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ABSTRACT 

In this study, we addressed the biological activity and pharmacological features of 

selected HPMA copolymer-based drug conjugates. We determined their cytostatic activity in 

vitro as well as toxicity in vivo and therapeutic effcicacy in mouse tumor models. Assessment 

of maximum tolerated dose (MTD) of two structurally different HPMA copolymer-based 

conjugates bearing doxorubicin (DOX) attached via pH-sensitive hydrazon bond (HPMA-

DOXHYD) showed that high molecular weight non-degradable star HPMA-DOXHYD conjugate 

possesses relatively low MTD ~22.5 mg DOX/kg, while linear HPMA-DOXHYD has MTD 

~85 mg DOX/kg. Thus, MTD of linear conjugate is 3.7 times higher than that of the star 

conjugate. Subsequently, we reported that linear conjugate proved to be more efficient in case 

of treatment of solid tumor EL4 lymphoma and star conjugate to be superior in case of BCL1 

leukemia treatment. We also compared biological activity of star and linear HPMA 

copolymer-based conjugates bearing docetaxel (DTX) attached via pH-sensitive hydrazon 

bond (HPMA-DTXHYD). MTD of star conjugate (~160 mg DTX/kg) was proved to be 4 times 

higher than MTD od free DTX (40 mg/kg). We were not able to determine MTD of linear 

conjugate as it exceeded 200 mg DTX/kg (the highest soluble dose we were able to administer 

as a bolus). Anti-tumor activity of both conjugates was tested in EL4 lymphoma and they 

proved to be superior to free DTX given at the same dose, with star conjugate to be more 

potent than the linear one.  

Further, we have investigated binding and therapeutic activity of targeted conjugate 

composed of HPMA copolymer bearing pirarubicin and recombinant scFv fragment derived 

from BCL1 leukemia-specific B1 mAb non-covalently attached to conjugate via coiled-coil 

interaction of two complementary peptides (VAALKEK)4/(VAALEKE)4 or 

IAALKSKIAALKSE-(IAALKSK)2/(IAALESE)2-IAALESKIAALESE (abbreviated 

KEK/EKE or KSK/ESE, respectively). We proved that targeted conjugate exerts higher anti-

tumor efficacy than non-targeted conjugate or free pirarubicin. Moreover, we compared two 

different pairs of complementary peptides and we showed that conjugate containing KSK and 

ESE peptides exerts 4 times better binding activity and 2 times higher cytotoxicity in vitro 

compared to conjugate containing KEK and EKE peptides. 

In conclusion, our findings shed a light on relationship of HPMA copolymer-based drug 

conjugates structure and their biological and pharmacological activities. These findings might 

be useful in design of novel anti-cancer HMW therapeutics not only those based on HPMA 

copolymer. 
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ABSTRAKT 

V této studii jsme se zaměřili na testování biologické aktivity a farmakologických 

vlastností vybraných konjugátů na bázi HPMA kopolymerů nesoucí léčivo. Určili jsme jejich 

cytostatickou aktivitu in vitro, toxicitu in vivo a terapeutický efekt v myších nádorových 

modelech. Porovnáním maximální tolerované dávky (MTD) dvou strukturně odlišných 

konjugátů na bázi HPMA kopolymerů nesoucích doxorubicin (DOX) vázaný pH senzitivní 

hydrazonovou vazbou (HPMA-DOXHYD) jsme prokázali, že vysokomolekulární 

nedegradovatelný hvězdicový HPMA-DOXHYD konjugát má relativně nízkou MTD, přibližně 

22,5 mg DOX/kg, zatímco lineární HPMA-DOXHYD konjugát má MTD okolo 85 mg 

DOX/kg. Lineární konjugát má tedy 3,7krát vyšší MTD než hvězdicový. Následně jsme také 

ukázali, že lineární konjugát je účinnější při léčbě solidního EL4 lymfomu zatímco 

hvězdicový konjugát jej předčil v léčbě BCL1 leukémie. Porovnali jsme také biologickou 

aktivitu hvězdicového a lineárního HPMA kopolymeru nesoucího docetaxel (DTX) vázaný 

pH senzitivní hydrazonovou vazbou (HPMA-DTXHYD). MTD hvězdicového (~160 mg 

DOX/kg) byla 4krát vyšší než MTD volného DTX (40 mg/kg). MTD lineárního HPMA-

DTXHYD konjugátu jsme nebyli schopni určit, jelikož převyšovala dávku 200 mg DTX/kg, 

což bylo nejvyšší množství, které jsme byli schopni podat jako bolus. Protinádorovou aktivitu 

jsme testovali na modelu lymfomu EL4 a oba konjugáty byly účinnější než volné léčivo s tím, 

že hvězdicový konjugát předčil konjugát lineární. 

Mimoto jsme se také zabývali výzkumem vazebné a terapeutické aktivity směrovaného 

konjugátu skládajícího se z HPMA kopolymeru nesoucího pirarubicin a rekombinantní scFv 

fragment B1 protilátky rozpoznávající buňky BCL1 leukemie nekovalentně navázaného na 

konjugát prostřednictvím interakce mezi dvěma komplementárními peptidy 

(VAALKEK)4/(VAALEKE)4 nebo IAALKSKIAALKSE-(IAALKSK)2/(IAALESE)2-

IAALESKIAALESE (zkráceně KSK/ESE nebo KEK/EKE). Prokázali jsme, že směrovaný 

konjugát vykazuje vyšší protinádorovou aktivitu než nesměrovaný konjugát, respektive volný 

pirarubicin. Porovnali jsme dva odlišné páry komplementárních peptidů a zjistili jsme, že 

konjugát nesoucí  KSK a ESE peptidy vykazuje 4krát lepší vazebnou aktivitu a 2krát vyšší 

cytotoxicitu in vitro než konjugát obsahující KEK a EKE peptidy. 

Naše výsledky objasňují vztah struktury, biologických a farmakologických vlastností 

konjugátů na bázi HPMA kopolymeru a mohou být aplikované pro další výzkum a vývoj 

nových protinádorových vysokomolekulárních léčiv nejen na bázi HPMA kopolymeru. 
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I. INTRODUCTION 

There have always been serious restrictions and limitations when it comes to classical 

tumor treatment via chemotherapy. This is mainly due to the severe side-effects and toxicity 

associated with high doses of low-molecular weight (LMW) drugs used during the standard 

chemotherapy [1, 2]. Another problem is their profound immunosupressivity that affects 

patientʼs immune system, leaving it hampered and unable to respond to subsequent 

immunotherapeutic interventions. Last, but not least, variety of cancers, e.g. ovarian, lung or 

breast cancers, is able to develop multidrug resistance (MDR) to LMW therapeutics.  

The idea of site-specific targeting of therapeutic agent to the site of pathology originates 

from Paul Erlich´s “Magic bullet” idea [3]. Later on, Helmut Ringsdorf proposed an idea to 

use polymers either of synthetic or natural origin as carriers of biologically active compounds 

[4].  The agent is transported in its inactive form right into the tumor site where it is released 

in its pharmaceutically active form. This strategy seems to be very promising and there have 

been many delivery systems designed ever since. Such high-molecular weight (HMW) drug 

conjugates possess anti-tumor activity of the selected drug usually with significantly lowered 

side-toxicity together with markedly improved pharmacokinetics over the respective free drug 

[1, 5]. There are various drug delivery systems, however, those based on N-(2-

hydroxypropyl)methacrylamide (HPMA) copolymer are among most intensively studied ones, 

since they possess extremely favorable properties including bio- and immunocompatibily, and 

therefore present one of the most promising drug carriers [2, 6-8]. 
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I.1. LOW-MOLECULAR WEIGHT DRUGS IN CANCER 

TREATMENT 

LMW drugs have been used in clinical practice for many years [9]. They are of quite 

different type and origin and their mechanism of action is diverse – they can inhibit cell 

proliferation, induce apoptosis or hamper tumor neoangiogenesis. Nevertheless, their use is 

accompanied by adverse effects since the LMW drugs have quite narrow therapeutic window 

and their mechanism of action leads to destruction of rapidly dividing cells. This covers not 

only tumor cells but also cells of common origin, such as hair follicles or bone marrow cells. 

Immunosuppressivity of many LMW drugs is another downside that needed to be dealt with.  

Moreover, mostly hydrophobic character of LMW drugs makes their administration and 

bioavailability very diffucult. It is not unusual for them to be administered in special solutions 

on the oil basis employing emulsifiers that exert severe adverse side-effects (e.g. combination 

of ethanol and Cremophor EL) [10, 11]. These solvents can not only cause additional normal 

tissue damage but also hamper the drug effectivity. 

All these issues led to an investigation of how to modify LMW drugs in order to 

improve their pharmacokinetics, solubility, stability, pharmacodistribution, or to establish 

stimulus-controlled long-term release. Many various drug delivery systems have been 

designed, employing encapsulation of the drug into bio- and immunocompatible structures or 

covalent or physical attachment of the drug to the specifically developed HMW carrier. 

Immunomodulants, proteins, anti-inflammatory drugs, multidrug resistance inhibitors and 

cytostatic drugs can all be found among frequently used molecules for attachment to HMW 

carrier, some of which  are listed in Table 1. 
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reduced compared to the free drug [5]. The drug should remain bound to the carrier with 

minimal release in circulation during its transport. Only when the delivery system reaches 

specific destination and conditions, drug is released into its pharmacologicaly active form. 

This could be either in tumor extracellular microenvironment or directly inside the tumor cell. 

Drug release is controlled by various stimuli of internal (e.g. difference in pH or reduction 

potential between normal and tumor tissue) or external origin (e.g. hyperthermia, magnetic 

field, electric pulses or light) [21]. Drug release from the carrier is not necessary in 

applications like MRI or radiotherapy [22]. 

Multidrug resistance (MDR) is another disadvantage that is at least partially overcome 

by attachment of the drug to HMW carrier [23]. MDR is developed by variety of cancers and 

is based on adenosine triphosphate-dependent pump-mediated efflux of xenobiotics out of 

cancer cells. Normally, LMW drugs are rapidly pumped out of the MDR tumor cell since they 

enter the cell directly through the plasma membrane. HMW carrier-bound anti-cancer drug 

conjugates, on the contrary, enter the cell via endocytosis and possible elimination of the drug 

from the cell is therefore more complicated.   

Two general mechanisms could be employed to deliver HMW conjugates into the 

tumor.  Abnormal vascular architecture (i.e. “leaky endothelium”) of tumor tissue and its 

compromised lymphatic drainage enables extravasation from the bloodstream and retention of 

large macromolecules (up to several dozens of nm) in the tumor mass (see I.2.1.). The second 

mechanism relies on the use of specific targeting moieties selectively recognizing  various 

cancer cell surface markers which enable site-specific drug delivery (see I.2.2.). For 

comparison of LMW drugs with HMW carrier-bound drugs see Table 2. 
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Feature  LMW drug  HMW carrier‐bound drug 
Advantages of HMW carrier‐

bound drug 

Size  small  large 
passive accumulation in tumor (see 

I.3.1) 

Cell entry 
direct, uncontrolled 

diffusion 
facilitated endocytosis 

partial bypass of multidrug 

resistance 

Dosage  high, frequent  low wider therapeutic window

Toxicity  high  low wider therapeutic window

Half‐life  short (<hours)  long (>hours, days) 
better drug availability, lesser 

dosage 

Solubility  mostly hydrophobic  hydrophilic 
better drug availability and 

administration 

Administration 
special dissolving 

solution 

dissolved in simple solutions 

like PBS 
no admnistration‐related toxicities 

Table 2: Comparison of LMW drugs with HMW carrier bound drugs. 

 

I.2.1. Passive accumulation of HMW drug delivery systems  

HMW and considerable Rh of macromolecular carriers significantly influence 

biodistribution of attached drug(s) and allow HMW carrier-drug conjugate to exploit 

abnormal architecture of tumor tissue and passively accumulate in solid tumors [24, 25].  

Rapidly growing tumors require increased amount of nutrients and oxygen [26, 27]. In 

order to compensate for that, tumors produce high levels of vascular endothelial growth factor 

(VEGF) and other angiogenic factors. Therefore, considerable angiogenesis takes place at 

tumor site, but the neovasculature of generated blood vessels is significantly different 

compared to normal tissues. The endothelial layer is defected, fenestrated with large pores up 

to several hundreds of nm [28, 29]. Tumor vessels can even lack small muscle cell layer 

usually formed around them [30]. Such discontinuous endothelium allows macromolecules 

(molecular weight ≥40kDa, Rh ~100 nm), which normally stay inside the circulation and 

cannot pass through normal vesselsʼ endothelium, to extravasate into tumor site. It was proved 

that Rhyd of administered macromolecules should not exceed 30 nm since tumor tissue  

penetration by bigger particles is significantly lower [31]. Furthermore, tumor lymphatic 

system is very limited or even not present at all [32]. This leads to hampered clearance of 

accumulated macromolecules from tumor intersticium.  

Thus, variety of HMW drug delivery systems can travel via blood stream without 

damaging normal tissues and due to the leaky endothelium of tumor vessels and poor 
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I.3. HPMA COPOLYMER-BASED DRUG DELIVERY SYSTEM 

I.3.1. HPMA copolymer carrier 

Polymers based on N-(2-hydroxypropyl)methacrylamide (HPMA) are almost ideal 

water-soluble polymeric drug carriers originaly developed in Prague in 1970s [41]. They have 

been widely exploited for attachment of various molecules including LMW cytostatic drugs, 

enzymes, hormones, antimicrobial agents, immunomodulants and many others. HPMA 

homopolymer is biocompatible, non-immunogenic and does not exert any toxicity up to dose 

of 30 g/kg. However, poly(HPMA) as a homopolymer (Figure 4) lacked reactive functional 

groups that could be modified to attach biologically active moities; therefore HPMA 

copolymers composed of repetitive HPMA monomers and containing suitable functional 

groups were designed [42].  

 

 
Figure 4: Structure of HPMA homopolymer. 

 

HPMA copolymers are composed of linear chains of molecular weight (Mw) usually 

around 25 kDa. The polymer backbone can carry multiple pendant groups due to the presence 

of several modifiable functional groups, however it is not biodegradable – one of a few 

downsides of HPMA carrier [2, 6-8]. Nevertheless, polymer chains smaller than  

40-45 kDa can be excreted via renal filtration; therefore, HPMA copolymer-based drug 

delivery systems contain enzymatically degradable spacers (e.g. GlyPheLeuGly), disulfide 

bridges or combination of both which ensure disintegration of the polymeric backbone under 

certain conditions [43, 44]. 

There are various HPMA copolymer structures of different biological properties, shapes 

and Mw, such as small linear HPMA chains, large star-like HPMA systems with dendrimer 

core with multiple HPMA copolymer side-chains or graft polymers with multivalent HPMA 

copolymer grafted with semitelechelic HPMA homopolymer side-chains [43, 44]. Moreover, 
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linear HPMA copolymers of Mw ~25 kDa can form HMW supramolecular micellar structures 

upon attachment of hydrophobic molecules to the polymer (e.g. cholesterol). As stated in 

I.2.1., there is a positive correlation between the size of a drug delivery system and tumor 

accumulation, nevertheless, design of robust HPMA copolymer carriers is limited by 

maximum size of a particle that can effectively penetrate through tumor mass and difficulty of 

synthesis of well-defined complex systems with low polydispersity and fair reproducibility. 

 

I.3.2. Biocompatibility and immunocompatibility of HPMA copolymers 

As stated in I.3.1., HPMA homopolymer is biocompatible and non-immunogenic 

structure – features quite important for drug delivery systems since the triggering of immune 

response could hamper the therapy and lead to critical damage of patient’s organism. Whilst 

HPMA homopolymer do not induce any immune reactions of humoral or cellular type or even 

activate complement pathways [45], HPMA copolymer containing oligopeptide sequences 

trigger weak immune response depending on Mw of the polymer [46-48]. The immune 

response include mainly IgM production; nevertheless, resulting antibody titers are 4 orders of 

magnitude lower compared to titers elicited by reference immunogenic protein (e.g. albumin). 

Moreover, HPMA copolymers have no effect on macrophages, B or T cells, or complement 

pathways [47, 49]. 

There are no documented signs of possible side toxicity elicited by HPMA homo- or 

copolymers up to the dose of 30 g/kg and attachment of biologically active agent results in 

lowered toxicity of that agent as well [2, 48, 49]. If the agent is a protein, the resulting HPMA 

copolymer-bound protein conjugate induce about 250-fold lower antibody titers compared to 

unmodified free protein [2, 8]. This observation was proved in many HPMA copolymer-

bound protein conjugates such as HPMA-immunoglobulin, HPMA-transferrin or HPMA-

HSA (human serum albumin) [2, 7, 8]. 

Even though HPMA copolymers are not biodegradable they do not form long-term 

deposits in organism and their circulation half-life depends on their Mw [2, 7, 8].  

 

I.3.3. Controlled drug release  

Among many advantages of HPMA copolymer-based drug delivery systems is 

stimulus-controlled release of the attached drug that provides better efficacy and lowers the 

negative side-effects. The system itself behave as a prodrug, it travels via circulation and 

exploit its prolonged half-life to reach the final destination through fenestrated endothelium of 
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tumor vasculature. Inside the tumor, the drug is released from its carrier either extracellularly 

or intracellularly depending on HPMA copolymer-drug conjugate design. The bond between 

the carrier and anti-tumor drug can be either pH-sensitive or enzymatically degradable and 

upon its breakage the drug usually becomes biologically active [50, 51].  

Actively targeted HPMA copolymer-based drug delivery systems are taken up by tumor 

cells via receptor-mediated endocytosis, whereas non-targeted passively accumulated systems 

enter the cell through pinocytosis [52-54]. Upon the structure’s engulfment, enzymatically 

degradable bond covalently attaching the drug to the carrier is cleaved by enzymes of 

endosome/lysosome compartment which are consequently activated by decreased pH (from 

pH 7.2-7.4 typical to extracellular environment to pH 4.5-5 present in lysosomes) [54].   

Acidic environment of endosome/lysosome compartment can also promote hydrolysis 

of pH-sensitive bond between drug and carrier which is stable in normal conditions and 

degradable in acidic environment [54]. Moreover, tumor tissue is characterized by its hypoxic, 

mildly acidic environment with pH 0.5-1 lower than in normal tissue [55, 56]. This feature 

allows extracellular cleavage of pH-sensitive bond connecting drug to polymer carrier and 

release of the drug outside the cell. The carrier itself can be degradable if it contains 

biodegradable linkers in its backbone. Among the most utilized pH-sensitive linkages  belong 

hydrazon bond and cis-aconityl spacer.  

 

I.3.4. HPMA copolymer-bound drug conjugates 

Attachment of selected biologically active agent(s) to the HPMA copolymer-based 

carrier creates HPMA copolymer-bound drug conjugate with superior anti-cancer activity, 

lower hematotoxicity and immunosupression in comparison to the free drug. Many reports 

show complete cure of various mouse tumor models in vivo together with successful 

establishment of long-term anti-tumor immune memory in cured mice which bestows them 

with resistance to the original tumor [57, 58].  

Selected biologically active moiety is bound to the side chain of HPMA copolymer 

carrier either via pH-sensitive linkages (e.g. hydrazone bond, cis-aconityl spacer) [59, 60], or 

by attachment to enzymatically degradable oligopeptide spacer (e.g. tetrapeptide 

GlyPheLeuGly; GFLG) [50] via amide bond. Release of the drug could be therefore realized 

by extracellular or intracellular enzyme activity or pH-controlled hydrolysis. Load that do not 

need to be released from the carrier to exert its pharmacological activity (e.g. radionuclides or 
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administrated without the need of special solutions (e.g. dimethylsulfoxide, Cremophor EL in 

combination with ethanol) which often cause adverse or unexpected side effects.  

Improved pharmacokinetics of HPMA copolymer-bound drug conjugates provides 

wider therapeutic window and in combination with passive accumulation in tumors via EPR 

effect, it results in significantly improved anti-tumor activity. Passive accumulation of HPMA 

copolymer-bound drug conjugates is ensured by their structure and high Mw. Moreover, in 

addition to passive accumulation, HPMA copolymer-bound drug conjugates can be also 

actively targeted via attachment of targeting moiety.  

Some HPMA copolymer-based conjugates have entered preclinical studies, e.g. 

conjugates containing DOX, camptothecin, platinum or taxanes [69]. Clinical trials proved 

their safety, prolonged circulation half-life, improved pharmacokinetics, tumor accumulation 

and immunostimulatory effects. However, none of them have been approved for application 

in clinical practice since there are several problems that need to be adressed, such as difficult 

synthesis.  

 

I.3.4.1. HPMA copolymer-bound DOX conjugates 

Over the years, variety of drugs with different properties, structure and biological 

activities have been attached to HPMA copolymer carrier. Nevertheless, anthracycline 

antibiotic DOX became one of the most often used drugs in development of effective HPMA 

copolymer-based drug conjugates. It can be bound onto the polymeric carrier as a single anti-

cancer agent or even in combination with other biologically active molecules (e.g. 

mesochlorin e6 monoethylenediamine, dexamethasone, mitomycin C) [70-73] for 

simultaneous delivery. Such bifunctional conjugates exert synergistic effects of attached 

drugs, long-term survival of experimental animals and superior anti-tumor activity in 

comparison to conjugates bearing only one drug. Moreover, it is possible to design the linkers 

connecting drugs to the carrier so that the drug release could be of different rates. Mixtures of 

single drug conjugates usually do not show synergistic effects observed during therapy with 

bifunctional conjugates. Moreover, conjugates can even combine block of HPMA copolymer 

bearing amide-bound DOX and block of HPMA copolymer bearing hydrazon-bound DOX 

[74]. It was proved they have increased anti-tumor activity employing induction of apoptosis 

(hydrazon-bound DOX) and necrosis (amide-bound DOX) of tumor cells [54]. Interestingly, 

conjugates bearing randomly distributed DOX bound via amide and hydrazon bond are less 

effective than combination of a HPMA copolymer-bound DOX-bearing conjugate containing 
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It is linear HPMA copolymer-bound DOX conjugate containing galactosamine as the 

targeting moiety, which bind to the asialoglycoprotein receptor overexpressed on 

hepatocellular carcinoma cells. PK2 showed lowered cardiotoxicity and long-term circulation 

half-life in comparison with free DOX. Upon entering phase I/II studies [88], PK2 showed 

higher liver accumulation and lower MTD (160 mg/m2 DOX eq.) than PK1. Even though 

partial response to therapy with PK2 in few patients with hepatocellular carcinoma was 

documented, further clinical testing was abandoned since there was no difference in 

accumulation rate between malignant and normal liver due to the presence of 

asialoglycoprotein receptor on the surface of normal hepatocytes, though on a lower level 

than on tumor cells. 

Altered glycosylation pattern of tumor cells led to use of lectins as targeting moieties 

such as peanut agglutinin (PNA) or wheat germ agglutinin (WGA), however, the efficacy of 

such targeted conjugates was not sufficient [89, 90]. In 2000, Kunath et al. [91] focused on 

investigation of HPMA copolymer bearing adriamycin attached via GFLG spacer and 

monoclonal antibody OV-TL16 recognizing OA-3 surface antigen (CD47) overexpressed on 

surface of human ovarian carcinoma cell line (OVCAR-3) and its effect on expression of 

MDR-related genes. They proved difference in cell entry of free drug (diffusion), non targeted 

conjugate (fluidphase pinocytosis) and targeted conjugate (receptor-mediated endocytosis) 

together with different effect on expression of P-glycoprotein and other multidrug resistance-

associated protein efflux pumps. In 2002, Kovar et al. [51] evaluated in vitro and in vivo 

HPMA copolymer-bound DOXAM conjugate targeted with transferrin or anti-CD71 mAb to 

transferrin receptor (CD71) expressed on mouse 38C13 B-cell lymphoma cell line. Both 

conjugates caused significant reduction of tumor growth, prolonged survival and even 

completely cured some experimental animals, however, anti-CD71 mAb-targeted one was 

more effective than transferrin-targeted or non-targeted conjugates.  

Number of studies led to overall conclusion that the most potent and defined targeting 

moieties are antibodies and they have been intensively studied over the years. Two types of 

antibody-targeted HPMA copolymer-drug conjugates were designed: conjugates of classical 

structure and star structure (Figure 9).  



 

Figure 9:

 

C

bonds b

could h

distribu

of star s

antibody

carboxy

amide b

have qu

these sta

St

conjuga

BLC1 le

with B

Signific

non-targ

with est

to BCL

T-cell ly

for varie

the trea

: Classical (A)

onjugates o

between cop

hamper the 

ution caused

structure, h

y is situate

yl groups o

bond and en

uite narrow 

ar structure

tudy comp

ate of star o

eukemia we

B1 monoclo

cantly highe

geted one w

tablished B

1 leukemia 

ymphoma a

ety of mous

atment was,

) and Star (B)

of classical s

polymer ch

antibody’s

d by branch

however, we

ed in the ce

of 30-40 se

nzymatically

Mw and s

s are better 

paring anti-

or classical

ere treated e

onal antibo

er anti-tumo

was observe

CL1 leukem

and this ph

and 38C13 l

se tumor mo

, the weake

 antibody targ

structure w

hains and pr

s binding a

hing effect o

ere more po

enter of the

emitelecheli

y degradabl

since semite

defined bec

-tumor effi

l structure w

either with s

ody specifi

or acitivity

ed. Both tar

mia. Moreo

henomenon 

lymphoma m

odels [57, 9

er the tumo

26 

geted HPMA c

ere develop

rimary ami

activity. Mo

of multivale

otent both i

e conjugate

ic HPMA c

e GFLG sp

elechelic H

cause there 

icacy of t

was perform

star or class

ic for idio

of targeted

rgeted conju

over, cured 

was later o

mouse tumo

4]. Surprisi

or-specific r

copolymer-bo

ped first. Th

no groups 

oreover, the

ent HPMA 

in vitro and

e. It is attac

copolymer 

acer or pH-

HPMA copo

is no possib

targeted HP

med in 200

sical DOXAM

otype of su

d star and c

ugates were

mice devel

on described

or models, 

ingly, it was

resistance i

ound DOX con

hey containe

of antibody

ese conjuga

copolymer 

d in vivo [51

ched to the

chains wit

sensitive hy

olymer chain

bility of bra

PMA copo

02 [94]. Mi
M-PHPMA 

urface IgM

classic conj

e able to co

oped tumor

d also for EL

therefore it 

s proved tha

n cured mi

njugate. 

ed random 

y’s molecul

ates had w

chains. Co

1, 92, 93]. 

e activated 

th DOX bo

ydrazon bon

ns are mon

anching.  

olymer-boun

ice inoculat

conjugates 

M on BCL

jugate com

ompletely cu

r-specific re

L4 mouse m

appears to 

at the more 

ice was est

 

covalent 

le which 

wide Mw 

onjugates 

Selected 

terminal 

ound via 

nd. They 

novalent, 

nd drug 

ted with 

targeted 

L1 cells. 

pared to 

ure mice 

esistance 

model of 

be valid 

effictive 

tablished 



27 
 

[78]. In 2008, study performed on BCL1-leukemia bearing mice described the mechanism of 

the phenomenon of tumor resistance. It was proved, that even though establishment of the 

resistance is mediated by both CD4+ and CD8+ T cells, its maintenance is dependend only on 

CD8+ T cells. Moreover, study also presents the first direct evidence that Treg cells promote 

progression of tumor growth and significantly influence therapeutic outcome. 

DOXAM-PHPMA conjugate containing human immunoglobulin (HuIg) entered pilot 

clinical studies and was tested on patients with generalized breast carcinoma that were non-

responsive to other clinical treatment [95]. Stability in the bloodstream and increased numbers 

of CD16+CD56+ and CD4+ cells together with activation of NK and lymphokine-activated 

killer cells was observed in all patients together with disease stabilization up to several 

months. Unfortunately, no further clinical studies were performed ever since. Mice study 

focusing on treatment of EL4 lymphoma proved complete cure of experimental animals when 

treated with DOXAM-PHPMA-HuIg conjugate. Establishment of anti-tumor resistance to the 

original tumor in cured animals was also reported and it was proved to be tumor-specific 

since mice transplanted with other type of tumor (i.e. B16-F10 melanoma) developed the 

dissease regardless to previous successfull cure. Moreover, transfer of splenocytes or CD8+ T 

cells from cured mice to naïve mice bestowed them with tumor-specific resistance as well 

which demonstrated that the phenomenon of tumor protection is indeed mediated and 

transferable by T lymphocytes. 
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II. AIMS OF THE THESIS 

 

The general aim of this study was to evaluate biological activity of novel HPMA 

copolymer-bound drug conjugates and to address their anti-tumor efficacy. These aims can be 

divided into following fields of interest: 

 

1. Investigation of HPMA copolymer-bound drug conjugate toxicity. 

 

2. Determination of maximum tolerated doses of star non-degradable HPMA copolymer-

bound drug conjugate and linear HPMA copolymer-bound drug conjugate. 

 
 

3. Investigation of HPMA copolymer-bound drug conjugate efficacy in treatment of solid 

tumors. 

 

4. Investigation of HPMA copolymer-bound drug conjugate efficacy in treatment of 

leukemia. 

 
 

5. Invetigation of BCL1 targeted HPMA copolymer-bound drug conjugate therapeutic 

efficacy. 

 

6. Comparison of binding activity and anti-tumor efficacy of BCL1 targeted HPMA 

copolymer-bound drug conjugates containing  different pairs of complementary 

peptides.  
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III. PUBLICATIONS 

The thesis was prepared on the basis of these publications: 

Etrych T., Strohalm J., Sirova M., Tomalova B., Rossmann P., Rihova B., Ulbrich K. and 

Kovar M.: High-molecular weight star conjugates containing docetaxel with high anti-tumor 

activity and low systemic toxicity in vivo. Polym. Chem. 6: 160-170, 2015. 

IF = 5,52         

 

Tomalova B., Sirova M., Rossmann P., Pola R., Strohalm J., Chytil P., Cerny V., Tomala J., 

Kabesova M., Rihova B., Ulbrich K., Etrych T. and Kovar M.: The structure-dependent 

toxicity, pharmacokinetics and anti-tumour activity of HPMA copolymer conjugates in the 

treatment of solid tumours and leukaemia. JCR 223: 1-10, 2016. 

IF = 7,44           

 

Pechar M., Pola R., Janouškova O., Sieglova I., Kral V., Fabry M., Tomalova B. and Kovar 

M.: Polymer Cancerostatics Targeted with an Antibody Fragment Bound via a Coiled Coil 

Motif: In Vivo Therapeutic Efficacy against Murine BCL1 Leukemia. Macromol. Biosci. 

Published online, ahead of print, 2017. 

IF = 3,23            

 

 

 

OTHER PUBLICATIONS 

Tomala J., Kovarova J., Kabesova M., Votavova P., Chmelova H., Dvorakova B., Rihova B. 

and Kovar M.: Chimera of IL‑2 Linked to Light Chain of anti-IL‑2 mAb Mimics IL-2/anti-

IL‑2 mAb Complexes Both Structurally and Functionally. ACS Chem. Biol. 2013. 

IF = 5,356 

 

Skopova K., Tomalova B., Kanchev I., Rossmann P., Svedova M., Adkins I., Bibova I., 

Tomala J., Masin J., Guiso N., Osicka R., Sedlacek R., Kovar M. and Sebo P.: Cyclic AMP-

Elevating Capacity of  Adenylate Cyclase Toxin-Hemolysin Is Sufficient for Lung Infection 

but Not for Full Virulence of Bordetella pertussis. Infection and Immunity 85 (6): e00937-16, 

2017 

IF = 3,593 
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IV. CONCLUSIONS 

 

1. HPMA copolymer-bound DOX conjugate based on non-degradable polymeric carrier 

does not induce severe side toxicity. 

 

2. Smaller and less complex linear conjugates exert higher MTD in comparison to larger 

complex conjugates with dendrimer core. 

 
 

3. Effective therapy of solid tumors should employ HMW drug delivery system with 

increased Rh, it should be stable for at least 3 or 4 days following administration and, 

shortly afterwards, rapidly degraded and excreted from organism. 

 

4. Effective therapy of leukemias should employ drug delivery system with prolonged 

circulation half-life (providing a depot of biologicaly active drug) and very slow 

degradation rate. 

 
 

5. Attachment of BCL1 leukemia-targeting moiety (scFv fragment of B1 mAb) to the 

HPMA copolymer-bound drug conjugate via non-covalent coiled-coil interaction 

between complementary peptides show better therapeutic efficacy than non-targeted 

HPMA copolymer-drug conjugate counterpart or a free drug. 

 

6. HPMA copolymer-bound drug conjugate bearing BCL1 leukemia-targeting moiety 

attached via non-covalent coiled-coil interaction between KSK and ESE 

complementary peptides exerts 4 times better binding activity and 2 times higher 

cytotoxicity in vitro than conjugate containing KEK and EKE complementary 

peptides. 
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