahead forecasts.
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Table 1.3: RMSE — portfolio of 5 stocks

MRK RCOV Sub-Sampled RCOV
1 min 1 min 5 min 5min 10 min 15 min 20 min
DCC 1.593 1.730 1.914 1.707 1.547 1.481 1.474

RiskMetrics  1.668 1.728  1.866 1.709 1.646 1.636 1.633
VARFIMA = 1.406 1.537  1.682 1.473 1.363 1.331 1.328
GHAR 1.490 1.401 1.740 1.509 1.438 1.430 1.445
HAR 1.190 1.100 1.380 1.162 1.125 1.144 1.158

Note: Values are scaled by 10~3; highlighted cells belongs to 5% MCS

1.5.1 Robustness check

Having discussed the results of one-step-ahead forecasts for portfolio consisting of five
stocks, we now turn to evaluation of one-step-ahead forecasts for portfolio consisting
of ten (AAPL, XOM, GOOG, WMT, MSFT, GE, IBM, JNJ, CVX, PG), and fifteen
(AAPL, XOM, GOOG, WMT, MSFT, GE, IBM, JNJ, CVX, PG, PFE, T, WFC, JPM,
KO) stocks and five and ten-step ahead forecasts for portfolios consisting of five, ten
and fifteen stocks. We will concentrate on the main differences compared to the smaller
portfolio, as we use these results as a robustness check. We also relegate the Tables and
Figures to Appendix A: 1 step ahead forecasts, Appendix B: 5 step ahead forecasts and
Appendix C: 10 step ahead forecasts.

Portfolio of 10 and 15 stocks

According to GMVP criteria for portfolio consisting of ten stocks, results do not differ
from results obtained in portfolio of five stocks. The model with the lowest cumulative
and annualized risk is GHAR, estimated on 20-minute Sub-Sampled RCOV. In the case
of the portfolio consisting of fifteen stocks, the only difference is that GHAR estimated
on MRK covariance matrices outperformed DCC-GARCH.

From the risk-return trade-off point of view there is notable difference for portfolio
consisting of ten stocks when the data of higher frequencies (1,5 and 10 minutes) are used.
For these frequencies, the model with the best risk-return trade-off is DCC-GARCH. The
order of the remaining models is identical to the portfolio of five stocks: GHAR followed
by VARFIMA and HAR. If the 15-minute data are used for optimization, GHAR share
first place with DCC-GARCH. These two models are closely followed by VARFIMA and
HAR. For the 20-minute data ordering of the models is similar to the portfolio consisting
of 5 stocks.

Concentrating on statistical evaluation, results of RMSE model comparison for the
portfolio consisting of ten stocks are almost identical to results for the portfolio of five
stocks, the only difference beeing that RiskMetrics does not belong to 5% MCS in any of
the cases. On the other hand, a notable difference occurs in a comparison of the portfolio
consisting of fifteen stocks, where GHAR belongs to 5% MCS only in one case (estimated
at 5-minute RCOV) and DCC-GARCH and RiskMetrics do not belong to 5% MCS at
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all. We address unambiguous results of statistical evaluation to problem of selecting the
“correct” proxy. These results are also consistent with findings in Kyj et al. (2010), who
show that for large portfolios, the pure high frequency based covariance forecasts need
to be conditioned in order to achieve the benefits of the high frequency data.

This points us to the result, that unmodelled dependence from HAR and VARFIMA
models is increasing with increasing dimension of the portfolio. Hence the GHAR model
delivers significant economic gains with increasing dimension of portfolio.

5-step & 10-step ahead forecasts !!

Extension of forecasting horizon from one to five/ten days does not substantially change
the results of our analysis. The only notable difference is absence of GHAR in 5% MCS
in the case of ten-step ahead forecasts of portfolio consisting of fifteen stocks. Remaining
results supports our previous findings that application of seemingly unrelated regression
for HAR estimation delivers significant economic gains regardless the size of the portfolio
and /or forecasting horizon.!?

1.6 Conclusion

In this chapter we propose to employ the seemingly unrelated regression of Zellner (1962)
to estimate multivariate extension of the heterogeneous autoregression model in order to
improve the variance matrix forecasts. The resulting model, generalized HAR (GHAR),
inherit all the favourable properties of HAR, and provides us with more efficient estimator
that accounts for otherwise hidden dependencies among variables.

In our setup we closely follow Chiriac and Voev (2011) and model elements of Cholesky
decomposed covariance matrices to test the economic and statistical value of the pro-
posed modelling strategy. Moreover, we perform our analysis on portfolios consisting
of five, ten and fifteen assets, we include three covariance matrix estimators (realized
covariation, sub-sampled realized covariation and multivariate realized kernels), and we
obtain covariance matrix estimates using high-frequency data of five different frequen-
cies (1,5,10,15 and 20 minutes). Overall, we test the performance of GHAR estimator
on 15 different high-frequency datasets. The resulting forecasts of GHAR prove to per-
form significantly better than benchmark models according to Global Minimum Variance
Portfolio and Mean-Variance evaluation criteria irrespective of frequency or size of the
portfolio. Whereas our study focuses on more important economic evaluation of the
forecasts, statistical evaluation is used as a robustness check of the results. According
to statistical criteria for comparison of models, we find that GHAR is not systematically
dominated by any benchmark model, which is supportive result for economic evaluation.

1To make the results comparable we scale them according to forecasting horizon
2To make the results comparable, we scale them according to the forecasting horizon.
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Appendix A: 1 step ahead forecasts

Table 1.4: GMVP - portfolio of 10 stocks

Cumulative
MRK RCOV Sub-Sampled RCOV
1 min 1 min 5 min 5min 10 min 15 min 20 min
DCC 22,14 22,14 22,14 22,14 22,14 22,14 22,14
RiskMetrics 42,15 42,15 42,15 42,15 42,15 42,15 42,15
VARFIMA 23.34 27.70 24.75 25.64 23.82 22.52 21.85
GHAR 22.50 26.71 23.90 24.79 2298 21.66 20.98
HAR 24.28 28.30 25.66 26.40 24.63 23.39 22.79
Annualized
MRK RCOV Sub-Sampled RCOV
1 min 1 min 5 min 5min 10 min 15 min 20 min
DCC 13.12 13.12 13.12 13.12 13.12 13.12 13.12
RiskMetrics 24.32 24.32 24.32 24.32 24.32 24.32 24.32
VARFIMA 13.74 15.76 14.40 14.84 13.90 13.21 12.88
GHAR 12.82 15.00 13.53 14.04 13.03 12.30 11.91
HAR 14.31 16.14 14.96 15.31 14.40 13.74 13.43

Note: Model with the overall best performance is highlighted; for the given frequency model
with the lowest risk is presented in bold; values represents percentage level of risk

Toble 1.5: RMSE — portfolio of 10 stocks

MRK RCOV Sub-Sampled RCOV
1 min 1 min 5 min 5min 10 min 15 min 20 min
DCC 3.242 3.624 3.896 3.600 3.162 3.044 3.085

RiskMetrics  3.808 4.006  4.167 3.949 3.803 3.822 3.846
VARFIMA = 2.592 3.028  3.228 2.903 2.551 2.494 2.539
GHAR 3.101 3.109  3.639 3.237 2.988 2.965 3.057
HAR 2.295 2.271  2.837 2.405 2.181 2.2 2.307

Note: Values are scaled by 10~3; highlighted cells belongs to 5% MCS
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Figure 1.2: Efficient frontiers - portfolio of 10 stocks
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Note: Figure displays efficient frontiers of various competing models of portfolio of ten stocks based on

one-step-ahead forecasts.
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Table 1.6: GMVP - portfolio of 15 stocks

DCC
RiskMetrics
VARFIMA
GHAR
HAR

DCC
RiskMetrics
VARFIMA
GHAR
HAR

Cumulative
MRK RCOV Sub-Sampled RCOV
1 min 1 min 5 min 5min 10 min 15 min 20 min
20.72 20.72 20.72 20.72 20.72 20.72 20.72
56.67 56.67 56.67 56.67 56.67 56.67 56.67
21.34 25.63 22.71 23.71 21.91 20.62 19.93
20.37 24.46 21.75 22.59 20.90 19.66 18.97
22.25 26.21 23.52 24.42 22.69 21.47 20.83
Annualized
MRK RCOV Sub-Sampled RCOV
1 min 1 min 5 min 5min 10 min 15 min 20 min
12.64 12.64 12.64 12.64 12.64 12.64 12.64
32.19 32.19 32.19 32.19 32.19 32.19 32.19
12.88 14.80 13.52 13.99 13.06 12.40 12.07
11.64 13.82 12.39 12.86 11.91 11.22 10.83
13.43 15.21 14.06 14.45 13.56 12.92 12.62

Note: Model with the overall best performance is highlighted; for the given frequency model

with the lowest risk is presented in bold; values represents percentage level of risk

Table 1.7: RMSE — portfolio of 15 stocks

DCC

RiskMetrics
VARFIMA

GHAR
HAR

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5min 10 min 15 min 20 min
5.323 5.601 6.064 5.793 5.158 5.023 5.058

11.905 11.881  12.030 11.902 11.952 12.044 12.030
4.555 4.809 5.207 4.900 4.374 4.276 4.323
5.881 5.352 6.342 5.918 5.565 5.521 5.677
4.285 3.599 4.832 4.226 3.948 4.005 4.150

Note: Values are scaled by 10~3; highlighted cells belongs to 5% MCS
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1.6.
Figure 1.3: Efficient frontiers - portfolio of 15 stocks
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on one-step-ahead forecasts.

Note: Figure displays efficient frontiers of various competing models of portfolio of fifteen stocks based
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Appendix B: 5 step ahead forecasts

Toble 1.8: GMVP - portfolio of 5 stocks

Cumulative
MRK RCOV Sub-Sampled RCOV
1 min 1 min 5 min 5min 10 min 15 min 20 min
DCC 30.50 30.50 30.50 30.50 30.50 30.50 30.50
RiskMetrics 40.61 40.61 40.61 40.61 40.61 40.61 40.61
VARFIMA 30.53 34.06 32.09 32.49 30.78 29.64 29.10
GHAR 30.49 33.88 32.07 32.36 30.72  29.54 28.96
HAR 31.30 34.62 32.86 33.19 31.47 30.38 29.87
Annualized
MRK RCOV Sub-Sampled RCOV
1 min 1 min 5 min 5min 10 min 15 min 20 min
DCC 17.38 17.38 17.38 17.38 17.38 17.38 17.38
RiskMetrics 23.17 23.17 23.17 23.17 23.17 23.17 23.17
VARFIMA 17.28 19.02 18.06 18.24 17.35 16.73 16.73
GHAR 17.18 18.87 17.93 1812 17.23 16.57 16.57
HAR 17.85 19.45 18.63 18.75 17.86 17.25 17.25

Note: Model with the overall best performance is highlighted; for the given frequency model
with the lowest risk is presented in bold; values represents percentage level of risk; values are
scaled by forecasting horizon

Table 1.9: RMSE — portfolio of 5 stocks

MRK RCOV Sub-Sampled RCOV
1 min 1 min 5 min 5min 10 min 15 min 20 min
DCC 1.193 1.293 1.376 1.288 1.152 1.081 1.079

RiskMetrics = 1.296 1.317  1.330 1.314 1.290 1.288 1.285
VARFIMA @ 1.043 1.023  1.153 1.055 0.993 0.968 0.978
GHAR 1.261 1.195 1.382 1.273 1.206 1.174 1.189
HAR 1.024 0.980 1.100 1.028 0.968 0.951 0.966

Note: Values are scaled by 1072 and by forecasting horizon; highlighted cells belongs to
5% MCS
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Figure 1.4: Efficient frontiers - portfolio of 5 stocks
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Toble 1.10: GMVP - portfolio of 10 stocks

Cumulative
MRK RCOV Sub-Sampled RCOV
1 min 1 min 5 min 5min 10 min 15 min 20 min
DCC 22.10 22.10 22.10 22.10 22.10 22.10 22.10
RiskMetrics 42.12 42.12 42.12 42.12 42.12 42.12 42.12
VARFIMA 23.11 27.25 24.44 25.27 23.55 22.30 21.65
GHAR 22.33 26.45 23.72 24.59 22.80 21.50 20.82
HAR 24.25 28.14 25.56 26.30 24.57 23.35 22.75
Annualized
MRK RCOV Sub-Sampled RCOV
1 min 1 min 5 min 5min 10 min 15 min 20 min
DCC 13.07 13.07 13.07 13.07 13.07 13.07 13.07
RiskMetrics 24.36 24.36 24.36 24.36 24.36 24.36 24.36
VARFIMA 13.38 15.36 14.03 14.44 13.54 12.88 12.54
GHAR 12.67 14.80 13.38 13.87 12.88 12.16 11.78
HAR 14.15 15.99 14.81 15.15 14.24 13.59 13.28

Note: Model with the overall best performance is highlighted; for the given frequency model
with the lowest risk is presented in bold; values represents percentage level of risk; values are
scaled by forecasting horizon

Toble 1.11: RMSE — portfolio of 10 stocks

MRK RCOV Sub-Sampled RCOV
1 min 1 min 5 min 5min 10 min 15 min 20 min
DCC 2.487 2.683 2.773 2.690 2.402 2.290 2.309

RiskMetrics  3.232 3.250  3.217 3.222 3.242 3.278 3.267
VARFIMA 1.952 1.966 2.166 2.024 1.867 1.833 1.872
GHAR 2.598 2.480  2.759 2.611 2.481 2.445 2.501
HAR 1.950 1.881 2.103 1.984 1.845 1.826 1.877

Note: Values are scaled by 1072 and by forecasting horizon; highlighted cells belongs to
5% MCS
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Toble 1.12: GMVP - portfolio of 15 stocks

Cumulative
MRK RCOV Sub-Sampled RCOV
1 min 1 min 5 min 5min 10 min 15 min 20 min
DCC 20.70 20.70 20.70 20.70 20.70 20.70 20.70
RiskMetrics 56.64 56.64 56.64 56.64 56.64 56.64 56.64
VARFIMA 21.23 25.28 22,52 23.44 21.75 20.52 19.86
GHAR 20.31 24.30 21.65 22.45 20.83 19.62 18.92
HAR 22.31 26.13 23.51 24.40 22.72 21.51 20.89
Annualized
MRK RCOV Sub-Sampled RCOV
1 min 1 min 5 min 5min 10 min 15 min 20 min
DCC 12.60 12.60 12.60 12.60 12.60 12.60 12.60
RiskMetrics 32.25 32.25 32.25 32.25 32.25 32.25 32.25
VARFIMA 12.53 14.43 13.17 13.60 12.72 12.07 11.74
GHAR 11.53 13.66 12.26 12.70 11.79 11.12 10.73
HAR 13.29 15.07 13.94 14.31 13.42 12.78 12.48

Note: Model with the overall best performance is highlighted; for the given frequency model
with the lowest risk is presented in bold; values represents percentage level of risk; values are
scaled by forecasting horizon

Toble 1.13: RMSE — portfolio of 15 stocks

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5min 10 min 15 min 20 min
DCC 4.110 4.251 4.384 4.329 3.992 3.919 3.949
RiskMetrics 11.404 11.318  11.262 11.260 11.487 11.599 11.573
VARFIMA 3.453 S 3.596 3.422 3.239 3.201 3.283
GHAR 4.913 4.490 4.961 4.821 4.644 4.590 4.706
HAR 3.575 3.216 3.644 3.489 3.331 3.314 3.421

Note: Values are scaled by 1073 and by forecasting horizon: highlighted cells belongs to
5% MCS
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Figure 1.5: Efficient frontiers - portfolio of 10 stocks

(a) RCOV 5min vs. MRK

(b) RCOV 5 min vs. RCOV 1 min
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1.6.

Figure 1.6: Efficient frontiers - portfolio of 15 stocks
(b) RCOV 5 min vs. RCOV 1 min

(a) RCOV 5min vs. MRK
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Appendix C: 10 step ahead forecasts

Table 1.14: GMVP - portfolio of 5 stocks

Cumulative
MRK RCOV Sub-Sampled RCOV
1 min 1 min 5 min 5min 10 min 15 min 20 min
DCC 30.50 30.50 30.50 30.50 30.50 30.50 30.50
RiskMetrics 40.58 40.58 40.58 40.58 40.58 40.58 40.58
VARFIMA 30.30 33.75 31.80 32.20 30.53 29.41 28.88
GHAR 30.35 33.66 31.94 32.21 30.58 29.40 28.81
HAR 31.16 34.40 32.68 33.01 31.30 30.24 29.74
Annualized
MRK RCOV Sub-Sampled RCOV
1 min 1 min 5 min 5min 10 min 15 min 20 min
DCC 17.39 17.39 17.39 17.39 17.39 17.39 17.39
RiskMetrics 23.22 23.22 23.22 23.22 23.22 23.22 23.22
VARFIMA 17.07 18.82 17.84 18.02 17.15 16.54 16.26
GHAR 17.11 18.74 17.86 1804 17.15 16.49 16.16
HAR 17.72 19.32 18.49 18.62 17.73 17.13 16.86

Note: Model with the overall best performance is highlighted; for the given frequency model
with the lowest risk is presented in bold; values represents percentage level of risk; values are
scaled by forecasting horizon

Toble 1.15: RMSE — portfolio of 5 stocks

MRK RCOV Sub-Sampled RCOV
1 min 1 min 5 min 5min 10 min 15 min 20 min
DCC 1.208 1.294 1.375 1.291 1.173 1.107 1.101

RiskMetrics = 1.389 1.401 1.431 1.404 1.388 1.384 1.380
VARFIMA 1.153 1.147  1.266 1.173 1.106 1.072 1.078
GHAR 1.287 1.256  1.409 1.307 1.237 1.197 1.205
HAR 1.138 1.133  1.242 1.163 1.091 1.058 1.067

Note: Values are scaled by 1072 and by forecasting horizon; highlighted cells belongs to
5% MCS
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Figure 1.7: Efficient frontiers - portfolio of 5 stocks

(a) RCOV 5min vs. MRK (b) RCOV 5 min vs. RCOV 1 min
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Toble 1.16: GMVP - portfolio of 10 stocks

Cumulative
MRK RCOV Sub-Sampled RCOV
1 min 1 min 5 min 5min 10 min 15 min 20 min
DCC 22.05 22.05 22.05 22.05 22.05 22.05 22.05
RiskMetrics 42.08 42.08 42.08 42.08 42.08 42.08 42.08
VARFIMA 22.89 26.91 24.17 24.97 23.31 22.09 21.45
GHAR 22.16 26.23 23.55 24.40 22.61 21.33 20.66
HAR 24.15 27.94 25.42 26.14 24.45 23.25 22.66
Annualized
MRK RCOV Sub-Sampled RCOV
1 min 1 min 5 min 5min 10 min 15 min 20 min
DCC 13.03 13.03 13.03 13.03 13.03 13.03 13.03
RiskMetrics 24.40 24.40 24.40 24.40 24.40 24.40 24.40
VARFIMA 13.16 15.13 13.80 14.20 13.32 12.67 12.33
GHAR 12.56 14.67 13.28 13.75 12,76 12.06 11.69
HAR 14.01 15.85 14.67 15.01 14.10 13.45 13.14

Note: Model with the overall best performance is highlighted; for the given frequency model
with the lowest risk is presented in bold; values represents percentage level of risk; values are
scaled by forecasting horizon

Table 1.17: RMSE — portfolio of 10 stocks

MRK RCOV Sub-Sampled RCOV
1 min 1 min 5 min 5min 10 min 15 min 20 min
DCC 2.437 2.609 2.687 2.610 2.362 2.260 2.271

RiskMetrics = 3.445 3.461 = 3.455 3.448 3.458 3.487 3.481
VARFIMA = 2.139 2.165  2.327 2.208 2.057 2.011 2.041
GHAR 2.605 2514527720 2.607 2.494 2.449 2.491
HAR 2.114 2.110 2.276 2.174 2.026 1.986 2.024

Note: Values are scaled by 1072 and by forecasting horizon; highlighted cells belongs to
5% MCS
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Figure 1.8: Efficient frontiers - portfolio of 10 stocks

(a) RCOV 5min vs. MRK (b) RCOV 5 min vs. RCOV 1 min
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Toble 1.18: GMVP - portfolio of 15 stocks

Cumulative
MRK RCOV Sub-Sampled RCOV
1 min 1 min 5 min 5min 10 min 15 min 20 min
DCC 20.67 20.67 20.67 20.67 20.67 20.67 20.67
RiskMetrics 56.60 56.60 56.60 56.60 56.60 56.60 56.60
VARFIMA 21.08 25.00 22.33 23.21 21.56 20.36 19.72
GHAR 20.21 24.13 21.54 22.30 20.72 19.53 18.83
HAR 22.31 26.00 23.46 24.32 22.68 21.49 20.88
Annualized
MRK RCOV Sub-Sampled RCOV
1 min 1 min 5 min 5min 10 min 15 min 20 min
DCC 12.56 12.56 12.56 12.56 12.56 12.56 12.56
RiskMetrics 32.32 32.32 32.32 32.32 32.32 32.32 32.32
VARFIMA 12.32 14.21 12.95 13.38 12.50 11.86 11.53
GHAR 11.44 13.55 12.16 12.59 11.70 11.04 10.66
HAR 13.19 14.95 13.82 14.19 13.31 12.68 12.37

Note: Model with the overall best performance is highlighted; for the given frequency model
with the lowest risk is presented in bold; values represents percentage level of risk; values are
scaled by forecasting horizon

Toble 1.19: RMSE — portfolio of 15 stocks

MRK RCOV Sub-Sampled RCOV

1 min 1 min 5 min 5min 10 min 15 min 20 min
DCC 4.141 4.258 4.385 4.323 4.054 3.989 4.010
RiskMetrics 11.806 11.735 11.720 11.719  11.884 11.981 11.961
VARFIMA 3.690 3.542 3.821 3.680 3.496 3.439 3.509
GHAR 4.807 4.514 4.859 4.746 4.571 4.508 4.613
HAR 3.666 3.471 3.767 3.635 3.468 3.424 3.512

Note: Values are scaled by 1073 and by forecasting horizon: highlighted cells belongs to

5% MCS
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(a) RCOV 5min vs. MRK

Figure 1.9: Efficient frontiers - portfolio of 15 stocks
(b) RCOV 5 min vs. RCOV 1 min
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Toble 1.20: Descriplive statistics of returns over the period 01.07.2005 — 03.01.2012

AAPL CVX GE GOOG IBM JNJ JPM KO MSFT PFE PG T WFC WMT XOM
1 min
Mean -0.105 0.086 -0.218 -0.204 0.215 -0.035 -0.036 0.011 -0.040 -0.150 0.133 -0.079 -0.049 -0.018 0.099
Max 0.046 0.043 0.050 0.022 0.030 0.044 0.032 0.020 0.019 0.032 0.032 0.039 0.042 0.030 0.040
Min -0.037 -0.027 -0.032 -0.041 -0.020 -0.033 -0.060 -0.038 -0.025 -0.028 -0.028 -0.038 -0.049 -0.021 -0.034
SD 1.046 0.891 1.088 0.936 0.749 0.559 1.336 0.619 0.833 0.825 0.616 0.834 1.464 0.685 0.827
Skewness 0.037 0.262 0.181 -0.369 0.077 0.394 -0.144 -0.482 -0.063 0.103 -0.066 -0.122 0.068 0.365 -0.188
Kurtosis 37.100 44.353  43.467 34.940 40.526  126.707 41.663  70.490 18.848  30.256  71.747  52.025 40.587  39.587  50.690
5 min
Mean -0.629 0.423 -0.994 -1.037 1.177 -0.132 -0.165 0.113 -0.138 -0.745 0.741 -0.353 -0.252 -0.057 0.526
Max 0.065 0.061 0.052 0.046 0.053 0.032 0.069 0.028 0.030 0.030 0.050 0.034 0.066 0.048 0.053
Min -0.048 -0.068 -0.046 -0.069 -0.036 -0.040 -0.068 -0.037 -0.028 -0.038 -0.062 -0.073 -0.077 -0.042 -0.059
SD 2.258 1.916 2.280 2.023 1.580 1.174 2.871 1.297 1.756 1.694 1.316 1.779 3.151 1.478 1.779
Skewness -0.008 -0.062 0.268 -0.509 0.121 -0.127 0.059 -0.300 -0.091 0.109 -0.460 -0.518 0.095 0.432 -0.098
Kurtosis 28.079  37.935 31.858 39.555 37.413 44.133  35.720 33.284 17.395 18.627 86.196 46.840 34.793 42.507 40.512
10 min
Mean -0.960 1.129 -1.740 -1.820 2.856 0.118 -0.611 0.387 0.350 -1.416 1.832 -0.444 -0.827 0.289 1.410
Max 0.050 0.039 0.052 0.043 0.029 0.030 0.067 0.031 0.029 0.029 0.024 0.038 0.069 0.053 0.051
Min -0.079 -0.034 -0.058 -0.073 -0.036 -0.025 -0.102 -0.040 -0.038 -0.027 -0.031 -0.043 -0.092 -0.035 -0.067
SD 3.150 2.630 3.168 2.776 2.169 1.592 3.937 1.793 2.399 2.297 1.765 2.412 4.372 1.999 2.423
Skewness -0.301 0.229 0.256 -0.373 -0.161 0.310 0.035 -0.321 -0.018 0.244 -0.042 -0.114 0.082 0.435 -0.098
Kurtosis 24.897 15.055  29.864 25773  20.025 21.991 31.039  27.228 15.157 12,988  20.916 21.321 30.512 23.805 27.665
15 min
Mean -1.415 2.229 -2.493 -2.598 4.830 0.250 -0.769 0.643 0.765 -1.986 2.917 -0.370 -1.003 0.712 3.193
Max 0.058 0.046 0.071 0.049 0.038 0.025 0.113 0.030 0.032 0.039 0.028 0.046 0.099 0.051 0.047
Min -0.053 -0.037 -0.070 -0.068 -0.053 -0.024 -0.086 -0.041 -0.042 -0.029 -0.034 -0.053 -0.075 -0.035 -0.037
SD 3.801 3.186 3.877 3.350 2.630 1.946 4.896 2.175 2.921 2.794 2.138 2.951 5.335 2.445 2.925
Skewness -0.012 0.237 0.161 -0.242 -0.159 0.332 0.314 -0.319 -0.050 0.264 0.086 -0.052 0.421 0.562 0.263
Kurtosis 16.529  15.547  31.899 22.586  21.422 19.781 35.685 22.721 14.785  13.138  21.422 21.883 30.411 20.882 19.090
20 min
Mean -1.950 2.227 -4.353 -3.743 5.912 -0.276 -1.903 0.412 0.445 -2.604 3.494 -0.812 -2.259 0.542 3.371
Max 0.050 0.059 0.062 0.043 0.036 0.034 0.074 0.035 0.034 0.041 0.026 0.053 0.086 0.053 0.069
Min -0.048 -0.037 -0.068 -0.118 -0.040 -0.021 -0.102 -0.040 -0.038 -0.029 -0.029 -0.049 -0.080 -0.024 -0.067
SD 4.245 3.608 4.350 3.775 2.939 2.159 5.381 2.446 3.259 3.131 2.380 3.300 6.064 2.741 3.325
Skewness -0.075 0.252 0.130 -0.867 -0.034 0.420 -0.051 -0.148 -0.044 0.256 0.087 -0.086 0.161 0.510 0.177
Kurtosis 13.207  14.377  26.975 42.831  17.258 17410 23.170  19.581 12.493  11.697 15,784 19.932 25.774 17.183  25.829
Note: The means are scaled by 10°, the standard deviations are scaled by 103
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CHAPTER 2

Measurement of Common Risk
Factors in Tails: A Panel Quantile
Regression Model for Returns

This chapter investigates how to measure common market risk factors in tails
of the return distributions using newly proposed Panel Quantile Regression
Model for Returns. By exploring the fact that volatility crosses all quantiles
of the return distribution and using a penalized fixed effects estimator, we
are able to control for otherwise unobserved heterogeneity among financial
assets. Direct benefits of the proposed approach are revealed in a portfolio
Value-at—Risk forecasting application, where our modeling strategy performs
significantly better than several benchmark models according to both statisti-
cal and economic comparison. In particular Panel QQuantile Regression Model
for Returns consistently outperforms all the competitors in the 5% and 10%
quantiles. Sound statistical performance translates directly into economic
gains which is demonstrated in the Global Minimum Value-at—Risk Portfolio
and Markowitz-like comparison. Overall results of our research are important
for correct identification of the sources of systemic risk, and are particularly
attractive for high dimensional applications.

2.1 Introduction

Many studies document cross-sectional relations between risk and expected returns, gen-
erally measuring a stock’s risk as the covariance between its return and some factor.
In this laborious search for proper risk factors,! volatility still plays a central role in

1See for example Harvey et al. (2016); Feng et al. (2019) for recent very complete overviews. This
research dates back to French et al. (1987).
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explaining expected stock returns for decades. Most recent efforts explore increasingly
available datasets, and make measurement of ex-post volatility more precise than ever
before. In turn, these measures can be used for more precise identification of market risk.
Although predictions about expected returns are essential for understating of classical
asset pricing, little is known about potential of the factors to precisely identify extreme
tail events of the returns distribution. More importantly, even less is known about com-
monalities between more assets with this respect. Our research attempts to contribute
in this direction.

Asset pricing models explaining risk valuation theoretically assume an economic agent
who decides based on the preference about her consumption by maximizing expected
utility function. However, these preferences may be too restrictive to deliver satisfactory
description of the real behavior of agents. Instead of working with standard expected util-
ities, recent literature strives to incorporate heterogeneity into dynamic economic models
assuming agents maximize their stream of future quantile utilities (Chambers, 2007; Ros-
tek, 2010; de Castro and Galvao, 2018). We contribute to these efforts by developing a
Panel Quantile Regression Model for Returns that is able to control for otherwise unob-
served heterogeneity among financial assets and allows us to exploit common factors in
volatility that directly affect future quantiles of returns. In a sense, we revisit a large
literature connecting volatility with the cross-section of returns, as by construction, we
model tail events of the conditional distributions via volatility.

Since the seminal work of Koenker and Bassett Jr (1978), quantile regression models
have been increasingly used in many disciplines. In finance, Engle and Manganelli (2004)
were among the first to use quantile regression to develop the Conditional Autoregressive
Value-at—Risk (CAViaR) model and capture conditional quantiles of the asset returns.
Baur et al. (2012) use quantile autoregressions to study conditional return distributions,
Cappiello et al. (2014) detects comovement between random variables with time-varying
quantile regression. Zikes and Barunfk (2016) show that various volatility measures
are useful in forecasting quantiles of future returns without making assumptions about
underlying conditional distributions. The resulting semi-parametric modeling strategy
captures conditional quantiles of financial returns well in a flexible framework of quantile
regression. Moving towards a multivariate framework, and concentrating on interrelations
between quantiles of more assets, White et al. (2015) pioneer the extension. Different
stream of multivariate quantile regression based literature concentrates on the analysis
using factors (Gonzalo et al., 2017; Ando and Bai, 2018).? From a theoretical point of
view, Giovannetti (2013) derives an asset pricing model in which equity premium is no
longer based on the covariance between return and consumption. Instead, Giovannetti
(2013) argue that under optimism, higher volatility can be connected to high chance
of high returns leading to increased prices, hence decreasing expected returns, and vice

2Panel quantiles methods are useful in the other areas of economics besides finance. They are mostly
applied in the labour economics (Billger and Lamarche (2015), Dahl et al. (2013), Toomet (2011)),
banking and economic policy analysis (Covas et al. (2014), Klomp and De Haan (2012)), economics of
education (Lamarche (2008), Lamarche (2011)), energy and environmental economics (You et al. (2015),
Zhang et al. (2015)) or international trade (Dufrenot et al. (2010), Foster-McGregor et al. (2014), Powell
and Wagner (2014)).
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versa under pessimism. Based on Choquet utility functions, Bassett et al. (2004) show
that pessimistic optimization may be formulated as a linear quantile regression problem,
and can lead to optimal portfolio allocation.

In this respect, work by Zikes and Barunik (2016) is important as it provides link
between future quantiles of return distribution and its past variation. As the financial
sector is highly connected and the co-movements in asset prices are common, there is
a need for proper identification of dependencies in joint distributions. In the classical
mean-regression framework, Bollerslev et al. (2018) showed that realized volatility of
financial time series shares many commonalities. In the quantile regression set-up, how-
ever, there is no similar study that attempts to uncover information captured in the
panels of volatility series. Moreover, to the best of our knowledge there is no study es-
timating the conditional distribution of returns in a multivariate setting that explores
ex-post information in the volatility.

In this chapter, we contribute to the literature by introducing a Panel Quantile Re-
gression Model for Returns that allows to measure common risk factors in tails of the
return distributions. Our model utilize all the advantages offered by panel quantile re-
gression and financial market datasets. In particular, we are able to control for otherwise
unobserved heterogeneity among financial assets and reveal common factors in volatility
that have direct influence on the future quantiles of returns. To the best of our knowledge
this is one of the first applications of the panel quantile regression using a dataset where
the time dimension T is much greater than cross-sectional dimension N, ie. T >> N.
As a result we are able to obtain estimates of quantile specific individual fixed effects
that represents the idiosyncratic part of market risk.

In an empirical application, we hypothesize that newly proposed model will deliver
more accurate estimates compared to currently established methods. These estimates
moreover translates into better forecasting performance of the Panel Quantile Regression
Model for Returns. In addition, using a penalized fixed effect estimator we will be
able to disentangle overall market risk into systematic and idiosyncratic parts. Actual
performance of our model is tested in a portfolio Value-at-Risk forecasting exercise.
Before the analysis of the empirical dataset (29 highly liquid stocks from the New York
Stock Exchange), we run a small Monte-Carlo experiment that enable us to study well-
behaved data. For the robustness reasons we evaluate forecasts from both a statistical and
economic perspective. In the statistical comparison we furthermore distinguish between
absolute and relative performance of the given model.

Results of our analysis suggest that the Panel Quantile Regression Model for Returns
is dynamically correctly specified. Moreover it dominates the benchmark models in the
economically important quantiles (5%,10% or 95%). Overall we find that according to
statistical comparison none of the benchmark models is able to outperform our model
consistently. Furthermore the model we introduce in this chapter provide us with direct
economic gains according to both economic evaluation criteria.
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2.2 Risk Measurement using High Frequency Data

We naturally begin with the definition of risk measures used in the study. Let’s assume
that the efficient logarithmic price process p;; of ith asset evolves over time 0 < ¢ < T
according to the following dynamics

dp; s = pipdt + o5 dWip 4 dJ; g, (2.1)

where p; ; is a predictable component, o, is a cadlag process, W;; is a standard Brownian
motion, and J;; is a jump process.

The volatility of the logarithmic price process can be measured by quadratic return
variation which can be decomposed into integrated variance (IV) of the price process and
the jump variation (JV):

t Ni,t
_ 2 2
QVie = / Uz',stJf § Ritl (2.2)
-1 =1
N—— =
Vi Vi

where N;; is total number of jumps during day ¢ and ZZN:’H /@?Jfl represents magnitude
of the jumps. As shown by Andersen et al. (2003) Realized Variance estimator can be
simply constructed by squaring intraday returns:

N
RV, = Z (Akpz',t)2 ; (2.3)

k=1

where Appit = Pit—14v/N — Pii—14v,_,/nN 18 a discretely sampled vector of k-th intraday
log-returns of ith asset in [t — 1,¢|, with N intraday observations. Realized Variance
estimator moreover converges uniformly in probability to QV;; as the sampling frequency

goes to infinity
¢

N
230 P 2 2
sz’ﬂg N—>—oo> - Ui,sds + lz; Hz’,t,l

Building on the concept of Realized Variance Barndorff-Nielsen and Shephard (2004b)
and Barndorff-Nielsen and Shephard (2006) introduced the bipower variation estimator
that is robust to jumps and thus able to consistently estimate IV ;. Furthermore, Ander-
sen et al. (2011) adjust original estimator, which helps render it robust to certain types
of microstructure noise:

N

—~ BPV _ N

IV, = pr” <m> Z|Ak—2pi,t||AkPi,t|a
k=3

where p, = E(|Z7%]), and Z ~ N(0,1). Having an estimator of IV;; in hand, jump
variation can be consistently estimated® as a difference between Realized Variance and

3 Asymptotic behaviour and further details of the estimator can be found in Barndorff-Nielsen and
Shephard (2006).
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the bipower variation:
N

e — BPV P 9
RV, — 1V, — K2,
, it 4,6,0
N—xo

For many financial applications not only the magnitude of the variation, but also
its sign is important. Therefore Barndorff-Nielsen et al. (2010) introduce an innovative
approach for measuring negative and positive variation in data called Realized Semi-
variance. They showed that Realized Variance can be decomposed to realized downside
semivariance (RS;,) and realized upside semivariance (RS},):

RViy = RS, + RS,

where RS;} and RS}, are defined as follows,

N Ny
—t 1
RS;, = ; (Akpi)* I (A > 0) 5 SIVig + lz; ke (iea > 0) (2.4)
o N 1 Nt
RSi,t — ; (Akpi,t)2 I (Akat < O) £> 5]‘/;7,5 + lz; Hit,ll (K)Lt’l < O) . (25)

Consequently, the negative and positive semivariance provides information about vari-
ation associated with movements in the tails of the underlying variable. Similar to Patton
and Sheppard (2015) and Bollerslev et al. (2017), we use negative semivariance as a proxy
to the bad state of the returns, and positive semivariance as an empirical proxy of the
good state of the underlying variable.

Since correlation is inevitably important in portfolio applications, and we use it later
in our portfolio Value—at—Risk application, we also define Realized Covariance estimator
(Barndorff-Nielsen and Shephard, 2004a) as

N
%= (Axpe) (Akpe),
k=1

where Axpy = (Arpig, ..., Arpgt) is vector containing log-returns of ¢ individual assets.

2.3 Panel Quantile Regression Model for Returns

Having briefly described realized measures that we need for model construction, we now
propose simple linear models for cross-section of quantiles of future returns. We base
our model in a recent theoretical endeavor to move from expected values to quantiles,
thereby understanding heterogeneity in asset prices. Based on the risk preferences of
quantile maximizers defined by Manski (1988); Rostek (2010) and de Castro and Galvao
(2018) develop a dynamic model of rational behavior under uncertainty, in which an agent
maximizes streams of future quantile utilities. This is in sharp contrast to the mainstream
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literature that assumes the decision making process to be driven by maximization of the
expected utility instead. In the spirit of Bassett et al. (2004), general version of our
model can be viewed as linear asset pricing equation

QTi,tJrl (T|Ui,t7 ai(T)) - ai(T) + Uz—,rtﬁ(T) + ETV(T) , TE (07 1)7
—— ——
Unobserved Heterogeneity  [diosyncratic Risk ~ Common Factors

(2.6)

where 7; 441 = pitr1 — pis are logarithmic daily returns, o;(7) represents individual fixed

effects that accounts for unobserved heterogeneity, v; ; are measures of quadratic variation

as defined in previous section and accounts for the firm specific (idiosyncratic) risk and

I} represents exogenous common factors. This model enables us to study influence of the

various sources of risk on the specific quantiles of the future returns. Further, in case of

(1) # 0 for a given 7, the model allows to capture the common risk factors in the tails.

While Equation 2.6 accommodates many possible specifications, we are interested in

the set of following models. In the first set of model specifications, quantiles of the return

series depends on the unobserved heterogeneity and idiosyncratic risk measured by one
of the realized measures:

e PQR-RV with Realized Volatility defined as
Qriaes (TIRVA a(r)) = slr) + Bpyn (1) RV, (2:7)
e PQR-RSV with Realized Semivariance defined as

Qrier (TIRSE RS, 04(7) ) =0u(7) + Brgen (1RSS4

(2.8)
+ ﬁRS,l/z (T)Rsijtlm,
e PQR-BPV with Realized Bi-Power Variation defined as
Qm,m <T|BPV;,1t/27 Jvz',lt/2704z'(7')) :0%(7') +5BPV1/2(T)BPV;,11§/2+
(2.9)

+ Brn (N VL2

In the second set of model specifications, we study role of the ex-ante measure of market
volatility, i.e. VIX index, that we consider to be a good proxy for the common exogenous
factor. These specifications will measure the direct influence of the common market factor
once we control for the asset specific volatility as well as unobserved heterogeneity:

e PQR-RV-VIX defined as

Qrivr (TIRVA?, 0i(7)) = 0s(7) 4 Bryria (VRVA + 3 (VIX,, (2.10)
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o PQR-RSV-VIX defined as

QTi,tJrl <T|RSz'J,rt1/2a RSz'jtlmy ai(T)) —0 (T) + 535#/2 (T)Rsittlm‘l“
(2.11)

+ 53571/2 (7—)R‘S(z'jt1/2 T Yvix (T)VIXty
e PQR-BPV-VIX defined as

Qrivir <T|BP‘/i}t/2, J‘/i}t/2, Oéz'(T)) =ay(7) + 5BPV1/2(7')BPVz',1t/2Jr (2.12)

+ 5JV1/2 (T)Jvz',lt/2 T Vorx (T)VIXt'

Details of this specifications are described in the Section Results: Common Risk Factors
in Tails. Generally, Equation 2.6 can be easily extend by another exogenous variables
such as factors used in Fama and French (1993), as already attempted by Galvao et al.
(2017), however, this is beyond the scope of this chapter.

2.3.1 Estimation

In our work, we concentrate on commonalities in the quantiles of several return series.
To obtain parameters estimates of the general model defined in Equation 2.6 we use
panel quantile regression as introduced in Koenker (2004). In the seminal work, Roger
Koenker proposed a penalized fixed effects estimator as a general way of estimating
quantile regression models in the panel data framework. Recently Lamarche (2010)
studied penalized quantile regression estimator, and Galvao (2011) introduced a fixed
effects model for dynamic panels. Galvao and Montes-Rojas (2010) moreover shown that
bias in dynamic panels can be reduced using a penalty term. Further, Canay (2011)
introduced a simple two-step approach to the estimation of panel quantile regression
and showed consistency and asymptotic normality of the proposed estimator. Other
influential works developing theory of panel quantile methods are Harding and Lamarche
(2009), Galvao and Montes-Rojas (2015), Galvao and Wang (2015), Galvao and Kato
(2015), Graham et al. (2015), Harding and Lamarche (2014) or Kato et al. (2012).

Although literature devoted to panel quantile estimators is growing and many interest-
ing alternatives have been introduced, we use original penalized fixed effects estimator.
The advantage of this approach is the ability to account, and control for, unobserved
heterogeneity among financial assets, which will yield more precise quantile specific es-
timates. As a consequence these estimates will translate into better forecasting perfor-
mance directly. Moreover one can use this approach to obtain precise estimates of the
Value-at—Risk (VaR) which is commonly used financial industry risk measure. In the
VaR application panel data will utilize all the favorable properties of the standard time
series. In addition, the cross-sectional dimension will help us to account for common
shocks among the assets.
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To obtain parameter estimates we solve following optimization problem

min 30 ol — o) = w00 = F) Al (219
t=1 =1 =1

o(7),8(7) (7

where p,(u) = v (T — I(u(< 0))) is the quantile loss function (Koenker and Bassett Jr,
1978) and Y7 || is {; penalty that controls variability introduced by the large number
of estimated parameters. The general form of our model consider penalty term A from
range (0,00). In case A = 0, we obtain full set of asset specific fixed effects, for A > 0
fixed effects of some assets shrink toward zero and as A — oo we have model without
fixed effects. One might consider shrinking some of the fixed effects toward zero in a high
cross-sectional dimension problems thus keeping the number of estimated parameters
reasonable.

In the empirical application we choose the penalty term by minimizing Bayesian
Information Criterion (BIC) as proposed in Galvao and Montes-Rojas (2010)

BIC(py) = logoy + 1/2(NT) ™ pAlogNT,

where 6y, = NT! Zf\il Zthl Pr (ri7t+1 — &(1,A) — UZ'TtB(T, ) — FTA(r, )\)), and p) is a
measure of the effective dimension of the fitted model with penalty parameter A. In the
px calculation we consider both Method 1 and 2, where

e Method 1: p, is the dimension of the set {8 U~ U {i||ou|> k}}

e Method 2: py — Zf\il Zle I [|éi,t+1(7—7 )\)|< k|, where éi,tJrl(T) )\) - Ti,t+1_&i(77 )\)—

vatB (1,A) — F,"4(r, ) is the T-quantile residual sequence for a given \.

We have set tolerance parameter x to various values ranging from 1072 to 10~7 and
it turns out to be the crucial part of the analysis. Unlike the results of Galvao and
Montes-Rojas (2010) where model selection was not affected by the values of %, in our
empirical application, the optimal lambda differ substantially for different A. Moreover,
results from Method 1 and 2 sometimes contradict each other, i.e. for k = 10=* Method
1 suggests to shrink all the fixed effects while Method 2 suggest zero penalization in the
75% quantile. Furthermore, using both methods for p, calculation, the differences in the
BICs of unpenalized model and the model with “optimaly” selected A are very small, i.e
no greater than 4 x 1072 or 0.4%.

Since the results of penalty selection are inconclusive and the increasing time dimen-
sion reduces the usefulness of the shrinkage method (Galvao and Montes-Rojas, 2010),
we concentrate in our further analysis on the model without penalty, i.e. A =0, and we
apply standard pure fixed effects model. This approach allows us to obtain estimates
of all individual quantile specific fixed effects, i.e. account for unonserved heterogenity
among assets. As a robustness check? we also carried out the analysis with values of A

4Results are presented in Appendix.
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from range (0;1) as in Damette and Delacote (2012) and Covas et al. (2014) and with
A = 1 as in Koenker (2004), Bache et al. (2008), Matano and Naticchioni (2011), Lee
et al. (2012) and You et al. (2015). Overall we find that the choice of A does not affect
precision of our analysis. We address this finding to the structure and characteristics of
the dataset (high time dimension T compared to low cross-section dimension ).

In the Equation 2.13 we further consider individual fixed effects to have distributional
effects and we concentrate on each quantile separately rather than solving optimization
problem through several quantiles simultaneously. In contrast, Koenker (2004) and vast
majority of the theoretical and applied works consider «; to have a pure location shift
effect on the conditional quantiles. This restriction is a consequence of the structure
of the usual panel-datasets where cross-sectional dimension is much larger than time
dimension®. This problem is not so severe in our application since majority of assets
have a long history and thus consist of thousands of ohservations. Moreover analysis
of the specific quantiles is essential for many financial applications including popular
Value—at—Risk in which we are most often interested in finding 1-day 5% VaR or 10-day
1% VaR, as historically recommended by Basel Committee on Banking Supervision.

2.4 Competing Models and Evaluation

In the previous section we introduce Panel Quantile Regression Model for Returns which
will be used in the applied part of the chapter to analyze simulated and empirical data. In
this section, we describe alternative approaches that can be viewed as the direct competi-
tors to our model. Benchmarks in our work includes popular and widely used RiskMetrics
model that is the industry standard for the risk evaluation in high-dimensional problems
and two applications of the Univariate Quantile Regression Model for Returns.

2.4.1 RiskMetrics

Based on Exponentially Weighted Moving Average, J.P. Morgan Chase in 1996 intro-
duced new methodology for accessing the financial risk called RiskMetrics. It is consid-
ered to be the baseline benchmark model for numerous fiancial applications. For our
benchmark purposes, we adopt the specification in its original form as defined in Longer-
staey and Spencer (1996) with decay factor, A set to 0.94. We assume a ¢ x 1 vector
of daily returns r, = > | (Agpy) for ¢ = 1,...,T such that r, ~ N (u, 07), where p; is
conditional mean and o7 is conditional variance of daily returns. We also assume that
i#: = 0 and therefore conditional covariance has the form

Oigit = ATige—1 + (1= N)Tas_175e-1,

where o, ;; denotes covariance between assets ¢ and j at time ¢.

5As detailed in Koenker (2004) it is not advisable to estimate 7-specific oy in problems with
small /medium 7.
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2.4.2 Univariate Quantile Regression Model for Returns

As already mentioned Zikes and Barunik (2016) introduced an elegant framework for
modelling and obtaining forecasts of the conditional quantiles of future returns in a
univariate setting. They proposed to model quantiles of return series according to:

QTi,t+1(T|Ui,t7 ) = (1) + UiTtﬁz'(T) + ZtT’Y(T)a (2.14)

. . . —=1/2 ———1/2 —1/2

where 7141 = pity1 — pie 1s return series of ith asset, v;; = (QVH SQV i1y IV,
IV g IV 3 IV g, ) are components of quadratic variation and z; is vector

of vector of weakly exogenous variables. Estimates of asset ¢ quantile specific 5 from
Equation 2.14 are obtained by minimizing following objective function:

IR
4<£f)115f}< ' Zpr (Tz',tﬂ —ay(T) — Uthﬁz(T) - Z;’Y(ﬂ) ; (2.15)
s~ T t:l

where p-(u) = u(r — I(u < 0))) is the quantile loss function defined in Koenker and
Bassett Jr (1978). The application of the model in a multivariate setting is further
described in the following section.

2.4.3 Forecasting Exercise and Forecast Evaluation

In order to evaluate the performance of the newly proposed Panel Quantile Regression
Model for Returns we conduct forecasting exercise in which we study portfolio Value—-
at—Risk from a statistical and economic point of view. We decided to concentrate on
both statistical and economic evaluation in order to get a complete picture of hehavior
of the new model. Moreover concentrating on statistical evaluation only might get us
into trouble because good statistical performance might not necessarily translate into
economic gains. Therefore to make our results robust we apply two statistical and two
economic evaluation criteria.

In the statistical comparison we focus on the ahsolute and relative performance of
the considered models in an equally weighted portfolio set-up. By focusing on an equally
weighted portfolio, we refrain from specifying complicated weighting schemes which might
affect the overall performance.

In the economic comparison, we study the efficient frontier of the Value-at—Risk -
return trade-off and also Global Minimum Value-at-Risk Portfolio (GMVaRP). As both
approaches by definition tries to find optimal weights of the assets we are not using
equally weighted portfolio here anymore.

Portfolio Value—at—Risk

Value-at—Risk is an elegant way of quantifying the risk of an investment. Its simplicity
makes it popular in the financial industry because it provides us with single number that
represents the potential loss we can incur, at a certain probability level during pre-defined
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period of time. Using VaR as the only risk measure however has some limitations. There
are well known problems of VaR generally not being a coherent risk measure because it
violates the subadditivity criteria (Artzner et al., 1999). However, Danfelsson et al. (2013)
show that under reasonable assumptions VaR might be subadditive. In this chapter we
decided to use a VaR framework because forecasts we obtain from the Panel Quantile
Regression Model for Returns are by definition semi-parametric VaRs®. Moreover we are
not trying to introduce new measures of financial risk, rather we want to show accuracy
of the model we proposed in the standard set—up.

Having briefly discussed our motivation to concentrate on the VaR in our analysis we
now turn to Value-at—Risk framework itself. Generally there are two main approaches of
calculating VaR: (semi)parametric estimation vs. historical simulation. In our work we
will concentrate on the parametric approach because it directly enables us to compare
forecasts from several benchmark models.

The original parametric VaR calculation was introduced by J.P.Morgan. In their
set-up, VaR is derived from the quantile of a standard normal distribution,

VGRZ' - Y+ 03y, (216)

where 7, is the 7 quantile of the standard normal distribution and o; is the volatility of
the asset 7. If we would like to study VaR of the portfolio instead of the individual assets,
o; is replaced by the portfolio volatility op. Under the assumption of the multivariate

normality op is calculated as
op = Vw' Yw,

where > is the covariance matrix and w is the vector of asset weights. We can therefore
calculate percentage Value-at-Risk (%VaR) of the given portfolio as a

%VaRp = /2w Yw. (2.17)

We can rewrite Equation 2.17 in terms of VaRs of the individual assets as

%VaRp = v/ (wT ® %VaRT)Qw © %VaR), (2.18)

where %V aR is a vector of individual percentage VaR estimates, 2 stands for correlation
matrix and © is the Hadamar product. Alternatively we can also write it as

N N N
%VaRkp = Y (w%VaR)® +2> Y wuw;%VaR%VaR;pi

i=1 i=1 j=it1

where w; is the weight of asset i, %VaR; is the percentage VaR of the i asset and p; ;
represents correlation between asset ¢ and j.

In the forecasting exercise we will study portfolio Value-at-Risk performance of the 4
benchmark model specifications:

6 According to Jorion (2007) p.17 " Value—at—Risk describes the quantile of the projected distribution
of gains an losses over the targeted horizon.” Since the VaR is a quantile of returns, and we model
quantiles of returns directly by panel quantile regression, we therefore obtain semi-parametric VaR
estimates.
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RiskMetrics,

Panel Quantile Regression(PQR) Model for Returns,

Univariate Quantile Regression(UQR) Model for Returns,

portfolio version of Univariate Quantile Regression(Portfolio UQR) Model for Re-
turns.

For calculation of portfolio VaR using the RiskMetrics approach, we directly apply Equa-
tion 2.17 where I is the covariance matrix obtained from RiskMetrics and . is a cut—off
point of standard normal distribution at a given quantile 7.

In case of PQR and UQR, forecasts of quantiles of return series are considered to be a
semi-parametric percentage VaR. The correlation matrix €2 is obtained from the Realized
Covariance matrix estimate, >, as

Q = (diag(x))™""* X (diag(x)) ™"

and therefore Equation 2.18 can be used for VaR calculation.

In contrast to previous approaches, Portfolio UQR is calculated in a different fashion.
We first create portfolio returns and portfolio volatility series using individual returns
and correlation structure obtained from Realized Covariance matrix, >, as

rep = w' Ty

otp — V wTth,

where r; p and oy p is portfolio return and portfolio volatility at time ¢ respectively and
r¢ is vector of individual returns at time ¢. Series r, p and o, p are further modeled using
Univariate Quantile Regression Model for Returns and the forecasts of the quantiles of
the portfolio return series are considered to be semi-parametric percentage portfolio VaR.

and

Statistical Evaluation

In the statistical comparison, we study absolute performance which tells us whether a
model is dynamically correctly specified, i.e. we study goodness-of-fit, and relative per-
formance in which we compare models against each other. For the absolute performance
evaluation we use modified version of the Dynamic Quantile test (Engle and Manganelli,
2004), referred to as the CAViaR test by Berkowitz et al. (2011). In their work, Berkowitz
et al. (2011) define a “hit” variable in a way that

) <
hittJrl _ { 1 Zf Te41 > QTt+1(T)

0 otherwise

i.e. hityy1 is a binary variable taking values 1 if conditional quantile is violated and 0
otherwise. Hit series of a dynamically correctly specified series should be i.i.d Bernoulli
distributed with parameter 7

hitygn ~did(r, (1 — 7)).
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By construction, hit is a binary variable, therefore Berkowitz et al. (2011) propose to
test the hypothesis of correct dynamic specification using following logistic regression

hltt =c+ Z 51dhitt—l + Z ﬁQdQthdJrl (T) +ug
d—1 d—1

where u; is assumed to have a logistic distribution. We use a likelihood ratio test to
60
= 7. Exact

verify null hypothesis that ‘s are equal to zero and P(hit; = 1) = 1

finite sample critical values for the likelihood ratio test are obtained from Monte Carlo
simulation as suggested by Berkowitz et al. (2011).

Relative performance of benchmark models is tested using expected tick loss for pair-
wise model comparison (Giacomini and Komunjer, 2005; Clements et al., 2008). The loss

function is defined as
Lim=1F ((7’ -1 (e?j‘H < O) e?j‘H) ,

where I(-) is indicator function, ejt; = 1 — Q7 (1) and Q7. (7) is the m‘th model
quantile forecast. Forecasting accuracy of two models is assessed using Diebold and
Mariano (1995) test. Null hypothesis of the test that expected losses of two models are
equal i.e. Hy: L;1 = L5 is tested against general alternative.

Economic Evaluation

In the economic evaluation, we study portfolio Value-at-Risk forecasts in the modifed
Markowitz (1952) approach. From the original work of Markowitz (1952) it differs in a
way that we concentrate on the relationship of the return and Value-at-Risk compared to
original risk-return trade-off 7. To overcome the difficulties of specifying a proper model
for returns and covariance /correlation matrices we decide to use their ex-post realizations
i.e. for day 7" we use returns realized in day 7', realized covariance/correlation matrix in
day T" and forecasts of univariate VaR for day T'.

In general, the efficient frontier of the optimal portfolio can be constructed in two
equivalent ways:

1. Expected portfolio return is maximized for various levels of portfolio Value-at-Risk
2. Portfolio Value-at-Risk is minimized for various levels of expected portfolio return

In both approaches asset weights, w = (wy, ..., w,)’, maximizing utility of risk averse
investor can be found by solving following problem:

. PR
AN Wy 1t Wit 1 (2.19)
We+1

st. lwi =1

"Note that if we assume that quantiles of returns are standard normally distributed and we use
standard cut—off points, i.e. -1.645 for the 5% quantile, both approaches are equivalent
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/ 8
(CAREEY

!/ - _
Wy Mt+1 = UP
where w1 is n X 1 vector of assets weights, [ denotes a n x 1 vector of ones, izy1 is a
e —

vector of ex-post returns, up stands for portfolio return and §t+1|t = diag (%VaRt+1|t) *
ﬁtﬂ x diag (%VaRt+1|t) represents a correlated Value-at-Risk covariance matrix where

e —

%0V aR i1y is nx 1 vector of univariate %VaR forecast and ﬁtﬂ is correlation matrix ob-
tained from realized covariance matrix estimate. Once we solve the optimization problem
for different levels of risk, we construct efficient frontier. In the Markowitz-type portfolio
optimization exercise we do not allow short-selling in order to meet restrictions imposed
mainly by regulators on certain types of investors (pension funds etc.).

The second economic evaluation criteria used in our study is the Global Minimum
Value-at-Risk Portfolio. The basic problem of GMVaRP is similar to Markowitz, there
are only two differences in the set-up. The first one is the existence of the closed-
form solution. As a consequence we are not restricting asset weights because the global
minimum of the optimization problem might require negative weights of some assets.
The second difference is the absence of a targeted portfolio return. Therefore in some
cases we might get negative portfolio return for the asset weights minimizing the overall
risk of the portfolio. GMVaRP optimization problem can be written as

. P
AN Wy S 1) Wi (2.20)
W41

s.t. llthrl =1.

In the Kempf and Memmel (2006) paper, it was shown that the analytical solution of
the problem is

=1

GMVeR __ Tttt
Wiy = l’g_l_l’ (2.21)

=1

and portfolio Value-at-Risk corresponding to calculated asset weights is finally obtained

as

GMVaR __ = GMVaeR'= GMVaR
%VaRt+1 — wt+1 \_4t+1|twt+1 .

2.5 Simulation Study

Before we analyze the empirical data we would like to show performance of the newly
proposed model in a controlled environment. Our aim is to show how various error
distributions used for continuous price process simulation affect the performance of the
Panel Quantile Regression for Returns model.

#We do not allow short-selling in this set-up.
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As it is common in the literature, let’s assume that the price processes follow jump
diffusion processes with stochastic volatility:

2
dpt = <IM — U—t> dt + UtdWlt + Ctht

2 (2.22)

dof = i (a0 — o7) dt + vo, dWay,

where W; and W, are Brownian motions, ¢;dN; is a compound Poisson process with
random jump size distributed as N(0,0;) and o; = 0.01. Parameters in Equation 2.22
are set to the values which are reasonable for a stock price, i.e. a« =0.04, k=5, v=0.5
as in Zhang et al. (2005) and p = 0 because we assume that returns are zero-mean.
The volatility parameters satisfy Feller’s condition 2k > +2, which keeps the volatility
process away from the zero boundary. Moreover we assume that W, comes from one of
the following distributions with > being Realized Covariance matrix obtained from the
empirical data:

e Multivariate normal distribution, N(0,>).

e Multivariate Student-t distribution with 9 degrees of freedom, ¢4(0, >).
e Univariate normal distribution, N (0, 1).

e Univariate Student-t distribution with 9 degrees of freedom, #4(0, 1).

To work with a similar environment as the empirical data, each simulation step con-
sists of 29 time series containing of 7 hours of 1 minutes intra-day prices for 2613 days.
From the intra-day prices we calculate daily returns and all the realized measures. In case
of multivariate normal and multivariate Student-t distribution we use empirical estimate
of Realized Covariance matrix for given day as the input for multivariate random number
generation. For each error distribution we run 500 simulations. In each simulation step
we use same estimation procedure as in case of empirical data - rolling window of length
1000.

2.5.1 In-Sample Fit

We start with a description of the results with data generated from Multivariate Normal
Distribution i.e. N(0, ). Table 2.1 shows detailed estimation results for 5%, 10%, 90%
and 95% quantiles that are most important from an economic point of view for all three
model specifications. To get a better view of quantile dynamics we also report lower and
upper quartile together with median. The results of the other distributions are presented
in the Appendix - Table 2.11, 2.12, 2.13 and we comment here only main differences from
Multivariate Normal Distribution.

Table 2.1 reveals significant estimates (except median) for PQR-RV model, with pa-
rameter values increasing in quantiles. The median coeflicient is zero as a consequence of
setting p in Equation 2.22. Similar to the PQR-RV model, all but median quantiles are
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statistically significant also for the second model, PQR-RSV. We can notice differences
in smaller magnitudes of coefficients in comparison to PQR-RV. Since both positive and
negative semivariance should carry equal information in Multivariate Normal distribu-
tion, we expect equal coefficients. Finally, PQR-BPV model shows insignificant estimates
for jump component, while coefficients for the volatility component are equal to PQR-RV
model. This again is consistent with our expectation, as simulated jump variation in the
simulations is too small. We conclude with observation that results for all three models
are symmetric, as expected.

Tables 2.11, 2.12, and 2.13 reveal similar patterns. Heavy tails introduced to the data
with Student-t distribution cause higher coeflicients on both tails.

Toble 2.1: Multivariate Normal Distribution — Mean of coefficients estimates from Monte-Carlo
simulations

T 5% 10% 25%  50% 5% 90%  95%
PQR-RV

Bryie 134 <115 -0.57 0 056  1.14 1.5

(-18.9) (-18.37) (-12.51) (-0.06) (11.85) (17.72) (17.97)
PQR-RSV

Brgiyz  -112 -0.83  -043  -0.02 036 076  1.04

(-2.17)  (-2.35)  (-2.23)  (-0.18)  (1.96)  (2:29)  (2.07)

Bpg 1o -L06 =079 038 002 044 086 115

(-2.06) (-2.21)  (-1.95) (0.15) (242) (2.63) (2.32)
PQR-BPV

Bppyiz  -155 <115 -0.57 0 057 115 1.55

(-18.9) (-18.46) (-12.49) (-0.06) (11.83) (17.81) (17.87)

By 0.06  0.04 0.02 0 0.03  -0.05  -0.06

(0.49)  (0.56)  (0.45)  (0.01) (-0.47) (-0.63) (-0.52)

Note: Table displays mean of coefficient estimates with corresponding t-statistics in parentheses.
Individual fixed effects a;(7) are not reported for brevity.

2.5.2 QOut-of-Sample Performance

In the out-of-sample forecasting exercise we start with comparison of absolute per-
formance represented by various measures of unconditional coverage (Tuvg, Timazs Tmins
Tavg—dev) a0d dynamic quantile CAViaR test (l/)@violations) followed by pair-wise relative
comparison according to Diebol-Mariano test (DM). For the unconditional coverage
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we report average unconditional coverage (Tuuy) from the Monte-Carlo simulation which
indicates how close our model was to theoretical quantile hit rate (i.e. for 5% quantile
we expect unconditional coverage to be somewhere around 5%), maximum and mini-
mum unconditional coverage (Taz, Tmin) Which show the range of possible movements
of unconditional coverage rate and average deviation from the theoretical quantile hit
rate (Tyug—dev) that shows on average how close our estimates were to theoretical values.
Results of Diebold-Mariano test shows us percentage values when the benchmark model
was outperformed by its competitors.

In the PanelA.1 and PanelA.2 of the Table 2.2 we present absolute performance of
the PQR and benchmark models respectively. Overall we can say that all the models are
dynamically correctly specified in the majority of simulation trials for all the quantiles but
median. Models with the lowest average deviation from studied quantile 7 are all PQR
specifications and UQR. for all but median quantile. In case of median Portfolio UQR
is the winner. Similarly to in-sample fit we obtain qualitatively identical results when
we study data simulated from Multivariate Student-t distribution. When we switch to
univariate error distributions the situation changes and the Portfolio UQR seems to be the
model with lowest average deviation and the lowest number of dynamically not correctly
specified models. However, we must stress that for all but median quantile, all the
results are close to each other which indicates that none of the models are systematically
misspecified.

A more interesting comparison comes from PanelB.1 and PanelB.2 of Table 2.2
where PQR models are compared to benchmarks directly. All the PQR variants outper-
form significantly Portfolio UQR in all studied quantiles and RiskMetrics in all quantiles
but median. Median RiskMetrics performance is overall the best which we attribute to
the fact that median cut-off point for VaR calculation is zero and by construction series
we simulated are supposed to be zero mean. When we concentrate on the comparison of
the PQR to UQR situation is identical in both tails - UQR outperforms slightly all PQR
specifications. We address this result to the nature of simulated data - data generating
process is driven by generated random numbers and contains just little heterogeneity
that could possibly translate into the gains using PQR. Median performance however is
better for PQR which is result of the averaging in the PQR median calculation. Moreover
as the number of estimated parameters is significantly lower in case of PQR compared
to UQR, median forecasts are less noisy which translates to better median PQR perfor-
mance directly. Qualitatively similar results are obtained also for Multivariate Student-t
distribution. If we turn to the comparison with univariate distributions, PQR outper-
form UQR significantly in all studied quantiles. The source of this interesting fact lies
in the degree of heterogeneity present in the data. The only source of heterogeneity
in our simulated data is the random number generation process. In case of univariate
distributions each generated time series has errors that are independent from remaining
time series. However, in the multivariate distributions all error terms are affected by each
other because we assume some correlation/covariance structure. As a result multivariate
random numbers are less heterogeneous compared to univariate one.

Generally, results obtained from the Monte-Carlo simulations helps us justify the
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use of panel quantile regressions for modelling quantiles of future returns. Our main
results are that whatever error distribution for simulation we use, PQR models are spec-
ified well dynamically and they dominate RiskMetrics and Portfolio UQR benchmark
models. When we use univariate error distributions for random data generation PQR
also outperform UQR. In case multivariate error distributions are used, PQR is slightly
outperformed by UQR because the simulated data are less heterogeneous compared to
univariate error distributions. We also show the importance of covariance structure in
the comparison of the results of multivariate and univariate distributions.



Toble 2.2: Models performance using data simulated from Multivariate Normal Distribution

PQR-RV PQR-RSV PQR-BPV
Panel A.1 5% 10% 50% 90% 95% 5% 10% 50% 90% 95% 5% 10% 50% 90% 95%
DOyittions 62 48 122 28 78 68 5 13 28 78 62 52 124 26 7
Fovg 50 101 514 901 951 50 101 514 901 950 51 101 514 90.1 095.0
Pae 65 11.8 554 91.6 964 65 11.7 556 917 964 6.3 11.7 554 01.7 962
P oin 36 84 475 885 037 35 83 474 885 037 35 85 474 885 036

Tavg—dev 00 01 14 01 01 00 01 14 01 00 01 01 14 01 060

RiskMetrics UQR Portfolio UQR
Panel A.2 5%  10% 50% 90% 95% 5% 10% 50% 90% 95% 5% 10% 50% 90% 95%
mmlamns 92 14 66 188 74 68 52 142 3 8.2 7 4.8 3 4.2 7
Tovg 52 9.3 505 91.1 950 50 10.1 51.5 90.1 95.1 4.8 96 499 904 952
Tonaz 71 112 541 927 964 6.3 11.7 556 91.8 964 6.1 115 525 91.8 96.3
Tomin 33 7.1 46,5 89.3 936 35 84 477 885 935 3.7 81 474 885 940
Tavg—dev 02 -07 05 11 00 00 01 15 01 01 -0.2 -04 -01 04 02
benchmark
RiskMetrics UQR Portfolio UQR
Panel B.1 5%  10% 50% 90% 95% 5% 10% 50% 90% 95% 5% 10% 50% 90% 95%
PQR-RV DM 588 626 02 656 548 34 26 94 44 42 474 436 204 448 486
PQR-RSV DM 584 622 02 644 54 28 2 94 26 3 46.6 426 204 442 472
PQR-BPV DM 58 61.8 02 638 54 1.6 1 88 1.6 12 442 404 206 424 448
PQR-RV PQR-RSV PQR-BPV
Panel B.2 5%  10% 50% 90% 95% 5% 10% 50% 90% 95% 5% 10% 50% 90% 95%
RiskMetrics DM 0.2 0 138 O 0 02 0 142 0O 0 0.2 0 13 0 0
UQR DM 68 88 26 92 9 12 136 28 152 122 88 112 3 124 12
Portfolio UQR DM 0.2 1 0.6 0 0.6 02 16 06 0 0.6 0.2 1 0.6 0 0.8

Note: Table displays absolute and relative performance of PQR models for returns with RV, RSV and BPV as regressors and benchmark models. All values are in %.

Panel A.1 reports absolute performance of PQR models, Panel A.2 reports absolute performance of benchmark models. For each model and quantile 7, percentage of
violations of the CAViaR test for correct dynamic specification (DQ,;o1qt50ns ), average unconditional coverage (T,.4),maximum unconditional coverage (Trae), minimum
unconditional coverage (Tinsrn) and average deviation of unconditional coverage from given quantile 7 (Thyg—dev)

Panel B.1 and Panel B.2 report relative performance of Panel Quantile Regression Models for Returns in comparison to benchmark models and relative performance of
benchmark models in comparison to Panel Quantile Regression Models for Returns respectively. For each specification and quantile 7 we report percentage of statistically
better performance according to Diebold-Mariano( DM) test at 5% significance level.
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2.6 Results: the Role of Unobserved Heterogeneity
in Tails

Confident about the performance of our modeling strategy in a controlled environment,
we turn to applications of the proposed models on empirical data. First, we describe the
in-sample fit of the PQR-RV, PQR-RSV and PQR-BPV model specifications. Second,
we present results for our out-of-sample Value-at-Risk forecasting exercise. Third, we
complement our statistical evaluation by computing a simple portfolio allocation exercise
where we study Global Minimum Value-at-Risk Portfolios and Markowitz like relation-
ships between Value-at-Risk and return of the portfolio.

Our empirical application is carried out using 29 U.S. stocks® that are traded at New
York Stock Exchange. These stocks have been chosen according to market capitalization
and their liquidity. Sample we study spans from July 1, 2005 to December 31, 2015 and
we consider trades executed within U.S. business hours (9:30 — 16:00 EST). In order to
ensure sufficient liquidity and eliminate possible bias we explicitly exclude weekends and
bank holidays (Christmas, New Year’s Day, Thanksgiving Day, Independence Day). In
total, our final dataset consists of 2613 trading days. Basic descriptive statistic of the
data can be found in Table 2.10 in Appendix.

For estimation and forecasting purposes we use a rolling window with fixed length
of 1000 observations,'® hence our model is always calibrated on a 4 year history. Our
analysis is restricted to 5 minutes intraday log-returns that are used for computation of
the daily returns and realized measures.

All the results presented in this section were obtained using pure fixed effects panel
quantile regression, i.e. penalty parameter ) set to 0. In the Appendix!! we present also
estimation results when A = 1 which serves as a robustness check.

2.6.1 In-Sample Fit

Estimation results are detailed in the Table 2.3. In addition, to get a better view of the
dynamics, we show results of the PQR-RV, PQR-RSV and PQR-BPV also graphically
in the Figures 2.1, 2.2 and 2.3 respectively.

9Apple Inc. (AAPL), Amazon.com, Inc. (AMZN), Bank of America Corp (BAC), Comcast Cor-
poration (CMCSA), Cisco Systems, Inc. (CSCO), Chevron Corporation (CVX), Citigroup Inc. (C),
Walt Disney Co (DIS), General Electric Company (GE), Home Depot Inc. (HD), International Business
Machines Corp. (IBM), Intel Corporation (INTC), Johnson & Johnson (JNJ), JPMorgan Chase & Co.
(JPM), The Coca-Cola Co (KO), McDonald’s Corporation (MCD), Merck & Co., Inc. (MRK),Microsoft
Corporation (MSFT), Oracle Corporation (ORCL), PepsiCo, Inc. (PEP), Pfizer Inc. (PFE), Procter
& Gamble Co (PG), QUALCOMM, Inc. (QCOM), Schlumberger Limited. (SLB), AT&T Inc. (T),
Verizon Communications Inc. (VZ), Wells Fargo & Co (WFC), Wal-Mart Stores, Inc. (WMT), Exxon
Mobil Corporation (XOM).

10We have tried different length of rolling window with the qualitative results of our analysis remaining
unchanged. These results are available from authors upon request.

HTable 2.17, Figure 2.11, Figure 2.12 and Figure 2.13
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Table 2.3: Coefficient estimates of Panel Quantile Regressions

7 5% 0%  25%  50%  T5%  90%  95%
PQR-RV

Bryys 15 -1.16 0.6  -0.01 056  1.11 1.42

(-23.5)  (-20.62) (-15.65) (-0.2) (20.37) (24.84) (20.7)
PQR-RSV

Bresz 097 075 044 -016 018 041 053

(-12.74)  (-11.98)  (-831) (-2.73) (2.69) (4.55)  (4.51)

Brpei2 -L18 09 041 014 062 114 149

(-11.72)  (-14.05)  (-9.9) (27)  (917) (13.66) (10.39)
PQR-BPV

Bepyis 155 <118 -0.62 0 059 115  1.44

(-19.5)  (-1815) (-16.27) (-0.13) (23.84) (23.22) (25.72)

Bpe <025 =021 -0.14  -0.03  0.06 021  0.44

(-3.24)  (-3.54)  (-3.39) (-0.58) (1.11)  (1.9)  (2.56)

Note: Table displays coefficient estimates with bootstraped t-statistics in parentheses. Individual fixed
effects a;(7) are not reported for brevity - they are available from authors upon request.

Table 2.3 reveals that parameters of the first model specification (PQR-RV) where
lagged volatility is used to explain conditional quantiles of returns are significantly differ-
ent from zero for all quantiles except median. Moreover, signs of the estimated parameters
correspond to our expectations — coeflicients at lower (upper) quantiles are negative (pos-
itive). Note that these values can be interpreted directly as semi-parametric estimates of
Value-at-Risk. Our model hence shows that standard VaR from RiskMetrics in which
quantiles of standard normal distribution are rescaled by volatility overestimates both
left as well as right tails (corresponding values for the 5% and 95% quantiles of standard
normal distribution are -1.645 and 1.645 respectively). Furthermore, insignificant param-
eter estimate at median confirms the hypothesis about the randomness/unpredictability
of the short-term returns.

In the Table 2.3, we can also see that absolute values of parameter estimates are not
symmetric around median which highlight the relative importance of the realized volatil-
ity on the estimation of the lower quantiles of returns. We arrive to a similar conclusion
also when looking at the Figure 2.1 that compares and displays PQR-RV estimates to-
gether with their corresponding 95% confidence intervals and individual UQR-RV param-
eter estimates plotted in boxplots. Importantly, Figure 2.1 shows that once we control for
unobserved heterogeneity by the PQR-RV, past volatility has a larger influence on both
the lower and the upper quantiles of returns than the majority of individual UQR-RV.



2.6. RESULTS: THE ROLE OF UNOBSERVED HETEROGENEITY IN TAILS 63

This is highlighted in far quantiles, e.g. coefficient of PQR-RV in 5% quantile is -1.5
whereas median of individual UQR-RV coefficient is -1.33 (mean -1.36) or 95% quantile
PQR-RV coeflicient is 1.42 and median of individual UQR-RV is only 1.30 (mean 1.31).

This finding constitutes an important empirical result, as we document unobserved
heterogeneity in far quantiles that needs to be controlled.

Figure 2.1: PQR-RV parameler estimates

coefficients

8 A :
r — PQRe 2 coefficients
-- confidence intervals
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005 015 025 035 045 055 065 075 085 095

quantiles

Note: Parameter estimates with corresponding 95% confidence intervals from the PQR-RV
specification are plotted by solid and dashed lines respectively. Individual UQR-RV estimates are
plotted in boxplots.

Coeflicients from the second model specification (PQR-RSV), where Realized Vari-
ance is decomposed into realized downside (RS™) and upside (RS™') semivariance are
significantly different from zero for all considered quantiles. The magnitude of the co-
efficients driving impact of both variables is highest at far quantiles showing strongest
impact of both negative, and positive semivariance on tails of the returns distributions.
However, influence of RS~ is far more important in the upper quantiles where it dom-
inates RS™. On the contrary, in the lower quantiles, values of parameters are close to
each other and therefore we cannot draw the similar conclusion as in upper quantiles.
Median performance is bit different from PQR-RV case.

We can see that coefficients for both RS~ and RSt are statistically significant and
in the case that magnitude of RS~ and RS is equal, they sum to -0.02 which translates
into loss in 50% of cases. However as theory and stylized facts about financial time series
suggest influence of negative returns and subsequently negative semivariances should be
greater than the effect of positive ones. Therefore one can not draw straightforward
conclusions about the sign and magnitude of median return.
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Figure 2.2: PQR-RSV parameter estimates

(a) BRS+1/2 (b) ,BRS,l/Q
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quantiles quantiles

Note: For both realized upside and downside semivariance parameters estimates with corresponding
95% confidence intervals are plotted by solid and dashed lines respectively. Individual UQR-RSV
estimates are plotted in boxplots.

The careful reader might also notice that median coeflicient of BRS+1/2 is negative

and opposite is true for BRS,l/z. Explanation of this feature rely on short and long term
mean-reversion nature of the returns and the fact that we are using lagged values of
realized semivariances as regressors. If we put it together negative return at day ¢t — 1
will cause that RS, , > RS,', and prediction of the median quantile for day ¢ will be
positive because BRS,l/z is positive and vice versa for positive return and subsequent
RS, ; < RS, |. This behaviour leads to mean-reversion. Results of our analysis are also
supported by the Figure 2.2.

Similar to the PQR-RV specification, we can see in Figure 2.2 that controlling for
unobserved heterogeneity among financial assets is important because the influence of
both downside and upside semivariance is greater in the lower quantiles than in individ-
ual UQR-RSV. For example in 5% quantile coefficients obtained by PQR-RSV are -0.97
and -1.18 for RSt and RS~ respectively, however median values of individual UQR-RSV
are -0.82 (mean -0.84) for RS™ and -0.95 (mean -1.1) for RS™. Moreover, in the upper
quantiles of negative semivariance (Figure 2.2b) PQR-RSV coefficients differs substan-
tially from individual UQR-RSV (95% quantile 8,4 1/2 coefficient of 1.49 vs. individual
UQR-RSV median/mean coefficient of 1.28/1.27), however, the opposite is true for RS™
(95% quantile §,q,1/2 coefficient of 0.54 vs. individual UQR-RSV median/mean coeffi-
cient of 0.55/0.55). These findings support our previous conclusion that RS~ influences
future upper quantiles of returns more than RS*.

Finally, Table 2.3 reveals interesting results about parameter estimates of the third
model specification (PQR-BPV), where the Bi-Power Variation and Jump Component
are used to drive the return quantiles. We can infer that jumps have significant impact
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on both far upper and lower quantiles of future returns. To be precise, magnitude of
the jump coefficient B g1z is highest for 95% quantile with the value of 0.44. For the
remaining above median quantiles, jumps are not statistically significant and therefore
the influence of the Quadratic Variation reduces to Integrated Variance represented by
Bi-Power Variation. We observe the opposite situation for the below median quantiles
where B y1/2 coefficients are always significant.

Figure 2.3 helps us to confirm results of our previous analysis graphically. If we
compare Figure 2.3a to Figure 2.1 we get an almost identical picture. Moreover, in
Figure 2.3b, we can see that from the 45% to 85% quantiles confidence intervals of the
jump component are getting wider and include zero. Once we combine these two findings,
we can state that for these quantiles Quadratic Variation reduces to Integrated Variance.
In contrast none of the confidence intervals of the 5% to 40% quantiles contain zero which
highlights the relative importance of the jump component in the modelling lower future
quantiles of returns.

Overall, results of the in-sample analysis show asymmetric impact of the regressors on
the quantiles of future returns. This impact is higher in the below median quantiles. We
have also found evidence for positive/negative news asymmetry. This asymmetry is the
highest in the 95% quantile (0.53 coefficient of RS™ vs. 1.49 of RS™) while 5% quantile
shows only little asymmetry (-0.97 in case of RS vs. -1.18 for RS™). In addition we show
importance of jumps for below median and far above median quantiles. Importantly, we
document unobserved heterogeneity in far quantiles. We have also tested all three models
(PQR-RV, PQR-RSV, PQR-BPV) for correct dynamic specification and we have found
that none of them is systematically misspecified.

Figure 2.3: PQR-BPV parameter estimates
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Note: For both realized bi-power variation and jump component parameters estimates with
corresponding 95% confidence intervals are plotted by solid and dashed lines respectively. Individual
UQR-BPYV estimates are plotted in boxplots
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2.6.2 Out-of-Sample Performance

We now turn to results of our out-of-sample forecasting exercises. Similar to our sim-
ulation study, we are analyzing the Value-at-Risk performance of an equally weighted
portfolio of the 29 stocks described earlier. Results of our analysis are presented in the
following way: first we comment on the absolute performance of the PQR models; second
the absolute performance of the benchmark models is discussed; third we concentrate on
the most interesting relative performance comparison of the PQR models with respect
to the benchmark models. All results are summarized in the Table 2.4.

The unconditional coverage, 7, shown in Panel A.1 and Panel A.2 of Table 2.4 reveals
that almost all models underestimate risk. Specifically, values of unconditional coverage
are higher than corresponding quantiles 7, with few exceptions. Median quantiles, as well
as the 5% quantile of Portfolio UQR and 90% quantile of the PQR-RSV overestimate
risk. We must also stress here that the deviation from nominal quantile rates is generally
lower than 1%, and we can not reject hypothesis of correct unconditional coverage.

If we turn to median performance, we can see that all the models overestimate risk.
Moreover we can see that deviations from the nominal quantiles are higher compared
to off-median quantiles. We address this finding to the nature of financial time series
especially to stylized fact about the unpredictability of the returns. More importantly,
this result corresponds to our motivation of explaining quantiles of the cross-section of
market returns instead of expected value. This is in line with our previous result that
median estimates are not statistically significant.

If we concentrate on the correct dynamic specification of the models represented
by CAViaR test (i.e. the second and third line of the Panel A.1 and A.2), we see
that all the models in all quantiles are dynamically correctly specified except for the
median of RiskMetrics. In this case we strongly reject null hypothesis of proper dynamic
specification given p-value<0.01. We attribute the poor median RiskMetrics performance
to the construction of Equation 2.17 where the cut-off point at 50% quantile, V509, is 0'2.

Relative performance of the PQR models is summarized in the Panel B*. Results of
our analysis indicate good relative performance of PQR models. All three Panel Quan-
tile model specifications (PQR-RV, PQR-RSV and PQR-BPV) significantly outperform
RiskMetrics in all studied quantiles. Moreover, all PQR specifications consistently out-
perform Portfolio UQR in upper quantiles and UQR in several quantiles i.e. PQR-RV
outperform individual UQR estimates in 10% quantile, however performance of PQR-
RSV is significantly better in the 95% quantile and PQR-BPYV delivers significantly more
accurate forecasts than individual UQR in 5% and 10% quantiles. If we concentrate on
the full pair-wise comparison, the most important is the performance of the UQR as the
main competitor of the PQR specifications. In all of the studied quantiles, UQR is not
able to outperform any of the PQR specification. This fact highlights the importance
to control for unobserved heterogeneity among the assets. Moving from comparison of
PQR and UQR models to the relative performance of the Portfolio UQR, we can see that

2The median of standard normal distribution is 0.

13For brevity we report in Table 2.4 only pair-wise comparison against benchmark models, full matrix
of pairwise comparison is available from authors upon request.

p p
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it outperforms RiskMetrics only at 5% and 10% quantiles. In contrast UQR, similar to
PQR, outperform RiskMetrics in all studied quantiles. These results reveal the impor-
tance of the asset specific contribution to overall future portfolio risk as the approach
of firstly aggregating data and secondly modeling them is not able to capture dynamics
creating variation in the distribution of future portfolio returns.



Toble 2.4: Out-of-sample performance of various specifications of Panel Quantile Regression Model for Returns

PQR-RV PQR-RSV PQR-BPV
Panel A.1 T 5% 10% 50% 90% 95% 5% 10% 50% 90% 95% 5% 10% 50% 90% 95%
T 0.060 0.108 0465  0.901 0.959 0.059  0.107 0.465 0.899  0.960 0.068 0.107 0465 0902 0.960
D@ 8917 3373 10.157 6.939  5.686 8.180  3.339 10.129 1476  9.152 79056  4.625 10.157 5208  6.210
p-val 0178  0.761  0.118 0326  0.459 0.225 0.765 0.119 0.961 0.165 0.241 0593 0.118 0506  0.400
RiskMetrics UQR Portfolio UQR
Panel A.2 T 5% 10% 50% 90% 95% 5% 10% 50% 90% 95% 5% 10% 50% 90% 95%
T 0.061 0.004 0451 0919  0.958 0.061  0.107 0.467 0902 0.960 0.043 0.099 0491 0909  0.955
DQ  9.652  3.096 20.600 9.452 10.899 8323 3.041 9.067 7.174 6.796 9426 50988 3273 4507 3238
p-val 0140  0.797  0.002 0.150  0.092 0.215 0804 0.170 0305 0.340 0.151 0425 0774 0608  0.778
benchmark
RiskMetrics UQR Portfolio UQR
Panel B T 5% 10% 50% 90% 95% 5% 10% 50% 90% 95% 5% 10% 50% 90% 95%
PQR-RV DM -2.430 -2.259 -3.347 -2.127 -1.935 0.125 -1.734 1.350 0.801 -0.362 -0.733 -1.590 -0.310 -2.053 -2.260
p-val 0.008 0.012 0.000 0.017 0.027 0.550 0.041 0911 07838 0.359 0.232 0.056 0378 0020 0.012
PQR-RSV DM -2.368 -2.249 -3.561 -2.367 -2.242 1.244  -1.569 -0.438 -1.268 -2.023 -0.558 -1.580 -0.758 -2.921 -3.099
p-val 0.009 0.012 0.000 0.009 0.012 0.893 0.058 0331 0.102 0.022 0.280 0.057 0.224 0002 0.001
PQR-BPV DM -2.540 -2.422 -3.304 -2.055 -1.851 -1.796 -1.887 1.424 0839 0.703 -1.191 -1.887 -0.294 -1.978 -1.705
p-val 0.006 0.008 0.000 0.020 0.032 0.036 0030 0923 0799 0.759 0.117 0.030 0.384 0.024 0.044

Note: Table displays absolute and relative performance of PQR models for returns with RV, RSV and BPV as regressors and benchmark models.

Panel A.1 reports absolute performance of PQR models, Panel A.2 reports absolute performance of benchmark models. For each model and quantile 7, unconditional
coverage (T), the value of the CAViaR test for correct dynamic specification (DQ) with corresponding Monte Carlo based p-value. Not correctly dynamically specified
models are underlined.

Panel B reports relative performance of Panel Quantile Regression Models for Returns. For each specification and quantile 7 we report Diebold-Mariano test statistics
for pairwise comparison with benchmark models(DM) with corresponding p-value. Significantly more accurate forecasts with respect to benchmark models at the 5%

significance level are in bold. Full matrix of pairwise comparison is available from authors upon request
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2.6.3 Economic Evaluation

We would like to see if statistical gains also translate to economic value. We concentrate
on the comparison of 3 models — PQR-RV, UQR and RiskMetrics, and refrain from
presenting results for PQR-RSV and PQR-BPYV for the sense of brevity. The construction
of Portfolio UQR rules out economic evaluation in our set-up because asset weights will
be set before applying the quantile regression, and therefore results will be driven by
covariance structure only.

We start description of the results by Global Minimum Value-at-Risk Portfolio fol-
lowed by Markowitz like optimization where we show Value-at-Risk — Return relationship.
In both approaches, we use annualized portfolio returns 4 and annualized portfolio Value-
at-Risks !% of the whole out—of-sample period. In the GMVaRP comparison, we focus
on both left and right tail together with median because we do not set any constraints
regarding asset weights - according to Equation 2.21 GMVaRP has a closed form solu-
tion. On the contrary, the Markowitz like optimization is purely numeric and does not
offer a closed form solution. Therefore we restrict our analysis on long only positions.
As a result we concentrate on the left tail of the return distribution only which shows
potential loss for the investor.

Results of the GMVaRP analysis are displayed in Table 2.5. The PQR-RV model
performs best in all quantiles except for the median, where UQR has the lowest VaR.
RiskMetrics ended last, and we must note that for the median quantile we were not
able to calculate value of GMVaRP due to the problem of singularity of the correlated
Value-at-Risk matrix.'6

Toble 2.5: Global Minimum Value-at-Risk Portfolio

T 5% 10% 50% 90%  95%
PQR-RV 11.76 8.69 0.02 9.46 12.37
UQR 11.85 879 0.01 952 1243

RiskMetrics 12.77 9.95 NaN 9.95 12.77

Note: Table displays absolute percentage values of Global Minimum Value-at-Risk Portfolio for given
quantile 7. Best model for given quantile is reported in bold.

Efficient frontiers of Value-at-Risk — return trade-off are plotted in Figure 2.4a for 5%
and Figure 2.4b for 10% quantile. In both quantiles the model with the best performance
is PQR-RV. Similarly to GMVaRP analysis second best performance is achieved by UQR
and the model with the worst VaR-return trade—off is RiskMetrics. In Figure 2.4b we
can also see that benefits from using PQR are greater for lower values of Value-at-Risk.

250
T

H (HtT:1 (1+ rt))

15, /350 2zt Z’gVaRt
18Tf we set cut-off point in Equation 2.17 to zero we get a singular matrix of zeros that is not invertible.



2.6. RESULTS: THE ROLE OF UNOBSERVED HETEROGENEITY IN TAILS 70

Overall we can say that Panel Quantile Regression Model for Returns generates better
economic performance than the remaining benchmark models.

Figure 2.4: Value-at-Risk — Return efficient frontiers
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2.7 Results: Common Risk Factors in Tails

Further, we select VIX Index as exogenous factor that have a potential to drive the tails
of the return distributions. VIX is often used as the measure of the ex-ante/anticipated
uncertainty and it well complements the realized volatility used in our previous analysis.
It is also referred to as the “fear gauge” since it measure the expectations about the
30-day volatility using the weighted and aggregated prices of the call and put options
with various strike prices on the S&P 500 Index. The value of the index is calculated
according to VIX methodology!” as

2 < AK; 1 ([ F 2
Trrx = T Z FeRTQ(Kz’) T <f0 - 1) ) (2.23)

%

where T is time to expiration; F' is the forward index level derived from index option
prices; Ky is the first strike below the forward index level I'; K; is the strike price of ith
out-of-the-money option (call if K; > Ky, put if K; < Ky); AK; is the interval between
strike prices; R is the risk-free interest rate to expiration; and Q(Kj;) is the midpoint of
the bid-ask spread for each option with strike Kj;.
The value of the Volatility Index represents the annual percentage volatility and it is
reported by CBOE as
VIX = 1000’\/1}(. (224)

The daily counterpart of the annual option implied volatility measure is constructed
by dividing index by +/250. We further divide daily VIX by 100 to scale it to units

of Realized Volatility, i.e. VIXgu, = %Wlo' The historical data can be freely

downloaded from the Federal Reserve Bank at Saint Louis.!®. Moreover, since the index
was launched at 1993 it effectively covers sample period previously used in our empirical
analysis.

In the empirical application, we estimate panel quantile regression models containing
VIX Index as defined in Equation 2.10, 2.11 and 2.12. In the optimization we have set
penalty A to zero since the minimization of the Bayesian Information Criteria produce
almost identical result as in the models without VIX. The results of the in-sample fit are
summarized in the Table 2.6 and Figure 2.5, 2.6 and 2.7

I7Full details of the VIX calculation can be found at http://www.cboe.com/micro/vix/vixwhite.
pdf
8https://fred.stlouisfed.org/series/VIXCLS


http://www.cboe.com/micro/vix/vixwhite
18https://fred.stlouisfed.org/series/VIXCLS
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Table 2.6: Coefficient estimates of Panel Quantile Regressions

T 5% 0%  25%  50%  75% 9%  95%
PQR-RV-VIX

Bayie 133 2099 053  -004 04 081  1.12

(-10.87)  (-9.65) (-8.77) (-0.83) (11) (7.76)  (9.09)

Ao iy 032 -0.29  -0.12  0.05 026 044 0.4

(-4.39)  (-4.49) (-3.45)  (1.9) (9.58) (6.3)  (5.38)

PQR-RSV-VIX
Bpgriz <078 065 -04  -0.18 008 028  0.52
(-9.46)  (-5.91) (-6.12) (-3.07) (1.22) (3.5)  (4.45)
Brpg iz -109 075 035 011 049 089 1.1
(-7.76)  (-10.54)  (-6.9)  (2)  (6.32) (5.63) (5.83)
Avix 033 028  -012 006 026 041 042
(-4.63)  (-4.58)  (-3.35)  (1.99) (9.28) (5.73)  (4.7)
PQR-BPV-VIX
Bgpyie 135 <099 054  -003 042 082  1.14
(-9.88)  (-9.5)  (-7.94) (-0.65) (9.42) (7.68) (10.34)
B <021 014 014  -0.04 007 017  0.44
(-2.76)  (-2.43)  (-279) (-0.77) (1.03) (1.39) (2.58)
Avix 033 03 012 004 026 045 0.4

(-4.1)  (-4.9) (-3.57) (1.87) (835 (6.87) (5.7)

Note: Table displays coefficient estimates with bootstraped t-statistics in parentheses. Individual fixed
effects a;(7) are not reported for brevity - they are available from authors upon request.

Table 2.6 documents stability of the relative influence of the VIX on the quantiles of
future returns - the VIX coefficient estimates are of the same magnitude for all realized
measures model specifications. Although market participants perceive VIX as the fear-
index, our analysis reveals higher relative influence in the upper quantiles compared to
lower ones, e.g. in RV + VIX model specification 0.44 coefficient estimate of 95% quantile
vs. -0.32 of 5% quantile. Moreover, when we compare Table 2.6 to Table 2.3 (PQR
models with and without VIX) we can see that VIX index reduce relative influence of
the realized measures more in the upper than in lower quantiles. In the “RV + VIX” and
“BPV + VIX” specifications the coefficients are reduced by 0.17 and 0.20 respectively in
5% quantile while in the 95% quantile the reduction is 0.30 in both specifications. In the
“RSV + VIX” specification the total reduction in the coefficients is higher than in the
previous two cases (0.28 and 0.40 in 5% and 95% quantiles respectively) and the influence
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reduction of the positive semivariance is higher than that of negative semivariance in the
5% quantile and vice-versa in 95% quantile where positive semivariance is almost not
reduced and the influence of the negative semivariance is lowered by 0.39. Figure 2.5,
2.6 and 2.7 support our findings also graphically - in all three figures, the patterns of the
Yy, coeflicient estimates are almost identical.

Overall, we conclude that VIX carries an important part of the information about
risk that is not fully captured by any of the realized measures, and the expectations
about the future risk affects higher quantiles more than the lower quantiles. Controlling
for the unobserved heterogeneity and idiosyncratic volatility, VIX proves to be a strong
common factor driving the tails of the return distributions.

Figure 2.5: PQR-RV-VIX parameter estimates
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Note: For both realized volatility and VIX index parameters estimates with corresponding 95%
confidence intervals are plotted by solid and dashed lines respectively. Individual UQR-RV-VIX
estimates are plotted in boxplots.
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Figure 2.6: PQR-RSV-VIX parameter estimates
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Note: For all realized upside semivariance, downside semivariance and VIX index parameters estimates
with corresponding 95% confidence intervals are plotted by solid and dashed lines respectively.
Individual UQR-~ RSV-VIX estimates are plotted in boxplots.

Figure 2.7: PQR-BPV-VIX parameter estimates
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Note: For all realized bi-power variation, jump component and VIX index parameters estimates with
corresponding 95% confidence interva<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>