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Abstract  
    

The aim of this thesis is to reveal the potential of mouse polyomavirus (MPyV) 

based virus-like particles (VLPs) as possible nanocarriers for directed delivery of 

therapeutic or diagnostic compounds to specific cells or tissues. We have chosen mouse 

polyomavirus VLPs because they do not contain viral DNA and are considered safe for 

utilization in bio-applications. 

In our research, we used a chemical approach for retargeting of MPyV based VLPs 

from their natural receptor to cancer cells. The chemical modification of the capsid surface 

exposed lysines by an aldehyde-containing reagent enabled conjugation of VLPs to 

selected molecules: transferrin and inhibitor of glutamate carboxypeptidase II (GCPII). 

Transferrin, as a transporter of iron to metabolically active cells, targeted VLPs to 

numerous types of cancer cells overexpressing the transferrin receptor. On the other hand, 

GCPII serves as a transmembrane marker specific for prostate cancer cells and conjugation 

of its inhibitor to VLPs resulted in successful recognition of these cells. Electron 

microscopy was used for visualization of modified VLPs and flow cytometry together with 

confocal microscopy for investigation of cell specific interactions and VLP uptake. 

Furthermore, we explored the influence of serum proteins on VLPs. The abundance of 

serum proteins in the blood stream is a major problem of in vivo targeting of various types 

of nanoparticles because these proteins interact with nanoparticle surface and form so 

called protein corona. The protein corona then masks the targeting ligands and prevents the 

specific targeting of nanoparticles. We used ELISA assays and flow cytometry to prove 

that the targeting of prepared VLPs is not affected by protein corona formation. 

In conclusion, we demonstrated that polyomavirus based VLPs could be retargeted 

to either broadly distributed or type-specific cancer markers. This makes the VLPs an 

universal tool for addressing a wide range of tumors. The strong avidity and binding 

selectivity of VLP conjugates have a tremendous potential to increase the sensitivity and 

specificity of cancer therapies.  
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Abstrakt  
  

 Úkolem této práce bylo prozkoumat potenciál umělých virových částic (virus-like 

particles, VLPs) odvozených od myšího polyomaviru (MPyV) jako možných nanonosičů 

pro řízenou dopravu terapeutických a diagnostických látek do specifických buněk či tkání. 

Vybrali jsme VLPs myšího polyomaviru, protože neobsahují virovou DNA a jsou 

považovány za bezpečné pro využití v bioaplikacích. 

Při našem výzkumu jsme použili přístup chemické modifikace pro přesměrování 

VLPs z jejich přirozeného receptoru na nádorové buňky. Lysinové zbytky exponované na 

povrchu částice byly modifikovány aldehydickým činidlem pro následnou konjugaci 

vybraných molekul, transferinu a inhibitoru glutamát karboxypeptidázy II (GCPII), na 

povrch částice. Transferin, transportér iontů železa do metabolicky aktivních buněk, 

pomohl k přesměrování VLPs do různých druhů nádorových buněk nadměrně 

produkujících transferinový receptor. Na druhou stranu, GCPII slouží jako 

transmembránový antigen specificky se vyskytující na buňkách nádoru prostaty a připojení 

malé molekuly inhibitoru k VLPs vedlo k úspěšnému rozpoznání těchto buněk. Použili 

jsme metodu elektronové mikroskopie k vizualizaci obou typů modifikovaných VLPs  a 

metody průtokové cytometrie a konfokální mikroskopie pro studium specifických 

buněčných interakcí a internalizace nanočástic. Dále jsme také zjišťovali vliv sérových 

proteinů na modifikované polyomavirové VLPs. Velké množství sérových proteinů 

vyskytujících se v krevním řečišti je totiž jedním z hlavních problémů cílení různých 

nanočástic in vivo, protože tyto proteiny interagují s povrchem nanočástice a formují 

takzvanou proteinovou koronu. Proteinová korona pak zakryje směrující ligand a zabrání 

specifickému zacílení dané nanočástice. Použili jsme průtokovou cytometrii a ELISA 

analýzu, abychom prokázali, že směrování VLPs není ovlivněno vytvořením proteinové 

korony. 

Závěrem lze říci, že polyomavirové VLPs lze přesměrovat jak na široce 

distribuované, tak na typově specifické nádorové markery. To činí z VLPs univerzální 

nástroj pro cílení širokého spektra nádorů. Silná avidita a vazebná specificita konjugátů 

VLPs má ohromný potenciál pro zvýšení senzitivity a specificity nádorových terapií. 
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Detailed study of viruses and understanding of the molecular mechanisms utilized 

during the infection serve to develop effective drugs against infections but also to find new 

approaches for drug development. Nowadays, virus-like particles (VLPs) are in the 

spotlight of many research groups because they have the unique ability to self-assemble 

into nanostructures similar to viral capsids. Thanks to their structural stability, tolerance to 

manipulation and fast, easy and cheap production, VLPs are highly utilized not only for 

studying of virus – host cell interactions but also for production of vaccines or new 

vehicles for specific delivery of therapeutic or diagnostic compounds. They are able to 

effectively enter the cells with appropriate receptor. However, due to the absence of the 

viral genome, they cannot be replicated. On the other hand, VLPs retain their ability to 

encapsidate foreign nucleic acids and small molecules. This makes them promising tools of 

gene therapy and diagnostics, where they can serve for targeted delivery of therapeutic 

DNA, drugs, antigens and contrast agents to cells or tissues. Nevertheless, the clinical 

application of VLPs derived from viruses infecting humans could be significantly limited 

by the strong immune response; therefore it is favorable to chose VLPs derived from 

animal viruses due to the absence of their pre-existing immunity in human population. 

This thesis is focused on retargeting of VLPs derived from the mouse polyomavirus 

(MPyV) to specific cancer cells by chemical modification. We have chosen two different 

ligands for conjugation onto the surface of VLPs. Firstly; we used the transferrin protein, 

which is an iron transporter in metabolically active cells. Accordingly, its receptor is 

overexpressed on numerous types of cancer cell, e.g. bladder, lungs and breast cancer. For 

chemical conjugation, we used naturally exposed lysine residues on the MPyV VLP 

surface and created amidic bond between carboxyl group and amino group through N-

hydroxysuccinimidyl ester (NHS). Thereafter, the transferrin molecule was attached to 

VLPs by so called “click” chemistry. The effectivity of conjugation and interaction of 

prepared VLPs with cancer cells were further tested. Secondly, we decided to examine the 

possibility of retargeting the VLPs by a small molecule. For this, the inhibitor of glutamate 

carboxypeptidase II (GCPII) was selected as it was proven to be a powerful system for 

targeting prostate cancer cells, where GCPII is overexpressed. The same system of 

modification was used and prepared VLPs were characterized. Both molecules confirmed 

to be efficient in retargeting of polyomaviral VLPs from their natural receptor to specific 

cancer cells and thus could serve as potent nanocarriers for biomedical applications. 
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The third goal of this thesis was to analyze the behavior of polyomaviral VLPs in 

the presence of serum proteins. These proteins are naturally present in blood stream and 

could form the protein/biomolecule corona that influences the nanoparticle behavior in 

physiological conditions, especially the targeting capacity of nanoparticles. Hence we 

incubated our VLPs with various serum proteins and tested the selectivity of interactions 

with cells. Surprisingly, we found out that the VLPs bound to cells without being 

restrained by the formation of protein corona. 
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2.1 Mouse Polyomavirus 
 

Mouse polyomavirus (MPyV) belongs to the Polyomaviridae family of small DNA 

tumor viruses. This family comprises about a hundred polyomaviral species which infects 

mammals, birds, fishes and arthropods (Buck et al., 2016; Moens et al., 2017). The model 

representatives are MPyV and Simian vacuolating virus 40 (SV40), both mostly studied from 

the molecular biology aspect. SV40 infects mostly monkeys, however, its sequences were 

found also in human cells. Therefore we have focused our research on MPyV that will not be 

recognized by the pre-existing antibodies in human immune system. From polyomaviruses 

infecting humans are currently the most significant BK polyomavirus (BKPyV), JC 

polyomavirus (JCPyV) and Merkel cell polyomavirus (MCPyV). Mammalian polyomaviruses 

usually after primary infection induce lifelong persistence and are not linked to acute 

infection. The major sites for persistence are skin (MCPyV), kidney (BK virus), central 

nervous system and hematopoietic system (JC virus). However, immunosuppression can 

serve as a stimulus for reactivation, leading to several disease patterns (Dalianis and Hirsch, 

2013). Productive polyomaviral infection proceeds as follows: early antigens are expressed in 

the cell and induce the S-phase of cell cycle to provide replication of the viral genome. After 

generation of new progeny, viruses are released by the cell lysis.    

 

2.1.1 Genome organization 

The covalently closed circular genome of MPyV consists of double-stranded DNA 

with 5297 bp. The genome is separated into 3 regions: early, late and regulatory (Fig. 2.1). 

Products of the early region are created from the reverse chain unlike products from the late 

region and are transcribed early after the cell entry. However, the expression is not limited 

only by the early stage but continues also during the late stages of infection.  

The early region encodes 3 viral regulatory tumorogenic proteins (so called T-

antigens). All T-antigens have a common N-terminal part of mRNA because they are created 

by alternative splicing from pre-mRNA molecule. T-antigens are important for induction of 

viral replication and transformation of infected cell. LT stimulates the cell cycle and interacts 

with its regulators and therefore is responsible for immortalization of the cell. However, in 

contrast to other Polyomaviridae species, MPyV could transform the cell only when LT 

cooperates also with MT antigen (Dilworth, 1990). MT associates with many proteins of 

signal transduction and regulators of cell growth. ST antigen provides interaction with protein 

phosphatase 2A and therefore activate the MAP kinase signaling pathway and cell growth 

(Sontag et al., 1993). 
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The regulatory region contains replication origin, promoters and enhancers 

(ENH/ORI). The origin of replication is important for initiation of DNA replication and is 

composed of internal sequence (core) and 2 side sequences that serve as enhancer of 

transcription and binding site for LT antigen. 

Late region is composed of genes encoding 3 structural viral proteins VP1, VP2 and 

VP3. Similarly to early proteins, structural proteins are also created by alternative splicing 

from common pre-mRNA molecule. The sequence of minor protein VP3 is all encompassed 

in the C-terminal sequence of minor protein VP2. The major capsid protein VP1 is read from 

another open reading frame and therefore the amino acid (AA) sequence is different.  

 

 
 

Figure 2.1: Map of MPyV genome 
Early and late regions are separated from each other by regulatory region (ENH/ORI). Colors illustrate the 

positions of early tumorogenic antigens LT, MT and ST (black color determines the common N-terminal part) 

and late structural proteins VP1, VP2 and VP3 (Fluck and Schaffhausen, 2009). 

 

2.1.2 Major capsid protein VP1 

The major capsid protein VP1 mediates specific interaction with cell receptor and 

following internalization of the virus into the cell. Probably it is taking part also in attaching 

the viral genome to the nuclear matrix and beginning of early transcription (Carbone et al., 

2004). VP1 with its molecular weight of 45 kDa is the major protein of viral capsid. 

  The tertiary structure of VP1 protein was described by RTG diffraction (Liddington et 

al., 1991; Stehle and Harrison, 1996). According to the tertiary structure, VP1 could be 

separated into 3 regions: N-terminal, central and C-terminal. The N-terminal domain is 

hidden inside the pentamer and contains nuclear localization signal and DNA binding domain 
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(Chang et al., 1993) that interacts with DNA unspecifically (Moreland et al., 1991). The 

central part of VP1 protein is organized into α-helixes and antiparallel β-sheets that are 

connected with 6 loops. The most important loops, BC, DE, EF and HI are described in the 

figure 2.2A. Loops BC and HI are important for specific VP1/receptor interaction, EF loop is 

located on the side of VP1 proteins and serves as a part of binding site for Ca
2+

 ions (Stehle et 

al., 1994; Stehle and Harrison, 1996). The DE loop contains the major immunodominant 

epitope and mediates the interaction with MPyV co-receptor α4β1 integrin (Caruso et al., 

2003). C-terminus of VP1 protein is very flexible, mediates the interaction between 

pentamers (Fig. 2.2A,B) and is also a part of Ca
2+

 ions binding site (Liddington et al., 1991; 

Stehle et al., 1996). 

  The important ability of VP1 protein is self-assembling either in vitro or in vivo into 

the capsid related structures and creating artificial viral particles (virus-like particles, VLPs). 

Even though VP1 protein could be intensively posttranslationally modified by 

phosphorylation, acetylation, sulphonation, methylation and hydroxylation (Bolen et al., 

1981), neither of these modifications is needed for VLPs assembly (Salunke et al., 1986). 

Moreover, the presence of minor capsid proteins VP2 or VP3 is not essential for capsid 

formation (Montross et al., 1991).  

  

  

 
Figure 2.2: Structure of capsid protein VP1 
(A) Tertiary structure of major capsid protein VP1 with described terminal domains and important loops. The 

connection to other VP1 monomers is indicated by positions of neighbor C-terminus. Taken from Chen et al., 

2000. (B) Ribbon drawing of pentamer composed of 5 monomeric VP1 proteins. The most important loops of 

VP1 protein are visualized by various colors: BC loop (red color), DE loop (blue color), EF loop (yellow 

color) and HI loop (green color). The cavity in the middle of the pentamer serves for connection of minor 

protein. Taken from Suchanova et al., 2015.  
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2.1.3 Structure and morphogenesis of virion 

The MPyV capsid has 45 nm in diameter, icosahedral symmetry and is formed from 3 

structural proteins: VP1 (45 kDa), VP2 (35 kDa) and VP3 (23 kDa). It is composed of 360 

molecules of VP1 protein which creates 72 pentamers, 60 hexavalent and 12 pentavalent (Fig. 

2.3). The central cavity of VP1 pentamer serves for conjugation of minor protein; however, as 

it was mentioned above, capsid could be formed also without the presence of minor proteins. 

  The morphogenesis of virion starts with translocation of structural protein complexes 

that were synthesized in cytoplasm and transported into the nucleus. The process of 

morphogenesis is described as sequential assembly of virion. Structural proteins of the virion 

cover genomic DNA in a form of chromatin because it is associated with cellular histones 

H2A, H2B, H3 and H4 and the condensed minichromosome is called “nucleocore”. 

According to Griffith et al., 1992, the condensation of capsomeres is dependent on the 

presence of minor proteins which direct capsomeres to the viral minichromosome. It is 

supposed that during the final part of morphogenesis there is a conformational change which 

changes immature virion to stable mature virion. Nevertheless, the big question was how the 

specific polyomaviral DNA is packed into the virion and which cellular proteins take part in 

the DNA encapsidation. Oppenheim et al., 1992 discovered so called ses sequence (SV40 

encapsidation signal) in the regulatory region of viral genome. But for many years the 

mechanism for MPyV was unknown. After thorough research Spanielová et al., 2014 found 

out that there is no specific sequence for mouse polyomavirus (pes); however, the 

encapsidation is dependent on the replication rate of circular DNA. 

 

Figure 2.3: Structure of mouse polyomaviral capsid 

The MPyV capsid composed of VP1 pentamers. Hexavalent pentamers are indicated by green/blue color and 

pentavalent pentamers by purple color. Taken from Stehle and Harrison, 1996. 
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2.1.4  Life cycle 

The life cycle starts with the binding of viral particle to cellular receptor (Fig. 2.4). For 

MPyV the receptors are gangliosides GD1a and GT1b containing sialic acid (Tsai et al., 

2003) and as a co-receptor was indentified α4β1 integrin (Caruso et al., 2003). The following 

endocytosis is mediated by smooth monopinocytic vesicles that transport virus to early 

endosome. The uptake is a fast process, after 30 minutes the majority of the virus is 

internalized in the cell (Richterova et al., 2001). The mechanism of viral entry into the 

nucleus still remains unknown, however, it is intensively studied in our laboratory and the 

involvement of importin β1 was recently published (Soldatova et al., 2018). Immediately after 

viral entry to the nucleus early genes are transcribed by the host RNA II polymerase and 

produced T-antigens dysregulate cell cycle and stimulate the transition to S-phase. For 

initiation of replication the LT antigen has to bind the region of replication origin (ori). The 

late region of viral genome is not transcribed until replication of viral DNA starts. Increase 

level of structural proteins is followed by virion assembly and newly produced viral particles 

are released from the cell by cell lysis (Fields et al., 2007). 

 

 

 

Figure 2.4: Life cycle of MPyV 

The illustration of mouse polyomavirus life cycle. Taken from (Java et al., 2012) 
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2.2  Utilization of MPyV VLPs for therapeutic purposes 

A number of capsid proteins have the unique ability to self-assemble into artificial 

viral capsids (VLPs) that are similar to wild type virus, however, do not contain the viral 

DNA. Therefore they are non-infectious and safe for biomedical applications. VLPs are 

thanks to their high tolerance to manipulations, structural stability and very cheap and fast 

production abundantly utilized during the study of virus/host cell or virus/immune cell 

interactions. Their strong immunogenicity determines also usage in vaccine preparation. 

Furthermore, VLPs has the ability to encapsidate small molecules and DNA inside of the 

capsid. This makes them efficient tools for diagnostics, gene therapy and immunotherapy, 

where they serve for delivery of therapeutic RNA, DNA, drugs, contrast agents or antigens 

into the targeted cells. 

 

2.2.1 Utilization of MPyV VLPs for delivery of diagnostic and therapeutic 

  molecules 

According to the ability of VLPs to incorporate proteins, nucleic acids and other 

molecular compounds, the possibilities of their usage are very wide. Moreover, VLPs are able 

to protect the encapsidated heterologous compounds and transport them through plasmatic 

membrane to eukaryotic cells either in vitro or in vivo. 

 

2.2.1.1 Utilization of MPyV VLPs for delivery of proteins and peptides  

The interior space of VLPs could serve as a nanocontainer for encapsulation of 

biologically active proteins or peptides, deliver the cargo into targeted cells and protect it 

from external proteases and recognition by the immune system.  

The conjugation of peptide to MPyV VLPs could be realized by two ways: either by 

fusion of protein to major capsid protein VP1 or to minor capsid proteins VP2/VP3. 

Conjugation of GFP molecule to VP1 protein was mediated by the 28 AA of the WW domain 

of the mouse formin-binding protein 11 (Schmidt et al., 2001). This domain binds proline-rich 

ligands with very high affinity and the name is derived from two essential tryptophan 

residues. The fusion to N-terminal part of VP1 protein allowed the conjugation of 260 

polyproline-tagged GFP molecules (Günther et al., 2001). According to the theoretical 

calculation 360 globular GFP molecules could be encapsidated into VP1 particles and so the 

achieved number 260 seems very promising. However, the authors did not attempt to verify 

the position of GFP protein on the VP1 capsid and therefore GFP molecules could be also 

exposed on the surface. On the other hand they showed the ability of these VLPs to deliver 
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GFP to mouse fibroblasts NIH 3T3 (Günther et al., 2001). The C-terminus of VP1 protein 

served also for conjugation of the entire capsid protein of porcine circovirus (PCV2 Cap), 

nevertheless, this fusion avoided VLP assembly and allowed only the formation of pentamers 

(Fraiberk et al., 2017). Despite this fact, the conjugation of the whole PCV2 Cap protein was 

the most effective vaccine variant from all tested possibilities (Fig. 2.5). 

An alternative approach is conjugation of peptide with minor proteins. According to 

the electron density map it was revealed that 45 AA from the C-terminus of minor proteins 

VP2/VP3 are essential for the interaction with the cavity of VP1 pentamer (Chen et al., 1998). 

However, not long ago Dashti et al., 2018 found out that the minimum anchoring C-terminal 

sequence of VP2/3 proteins is not 45 AA but only 31 AA. In the pioneer work, the 49 AA of 

the C-terminal part of VP2 protein served as an anchor for conjugation of GFP molecule. 

Prepared VLPs were stable, regularly shaped and the amount of encapsidated GFP was very 

high (64) and almost reach the theoretical number of 72 (Abbing et al., 2004). Consequently, 

GFP was also fused with C-terminal part of VP2 protein (51 AA) and encapsidated to VLPs 

produced in plants (Catrice and Sainsbury, 2015). Recently, the co-encapsidation of 2 

fluorescent proteins, GFP and mRuby3, into one MPyV VLP was realized. These particles 

successfully delivered these proteins into HUVEC cells (Dashti et al., 2018). VP2 protein 

anchor served also for efficient transport of a 683 AA long fragment of the receptor Her2 

(Tegerstedt et al., 2007, 2005) and entire human prostate specific antigen (Eriksson et al., 

2011) into dendritic cells. A similar approach was used for minor protein VP3, where EGFP 

was fused to N-terminus of truncated VP3 (corresponding to positions 225-324 in VP2 

sequence) (Bouřa et al., 2005). This construct was utilized for testing of immune responses to 

various proteins, for example, EGFP (Frič et al., 2008), Bcr-Abl (Hrusková et al., 2009) and 

PCV2 Cap (Fig. 2.5, Fraiberk et al., 2017). 

 

Figure 2.5:Design of chimeric structures based on MPyV capsid proteins, carrying sequences of PCV2 Cap 

(A): Monomers, pentamers and VLPs of MPyV (grey) with immunogenic epitopes of PCV2 Cap (red) inserted 

into the DE loop of MPyV VP1. (B): Entire PCV2 Cap (red) fused with truncated MPyV minor capsid protein—

VP3 (violet) is situated inside the MPyV VLP. Cross-section of VLP (grey) is presented. (C): Entire PCV2 Cap 

(red) fused to the C-terminus of MPyV VP1 (grey) forming a pentameric capsomere. Taken from Fraiberk et al., 

2017.  



  12  

2.2.1.2 Utilization of MPyV VLPs for delivery of nucleic acids 

Naturally, nucleic acids are obvious cargos for VLPs. The presence of NLS in the VP1 

structure allows the efficient encapsidation of nucleic acids without the need of VP2/3 

presence.  Historically, VLPs were used exclusively for delivery of DNA for gene expression, 

nevertheless, today the gene therapy is more focused on direct transfer of mRNA or silencing 

molecules (Lund et al., 2010). The complex of VLP with specific nucleic acids could be 

prepared in vitro as well as in vivo. It was already proved that MPyV VP1 VLPs could 

interact with heterologous DNA in vitro (Štokrová et al., 1999), enter the mammalian cells 

and deliver the encapsidated DNA to the nucleus with following expression. This process is 

known as pseudoinfection and these VLPs are called pseudocapsids (Forstová et al., 1995). 

Preparation of VP1-DNA complexes is one of the limitation steps for successful gene 

delivery. It was published that complexes of empty particles and DNA are most effectively 

produced at a molar ratio of  5:1 capsids:DNA (Krauzewicz et al., 2000). The size of naked 

exogenous DNA that was stably complexed with VP1 protein and protected against DNases 

was approximately 3 kbp (Forstová et al., 1995). However, in complex with histones, the size 

of encapsidated DNA increases up to 5 kbp (Gillock et al., 1997). The major advantage of 

polyomaviral VLPs is their ability to deliver DNA into cells, where the DNA is expressed for 

relatively long time. The wild type mice expressed the DNA for few months and the 

immunosuppressed mice expressed even higher amounts of DNA for longer time period (up 

to 6 months) (Heidari et al., 2000). Effective delivery of transgenes into cells is mediated by 

interaction with sialic acid because the neuraminidase treatment led to inhibition of gene 

transfer. After the binding to receptors, pseudocapsids are transferred along microtubules to 

the nucleus and the inserted gene is transferred (Krauzewicz et al., 2000). Even though, the 

efficiency of VLP binding and entry does not alter from infectious virions (Richterová et al., 

2001), in case of successful delivery of DNA to the nucleus the situation is different. Only 

minor part of VLP particles is able to transport the incorporated DNA into the nucleus, what 

is probably caused by the absence of minor proteins that are not essential for VLP assembly 

but play a crucial role in DNA delivery (Mannová et al., 2002; Španielová et al., 2014).  

MPyV VP1 VLPs were tested also as a mean for delivery of antisense 

oligonucleotides; specific drugs for inhibition of gene expression at the transcriptional level. 

VLPs were loaded with fluorescently labeled oligonucleotides against N-methyl-D-aspartate 

receptor. These particles were used for transduction of cells overexpressing this receptor and 

cytotoxicity was measured. However, in comparison to other delivery methods, MPyV VP1 
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VLPs had only a moderate effect on antisense oligonucleotide functionality cytotoxicity test 

(Weyermann et al., 2004). 

In addition to MPyV, other members of Polyomaviridae family were tested for the 

ability of unspecific nucleic acids binding and their further transportation into cells. The 

efficient delivery of DNA was achieved also with hamster polyomavirus (Voronkova et al., 

2007), SV40 (Enomoto et al., 2011; Kimchi-Sarfaty and Gottesman, 2012, 2004; Nakanishi et 

al., 2008), human polyomavirus BKPyV (Schowalter and Buck, 2013; Touzé et al., 2001), 

human polyomavirus JCPyV (Chao et al., 2018, 2015; Chen et al., 2010; Deng et al., 2015) 

and human polyomavirus MCPyV (Schowalter and Buck, 2013). SV40 and JCPyV were 

utilized also for effective transfer of interfering RNA. For SV40 it was siRNA (Kimchi-

Sarfaty et al., 2005; Kler et al., 2012) and for JCPyV short hairpin RNA (Chou et al., 2010; 

Lin et al., 2014). 

 

2.2.1.3 Utilization of MPyV VLPs for delivery of other molecular 

        compounds 

The internal space of particle could be used for encapsidation of fluorescent probes, 

diagnostic or therapeutic compounds, leaving the external surface free for interaction with 

receptor or conjugation of targeting ligand. MPyV VLPs have not been extensively studied 

for this kind of application, however, some studies exist. Firstly, a fluorescein was conjugated 

to the VLP interior. All naturally occurring cysteines were replaced by serines and new 

cysteine was incorporated into GH loop that is faced to the internal space of MPyV VLPs. 

Then fluorescent dye Texas Red was conjugated through a maleimide linker to the cysteine 

residue. The prepared VLPs retained their ability to bind the receptor and successfully entered 

mouse cells C2C12 (Schmidt et al., 1999). Secondly, the drug methotrexate; a well known 

antifolate utilized in tumor therapy, was covalently linked to the VP2 anchor with loading of 

462 methotrexate molecules per VLP. The drug was efficiently delivered to cells CCRF-CEM 

and demonstrated time and concentration dependent cytotoxicity (Abbing et al., 2004). 

Contrary to MPyV VLPs, SV40 and JCPyV VLPs were thoroughly investigated as 

delivery vehicles of diagnostic and therapeutic compounds. The molecules could be inserted 

either by a simple encapsidation or through chemical or genetic conjugation. JCPyV VLPs 

enabled encapsidation of propidium iodide (Goldmann et al., 2000) and fluorescent dye Cy3 

(Qu et al., 2004) and loading of hydrophobic cytostatic drug paclitaxel through modified β-

cyclodextrin with thiol-reactive group (Niikura et al., 2013). SV40 VLPs were utilized for 

encapsidation of various nanoparticles: quantum dots (QDs), gold nanoparticles (AuNPs) and 

magnetic iron-based nanoparticles (MNPs). QDs are nanocrystals with outstanding properties 
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such as high density (TEM visualization), high absorption coefficient and fluorescence 

quantum yields (fluorescence microscopy visualization) (Li and Zhu, 2013). Various 

conditions for QDs assembly into SV40 VLPs were performed; regular assembly buffer (Li et 

al., 2009), dissociation buffer (Gao et al., 2013) and various charges of QD surface coatings 

(Li et al., 2010). In all cases VP1 pentamers bound QDs with high affinities, suggesting that 

QD serves as a scaffold and nucleation center for VLP assembly. The ratio of QD:VLP is 1:1 

and their internalization into cells is similar to wild type virus. Other nanoparticles with 

outstanding optical properties, such as scattering in the visible-near infrared region and strong 

absorption are AuNPs. These particles were already applied in photothermal therapy, gene 

therapy and biosensing (Khlebtsov et al., 2013). AuNPs of different sizes were encapsidated 

into SV40 VLPs, where the efficiency increased with the diameter of the AuNPs (from 10 nm 

to 30 nm) (Wang et al., 2011). However, the group continued with the research, conjugated 

AuNPs on the VLP surface and published combinations of this approach with encapsulated 

QDs (Li et al., 2012, 2011). The last type of nanoparticles are MNPs that are supramagnetic 

and therefore applicable for diagnostic (magnetic resonance) or therapeutic methods 

(magnetic hyperthermia) (Gupta and Gupta, 2005). These MNPs were coated with citrate and 

encapsidated into SV40 VLPs (Enomoto et al., 2013). This process was followed with 

chemical conjugation of epidermal growth factor (EGF) on the VLP surface that enabled the 

specific targeting of these VLPs to the cancer cells overexpressing EGF receptor. Recently 

the micron-sized MNPs were layered through streptavidin of the surface of VLPs containing 

QDs. The fluorescence of QDs was utilized for the detection of cargo entry and intracellular 

localization. After 16 hours VLPs were localized in the perinuclear space of Vero cells and 

therefore could serve as a Trojan horse for MNPs delivery (Gao et al., 2016). 

 

2.2.2 Retargeting of MPyV VLPs to specific cell types 

For utilization of VLPs in therapy and diagnostics it is necessary to target the 

therapeutic compound specifically to damaged tissue and protect it from interaction with 

healthy cells. Only this could bring the effective therapy with a minimum of side effects 

mediated by free distribution of the active substance.  

Cancer markers and ligands must be used for specific targeting of viral particles. The 

conjugation to the MPyV VLPs could be realized by two methods, either by genetic 

modification with alteration of viral genome or by chemical modification, where the ligand is 

chemically coupled through a reactive group on the VLP surface. The major advantage of 

VLPs against other therapeutic vehicles is the ability to display a high number of targeting 
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proteins or molecules and their amount and orientation could be controlled (Gupta et al., 

2005). 

2.2.2.1 Targeting of MPyV VLPs through genetic modification 

Targeting by genetic modification requires the construction of genetic fusion between 

targeting ligand and the major capsid protein VP1. The limitation of genetic modifications of 

MPyV VLPs is the necessity of finding the appropriate position in the surface loop that will 

allow a display of our inserted protein sequence on the VLP surface and at the same time will 

not have a negative effect on the VLP stability. For SV40 virus these loops are only DE and 

HI (Takahashi et al., 2008). 

The MPyV VLPs were modified by genetic approaches very frequently because it 

allows the insertion of peptides into 4 surface loops (BC, DE, EF, and HI). The purpose of 

VLP modification could be either retargeting or immunotherapy. The techniques and success 

of already realized modifications are summarized in Table 2.1. After insertion of epitope into 

the surface loop, it is displayed on the exterior in 360 repetitions and therefore it is accessible 

for numerous interactions. The size limitation of inserted peptide exists and it is usually 

between 20 to 40 AA. In some cases the flexible linkers (e.g. glycine-serine) are connected to 

both sides of inserted peptide to facilitate the assembly into proper conformation. The 

insertion of flexible linkers even enabled internalization of a whole enzyme (dihydrofolate 

reductase) with 18 kDa (Gleiter et al., 1999). The enzyme showed major changes in 

comparison to wild type, however, the enzymatic activity remained functional. Very 

surprisingly the insertion of enzyme did not have detrimental effect on VLPs assembly. The 

other example of successful incorporation of selected molecule directly into VP1 sequence 

were fragments of activator of urokinase-type plasminogen receptor (uPAR) that served as 

targeting moieties the uPAR receptor. The protein uPAR is expressed by many cancer cells 

and correlates with metastasis and poor prognosis. All four loop were tested for insertion of 

uPAR activator sequences, nevertheless, only EF loop was able to accept the incorporation 

without negative effect on protein solubility or particle stability (Shin and Folk, 2003). 

Genetic modifications could be used not only for direct conjugation of molecules but 

also for connection of molecules through insertion of adaptor molecules. Adaptors have dual 

specificities: one end binds the targeting molecule and the other binds viral protein. The way 

of designing could be realized by genetic modification of VLPs so that they will display the 

versatile adaptor binding motif. Many motifs were genetically engineered to MPyV VP1 

VLPs. In one study, 9 AA region of polyanionic peptide was inserted into HI loop and served 

as an adaptor for fusion with complementary polyanionic sequence on Fv fragment of tumor 

specific antibody. This conjugation did not affect the particle stability and successfully  
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Table 2.1: Overview of MPyV VP1 protein modification and their influence on the VLPs assembly 

This table was taken and adjusted from Suchanova et al., 2015. 

 

Virus Insert Location Utilization 
Expression 

system 

Assembled 

VLPs 
References 

MPyV 

pre-S1 phil  

- 2 hydrophilic 

fragments from 

HBV pre-S1 

sequence (70 

AA and 6 AA 

linkers) 

HI loop immunization S. cerevisiae Yes 
(Skrastina et al., 

2008) 

MPyV 
B-cell epitopes 

(12 a 14 AA) 
BC loop immunization E. coli Yes 

(Neugebauer et al., 

2006) 

MPyV 

PCV2 Cap 

epitopes  

(5 variants:  

16, 13, 17, 9  

and 18 AA ) 

DE loop immunization Baculovirus Yes 
(Fraiberk et al., 

2017) 

MPyV 

protein Z 

(antibody 

binding to a 

domain of 

protein A) 

(57 AA + 17 AA 

linkers) 

HI loop retargeting E. coli Yes 
(Gleiter and Lilie, 

2001) 

MPyV 

WW domain 

(from murine 

FBP11) (38 AA) 

DE loop 

HI loop 
retargeting E. coli No 

(Schmidt et al., 

2001) 

MPyV 

peptide with 8 

glutamate and 1 

cysteine residues 

HI loop retargeting E. coli Yes 
(Stubenrauch et 

al., 2001) 

MPyV 

peptide sequence 

binding uPAR 

(60 AA) or 

FLAG sequence  

(8 AA) 

BC loop  

DE loop 

HI loop 

 

EF loop 

retargeting Baculovirus 

 

No 

 

 

Yes 

(Shin and Folk, 

2003) 

MPyV 

peptide sequence 

binding to 

GCPII (9 AA) 

BC loop retargeting Baculovirus Yes (Suchanova, 2012) 

MPyV 

peptide sequence 

binding to Bcr-

Abl (25 AA)  

HI loop retargeting Baculovirus No 

Spanielová, 

unpublished 

results 

 
Abbreviations: AA – amino acids; FBP11 – formin binding protein 11; uPAR – urokinase-type plasminogen 

activator receptor; PCV2 Cap – capsid protein of porcine circovirus type 2 
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retargeted VLPs to dendritic cells (Stubenrauch et al., 2001). In other study, the 38 AA 

domain of protein Z was incorporated into HI loop of VP1 protein. Protein Z is a binding 

domain derived from protein A of bacteria Staphylococcus aureus and therefore has the 

ability to bind antibody immunoglobulins. This insertion allows the association of chosen 

antibody type that will determine the targeting specificity of such modified VLPs. The group 

confirmed that conjugation of herceptin antibody did not affect the particle stability and 

selectively retargeted VLPs to glycoprotein Her2, which is presented on several different 

human cancer cells (Gleiter and Lilie, 2001). Schmidt et al., 2001 investigated the insertion of 

28 AA of the WW domain of the mouse formin binding protein 11. WW domains bind 

proline-rich sequences with PPLP consensus motifs; however, their utilization is limited by 

high dissociation rate and loss of the VLP assembly capacity. In conclusion, the MPyV VLPs 

could be genetically retargeted to specific cellular markers but only few studies demonstrated 

stable VLPs with high selectivity. Probably it is not only the size of inserted foreign sequence 

that affect the particle integrity, the stability of VLPs could be influenced also by the actual 

position and character of foreign sequence introduced to VP1 protein and therefore it really 

hard to predict what effect on VLPs will the insertion have. 

 

2.2.2.2 Targeting of MPyV VLPs through chemical modification 

Conjugation of molecules on the VLP surface utilizing covalent bonds offers many 

advantages. Contrary to genetic modifications here we have the possibility to conjugate 

various different molecules usually without a steric hindrance and could be mostly sure that 

the molecule will be displayed on the VLP surface. To apply chemical conjugations on VLPs 

it is necessary to know the crystallographic structure that identifies the AA residues located on 

the external part of VLPs. Currently most of the viruses have known crystallographic structure 

and polyomaviruses are not an exception (Liddington et al., 1991; Stehle et al., 1996). 

Nowadays the mostly used techniques for chemical modifications of viral particles are 

based on classical methods used for protein adjustments (Hermanson, 2008; Wong, 1991). 

The bioconjugation techniques that are currently utilized for covalent modifications of surface 

exposed amino acids of virus-like particles are thoroughly reviewed in (Strable and Finn, 

2009). Briefly, the most used amino acids for modifications are cysteines, lysines and amino 

acids containing carboxyl group. The most exploited method for conjugation of molecules to 

the VLP surface is creation of amide bond between amino and carboxyl group. This method 

allows connection of peptide of fluorophore to surface exposed lysines through carboxyl 

residues that are firstly activated by carbodiimid (EDC) and N-hydroxysuccinimide (NHS) 
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and then react with lysine amino residues thus forming the amides. Also thiol residues of 

cysteines could be utilized as reactive groups for conjugation of molecules. The bond is 

created by alkylation of thiol group of cysteines by reaction with bromo/iodo acetamide or 

maleimide.  

Chemical modifications are not much explored yet for polyomaviral VLPs. The 

pioneer work was done for SV40 VLPs, where in fact, it is a combination of chemical and 

genetic modification. The reactive cysteine group was genetically inserted into DE loop of 

VP1 protein because the majority of naturally presented cysteines in VLPs are connected with 

each other through disulfide bonds and therefore do not have a free thiol group. The thiol 

group of inserted cysteine was further utilized for chemical conjugation of full length human 

EGF through heterobifunctional cross-linker SM(PEG)2 containing maleimide and 

succinimide moieties. These modified VLPs showed 10-fold high selective internalization to 

cells overexpressing EGF receptor compared to unmodified VLPs (Kitai et al., 2011). As there 

were no published experimental data investigating the potential of polyomaviruses as a 

backbone for chemical conjugation utilizing naturally occurring lysines, we decided to focus 

our research on that topic. The results of our two successful conjugations of high molecular 

weight molecule transferrin (Zackova Suchanova et al., 2017) and low molecular weight 

inhibitor of GCPII (Neburkova et al., 2018) are presented in this thesis. 

  



  19  

2.3 Transferrin 

Transferrin (Tf), a 78 kDa monomeric glycoprotein, is found abundantly in the blood 

and its primary function is to transport iron into the cells (Fig. 2.6). The binding of two ferric 

atoms to serum transferrin is followed by the conformational change that provides its 

selective recognition by the transferrin receptor (TfR) (Richardson and Ponka, 1997). The 

ligand-receptor complex is internalized by the cascade of clathrin-mediated endocytosis 

(Yashunsky et al., 2010). As iron serves as a cofactor of many proteins involved in cellular 

metabolism and DNA synthesis, the levels of transferrin receptor are upregulated on highly 

proliferating cells. Multiple studies confirmed the overexpression of TfR in numerous tumor 

types including bladder, pancreas, lung, colon and breast cancer. (Kondo et al., 1990; Prutki 

et al., 2006; Ryschich et al., 2004; Seymour et al., 1987; Walker and Day, 1986) In addition, 

elevated TfR expression correlates with cancer progression, tumor stage and prognosis. 

(Daniels et al., 2006; Das Gupta and Shah, 1990; Prior et al., 1990; Yang et al., 2001) The 

increased level of TfR in malignancies, its extracellular exposure and efficient endocytosis 

make this molecule an ideal target for delivery of therapeutic or diagnostic compounds to 

tumors. 

 
 
Figure 2.6: Structure of transferrin glycoprotein 

Three dimensional structure of monomeric transferrin molecule. Binding sites of 2 molecules of Fe3+ ions 

(grey balls) are indicated with black arrows. Taken and adjusted from RCSB PDB: 3QYT. 
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2.4 Glutamate carboxypeptidase II 

Glutamate carboxypeptidase II (GCPII, Fig. 2.7), also known as prostate specific 

membrane antigen (PSMA), is a tissue specific glycoprotein highly expressed in prostate 

cancer cells and cancer associated neovasculature (Liu et al., 1997; Silver et al., 1997). The 

abundance of GCPII correlates also with the aggressiveness of prostate cancer, metastasis and 

poor prognosis (Bostwick et al., 1998). In healthy tissue GCPII antigen is located in 

cytoplasm and only after tumor transformation it is incorporated into plasma membrane and 

exposed on the cell surface (Su et al., 1995). GCPII is tissue specific marker, it is expressed 

only in prostate, central nervous system, small intestine and kidney and expression in other 

tissues is very low (Maurer et al., 2016). According to the location, the function of GCPII 

differs and so there are various names for this enzyme. In the central nervous system GCPII 

metabolizes N-acetyl-L-aspartyl-L-glutamate into neurotransmitters N-acetyl-L-aspartate and 

glutamate and therefore is called NAALADase. In the proximal small intestine GCPII 

participates in the cleavage of γ-linked glutamate from pteoryl-poly-γ-glutamate, releasing the 

vitamin folic acid and it is also known as folate hydrolase I (O’Keefe et al., 2001). The 

substrate and physiological function of GCPII in prostate still remain unknown; however, its 

overexpression in prostate cancer is well established. Moreover the internalization of GCPII is 

increased 3-fold after binding of monoclonal antibody (Liu et al., 1998). The efficient 

internalization and high specificity of expression make GCPII an ideal marker for utilization 

in prostate cancer targeting therapies.   

 

 

Figure 2.7: Structure of glutamate carboxypeptidase II 

Three-dimensional structure of the GCP II homodimer. The location of binding site of GCP II inhibitor in each 

monomer is shown in red color. The position of the structure relative to the membrane is shown. Taken from 

(Šácha et al., 2016). 
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2.5 Protein corona 

As it was previously mentioned, nanoparticles (NPs) could be functionalized by 

various targeting molecules such as antibodies, peptides or small chemical molecules that will 

enable the specific recognition of receptor on the cell surface. In order to improve the 

efficiency of specificity and sensitivity of interaction, many researchers have focused on 

understanding the process of nanoparticle behavior in the biological environment such as cells 

(Jiang et al., 2008), tissues (Choi et al., 2010) and blood (Pitek et al., 2012). However, 

numerous studies demonstrated that after inoculation of NPs into the blood, serum proteins 

interact with their surface and form so called protein corona (Lynch and Dawson, 2008; 

Nguyen and Lee, 2017; Rahman et al., 2013; Treuel et al., 2015) that interferes with 

nanoparticle targeting (Fig. 2.7). The corona around NPs surface with tightly bound and low 

dynamic exchange of proteins (in the order of several hours) is called a “hard” corona. This 

corona could further interact with low affinity bound and dynamically exchanged proteins and 

form a “soft” protein corona (Casals et al., 2010; Monopoli et al., 2012, 2011).  

There are many critical factors of NPs determining the formation and composition of 

“hard” protein corona such as nanoparticle size, charge surface chemistry, shape, solubility, 

thickness, curvature and route of administration (reviewed in Docter et al., 2015; Ge et al., 

2015; Mahmoudi et al., 2011; Rahman et al., 2013). Among these the most significant 

nanoparticle parameters that affect protein corona are size (Chithrani et al., 2006; Lundqvist 

et al., 2008; Piella et al., 2017; Tenzer et al., 2011) and charge (Maffre et al., 2011; Treuel et 

al., 2014). Better understanding the influence of each physicochemical parameter on protein 

corona will serve for designing of targeted NPs without losing the targeting specificity. 

To suppress the protein corona formation, antifouling flexible hydrophobic polymers 

from polyethylene glycols (PEG) are often conjugated onto the nanoparticle surface to shield 

their surface (Dai Qin et al., 2014; Gref et al., 2000; Hamad et al., 2010; Knop et al., 2010; 

Otsuka et al., 2003). Although PEGylation decreases the non-specific targeting, it does not 

totally prevent protein adsorption (Pozzi et al., 2014). Moreover, the process of PEG 

installation onto NPs is not simple as the ideal density of connected PEGs and the length of 

their side chain has to be optimized (Lee et al., 2015; Perry et al., 2012). 
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Figure 2.7: Schematic representation of protein corona formation around the nanoparticle surface 

Illustration of nanoparticle behavior with or without the presence of serum proteins and its further influence on 

the specific targeting of NPs to cancer cells or tissues. Taken and adapted from (Saha et al., 2013). 
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The main goal of this thesis was to develop mouse polyomavirus based chimeric VLPs as a 

novel nanomaterial for targeting various types of cancer cells. We intend to examine the 

approach of chemical modification for conjugation of targeting molecule, compare 

different strategies of nanoparticle retargeting and study the behavior of polyomaviral 

VLPs in the context of biological fluids. 

 

Partial goals were realized in the following steps: 

  

Goal 1. Preparation of VLPs with conjugated transferrin and analysis of their efficiency 

to interact with cancer cells.  

a) Produce polyomaviral VLPs in insect cells Sf9 with utilization of baculovirus 

expression system.  

b) Conjugate transferrin protein to the surface of VLPs by “click” chemistry.  

c) Analyze the efficiency of modified VLP binding to cancer cells overexpressing 

transferrin receptor by confocal microscopy and flow cytometry.  

  

Goal 2. Preparation of VLPs with conjugated inhibitor of GCPII and analysis of their 

efficiency to interact with cancer cells.  

Produce polyomaviral VLPs in insect cells Sf9 with utilization of baculovirus expression 

system.  

a) Conjugate inhibitor of GCPII to the surface of VLPs by “click” chemistry.  

b) Analyze the binding efficiency of modified VLPs to cancer cells overexpressing 

GCPII by confocal microscopy and flow cytometry. 

 

Goal 3. Characterization of polyomavirus based  VLPs in context of serum proteins.  

a) Examine the interaction of unmodified VLPs with serum proteins 

b) Prepare VLPs with conjugated transferrin (VLP*-Tf), incubate them in 55% and 

10% serum and characterize their properties 

c) Analyze the cellular uptake by ELISA assay and flow cytometry 
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4.1 Material  

 

4.1.1 Instruments  

 

BD LSR II Flow Cytometer (BD Biosciences) 

Confocal Microscope TCS-sp (Leica) 

Confocal Microscope LSM 780 and LSM 880 (Zeiss) 

CO2 incubator (Forma Scientific)  

Epoch microplate spectrophotometer (BioTek Instruments) 

Fluorescence microscope BX-60 (Olympus)  

Fraction Recovery System (Beckman)  

Gradient Master™ Base Unit with MagnaBase™ Tube Holders (Science Services) 

GS – 15R Centrifuge (Beckman)  

Laminar Flow Box (Forma Scientific)  

Magnetic shaker B212 (Bibby) 

Megafuge 1.0R Centrifuge (Heraus Sepatech)  

Microfuge Centrifuge, rotor F241.5 (Beckman) 

Molecular Imager GS-800 Calibrated Densitometer (BioRad) 

Molecular Imager PharosFX System (BioRad) 

Optima TM L-90K Ultracentrifuge, rotors SW 28, SW 41 (Beckman)  

pH meter S20 SevenEasy (Mettler Toledo)  

Qubit® fluorometer (ThermoFisher Scientific) 

SDS-PAGE Apparatus (BioRad and Hoefer)  

Sonicator Soniprep 150 (Schoeller Pharmacia) 

SPR sensor platform (PLASMON IV) developed at the Institute of Photonics and 

Electronics, Academy of Sciences of the Czech Republic 

Thermo-Shaker TS-100C (Biosan) 

Transmission Electron Microscope JEOL JEM 1200EX  

Vortex-Genie 2 (Scientific Industries)  

Western Blotting Apparatus (BioRad)  

XCell SureLock™ Mini-Cell Electrophoresis System (ThermoFisher Scientific) 
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4.1.2 Molecular Weight Marker 

Spectra™ Multicolor Broad Range Protein Ladder (ThermoFisher Scientific) 

 
Protein marker visualized on 4-20% Tris-glycine gel (SDS-PAGE) and subsequently transferred to nitrocellulose 

membrane (ThermoFisher Scientific). 

 

   

4.1.3 Frequently Used Solutions 

PBS (Phosphate Buffered Saline):  4.090 g NaCl  

  0.1 g KCl  

  1.79 g Na 2 HPO4 ∙ 12H2O  

  0.12 g KH2PO4  

  pH was adjusted to 7.4 and the volume was dropped to 

  500 ml by dH2O  

  

B Buffer:   10 mM Tris–HCl (pH = 7.4)  

  150 mM NaCl  

   0.01 mM CaCl2   

  

1M Tris–HCl:   30.29 g of Tris-(hydroxymethyl)-aminomethan (Serva) was dissolved 

 in 200 dH2O ml, pH was adjusted by HCl and the volume was dropped 

 to 250 ml by dH2O.  
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5 x concentrated Laemli buffer:   1.25% SDS (Sigma)  

     50  mM Tris–HCl (pH = 6.8) (Serva)  

  25% ß-mercaptoethanol (Serva)  

  50% (v/v) glycerol (Lachema)  

  0.005% bromphenol blue (Lachema)  

                                                             

Insect medium with serum:  TNM–FH insect medium (Sigma)  

  10% FBS (Sigma)  

  

  

For infection also antibiotics for tissue culture 

were added (1/100 of the volume) 

Insect serum-free medium: TNM – FH insect medium (Sigma)   

DMEM with serum:  DMEM (Dulbecco’s Modified Eagle’s Medium) 

(Sigma)  

  10% FCS - Fetal Bovine Serum (Sigma)  

  2 mM L–Glutamine (Gibco)  

  

  

For infection also antibiotics for tissue culture 

were added (1/100 of the volume) 

DMEM without serum:  DMEM (Dulbecco’s Modified Eagle’s Medium) 

(Sigma)  

 2 mM L–glutamine (Gibco)   

Antibiotics for Tissue Culture (KRD):   100x concentrated  

  1 ml contains:   10000 units of penicillin  

     10 mg streptomycin 

     25 mg amphotericin B      
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4.1.4 Cell cultures 

  

Cell culture CCRF-CEM 

– Stable lymphoblastic cell line from human peripheral blood (ATCC No. CCL-119) 

– Medium: Roswell Park Memorial Institute medium (RPMI-1640; Sigma-Aldrich) 

 

Cell culture HUVEC 

– Stable cell line from Human Umbilical Vein Endothelial Cells (ATCC No. CRL-1730) 

– Medium: Endothelial Basal Medium-2 with supplements (EBM-2 SingleQuots™ Kit; 

Lonza) 

 

Cell culture NIH 3T6   

– Stable cell line of mouse fibroblasts (prof. Griffin, Royal Postgraduate School, London) 

– Medium: Dulbecco's modified Eagle's medium (DMEM, Sigma-Aldrich D5796) 

 

Cell culture Sf9   

– Stable cell culture of insect cells derived from the ovarian tissue of moth Spodoptera 

frugiperda (ATCC No. CRL-1711)  

 

Cell culture U2OS   

– Stable human bone osteosarcoma cell line (ATCC No. HTB-96) 

– Medium: Dulbecco's modified Eagle's medium (DMEM, Sigma-Aldrich D5796) 

 

Cell culture U-251 MG with switchable GCPII expression 

– Stable human glioblastoma cell line (supplied by ATCC as U373 MG cells, ATCC No. 

HTB-17 – misidentified cell line) 

– Production of U251 MG cell line with switchable GCPII expression was already 

published (Neburkova et al., 2018). Briefly, U251 MG cell line were stably transfected 

with pTet-Off® Advanced vector (Clontech) using FuGENE® HD transfection reagent 

(Roche) and after selection of monoclonal populations the U251 MG +/- clone with 

highest/lowest GCPII expression was chosen. The ideal concentration of doxycycline for 

turning GCPII expression off was achieved at 100ng/ml. 

– Medium: Dulbecco's modified Eagle's medium (DMEM, Sigma-Aldrich D5796) 
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4.1.5 Viruses 

 

MPyV  

- Mouse polyomavirus BG strain (GenBank, accession number: AF442959), the VP1 

sequence from this type of polyomavirus is utilized for production of VLPs 

- Sequence of the major capsid protein is coded on the complement strand of 

   the genome 

- VP1 (genome sequence 2932 - 4086)  

AcVP1  

- Recombinant baculovirus producing the major capsid protein VP1 of mouse 

polyomavirus  

 

4.1.6 Baculovirus Expression System 

VLPs assembled from the major capsid protein VP1 were produced in Sf9 insect cells 

through baculovirus expression system. Baculovirus containing the VP1 gene of mouse 

polyomavirus was previously prepared in our laboratory (Forstova et al., 1993) and the 

acquired media containing baculovirus was used for insect cell infection. 

4.1.7 Antibodies  

4.1.7.1 Primary Antibodies 

 MαMPyV-VP1: mouse monoclonal antibody against VP1 protein, clone D4 

(prepared by RNDr. Alena Drda Morávková, MBA, Ph.D.), (dilution 1:20) 

 RbαMPyV-VP1: rabbit polyclonal antibody against VP1 protein, produced in 

EXBIO company by immunization of rabbits with VP1 VLPs (dilution 1:5000) 

 MαMPyV-dnVP1: mouse monoclonal antibody against denaturated VP1, isotope 

IgG1 (dilution 1:100) (Forstova et al., 1993) 

 MαHuman-Tf: mouse monoclonal antibody against human transferrin, HTF-14, 

isotope IgG1 (dilution 1:1000) (Exbio) 
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4.1.7.2 Secondary Antibodies 

 Goat immunoglobulins against mouse immunoglobulins conjugated with 

horseradish peroxidase (dilution 1:1000) (BioRad)  

 Goat immunoglobulins against rabbit immunoglobulins conjugated with Alexa 

Fluor (dilution 1:1000) (BioRad)  

 

 

4.2 Methods  

 

4.2.1 Sterilization  

Solutions, Eppendorf tubes and Micropipette tips were sterilized in autoclave  

(30 min, 120 kPa, 127 °C). Solutions that could not be sterilized by autoclaving were 

sterilized by filtration through 0.2 µm filters. Laboratory glass was covered by aluminium 

foil and sterilized in 180 °C for 3 hours.  

 

4.2.2 Protein methods 

4.2.2.1 Preparation of samples for SDS-PAGE  

Protein samples were mixed with Laemli buffer (4:1), incubated for 5 minutes in 

100 °C and centrifuged for 10 s (short spin). 

Material:  

5 x concentrated Laemli buffer 

    

4.2.2.2 SDS polyacrylamide electrophoresis (SDS-PAGE) 

Electrophoretic glasses were thoroughly washed with detergent, dH2O and 

denaturated ethanol. Dried glasses were tightly fixed in the apparatus and lower gel was 

poured between the glasses (0.5 cm under the end of comb). The gel was covered with 

ddH2O and polymerized approximately 30 minutes. Then the upper gel was poured onto 

the lower gel and the comb was installed into the upper gel. After 15 minutes the comb was 

taken out and glasses with gel were transferred to electrophoretic apparatus. Wells were 

washed with electrophoretic buffer and the rest of it was poured into the apparatus. 

Samples were loaded into the wells together with the molecular weight marker. 
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Electrophoresis firstly ran for 30 minutes with the voltage 80V/cm and then with 120V/cm, 

until samples reached the bottom of the glass (approximately 1.5 hours).  

Material:  

Lower gel:   4 ml 30% acrylamide (Serva)  

    4.5 ml Tris-HCl (pH = 8.8) (Sigma)  

    120 µl 10% SDS (Sigma)    

    3.25 ml ddH2O  

    40 µl 10% APS (Serva)  

    8.5 µl TEMED (Sigma)     

     

Upper gel:   0.5 ml 30% acrylamide (Serva)  

    0.375 ml Tris – HCl (pH = 6,8) (Sigma)  

  30 µl 10% SDS (Sigma)  

  2.11 ml ddH2O  

  20 µl 10% APS (Serva)  

  5µl TEMED (Sigma)  

APS and TEMED were added just before pouring of the gel.  

Electrophoretic buffer:  25 mM Tris (Serva)  

  192 mM glycine (Sigma)  

  0.1 % SDS (Sigma)  

  

  

pH = 8.3  

  

4.2.2.3 Gel staining after SDS – PAGE  

Acrylamide gel after protein electrophoresis was washed 3 times for 5 minutes in 

ddH2O and then stained in GelCode Blue Stain Reagent for one hour to overnight with 

light shaking. After incubation the gel was washed few times in dH2O and scanned on 

densitometer.  

Material:  

GelCode Blue Stain Reagent (ThermoFisher Scientific) 
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4.2.2.4 Dot blot    

Protein samples (1-2 µl) were dropped onto the nitrocellulose membrane. Dried 

samples on the membrane were further visualized by immunological detection.   

Material:                        

Nitrocellulose membrane Amersham Prothran (GE Healthcare)  

  

4.2.2.5 Western blot  

Acrylamide gel after SDS-PAGE was incubated 10 minutes in blotting buffer. 

Whatman and nitrocellulose membrane were cut according to the size of the gel and poured 

into the blotting buffer.  Blotting sandwich was assembled as follows: the grid was layered 

into the blotting buffer and foam, whatman and gel was put onto it. Then nitrocellulose 

membrane, whatman, foam and grid and the sandwich was secured against opening by 

plastic locker. Afterwards the sandwich was inserted into the blotting apparatus that was 

filled with blotting buffer. Blotting lasted 1 hour in 250 mA and then the membrane was 

washed with dH2O. 

Material:                        

Nitrocellulose membrane Amersham Prothran (GE Healthcare)  

Whatman (GE Healthcare)  

Blotting buffer:   25 mM Tris (Serva)  

  195 mM glycine (Sigma)    

  20% methanol (Lachema)  

  pH = 8.3  

            

4.2.2.6 Immunodetection of proteins immobilized on nitrocellulose 

membrane  

Membrane with immobilized proteins was incubated for 30 minutes in low-fat milk 

(5% solution in PBS). Afterwards the membrane was incubated 1 hour with primary 

antibody diluted in low-fat milk solution, then washed 3 times with PBS (each wash lasted 

10 minutes) and incubated 30 minutes in secondary antibody diluted in low-fat milk 

solution. The membrane was again washed 3 x 10 min with PBS. The detection of 

enhanced chemiluminiscence was realized in the dark room. The membrane was poured 
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with developing solution (mixed A+B), incubated for 30 s and then dried on the cellulose 

wadding. Afterwards the membrane was inserted into plastic foil, the X-ray film was 

layered onto the foil and the exposition lasted from 15 s to 30 min. The X-ray film was 

developed by developer and fixator.  

Material:  

5%  low-fat milk in PBS  

Luminol (3-aminophthalydrazide; Sigma A 8511):  250 mM solution in DMSO,  

           aliquoted and deposited in -70 °C  

Coumaric acid (Sigma C 9008):  90 mM solution in DMSO,  

     aliquoted and deposited in -70 °C   

 

Developing solution A  80 µl p-coumaric acid (90 mM)  

  200 µl luminol (250 mM)  

  2 ml 1M Tris-HCl (pH = 8.5) (Sigma)  

                            18 ml dH2O  

E Developing solution A 12 µl H2O2  (30%, Sigma)  

  2 ml 1M Tris-HCl (pH = 8.5) (Sigma)  

  18 ml dH2O  

 

Both solutions were mixed (1:1) just before usage.  

PBS   

X-ray films (Foma)  

Developer (Foma)  

Fixator (Foma)   

 

4.2.2.7 Gradient SDS-PAGE 

Prepared VLPs were separated on SDS-PAGE (NuPAGE Novex 4-12% Bis-Tris 

precast polyacrylamide gels, ThermoFisher Scientific) according to manufacturer’s 

protocol. The running time in SDS-PAGE was 50 min with constant voltage 200 V. Proteins 

were then stained with colloidal Coomassie dye G-250 (see 4.2.2.3). 
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4.2.2.8 Densitometry analysis 

Coomassie-stained SDS-PAGE gels were scanned on a Molecular Imager GS 800 

densitometer (Bio-Rad). The quantification of densities was done by Quantity One image 

analysis software, version 4.5.0 (Bio-Rad). For calculation of protein to particle ratio, two 

gels with standards were prepared. VP1 protein and transferrin were loaded onto SDS-

PAGE in various concentrations and consequently a standard curve was made for 

calculation of protein concentrations from measured densities. 

 

4.2.2.9 Fluorescence scanning of the electro-transferred proteins 

Proteins were electro-transferred (1 h, 250 mA) onto a nitrocellulose membrane 

(GE Healthcare Life Sciences). For details see 4.2.2.5. The membrane was scanned for 

rhodamine (excitation at 552 nm) and Alexa Fluor 488 (excitation at 488 nm) 

fluorescences on a PharosFX Molecular Imager (Bio-Rad). 

 

4.2.2.10 Measurement of protein concentration 

Protein concentration was measured by Qubit Protein Assay Kit (ThermoFisher 

Scientific) according to the manufacturer’s protocol. 

4.2.2.11 Ultracentrifugation through sucrose cushion 

Centrifuge tubes (Beckman) were filled with VLP solution in B buffer that was 

underlayered with 1–1.5 cm of sucrose (10% or 20%) dissolved in B buffer. The tubes 

were then transferred into centrifuge cuevettes and balanced with B buffer. Centrifugation 

lasted 3 hours with 35,000 rpm and 4°C (rotor SW41). The pellet was resuspended in B 

buffer by overnight incubation in 4°C and homogenized by sonication. 

Material:  

Sucrose (Serva)  

B buffer  

 

4.2.2.12 Isopycnic centrifugation in CsCl gradient 

Centrifugation in CsCl gradient separates viral particles solely on the basis of their 

density. Viral particles after pre-purification with centrifugation through sucrose cushion 

were filled to 8 g with B buffer and then mixed with 3.65 g CsCl. This mixture was 

overlayed with paraffin oil and then the centrifuge tubes (Beckman) were transferred into 
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centrifuge cuevettes and balanced. Centrifugation lasted 24 hours with 35,000 rpm and 4°C 

(rotor SW41). Afterwards the fraction were taken by the fraction recovery system and 

separated into eppendorf tubes. Refractive index of individual fraction was measured and 

all fractions were examined by dot blot followed with immunodetection. According to 

achieved data the fractions were joined into 3 to 5 groups and dialyzed against B buffer. 

Material:  

CsCl (Serva)  

B buffer 

Paraffin oil (Roth)  

  

4.2.2.13 Isokinetic centrifugation in sucrose gradient 

Centrifugation in sucrose gradient allows the separation of protein material 

according to the size and therefore viral particles could be separated from disassembled 

material and low molecular weight compounds. After the centrifugation we could achieve a 

fraction of purified and homogenous viral particles. Gradient of 10-40 % sucrose was 

prepared in the Gradient Master with tube holder according to the manufacturer’s protocol. 

Samples (approximately 0.5 ml) were carefully transferred onto the gradient; tubes were 

inserted into centrifuge cuevettes and balanced. Centrifugation lasted 2 hours with 25,000 

rpm and 4°C (rotor SW41). 

Afterwards the fractions were taken by the fraction recovery system and separated 

into flat bottom microtitration plate. All fractions were analyzed by absorbance and 

fluorescence measurement. According to the achieved data the fractions were joined into 

two groups and dialyzed against B buffer.  

 

4.2.2.14 Dialysis  

Dialysis tube was boiled for 10 minutes in ddH2O. Joined fractions from isopycnic 

centrifugation were transferred into the dialysis tube and closed from both sides with clips. 

Proteins were dialyzed overnight in 6 °C against B buffer with stable stirring. Afterwards 

the sample was concentrated by ultracentrifugation in sucrose cushion.  

If the dialysis was used in preparation of modified VLPs, instead of dialysis tube, 

minidialyzis columns Slide-A-Lyzer 3,5K MWCO (GeneTICA) were used. The column 
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was closed with a cap and inserted into a floater. The floater was then transferred into the 

dialysis buffer and incubated for the desired time in 6 °C with stable stirring of the buffer. 

During the incubation the buffer was exchanged several times  

Material:  

B buffer 

Dialysis tubes Sevapor (Serva)  

Minidialyzis columns Slide-A-Lyzer 3,5K MWCO (GeneTICA)  

 

4.2.2.15 Measurement of binding specificity of VLPs by SPR  

The binding specificity of VLPs with conjugated iGCPII were measured by the 

technology of surface plasmon resonance (SPR). The principal of this technology is based 

on plasmonic waves that are generated on the metal surface (chip). These waves reflect the 

incident light on the chip and the detector then according to the angle difference records the 

height of waves. Plasmon waves increase the height after the attachment of a substance 

(e.g. polymer, protein or DNA), therefore the reflected light is deflected and the detector 

records the connection of the substance. 

The measurement on SPR was kindly provided by the Mgr. Pavel Šácha, Ph.D. 

from IOCB AS CR. We used the chip covered with gold and TYGON tubes. The chip 

contained carboxymethylated dextrans and polyethylene glycol (PEG) on its surface. 

Dextrans allow binding of the substance through amino groups and PEG covers the surface 

between dextrans and therefore protect from the steric hindrance during attachment of the 

substance to the chip. However it is necessary to activate the carboxyl groups of the 

substances to allow their binding to dextrans. Therefore we used N-hydroxysuccinimidyl 

ester (NHS) that activates the carboxyl residues and mediates the reaction with amino 

residues. Together with NHS the ethyl(dimethylaminopropyl) carbodiimid (EDC) is added 

that enables the creation of very unstable intermediate of the carboxyl group. Nevertheless 

the acidic pH must be kept in the solution to retain the carboxyl residues active. In that case 

we used 10 mM sodium acetate buffer of pH=5 (SA10).  

The measurement proceeded as follows: The chip was inserted into the SPR 

instrument and washed with ddH2O and then with 50 µl NHS together with 50 µl EDC. 

Excessive NHS/EDC was washed with ddH2O and the pH was adjusted by the SA10 

buffer. Streptavidine (2 µg) was bound to the activated carboxyl groups and the unbound 

streptavidine was washed with SA10. Afterwards the channels were washed  
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with these solutions: 0.5 M NaCl in PBS (wash out of non-covalently bound proteins),  

1 M ethanolamine (deactivation of residual activated carboxylic groups), SA10 buffer and 

TBS.  After this wash, one half of the channels was treated with solution containing 

biotinylated extracellular domain of GCPII (Avi-GCPII - prepared according to Tykvart et 

al., 2012) and the second half with TBS only. All channels were then washed with TBS. 

Now the solution of various modified VLPs (final concentration 5 nM) was added and 

finally all channels were washed with TBS. All solutions used during the SPR 

measurement were degassed prior usage.  

Material:  

2 mM Ethyl (dimethylaminopropyl) carbodiimid  

5 mM N–hydroxysuccinimidyl ester  

10 mM sodium acetate buffer, pH=5 

Streptavidine 

PBS with 0.5 M NaCl  

PBS 

1 M ethanolamine 

TBS (50 mM Tris-Cl, pH 7.6; 150 mM NaCl) 

Avi-GCPII in PBS 

4.2.3 Work with tissue cultures 

4.2.3.1 Passaging of insect cells 

Cells in confluency were scratched out and the suspension was transferred into 50 

ml conical centrifuge tube. The tube was filled with sufficient amount of TNM-FH insect 

media with 10% FBS. The final ratio of cells in suspension and fresh medium was 1:4. The 

cells were resuspended by pipetting and divided into 4 Petri dishes and cultivated in 28°C. 

The cells were passaged twice a week.  

Material:  

TNM-FH insect media with 10% FBS  

4.2.3.2 Infection of insect cells with baculovirus 

Cells were passeged with the ratio 1:3 to serum-free media and cultivated for 30 

minutes in 28°C. Then the medium was aspirated and cells were incubated with 

baculovirus inoculum (10 PFU/cell) was added for 1 hour in room temperature with 
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constant swinging. Afterwards TNM-FH insect medium with 10% serum was added and 

the cells were incubated 3-4 days in 28°C. The infected cells were harvested by scratching, 

collected to 50 ml conical centrifuge tube and centrifuged for 5 min, 2000xg, 4°C. The 

pellet was washed once with PBS and then either proceeded immediately to isolation or 

stored in -20°C. The supernatant was stored in 4°C for following infections. 

Material:  

TNM-FH insect medium with 10% FBS  

TNM-FH insect serum-free medium 

Baculovirus inoculum  

PBS  

 

4.2.3.3 Isolation of VP1 VLPs from insect cells  

Cells infected with baculovirus containing the VP1 gene were treated according to 

previously mentioned protocol (4.2.3.2). The pellet was resuspended in B buffer. The cell 

suspension was sonicated (amplitude=10) 5 times for 45 s with 30 s pauses and cooling in 

ice bath. Destruction of nucleus was checked by light microscopy. Sonicated suspension 

was centrifuged for 15 min, 2000xg, 4°C. Supernatant was centrifuged through 10% 

sucrose cushion in B buffer for 3 hours, 35,000 rpm, 4 °C (rotor SW41). The pellet was 

resuspended in B buffer by overnight incubation in 4°C and homogenized by sonication. 

The suspension was subjected to isopycnic centrifugation (see 4.2.2.11). Fractions 

resuspended in B buffer were characterized by electron microscopy, the concentration was 

measured by Qubit and the rests of these fractions were stored in -20°C. 

Material:  

CsCl (Serva)  

B buffer  

PBS  

Sucrose (Serva)  

  

4.2.3.4 Passaging of mammalian cells 

The medium from confluent cells grown on Petri dish (6 cm) was aspirated and the 

cells were washed with 2 ml of 0.03% EDTA solution in PBS and incubated in 37 °C, 5% 

CO2 for 3-10 min in 500 µl 0.25% trypsine solution in PBS. The detached cells were 
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thoroughly resuspended in DMED with 10% FBS. The suspension was divided onto 6 Petri 

dishes and filled with DMED medium with 10% FBS. The cells were incubated in 37 °C, 

5% CO2. The cells were passaged twice a week.  

Material:  

DMED with 10% FBS (or other medium appropriate for the cell type)  

0.03% EDTA solution (Sevac) in PBS  

0.25% trypsine solution (Sigma) in PBS 

 

4.2.3.5 Confocal microscopy 

The cells were detached from the dish, counted and the desired number of cells 

were transferred either into 24-well plate with microscopic glasses or into 4-chamber Glass 

Bottom Microwell Dishes (Cellvis, D35C4-20-1.5-N). Afterwards the cells were 

supplemented with DMED with 10% FBS and incubated overnight in 37 °C, 5% CO2. 

Next day the medium was aspirated and cells were treated with VLPs for 1 hour in 37 °C, 

5% CO2.  

For confocal microscopy of VLPs conjugated with transferrin and further 

experiments with serum proteins 0.54 nM concentration of VLPs was used. The cells were 

fixed with 4% paraformaldehyde in PBS for 15 min followed by extensive washing with 

PBS. The cover slips were mounted into ProLong Gold Antifade Mountant with DAPI 

(Invitrogen) and visualized with a Zeiss LSM 880 or Leica TCS-sp confocal microscope.  

For confocal microscopy of VLPs conjugated with iGCPII the cells were fixed with 

3.7% paraformaldehyde in TBS for 10 min, washed with TBS and counterstained with 500 

ng/ml Hoechst 34580 solution (Thermo Scientific). The cells were visualized with a Zeiss 

LSM 780 confocal microscope. 

Material:  

DMEM medium with/without 10% FCS (or other medium appropriate for the cell type) 

PBS, TBS 

VLPs 

Paraformaldehyde (Sigma) in PBS  

Triton X-100 (Sigma) in PBS  
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4.2.3.6 Flow cytometry 

Cells U-251
+
/
‒ 

MG were detached from the dish by trypsinization, resuspended in 

DMEM with 10% FBS, counted and centrifuged (300xg, 5 min, 4˚C). Subsequently, the 

cells were dissolved in serum-free DMEM medium without phosphate, transferred into a 

96-well plate (6·10
4
 cells per well) and incubated with VLPs (4 nM) for 1 h at 37 ˚C, 5% 

CO2. The experiment was done in triplicates and with negative controls (serum-free 

DMEM only). After the treatment, cells were washed with TBS and resuspended in 200 µl 

TBS. 

Cells U2OS and HUVEC were counted and an appropriate amount of cells was 

seeded on either 12-well or 24-well plate. The cells were incubated overnight in medium 

with 10% FBS at 37 ˚C, 5% CO2. The medium was replaced with 800 µl of serum-free 

medium. One part of the cells was pre-treated with Tf (Sigma-Aldrich, 100µg/ml) for 30 

min, 37 ˚C, 5% CO2. Subsequently, the cells were incubated with VLPs (0.54 nM) for 1 h 

at 37 ˚C, 5% CO2. The experiment was performed in duplicates and with negative control 

(serum-free medium only). After the treatment, cells were harvested by trypsinization and 

the activity of trypsine enzyme was subsequently blocked by soybean trypsine inhibitor 

(ThermoFisher Scientific, 0.5 mg/ml). The cells were washed twice with PBS, 

resuspended in 300 µl of PBS, and filtered through 35-µm nylon mesh. 

Cells CCRF-CEM were suspended, counted, centrifuged (300xg, 5 min, 4˚C), 

dissolved in 800 µl of serum-free medium, and transferred into a 12-well dish. The 

treatment with VLPs was the same as for the previously mentioned cells. The experiment 

was also performed in duplicates and with negative control (serum-free medium only). 

After the treatment, cells were harvested by scraping. The cells were washed twice with 

PBS, resuspended in 300 µl of PBS, and filtered through 35-µm nylon mesh. 

All cells were with a BD LSRFortessa flow cytometry analyzer (Becton, Dickinson 

and Company). The data were further analyzed with BD FACSDiva Software, version 6.0. 

The R program was utilized for statistical analyses. 

Material:  

DMEM medium with/without 10% FCS (or other medium appropriate for the cell type) 

0.03% EDTA solution (Sevac) in PBS  

0.25% trypsine solution (Sigma) in PBS 

Soybean trypsine inhibitor (ThermoFisher Scientific) 

PBS, TBS 

VLPs, Tf, iGCPII 
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4.2.4 Preparation of chemically modified VLPs 

 

4.2.4.1 Labeling of VLPs with NHS-fluorophore 

Unmodified VP1 VLPs were dialyzed against 0.1 M HEPES, pH 7.9 and treated 

with either NHS-rhodamine (ThermoFisher Scientific, final concentration 34 nM, 0.1 

equivalents per surface lysine) or NHS-Alexa Fluor 488 (AF488, ThermoFisher Scientific, 

final concentration 34 nM, 0.2 equivalents per surface lysine) at room temperature 

overnight with gentle shaking (250 rpm, TS-100C, Thermo-Shaker, Biosan). Excess dye 

was removed by dialysis against 0.1 M HEPES, pH 7.9 (4 °C, overnight with two buffer 

changes). A part of the prepared VLP mixture was used for subsequent conjugation of 

molecules and the rest was purified and concentrated by centrifugation through two 

successive 20% sucrose cushions (35,000 rpm, 3 hours, rotor SW41, Beckman) and 

dissolved in B buffer, thus providing the conjugates of VP1 VLPs used as a negative 

controls; VLP* (rhodamine), VLP* (AF488). 

Material: 

VLPs 

NHS-rhodamine ester (ThermoFisher Scientific) 

NHS-Alexa Fluor 488 ester (ThermoFisher Scientific) 

0.1 M HEPES, pH 7.9 

B buffer 

 

4.2.4.2 Conjugation of alkyne to fluorescently-labeled VLPs 

Labeled-VLPs were modified with heterobifunctional linker containing propargyl 

and N-hydroxysuccinimidyl ester moieties (Sigma). VLPs in 0.1 M HEPES, pH 7.9 were 

treated with the linker (35-fold excess per surface lysine) dissolved in DMSO  

(10% final concentration of DMSO). The reaction mixture was incubated at room 

temperature overnight with gentle shaking (250 rpm, TS-100C, Thermo-Shaker, Biosan). 

Excess reagents were removed by dialysis against 0.1 M HEPES, pH 7.4 (4 °C, overnight, 

first two buffer changes contained 10% DMSO) and concentrated in an Amicon Ultra 

centrifugal filter device (Millipore), providing VLP-alkyne conjugate. 

Material: 

N-hydroxysuccinimidyl ester (Sigma) 

0.1 M HEPES, pH 7.9 

0.1 M HEPES, pH 7.4 
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DMSO (Sigma) 

 

4.2.4.3 Preparation of VLP-conjugates by click reaction 

VLP-alkyne (51.5 nM) in 0.1 M HEPES buffer, pH 7.4, containing 10 mM copper 

sulfate, 100 mM aminoguanidine, 50 mM tris(3-hydroxypropyltriazolylmethyl)amine 

(THPTA, synthesized according to a previously published procedure by Hong et al., 2009) 

freshly prepared 100 mM sodium ascorbate and either Tf-azide (12.6 µM), Tf*-azide  

(24.9 µM), T.Red-azide (37.1 µM, ThermoFisher Scientific) or iGCPII-azide (35.6 µM) 

were used for click reactions. Copper sulfate and THPTA were mixed in a separate tube in 

a 1:5 concentration ratio prior to addition to the reaction mixture. The reaction mixture was 

well-sealed, mixed, and allowed to stand undisturbed at room temperature for 3 h. Excess 

transferrin or inhibitor were removed from the resulting VLP conjugates by dialysis 

(cellulose ester membrane, 300 kDa, Biotech) against 0.1 M HEPES, pH 7.4 (4 °C, 

overnight) and B buffer (4 °C, overnight). Finally, the VLPs-conjugates (VLP*-Tf*, 

VLP*-Tf, VLP*-T.Red, VLP*-iGCPII) were purified and concentrated by centrifugation 

through two successive 20% sucrose cushions (see 4.2.2.10). 

Material: 

0.1 M HEPES buffer, pH 7.4 

Copper sulfate 

Aminoguanidine 

THPTA 

Sodium ascorbate 

Tf*-azide, Tf-azide, T.Red-azide, iGCPII-azide 

VLP-alkyne (VLP*-alkyne, VLP*-alkyne) 

Cellulose ester membrane, 300 kDa (Biotech) 

Sucrose (Serva) 

 

4.2.4.4 Preparation of Tf-azide conjugate (Tf) 

Holotransferrin (30 mg, Sigma) was dissolved in 15 ml acetate buffer (0.1 M, pH 

5.5). Sodium periodate (1 mM) was added on ice and kept in the dark for 30 min. The 

resulting Tf-aldehyde was purified with 0.1 M HEPES buffer, pH 7.4 using an 

ultrafiltration cell and concentrated to 10 ml. 3-Aminooxypropylazide (16.2 mg in 500 ml 

DMSO) was added to Tf-aldehyde solution, and the mixture was gently stirred for 5 h. The 

product was purified with HEPES (0.1 M, pH 8) in an ultrafiltration cell and concentrated 
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to 3 ml (Rehor et al., 2015). The resulting Tf-azide was utilized for production of VLP-Tf* 

conjugates. 

In case of double labeled VLP*-Tf* conjugates, transferrin (30 mg) was 

conjugated also with Alexa Fluor 488. Lysine residues of Tf-azide were labeled with 

AF488 SDP ester (0.6 mg) by stirring overnight and then purified with HEPES (0.1 M, pH 

7.4) in an ultrafiltration cell, providing the Tf*-azide conjugate. 

Material: 

Human holotransferrin (Sigma) 

Acetate buffer (0.1 M, pH 5.5) 

Sodium periodate 

0.1 M HEPES buffer, pH 7.4 

0.1 M HEPES buffer, pH 8.0 

3-Aminooxypropylazide 

AF488 SDP ester (ThermoFisher Scientific) 

 

4.2.4.5 Preparation of VLP-PEG particles 

VLPs labeled with AF488 (VLP*) were dialyzed against 0.1 M HEPES, pH 8.0, with  

0.01 mM CaCl2 (4 °C, overnight). Then, the solution of particles (0.38 mg) was treated 

with 0.47 mg Acid-PEG13-NHS ester (Broadpharm, BP-22330, 35-fold excess per surface 

lysine) at room temperature for 5 h with stable stirring. Excess reagents were removed by 

dialysis against TBS with 0.01 mM CaCl2 (4 °C, overnight). 

Material: 

TBS (20 mM Tris-HCl, 150 mM NaCl, pH 7.4) 

VLP* 

0.1 M HEPES buffer, pH 8.0 

0.01 mM CaCl2 

Acid-PEG13-NHS ester (Broadpharm) 

 

4.2.5 Dynamic light scattering  

 

The hydrodynamic diameter of VLPs (0.1 mg/ml) was measured by a Zetasizer 

Nano ZS system (Malvern Instruments) at 25 ˚C. 
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4.2.6 Electron microscopy  

 

For morphology analysis, VLPs were visualized by electron microscopy. Electron 

micrographs presented in this doctoral thesis were achieved mostly by the author; 

however, the micrographs of VLPs with iGCPII conjugation were prepared by Mgr. Jitka 

Neburkova, IOCB AS CR. 

 

4.2.6.1 Negative staining 

The samples (VLPs, 7 µl) were dropped on parafilm and adsorbed on carbon-

coated formvar copper grids (Electron Microscopy Sciences) for 5 min. Grids were 

washed twice in redistilled H2O (30 s each wash) and then contrasted on two drops of 2% 

solution of phosphotungstic acid, pH=7.3 (1 min for each incubation). The grids were 

visualized with a JEOL JEM-1011 transmission electron microscope. 

Material:  

Cu grids (200 mesh) covered with parlodion membrane with steamed layer of carbon 

2% phosphotungstic acid, pH=7.3 (Fluka)  

Parafilm (American National Can Company)  

0.2 µm filtered ddH2O 

 

4.2.7 ELISA 

 

4.2.7.1 Binding assay on recombinant human TfR 

The half-area ELISA 96-well plate (Greiner Bio-One) was loaded with recombinant 

human transferrin receptor (125 ng/well; R&D systems; 2474-TR-050) and incubated 

overnight in 4 °C. The wells were washed four times with PBS containing 0.1% Tween-20 

and incubated 2 hours with blocking solution (5% low fat milk in PBS). The wells were 

washed with PBS+0.1% Tween-20 before VLP*-Tf particles (16 ng/µl), with or without 

serum (10% or 55%), were added. After incubation for 1 hour at RT, the plate was washed 

four times with PBS+0.1% Tween-20. The primary antibody (Rabbit polyclonal anti 

Mouse VP1 protein) was diluted in blocking solution (1:5000), loaded on the plate  

(100 µl/well) and incubated for 1 hour, RT. The plate was washed four times with 

PBS+0.1% Tween-20 and incubated with secondary antibody (Goat anti Rabbit with 

horseradish peroxidase; Bio-Rad) for 30 min, RT. After four washes with PBS+0.1% 

Tween-20 the ATBS substrate (Sigma) in 0.1M citrate buffer, pH=4.0 with hydrogen 
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peroxide was added, followed by absorbance measurement (Epoch microplate 

spectrophotometer; BioTek Instruments). 

 

Material:  

Recombinant human transferrin receptor (R&D systems) 

PBS 

Tween-20 (Sigma) 

VLP*-Tf 

ATBS substrate (Sigma) 

Citrate buffer, pH=4.0 

Hydrogen peroxide (Roth) 

 

4.2.7.2 Binding assay on U2OS or 3T6 cells 

The half-area ELISA 96-well plate (Greiner Bio-One) was loaded either with 

U2OS cells or 3T6 cells and incubated overnight in 37°C, 5% CO2. The wells were 

washed two times with PBS and incubated for 1 hour in 37°C, 5% CO2 with either VLP or 

VLP*-Tf particles (16ng/µl) diluted in DMEM with or without serum (10% or 55%). After 

incubation the samples were transferred to new 96-well half-area plate and coated for 1 

hour in RT. Then the plate was washed four times with PBS+0.1% Tween-20 and 

incubated 1 hour with blocking solution (5% low fat milk in PBS). The primary antibody 

(Rabbit polyclonal anti Mouse VP1 protein) was diluted in blocking solution (1:5000), 

loaded on the plate (100 µl/well) and incubated for 1 hour, RT. The plate was washed four 

times with PBS+0.1% Tween-20 and incubated with secondary antibody (Goat anti Rabbit 

with horseradish peroxidase; Bio-Rad) for 30 min, RT. After four washes with PBS+0.1% 

Tween-20 the ATBS substrate (Sigma) in 0.1M citrate buffer, pH=4.0 with hydrogen 

peroxide was added, followed by absorbance measurement (Epoch microplate 

spectrophotometer; BioTek Instruments). 

 

Material:  

DMEM medium 

PBS 

Tween-20 (Sigma) 

MPyV VLPs, VLP*-Tf 
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ATBS substrate (Sigma) 

Citrate buffer, pH=4.0 

Hydrogen peroxide (Roth) 

 

4.2.8 MALDI measurement 

 

For MALDI measurements, 5 µl of the sample (50 µg, 19.5 pmol) was mixed with 

2.5 µl of 100 mM DTT and 2.5 µl of 10 M urea for 10 min to disassemble the particles. 

MALDI analysis was performed by the Laboratory of Mass Spectroscopy, IOCB AS CR. 

 

4.2.9 UV-Vis spectroscopy 

 

The spectra were recorded using an Epoch microplate spectrophotometer (BioTek 

Instruments). For the measurement the particle concentration was adjusted to 150 µg/ml 

.   
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5.0 Production of polyomaviral VLPs for chemical modification  
 

The main goal of this thesis is preparation of chemically modified MPyV based 

VLPs with the ability of specific recognition of cancer cells. For this, it was necessary to 

produce very high amounts of VP1 VLPs of a good quality (homogenous, stable and 

purified). Mouse polyomavirus VLPs contain 360 molecules of the major structural 

protein, VP1, self-assembled into 45 nm empty viral capsid–like structures. They could be 

produced in various expression systems. We have chosen baculovirus expression system 

and Sf9 insect cells because this system allows the effective production of VP1 and its 

complex post-translational modification. Sf9 cells were infected (4.2.3.2) with recombinant 

baculovirus containing VP1 gene (AcVP1). VLPs were released from the cells by 

sonication and contaminating DNA that could interfere with chemical conjugation was 

degraded by incubation for 30 min with DNase I (Roche, final concentration 100 μg/ml) 

and 5 mM MgCl2 in room temperature. VLPs were then isolated by centrifugation through 

sucrose cushion, followed by isopycnic centrifugation in CsCl gradient according to the 

chapters 4.2.2.11 and 4.2.2.12. Each of six CsCl gradients was divided into 600 μl fractions 

(12 -13 fractions per gradient) and the refractive index of each fraction was measured. 

Measured refractive indexes are listed in the Table 5.1.  

 

Table 5.1: Refractive indexes of CsCl fractions 
The table presents the refractive indexes of fractions of CsCl gradients. The fractions of all gradients were 

combined according to the similarity of refractive indexes. Five combined fractions were generated. 

 

Fraction 

number 

Refractive index  
Combined 

fractions Gradient 

A 

Gradient 

B 

Gradient 

C 

Gradient 

D 

Gradient 

E 
 Gradient 

F 

1 1,373 1,373 1,372 1,374 1,372  1,373  

2 1,371 1,371 1,370 1,372 1,370  1,371 
F1 

3 1,369 1,369 1,368 1,369 1,368  1,369 

4 1,368 1,368 1,367 1,368 1,367  1,368 
F2 

5 1,367 1,367 1,366 1,367 1,366  1,367 

6 1,366 1,366 1,365 1,366 1,365  1,366 
F3 

7 1,365 1,365 1,364 1,365 1,364  1,365 

8 1,364 1,364 1,363 1,364 1,363  1,364 
F4 

9 1,363 1,363 1,362 1,363 1,362  1,363 

10 1,362 1,362 1,361 1,362 1,361  1,362 

F5 11 1,361 1,361 1,360 1,361 1,360  1,361 

12 1,360 1,360 1,358 1,359 1,359  1,359 

13 1,358 1,358 1,356 1,357 1,357  1,356  
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The presence of VP1 protein in obtained fractions was checked by dot blot followed 

with immunodetection (chap. 4.2.2.4 and 4.2.2.6) (Fig. 5.1). VP1 protein was detected (as we 

expected) in most fractions. This is due to the fact that VP1 has non-specific DNA binding 

activity and thus, VLPs can encapsidate larger or smaller fragments of cellular or baculovirus 

DNA which affect their buoyant densities. For purposes of our experiments, it was not 

necessary to further purify the “empty” VLPs. However, possible future medical exploitation 

of the prepared VLPs will require a careful removal of contaminating DNAs. 

 
 

Figure 5.1: Detection of VP1 protein in CsCl fractions  
Fractions were dropped on the nitrocellulose membrane and their position was defined by the number of 

fraction and an alphabetical symbol of the gradient (A-F). Proteins were visualized by immnunodetection 

using VP1-specific antibody and the X-ray film was scanned.  
 

Combined fractions F1-F5 (see Table. 5.1.) were transferred into dialysis tube and 

dialyzed overnight against B buffer and concentrated by sucrose cushion (chap. 4.2.2.14 

and 4.2.2.11). The protein concentration of combined fractions was measured by Qubit 

Protein Assay Kit (Table 5.2) and the quality of VLPs was verified by electron microscopy 

(chap. 4.2.6.). 

 

Table 5.2: Measured concentration of combined fractions 
The table presents the concentration of combined fractions F1-F5 measured by Qubit Protein. The fractions 

of all gradients were combined according to the similarity of refractive indexes. Five combined fractions 

were generated. 
 

Combined fractions Concentration (mg/ml) 

F1 0.41 

F2 1.85 

F3 4.76 

F4 2.68 

F5 2.32 



  51  

Electron micrographs (Fig. 5.2) showed the differences between fractions.  

Fraction F1 contains VLPs of good quality; however, the concentration is too low. In case 

of fractions F4 and F5 the concentration is high enough but these fractions contain a lot of 

disassembled material and therefore are not suitable for chemical modifications. The most 

homogenous VLPs were detected in fraction F2 with refractive index corresponding to 

buoyant density around 1.348 g/cm
3
 and in fraction F3 with refractive index corresponding 

to the buoyant density between 1.326 -1.337 g/cm
3
. Thus only these fractions were further 

utilized for chemical conjugation of targeting moieties (chap. 5.1 and 5.2). 

   
 

   
 

 
 

Figure 5.2: Electron microscopy pictures of prepared VLPs  
Prepared particles were visualized by electron microscopy after negative staining. Fractions (F1-F5) were 

acquired by joining of CsCl fractions (see Table 5.1). Fractions were diluted 1:10 in B buffer before they 

were adsorbed onto the grid. Scale bar = 100 nm. 
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5.1 Preparation of VLPs with conjugated transferrin 
  

The first goal of this thesis was construction of VLPs retargeted to cancer cells by 

chemical engineering of their surface. Mouse polyomaviral VLPs are superior for the 

potential clinical usage because of the absence of pre-existing immunity in human 

population. These VLPs also do not contain polyomavirus genome DNA and therefore 

they are considered as safe delivery vehicles. We hypothesized that the installation of 

bulky human transferrin (Tf) on the VLP surface could target the newly prepared particles 

to cancer cells overexpressing transferrin receptor (TfR).  Moreover, it could also create a 

steric hindrance that would decrease the undesirable binding of VP1 to cell expressing 

sialic acid residues (Fig. 5.3).  

 

Figure 5.3: Schematic representation of experimental design. 

The transferrin molecules were installed on the VLP surface by chemical coupling leading to retargeting of 

these VLPs from cells expressing natural receptor to tumor cells overexpressing transferrin receptor. The 

scheme was designed in Adobe Photoshop CS4 with utilization of polyomavirus particle prepared by Stehle 

and Harrison, 1996. 

 

The input VLPs for chemical modification were prepared in sufficient amount 

(chap. 5.0) and labeled with rhodamine-NHS ester (chap. 4.2.4.1) providing the VLP* 

conjugate for further fluorescence visualization. Then, the remaining lysines were modified 

with the heterobifunctional linker containing propargyl and NHS ester (chap. 4.2.4.2) thus 

generating VLP*-alkyne particles. We also labeled human Tf with AF488 (Tf*) and 

derivatized its aldehyde with aminooxypropylazide, providing Tf*-azide conjugate (chap. 

4.2.4.4). This conjugate was then attached to VLP*-alkyne via Cu(I)-catalyzed azide-
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alkyne cycloaddition, so called “click” chemistry (Presolski et al., 2011), obtaining VLP*-

Tf* conjugate (chap. 4.2.4.3).  

We firstly characterized the modified VLPs by transmission electron microscopy 

(TEM, chap. 4.2.6) and dynamic light scattering (DLS, chap. 4.2.5). TEM analysis proved 

the homogeneity and stability of both types of VLPs with a diameter of 55 ± 3 nm for 

VLP* and 63 ± 4 nm VLP*-Tf* (Fig. 5.4A). Measurement of DLS also ascertained that 

particles are monodispersed without forming aggregates (Fig. 5.4B). Higher hydrodynamic 

parameter of VLP*-Tf* particles corresponds well with the results from TEM and the 

obtained values also indicate the deposition of Tf* in one layer, if we consider the 

hydrodynamic parameter of Tf  that is 7.4 nm (Armstrong et al., 2004). 

 

 

 

 

                    

Figure 5.4: Characterization of prepared VLPs 
(A) Representative TEM images of VLP* and VLP*-Tf* particles visualized by negative staining with 2% 

solution of phosphotungstic acid. Scale bar = 100 nm. (B) Hydrodynamic diameters of VLPs measured by 

dynamic light scattering. 

 

For quantification of surface modification, we measured protein concentration of 

particles by Qubit protein assay kit and analyzed the Tf load by densitometry analysis of 

gradient SDS-PAGE (Fig. 5.5A, chap.4.2.2.7 and 4.2.2.8). We obtained approximately 

24% coverage of the VLP surface (35 ± 2 Tf*/VLP*-Tf*). To verify the conjugation of 

VLP*-Tf* 

 
VLP* 

 

A 

B 

VLP*-Tf* 

VLP* 
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transferrin, we also obtained extinction spectra. VLP*-Tf* particles showed both 

characteristic absorption bands of rhodamine present in VLP* and the Alexa Fluor 488 

present in the attached Tf* (Fig. 5.5B, chap. 4.2.9).  

 

 

 

 

 

Figure 5.5: Characterization of VLP surface modifications 

(A) Particles VLP, VLP*, VLP*-Tf*, and protein Tf* were separated on SDS-PAGE and stained with 

Coomassie brilliant blue. The molecular weights are indicated on the left. (B) Extinction UV-vis spectra of 

VLP*-Tf* and VLP* particles. The first peak defines emission of AF488 and the second peak emission of 

rhodamine. 

 

After confirmation of successful transferrin conjugation, we examined the ability of 

particles to selectively target TfR on cancer cells. As a model cancerous cell lines, we used 

CCRF-CEM lymphoblastic cell line derived from leukemia patient together with U2OS 

cells derived from osteosarcoma because these cell lines overexpress the TfR on their 

surface (Nakase et al., 2005; Petrini et al., 1989). As a negative control, we used a non-

A 

B 

VLP*-Tf* 

VLP* 

 VLP    VLP* VLP*-Tf*  Tf*     
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cancerous endothelial cell line HUVEC. These cells were incubated with VLP* and 

VLP*-Tf* particles for 1 hour and analyzed by flow cytometry (Fig. 5.6, chap. 4.2.3.6). 

To confirm the binding specificity of VLP*-Tf* to TfR, we preincubated the cells with 

high concentration of free transferrin (Tf+) for 30 min. For both cancer cell lines, we 

achieved high levels of VLP*-Tf* uptake, whereas after preincubation with Tf  

(Tf+VLP*-Tf*) the uptake was negligible, verifying the specificity of this interaction. On 

the other hand, particles without the conjugated transferrin (VLP*) also exhibited 

interaction with cancer cells, however, this time it was not influenced by free Tf, 

suggesting the possibility of binding in VP1-specific manner. The data achieved from 

HUVEC cell line showed very low levels of interaction for both types of particles. 

 

 

Figure 5.6: Flow cytometry study of VLPs uptake by CCRF-CEM, U2OS and HUVEC 

The cells were subjected to particles VLP* and VLP*-Tf* for 60 minutes in 37 °C, 5% CO2, with (Tf+) or 

without preincubation with free transferrin (30 min). Data represent the median of fluorescence intensity 

normalized to autofluorescence of control cells. Standard deviations were calculated from quadruplicates 

(two independent experiments in duplicates). 

 

To visualize the interaction of particles and cells, we utilized confocal microscopy 

with fixed U2OS cells (Fig. 5.7, chap. 4.2.3.5). The treatment of the cells was similar to 

that in previous experiment (VLP* and VLP*-Tf*, 1 hour, with or without Tf 

preincubation). We observed strong and effective binding of VLP*-Tf* particles that was 

totally blocked by the preincubation with free transferrin (Tf+VLP*-Tf*). The 

internalization of VLP*-Tf* was relatively fast, only 1 hour after incubation with cells, the 

particles localized near the perinuclear space. This location is typical for accumulation of 

polyomaviruses (Richterova et al., 2001), however, these viruses meet the transferrin 

during the endocytosis 3 hours post infection (Liebl et al., 2006; Mannova and Forstova, 

VLP*-Tf* 

Tf+VLP*-Tf 

VLP* 

Tf+VLP* 

 

U2OS              CCRF-CEM            HUVEC 
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2003). Faster trafficking of VLP*-Tf* into the perinuclear area indicates the retargeting of 

these particles to TfR. The interaction of VLP* particles with U2OS cells was negligible 

and independent on Tf preincubation confirming the unspecific interaction of these VLPs.  

Finally, we wanted to test the stability of VLP*-Tf* during the experiment. So, we utilized 

the double labeling of VLP*-Tf* for colocalization analysis. According to Mander´s 

colocalization coefficient values (0.747; 0.724), we concluded that Tf* molecules do not 

detach from VLP*-Tf* particles during internalization and the linkages remain stable. All 

data obtained from confocal microscopy are consistent with the flow cytometry data and 

further testify to the efficiency and selectivity of VLP*-Tf* uptake. 

 

 

Figure 5.7: Uptake of modified VLPs by U2OS cells 
U2OS cells were incubated with prepared VLPs VLP*-Tf* and VLP* for 60 minutes in 37 °C, 5% CO2 with 

(Tf+) or without (Tf-) the preincubation with free transferrin. The representative confocal images are 

presented with corresponding signal in green (Tf conjugated with Alexa Fluor 488 in VLP*-Tf*), red (VP1 

conjugated with rhodamine in VLP* and VLP*-Tf*) and blue (nuclei with DAPI staining). The images are 

shown as merge of all three channels and bright field with a maximum intensity Z-projection. 
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5.2 Preparation of VLPs with conjugated inhibitor of GCPII 

The second goal of this thesis was construction of VLPs retargeted to cancer cells 

by chemical engineering of their surface. Previous modification by transferrin proved the 

possibility of retargeting by installation of relatively huge molecule on the VLP surface. 

However, the eventuality to utilize small molecule for this purpose still remained 

undescribed. We hypothesized that the conjugation of appropriate amount of inhibitor of 

glutamate carboxypeptidase II (iGCPII) on the VLP surface could target the newly 

prepared particles to cancer cells overexpressing glutamate carboxypeptidase II (iGCPII). 

Moreover, the sufficient coverage of the VLP surface could also create a steric hindrance 

that would decrease the undesirable binding of VP1 to cells exposing on their surface sialic 

acid residues (Fig. 5.8).  

 

 

Figure 5.8: Schematic representation of experimental design. 

The molecules of GCPII inhibitor were installed on the VLP surface by chemical coupling, leading to 

retargeting of these VLPs form cells expressing natural receptor to cells overexpressing GCPII. The scheme 

was designed in Adobe Photoshop CS4 with utilization of polyomavirus particle prepared by Stehle and 

Harrison, 1996. 

 

The input VLPs for chemical modification were prepared in sufficient amount 

(chap. 5.0) and labeled with Alexa Fluor 488 (AF488) NHS ester (chap. 4.2.4.1), providing 

the VLP* conjugate for further fluorescence visualization. Then the remaining lysines were 

modified with the heterobifunctional linker containing propargyl and NHS ester (chap. 

4.2.4.2) and generated VLP*-alkyne particles. The iGCPII-azide conjugate (prepared 

according to Neburkova et al., 2018) was then attached by “click” chemistry to VLP*-

alkyne, obtaining VLP*-iGCPII conjugate (chap. 4.2.4.3). We also covered the surface of 

expressing sialic acid residue overexpressing 

glutamate carboxypeptidase II 

Inhibitor of GCPII 
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VLP* particles with PEG13-carboxyl NHS ester (VLP*-PEG) to avoid the VP1-specific 

interactions. 

Similar methods to previously prepared VLPs with transferrin were used for 

characterization of modified VLPs. TEM analysis proved that all VLPs were intact, 

homogenous and stable (Fig. 5.9A). Moreover, DLS ascertained that particles do not form 

aggregates, thus indicating that the direct conjugation of inhibitor did not change the 

colloidal stability of modified VLPs (Fig. 5.9B). On the other hand, VLP* without 

conjugated either iGCPII or PEG showed aggregation that could be visible on DLS 

measurement as a second peak of hydrodynamic parameter. This is inconsistent with the 

previously prepared VLPs with conjugated rhodamine (VLP*). Thus, the aggregation could 

be mediated by conjugation of AF 488 instead of rhodamine. The different behavior is 

probably due to the charge because high sulphonated dyes such as AF488 are negatively 

charged in contrast to rhodamine with overall positive charge. 
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Figure 5.9: Characterization of prepared VLPs 
(A) Representative TEM images of VLP*-iGCPII, VLP* and VLP*-PEG particles visualized by negative 

staining with 2% solution of phosphotungstic acid. Scale bar = 50 nm. (B) Hydrodynamic diameters of VLPs 

measured by dynamic light scattering. 

 

For quantification of surface modification, we measured protein concentration of 

particles by Qubit protein assay kit and analyzed the number of conjugated ligands by Mass 

spectrometry (Fig. 5.10, chap. 4.2.8). All types of modified VLPs were disassembled by 

incubation with urea and dithiotreitol and analyzed by MALDI measurement. The mass 

spectra of modified proteins were fairly complex; nevertheless, we were still able to 

quantify the loads. We obtained roughly 540 iGCPII molecules and 1,080 PEG molecules 

conjugated to VP1 protein. The MALDI measurement also confirmed that both molecules 

were bound to the VP1 protein covalently.  
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Figure 5.10: Characterization of VLP surface modifications by MALDI measurement 

VLPs were disassembled to subunits by incubation with high molar urea. Unmodified VLPs (VLP) and VLPs 

conjugated either with inhibitor of GCPII (VLP*-iGCPII) or PEG (VLP*-PEG) were subsequently analyzed 

by MALDI. The marked peaks indicate the corresponding mass. 

 

 

Following the characterization of iGCPII conjugation, we wanted to ascertain their 

capability to interact with GCPII in vitro. We utilized the technology of surface plasmon 

resonance (SPR, chap. 4.2.2.15). This technology enables to detect the binding of specific 

molecule and the speed of its washing by the shift in layer thickness. These data could be 

further evaluated to determine the binding strength and its affinity constant.  

For SPR detection, we used a golden chip and GCPII was immobilized in one half 

of the channels by neutravidin-biotin interaction (GCPII+). As a negative control, we used 

channels with neutravidin alone (GCPII-). To follow the process of VLP interaction, all 

channels have to be washed with storage solution of VLPs (B buffer) because even small 

change of salt concentration is detected. The degree of connection was analyzed by SPR 

measurement (Fig. 5.11). Only VLP*-iGCPII in the channel containing GCPII (GCPII+, 

orange color) bound GCPII selectively and with strong affinity. However, in channel 

containing only neutravidin (GCPII-) and VLP*, we noticed also a weak interaction (blue 

color). It might be mediated by the off-target binding between VP1 protein and neutravidin 

because we observed the same interaction during tests with streptavidin (Suchanova, 2012).  
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Figure 5.11: Testing of binding capacity of prepared VLPs to GCPII by SPR measurement  

VLP-GCPII interaction was recorded by SPR measurement. GCPII positive lines (GCPII+) contained GCPII 

immobilized on the chip through a neutravidin-biotin interaction and negative lines (GCPII-) were covered 

only by neutravidin. Three types of particles at final concentration 5 nM were utilized for the measurement; 

VLP*, VLP*-iGCPII, VLP*-PEG. After injection, VLPs were left to associate for several minutes and then, 

the channels were washed with Tris buffer (TBS). The channels were computationally normalized on a zero 

level of layer thickness for better demonstration of binding differences.  

 

Once we verified the interaction of VLP*-iGCPII with GCPII, we examined the 

ability of these particles to selectively target GCPII in context of cells. As a model cell 

line, we used U251 MG cells from human glioblastoma. This cell line was modified by 

Tet-Off advanced system to overexpress GCPII on their surface depending on the presence 

of doxycycline in the media (Gossen and Bujard, 1992; Tykvart et al., 2014). Cells with 

(U251 MG
+
) or without (U251 MG

-
) GCPII expression were incubated for 1 hour with 

VLP*-iGCPII, VLP*-PEG and VLP* and analyzed by flow cytometry. Since phosphate is 

a weak inhibitor of GCPII, during the experiment, only phosphate-free medium was used 

to block eventual detaching of VLPs from the cell surface. If we compare the data from 

VLP*-iGCPII and VLP*-PEG uptake, we observed that conjugation of inhibitor formed 

strong and specific interaction with GCPII because these particles showed negligible 

interaction with U251 MG
-
 (Fig. 5.12A). Very weak binding of VLP*-PEG to both types 

of cells indicates that the installation of PEG-carboxyl onto the VLP surface prevents the 

VP1-specific interaction with cells. 

On the other hand, the comparison of VLP*-iGCPII with VLP* brought very 

surprising data (Fig. 5.12B). The iGCPII negative particles, VLP*, showed very high 

binding efficiency to U251 MG cells, irrespectively to GCPII expression. This observation 

could be explained by overexpression of complex gangliosides (MPyV natural receptors) 

on the surface of glioblastoma cells. However, conjugation of PEG, with or without 

VLP* (GCPII-) 

VLP*-iGCPII (GCPII-) 
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iGCPII, facilitated the masking of VP1-specific interactions and selective retargeting of 

these VLPs. 

 

 

 

 Figure 5.12: Flow cytometry study of VLPs uptake by U251 MG cells  

The cells with (U251 MG
+
) or without (U251 MG

-
) GCPII expression were subjected to VLP*-iGCPII, 

VLP*-PEG, VLP* for 60 minutes in 37 °C, 5% CO2. (A) Comparison of VLP*-iGCPII and VLP*-PEG,  

(B) Comparison of VLP*-iGCPII and VLP*. Data represent the median of fluorescence intensity normalized 

to autofluorescence of negative cells. Standard deviations were calculated from triplicates. 

 

We further visualized the interaction of all three types of VLPs by confocal microscopy 

with fixed U251 MG cells with (U251 MG
+
) or without (U251 MG

-
) GCPII expression 

(Fig. 5.13, chap. 4.2.3.5). The treatment of the cells was similar to previous experiment 

(VLP*-iGCPII, VLP*-PEG and VLP*, 1 hour). We observed high internalization rate of 

VLP*-iGCPII particles in U251 MG
+
 that was blocked on cells without GCPII expression 

(U251 MG
-
). Negligible interaction with U251 MG cells was visible in case of VLP*-PEG 

in contrast to VLP* that bound U251 MG cells very effectively. Nevertheless, the majority 

of VLP* particles was localized on the cell periphery. This indicates that VLP* particles 

are mostly trapped on the membrane, but do not enter the cells. We even cannot rule out the 

possibility that the particles visible inside the cell are actually located on the wrinkled 

surface of the membrane. All data obtained from confocal microscopy are consistent with 

the flow cytometry data and further testify the efficiency and selectivity of VLP*-iGCPII 

uptake mediated by surface exposed iGCPII. 
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Figure 5.13: Uptake of modified VLPs by U251 MG cells  

U251 MG cells with (U251 MG
+
) or without (U251 MG

-
) GCPII expression were incubated with  

VLP*-iGCPII, VLP*-PEG and VLP* for 60 minutes in 37 °C, 5% CO2. The representative confocal images 

are presented with corresponding signal in green (VP1 conjugated with Alexa Flour 488) and blue (nuclei 

Hoechst staining). The images are shown as merge of both channels and with a maximum intensity  

Z-projection.  
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5.3 Characterization of polyomavirus VLPs in context of serum 

proteins 
 

The third goal of this thesis was to test the influence of protein corona on targeting 

of MPyV VLPs and their behavior in the presence of serum proteins. We performed the 

comparative study of MPyV VLPs and polystyrene nanoparticles (Beads). These Beads 

were chosen as a control nanoparticles for two reasons; the composition of associated 

protein corona around the Beads is known (Blundell et al., 2016; Lundqvist et al., 2008) 

and Beads can be provided in a diameter around 50 nm (similar size of MPyV capsids). For 

this study, unmodified MPyV VLPs were used first and then, we examined also how the 

presence of serum proteins can affect binding efficiency of modified VLPs with conjugated 

targeting ligand. For that, we prepared new stocks of MPyV unmodified VLPs and VLPs 

with conjugated transferrin, new negative controls and tested the binding by flow 

cytometry and ELISA. 

The input material for comparative study was either produced in baculovirus 

expression system (MPyV VLPs, chap. 5.0) or obtained from Polysciences, Inc (Beads). 

The experiment was inspired by the previously published protocol for silica and 

polystyrene nanoparticles (Tenzer et al., 2013), where particles were incubated in the 

presence of plasma proteins and consequently, Beads with formed hard corona around their 

surface were purified from the unbound proteins by centrifugation through sucrose cushion. 

Both VLPs and Beads were incubated for 1 hour in the 55% human serum (Sigma-Aldrich, 

H6914), then dialyzed against B buffer for 2 days in dialysis tubing (300 kDa, Biotech) 

with several buffer changes. We added this purification step for nanoparticles with corona 

as the data revealed the equilibrium dialysis as sufficient method for removal of unbound 

proteins from various drugs with formed protein corona (Kristensen and Gram, 2009; Lin et 

al., 2005; Zeitlinger et al., 2011). Following the dialysis, samples were purified by 

ultracentrifugation in 20% sucrose cushion (20% SC; chap. 4.2.2.11). The particles were 

analyzed after each purification step by TEM (Fig. 5.14A), SDS-PAGE (Fig. 5.14B) and 

DLS (Fig. 5.14C) and compared to particles without the serum treatment. As could be seen 

from the TEM pictures, after dialysis, both Beads and MPyV VLPs contained a high 

amount of serum proteins, proving that equilibrium dialysis does not lead to dissociation of 

loosely associated proteins. However, the effect of purification by sucrose cushion differed 

between the particle types. Protein composition of MPyV VLPs was similar as that in the 

serum untreated control in contrast to Beads that were aggregated and covered with a 

relatively thick layer of proteins (Fig. 5.14A). These data were confirmed also by the SDS-
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PAGE analysis. The MPyV VLPs without serum proteins showed multiple bands of VP1 

protein, its dimer and few, probably degradation or contamining products. The untreated 

Beads were invisible by Coomassie blue staining because these particles do not consist of 

protein. After incubation with serum and dialysis step, the samples contained still lots of 

serum proteins. However, the substantial change accured after further purification of 

particles by centrifugation in sucrose cushion. SDS profile of MPyV VLPs became 

practically identical with that of untreated VLPs. On the other hand, Beads were suddenly 

visible by protein staining and were covered with various serum proteins, with the major 

band of protein with similar molecular weight to bovine serum albumin (Fig. 5.14B). The 

proteins adsorbed to the particles were also analyzed by DLS. This method allows the 

determination of hydrodynamic diameter and convenient observation of the protein corona 

formation on compact particles (Pino et al., 2014). From the graph of MPyV VLPs, we 

could see that their hydrodynamic diameter around 60 nm was not changed by the presence 

of serum, contrary to Beads, where the hydrodynamic diameter was increased from 65 nm 

to 745 nm. 

Therefore, we could conclude that MPyV VLPs are not influenced by formation of 

hard corona because they were not aggregated, their hydrodynamic diameter was not 

increased and not additional proteins in comparison with untreated VLPs were visible by 

coomassie blue staining. The analysis of Beads confirmed the formation of hard protein 

corona as was published previously (Blundell et al., 2016; Lundqvist et al., 2008). 
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Figure 5.14: Comparison of VLPs and Beads behavior in the presence of human serum 
(A) Representative TEM images of MPyV VLPs and Beads visualized by negative staining. The pictures 

without serum addition and after serum addition (+55% HS) and dialysis or both dialysis and centrifugation 

purification steps are also shown. Scale bar = 50 nm. (B) Fractions of MPyV VLPs and Beads untreated, or 

incubated with serum, or incubated with serum and purified, or 1% human serum were separated on SDS-

PAGE and stained with Coomassie brilliant blue. The molecular weights are indicated on the left. On the 

right, the molecular weight marker (Pharmacia Fine Chemicals) containing bovine serum albumin (67 kDa) as 

a control is shown. (C) Hydrodynamic diameters of MPyV VLPs and Beads before or after incubation with 

human serum or after incubation with serum followed by one or two purification steps, measured by dynamic 

light scattering. 
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 After we confirmed that MPyV VLPs do not form a hard corona, we analyzed also 

the behavior of these VLPs in context of cells. We set up the ELISA based binding assay to 

figure out the influence of serum proteins on VLP interaction with cells. We utilized two 

cell types; adherent mouse 3T6 fibroblast cells and human osteosarcoma cells,U2OS (chap. 

4.2.7.2). Mouse fibroblasts were selected as a positive control of this experiment as these 

cells are naturally infected by mouse polyomavirus and contain the GD1a and GT1b 

ganglioside receptors. Human osteosarcoma cells U2OS were used as a model human 

cancer cell line that is adherent and overexpress transferrin receptor (chap. 5.1). The 

interaction of MPyV VLPs was studied not only in human serum but also in serum from 

various animals. We aimed to find out, if the formation of protein corona could be serum 

species specific, as it was published that the relative proportion of protein composition of 

serum differs among mammalian species (Zeitlinger et al., 2011). MPyV VLPs with cells 

(3T6 or U2OS) were incubated (in 37°C, 5% CO2 in the presence of human (HS), mouse 

(MS), chicken (ChS), bovine (FBS) or rat (RS) sera, applied in two concentations, 10% or 

55 % (Fig. 5.15). Then, the unbound VLPs were transferred onto 96-well plate and 

detected by ELISA assay (chap. 4.2.7.2). The obtained data showed very low influence of 

serum proteins on VLP/cell interaction. Even the highest inhibition of VLP binding in 55% 

human serum reached only 6.4% on 3T6 cells or 9.1% on U2OS cells. These results 

suggest that serum proteins do not affect interaction of MPyV particles with the natural 

virus receptors and support the observations that stable protein corona is not formed around 

MPyV VLPs (Fig. 5.14).  

 

 

Figure 5.15: Binding assay on 3T6 and U2OS cells 
The graph represents data from binding assay performed with 3T6 and U2OS cells. These cells were 

subjected to MPyV VLPs and incubated with or without presence of serum. The unbound VLPs were coated 

on plates and detected by ELISA assay. The data were normalized by calculation of the difference in 

absorbance values between VLPs with and without serum. Standard deviations were calculated from 

triplicates. 
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Next, more importantly, we examined whether the presence of serum proteins can 

affect the binding efficiency of VLPs with conjugated targeting ligand. For this purpose, 

we have prepared a new stock of transferrin modified VLPs. VLPs were prepared in 

sufficient amount (chap. 5.0) and labeled with Alexa Fluor 488 (AF488) NHS ester (chap. 

4.2.4.1) providing the VLP* conjugate. Then, the remaining lysines were modified with the 

heterobifunctional linker containing propargyl and NHS ester (chap. 4.2.4.2) and generated 

VLP*-alkyne particles. The transferrin molecule or Texas Red dye conjugated with azide 

were then attached to VLP*-alkyne by “click” chemistry, obtaining VLP*-Tf or  

VLP*-T.Red conjugate (chap. 4.2.4.3). Texas red dye was conjugated to VLP* particles as 

a control of click reaction efficiency as this time the transferrin molecule was not 

fluorescently labeled. 

We characterized the modified VLPs by various methods. The stability and 

homogeneity of VLPs were analyzed by TEM (Fig. 5.16B) and DLS (Fig. 5.16C). TEM 

analysis proved the stability of all types of VLPs. Measurement of DLS ascertained that 

particles are monodispersed and do not aggregate, except of particles labeled with AF488 

(VLP*) where an additional peak with higher hydrodynamic diameter was present, 

indicating the aggregation of these particles. Higher hydrodynamic parameter of VLP*-Tf  

in comparison with parameters of other particles confirmed the conjugation of transferrin 

to the VLP surface. For quantification of surface modification by Tf, we measured protein 

concentration of particles by Qubit protein assay kit and analyzed the Tf load by 

densitometry analysis of gradient SDS-PAGE gel after Coomassie blue staining (Fig. 

5.16A, chap.4.2.2.7 and 4.2.2.8). We obtained 51 ± 3 Tf/VLP*-Tf that provided 

approximately 35% coverage of the VLP surface. The calculation of the coverage was 

based on a simple spherical model of VLPs with diameter of 45 nm and the footprint of Tf 

as a circle of 7.4 nm in diameter (Armstrong et al., 2004). To verify the labeling of VLPs 

by fluorescent dyes, we also obtained extinction spectra. Particles showed both 

characteristic absorption bands of Alexa Fluor 488 present in all VLP* and the attached 

Texas Red to VLP*-T.Red particles (Fig. 5.16D, chap. 4.2.9). 
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Figure 5.16: Characterization of prepared VLPs 

(A) Particles VLP, VLP*, VLP*-T.Red, VLP*-Tf, and protein Tf were separated on SDS-PAGE and stained 

with Coomassie brilliant blue. The molecular weights are indicated on the left. (B) Representative TEM 

images of VLP, VLP*, VLP*-Tf and VLP*-T.Red particles visualized by negative staining. Scale  

bar = 50 nm. (C) Hydrodynamic diameters of VLP, VLP*, VLP*-T.Red and VLP*-Tf particles measured by 

dynamic light scattering. (D) Extinction UV-vis spectra of VLP*, VLP*-T.Red and VLP*-Tf, particles. The 

first peak defines emission of AF488 and the second peak emission of Texas Red. 
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The characterized VLP*-Tf particles were utilized also in the confocal study of the clathrin 

pathway inhibition and serum influence on the way of their internalization by human cancer 

cells. Transferrin is known to enter cells via clathrin-mediated pathway (Dautry-Varsat, 1986) 

whereas MPyV utilize non-clathrin pathway (Richterová et al., 2001) We used a clathrin-

specific inhibitor, chlorpromazine, that translocates clathrin from the cell surface to 

intracellular endosomes (Dutta and Donaldson, 2012) and blocks clathrin-mediated 

endocytosis and HeLa cells that were used previously for studying the inhibition of transferrin 

uptake by clathrin-mediated endocytosis (Sun et al., 2005).. The cells were incubated for 30 

minutes in DMEM without serum, then the medium was aspirated and 0, 10 or 30 µg/ml of 

chlorpromazine (CPZ) in DMEM with 10% FBS was added. After incubation for 1 hour in 

37°C, 5% CO2 the cells were treated for 30 minutes with Tf-AF488, VLP*-Tf or VLP* in 

37°C, 5% CO2, then washed twice in PBS and fixed (chap. 4.2.3.5). The confocal images (Fig. 

5.17) showed that VLP*-Tf as well as free transferrin (Tf-AF488) were dependent even in the 

presence of 10% FBS on functional clathrin mediated endocytosis since the pre-incubation of 

cells with chlorpromazine (CPZ 30 µg/ml) inhibited their cellular uptake. The lower 

concentration (CPZ 10 µg/ml) decreased the interaction but was insufficient to completely 

diminish it. On the contrary, the uptake of VLPs with AF488 (VLP*) was not influenced by 

either presence of serum or CPZ pre-incubation. These data confirmed that MPyV VLP*-Tf 

can be efficiently redirected via transferrin molecule not only to bind cells overexpressing 

TfR, but also to utilize clathrin mediated endocytosis. Moreover, this behavior is not 

influenced by the presence of serum.  
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Figure 5.17: Uptake of modified VLPs by HeLa cells 

HeLa cells with or without inhibition of clathrin-mediated endocytosis by chlorpromazine presence. The cells 

were incubated with Tf*, VLP*-Tf, VLP* or B buffer (cells only) for 1 h. Confocal sections of representative 

cells with corresponding signal in green (conjugation of Alexa Fluor 488) and blue (nuclei with DAPI staining) 

channels are shown. Merged images are composed of both channels and bright field image. 
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Following the characterization of VLP*-Tf conjugation and endocytosis, we aimed 

to prove the capability of these particles to interact with transferrin receptor (TfR) in the 

presence of serum proteins. We utilized the ELISA assay for testing the direct (out of the 

context of cells) interaction of VLP*-Tf with TfR and the influence of serum proteins. TfR 

was coated on plates and incubated for 1 hour with VLPs that were either in PBS, in serum 

or in serum with added Tf (chap. 4.2.7.1). As sera can contain a high concentration of free 

transferrin that may inhibit the interaction of VLP*-Tf and TfR (5.1), the sera from three 

different species; human (HS), mouse (MS) and bovine (FBS), were examined in this assay 

(Fig. 5.18). These species were chosen according to similarity of transferrin molecule. 

Mouse transferrin has 73% sequence homology with human transferrin and also their 

receptors were shown to be very similar (van Agthoven et al., 1984). On the other hand, 

bovine transferrin has low sequence identity and it was proved that this Tf does not interact 

with human TfR. To estimate the influence of Tf during interaction of VLP*-Tf with TfR, 

the free human Tf was added in control serum samples. The obtained data were normalized 

to absorbance of input VLP*-Tf without serum for calculation of percentage of binding 

inhibition. The highest inhibition were achieved by combination of serum with free Tf, 

indicating that the interaction of VLP*-Tf with TfR is specific and mediated by installed Tf 

molecules on the VLP surface. Human serum had similar effect on these VLPs as it 

contains a high amount of free human transferrin. Partial inhibition was achieved with 

mouse serum indicating the possible low-affinity interaction of mouse Tf and human TfR. 

The presence of FBS did not interfere with the binding; however, surprisingly, it slightly 

increased the efficacy of particle/receptor interaction. 
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Figure 5.18: Interaction of VLP*-Tf with TfR 
The graph represents data from ELISA assay performed with transferrin receptor (TfR) coated on ELISA 

plate. TfR was subjected to VLP*-Tf particles with or without the presence of serum. The specificity of 

interaction was verified by co-incubation with free transferrin (+ Tf). The data were normalized by 

calculation of the difference in absorbance value between VLPs with and without serum. Standard deviations 

were calculated from triplicates. 

 

 

Finally, we examined the ability of these particles to target TfR in the context of 

cells by the ELISA based binding assay and by flow cytometry. As a model cell line, we 

used U2OS from human osteosarcoma as these cells overexpress TfR. The binding assay 

was performed with U2OS cells (chap. 4.2.7.2) and as previously, HS, MS, FBS and free 

human Tf were used. Cells were incubated for 1 hour with VLP*-Tf particles in the 

presence of serum or free Tf (in control samples), then, the unbound VLP*Tf particles 

were washed, coated on plates and analyzed by ELISA assay (Fig. 5.19). The obtained data 

were normalized to absorbance of input VLP*-Tf without serum (PBS) for calculation of 

percentage of binding inhibition. Fig. 5.19 shows that, similarly to data from ELISA test 

with recombinant TfR, the interaction of VLP*-Tf particles with cells was inhibited by HS 

to the similar extend as by free human Tf. The effect was dose dependent. Interestingly, we 

observed opposite trend for MS. The higher concentration of FBS also slightly supported 

the VLP*-Tf interaction with cells. These data indicated, that specific interaction of VLP*-

Tf with target receptor on cells is primarily influenced by free transferrin in sera and not by 

serum proteins per se. Since transferrin in FBS apparently does not inhibit these 

interactions, we used FBS for subsequent analysis. 
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Figure 5.19: VLP*-Tf binding assay on U2OS cells 
U2OS cells were subjected to VLP*-Tf particles with or without the presence of serum. The unbound VLPs 

were coated on plates and detected by ELISA assay. The data were normalized by calculation of the 

difference in absorbance values between VLPs with and without serum. Standard deviations were calculated 

from triplicates. 

 

Further, we performed the flow cytometry study on U2OS cell. Being aware of the 

fact, that fluorescent day could substantially influence the interaction of VLPs with cells 

(see minor interaction of VLP* labeled with rhodamine in Fig 5.6. and high interaction of 

VLP* labeled with Alexa Fluor 488 in Fig. 5.12B), we compared binding of VLP* and 

VLP*-T.Red on U2OS cells. These particles were prepared (from the same stock) as 

negative controls to VLP*-Tf (chap. 4.2.4.3). VLP* and VLP*-T.Red particles were 

subjected to U2OS cells for 1 hour with or without the presence of free human transferrin 

(Tf+), 10% FBS or 55% FBS (Fig. 5.20). As could be seen from the graph (Fig. 5.20), the 

conjugation of Texas Red to VLPs labeled with AF488 completely changed their behavior 

and diminished the high (and probably unspecific) interaction of VLP* with cells. 

Interestingly, the addition of Texas Red dye with neutral charge led to masking of AF488 

conjugated to VLP surface. Considering this finding, we used VLP*-T.Red as a negative 

control in the following experiments because VLPs labeled only with AF488 (VLP*) were 

partially aggregated (Fig. 5.16) and showed high unspecific interaction with U2OS cells 

(Fig, 5.20). 
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Figure 5.20: Flow cytometry study of VLPs uptake by U2OS 

The cells were subjected to VLP*-T.Red and VLP* with or without the presence of fetal bovine serum (FBS) 

or free transferrin (Tf+). The data represent the median of AF488 fluorescence intensity normalized to 

autofluorescence of control cells. Standard deviations of both graphs were calculated from quadruplicates 

(two independent experiments in duplicates). 

 

In the following test, we used two types of VLPs; VLP*-Tf and VLP*-T.Red. Both 

transferrin positive VLP*-Tf and negative VLP*-T.Red particles as well as labeled 

transferrin Tf-AF488 were subjected to U2OS cells for 1 hour with or without the presence 

of 10% or 55% FBS (Fig. 5.21). Incubation with free unmodified transferrin (Tf+) was 

used as an internal control. The acquired data were normalized to autofluorescence of 

control cells. The data showed that uptake of VLP*-Tf particles was not constrained by 

FBS, while Tf-AF488 internalization was about 25 % lower. The interaction of VLP*-

T.Red particles with U2OS cells was negligible. 
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Figure 5.21: Flow cytometry study of VLPs uptake by U2OS 

The cells were subjected to VLP*-Tf or VLP*-T.Red or Tf-AF488 with or without the presence of fetal 

bovine serum (FBS) or free transferrin (Tf+). The data represent the median of AF488 fluorescence intensity 

normalized to autofluorescence of control cells. Standard deviations of both graphs were calculated from 

quadruplicates (two independent experiments in duplicates). 

 

The investigation of VLP*-Tf uptake by U2OS cells in the presence of human 

serum required the elimination of free transferrin from the solution. We tested the affinity 

methods with monoclonal antibody against human transferrin (AbαTf), such as 

immunoprecipitation with protein A coated magnetic beads and incubation on 

nitrocellulose membrane, however, both methods required huge amount of the antibody and 

did not remove the transferrin completely. Therefore, we implemented the titration assay of 

10% HS and AbαTf. The goal was to find the optimal concentration of antibody that 

eliminates free transferrin from the serum. For the assay, U2OS cells were grown on 

ELISA plate and incubated for 1 hour either with VLP*-Tf particles only or with the 

combination of 10% HS and AbαTf. 10% HS was preincubated in RT with shaking (400 

rpm) for 1 hour with either PBS or with diluted AbαTf (from 0.05 to 0.3 µg/µl). A gradual 

decrease of binding inhibition is visible from the acquired data (Fig. 5.22) until the 

antibody concentration reached 0.25 µg/µl. Higher concentration of AbαTf exceeded the 

concentration of serum Tf and free antibodies efficiently blocked the interaction of VLP*-

Tf particles with TfR. 
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Figure 5.22: Calibration of AbαTf concentration on U2OS cells 
The graph represents data from ELISA assay performed with U2OS cells. These cells were subjected to 

VLP*-Tf particles with or without the presence of 10% human serum. The serum was preincubated with 

various concentrations of antibody against Tf (from 0.05 to 0.3 µg/µl). The data were normalized by 

calculation of the difference in absorbance value between VLPs with serum and VLPs without serum (PBS; 

the positive control). Standard deviations were calculated from triplicates. 

 

The optimal concentration of AbαTf (0.25 µg/µl) was further utilized in flow 

cytometry of U2OS with human serum (Fig. 5.23). Both transferrin positive VLP*-Tf and 

negative VLP*-T.Red particles or labeled transferrin Tf-AF488 were subjected to U2OS 

cells for 1 hour with or without the presence of 10% or 55% HS. In addition, 10% HS was 

either not preincubated or preincubated with 0.25 µg/µl AbαTf for 1 hour before mixing 

with VLP*-Tf solution. The obtained data were normalized to autofluorescence of control 

cells (Fig. 5.23). The results showed inhibition of VLP*-Tf binding in the presence of HS. 

However, the binding was restored by the preincubation with AbαTf. Similarly, the 

interaction of the positive control, Tf-AF488, was restricted by the presence of serum. The 

interaction of VLP*-T.Red particles with U2OS cells was very low, regardless of serum 

presence or absence.  
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Figure 5.23: Flow cytometry study of VLPs uptake by U2OS 

The cells were subjected to VLP*-Tf, VLP*-T.Red and Tf-AF488 without or with the presence of human serum 

(HS) or with the presence of serum preincubated with AbαTf.The data represent the median of AF488 

fluorescence intensity normalized to autofluorescence of control cells. Standard deviations of both graphs were 

calculated from quadruplicates (two independent experiments in duplicates). 
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6. Discussion 
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Retargeting of MPyV VLPs to TfR 

Our laboratory has studied mouse polyomavirus based VLPs, their properties 

(Forstová et al., 1995; Štokrová et al., 1999), cell trafficking (Mannova and Forstova, 

2003; Richterová et al., 2001), immunogenic properties (Frič et al., 2008) and their genetic 

manipulations (Bouřa et al., 2005; Fraiberk et al., 2017) for years. The main goal of this 

thesis was to investigate the potential of chemical modifications of mouse polyomavirus 

VLPs with aim to develop novel nanoparticles retargeted to specific cells or tissues, 

carrying a chemically conjugated retargeting moiety on their surface, for their utilization in 

bioapplications such as the delivery of diagnostic and therapeutic compounds, gene therapy 

or immunotherapy. Similar types of modification were previously used for other types of 

viral particles such as bacteriophages (Chung et al., 2014; Rhee et al., 2012) or plant 

viruses (Bruckman and Steinmetz, 2014; Strable and Finn, 2009) and also for VLPs based 

on SV40 virus (Kitai et al., 2011). The first experiments using chemical conjugation of 

targeting molecules through oxime bond, did not lead to efficient retargeting of MPyV 

VLPs, even though we have tested various conditions and ligands (data not shown). After 

multiple testing, the problem was identified in the selected type of modification, as the 

negative control modified by nicotinic acid hydrazide had increased unspecific binding of 

MPyV VLPs. Thus, we selected a new type of chemical modification based on copper 

catalyzed azide/alkyne cycloaddition (“click” chemistry), well described for VLPs based 

on bacteriophages (Banerjee et al., 2010; Chung et al., 2014; Patel and Swartz, 2011; 

Pokorski et al., 2011). 

Firstly we applied the “click” chemistry on the VLPs for installation of model 

targeting moiety, human transferrin (Tf). The obtained load of transferrin (labeled with 

AF488) on VLPs labeled with rhodamine was 35±2 Tf molecules/VLP, which provided 

approximately 24% coverage of VLP surface (VLP*-Tf* particles). The efficiency of 

conjugation was partially increased during the next preparation of these VLPs, achieving 

the load of 51±3 Tf molecules/VLP and ~35% coverage (VLP*-Tf particles). The higher 

efficacy might be connected with different modification of transferrin molecule, as this 

time, we used transferrin not labeled with AF488 dye. The coverage in both cases were 

similar to previously prepared constructs of VLPs bearing transferrin molecules (Banerjee 

et al., 2010; Huang et al., 2006; Yildiz et al., 2012). 

For the subsequent test of VLP*-Tf* and VLP*-Tf interactions with transferrin 

receptor, we prepared also various types of control particles that were fluorescently 

labeled, however, did not bear transferrin molecules. Three types of control particles were 
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produced: VLPs labeled with rhodamine (VLP*), VLPs labeled with AF488 (VLP*) and 

VLPs labeled with AF488 and Texas Red (VLP*-T.Red). Surprisingly, the interaction of 

these VLPs with a model human cancer cell line U2OS was greatly different. The 

interaction of VLPs labeled with rhodamine as well as T.Red was negligible, contrary to 

high unspecific binding of VLPs with AF488 (40 times higher than VLP*-T.Red). As the 

difference between VLP* and VLP*-T.Red lies only in the conjugation of T.Red, we 

suppose that the change in ability of interaction with cells is driven by the charge of 

conjugated dye as the overall charge is positive for rhodamine dye, neutral for T.Red and 

negative for AF488. Interestingly, the comparative study of interactions of water-soluble 

dyes (including 32 dyes) with lipid bilayer showed that the negatively charged AF488 does 

not bind to bilayer, whereas the zwitterionic dyes tetramethylrhodamine (TAMRA) and 

sulphorhodamine B (T.Red) bound lipid bilayer very efficiently (Hughes et al., 2014). 

However, in another comparative study, the authors revealed that there is a difference 

between interactions of a free or conjugated dye with cells. The cells treated with TAMRA 

dye conjugated to cell penetrating peptide (penetratin) exhibited a number of small 

fluorescent dots in the cytoplasm, whereas no interaction was visible for the native 

TAMRA dye (Birch et al., 2017). This is in contrast with the data obtained for this dye on 

a lipid bilayer (Hughes et al., 2014). All these data confirmed that not only charge but also 

many other factors influence the interaction of the dye and membrane, such as the 

chemical structure, conjugation of the dye, chemical and physical properties of the carrier 

and testing method. The effect of labeling on the nanoparticle behavior was not examined 

yet and thus, our findings are novel in this field. From our experiment, we can conclude 

that the labeling with AF488 (negative charge) is not suitable for uptake studies of MPyV 

VLPs. With respect to this finding, the uptake studies on U2OS cells were performed with 

VLP* and VLP*-T.Red particles, together with VLP*-Tf* and VLP*-Tf particles. The 

data from flow cytometry and confocal microscopy showed substantial increase in uptake 

of VLPs with transferrin. The saturation of TfR by incubation with free Tf led to complete 

block of the interaction, indicating the selective binding of these particles through the TfR. 

The control particles without Tf conjugations retained their ability to bind cells in  

VP1-specific manner and the interaction was not influenced by preincubation with free Tf. 

In summary, the coverage of VLP surface by Tf molecules sterically blocked the 

interaction of VP1 protein with its natural receptor. The similar data were obtained also 

with CCRF-CEM lymphoblastoid human cancer cell line, whereas the interaction with 

human endothelial non-cancerous cell line HUVEC was negligible, confirming a high 

affinity and selectivity of VLPs with transferrin to cancer cells overexpressing TfR. 
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Furthermore, we analyzed whether the conjugation of transferrin to the VLP 

surface could influence the way of uptake of the VLPs by human cancer cells. The natural 

endocytic pathway of MPyV VLPs encompasses membrane raft derived smooth endocytic 

vesicles (Richterová et al., 2001). On the other hand, transferrin molecules are internalized 

through clathrin-coated pits (Dautry-Varsat, 1986). It was previously published that 

polyomavirus meets free transferrin in perinuclear space in recycling endosomes not 

sooner than 3 hour post infection (Liebl et al., 2006; Mannova and Forstova, 2003), while 

MPyV VLPs with conjugated transferrin are fastly internalized and transported, being 

mostly detected in the perinuclear area, already 1 hour post infection (Zackova Suchanova 

et al., 2017). Therefore, we decided to treat the cells with chlorpromazine, a clathrin-

specific inhibitor that translocates clathrin from the cell surface to intracellular endosomes 

(Dutta and Donaldson, 2012) and does not influence the entry of mouse polyomavirus 

(Gilbert and Benjamin, 2000). The protocol published for studying the role of clathrin in 

endocytosis of vesicular stomatitis virus was adjusted and applied to human epithelial 

cancer cells HeLa (Sun et al., 2005). HeLa cells that were utilized in our experiment were 

much more sensitive to concentration of chlorpromazine. In our hands, HeLa cells died 

after treatment with chlorpromazine concentrations higher than 30 µg/ml. However, this 

concentration was sufficient for blocking of clathrin endocytic pathway as both VLP*-Tf 

and Tf* proteins were not internalized. VLP* without installed transferrin molecules bound 

to and enter cells irrespectively to chlorpromazine presence, confirming the retargeting of  

VLP*-Tf particles from their natural endocytic pathway comprising smooth, often 

caveolin-rich vesicles to transferrin specific pathway through clathrin-coated pits. 

In conclusion, the polyomaviral VLPs could be retargeted to cancer cells by 

chemical modification leading to conjugation of Tf molecules onto the VLP surface. The 

surface architecture of VLP modification encompassing surface exposed lysines and 

ligation approach utilizing “click” chemistry was firstly used for VLPs derived from  

a representative of Polyomaviridae family. The only chemically modified VLPs from this 

family were SV40 VLPs; however, these VLPs required previous genetic modification to 

incorporate new amino acid into VP1 sequence (Kitai et al., 2011). The inserted cysteines 

served for conjugation of epidermal growth factor receptor, so the conjugation molecule 

and strategy was different from ours. The conjugation of Tf to polyomavirus based VLPs 

now expand the family of VLPs that were designed in similar way to interact specifically 

with numerous cancer cell lines. These include VLPs based on brome mosaic virus (Yildiz 

et al., 2012), various bacteriophages (Banerjee et al., 2010; Galaway and Stockley, 2013; 

Huang et al., 2006; Khalaj-Kondori et al., 2016, 2011; Wu et al., 2005) and other member 
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of the group of small non-enveloped DNA viruses, adenovirus (Campos, 2004; Kreppel et 

al., 2005; Oh et al., 2005). In our hands the interaction of transferrin-bearing MPyV VLPs 

with TfR overexpressed on cancer cells was selective and efficient. Moreover, the 

installation of Tf molecules clearly diminished the undesirable interaction of VLPs with 

their natural receptor containing the ubiquitously distributed sialic acid residue that 

broadens the cell and tissue tropism of these VLPs (Krauzewicz et al., 2000). Based on the 

cellular uptake studies, we suggest that Tf molecules bound to the VLP surface masks the 

VP1-specific interactions responsible for recognition of sialic acid. The strong avidity and 

binding selectivity can lead to efficient targeting of transferrin coated VLPs in vivo.  

 

Influence of serum proteins on targeting of MPyV VLPs 

During the recent years, it was found that the biological identity of targeted 

nanoparticles could be changed in the blood serum by formation of a protein corona. The 

corona covers the nanoparticle surface, masks the targeting ligands and can cause 

mistargeting. Salvati et al., 2013 published a comprehensive study about the influence of 

serum proteins on silica nanoparticles modified with transferrin molecules. They found out 

that as the concentration of serum increases, the interaction of Tf modified nanoparticles 

(NPs) with TfR decreases. The similar results were obtained also for polystyrene beads 

decorated with transferrin (Xiao et al., 2018). Moreover, this group evaluated the influence 

of the size of targeting moieties on the formation of protein corona around NPs. Two 

different ligands, a bulky transferrin protein and a small RGD peptide, were applied in this 

study. The data revealed a more significant decrease of cellular uptake of NPs with RGD, 

indicating the small size of RGD peptide to be more prone to formation of protein corona. 

According to these findings, we decided to investigate the targeting abilities of VLP*-Tf 

particles in the presence of serum proteins (chap. 5.3). 

To study the interactions of serum treated VLP*-Tf particles with transferrin 

receptor (TfR) in detail, we utilized the ELISA assay in two different set ups; (i) with 

adsorbed recombinant TfR, (ii) with adherent osteosarcoma cells U2OS allowing the 

investigation of influence of serum proteins on VLP*-Tf/TfR interaction in context of 

cells. However, serum contains a high concentration of free transferrin that might inhibit 

the interaction of VLP*-Tf and TfR. We have chosen three species; human (HS), mouse 

(MS) and fetal bovine serum (FBS) to be examined in this assay. Human serum highly 

inhibited the interaction of VLP*-Tf particles. It was published previously that HS contains 

a high amount of free human transferrin that interferes with the binding of engineered Tf 
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molecules, whose affinity to TfR is affected by various modifications (Leverence et al., 

2010). Partial inhibition was achieved also with mouse serum that also contains  

Tf molecules. The sequence analysis of mouse and human transferrin amino acid 

composition revealed 73% identity (Clustal O, version 1.2.4) and also their molecular 

weight is similar (Welch, 1990). Nevertheless, the interaction of human Tf with human 

TfR is affected by the amino acid composition in the N2 subdomain of Tf (positions  

142-145, PRKP sequence) and according to sequence alignment of Tf from different 

species, it could be predicted, whether they have the ability to interact with human TfR 

(Wally et al., 2006). Mouse Tf has one substitution in this sequence; lysine is exchanged 

by serine that belongs also to polar amino acids but with neutral charge. This could be the 

reason of decreased affinity of mouse Tf to human TfR. Otherwise, the evolutionary 

branch for mouse Tf is the same as for rabbit Tf (Welch, 1990) that was proved to bind 

well to human TfR (Cheng et al., 2004). Bovine Tf has 69% sequence identity with human 

Tf. However, except of the first proline, the binding important sequence PRKP is different 

and therefore bovine Tf does not interfere with binding to human TfR (Wally et al., 2006). 

Nevertheless, the presence of transferrin might not be the only limiting factor of NP 

interaction, as the relative proportion of protein composition of sera differs among 

mammalian species (Zeitlinger et al., 2011). Based on this finding and achieved data, we 

focused on the influence of human and bovine serum as they are the most divergent among 

the tested species.  

Firstly, interaction of VLP*-Tf particles with or without the presence of 10% or 

55% FBS were analyzed by flow cytometry using U2OS cells. Free Tf was used as an 

internal control of efficient inhibition. The acquired data revealed that binding of VLP*-Tf 

particles is not constrained by FBS, while interaction of positive control, Tf protein labeled 

by AF488, was decreased in 25 %. The non-specific binding of negative control particles 

VLP*-T.Red to U2OS cells was negligible, irrespectively to presence of serum. 

Correspondingly, the confocal microscopy study on HeLa cells treated with 

chlorpromazine in the presence of 10% FBS confirmed that bovine serum does not 

influence the binding of VLP*-Tf particles and that these VLPs retained their specificity of 

interaction with TfR and were internalized by clathrin-mediated endocytic pathway.  

Secondly, the influence of human serum on targeting of VLP*-Tf particles was 

examined. However, before investigation of influence of HS proteins on VLP*-Tf uptake 

by U2OS.cells, the elimination of free Tf from the serum was necessary. The implemented 

titration assay with 10% HS and monoclonal antibody against human transferrin (AbαTf) 
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revealed the optimal concentration of AbαTf for sterical blockade of free Tf together with 

no effect on interaction of VLP*-Tf and TfR. The same assay was conducted also with 

high concentrated human serum (55%). However, the molar ratio of serum Tf exceeded the 

maximal usable concentration of AbαTf (data not shown). The antibody treated human 

serum was used in flow cytometry study of VLP interactions with U2OS cells. The results 

showed a little influence of human serum pretreated with AbαTf on VLP*-Tf interaction 

with U2OS cells, contrary to serum without AbαTf, that caused a distinct inhibition. 

Similarly, the restriction of Tf-AF488 uptake in the presence of HS was visible.  

VLP*-T.Red particles did not interact with U2OS cells. These findings are consistent with 

our hypothesis that inhibition of VLP*-Tf and TfR interaction is mediated exclusively by 

the presence of free transferrin in human serum, without the influence of protein corona 

formation. The resistance to interaction of proteins from biological fluids is a crucial 

feature for targeted nanoparticle delivery. Masking of particle surface by PEG linkers 

employed in some studies (Bao et al., 2013; Harvie et al., 2000; Mishra, 2004) does not 

seem to be the optimal way of modification and could have a detrimental effect on 

nanoparticle targeting (reviewed in Moghimi and Szebeni, 2003; Verhoef and 

Anchordoquy, 2013). The requirement of new approaches to stealth the NP surface is not 

necessary in case of polyomaviral VLPs that naturally eliminated the association with 

serum proteins. In conclusion, polyomaviral VLPs grafting the targeting molecule involve 

the simple biorecognition of corresponding receptor and have the capacity to discriminate 

the target even in the biological milieu.  

  The formation of protein corona around the nanoparticle surface was studied also 

on diverse types of non-targeted nanoparticles, which represented a miscellaneous rate of 

protein association. The most abundant protein corona was achieved by hard matter 

nanoparticles, such as silica NPs (Ghavami et al., 2012), gold NPs (Piella et al., 2017), and 

magnetic NPs (Yallapu et al., 2015). Lower interaction was observed for synthetic 

nanoparticles comprising copolymer NPs (Cedervall et al., 2007), chitosan NPs 

(Varnamkhasti et al., 2015) and polystyrene NPs (Ghavami et al., 2012; Lundqvist et al., 

2008). The lowest association with serum proteins accomplished virus-like particles based 

on Tobacco Mosaic Virus (TMV) (Pitek et al., 2018, 2016). It was found that TMV VLPs 

form a hard protein corona around their surface, similarly to silica nanoparticles, although 

the composition is different and the quantity is 6-fold lower (Pitek et al., 2016). 

Nevertheless, these VLPs were derived from plant viruses and therefore their behavior in 

biological environment could be different from mammalian viruses that naturally evolved 
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to eliminate the influence of protein corona. To verify this hypothesis we decided to 

investigate the behavior of unmodified polyomaviral VLPs in the presence of serum 

proteins (chap. 5.3). 

We implemented the comparative study of MPyV VLPs and commercially 

produced polystyrene nanoparticles. Both particles were incubated in 55% HS and 

consecutively purified by dialysis and centrifugation against 20% sucrose cushion. The 

analysis of obtained fractions revealed that polyomaviral VLPs; contrary to polystyrene 

nanoparticles, do not interact with proteins of human serum. To further verify the ability of 

polyomaviral VLPs to eliminate the formation of protein corona, we utilized 10% and 55% 

serum from various species. Two different cell lines, mouse fibroblasts 3T6 and human 

osteosarcoma U2OS were treated with MPyV VLPs with or without the presence of serum. 

The inhibition of VLP and cell interaction was very low in all cases, reaching the highest 

inhibition in 55% HS: 6.4% for 3T6 and 9.1% for U2OS, respectively. The low inhibition 

in a variety of serum proteins confirmed that polyomaviral VLPs are superior to other 

types of nanoparticles and could potentially serve as a universal tool in animal and human 

bioapplications. 

In conclusion, we demonstrated that targeted MPyV VLPs are not influenced by the 

formation of protein corona on their surface and that this feature in not granted by the type 

of conjugated molecule but it is a natural characteristic of MPyV VLPs. We thus suppose 

that MPyV VLPs with their unique targeting capabilities can become a modular and 

efficient platform for drug delivery devices. 

 

Retargeting of MPyV VLPs to GCPII 

Following the retargeting of MPyV VLPs to a broadly distributed cancer marker, 

TfR, we decided to investigate the potential of polyomaviral VLPs for targeting of prostate 

cancer cells through a type-specific cancer marker. The molecule selected for retargeting 

was inhibitor of glutamate carboxypeptidase II (iGCPII), that is overexpressed on prostate 

cancer cells (Tykvart et al., 2014). The strategy of targeting by specific inhibitor was 

previously proved successful for other types of nanoparticles (Banerjee et al., 2017; Chen 

et al., 2016; Sanna et al., 2011; Xu et al., 2017). This aim was closely related to 

modification of MPyV VLPs by transferrin molecule; however, this time, we did not 

conjugate a bulky globular protein but a small chemical compound. Targeting with small 

molecules is usually a more challenging approach that requires optimization and is novel 

for polyomavirus based VLPs.  
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For installation of inhibitor to VLP surface, we used “click” chemistry as it was 

proved to be successful method for MPyV VLPs modification. To the prepared retargeting 

VLP*-iGCPII particles, control particles, VLP*, labeled with AF488 and particles with 

conjugated 13 polyethylene glycol linker ended with carboxyl residue (VLP*-PEG) were 

prepared. The PEG linker was used for masking of negatively charged AF488 dye. 

Similarly to conjugation of T.Red, this modification avoided unspecific interactions, 

aggregation and VP1-specific interaction with widely distributed sialic acid residues. The 

characterization of prepared VLPs revealed the rough load of iGCPII molecules on  

VLP*-iGCPII to 540 and 1,080 PEG molecules on VLP*-PEG. The MALDI measurement 

also confirmed the covalent attachment of these molecules to the VLP surface. 

The interaction between VLP*-iGCPII and GCPII was firstly analyzed in vitro by 

surface plasmon resonance (SPR). The data revealed a very efficient binding of  

VLP*-iGCPII to GCPII, indicating a strong interaction that is mediated by creation of 

multiple bonds between ligand and layer (avidity). Once we have verified the interaction of 

modified particles with GCPII, we focused on binding specificity to GCPII in context of 

cancer cells. For cellular uptake studies, we utilized glioblastoma cell line U251 MG with 

switchable expression of GCPII. Therefore, we had only one type of cells and the study 

could be realized in a very consistent way. VLP*-iGCPII were effectively uptaken by 

U251 MG cells with GCPII expression (U251 MG
+
) while turning off the GCPII 

expression (U251 MG
-
) diminished the interaction. In contrast, VLP* had very strong 

interaction to U251 MG irrespectively to GCPII presence. The intensive VLP* binding to 

glioblastoma cells represents probably not only the unwanted unspecific binding but also 

specific interaction as these cells abundantly express complex gangliosides (Schnaar et al., 

2014; Yates et al., 1988), the natural receptors of MPyV. The negligible interaction was 

obtained with VLP*-PEG particles proving the successful prevention of VP1 specific 

interaction by PEG conjugation. The confocal microscopy images confirmed that  

VLP*-iGCPII particles were highly internalized into U251 MG
+
 but, no particles binding 

and internalization in U251 MG
-
 cells was observed. Control VLP* interacted with both 

cell types. 

In conclusion, we proved the possibility of retargeting of MPyV VLPs to cancer 

cells by conjugation of small molecule to the VLP surface, which was a part of our 

comprehensive comparative study of diverse range of inhibitor-bearing nanoparticles to 

investigate the versatility and limitations of GCPII targeting (Neburkova et al., 2018). 
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Virus-like particles based either on mouse polyomavirus or bacteriophage Qβ, polymer-

coated nanodiamonds and polymeric nanoparticles coated with GCPII inhibitor were tested 

for their ability to interact with GCPII. Utilization of one cell type model for testing of NP 

interaction enabled the comparison of targeting in a very consistent way. The obtained data 

proved that all NPs with installed inhibitor were able to bind GCPII, irrespective to 

nanoparticle size, structure, polydispersity, type of conjugation chemistry and load of 

inhibitor. However, any nanomaterial has advantages and disadvantages. If we compare the 

designed NPs with focus on MPyV VLPs, we should definitely highlight their ability to 

load various cargos by simple encapsidation and biodegradability that lowers the risk of 

tissue persistence compared to some synthetic materials. On the other hand, the efficiency 

of cellular uptake was the lowest from all tested NPs and the surface modification was 

necessary to hide the VP1 broad tropism. A high load of short PEG linker lowered the 

VP1-specific interaction of MPyV VLPs and conjugation of iGCPII to the end of this 

linker retargeted VLPs to prostate specific marker, GCPII. 

In general, the specificity of interaction is not the only limitation of targeted 

therapeutic nanoparticles; it is also either the unspecificity or unwanted side specificity of 

NPs. In this regard, polyomaviral VLPs need to be modified by the way which prevents the 

VP1-specific binding. Another possibility is the genetic modification of VP1 surface loops 

responsible for most of VP1 interactions. Such a modification, eliminating VP1 interaction 

with sialic acid (without any effect on assembly and stability of VLPs), was already 

realized in our laboratory. 
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7. Summary 
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Goal 1. Preparation of VLPs with conjugated transferrin and analysis of their efficiency 

to interact with cancer cells.  

a) We have produced high amount of polyomaviral VLPs in insect cells Sf9 with 

utilization of baculovirus expression system. The stability and purity of these 

particles were verified by electron microscopy. 

b) The transferrin protein was successfully conjugated to the surface of VLPs by 

“click” chemistry. 

c) Characterization of prepared particles was done by multiple methods. Firstly, the 

stability was verified by transmission electron microscopy and DLS measurement. 

Secondly, the efficacy of transferrin conjugation was counted from SDS-PAGE 

followed with densitometry analysis.  

d) The binding efficiency of modified VLPs to cancer cells was analyzed by confocal 

microscopy and flow cytometry. Both methods proved that conjugation of 

transferrin molecule retargeted polyomaviral VLPs to cancer cells overexpressing 

transferrin receptor (U2OS and CCRF-CEM). Moreover, the conjugation also 

protected modified VLPs from the recognition of their natural receptor containing 

sialic acid residues. 

  

Goal 2. Preparation of VLPs with conjugated inhibitor of GCPII and analysis of their 

efficiency to interact with cancer cells.  

a) Unmodified VLPs were produced by baculovirus expression system. The stability 

and purity of these particles were verified by TEM. 

b) The inhibitor of GCPII was efficiently conjugated to the surface of VLPs by “click” 

chemistry. 

c) Various methods were used for characterization of modified VLPs. Stability and 

homogeneity were verified by TEM and DLS measurement, the efficacy of iGCPII 

conjugation was investigated by SPR measurement and counted according to the 

data obtained from MALDI analysis.  

d) Confocal microscopy and flow cytometry proved that conjugation of iGCPII 

molecule retargeted polyomaviral VLPs to cells overexpressing GCPII (U251 MG
+
). 
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Moreover, the conjugation protected modified VLPs from VP1-specific binding to 

sialic acid residues. 

 

Goal 3. Characterization of polyomavirus VLPs in context of serum proteins.  

a) MPyV VLPs were examined in the presence of serum and the interaction with 

serum proteins was studied. The comparative study with polystyrene nanoparticles 

showed that MPyV VLPs, contrary to polystyrene NPs, associate with a minimum 

of serum proteins and these proteins has no influence on VLP/cell interaction. 

b) New batch of VLPs with conjugated transferrin was prepared. VLP*-Tf particles 

were further incubated with 55% and 10% serum from different species and their 

interaction with TfR in the presence of serum was characterized. In vitro binding 

assay proved the inhibition effect of transferrin, abundantly present protein in 

serum, on VLP binding.  

c) The analysis of cellular uptake of VLP*-Tf particles with serum proteins by flow 

cytometry and ELISA binding assay revealed the resistance of these particles to 

protein corona driven mistargeting.  
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