Abstract The topic of my Master degree thesis is the development of a conceptually new class of contrast agents for the ³¹P magnetic resonance imaging (³¹P MRI). These agents are based on nanoparticles of calcium(II) phytate. Phytate (*myo*-inositol-1,2,3,4,5,6-hexakisphosphate) is largely present in plants, seeds and grains. It is non-biodegradable but nontoxic for animals and human beings and most importantly around 22% of its mass is phosphorus, so it is easily detectable by ³¹P NMR/MRI. These nanoparticles of Ca(II) phytate were doped with paramagnetic Fe³⁺ ions which broaden the ³¹P signal, making the nanoparticles invisible in healthy tissues. In the presence of bacteria producing siderophores (for example in *Helicobacter pylori* in gastric ulcers), Fe³⁺ is released from the gel and ³¹P MRI signal becomes detectable. In vitro simulation of this release was performed with deferroxamine, a compound possessing high affinity to Fe³⁺ ions forming coloured complex with it exploitable for the UV-VIS evaluation. The Ca(II) phytate can be synthesized in two possible ways. The first way is by direct precipitation of the Ca²⁺ salt with sodium phytate. The second way is ion exchange of phosphate in the nanoparticles of hydroxyapatite which creates electrostatically stabilized calcium phytate nanoparticles. Both these ways were tested and compared. Preparation of the nanoparticles from hydroxyapatite was successful, size of these particles is around 100nm. However, synthesis of Ca(II) phytate nanoparticles doped with Fe³⁺ was partly problematic and needs further optimization. The best method for preparing doped particles has been the synthesis by agregation of sodium fytate by calcium salt. These samples, referred to as CaIP₆ 2, had a sufficient ³¹P broadening of signal with concentration of Fe³⁺ 2,1 mol%. Two samples with different concentration (2,1 mol% Fe³⁺ a 8,1 mol% Fe³⁺) were complexated with deferoxamine, where in both cases all of Fe³⁺ ions were released from the phytate after two hours. Signal restoration was also observed on ³¹P NMR, where there was a significan difference in signal intenzity before and after addition of deferoxamine.