
Charles University in Prague
Faculty of Mathematics and Physics

DIPLOMA THESIS

Jan Kratochv́ıl

Numerical simulations of flows of visco-elastic
fluid-like materials, as asphalt in particular

Institute of Theoretical Physics

Supervisor: Doc.RNDr. Josef Málek, CSc.
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Abstrakt
Název práce: Numerické simulace deformaćı visko-elastických materiál̊u, zejména asfaltu
Autor: Jan Kratochv́ıl
Katedra (ústav): Ústav teoretické fyziky
Vedoućı diplomové práce: Doc.RNDr. Josef Málek, CSc., Matematický ústav UK
e-mail vedoućıho: malek@karlin.mff.cuni.cz
Abstrakt: Tato diplomová práce se zabývá numerickými simulacemi prouděńı viskoela-
stických tekutin. Nejprve jsou představeny dva modely pro tento typ tekutin, jednak
klasický Oldroyd̊uv model a potom nový nelineárńı model, který je možné považovat za
zobecněńı modelu Oldroyd-B pro velké elastické deformace. Poté jsou provedeny výpočty
prouděńı ve třech r̊uzných situaćıch. Prvńı z nich je relaxace napět́ı v rovinném prouděńı
mezi rovnoběžnými deskami, což je př́ıklad jednorozměrného problému. Druhou je rovinné
prouděńı ve zúženém kanále, což je standardńı dvourozměrný testovaćı př́ıklad v oblasti
viskoelastického prouděńı. Konečně třet́ı situaćı je relaxace napět́ı v osově symetrickém
prouděńı ve válci, které bylo poč́ıtáno jednak jako jednorozměrný a jednak jako dvou-
rozměrný problém. V př́ıpadech, kdy je to možné, jsou výpočty provedeny analyticky, v
ostatńıch př́ıpadech numericky metodou konečných prvk̊u s využit́ım programu Comsol
Multiphysics 3.3. K válcové geometrii jsou dostupná experimentálńı data týkaj́ıćı se rela-
xace napět́ı v asfaltu. Tato data jsou v závěru práce nafitována pomoćı obou uvažovaných
model̊u.
Kĺıčová slova: viskoelastická tekutina, asfalt, metoda konečných prvk̊u
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Abstract: In this thesis we deal with numerical simulations for flows of viscoelastic fluids.
First, we introduce two models for viscoelastic fluids: (i) the Oldroyd-B, which is a classical
model for viscoelastic fluids and (ii) a new nonlinear model which might be thought of as
a generalization of Oldroyd-B to the case of large elastic deformations. Then, the flow at
three different situations is discussed. The first of them is stress relaxation in parallel plate
flow, which is an example of a 1D problem. The second one is a 4:1 planar contraction flow,
which is a standard benchmark for viscoelastic flows. The third problem is stress relaxation
in axially symmetric cylinder flow, which is solved as a 1D as well as a 2D problem. If
it is possible, the problems are solved analytically, otherwise they are solved numerically
with the aid of the finite element method using the software Comsol Multiphysics 3.3.
Experimental data that document the stress relaxation of asphalt are available in the
cylindrical geometry. Thus, finally, these data are fitted using both considered models.
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Chapter 1

Introduction

In the first chapter we provide basic information about the material of interest
and our approach to its modeling. Then we briefly describe the experimental
data on asphalt, which we use throughout this thesis. For further information
about asphalt the reader is referred to [6] and [7].

1.1 About asphalt

Asphalt is a complex heterogeneous mixture of hydrocarbons. It is typically
obtained as a by-product during the process of crude oil refining, but there
are also natural sources of asphalt.
The most important application of asphalt is definitively the roadway and

runway construction. During this process, the so-called straight run asphalt is
taken from the refinery to the hot mix plant where it is mixed with aggregates
and possibly other fillers and finally laid on the road. Other important uses of
asphalt are e.g. insulation or storage of radioactive waste. It is also interesting
to note that the natural asphalt was used even in prehistory and in the early
civilizations to construct hunting equipments, in building construction and
even for embalming.
In order to be able to describe the behavior of the asphalt mix used for

roadway construction, it is necessary to understand the behavior of its most
characteristic component which is the straight-run asphalt. This task is a
difficult one because of the following reasons. Asphalt is a very complicated
mixture of many different components, all of which interact with one an-
other. The exact chemical composition and the nature of processes which
take place in this mixture are still not well understood, although there is a
lot of experimental evidence, that certain processes such as aging or steric
and low-temperature physical hardening take place in asphalt and have a
significant impact on its macroscopic behavior.

1



CHAPTER 1 INTRODUCTION 2

Yet another difficulty is that the behavior of asphalt depends to a large
extent on the temperature. With increasing temperature asphalt can behave,
roughly speaking, like a glassy solid, viscoelastic solid, viscoelastic fluid or
Newtonian fluid. The precise temperature ranges for the different kinds of
behavior cannot be given, because they depend to a large extent on the type
and origin of asphalt. Another problem is that the behavior depends also on
the timescale of observation. If a specimen is put into a funnel and left for
a couple of years, a drop may fall from the stem (for more details on this
exciting experiment, the reader is referred to [1]). However, when precisely
the same specimen at the same temperature is hit by a hammer, it cracks in
a way similar to glass.

1.2 The aim of this thesis

In this thesis we abstract from all of the above discussed complications, our
aim being to capture only the most significant features of the mechanical
behavior of asphalt. Therefore, we model asphalt as a single continuum (not
as a mixture) at a constant temperature.
We were provided with experimental data on steady shear rate experi-

ments with asphalt, which are described in the next section. According to
the conditions of this experiment, we have decided to model asphalt as an in-
compressible viscoelastic fluid. We neglect the volume force, because it does
not play any role in the experiment. Throughout this thesis we consider two
models for such materials, namely Oldroyd-B, which is a typical model for
viscoelastic fluids, and a nonlinear model, which will be introduced in the
next chapter and which might be thought of as a generalization of Oldroyd-B
to the case of large elastic deformations. The main objective of this thesis
is to determine, in what extent these models are capable of fitting the given
experimental data.

1.3 Experimental data

Now, we provide a brief description of the considered experiment, which has
been conducted by Dr. J.Murali Krishnan at Indian Institute of Technology
Madras [5]. Since his experimental work is still in progress, the results of his
measurements have not been published yet.
The experiments were performed using a dynamic shear rheometer, their

setup is shown in Figure 1.1. First, a spherical sample of asphalt was placed
between the plates and was squeezed into a disc. The excess material was
trimmed off. Then the specimen was allowed to relax and settle at the given
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temperature. Finally, at t = 0 the upper plate started to rotate with a
constant angular velocity ω and the corresponding torque was recorded for
times 0 ≤ t ≤ 15 s. The radius of the plate is R = 4mm and a constant
gap of h = 1mm was maintained during the measurements. The data set
contains results for temperatures of 25 ◦C and 35 ◦C and angular velocities
of 0.125 rad.s−1, 0.25 rad.s−1 and 0.5 rad.s−1. The measured torque is plotted
against time in Figure 1.2.
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Figure 1.1: Steady shear rate experiment
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Figure 1.2: Experimental data – torque vs. time in steady shear rate experi-
ments [5].



Chapter 2

Models for viscoelastic fluids

In this chapter we introduce two models for viscoelastic fluids, properties of
which will be investigated in this thesis.

2.1 Preliminaries

For the characterization of the flow of a viscoelastic fluid we use the spatial
description. Throughout the text we use the following Eulerian variables

ρ density
v velocity
L = (∇v)T velocity gradient
D = 1

2(L+ L
T) rate of deformation tensor

T Cauchy stress tensor
b volume force
ε specific internal energy
r density of energy sources
q heat flux
η specific entropy
θ temperature
ψ Helmholtz potential
ξ rate of dissipation

The material time derivative of an Eulerian field ϕ is given by

ϕ̇ :=
∂ϕ

∂t
+ v · ∇ϕ . (2.1)

As the starting point for our discussion we summarize the balance laws of
continuum mechanics in spatial description (for details see e.g. [19]):

5
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Balance of mass
ρ̇+ ρ div v = 0 (2.2)

Balance of linear momentum

ρv̇ = ρb+ divTT (2.3)

Balance of angular momentum

T = TT (2.4)

Balance of internal energy

ρε̇ = T ·D+ ρr − div q (2.5)

Entropy inequality

ρη̇ ≥ ρr

θ
− div q

θ
(2.6)

For the later use we will express the entropy inequality in a more suitable
form. Let us therefore introduce the Helmholtz free energy

ψ = ε− θη (2.7)

and the rate of dissipation

ξ = θρη̇ − ρr + θ div
q
θ
. (2.8)

It follows from (2.6) that ξ ≥ 0 in any admissible process. On substituting ε
from (2.7) and r from (2.5) into (2.8) we get

ξ = T ·D− ρψ̇ + ρηθ̇ − ∇θ
θ
· q . (2.9)

Because we consider only isothermal processes, the last two terms cancel and
we arrive at the final form of the energy dissipation equation

ξ = T ·D− ρψ̇ . (2.10)

2.2 Oldroyd-B

Oldroyd-B is a standard model for viscoelastic fluids, which has been widely
used for example for modeling of polymer melts and solutions. It can be
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derived e.g. by considering a viscous fluid containing elastic dumbbells con-
sisting of two spherical beads connected by a linear elastic spring. The equa-
tions of this model may be written in several different forms, we will use the
following one

div v = 0 (2.11a)

ρv̇ = div(−pI+ 2ηD+GA) (2.11b)

A+ τ
O
A = 2τD , (2.11c)

where A is the elastic extra stress tensor,
O
A = Ȧ − LA − ALT its upper-

convected Oldroyd derivative, η is viscosity, G elastic modulus and τ relax-
ation time. For its derivation as well as for further details on Oldroyd-B
model see for example [4].

2.3 A thermodynamic framework for model-
ing of rate-type fluids

In this section we describe a general thermodynamic framework for modeling
incompressible viscoelastic fluids. This framework proposed by Rajagopal and
Srinivasa relies on the concept of natural configurations and the principle of
maximal rate of dissipation. For details see e.g. [10, 9, 8].

2.3.1 Natural configurations

Besides the reference and current configurations κR and κt, we associate with
the body the so-called natural configuration κp. In the case of an infinitesimal
element of the body its meaning can be roughly explained by means of a
simple linear viscoelastic model consisting of one dashpot and one spring in
series. The free energy of this system is stored only in the spring. If the
system is first extended by an external load and then unloaded, it goes to a
’natural’ state, in which the spring is in equilibrium and thus the free energy
stored in the system is equal to zero. Since the deformation of the dashpot
does not change during the relaxation, we conclude that the free energy of
the system depends only on the deformation from the natural state.
Now let us turn our attention to the body as a whole. Each infinitesimal

element of the body has a natural state associated with it, but these natural
states do not in general have to form a global configuration in the Euclidean
space. For this lack of clearer physical interpretation natural configurations
will be throughout this text considered merely as an abstract notion with
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F

FκpG

κR κt

κp

Figure 2.1: Reference, current and natural configuration and the introduction
of Fκp and G.

only conceptual meaning. For a detailed discussion of the notion of natural
configurations see e.g. [11].
Now we introduce some kinematical quantities related to the natural con-

figurations. We define Fκp as the mapping of an infinitesimal element from
κp to κt and G as the mapping of an infinitesimal element from κR to κp.
It should be pointed out that since the natural configuration is only a local
notion, these two tensors are not in general gradients of any mapping and
thus do not have to fulfill any compatibility conditions. They are related to
F through

G = F−1
κp
F . (2.12)

Using them we define other quantities in a way, which is analogous to the
definitions of quantities related to the reference configuration, namely

Bκp = FκpF
T
κp
and Cκp = F

T
κp
Fκp , (2.13)

as a measure of the deformation between κp and κt and

Lκp = ĠG
−1 and Dκp =

Lκp + L
T
κp

2
. (2.14)

as a measure of its rate.
For later use let us compute time derivatives of Bκp and its deviatoric part

Bδκp
:= Bκp −

1
3
(trBκp)I . (2.15)
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Starting from the definition (2.13) and using the rule for product differentia-
tion, we get first

Ḃκp =
(
FκpF

T
κp

)·
=
(
FG−1G−TFT

)·
=

= LBκp +BκpL
T − 2FκpDκpF

T
κp
. (2.16)

If we introduce the so–called upper convected Oldroyd derivative
O
A = Ȧ −

LA−ALT, we can rewrite the last result in the final form

O
Bκp = −2FκpDκpF

T
κp
. (2.17)

To compute the upper convected Oldroyd derivative
O
Bδκp
we observe first that

taking trace of (2.16) yields

tr Ḃκp = 2D ·Bκp − 2Cκp ·Dκp . (2.18)

Using that, we get straightforwardly

O
Bδκp
=

(
Bκp −

1
3
(trBκp)I

)O

=
O
Bκp −

1
3
(tr Ḃκp)I+

2
3
(trBκp)D =

= −2FκpDκpF
T
κp
− 2
3
(D ·Bκp)I+

2
3
(Cκp ·Dκp)I+

2
3
(trBκp)D . (2.19)

2.3.2 Incompressibility

The constraint of incompressibility implies that

detF = 1 , (2.20)

which upon differentiation with respect to time leads to

trD = 0 . (2.21)

Since the natural configuration is also a possible state of an infinitesimal
element of the body, incompressibility leads also to

detG = 1 , (2.22)

which similarly gives
trDκp = 0 . (2.23)
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2.3.3 Principle of maximum rate of entropy production

The methodology for developing constitutive relations for incompressible rate-
type fluids is the following: instead of directly prescribing a constitutive rela-
tion for the Cauchy stress tensor T, we choose rather constitutive relations for
Helmholtz free energy ψ and rate of dissipation ξ. This should be somehow
’easier’, because the Cauchy stress tensor has six independent components
while these quantities are only two scalars. Then, to obtain the constitutive
equation for T, we employ the principle of maximum entropy production. For
the purpose of this text it can be formulated in the following way:
The values of D and Dκp which correspond to a given value of T are those,

which maximize the rate of entropy production under the constraint of reduced
thermodynamic inequality and the conditions of incompressibility.
For a detailed discussion of this principle the reader is referred for example

to [12].

2.4 Model 1

Now we apply the above introduced framework to develop a model, which
has been originally proposed in a more general form in [3] and which will be
throughout this text referred to as Model 1.
As the first step we have to choose constitutive relations for the Helmholtz

free energy and the rate of dissipation. We assume that the elastic response
between κp and κt is that of a neo–Hookean material, that is

ψ̂ =
µ

2ρ
(trBκp − 3) . (2.24)

This is in some sense the easiest choice — ψ depends linearly on the linear
invariant of Bκp and is zero if Bκp = I that is if the natural configuration is
equal to the current one. For the rate of dissipation we stipulate

ξ̂ = ε0D ·D+ ε1Dκp · (CκpDκp) , (2.25)

the first term in this formula corresponding to the dissipation of a Newtonian
fluid, the second one being responsible for viscoelastic behavior. Using (2.16)
the material time derivative of ψ can be expressed as

ψ̇ =
µ

2ρ
tr Ḃκp =

µ

ρ
(D ·Bκp −Cκp ·Dκp) , (2.26)

which upon substituting into (2.10) delivers the following form of the reduced
thermodynamic inequality

ξ = (T− µBκp) ·D+ µCκp ·Dκp . (2.27)
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As the next step we maximize ξ̂(D,Dκp) among the values of D and Dκp

fulfilling the following constraints of incompressibility and the reduced ther-
modynamic inequality

0 = trD (2.28)

0 = trDκp (2.29)

0 = (T− µBκp) ·D+ µCκp ·Dκp − ξ̂(D,Dκp) . (2.30)

For this purpose we adopt the method of Lagrange multipliers which delivers
the following set of equations

∂ξ̂

∂D
= λ1

∂

∂D
(ξ − ξ̂) + λ2

∂

∂D
trD+ λ3

∂

∂D
trDκp (2.31)

∂ξ̂

∂Dκp

= λ1
∂

∂Dκp

(ξ − ξ̂) + λ2
∂

∂Dκp

trD+ λ3
∂

∂Dκp

trDκp (2.32)

that can be simplified to

1 + λ1
λ1
2ε0D = T− µBκp +

λ2
λ1
I (2.33)

1 + λ1
λ1
2ε1CκpDκp = µCκp +

λ3
λ1
I (2.34)

where the Lagrange multipliers λ1, λ2 and λ3 have to be eliminated. To
accomplish this we first make the scalar product of (2.33) with D and (2.34)
with Dκp and sum these products. With help of (2.25) and (2.27) we easily
conclude that

1 + λ1
λ1

=
1
2
. (2.35)

Next we take the trace of (2.33) and of (2.34), which delivers

λ2
λ1
= −1
3
tr(T− µBκp) (2.36)

λ3
λ1
=
1
3
(ε1Cκp ·Dκp − µ trCκp) . (2.37)

We define the pressure as the mean normal stress

p = −1
3
trT . (2.38)

Substitution of (2.38), (2.35), (2.36) and (2.37) into (2.33) and (2.34) yields

T = −pI+ ε0D+ µBδκp
(2.39)

ε1

[
CκpDκp −

1
3
(Cκp ·Dκp)I

]
= µ

[
Cκp −

1
3
(trCκp)I

]
. (2.40)
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To bring the last equation to the final form we multiply it from the left by
F−T
κp
and from the right by FTκp

which leads to

ε1

[
FκpDκpF

T
κp
− 1
3
(Cκp ·Dκp)I

]
= µ

[
FκpF

T
κp
− 1
3
(trCκp)I

]
(2.41)

and using (2.19) and the fact that trBκp = trCκp and D ·Bκp = D ·Bδκp
to

ε1

[
−1
2

O
Bδκp
+
1
3
(trBκp)D− 1

3
(D ·Bδκp

)I
]
= µBδκp

. (2.42)

Finally, we introduce
b = trBκp , (2.43)

which will be along with Bδκp
one of the independent variables in our model.

To summarize, we have the following set of partial differential and alge-
braic equations

div v = 0 (2.44a)

ρv̇ = div(−pI+ ε0D+ µBδκp
) (2.44b)

µBδκp
= ε1

[
−1
2

O
Bδκp
+
1
3
bD− 1

3
(D ·Bδκp

)I
]

(2.44c)

1 = det

(
Bδκp
+
1
3
bI
)

(2.44d)

for the independent variables p, v, Bδκp
and b that completely characterize the

state of the flow. These variables have in full 3D setting altogether ten inde-
pendent components. On the other hand, equations (2.44a) and (2.44d) have
both one component, equation (2.44b) three, and (2.44c), since it is symmet-
ric and traceless, has five independent components, which makes altogether
ten equations for ten unknown components.

2.5 Relationship between Model 1 and Ol-
droyd-B

In this section we show that under certain assumptions Model 1 reduces to
Oldroyd-B. Let us therefore assume that

Bκp = I+A, where |A| = ε , (2.45)

ε being some small parameter. Using the expansion

det (I+A) = 1 + trA+O(|A|2) , (2.46)
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the constraint of incompressibility detBκp = 1 reduces under the assumption
(2.45) to

trA = 0 , (2.47)

which implies that

trBκp = b = 3 and Bδκp
= A . (2.48)

In view of these results (2.44c) simplifies to

A+
ε1
2µ

O
A = 2

ε1
2µ
D− ε1

3µ
(D ·A)I . (2.49)

It is evident that if we further assume that also |D| = O(ε), the last term in
this equation becomes quadratic in ε. Neglecting it, we arrive at

A+
ε1
2µ

O
A = 2

ε1
2µ
D , (2.50)

which is obviously equation (2.11c) with τ = ε1/2µ, G = µ. Note that
the assumption, that both |Bδκp

| and |D| are small actually means, that the
deviatoric stress

ε0D+ µBδκp
(2.51)

is small.
To summarize, we have shown that Model 1 and Oldroyd-B coincide for

small deviatoric stresses and that the relations between the material moduli
in this case are

η =
ε0
2
, τ =

ε1
2µ
, G = µ . (2.52)



Chapter 3

Numerical method

Now we briefly describe the method for numerical solution of partial differ-
ential equations, which will be used throughout next chapters.

3.1 Weak formulation

The starting point for the numerical solution of a problem involving partial
differential equations is its weak formulation. In this section, we introduce
the weak formulation of the models presented in the previous chapter in the
full 3D setting.
We consider a fluid filling a given domain Ω ⊂ R3 whose boundary ∂Ω

can be separated into two parts Γ1 and Γ2. On Γ1 we prescribe the Dirichlet
boundary condition v = v0 and on Γ2 the Neumann boundary condition
Tn = t0, where v0 and t0 are given. Furthermore, on the inflow ΓI (the part
of the boundary where v ·n < 0) we have to prescribe Dirichlet condition for
A or for Bδκp

and b.
In order to obtain the weak formulation of the equations (2.11) or (2.44)

governing the flow of a viscoelastic fluid, we integrate these equations against
corresponding test functions, which have zero trace on the part of the bound-
ary where the Dirichlet condition is prescribed, and then integrate the right
hand side of the momentum equation by parts taking the boundary conditions
into account (see e.g. [15]).
Hence, the weak formulation of the equations for Oldroyd-B (2.11) reads

14
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Find (p,v,A) : 〈0, T 〉 → Q× V × S such that∫
Ω
(div v)q dΩ = 0 (3.1a)∫
Ω
ρv̇ · u dΩ =

∫
Γ2

t0 · u ds−
∫
Ω
T · ∇u dΩ (3.1b)∫

Ω
(A+ τ

O
A) · S dΩ =

∫
Ω
2τD · S dΩ (3.1c)

for all q ∈ Q, u ∈ V0 and S ∈ S0.
The weak formulation of the equations for Model 1 (2.44) reads
Find (p,v,Bδκp

, b) : 〈0, T 〉 → Q× V ×W ×B such that∫
Ω
(div v)q dΩ = 0 (3.2a)∫
Ω
ρv̇ · u dΩ =

∫
Γ2

t0 · u ds−
∫
Ω
T · ∇u dΩ (3.2b)∫

Ω
µBδκp

· S dΩ =
∫
Ω
ε1

[
−1
2

O
Bδκp
+
1
3
bD− 1

3
(D ·Bδκp

)I
]
· S dΩ (3.2c)

0 =
∫
Ω

[
det

(
Bδκp
+
1
3
bI
)
− 1
]
w dΩ (3.2d)

for all q ∈ Q, u ∈ V0, S ∈ S0 and w ∈ B0.
The above used function spaces are defined as follows.

• Q = L2(Ω),

• V is the space of vectors with cartesian components in W 1,2(Ω),

• S is the space of symmetric second order tensors with cartesian compo-
nents in L2(Ω),

• W is the space of symmetric traceless second order tensors with carte-
sian components in L2(Ω),

• B = L2(Ω),

their counterparts with zero subscript denoting their subspaces with zero
trace on the part of the boundary where the Dirichlet condition for the cor-
responding variable is prescribed.
The above presented weak formulation of Oldroyd-B is widely accepted

in the area of numerical simulations (see [15, 13]) and it motivated also our
derivation of the weak formulation of Model 1. However, it should be pointed
out that both formulations are somewhat questionable from the mathematical
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point of view, since there is neither a result concerning existence or unique-
ness of solutions to these problems nor a physical principle, on which these
formulations would rely. Especially problematic is the way the data on extra-
stress at the inflow boundary, which are needed to completely characterize
the state of the fluid inside the domain, are taken into account. In order to
be able to speak about the value of the extra-stress on the boundary, we need
to know that it lies in a space where the trace of a function is well defined.
This is not the case in L2(Ω), however, the theory of hyperbolic equations in
one spatial dimension indicates that the extra-stress might lie in some better
space such as L2(Ω)∩BV (Ω), where the trace may be defined in some gener-
alized sense. In any case, a reasonable mathematical theory for the equations
(2.11) or (2.44) still needs to be developed. For an overview of known results
concerning this analysis, we refer the reader for example to [15].

3.2 Solution method and software

We solve our equations with the Finite Element Method, i.e we start with the
weak formulation of a given problem, discretise it in terms of the Galerkin
method and then solve the corresponding system of algebraic equations.
For this purpose we employ Comsol Multiphysics 3.3. For a detailed

description of the numerical schemes used by this software we refer to [2].
Its most important features according to this reference are listed below.

Linear solver To solve linear algebraic systems, Comsol uses the direct
solver UMFPACK [17, 16].

Nonlinear solver To solve nonlinear algebraic systems, Comsol uses a solver
based on an affine invariant form of the damped Newton method.

Time dependent solver To solve time dependent problems, Comsol uses a
version of the DAE solver DASPK, which uses variable-order variable-
stepsize backward differentiation formulas. Thus the solver is an im-
plicit time-stepping scheme, which implies that it must solve a possibly
nonlinear system of equations at each time step. It solves the nonlinear
system using a Newton iteration.

For problems with one spatial dimension we discretise the domain (in-
terval) using equidistant segments, for problems with two spatial dimensions
we use a quadrilateral mesh consisting of rectangles. The shape functions are
piecewise linear discontinuous for pressure and continuous piecewise quadratic
for all other variables. This choice satisfies the Babuška-Brezzi condition and
leads at least in the case of Oldroyd-B to a stable numerical scheme (see [15]).



Chapter 4

Parallel plate flow

In this chapter we investigate the response of the above-presented models
in the most trivial case which is the flow between two parallel plates. This
geometry is a one-dimensional analogy of the experiment described in Section
1.3 and therefore it helps us to understand some of the problems which we
encounter later in the cylindrical geometry.

4.1 Problem description

x

y

z

h

Figure 4.1: Flow between parallel
plates

The geometry of the flow is shown in Figure 4.1, for its description we
employ cartesian coordinates with the x-axis coinciding with the flow direc-
tion. In order to reduce the system of partial differential equations governing
the flow to a set of ordinary differential equations, it is assumed that the
components of velocity and elastic stress depend only on the y coordinate.
Furthermore, the velocity is assumed to be parallel with the plates.
In the steady case, we deal with the so-called Couette flow driven by

the motion of the upper plate and the Poiseuille flow driven by an exter-
nally imposed pressure gradient (see [14]). Furthermore, we investigate the
capability of both models to capture the non-Newtonian effects of shear thin-
ning/thickening and normal stress difference by examining the generalized

17
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viscosity

ηg =
Txy
∂vx

∂y

(4.1)

and the first and second normal stress differences

N1 = Txx − Tyy, N2 = Tyy − Tzz . (4.2)

In the unsteady case, we restrict our attention to stress relaxation, i.e. we
prescribe the boundary conditions

vx(t, 0) = 0, vx(t, h) = v0H(t) , (4.3)

and the initial conditions

v(0,x) = 0 (4.4a)

A(0,x) = 0 for Oldroyd-B (4.4b)

Bδκp
(0,x) = 0 and b(0,x) = 3 for Model 1 (4.4c)

and we are interested in the corresponding shear stress. Here H(t) denotes
the Heaviside (unit step) function.

4.2 Oldroyd-B

4.2.1 Steady flow

Substituting the ansatz 1

p = p(x), v =

vx(y)0
0

 , A =

Axx(y) Axy(y) 0
Axy(y) 0 0
0 0 0

 (4.5)

into the equations for Oldroyd-B (2.11), we obtain

0 = −∂p
∂x
+ η

∂2vx
∂y2

+G
∂Axy
∂y

(4.6a)

Axx − 2τAxy
∂vx
∂y
= 0 (4.6b)

Axy = τ
∂vx
∂y

, (4.6c)

1Note that the fact that some of the components of the tensor A are equal to zero
follows directly form the governing equations. We assume that they are zero apriori just
in order to make the computation more transparent.
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the remaining equations being identically fulfilled. Now substitution of (4.6c)
into (4.6b) and (4.6a) gives

Axx = 2τ
2

(
∂vx
∂y

)2
(4.7)

∂p

∂x
= (η +Gτ)

∂2vx
∂y2

. (4.8)

Since the left-hand side of the last equation depends only on x while the
right-hand side only on y, they both must be equal to the same constant, say
−k. Thus, the pressure varies linearly along the channel

p = p0 − kx, p0 = const . (4.9)

We discuss two special cases in what follows.

Plane Poiseuille flow

Poiseuille flow is driven by the pressure gradient, i.e,

− ∂p

∂x
= k 6= 0, vx(0) = vx(h) = 0 . (4.10)

Consequently, it follows from (4.8) that

(η +Gτ)
∂2vx
∂y2

= −k . (4.11)

Integrating this equation twice and taking the boundary conditions (4.10)
into account, we obtain

vx =
k

2(η +Gτ)
y(h− y) , (4.12)

and then (4.6b) and (4.6c) lead to

Axx =
τ 2k2

2(η +Gτ)2
(h− 2y)2 (4.13)

Axy =
τk

2(η +Gτ)
(h− 2y) . (4.14)
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Plane Couette flow

Couette flow is driven by the motion of the upper plate at a constant pressure,
i.e

∂p

∂x
= k = 0, vx(0) = 0, vx(h) = v0 . (4.15)

From (4.6) and (4.8) we easily conclude that

vx =
v0y

h
(4.16)

Axx = 2
(v0τ
h

)2
(4.17)

Axy =
v0τ

h
. (4.18)

The shear stress at the upper plate is

Txy = (η +Gτ)
v0
h
. (4.19)

Finally, let us investigate the viscometric functions of the flow. The gen-
eralized viscosity is

ηg =
Txy
∂vx

∂y

= η +Gτ (4.20)

and is constant, the first normal stress difference

N1 = Txx − Tyy = 2τ
2

(
∂vx
∂y

)2
(4.21)

is nonzero whereas the second normal stress difference

N2 = Tyy − Tzz (4.22)

is zero.

4.2.2 Unsteady flow

Assuming that

p = p(t), v =

vx(t, y)0
0

 , A =

Axx(t, y) Axy(t, y) 0
Axy(t, y) 0 0
0 0 0

 , (4.23)
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the Oldroyd-B model (2.11) leads to

ρ
∂vx
∂t
= η

∂2vx
∂y2

+G
∂Axy
∂y

(4.24a)

Axx + τ

(
∂Axx
∂t

− 2Axy
∂vx
∂y

)
= 0 (4.24b)

Axy + τ
∂Axy
∂t
= τ

∂vx
∂y

. (4.24c)

These equations together with the boundary and initial conditions (4.3) and
(4.4) do not have any simple analytical solution, therefore we derive their
weak formulation∫ h

0
ρ
∂vx
∂t

ux dy = −
∫ h

0
η
∂vx
∂y

∂ux
∂y
+GAxy

∂ux
∂y
dy (4.25a)∫ h

0
τ
∂Axx
∂t

Sxx dy =
∫ h

0

(
2τAxy

∂vx
∂y

− Axx

)
Sxx dy (4.25b)∫ h

0
τ
∂Axy
∂t

Sxy dy =
∫ h

0

(
τ
∂vx
∂y

− Axy

)
Sxy dy (4.25c)

and solve them numerically. For the discussion of the numerical results see
Section 4.4.
However, if we approximate the velocity by

vx(t, y) =
v0(t)y
h

(4.26)

and neglect the time derivative of v0(t), the equations (4.24) simplify to

0 = G
∂Axy
∂y

(4.27a)

Axx + τ

(
∂Axx
∂t

− 2v0
h
Axy

)
= 0 (4.27b)

Axy + τ
∂Axy
∂t
=
τv0
h

(4.27c)

and have the following analytical solution

Axx = 2
(v0τ
h

)2 [
1−

(
1 +

t

τ

)
e−t/τ

]
(4.28)

Axy =
v0τ

h

(
1− e−t/τ

)
. (4.29)

The shear stress at the upper plate is given by

Txy =
v0
h

[
η +Gτ(1− e−t/τ )

]
. (4.30)
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4.3 Model 1

Now we investigate the behavior of Model 1 in an analogous way.

4.3.1 Steady flow

Substituting the choice

p = p(x, y), v =

vx(y)0
0

 , b = b(y) (4.31a)

Bδκp
=

Bδ
xx(y) Bδ

xy(y) 0
Bδ
xy(y) Bδ

yy(y) 0
0 0 −Bδ

xx(y)−Bδ
yy(y)

 (4.31b)

into the equations for Model 1 (2.44), we obtain

0 = −∂p
∂x
+
ε0
2
∂2vx
∂y2

+ µ
∂Bδ

xy

∂y
(4.32a)

0 = −∂p
∂y
+ µ

∂Bδ
yy

∂y
(4.32b)

µBδ
xx =

2ε1
3
∂vx
∂y

Bδ
xy (4.32c)

µBδ
xy =

ε1
2
∂vx
∂y

Bδ
yy +

ε1
6
∂vx
∂y

b (4.32d)

µBδ
yy = −

ε1
3
∂vx
∂y

Bδ
xy (4.32e)

1 =

[(
Bδ
xx +

b

3

)(
Bδ
yy +

b

3

)
−Bδ

xy

2
](

−Bδ
xx −Bδ

yy +
b

3

)
(4.32f)

First let us deal with equations concerningBκp that is with (4.32c)–(4.32f).
From equations (4.32c) to (4.32e), it follows that

Bδ
xx =

4α
3
Bδ
xy (4.33)

Bδ
yy = −

2α
3
Bδ
xy (4.34)

b =

(
2α+

3
α

)
Bδ
xy , (4.35)

where for the simplicity of notation we have defined

α :=
ε1
2µ

∂vx
∂y

. (4.36)
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Substituting these results into the equation (4.32f) leads to a cubic equation
for Bδ

xy, the only real solution of which is

Bδ
xy =

α
3
√
1 + α2

. (4.37)

Now let us turn our attention to the momentum equations (4.32a)–(4.32b).
Integration of (4.32b) with respect to y yields

p = µBδ
yy + p

∗(x) , (4.38)

where p∗(x) is an arbitrary function of x. Substitution of this result into
(4.32a) gives

∂p∗

∂x
=

∂

∂y

(
ε0
2
∂vx
∂y
+ µBδ

xy

)
. (4.39)

Since the left-hand side of this equation depends only on x while the right-
hand side depends only on y, they both must be equal to the same constant,
say −k. This implies firstly

p∗ = kx+ p0, p0 = const . (4.40)

and secondly
∂

∂y

(
ε0
2
∂vx
∂y
+ µBδ

xy

)
= k . (4.41)

As in the case of Oldroyd-B, we shall resolve two special cases.

Plane Poiseuille flow

Upon substituting Bδ
xy into (4.41) we obtain

∂

∂y

∂vx∂y
ε02 + ε1

2
1

3

√
1 +

(
ε1
2µ

∂vx

∂y

)2

 = k , (4.42)

which together with the boundary conditions (4.10) forms a boundary value
problem for the velocity profile vx(y). Since it does not allow an analytical
solution, we derive its weak form

∫ h

0

∂vx
∂y

ε02 + ε1
2

1

3

√
1 +

(
ε1
2µ

∂vx

∂y

)2
 ∂ux

∂y
dy =

∫ h

0
ku dy (4.43)

and solve it numerically. We will discuss the results in Section 4.4.
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Plane Couette flow

Again, substituting Bδ
xy into (4.41), setting k = 0 and integrating with respect

to y, we obtain

∂vx
∂y

ε02 + ε1
2

1

3

√
1 +

(
ε1
2µ

∂vx

∂y

)2
 = C1 , (4.44)

which can be considered as an algebraic equation for ∂vx

∂y
. Since C1 is a

constant, ∂vx

∂y
must be also constant, which implies that the velocity profile is

linear and in view of the chosen boundary conditions (4.15) has the form

vx =
v0
h
y . (4.45)

Let us now investigate the viscometric functions of the flow. The gener-
alized viscosity is

ηg =
Txy
∂vx

∂y

=
ε0
2
+
ε1
2

1
3
√
1 + α2

(4.46)

and is a monotonically decreasing function of shear rate which means that
Model 1 exhibits shear thinning. Like in the case of Oldroyd-B model, the
first normal stress difference

N1 = Txx − Tyy =
2α2

3
√
1 + α2

(4.47)

is nonzero whereas the second normal stress difference

N2 = Tyy − Tzz (4.48)

is zero.

4.3.2 Unsteady flow

Substituting the choices

p = p(t, x, y), v =

vx(t, y)0
0

 , b = b(t, y) (4.49a)

Bδκp
=

Bδ
xx(t, y) Bδ

xy(t, y) 0
Bδ
xy(t, y) Bδ

yy(t, y) 0
0 0 −Bδ

xx(t, y)−Bδ
yy(t, y)

 (4.49b)
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into the equations for Model 1 (2.44), we obtain

ρ
∂vx
∂t
= −∂p

∂x
+
ε0
2
∂2vx
∂y2

+ µ
∂Bδ

xy

∂y
(4.50a)

0 = −∂p
∂y
+ µ

∂Bδ
yy

∂y
(4.50b)

µBδ
xx = ε1

(
−1
2
∂Bδ

xx

∂t
+
2
3
∂vx
∂y

Bδ
xy

)
(4.50c)

µBδ
xy = ε1

(
−1
2

∂Bδ
xy

∂t
+
1
2
∂vx
∂y

Bδ
yy +

1
6
∂vx
∂y

b

)
(4.50d)

µBδ
yy = ε1

(
−1
2

∂Bδ
yy

∂t
− 1
3
∂vx
∂y

Bδ
xy

)
(4.50e)

1 =

[(
Bδ
xx +

b

3

)(
Bδ
yy +

b

3

)
−Bδ

xy

2
](

−Bδ
xx −Bδ

yy +
b

3

)
. (4.50f)

Adding up (4.50c) and the double of (4.50e) yields

µ(Bδ
xx + 2B

δ
yy) = −

ε1
2
∂

∂t
(Bδ

xx + 2B
δ
yy) (4.51)

which in view of the initial conditions for Bκp (4.4c) implies that

Bδ
xx = −2Bδ

yy . (4.52)

Similarly as in the steady case we conclude from the momentum equations
(4.50a)–(4.50b) that

p = µBδ
yy − kx+ p0 , (4.53)

where k = const . is an externally imposed pressure gradient which will be in
this subsection considered zero. In view of these results (4.50) simplifies to

ρ
∂vx
∂t
=
ε0
2
∂2vx
∂y2

+ µ
∂Bδ

xy

∂y
(4.54a)

µBδ
xy = ε1

(
−1
2

∂Bδ
xy

∂t
+
1
2
∂vx
∂y

Bδ
yy +

1
6
∂vx
∂y

b

)
(4.54b)

µBδ
yy = ε1

(
−1
2

∂Bδ
yy

∂t
− 1
3
∂vx
∂y

Bδ
xy

)
(4.54c)

1 =

[(
−2Bδ

yy +
b

3

)(
Bδ
yy +

b

3

)
−Bδ

xy

2
](

Bδ
yy +

b

3

)
. (4.54d)
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Unfortunately, we did not find any exact or approximate solution to this
system and thus we have to solve it numerically. Its weak form is∫ h

0
ρ
∂vx
∂t

ux dy = −
∫ h

0

(
ε0
2
∂vx
∂y
+ µBδ

xy

)
∂ux
∂y
dy (4.55a)∫ h

0

ε1
2

∂Bδ
xy

∂t
Wxy dy =

∫ h

0

(
−µBδ

xy +
ε1
2
∂vx
∂y

Bδ
yy +

ε1
6
∂vx
∂y

b

)
Wxy dy (4.55b)∫ h

0

ε1
2

∂Bδ
yy

∂t
Wyy dy =

∫ h

0

(
−µBδ

yy −
ε1
2
∂vx
∂y

Bδ
xy

)
Wyy dy (4.55c)

0 =
∫ h

0

{[(
−2Bδ

yy +
b

3

)(
Bδ
yy +

b

3

)
−Bδ

xy

2
](

Bδ
yy +

b

3

)
− 1
}
w dy

(4.55d)

and the numerical results along with the results for Oldroyd-B are discussed
in the next section.

4.4 Numerical results

Firstly, we have computed the velocity profiles for the Poiseuille flow in de-
pendence on the relaxation time, see Figure 4.2 for details. The results for
Model 1 were obtained by solving equation (4.43) with the aid of finite ele-
ments, the results for Oldroyd-B using the formula (4.12). We see that for
low values of relaxation time the velocity profiles for both models are identi-
cal. As the relaxation time increases, the velocity in Model 1 becomes higher
than in Oldroyd-B, its profile being still almost quadratic. A profile which
differs significantly from a parabola was obtained only for unrealisticly high
relaxation times or pressure gradients.
Then, we have carried out time dependent numerical simulations of the

stress relaxation in Oldroyd-B and Model 1 using the equations (4.25) and
(4.55) respectively. The distance of the plates was taken h = 10−3mm and
considered values of the material moduli were of the same order of magnitude
as in the experiment described in Section 1.3. The Heaviside function in the
boundary condition was smoothened over a finite interval 10−15 s. Spatial
discretisation was h0 = h/100, the time step varied between 10−15 s after the
start and 10−3 s at the end of the time interval.
We were first interested in the development of the velocity profile. It

turned out that a linear velocity profile establishes in both models very
quickly, for the values corresponding to the experiment approximately in
10−8 s. Therefore, there is no difference between the numerical solution of
the flow for Oldroyd-B and the corresponding approximate solution (4.30),
except for the time before the linear profile establishes. Within this interval
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the computed shear stress is noticeably larger, because the velocity gradient
at the top plate is larger than in the linear profile. When we smoothened the
Heaviside function over a longer time interval, say 10−5 s, the velocity profile
was linear throughout the whole simulation.
Then, we focused our interest on the kind of response the models can

actually exhibit. Figures 4.3 and 4.4 show the response of both models for
different values of the upper plate velocity and relaxation time respectively.
In both cases we have observed that for lower values of shear stress to which
also lower norms of A and Bκp correspond, the response of both models is
equal. With increasing torque we observe firstly that the shear stress for
Model 1 is lower than for Oldroyd-B, and secondly that Model 1 starts to
exhibit overshoots in torque, which Oldroyd-B never does.
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Figure 4.2: Velocity profiles in plane Poiseuille flow for Oldroyd-B (left)
and Model 1 (right) for varying value of the relaxation time (k = 109 Pa,
η = 5.104 Pa.s, G = 105 Pa, τ = τ ′ resp. ε0 = 105 Pa.s, ε1 = 2µτ ′, µ = 105 Pa)
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Figure 4.3: Shear stress for Oldroyd-B (left) and Model 1 (right) for varying
value of the relaxation time (v0 = 2mm.s−1, η = 5.104 Pa.s, G = 105 Pa,
τ = τ ′ resp. ε0 = 105 Pa.s, ε1 = 2µτ ′, µ = 105 Pa)
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Chapter 5

Planar contraction flow

As the second example we have chosen the planar 4:1 contraction flow of an
Oldroyd-B fluid, which is a standard benchmark problem in viscoelasticity.
Our aim in this example is to obtain some results, which allow comparison
with the literature. For this purpose we have chosen the paper [18], where a
solution to this benchmark problem is presented and compared with results
established earlier by several other authors.

5.1 Problem description

4L

L

16L 16L

x

y

lip vortex

salient vortex
L1

Figure 5.1: The contraction flow geometry.

The geometry for the 4:1 contraction is shown in figure 5.1. The symmetry
is assumed along y = 0 which allows us to seek a solution only for y ≤ 0.
The fluid passes from a channel of half width 4L to a channel of half width
L. The length of both upstream and downstream channel is 16L. We look
for steady state solution.
For the sake of easier comparison of our results with [18] we rewrite the

equations for Oldroyd-B model (2.11) into the form used in this paper. There-

29
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fore, we introduce the following non-dimensional quantities

v∗i =
vi
L
, x∗i =

xi
L
, t∗ =

Ut

L
(5.1)

p∗ =
L

U(η +Gτ)
p , τ ∗

1 =
GL

U(η +Gτ)
A , (5.2)

where U is the average velocity in the downstream channel, and substitute
them into (2.11), which after dropping the stars by the non-dimensional quan-
tities gives

div v = 0 (5.3a)

Re v̇ = −∇p+ div τ 1 + β∆v (5.3b)

τ 1 +We
O
τ 1 = (1− β)(∇v +∇vT) . (5.3c)

The Reynolds and Weissenberg numbers and the parameter β are defined by

Re =
ρUL

η +Gτ
, We =

τU

L
, β =

η

η +Gτ
, (5.4)

according to [18] we consider β = 1/9 throughout this chapter. For further
comparison, we define also the extra stress τ by

τ = τ 1 + 2βD. (5.5)

The prescribed boundary conditions are the following: fully developed
flow is imposed on the inlet through

vx =
3
128
(16− y2), vy = 0 (5.6)

τ1xx =
9
2048

We (1− β)y2, τ1yy = 0, τ1xy = −
3
64
(1− β)y (5.7)

and on the outlet by
Txy = 0, vy = 0 . (5.8)

No–slip conditions
vx = 0, vy = 0 (5.9)

are imposed on solid boundaries and symmetry conditions

∂vx
∂y
= 0, vy = 0 (5.10)

on the axis of symmetry.
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5.2 Numerical method

5.2.1 Artificial diffusion

During the solution we have found out that there are spurious oscillations in
τ 1 which are caused by the singularity in the re-entrant corner. These os-
cillations caused the numerical solution to breakdown for Weissenberg num-
bers greater than approximately 0.5. In order to solve the equations for
higher values of We , the equations (5.3) needed to be stabilized. We have
performed numerical experiments with three different stabilization schemes,
namely isotropic diffusion, streamline upwinding Petrov-Galerkin method and
streamline diffusion, the last one giving the best results. Therefore, we discuss
only the results obtained with this method.
To stabilize the equations (5.3) using the streamline diffusion, we add

an additional term to the momentum and elastic stress transport equations,
which represents diffusion in the direction of streamlines

Re v̇ = −∇p+ β∆v + div τ 1 + div

(
δh0
|v|2
(v ⊗ v)∇v

)
(5.11a)

τ 1 +We
O
τ 1 = 2(1− β)D+ div

(
δh0
|v|2
(v ⊗ v)∇τ 1

)
. (5.11b)

Here h0 is mesh element size and δ is a parameter which scales the amount
of artificial diffusion.

5.2.2 Weak formulation

The weak formulation of the problem with artificial diffusion reads
Find (p,v, τ 1) ∈ Q× V × S such that∫

Ω
div vq dΩ = 0 (5.12)∫

Ω
Re v̇ · u dΩ = −

∫
Ω
T · ∇u− δh0

|v|2
(v · ∇v) · (v · ∇u) dΩ (5.13)∫

Ω
(τ 1 +We

O
τ 1) · S dΩ =

∫
Ω
2(1− β)D · S− δh0

|v|2
(v · ∇τ 1) · (v · ∇S) dΩ

(5.14)

for all q ∈ Q, u ∈ V0 and S ∈ S0.
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5.2.3 Stream function

For postprocessing we need to know the stream function in the computational
domain precisely. According to [18] we define ψ by

∂ψ

∂x
= vy,

∂ψ

∂y
= −vx, ψ(0, 0) = 1 , (5.15)

which implies

∆ψ = −∂vx
∂y
+
∂vy
∂x

. (5.16)

The boundary conditions for v together with (5.15)3 imply that ψ = 0 on
rigid walls, ψ = 1 on the axis of symmetry and ∂ψ

∂x
= 0 on both inlet and

outlet. By solving the Poisson’s equation (5.16) together with these boundary
conditions we obtain the desired stream function. Since there is only a one
way coupling between the equation for ψ (5.16) and the governing equations
of the flow (5.3), we can solve (5.16) after we have solved (5.3) and thus the
computation of ψ does not affect the computation of the flow at all.

5.3 Numerical results

Our simulations were performed on three different non-uniform meshes, which
are refined near the re-entrant corner. They differ in the number of elements,
their characteristics are summarized in Table 5.1 and the most refined Mesh
3 is shown in Figure 5.2. The computations were carried out for β = 1/9,
0 ≤ Re ≤ 1 and 0 ≤We ≤ 2 and for various values of the streamline diffusion
parameter δ. If not specified, the results presented below were obtained on
Mesh 3 with the lowest value of δ for which convergence was achieved and
no large oscillations of the solution in the vicinity of the re-entrant corner
were observed. Besides the value of δ the success of the simulation depends
to a large extent on the choice of initial solution. For this purpose we have
utilised either the solution from the less refined mesh or with lower value of
We .

Mesh Number of elements Number of dofs. Max. aspect ratio

Mesh 1 720 21222 3.9
Mesh 2 1620 46950 3.9
Mesh 3 2880 82758 3.9

Table 5.1: Mesh characteristics.

Two numerical characteristics studied are the salient vortex length L1 and
its intensity ψmax. The vortex length is defined as the distance between the
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Figure 5.2: Mesh 3.

point, where the separation line meets the bottom of the channel and the
salient corner (see Figure 5.1), the vortex intensity is the maximum of the
stream function in the vortex. In Table 5.2 the vortex length and intensity
are tabulated for different values of We along with the corresponding value
of δ. For comparison, the values which have been obtained in [18] are shown
in Table 5.3. In agreement with [18] the size of the vortex for Re = 1 is
approximately 20% smaller then for Re = 0 and its intensity is smaller.
When Re = 0 our results compare with [18] within an error of 10% for

We ≤ 1. However, there is a qualitative difference: while according to our
results the values of both L1 and ψmax slightly increase with increasing We ,
according to [18] they decrease between We = 0 and We = 1 and increase
between We = 1.5 and We = 2.5. An explanation for this behavior might
be the fact, that the value of δ has a significant impact on the solution. This
is documented in Table 5.4, where corner vortex length and intensity are
tabulated for different values of δ when Re = 0 and We = 0.5. It is evident
that both L1 and ψmax increase with increasing δ.
When Re = 1 the agreement is better, our results correspond to [18]

within an error of 10% up to We = 1.5 and the dependence on We exhibits
the same behavior for all values of We .
The streamline patterns are presented in Figures 5.3 and 5.4 along with

the streamlines taken from [18]. For Re = 0,We < 1 and Re = 1,We = 0, 1
they compare well to each other. According to [18], a lip vortex should appear
for Re = 0,We = 2, which is not the case in our results. This is definitely
due to the artificial diffusion, which smoothens such small structures in the
solution.
In Figures 5.9 – 5.16 extra stress and pressure contours are plotted for

0 ≤ Re ≤ 1 and 0 ≤ We ≤ 1. All these contours are smooth and the
development of extra stress boundary layer in the downstream channel is
evident. The contours in Figures 5.13 and 5.14 are comparable with Figs. 11
and 12 in [18] respectively.
Pressure and the components of velocity and extra stress are plotted along

the cross-section y = −1 for 0 ≤ Re ≤ 1, 0 ≤ We ≤ 2 in Figures 5.5 – 5.8.
The extra stress cross-sections exhibit qualitatively the same behavior as the
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Mesh 1 Mesh 2 Mesh 3
Re We δ L1 ψmax L1 ψmax L1 ψmax

0 0.0 0 1.432 1.00117 1.456 1.00117 1.467 1.00117
0 0.5 0.25 1.479 1.00138 1.479 1.00129 1.479 1.00124
0 1.0 0.5 1.560 1.00189 1.525 1.00156 1.505 1.00140
0 1.5 1.25 1.787 1.00384 1.694 1.00282 1.656 1.00245
0 2.0 2 1.978 1.00616 1.850 1.00450 1.763 1.00355

1 0.0 0 1.133 1.00043 1.162 1.00043 1.174 1.00043
1 0.5 0.25 1.110 1.00041 1.116 1.00037 1.113 1.00036
1 1.0 0.5 1.128 1.00046 1.099 1.00037 1.081 1.00033
1 1.5 1.25 1.328 1.00101 1.226 1.00064 1.162 1.00048
1 2.0 2 1.522 1.00199 1.363 1.00115 1.261 1.00077

Table 5.2: Dependence of L1 and ψmax on We and Re .

Re = 0 Re = 1
We L1 ψmax L1 ψmax

0.0 1.417 1.00118 1.164 1.00050
0.5 1.400 1.00114 1.093 1.00041
1.0 1.384 1.00110 1.048 1.00031
1.5 1.374 1.00110 1.013 1.00031
2.0 1.377 1.00118 0.986 1.00029

Table 5.3: Dependence of L1 and ψmax on We according to [18].

results plotted in Figs. 13 and 18 in [18] for both values of Re and We ≤ 1.5.
For We > 1.5 there is a significant difference which is again due to artificial
diffusion added to our equations.
To summarize, we have performed calculations of the flow of an Oldroyd-

B fluid through a 4:1 planar contraction for Re = 0, 1, We = 0, 0.5, 1, 1.5, 2
and β = 1/9. Our results correspond well to the results obtained by [18] for
We ≤ 1 when Re = 0 and We ≤ 1.5 when Re = 1. For higher values of
We a significant departure from the results of [18] has been observed, which
is in the first place due to the high amount of artificial diffusion added to
the system to ensure convergence and in the second place due to insufficient
resolution of the mesh near the re-entrant corner.
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Re = 0 Re = 1
δ L1 ψmax L1 ψmax

0.00 1.421 1.00101 1.067 1.00030
0.25 1.479 1.00124 1.113 1.00036
0.50 1.511 1.00138 1.148 1.00041
0.75 1.534 1.00150 1.177 1.00046
1.00 1.554 1.00161 1.200 1.00050

Table 5.4: Dependence of L1 and ψmax on δ when We = 0.5.

a)

b)

c)

d)

Figure 5.3: The streamlines for (a) We = 0 (b) We = 0.5 (c) We = 1 (d)
We = 2 when Re = 0. Left according to our computation, right according
to [18] (if available).
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a)

b)

c)

d)

Figure 5.4: The streamlines for (a) We = 0 (b) We = 0.5 (c) We = 1 (d)
We = 2 when Re = 1. Left according to our computation, right according
to [18] (if available).
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Figure 5.5: The values of p, vx and vy along y = −1 when Re = 0.
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Figure 5.6: The values of τxx, τxy and τyy along y = −1 when Re = 0.



CHAPTER 5 PLANAR CONTRACTION FLOW 39

12 14 16 18 20
30

35

40

45

50

55

60

x

p

We=0
We=0.5
We=1
We=1.5
We=2

12 14 16 18 20
−0.2

0

0.2

0.4

0.6

x

v x

We=0
We=0.5
We=1
We=1.5
We=2

12 14 16 18 20
−0.1

0

0.1

0.2

0.3

0.4

x

v y

We=0
We=0.5
We=1
We=1.5
We=2

Figure 5.7: The values of p, vx and vy along y = −1 when Re = 1.
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Figure 5.8: The values of τxx, τxy and τyy along y = −1 when Re = 1.
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Chapter 6

Axially symmetric cylinder flow

Our last problem is the axially symmetric flow in a cylinder. Firstly, we dis-
cuss the behavior of the Newtonian fluid at the given geometry. Secondly, we
solve the equations for Oldroyd-B and Model 1 under certain simplifications
and fit the experimental data with the results. Finally, we solve the equations
without any simplifications, assuming only that the flow is axially symmetric.

6.1 Problem description

γ4

γ1

γ2

γ3h

R

Ω Σ

ΓU

ΓD

ΓS

Σ

φ

r

z

r

z

Figure 6.1: The geometry of axially symmetric flow in a cylinder.

For the description of the flow we employ cylindrical coordinates r, φ,
z with standard physical basis er, eφ, ez (i.e., the norm of these vectors
is one), all components of tensors will be given with respect to this basis.

49
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The geometry shown in Figure 6.1 comprises a cylinder of radius R and
height h. Its bottom is at rest while the top is rotating as a rigid body
with a given angular velocity, which is either a constant or a step function
of time ω(t) = ωH(t). The boundary on the sides of the cylinder is free
which allows the fluid to enter and leave the cylinder. However, this is not
a problem because the inflow and outflow are either zero or negligible in the
given experiment. Thus, the considered conditions on the boundary of the
cylinder are

v = 0 on ΓD (6.1a)

v = ωreφ on ΓU (6.1b)

Tn = 0 on ΓS . (6.1c)

As for the initial conditions, we assume that the material is at rest and
relaxed when the experiment starts, which means

v(0,x) = 0 (6.2a)

A(0,x) = 0 for Oldroyd-B (6.2b)

Bδκp
(0,x) = 0 and b(0,x) = 3 for Model 1 . (6.2c)

The most important assumption made in this example is that the flow
is axially symmetric, i.e. neither pressure nor any of the components of
velocity and extra-stress depends on the angle φ. This allows us to reduce
the computational domain to the 2D cross-section Σ (see Figure 6.1) and thus
noticeably reduce the size of the problem.
We are mainly interested in determining the relevant torque given by the

formula

M =
∫
ΓU

rTφz dS , (6.3)

that in the case of axial symmetry takes the form

M =
∫ R

0
2πr2Tφz(r, h) dr . (6.4)

6.2 Newtonian fluid

In order to understand some of the problems arising from the cylindrical
geometry, we first investigate the flow of a Newtonian fluid governed by the
Navier-Stokes equations in the above described situation.
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6.2.1 Steady flow

If we neglect the convective term (i.e. if we consider the Stokes instead of
the Navier-Stokes equations), then the above described problem has a simple
analytical solution

p = 0 (6.5)

v =
ωrz

h
eφ , (6.6)

i.e. the velocity is perpendicular to the axis and thus has no component
in the rz plane. Unfortunately, without neglecting the convective term the
Navier-Stokes equations do not posses a similar analytical solution in the
form v = vφ(r, z)eφ, which can be easily shown in the following way. The
Navier–Stokes equations with this ansatz read

−%
v2φ
r
= −∂p

∂r
(6.7)

0 = −1
r

∂p

∂φ
+ η

(
∂2vφ
∂r2
+
1
r

∂vφ
∂r

− vφ
r2
+
∂2vφ
∂z2

)
(6.8)

0 = −∂p
∂z
. (6.9)

The integrability condition for pressure

∂2p

∂r∂z
=

∂2p

∂z∂r
(6.10)

leads to

0 =
∂

∂z
%
v2φ
r

(6.11)

which implies that

0 = vφ
∂vφ
∂z
=

∂

∂z

v2φ
2
. (6.12)

This condition could be fulfilled only if the angular velocity vφ on the top of
the cylinder was equal to the angular velocity on the bottom. Since this is
not the case, we have to reject the assumption v = vφ(r, z)eφ and assume
that all the components of v are generally nonzero. Numerical solution of the
Navier-Stokes equations at the given geometry reveal that besides the primary
flow perpendicular to the axis a secondary flow in the rz plane arises. This
secondary flow, which is caused by the inertial forces, is shown in Figure 6.2
below.



CHAPTER 6 AXIALLY SYMMETRIC CYLINDER FLOW 52

Figure 6.2: Secondary flow pattern in the rz plane for small Re .

6.2.2 Unsteady flow

Further difficulties arise in the case of an unsteady flow i.e. when ω is not
constant. If we substitute the ansatz

v =
ω(t)rz
h
eφ (6.13)

into the Stokes equations, we obtain dωdt = 0, which is clearly a contradiction.
However, analytical solution of the flow with ω(t) = ωH(t) using Fourier
series reveals that the time in which the velocity profile (6.13) establishes is
of the order

τ0 ≈
ρ(R2 + h2)

η
, (6.14)

which is approximately 10−8 s and thus negligible in the considered experi-
ment.

6.3 Solution under simplifying assumption

In order to investigate only the important features of the flow, we would like
to simplify its governing equations as much as possible. Motivated by the
discussion of the Newtonian flow, we firstly neglect the convective term. This
simplification is well justified, because the Reynolds number

Re =
ρωRL

η
(6.15)

is of the order 10−7 in the considered experiment. We will show that under
this assumption the equations describing the steady flow of both Oldroyd-B
and Model 1 fluids have an analytical solution, where the velocity is given by

v =
ωrz

h
eφ . (6.16)
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As for the unsteady flow driven by ω(t) = ωH(t), the velocity profile of the
form (6.16) is not possible because after the upper plate was set to motion
it takes some time before the fluid starts to rotate in the whole cylinder.
However, the characteristic time of this transient effect is several orders of
magnitude lower that the viscoelastic relaxation time and numerical solution
without any simplifications discussed in Section 6.5 reveal, that this effect
does not have any influence on the further development of the flow. Therefore,
we will assume the velocity to be given by

v =
ω(t)rz
h
eφ (6.17)

and neglect the term dω
dt throughout this section. This basically means that

we neglect the material time derivative of velocity, while we keep the material
time derivative of elastic stress, which might be thought of as a kind of ’quasi-
static’ approximation.

6.3.1 Oldroyd-B

Steady flow

In the steady state the governing equations of Oldroyd-B (2.11) with the
ansatz

p = p(r, z), v =
ωrz

h
eφ (6.18)

A =

Arr(r, z) Arφ(r, z) Arz(r, z)
Arφ(r, z) Aφφ(r, z) Aφz(r, z)
Arz(r, z) Aφz(r, z) Azz(r, z)

 (6.19)

and under the neglect of the convective term take the form

0 = −∂p
∂r
+G

(
∂Arr
∂r
+
Arr
r
− Aφφ

r
+
∂Arz
∂z

)
(6.20a)

0 = G

(
∂Arφ
∂r
+
2Arφ
r
+
∂Aφz
∂z

)
(6.20b)

0 = −∂p
∂z
+G

(
∂Arz
∂r
+
Arz
r
+
∂Azz
∂z

)
(6.20c)

Arr = 0 (6.20d)

Arφ −
τrω

h
Arz = 0 (6.20e)

Arz = 0 (6.20f)

Aφφ −
2τrω
h

Aφz = 0 (6.20g)
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Aφz −
τrω

h
Azz =

τrω

h
(6.20h)

Azz = 0 . (6.20i)

It can be easily checked that these equations together with the boundary
conditions (6.1) have a simple analytical solution

p = G
(τω
h

)2 (
R2 − r2

)
(6.21)

Arr = Arφ = Arz = Azz = 0 (6.22)

Aφφ = 2
(τrω
h

)2
(6.23)

Aφz =
τrω

h
. (6.24)

Unsteady flow

In the case of an unsteady flow the governing equations of Oldroyd-B (2.11)
with the ansatz

p = p(t, r, z), v =
ω(t)rz
h
eφ (6.25)

A =

Arr(t, r, z) Arφ(t, r, z) Arz(t, r, z)
Arφ(t, r, z) Aφφ(t, r, z) Aφz(t, r, z)
Arz(t, r, z) Aφz(t, r, z) Azz(t, r, z)

 (6.26)

and under the neglect of the convective term take the form

0 = −∂p
∂r
+G

(
∂Arr
∂r
+
Arr
r
− Aφφ

r
+
∂Arz
∂z

)
(6.27a)

ρ
rz

h

dω
dt
= G

(
∂Arφ
∂r
+
2Arφ
r
+
∂Aφz
∂z

)
(6.27b)

0 = −∂p
∂z
+G

(
∂Arz
∂r
+
Arz
r
+
∂Azz
∂z

)
(6.27c)

Arr + τ
∂Arr
∂t
= 0 (6.27d)

Arφ + τ

(
∂Arφ
∂t

− rω

h
Arz

)
= 0 (6.27e)

Arz + τ
∂Arz
∂t
= 0 (6.27f)

Aφφ + τ

(
∂Aφφ
∂t

− 2rω
h
Aφz

)
= 0 (6.27g)
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Aφz + τ

(
∂Aφz
∂t

− rω

h
Azz

)
=
τrω

h
(6.27h)

Azz + τ
∂Azz
∂t
= 0 . (6.27i)

If we neglect the term dω
dt according to the above-discussed assumption and

take the initial conditions (6.2) into account, then the equations have the
solution

p = G
(τω
h

)2 (
R2 − r2

)(
1− (1 + t

τ
)e−t/τ

)
(6.28)

Arr = Arφ = Arz = Azz = 0 (6.29)

Aφφ = 2
(τrω
h

)2(
1− (1 + t

τ
)e−t/τ

)
(6.30)

Aφz =
τrω

h

(
1− e−t/τ

)
. (6.31)

The torque integrated according to (6.4) is

M =
πωR4

2h

(
η + τG

(
1− e−t/τ

))
. (6.32)

We see that the torque consists of two parts; the first one, which is due
to viscosity, is constant and the second one, which corresponds to elastic
behavior, relaxes to a constant value. It is therefore clearly evident that the
Oldroyd-B model is not capable of capturing the overshoots in torque, which
have been observed in the experiments (see Figure 1.2); however, it is still
reasonable to try fitting the experimental data with this formula, which we
will proceed to in Section 6.4.

6.3.2 Model 1

We proceed similarly as in the case of Oldroyd-B model.

Steady flow

Substituting the ansatz

p = p(r, z), v =
ωrz

h
eφ, b = b(r, z) (6.33)

Bδκp
=

Bδ
rr(r, z) Bδ

rφ(r, z) Bδ
rz(r, z)

Bδ
rφ(r, z) Bδ

φφ(r, z) Bδ
φz(r, z)

Bδ
rz(r, z) Bδ

φz(r, z) −Bδ
rr(r, z)−Bδ

φφ(r, z)

 (6.34)
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into the governing equations of Model 1 (2.44) and neglecting the convective
term, we obtain

0 = −∂p
∂r
+ µ

(
∂Bδ

rr

∂r
+
Bδ
rr

r
−
Bδ
φφ

r
+
∂Bδ

rz

∂z

)
(6.35a)

0 = µ

(
∂Bδ

rφ

∂r
+
2Bδ

rφ

r
+
∂Bδ

φz

∂z

)
(6.35b)

0 = −∂p
∂z
+ µ

(
∂Bδ

rz

∂r
+
Bδ
rz

r
− ∂Bδ

rr

∂z
−
∂Bδ

φφ

∂z

)
(6.35c)

µBδ
rr = −

ε1rω

3h
Bδ
φz (6.35d)

µBδ
rφ =

ε1rω

2h
Bδ
rz (6.35e)

µBδ
rz = 0 (6.35f)

µBδ
φφ =

2ε1rω
3h

Bδ
φz (6.35g)

µBδ
φz = ε1

(
−rω
2h
Bδ
rr −

rω

2h
Bδ
φφ +

rω

6h
b
)

(6.35h)

1 = det

(
Bδκp
+
1
3
bI
)
. (6.35i)

These equations can be solved in the following way. From (6.35e) and (6.35f)
follows that

Bδ
rφ = B

δ
rz = 0 , (6.36)

the incompressibility constraint (6.35i) then simplifies to

1 =

(
Bδ
rr +

b

3

)[(
Bδ
φφ +

b

3

)(
−Bδ

rr −Bδ
φφ +

b

3

)
−Bδ

φz

2
]
. (6.37)

The remaining components of Bδκp
and b can be expressed from (6.35d),

(6.35g) and (6.35h) using Bδ
φz as

Bδ
rr = −

2ar
3
Bδ
φz (6.38)

Bδ
φφ =

4ar
3
Bδ
φz (6.39)

b =

(
2ar +

3
ar

)
Bδ
φz , (6.40)

where for the simplicity of the notation we have defined

a :=
ε1
2µ

ω

h
. (6.41)
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Now, substituting these results into (6.37) yields a cubic equation for Bδ
φz,

the only real solution of which is

Bδ
φz =

ar
3
√
1 + a2r2

. (6.42)

Thus, we have solutions for all the components of Bκp and b. Using these
results, the momentum equations (6.35a) – (6.35c) simplify to

∂p

∂r
= µ

(
∂Bδ

rr

∂r
+
3Bδ

rr

r

)
(6.43)

∂p

∂z
= 0 . (6.44)

Since the right-hand side of (6.43) does not depend on z, the integrability
condition for pressure is satisfied and the pressure can be expressed as

p = µ

(
Bδ
rr +

∫
3Bδ

rr

r
dr

)
=
3µ
2

(
1 + a2r2

)2/3 − µ

6
9 + 13a2r2
3
√
1 + a2r2

. (6.45)

Again, our solution satisfies the boundary conditions (6.1). The torque inte-
grated according to (6.4) is

M =
πε0ωR

4

4h
+
3πµ
10a3

[(
1 + a2R2

)2/3 (
2a2R2 − 3

)
+ 3
]
. (6.46)

Unsteady flow

Upon substituting the ansatz

p = p(t, r, z), v =
ω(t)rz
h
eφ, b = b(t, r, z) (6.47)

Bδκp
=

Bδ
rr(t, r, z) Bδ

rφ(t, r, z) Bδ
rz(t, r, z)

Bδ
rφ(t, r, z) Bδ

φφ(t, r, z) Bδ
φz(t, r, z)

Bδ
rz(t, r, z) Bδ

φz(t, r, z) −Bδ
rr(t, r, z)−Bδ

φφ(t, r, z)

 (6.48)

into the governing equations of Model 1 (2.44) we get

0 = −∂p
∂r
+ µ

(
∂Bδ

rr

∂r
+
Bδ
rr

r
−
Bδ
φφ

r
+
∂Bδ

rz

∂z

)
(6.49a)

ρ
rz

h

dω
dt
= µ

(
∂Bδ

rφ

∂r
+
2Bδ

rφ

r
+
∂Bδ

φz

∂z

)
(6.49b)

0 = −∂p
∂z
+ µ

(
∂Bδ

rz

∂r
+
Bδ
rz

r
− ∂Bδ

rr

∂z
−
∂Bδ

φφ

∂z

)
(6.49c)
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µBδ
rr = ε1

(
−1
2
∂Bδ

rr

∂t
− rω

3h
Bδ
φz

)
(6.49d)

µBδ
rφ = ε1

(
−1
2

∂Bδ
rφ

∂t
+
rω

2h
Bδ
rz

)
(6.49e)

µBδ
rz = −

ε1
2
∂Bδ

rz

∂t
(6.49f)

µBδ
φφ = ε1

(
−1
2

∂Bδ
φφ

∂t
+
2rω
3h

Bδ
φz

)
(6.49g)

µBδ
φz = ε1

(
−1
2

∂Bδ
φz

∂t
− rω

2h
Bδ
rr −

rω

2h
Bδ
φφ +

rω

6h
b

)
(6.49h)

1 = det

(
Bδκp
+
1
3
bI
)
. (6.49i)

Although these equations do not have an analytical solution, they can still
be noticeably simplified in the following way. Firstly, as in the steady state,
equations (6.49e) – (6.49f) have together with the initial condition (6.2c) the
solution

Bδ
rφ = B

δ
rz = 0 . (6.50)

Next, upon multiplying equation (6.49d) by 2 and adding it to (6.49g) we
arrive at

µ(2Bδ
rr +B

δ
φφ) = ε1

∂

∂t
(2Bδ

rr +B
δ
φφ), (6.51)

which together with the initial condition (6.2c) yields

Bδ
φφ = −2Bδ

rr . (6.52)

Furthermore, we observe that none of the initial conditions as well as none of
the equations (6.49d) – (6.49i) depends on z and therefore also the components
of Bδκp

and b do not depend on this coordinate. In view of these results
equations (6.49) simplify to

∂p

∂r
= µ

(
∂Bδ

rr

∂r
− Bδ

rr

r

)
(6.53a)

∂p

∂z
= 0 (6.53b)

µBδ
rr = ε1

(
−1
2
∂Bδ

rr

∂t
− rω

3h
Bδ
φz

)
(6.53c)

µBδ
φz = ε1

(
−1
2

∂Bδ
φz

∂t
+
rω

2h
Bδ
rr +

rω

6h
b

)
(6.53d)
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1 =

(
Bδ
rr +

b

3

)[(
−2Bδ

rr +
b

3

)(
Bδ
rr +

b

3

)
−Bδ

φz

2
]
. (6.53e)

We observe again that the integrability condition for pressure is satisfied.
Since we are interested only in Bδ

φz, we need to solve only the last three
equations. Unfortunately, these equations cannot be solved analytically but
only numerically. In order to accomplish this, we rewrite them in the weak
form ∫ R

0

ε1
2
∂Bδ

rr

∂t
rWrr dr =

∫ R

0

(
−µBδ

rr −
ε1rω

3h
Bδ
φz

)
rWrr dr (6.54a)∫ R

0

ε1
2

∂Bδ
φz

∂t
rWrφ dr =

∫ R

0

(
−µBδ

φz +
ε1rω

2h
Bδ
rr +

ε1rω

6h
b
)
rWrφ dr (6.54b)

0 =
∫ R

0

{(
Bδ
rr +

b

3

)[(
−2Bδ

rr +
b

3

)(
Bδ
rr +

b

3

)
−Bδ

φz

2
]
− 1
}
rw dr .

(6.54c)

6.4 Comparison with experimental data

In this section we compare the above obtained results with the experimental
data. We will proceed in the following way. Firstly, we fit the data with the
analytical formula (6.32) for Oldroyd-B using the least squares method. For
this purpose, we employ the MATLAB function fit. This delivers some values
of the material moduli η, µ and τ . Next, we recalculate the corresponding
values of material parameters ε0, ε1 and µ using (2.52). Finally, we use them
as initial values for minimizing the L2 norm of the difference between the
experimental curves and the curves obtained by solving equations (6.54) with
the aid of MATLAB function fminsearch.
The results of this procedure are shown in Figures 6.3 and 6.4. Each of

the experimental curves has been fitted separately, even though the material
moduli at the same temperature should be equal. The values of material
moduli of both models are summarized in Table 6.1.
It is clearly evident that Oldroyd-B is not capable of capturing any over-

shoots at all. Unfortunately, Model 1 does not fit the experimental data any
better than Oldroyd-B, even though it can in principle exhibit overshoots in
torque for certain values of parameters. Also the material moduli obtained
by fitting the data by means of Model 1 are very close to those obtained
by Oldroyd-B (after recalculating using (2.52)). We therefore conclude that
under the conditions corresponding to the experiment both models coincide
and thus the observed overshoots in torque cannot be explained merely by
the fact that the elastic part of the deformation is large.
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Figure 6.3: Torque at θ = 25 ◦C fitted with Oldroyd-B and Model 1.
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Figure 6.4: Torque at θ = 35 ◦C fitted by Oldroyd-B and Model 1.
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θ 25 ◦C 35 ◦C
ω

rad.s−1 0.125 0.25 0.5 0.125 0.25 0.5
η

103 Pa.s 86 82 69 23 24 23

Oldroyd-B G
103 Pa 99 360 840 34 40 40
τ
s 0.57 0.24 0.09 0.24 0.19 0.14
ε0

103 Pa.s 170 160 140 46 48 46

Model 1 ε1
103 Pa.s 120 180 150 17 15 11

µ
103 Pa 100 370 760 36 38 42

Table 6.1: Estimate of material moduli obtained by fitting the data by
Oldroyd-B and Model 1.

6.5 Solution without simplifications

Now, let us proceed to the solution of the flow without any simplifications.
Our aim will be firstly to confirm the results obtained in the previous section
and secondly to investigate the behavior of the secondary flow.

6.5.1 Weak formulation

In this section we reformulate the problem described in Section 6.1 from the
3D cylinder Ω to the 2D-cross section Σ. The boundary conditions on ∂Ω
imply the following boundary conditions on ∂Σ:

Ter = 0 on γ1 (6.55)

vr = vz = 0, vφ = ωr on γ2 (6.56)

v = 0 on γ4 (6.57)

The conditions on the axis of symmetry deserve special attention. If we
formally define negative r coordinates by

v(−r, φ, z) := v(r, φ+ π, z) , (6.58)

the conditions implied by the symmetry for the components of velocity may
be written in the form

vr(−r, z) = −vr(r, z) (6.59)

vφ(−r, z) = −vφ(r, z) (6.60)

vz(−r, z) = vz(r, z) . (6.61)
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Setting r = 0 in the first and the second equation delivers the following two
conditions of Dirichlet type

vr(0, z) = 0 (6.62)

vφ(0, z) = 0 , (6.63)

which must be taken into account by appropriate choice of the spaces in the
weak formulation while the remaining third condition of Neumann type

Trz = 0 (6.64)

will be embedded in the variational equations of the problem.
Now let us show how the weak formulation of the equations (3.1) and

(3.2) can be under the assumption of axial symmetry transformed from the
3D domain Ω to the 2D cross-section Σ. We will demonstrate it in the case
of Oldroyd-B, the procedure for Model 1 is completely analogous.
To accomplish this we write all the integrals over Ω occurring in (3.1) in

cylindrical coordinates, factor the terms not depending on φ out of the integral
over φ and finally rewrite the result as an integral over the cross-section Σ.
For (3.1a) the procedure looks as follows

0 =
∫
Ω
div vq dx =

=
∫ R

0
dr
∫ h

0
dz
∫ 2π
0
dφ div vrq =

∫ R

0
dr
∫ h

0
dz div vr

(∫ 2π
0

q dφ

)
=

=
∫ R

0
dr
∫ h

0
dz div vrq̂ =

∫
Σ
div vrq̂ dΣ . (6.65)

Here we have defined a new ’2D’ test function q̂ using the old ’3D’ test function
q through the relation

q̂(r, z) =
∫ 2π
0

q(r, φ, z) dφ , (6.66)

the variable r in the last integrand of (6.65) emerges from the Jacobian of
the cylindrical coordinates. Exactly the same procedure applied to (3.1b) and
(3.1c) delivers ∫

Σ
ρv̇ · ûr dΣ = −

∫
Σ
T · ∇ûr dΣ (6.67)∫

Σ
(A+ τ

O
A) · Ŝr dΣ =

∫
Σ
2τD · Ŝr dΣ , (6.68)
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where we have defined the ’2D’ test functions

û(r, z) =
∫ 2π
0
u(r, φ, z) dφ (6.69)

Ŝ(r, z) =
∫ 2π
0
S(r, φ, z) dφ . (6.70)

Thus, the problem describing the axially symmetric flow of an Oldroyd-B
fluid in the cylinder may be formulated as follows
Find (p,v,A) : 〈0, T 〉 → Q̂× V̂ × Ŝ such that∫

Σ
(div v)q̂r dΣ = 0 (6.71a)∫
Σ
ρv̇ · ûr dΣ = −

∫
Σ
T · ∇ûr dΣ (6.71b)∫

Σ
(A+ τ

O
A) · Ŝr dΣ =

∫
Σ
2τD · Ŝr dΣ (6.71c)

for all q̂ ∈ Q̂, û ∈ V̂0 and Â ∈ Ŝ0.
Analogously, the weak formulation of the problem describing the axially

symmetric flow of Model 1 in the cylinder is
Find (p,v,Bδκp

, b) : 〈0, T 〉 → Q̂× V̂ × Ŵ × B̂ such that

0 =
∫
Σ
(div v)q̂r dΣ (6.72a)∫

Σ
%v̇ · ûr dΣ = −

∫
Σ
T · ∇ûr dΣ (6.72b)∫

Σ
µBδκp

· Ŝr dΣ = ε1
∫
Σ

(
−1
2

O
Bδκp
+
1
3
bD− 1

3
(D ·Bδκp

)I
)
· Ŝr dΣ (6.72c)

0 =
∫
Σ

[
det

(
Bδκp
+
1
3
bI
)
− 1
]
ŵr dΣ (6.72d)

for all q̂ ∈ Q̂, û ∈ V̂0, Ŝ ∈ Ŝ0 and ŵ ∈ B̂0.

6.5.2 Numerical results

The above presented weak formulations of the governing equations were dis-
cretised using Galerkin method. The chosen shape functions were the same
as in planar 2D case, i.e. discontinuous piecewise linear functions for pres-
sure and continuous piecewise quadratic functions for all other variables, the
corresponding mesh is shown in Figure 6.5. Note that to rewrite the weak
equations (6.71) or (6.72) into the cylindrical coordinates is rather a hard
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work, because e.g. the equations for Model 1 in cylindrical coordinates have
altogether 116 terms. To avoid errors, we have developed a special pack-
age for Maple, which converts the equations in tensorial form into arbitrary
orthogonal curvilinear coordinates and then exports them to Comsol.

Figure 6.5: The most refined mesh (900 elements).

The numerical tests have been conducted for both Oldroyd-B and Model 1
in both steady and unsteady case without any simplifications. In the steady
case we have obtained solutions for various values of material moduli and
these correspond well to the analytical solutions presented in Section 6.3.
The secondary flow is of the order of magnitude 10−14m.s−1 and does not
have any measurable influence on the result.
In the unsteady case we have investigated stress relaxation in both models.

The results are quite analogous to the parallel plate flow. On the upper plate
we prescribed the following Dirichlet condition

v = ω0rHS(t)eφ, ω0 = const . (6.73)

where HS(t) is the step function smoothened over a finite interval of length S.
If this interval was shorter than the characteristic time (6.14), say 10−13 s and
the time step was correspondingly fine, we were able to study the transient
effect during which the steady velocity profile establishes. The development
of this profile is shown in Figure 6.6. If the step function was smoothened over
an interval longer than the characteristic time (6.14), say 10−4 s, the velocity
was equal to that in the steady case throughout the whole simulation.
We have checked that the solutions to the unsteady problems converge to

the analytical steady state solutions and that they are equal to the approxi-
mate solutions obtained in Section 6.3. Moreover, we have checked that the
results are independent of mesh and time step size.
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(a)

(b)

(c)

Figure 6.6: The velocity profile for Oldroyd-B in the rz cross-section at time
(a) t = 10−10 s, (b) t = 10−9 s, (c) t = 10−8 s after triggering the experiment.
The values of material constants are η = 8.104 Pa.s, µ = 4.105 Pa, τ = 1 s.
The velocity profile (c) is equal to that in the steady state. The results for
Model 1 are the same.



Conclusions

In this thesis we have been concerned with numerical simulations of flows of
viscoelastic fluids applicable to complicated materials as asphalt. We deal
with two models, which are presented in Chapter 2, namely the Oldroyd-
B and a more general nonlinear model denoted as Model 1 and investigate
both steady and unsteady flows of fluids governed by these models at three
different geometries.
First, we consider flow between two parallel plates. We are able to find

analytical solutions for both models in the steady case and also for stress
relaxation of the Oldroyd-B fluid. The stress relaxation in the case of Model
1 has to be solved numerically.
Secondly, we investigate the flow of an Oldroyd-B fluid in a 4:1 planar

contraction, which is a standard benchmark in the area of numerical simula-
tions of flows of viscoelastic fluids. This benchmark is a difficult one because
of the occurrence of the stress singularity at the re-entrant corner. To avoid
spurious oscillations in the solution, we have to stabilize the equations us-
ing streamline diffusion method. We compare our solution with results in
the literature finding out, that our results are well comparable for We ≤ 1
when Re = 0 and for We ≤ 1.5 when Re = 1. For greater values of We a
significant departure from the results published in the literature is observed,
which is very likely due to quite a large amount of artificial diffusion added
to the equations in order that we are able to solve them. In addition, there
is still not a fair agreement on the correct results for this benchmark among
different authors and from this point of view our results are acceptable.
The last problem we deal with is axially symmetric flow inside a cylin-

der. Neglecting the convective term, we find analytical solution in the steady
state. If we neglect the whole material time derivative of the velocity, we find
approximate solution for shear stress relaxation of an Oldroyd-B fluid and
simplify the equations for Model 1 to a set of partial differential equations in
one spatial variable and solve them numerically. Besides that, we solve the
full equations for both models numerically without any simplifications, the
results of this full simulation being in a good agreement with the simplified
solutions.
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Finally, we fit the experimental data concerning steady shear rate experi-
ment for asphalt performed by Dr. J. Murali Krishnan with both considered
models. Oldroyd-B fits the data quite well, but it is not capable of captur-
ing the overshoots in torque which have been observed in the experiment. A
disappointing result is, that Model 1 does not fit the data any better than
Oldroyd-B, even though it can exhibit overshoots in torque for some values
of material moduli and boundary conditions. Since the difference between
these two models is, that Model 1 considers large elastic deformations while
Oldroyd-B does not, we conclude, that in this experiment the measured over-
shoots in torque are not caused by the fact, that the elastic deformations are
large.
Further work should be focused on investigating other models for vis-

coelastic fluids such as Burgers model and its generalizations. When a better
agreement with present experimental data is found for a certain model, it
should be further tested in other experimental situations. We believe, that
the methods presented in this thesis are well applicable to other models and
geometries.
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