
 Charles University, Faculty of Science 

Univerzita Karlova, Přírodovědecká fakulta 

 

Ph.D. study programme: Parasitology 

                                          Doktorský studijní program: Parazitologie        

  

 

 

Mgr. Vladimír Skála 

 

Influence of bird schistosome Trichobilharzia regenti on haemocyte activity 

of lymnaeid snails 

Vliv ptačí schistosomy Trichobilharzia regenti na aktivitu hemocytů 

plovatkovitých plžů 

 

Ph.D. thesis/Dizertační práce 

 

Supervisor/Školitel: Prof. RNDr. Petr Horák, Ph.D. 

Advisor/Konzultant: Prof. Anthony J. Walker, Ph.D. 

 

Prague, 2018 



Declaration: 

I declare that the Ph.D. thesis is an original report of my research, has been written by me and 

all the literary sources have been cited properly. I also declare that neither the thesis nor its 

substantial part has been used to obtain the same or any other academic degree.  

 

Prohlašuji, že tato dizertační práce je souhrnem mého výzkumu, byla sepsána samostatně a 

všechny literární zdroje byly řádně uvedeny. Dále prohlašuji, že práce ani její podstatná část 

nebyla předložena k získání stejného či jiného akademického titulu.  

 

 

In Prague, 12th April 2018                                                                         Mgr. Vladimír Skála 

V Praze, 12. dubna 2018 

 

 

I declare that Vladimír Skála played a major role in the preparation and execution of the 

experiments, and he substantially contributed to the data analysis, interpretation as well as to 

the writing of the manuscripts. 

 

Prohlašuji, že Vladimír Skála se podílel na plánování i provedení většiny experimentů 

a rovněž podstatně přispěl k analýze získaných dat, jejich interpretaci i sepsání přiložených 

publikací.  

 

 

In Prague, 20th April 2018                                                          Prof. RNDr. Petr Horák, Ph.D.  

V Praze, 20. dubna 2018 

 



Acknowledgement 

Foremost, I would like to express my sincere thanks to Petr Horák and Tony Walker for the 

infinite support during my Ph.D. study. I also thank to my colleagues for the stimulating 

atmosphere in the laboratory, and for all the fun we had. 

My special thanks belong to my wife and son. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



TABLE OF CONTENTS  

Abstract..................................................................................................................................... 1 

Abstrakt.................................................................................................................................... 3 

Introduction.............................................................................................................................. 5 

1. The distinctive architecture of the gastropod immune system........................................ 7 

     1.1. Cellular arm of gastropod IDS................................................................................... 7 

            1.1.1. Haemocyte defence activities............................................................................ 8 

            1.1.2. Regulation of haemocyte defence activities..................................................... 9            

            1.1.3. Cellular activities of fixed phagocytes and rhogocytes................................. 11     

     1.2. Humoral arm of gastropod IDS................................................................................ 11 

2. Infections of gastropods and pathogen elimination........................................................ 13 

     2.1. Immune reactions at the outer surface of gastropods............................................ 13 

     2.2. Recognition and elimination of pathogens by IDS................................................. 14 

3. Immunomodulation of gastropod IDS by compatible pathogens................................. 18 

4. Concluding remarks.......................................................................................................... 20 

Aims of the thesis................................................................................................................... 22 

Original papers and author contribution............................................................................ 23 

Horák P., Mikeš L., Lichtenbergová L., Skála V., Soldánová M., Brant S.V., 2015: Avian 

schistosomes and outbreaks of cercarial dermatitis. Clinical Microbiology Reviews, 

https://doi.org/10.1128/CMR.00043-14  

Skála V., Černíková A., Jindrová Z., Kašný M., Vostrý M., Walker A.J., Horák P., 

2014: Influence of Trichobilharzia regenti (Digenea: Schistosomatidae) on the defence 

activity of Radix lagotis (Lymnaeidae) haemocytes. PLoS ONE, 

https://doi.org/10.1371/journal.pone.0111696  

Skála V., Walker A.J., Horák P., 2018: Extracellular trap-like fiber release may not be 

a prominent defence response in snails: evidence from three species of freshwater gastropod 

molluscs. Developmental and Comparative Immunology, 

https://doi.org/10.1016/j.dci.2017.10.011  

Conclusions..............................................................................................................................24 

References............................................................................................................................... 26 

https://doi.org/10.1128/CMR.00043-14
https://doi.org/10.1371/journal.pone.0111696
https://doi.org/10.1016/j.dci.2017.10.011


1 
 

Abstract: 

Gastropod molluscs are naturally exposed to various pathogens such as bacteria, or 

multicellular parasites that include digenetic trematodes (digeneans) which develop in snails. 

To combat these pathogens gastropods have evolved a sophisticated internal defence system 

that is composed of humoral and cellular arms. Lectins are probably the most important 

humoral components, whereas haemocytes represent the main effector cells. Immunity is one 

of the important factors determining compatibility/non-compatibility of gastropods and 

pathogens (particularly snails and trematodes). 

The introductory part of this thesis includes a review of literature focused on the 

components of the gastropod immune system and their reactions against pathogens 

represented by bacteria and digeneans. Additionally, selected immunomodulations caused by 

compatible digenean species are reviewed. Experimental work (presented in publications) 

focused mainly on the influence of the bird schistosome Trichobilharzia regenti on 

haemocyte activities of two lymnaeid snail species, Radix lagotis and Lymnaea stagnalis that 

are susceptible or refractory to the parasite, respectively. This schistosome parasite causes 

neuromotor disorders in specific definitive hosts (waterfowl), but it also causes cercarial 

dermatitis in accidental hosts such as humans. 

The original papers include a review that in part concentrates on intramolluscan 

development of bird schistosomes, and immune interactions between the parasites and the 

snail hosts. The publication that focused on R. lagotis describes haemocyte defence responses 

related to the initial phase of T. regenti infection, and their modulations during the patent 

phase of infection. The publication concerning L. stagnalis summarises investigations on 

extracellular trap-like (ET-like) fiber production by snail haemocytes against T. regenti and 

other components as a novel defence response. Furthermore, this phenomenon was studied in 

two other snail species (R. lagotis and Planorbarius corneus) for comparative purposes.  
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The results showed that R. lagotis haemocytes aggregate near invading T. regenti, 

however, the parasite appears undamaged. During the patent phase of infection, snail defence 

activities are modulated as shown for phagocytosis and hydrogen peroxide production. 

Importantly, such modulations likely occur via interference with cell signalling pathways and 

such changes may be important for sustained T. regenti survival and propagation within 

R. lagotis. The ability of haemocytes from several snail species to produce ET-like fibers is 

low and, therefore, their role in defence against pathogens is likely marginal. Together, the 

obtained data provide the first insights into the immune reactions of snails against T. regenti 

allowing us to better comprehend compatibility/incompatibility in snail-schistosome 

interactions. 
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Abstrakt: 

Plži (Gastropoda) jsou ve svém přirozeném prostředí exponováni různým 

patogenům, a to například bakteriím nebo mnohobuněčným parazitům (digenetickým 

motolicím), které se v plžích vyvíjejí. V boji proti těmto patogenům využívají plži 

sofistikovaný vnitřní obranný systém, který je tvořen humorální a buněčnou složkou. Lektiny 

jsou považovány za nejdůležitější humorální komponenty, zatímco hemocyty představují 

nejvýznamnější efektorové buňky. Imunita je jeden z důležitých faktorů podmiňujících 

kompatibilitu/nekompatibilitu plžů a patogenů (zejména plžů a motolic).  

Úvod této dizertační práce zahrnuje přehled literatury o imunitním systému plžů 

a jeho reakcích proti patogenům, a to bakteriím a motolicím. Zároveň jsou v této části shrnuty 

i poznatky o imunomodulacích způsobených kompatibilními motolicemi. Experimentální 

práce (prezentována v přiložených publikacích) se zaměřila zejména na vliv ptačí schistosomy 

Trichobilharzia regenti na aktivitu hemocytů dvou druhů plovatkovitých plžů: (i) Radix 

lagotis, v němž se T. regenti vyvíjí a (ii) Lymnaea stagnalis, který je k infekci rezistentní. 

Tento parazit způsobuje neuromotorické poruchy u specifických defnitivních hostitelů 

(vodních ptáků), ale náhodně může infikovat i člověka a způsobovat tzv. cerkáriovou 

dermatitidu. 

Originální publikace zahrnují review, které se v jedné části soustřeďuje na vývoj 

ptačích schistosom v plžích a jejich imunitní interakce. Publikace zaměřená na plže R. lagotis 

popisuje obranné reakce hemocytů v prepatentní periodě infekce T. regenti a jejich modulace 

v patentí periodě infekce. Publikace týkající se L. stagnalis shrnuje výsledky studia produkce 

extracelulárních chromatinových vláken hemocyty plže proti T. regenti a jiným komponentám 

jako nového typu obranné reakce. Tento fenomén byl navíc pro srovnání studován u dvou 

dalších druhů plžů, a to R. lagotis a Planorbarius corneus. 
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Výsledky prokázaly, že hemocyty R. lagotis jsou sice schopny agregace 

u invadující T. regenti, ale parazita nijak nepoškozují. Během patentní periody infekce jsou 

obranné reakce plžů modulovány, což potvrdilo testování fagocytární aktivity hemocytů 

a sledování produkce peroxidu vodíku. Tyto modulace mají zřejmě význam pro přežívání 

T. regenti v R. lagotis a pravděpodobně k nim dochází ovlivněním buněčných signálních drah. 

Hemocyty studovaných druhů plžů produkují malé množství extracelulárních chromatinových 

vláken, což naznačuje, že se v obraně proti patogenům významně neuplatňují. Získaná data 

představují unikátní pohled na imunitní reakce plžů proti T. regenti, který nám umožňuje lépe 

pochopit kompatibilitu/nekompatibilitu plžů s touto ptačí schistosomou. 
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Introduction: 

Gastropod molluscs possess a potent innate immune system that can coordinately 

eliminate pathogens including bacteria or eukaryotic multicellular parasites such as digenetic 

trematodes (digeneans). There are about 18,000 digenean species recorded worldwide (Bray 

et al., 2008) and many of them exclusively rely on gastropods (snails) to complete a part of 

their life cycle ­ intramolluscan larval development.  

Digenean infections of snails are characterised by a high degree of specificity and 

compatibility between both partners which is influenced, at least in part, by immune 

interactions. In an incompatible snail-digenean combination, the host mounts humoral and 

cellular defence responses that are rapidly activated to eliminate the invaders. On the other 

hand, a compatible digenean species attempts to suppress snail immune responses and thus 

ensure its own survival and proliferation. 

Among the wide range of parasitic infections caused by digeneans, human 

schistosomiasis caused by species of the genus Schistosoma is the most important tropical 

disease transmitted by snails, affecting more than 200 million people in approximately 76 

countries (Chitsulo et al., 2004). Becuase of the enormous effect of this disease on human 

health, most immunological studies of snails have focused on snail hosts of Schistosoma spp., 

particularly on Biomphalaria glabrata which transmits S. mansoni. Recent knowledge of this 

model provides an advanced view on the factors influencing compatibility between 

B. glabrata and S. mansoni (Pila et al., 2017). Such understanding also serves as a basis to 

design snail control strategies that aim to disrupt the transmission of human schistosomiasis 

between hosts. 

Besides Schistosoma spp., many other trematodes (e.g. Fasciola spp., Opisthorchis 

spp.) have a significant impact on human and/or animal health. However, the immunobiology 

of the snail hosts that transmit such parasites is poorly understood. This is also the case for the 
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lymnaeid snail species Radix lagotis which serves as a compatible host for the bird 

schistosome Trichobilharzia regenti. Previous studies have been mainly focused on T. regenti 

development within vertebrate hosts and related pathological consequences (Horák et al., 

1999; Blažová and Horák, 2005; Kolářová et al., 2001). Importantly, the cercarial stage of 

T. regenti is responsible for development of local skin inflammatory immune reaction in 

humans known as cercarial dermatitis or swimmer´s itch which is currently considered as an 

emerging infectious disease (Kolářová et al., 2013).  

The research in the thesis on R. lagotis haemocyte immune interactions with 

T. regenti attempted to uncover, at least in part, the mechanisms allowing compatibility 

between both partners. Another part of the research focused on Lymnaea stagnalis 

haemocytes that were utilised to explore extracellular trap-like fiber formation as a novel snail 

defence response against incompatible T. regenti. For comparative purposes, this phenomenon 

was also investigated in R. lagotis and Planorbarius corneus snails using synthetic and 

bacterial components. 
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1. The distinctive architecture of the gastropod immune system 

Gastropod molluscs have evolved an innate immune system capable of fending off 

pathogenic agents. The first barrier against infection is provided by a surface epithelium that 

contains glandular cells (i.e. mucocytes) that produce and secrete mucus (Allam and Espinosa, 

2015). Mucus prevents dessication of the gastropods, especially for those inhabiting terrestrial 

environments, and protects their soft bodies against physical injury. Furthermore, mucosal 

components act as a chemical barrier to prevent colonisation by pathogens (Ehara et al., 2002; 

Loker, 2010; Zhong et al., 2013). The internal milieu of gastropods includes an open 

circulatory system with "blood" called haemolymph. Molluscan haemolymph consists of 

water, ions (e.g. Na
+
, K

+
, Mg

2+
), amino acids and, importantly, components of the internal 

defence system (IDS) that form two arms – humoral and cellular. Humoral factors 

(e.g. lectins) play an essential role in the recognition of foreigners (Adema et al., 1997) while 

immune cells (e.g. haemocytes) employ multiple defence activities for their elimination (van 

der Knaap et al., 1993; Loker et al., 1982; Hahn et al., 2001). A precise cooperation of 

humoral and cellular elements is required to deliver an effective defence response towards 

a pathogen. 

 

1.1. Cellular arm of the gastropod IDS 

The cellular arm of the gastropod IDS is represented by several types of cells with 

haemocytes being considered as the most important type. Haemocytes can be found floating 

free in the haemolymph as well as embedded within connective tissue. These defence cells are 

considered as the equivalent to mammalian macrophages and monocytes. Haemocytes are 

produced by a haemopoietic organ called amoebocyte producing organ (APO) in some 

gastropod species such as Biomphalaria glabrata or Lymnaea truncatula (Lie et al., 1975; 
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Rondelaud and Barthe, 1981), while haemocyte origin remains unknown for other 

representatives such as Lymnaea stagnalis (van der Knaap et al., 1993). 

There have been numerous studies attempting to identify haemocyte 

(sub)population(s) in gastropods, however, opinions differ regarding 

characterisation/nomenclature of such cells. As an example, two haemocyte subpopulations 

were characterised in Oncomelania hupensis snails (Pengsakul et al., 2013) whereas three cell 

lines were identified in B. glabrata (Matricon-Gondran and Letocart, 1999). In L. stagnalis, 

one type of haemocytes was initially described (Sminia, 1972), however, two haemocyte 

subpopulations were later observed/defined (Dikkeboom et al., 1984). In this case, there are 

probably differentially developed cells of one cell line that fullfill multiple defence strategies 

(Sminia, 1972).  

 

1.1.1. Haemocyte defence activities  

Haemocytes of gastropods are potent mediators of multiple defence activities. They 

can produce the short-lived reactive nitrogen or oxygen species (RNS/ROS) that cause lipid 

peroxidation and thus loss of cell membrane integrity, or induce protein/nucleic acid 

denaturation (Gornowicz et al., 2013). RNS is represented by nitric oxide (NO) generated by 

nitric oxide synthase (NOS) isoforms which oxidise L-arginine to L-citrulline and NO 

(Nathan and Xie, 1994). The oxidative burst of haemocytes leads to ROS production. Initial 

ROS is represented by the superoxide anion (O2
-
) that is released by plasma membrane-

associated enzyme NADPH oxidase (Adema et al., 1993). The superoxide anion is unstable 

and it is readily transformed to subsequent ROS including hydrogen peroxide (H2O2), 

hypochlorous acid (HOCl) or hydroxyl radical (OH
-
) (Adema et al., 1993; Adema et al., 1994; 

Bayne et al., 2001). The capacity of snail haemocytes to generate ROS is influenced by 
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several factors such as trematode infection (Gornowicz et al., 2013) or snail age (Dikkeboom 

et al., 1985).  

Haemocyte RNS/ROS production is usually linked to phagocytosis or 

encapsulation responses. Phagocytosis is a process whereby single cells internalise objects 

that they encounter and recognise as foreigners (Stossel, 1974). Immature haemocytes of 

juvenile snails usually possess lower phagocytic capacity than those of adult ones 

(Dikkeboom et al., 1985). Furthermore, the phagocytic activity of haemocytes differs between 

species of snails and it is lower in Planorbarius corneus, Helix aspersa and B. glabrata in 

comparison to L. stagnalis (Dikkeboom et al., 1988). In addition, phagocytosis also 

participates in homeostasis of the body by self-cell clearance (autophagy). 

Encapsulation involves the formation of a multilayered structure of closely attached 

and spread haemocytes around a pathogenic agent that is large and thus not suitable for 

phagocytosis (Sminia et al., 1974). The thickness of the structure may vary between 10 and 40 

µm (Harris, 1975) and the internal layer of haemocytes is in direct contact with the pathogen 

(Loker et al., 1982). 

Recently, a novel defence response of haemocytes called ETosis was discovered in 

different gastropod species (Limax maximus, Arion lusitanicus and Achatina fulica) (Lange et 

al., 2017). During such response, extracellular trap-like (ET-like) fibers consisting of DNA, 

histones and myeloperoxidase are released by haemocytes to contact/ensnare larvae of 

parasites.  

 

1.1.2. Regulation of haemocyte defence activities 

Haemocyte effector activities are governed by signal transduction pathways that are 

activated by exposure of haemocytes to exogenous stimuli. Current knowledge of these 

pathways in molluscan defence is fragmentary although some of the key molecules have been 
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defined. These include protein kinase C (PKC) and extracellular signal-regulated kinase 1/2 

(ERK1/2), both of which are ubiquitously present in animal cells across various taxa (Kruse et 

al., 1996; Johnson and Lapadat, 2002; Manning et al., 2002). PKC is a family of protein 

kinase enzymes that can be activated by signals such as increases in the concentration of 

diacylglycerol (DAG) and calcium ions (Ca
2+

). ERK1/2 belong to the mitogen-activated 

protein kinase (MAPK) family that are activated by a range of extracellular signals such as 

growth factors that bind growth factor receptors. 

A multiplicity of functions have been ascribed to activated PKC and ERK1/2, such 

as regulation of cell growth, cell cycle progression, gene expression and, importantly, 

mediation of the immune response (Newton, 1995; Marshall, 1995). In gastropods, activated 

PKC, initially described in L. stagnalis haemocytes (Walker and Plows, 2003), coordinates 

H2O2/NO production or spreading of these cells (Lacchini et al., 2006; Wright et al., 2006; 

Walker et al., 2010), and it is also essential for H2O2 release in B. glabrata (Bender et al., 

2005; Humphries and Yoshino, 2008) or O2
- 

release in Littorina littorea (Gorbushin and 

Iakovleva, 2007). PKC also acts upstream of ERK1/2 activation; the latter molecule 

consequently plays an important role in controlling phagocytic activity or H2O2/NO release in 

L. stagnalis haemocytes (Lacchini et al., 2006; Wright et al., 2006; Plows et al., 2004; Zahoor 

et al., 2009). Activated ERK1/2 is also required for H2O2 production in B. glabrata cells 

(Humphries and Yoshino, 2008). Additional to PKC and ERK1/2, a regulatory role of other 

signalling molecules in molluscan defence has also been suggested. As an example, activated 

phosphatidylinositol 3-kinase is important for phagocytosis in L. stagnalis haemocytes (Plows 

et al., 2006) while p38 MAPK promotes H2O2 generation by B. glabrata haemocytes 

(Humphries and Yoshino, 2008). Together, although the signalling pathways leading to 

activation of PKC and ERK1/2 seem to be central to haemocyte immune responses in 

gastropods, our knowledge of activation/inhibitory signals upon infection of gastropods with 
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compatible/incompatible pathogens is limited and their interplay with other pathways such as 

those linked to stress signalling (e.g. p38 MAPK) is not well understood. All this is worthy of 

more study. 

 

1.1.3 Cellular activities of fixed phagocytes and rhogocytes 

Additionally to haemocytes, gastropods possess fixed phagocytes that are dispersed 

throughout the connective tissue and trap and/or phagocyte foreign particles as described in 

L. stagnalis (Sminia et al., 1979) and B. glabrata (Matricon-Gondran and Letocart, 1999). 

Overall, how fixed phagocytes participate in elimination of foreigners within gastropods is not 

well understood (Loker, 2010). Another cell type, embedded in the conncetive tissue or 

floating in the haemolymph, are rhogocytes (also known as pore cells) that are involved in 

protein uptake and degradation, heavy metal detoxification, and synthesis and secretion of 

respiratory proteins such as haemocyanin in Haliotis tuberculata (Albrecht et al., 2001) or 

haemoglobin in B. glabrata (Kokkinopoulou et al., 2015). Molecular processes underpinning 

defence activities of these cell types remain largely unknown. 

 

1.2. Humoral arm of gastropod IDS 

The humoral arm of the gastropod IDS is represented by soluble (or cell bound) 

immune effector molecules such as pattern recognition receptors (PRRs), cytotoxins and 

variable molecules containing immunoglobulin and/or lectin domain(s). These molecules are 

involved in recognition/killing of pathogens and they cooperate with the cellular arm through 

activation of haemocyte-mediated defence responses.  

A pivotal role in gastropod defence is attributed to lectins that are synthesised and 

released by haemocytes as well as by connective tissue cells; they are also produced by the 

albumen gland (van der Knaap et al., 1981; Horák and van der Knaap, 1997; Gerlach et al., 
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2005). Lectins are (glyco)proteins that specifically recognise and reversibly bind carbohydrate 

moieties on the surface of pathogens that subsequently triggers cellular defence (Barondes, 

1988; Horák and van der Knaap, 1997). Another class of well studied molecules are the 

fibrinogen-related proteins (FREPs) that are polymorphic lectin-like molecules (Gordy et al., 

2015; Pila et al., 2017). Perhaps, the most well characterised FREPs are in B. glabrata snails 

(Pila et al. 2017), although they were also investigated in other gastropod species (Adema et 

al., 1997; Gorbushin and Borisova, 2015). FREPs of gastropods possess a unique architecture 

since they are composed of fibrinogen domain connected to one or two immunoglobulin 

superfamily domain(s) (Gordy et al., 2015). Importantly, FREPs are somatically diversified 

and thus they exhibit functional specialisation against various pathogens; their central role is 

attributed to the defence against digenean trematodes (Adema et al., 2017; Gordy et al., 2015; 

Pila et al., 2017). Molluscan defence molecule (MDM) is another member of the 

immunoglobulin superfamily that is expressed by granular cells of connective tissue in 

L. stagnalis and enhances the phagocytic activity of haemocytes (Hoek et al., 1996). 

Granularin is similarly secreted by granular cells of L. stagnalis and it plays a role in 

phagocytosis (Smit et al., 2004). Granularin has two actions on phagocytic activity of 

haemocytes: (i) it enhances phagocytosis when treated with particles that are then exposed to 

haemocytes, (ii) it reduces phagocytosis when treated with haemocytes before contact with 

target particles (Smit et al., 2004). 

More recently, a putative cytolytic protein called biomphalysin belonging to the 

ß pore-forming toxin (ß-PFT) superfamily was identified in the plasma of B. glabrata 

(Galinier et al., 2013). Structural analysis revealed that, unlike to known ß-PFTs, 

biomphalysin lacks a lectin-like domain and probably does not bind to carbohydrates 

(Galinier et al., 2013; Pila et al., 2017). However, pathogen specific molecules that are 

recognised by B. glabrata biomphalysin remain to be elucidated. In addition, humoral factors 
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that directly exert cytotoxicity towards target cells have also been described in the plasma of 

L. stagnalis (Mohandas et al., 1992). 

 

2. Infections of gastropods and pathogen elimination 

Gastropods live in a microorganism replete environment are exposed to pathogens 

such as viruses (Prince, 2003; Savin et al., 2010; De Vico et al., 2017) or bacteria (Nicolas et 

al., 2002; Raut, 2004; Duval et al., 2015) continuosly. They may also encounter metazoan 

parasites such as nematodes or digenetic trematodes (Bayne, 2009; Loker et al., 2010; Cowie, 

2017). Incompatible pathogens and parasites are recognised and eliminated by effectors of 

gastropod IDS. Currently, the anti-viral responses of gastropods are almost unknown in 

contrast to anti-bacterial immune strategies; however, the most immunological studies 

focused on interactions between gastropods (snails) and larval stages of digeneans (Loker, 

2010). 

 

2.1. Immune reactions at the outer surface of gastropods  

Components of the surface mucus provide the first line of defence of gastropods 

against invaders. At least two antimicrobial peptides (AMPs) (achacin and mytimacin-AF) 

were characterised in the mucus of Achatina fulica snail (Ehara et al., 2002; Zhong et al., 

2013). Achacin is a glycoprotein (L-amino oxidase) that generates cytotoxic H2O2 that 

preferentially recognises and binds to bacteria at growth phase as shown for E. coli and 

Staphylococcus aureus (Ehara et al., 2002). Mytimacin-AF is a cysteine-rich polypeptide that 

exhibits antibacterial activity against various Gram-negative and Gram-positive bacteria, and 

the yeast Candida albicans (Zhong et al. 2013). Additionally, a lectin that is able to 

agglutinate E. coli and S. saprophyticus has been isolated form the mucus of A. fulica (Ito et 

al., 2011). 
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Recently, the effect of mucus produced by freshwater snails (Helisoma trivolvis and 

Lymnaea elodes) on the survival rate of miracidia of the giant liver fluke Fascioloides magna 

was investigated (Coyne et al., 2015). While all larvae (miracidia) died in the mucus derived 

from H. trivolvis that is incompatible with F. magna development, no miracidia were killed in 

the compatible L. elodes mucus. This suggests that cytotoxic activity of mucus components is 

one determinant of larval trematode-snail compatibility. However, these components remain 

to be characterised and the relative contribution of mucus to prevent penetration of F. magna 

miracidia into incompatible snail species is worth of elucidation.  

Importantly, haemocyte defence responses were currently described in the mucus of 

the slug L. maximus against invading nematode larvae Angiostrongylus vasorum (Lange et al., 

2017). Haemocytes were observed to be firmly attached to the parasite cuticle and some of the 

haemocytes expelled ET-like fibers that caused A. vasorum entrapment (Lange et al., 2017). 

Such responses likely prevented invasion of the larvae into the slug body, however, detailed 

functional characterisation of ET-like fibers is required. 

 

2.2. Recognition and elimination of pathogens by the IDS 

 Implementation of an efficient immune response requires specific recognition of 

pathogens that is mediated by different soluble and membrane-bound immune receptors (i.e. 

pathogen recognition receptors, PRRs). These PRRs display ability to bind various 

pathogen­associated molecular patterns (PAMPs) and thereby trigger immune signalling 

pathways. Immune mechanisms in pathogen-gastropod interactions are described in several 

comprehensive reviews (van der Knaap and Loker, 1990; Fryer and Bayne, 1996; Loker and 

Adema, 1995; Loker, 2010; Mitta et al., 2012; Adema and Loker, 2015; Coustou et al., 2015; 

Pila et al., 2017).  
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In the first studies, discrimination and elimination of bacteria or foreign cells by the 

IDS was documented in Helix pomatia (Renwrantz, 1981). These nonself components were 

initially bound to the membrane of cells lining haemolymph sinuses and then they were 

phagocytosed by circulating haemocytes. Clearance of bacteria introduced into L. stagnalis 

was also investigated with pore cells, fixed phagocytes and haemocytes participating in the 

process (van der Knaap, 1981). Furthermore, the oxygen transporting protein haemocyanin 

was suggested as an enhancer of haemocyte mediated phagocytic response (van der Knaap, 

1981). In L. stagnalis, haemocytes exhibited increased clearance capacity towards 

S. saprophyticus and E. coli when the snails were first injected with dead bacteria of both 

species (van der Knaap et al., 1983). Thus, a certain level of specificity and immune memory 

was suggested to exist in the internal defence mechanisms of L. stagnalis (van der Knaap et 

al., 1983).  

Involvement of carbohydrate-binding specific molecules (lectins) in recognition of 

pathogens is considered an important and evolutionarily ancient binding principle 

(Renwrantz, 1983; Jacobson and Doyle, 1996; Horák and van der Knaap, 1997). 

Carbohydrate-binding proteins have been revealed in the plasma of B. glabrata following 

exposure to larvae of the trematodes Echinostoma paraensei and S. mansoni (Monroy and 

Loker, 1993). Subsequently, their binding to Gram-positive bacteria (e.g. Bacillus subtilis), 

Gram-negative bacteria (e.g. Serratia marcescens), and to sporocysts and rediae of 

E. paraensei was reported (Hertel et al., 1994). Furthermore, an opsonic role of such binding 

probably facilitated destruction of these pathogens by haemocytes. Haemocyte 

membrane­bound lectins have also been implicated in detection of pathogens. As an example, 

a galectin of B. glabrata haemocytes was characterised and its binding to the surface of 

S. mansoni sporocysts was confirmed (Yoshino et al., 2008). Besides recognition, lectins of 

gastropods may also exert other activities towards intruders, such as agglutination 
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demonstrated for C-type lectin of Haliotis discus discus in the presence of Vibrio 

alginolyticus (Wang et al., 2008). 

As stated above (Section 1.2.), lectin­like molecules, FREPs, have attracted 

considerable attention as PRRs of gastropods, and their involvement in immune responses has 

been comprehensively studied using the model B. glabrata­S. mansoni (Coustau et al., 2015; 

Gordy et al., 2015; Mitta et al. 2012; Pila et al., 2017). Penetration of the parasite into the 

snail host initiates miracidium-mother sporocyst transformation on the one hand, and 

proliferation and differentiation of haemocytes that produce FREPs (BgFREPs) on the other 

hand. Among BgFREPs, BgFREP2 recognises and binds to the surface glycosylated proteins 

of mother sporocysts called S. mansoni polymorphic mucins (SmPoMucs) (Roger et al., 2008; 

Mitta et al., 2012; Gordy et al., 2015). Furthermore, it has been suggested that BgFREP2 

bound to SmPoMucs forms an immune complex with thioester-containing protein (TEP) prior 

to recruitment of haemocytes (towards the parsite) and subsequent encapsulation (Gordy et 

al., 2015; Pila et al., 2017). At least one pro­inflammatory cytokine named macrophage 

migration inhibitory factor (MIF) has been shown to enhance the encapsulation response 

(Garcia et al., 2010), while identity of others remains unknown. After encapsulation, 

haemocytes release ROS with H2O2 being considered as the most important metabolite that 

facilitates killing of S. mansoni sporocyst (Hanh et al., 2001). Pieces of damaged parasite 

body were then observed to be actively phagocytosed by snail haemocytes (Loker et al., 

1982). While newly penetrated parasites were contacted by host haemocytes as early as 

1 h post-infection (p.i.), the entire encapsulation and elimination of S. mansoni occurred 

within 4­48 h p.i. (Loker et al., 1982; Mitta et al., 2012). 

Importantly, a shift from cellular to humoral response probably contributes to the 

development of innate memory and ensures complete protection of B. glabrata against 

a secondary challenge with S. mansoni (Pinaud et al., 2016; Coustau et al., 2016). Detailed 
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analysis of whole-snail transcriptomes revealed that transcripts for BgFREPs, biomphalysin 

and other bioactive molecules were overexpressed in snails after the secondary exposure to 

the parasite when compared to initial infection (Pinaud et al., 2016). Functional tests further 

indicated that BgFREP2, 3, and 4 are likely involved in B. glabrata innate immune memory 

(Pinaud et al., 2016). However, given that small interfering RNA­mediated knock­down of 

these BgFREPs reduced the innate immune memory phenotype by only 15%, other BgFREP 

variants and/or molecules certainly participate in this phenomenon (Pinaud et al., 2016). 

Increasing evidence for novel molecules in B. glabrata likely playing an immune role (Adema 

et al., 2017; Dheilly et al., 2015; Tetreau et al., 2017) represents a perspective for their 

identification. 

Except for S. mansoni infection, expression profiles of various BgFREPs were also 

examined during other snail immunological challenges, and recognition and binding of 

BgFREPs to the respective pathogens have been evaluated. As an example, BgFREP4 was 

significantly up­regulated following infection of B. glabrata with E. paraensei whereas 

BgFREP8 was down­regulated (Zhang et al., 2008; Adema et al., 2010). Furthermore, it was 

demonstrated that BgFREP4 binds to E. paraensei sporocysts and their excretory-secretory 

products (ESPs) (Zhang et al., 2008). When bacteria were used as a challenge, BgFREP7 was 

shown to increase in abundance after snail exposure to Micrococcus luteus while it decreased 

after injections of B. glabrata with E. coli (Adema et al., 2010). In addition, BgFREP3 has 

been evaluated for its binding capability to E. coli, but also to S. aureus or Saccharomyces 

cerevisiae (Zhang et al., 2008). Although the above described evidence strongly supports the 

role of BgFREPs in pathogen recognition, targets recognised by these molecules and 

subsequent molecular interplay leading to activation of haemocytes remain largely unknown. 

Histological and ultrastructural studies have shown encapsulated sporocysts of 

E. paraensei, Echinostoma lindoense and/or Echinostoma caproni in the ventricle of 
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B. glabrata (Ataev and Coustau, 1999; Jeong et al., 1984; Loker et al., 1987). Furthermore, 

parts of E. paraensei/E. lindoense tegument actively engulfed by snail haemocytes were also 

observed (Jeong et al., 1984). Similarly, encapsulation responses were observed in other 

models of trematode­gastropod interactions such as Bulinus guernei­Schistosoma 

haematobium or L. stagnalis-Trichobilharzia regenti (Krupa et al., 1997; L. Trefil, Charles 

University, Prague, Czechia). Advanced understanding of these interactions at the molecular 

level might likely be achieved through studies of FREPs molecules representing an important 

perspective.  

 

3. Immunomodulation of gastropod IDS by compatible pathogens  

Compatible pathogens, upon entering the susceptible gastropod host, have to avoid 

attack by the immune system. They employ both passive and active strategies to modulate and 

down­regulate specific immune responses to ensure parasite survival and replication. 

Alterations in gastropod IDS by pathogens are most comprehensively described for snails 

infected by trematodes. 

In the snail host, trematode larvae interfere with both cellular and humoral 

components of the IDS. Disruption of haemocyte effector functions has been described in 

parasitised snails at various times during the course of trematode infection, and such evidence 

is also available from in vitro experiments. In L. stagnalis infected with Trichobilharzia 

szidati, an activation of both IDS arms likely coinciding with phagocytosis of miracidial 

ciliated plates was found early after parasite penetration, however, suppression of haemocyte 

phagocytic activity later occurred (Amen et al., 1992). In vitro, haemocytes failed to 

encapsulate and destroy T. szidati sporocysts (Adema et al., 1994). The inability of 

B. glabrata haemocytes to form capsules around E. paraensei sporocysts and daughter rediae 

was also shown in vitro (Adema et al., 1994). Haemocytes from B. glabrata infected with 
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E. paraensei also displayed decreased phagocytic activity (Noda and Loker, 1989). Alteration 

in ROS production has been also reported such as in B. glabrata­S. mansoni (Connors et al., 

1991) or Himasthla elongata­Littorina littorea associations (Gorbushin and Yakovleva, 

2008).  

Although modulation of haemocyte immune reactions has been demonstrated for 

many trematode-snail combinations, the mechanisms leading to immunosupression and key 

molecules involved in the process are unknown for most of them. It has been revealed that 

parasite ESPs participate in the modulation of haemocyte activities. As an example, 

a 100 kDa fraction of ESPs of E. paraensei sporocysts has been proven to affect larval 

encapsulation by B. glabrata haemocytes (Loker et al., 1992). Disruption of ERK1/2 

signalling in susceptible B. glabrata haemocytes by ESPs of S. mansoni sporocyst (and whole 

larvae) was also proposed as a mechanism facilitating parasite survival within the snail host 

(Zahoor et al., 2008). Furthermore, carbohydrate moieties (D-galactose, L-fucose) mimicking 

those present on the surface of trematode larvae, such as in the bird schistosome T. regenti 

(Blažová and Horák, 2005; Chanová et al., 2009), down­regulated the activity of ERK1/2 and 

PKC in L. stagnalis haemocytes, which, given the role of these pathways in defence 

responses, suggests an immunosupressive role (Plows et al., 2005; Walker, 2006).  

As far as alterations in humoral components are concerned, it has been shown that 

infection of susceptible B. glabrata with E. paraensei provoked a substantial increase in 

soluble plasma polypeptides while a little change occurred in resistant snails (Loker and 

Hertel, 1987). In concordance, infection by E. paraensei or S. mansoni in B. glabrata also 

resulted in increased concentration of carbohydrate-binding proteins and, moreover, profiles 

of these proteins differed according to the two parasite species used indicating specific snail 

responses (Monroy et al., 1992). Unfortunately, the functional significance of such alterations 

observed in B. glabrata remains unclear. In L. stagnalis infected with T. szidati, expression of 
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MDM (an enhancer of phagocytosis) was down­regulated (Hoek et al., 1996; de Jong Brink et 

al., 2001) whereas the encoding gene for granularin (reducer of phagocytosis) was 

up­regulated in parasitised snails (Smit et al., 2004). Both these modulations likely favoured 

T. szidati infection in L. stagnalis.  

Snail FREPs may also be important targets in immunosupressive processes as 

demonstrated in B. glabrata. RNA interference (RNAi) mediated knock­down of BgFREP3 in 

snails resistant to E. paraensei resulted in successful establishment of the infection in 28­33% 

of individuals (Hanington et al., 2010). Similarly, decreased BgFREP3 also altered the 

resistance phenotype in B. glabrata towards S. mansoni with 21% of snails progressing to 

patent phase of infection (Hanington et al., 2012). BgFREP3 expression was also attenuated 

in snails exposed to irradiated E. paraensei that subsequently increased susceptibility of 

B. glabrata to S. mansoni by 46% (Hanington et al., 2012). Together, these observations 

suggest that BgFREPs are not the only factors responsible for snail resistance to infection by 

trematodes (Gordy et al., 2015), and therefore, evaluation of other molecules (mechanisms) is 

desired to explore this unique phenomenon. 

 

4. Concluding remarks 

Current knowledge of gastropod immunology is based on a few species, mostly in 

the context of infections by digenetic trematodes. Given the diversity of gastropods and 

immune stimuli in different habitats, it is probable that diverse modes of defence strategies are 

employed in particular gastropod­pathogen combinations. Therefore, it can be assumed that 

immunological investigations of new models will lead to the discovery of novel defence 

mechanisms, effector molecules, etc. Last but not least, a potential control agent for medically 

important snails might also emerge from such investigations. 
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It is anticipated that medically important snails (and also commercially used 

gastropod species) will further be the main subject of invertebrate immunology. Despite the 

increasing evidence of novel immune molecules in some investigated species, the functional 

relevance is known for a minority of them. Approaches such as RNAi should enable more 

comprehensive insight into their role in immunity. Completing the mosaic of cellular and 

humoral immune factors will contribute to our understanding of molecular mechanisms 

underpinning transmission of pathogens via gastropod molluscs.   
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Aims of the thesis 

The thesis aimed to explore the defence activities of haemocytes of two lymnaeid 

snail species (Radix lagotis and Lymnaea stagnalis) that transmit bird schistosomes, and study 

the immunomodulation caused by trematodes in their snail hosts. The data obtained can 

contribute to our knowledge of mechanisms allowing compatibility/incompatibility between 

the parasite and the intermediate snail host. 

 

The specific aims were to: 

1) Summarise the current knowledge of intramolluscan development of bird 

schistosomes, and immune interactions between the parasite and the snail host. 

2) Examine haemocyte defence activities of R. lagotis against Trichobilharzia regenti 

during the initial phase of infection, and immunomodulation during the patent phase of 

infection. 

3) Investigate the ability of L. stagnalis haemocytes to produce extracellular trap-like 

fibers against incompatible T. regenti and other stimulants, and to compare fiber 

formation in R. lagotis and Planorbarius corneus snails. 
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of the Czech Republic, České Budějovice, Czech Republicb; Museum Southwestern Biology, Department of Biology, University of New Mexico, Albuquerque, New Mexico,
USAc

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165
DIVERSITY OF SCHISTOSOMES CAUSING DERMATITIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166
MOLLUSCAN AND AVIAN HOST SPECIFICITY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168
INTRAMOLLUSCAN DEVELOPMENT OF AVIAN SCHISTOSOMES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169
VERTEBRATE HOST FINDING AND PENETRATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170
PATHOGENICITY OF AND IMMUNE REACTIONS AGAINST AVIAN SCHISTOSOMES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173

Survival and Migration in Avian Hosts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173
Pathology Caused by Visceral Species in Birds and Mammals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173
Pathology Caused by Nasal Species in Birds and Mice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174
Skin Immune Response and Cercarial Dermatitis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176

DETECTION AND IDENTIFICATION OF AVIAN SCHISTOSOMES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176
CLINICAL FEATURES, DIAGNOSIS, TREATMENT, AND PROPHYLAXIS OF HUMAN INFECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177
ECOLOGICAL FACTORS INFLUENCING THE OCCURRENCE OF AVIAN SCHISTOSOMES AND CERCARIAL DERMATITIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179

Global Warming and Eutrophication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179
Recreational Activities and Cercarial Dermatitis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179
Control Measures Related to the Ecology of Avian Schistosomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180

PERSPECTIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180
ACKNOWLEDGMENTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181
AUTHOR BIOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189

SUMMARY
Cercarial dermatitis (swimmer’s itch) is a condition caused by
infective larvae (cercariae) of a species-rich group of mammalian
and avian schistosomes. Over the last decade, it has been reported
in areas that previously had few or no cases of dermatitis and is
thus considered an emerging disease. It is obvious that avian schis-
tosomes are responsible for the majority of reported dermatitis
outbreaks around the world, and thus they are the primary focus
of this review. Although they infect humans, they do not mature
and usually die in the skin. Experimental infections of avian schis-
tosomes in mice show that in previously exposed hosts, there is a
strong skin immune reaction that kills the schistosome. However,
penetration of larvae into naive mice can result in temporary mi-
gration from the skin. This is of particular interest because the
worms are able to migrate to different organs, for example, the
lungs in the case of visceral schistosomes and the central nervous
system in the case of nasal schistosomes. The risk of such migra-
tion and accompanying disorders needs to be clarified for humans
and animals of interest (e.g., dogs). Herein we compiled the most
comprehensive review of the diversity, immunology, and epide-
miology of avian schistosomes causing cercarial dermatitis.

INTRODUCTION

Cercarial dermatitis is a condition caused by both mammalian
and avian schistosomes (Trematoda: Schistosomatidae).

Which of those species is more prevalent in a dermatitis outbreak
depends on where you are in the world and how humans and
birds/mammals (and, by association, snails) come into contact
with a particular type of aquatic environment. The name “cer-

carial dermatitis” is derived from the term “cercaria,” the last lar-
val stage developing in an aquatic snail. Cercaria is the infective
stage that, after leaving the snail, searches for and invades a warm-
blooded vertebrate host via skin penetration. Besides the official
name, “cercarial dermatitis,” many local terms are used (“sawah
itch,” “koganbyo,” etc.), with the most widely used name being
“swimmer’s itch.”

Schistosome cercariae were disclosed as the causative agent of
cercarial dermatitis in the United States in 1928 (1). Since that
time, numerous reports of cercarial dermatitis have been docu-
mented from different parts of the world. Global economic losses
due to outbreaks of cercarial dermatitis are not known, as there is
no systematic method of reporting either the number of cases or
incurred economic losses in terms of recreation or person work
hours. Furthermore, what data do exist that estimate local costs
are usually not available to the public domain, but it is accepted
that outbreaks can have considerable impacts on local, tourism-
based economies in the areas of recreational lakes (2). For exam-
ple, in the recreational area of Naroch Lake (Belarus), 4,737 cases
of cercarial dermatitis were recorded between 1995 and 2006 (3).
In addition, cercarial dermatitis may represent a debilitating oc-
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cupational disease among rice farmers (4) and may incur costs in
terms of lost person work hours. Older reports refer to 75% or
more of the population experiencing the characteristic symptoms
of “koganbyo” in the areas of Japan where the disease is most
highly endemic (5). Recent reviews (6–9) agree that in some re-
gions cercarial dermatitis has appeared as a new problem, either
because the dermatitis was previously unknown (e.g., the U.S.
Southwest and Chile) or because the number of reports of out-
breaks increased (8, 10, 11). Consequently, cercarial dermatitis is
now regarded as an emerging disease. Besides human schisto-
somes (Schistosoma spp.), no animal (e.g., avian) schistosomes
have any other presently known pathogenic effects on humans.
Thus, the use of animal models to study the potential risk of ani-
mal (avian) schistosomes to human health is invaluable.

The last decade has revealed diverse avian schistosome species
and biology, as well as the snails that host them. These discoveries
have outpaced the equally essential host-parasite biological, im-
munological, pathological, and epidemiological studies of species
diversity in terms of incorporating the results of such studies into
the current known diversity of schistosomes. Such studies are dif-
ficult and time-consuming, and consequently, only a few species
have been adapted to experimental conditions. Nevertheless, such
studies are crucial to understanding the current and future roles
that these species might play in the frequency and distribution of
cercarial dermatitis, as well as understanding how to break the life
cycle to prevent outbreaks. What has been documented, and is
detailed in the following sections, points to an understanding of
the avian schistosome-host relationships and thus offers the foun-
dation on which future studies will be modeled.

DIVERSITY OF SCHISTOSOMES CAUSING DERMATITIS
Considering only the named species in the literature, there are 4
schistosome genera from mammals and 10 from birds, with about
30 described species from mammals and about 67 from birds (12).
The total is close to 100 species, with !70% of them being avian
schistosomes distributed around the world that may initiate cer-
carial dermatitis. The role of some of the species of avian schisto-
somes as dermatitis agents has not been studied sufficiently, as
they are not often found in areas where people most commonly
are in contact with water and snails. To discuss the distribution
and diversity of schistosomes causing dermatitis within the phy-
logenetic framework of the family Schistosomatidae, we refer to
Fig. 1 (12–14).

The basal clade of the family tree (Fig. 1, clade A) comprises the
exclusively marine avian schistosomes Austrobilharzia (4 species)
and Ornithobilharzia (2 species); the species shown in the tree are
those for which there are genetic data. Species of these two genera
are associated with outbreaks of dermatitis in shallow marine en-
vironments (15, 16). Infection often occurs in people who are
swimming, playing in tidal pools, or working, for example, col-
lecting tidal invertebrates in the sand (15, 17–27). Both of these
genera have robust, large worms as adults and are common schis-
tosomes of marine birds, particularly gulls. Species of Austrobil-
harzia are more often implicated as a cause of dermatitis out-
breaks (25).

The next main clade includes the remaining schistosomes (Fig.
1, clades B, C, and D). Clades B and C are exclusively freshwater
mammalian schistosomes. The largest clade of mammalian schis-
tosomes includes the genus Schistosoma, with !25 species (clade
B). In particular, three of these species (Schistosoma mansoni,

Schistosoma haematobium, and Schistosoma japonicum) cause one
of the most devastating helminth diseases in humans, schistoso-
miasis, affecting about 220 million people, mainly in the tropical
and subtropical latitudes around the world (WHO). All but one
species (S. mansoni) occur exclusively in the Eastern Hemisphere.
These species are not typically implicated in dermatitis outbreaks,
yet there is a mild eruption of dermatitis following penetration by
all schistosomes (28). Most reported cases of dermatitis caused by
the genus Schistosoma are from parasites that infect domesticated
work animals, such as cattle and buffalo, mainly in Asia. For ex-
ample, in countries such as India and Nepal, the species Schisto-
soma turkestanicum, Schistosoma nasale, Schistosoma indicum, and
Schistosoma spindale are often implicated in outbreaks of derma-
titis (29–38). This relationship may not be a surprise, as bovids are
the definitive host, and the people in these areas depend upon
these animals for their livelihood in farming. Additionally, the
snail host for the major species causing dermatitis (S. nasale, S.
indicum, and S. spindale) is Indoplanorbis exustus, a widespread
and abundant snail that is found mainly in Nepal and India, to the
exclusion of Biomphalaria and Bulinus, snail hosts for a majority
of the African transmitted species of Schistosoma.

The genus Bivitellobilharzia is considered a schistosome of el-
ephants, but it has also been reported from wild rhinoceroses in
Nepal (38–41). There are no known reports of cercarial dermatitis
in humans from areas inhabited by African elephants (with the
Bivitellobilharzia loxodontae schistosome), but in areas where do-
mesticated Asian elephants are used, there have been cases of der-
matitis in the mahouts, or elephant handlers, when the elephants
are taken for bathing (e.g., in Sri Lanka [40]). In Nepal, Bivitello-
bilharzia nairi has thus far been found in wild, not domesticated,
elephants (38). The snail host remains unknown but is likely a
pulmonate snail (42). At least two species of Schistosoma from
Biomphalaria snails infect the African hippopotamus, but these
species have not been implicated directly in dermatitis outbreaks,
despite the presence of humans working on lakeshores where
there are hippopotamuses (43–45). Given the prevalence of hu-
man schistosomiasis in these areas, however, dermatitis caused by
hippopotamus schistosomes may easily go undetected.

The small clade C (Fig. 1) has two species of mammalian schis-
tosomes that, as far as we know, are found only in North America
and are not frequently associated with dermatitis outbreaks,
though they both produce a skin reaction (46–50). These two
species are parasites of lymnaeid snails (often Stagnicola elodes),
usually with raccoons and muskrats as mammalian hosts. Schisto-
somatium douthitti adults inhabit aquatic and semiaquatic ro-
dents in more northern latitudes or at high elevations (48, 51, 52).
Heterobilharzia americana has been reported from a wide range of
mammalian hosts (rivaling Schistosoma japonicum), including
horses, in the southern regions of North America (49, 53, 54).

Perhaps the most remarkable clade of schistosomes responsi-
ble for dermatitis is clade D, a large clade of avian schistosomes
whose adults are long and threadlike (except Dendritobilharzia
and Bilharziella) and that includes both freshwater and marine
species. In particular, the genus Trichobilharzia has achieved no-
toriety as the primary etiological agent for dermatitis outbreaks
around the world. The diversity of aquatic environments, host
use, morphology, definitive host habitat, and cercarial behavior is
unparalleled in any other group of schistosomes, and probably
most other groups of trematodes (12, 14). Figure 1 includes a
molecular phylogeny of all the known genera of schistosomes ex-
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cept one. Jilinobilharzia has not been reported since the original
paper reporting it from the duck Anas crecca in northeastern
China; its snail host remains unknown (55). Morphological char-
acteristics and host use suggest that Jilinobilharzia belongs in the
large clade of avian schistosomes (Fig. 1, clade D), perhaps even to
Trichobilharzia.

At the base of clade D is an unresolved group of avian schisto-
somes, most of which have been implicated in dermatitis out-
breaks and comprise the most diverse range of both bird and snail
(9 families) host use (13, 40, 56–66). Current results based on all of
the available sequence data in GenBank for the internal tran-
scribed spacer (ITS) region indicate that there are about nine dis-
tinct lineages, only two of which are described: Gigantobilharzia
and Dendritobilharzia (40, 64–69). Most of the lineages in this part

of clade D have one to a few species and have been seen in only a
few cases, many related to dermatitis outbreaks (12) (Table 1).
Thus far, the literature suggests that species in this clade cause
dermatitis in more local areas, whereas Trichobilharzia causes cer-
carial dermatitis globally. For example, in the San Francisco Bay
area (California), one beach in particular has annual cases of der-
matitis (64). The prevalence of dermatitis caused by schistosomes
from Valvata or Melanoides snails (63, 65, 66) depends on how
often people use areas where these snails release cercariae.

Species of Trichobilharzia (Fig. 1, clade D) are globally distrib-
uted and cause the majority of recreational and occupational re-
ports of dermatitis found in the literature, especially in the tem-
perate latitudes. In North America and Europe, where most of the
research has been focused, outbreaks occur in recreational ponds

FIG 1 Phylogenetic tree showing generic and species positions based on Bayesian analysis of the nuclear ribosomal DNA 28S region (1,200 bp) of Schistoso-
matidae. Panels A to D refer to the clades discussed in the text. This tree is based on genetic data, not morphological data, and as such, there are more species that
have been described morphologically than genetically. Asterisks denote significant posterior probabilities ("0.95).
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and reservoirs. These outbreaks have been reviewed extensively (7,
8, 70, 71). Species of Trichobilharzia have been reported to cause
dermatitis from other areas as well, such as Rwanda-Burundi (72),
South Africa (73, 74), New Zealand and Australia (75–79), Malay-
sia/Indonesia (80–82), Iran (65, 83–86), United Arab Emirates
(66), Thailand (87), and China (88, 89) in the Eastern Hemisphere
and Argentina (57, 90, 91), Chile (11), and El Salvador (92) in the
Western Hemisphere. We are just beginning to better under-
stand the significant disease components for dermatitis as a
global problem.

Cercarial dermatitis is also recognized as an occupational haz-
ard in many areas of the world, especially in areas where rice is
grown (82, 93). Rice fields are areas where snails, domestic and
wild ducks, cattle, and humans seasonally use the water, so the life
cycle is maintained consistently (5, 84, 94–104). Species of Tricho-
bilharzia are identified most often, though not exclusively (5).
Rice fields are plowed by water buffalo and cattle in areas where
Indoplanorbis exustus occurs, and hence, dermatitis may be caused
by one of the species of Schistosoma, as noted above. Nonetheless,
Trichobilharzia is still by far the most common etiological agent.

MOLLUSCAN AND AVIAN HOST SPECIFICITY
Schistosomes have colonized many families of snails as first inter-
mediate hosts (12, 62). Mammalian schistosomes use 3 families of
snails, compared to 15 families used by avian schistosomes, as
summarized in Table 1. The majority of schistosome species are
transmitted by the pulmonate snail families Physidae, Lymnaei-
dae, and Planorbidae (10, 70, 105). Interestingly, two snail families
contain species (e.g., Biomphalaria and Indoplanorbis in the Plan-
orbidae family and Stagnicola in the Lymnaeidae family) that can
host both avian and mammalian schistosomes that cause derma-
titis (40, 51, 70, 104, 106).

Previous papers have reviewed the details of host specificity in
mammalian schistosomes (Fig. 1, clades B and C) (107, 108). Be-
cause avian schistosomes are the major group of schistosomes
causing dermatitis, our own discussion focuses on their avian and
snail hosts. For two reasons, these avian schistosome species com-
prise most of the dermatitis reports: first, many avian hosts sea-
sonally migrate, consequently disseminating avian schistosomes
as they fly (domestic ducks can serve as definitive hosts particu-

TABLE 1 Summary of general host use of known genera of schistosomes, reflecting current knowledge, habitat in the definitive host, and broad
geographic locality

Genus Snail host Mammalian/avian host

Definitive
host
habitat Locality

Aquatic
habitat

Major areas for
outbreaks

Austrobilharzia Nassariidae, Batillaridae,
Littoriniidae,
Potamididae

Charadriiformes Visceral Global Marine Shallow marine areas,
tidal pools

Ornithobilharzia Batillaridae Charadriiformes Visceral Global Marine Shallow marine areas,
tidal pools

Macrobilharzia Unknown Suliformes (Anhinga) Visceral North
America,
Africa

Unknown Unknown if causes
dermatitis

Bivitellobilharzia Unknown Elephantidae, Rhinocerotidae Visceral Africa, Asia Freshwater Probably freshwater
rivers

Schistosoma Planorbidae,
Lymnaeidae,
Pomatiopsidae

Mammalia Visceral,
Nasal

Eurasia, Africa,
South
America

Freshwater Mostly eutrophic ponds

Heterobilharzia Lymnaeidae Mammalia Visceral North America Freshwater Marshy areas
Schistosomatium Lymnaeidae Rodentia Visceral North America Freshwater Marshy areas
Bilharziella Planorbidae Anseriformes, Gruiformes,

Ciconiformes,
Podicipediformes

Visceral Europe Freshwater Eutrophic ponds

Species isolated
from
Haminoea

Haminoeidae Charadriiformes,
Pelicaniformes

Visceral North America Marine Shallow marine areas,
tidal pools

Gigantobilharziaa Physidae Passeriformes Visceral North America Freshwater Marshy areas, usually
with cattails

Dendritobilharzia Planorbidae Anseriformes, Gruiformes,
Pelicaniformes,
Gaviiformes

Visceral Global Freshwater Unknown if reports of
dermatitis

Jilinobilharzia Unknown Anseriformes (Anatidae) Visceral China Unknown Unknown if reports of
dermatitis

Allobilharzia Unknown Anseriformes (swans) Visceral Northern
Hemisphere

Unknown Unknown if causes
dermatitis

Anserobilharzia Planorbidae Anseriformes (geese) Visceral Northern
Hemisphere

Freshwater Eutrophic ponds,
reservoirs

Trichobilharzia Lymnaeidae, Physidae Anseriformes (Anatidae) Visceral,
nasal

Global Freshwater Eutrophic ponds, glacial
lakes, reservoirs

a Since Gigantobilharzia is not a monophyletic genus, the information listed here is for G. huronensis only.
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larly for Trichobilharzia); and second, some snail hosts are habitat
generalists (e.g., Physa [syn. Physella] acuta and Lymnaea stagna-
lis) that are now globally distributed. As a result, the opportunities
for birds and snails to come into contact across time and space are
vast. For example, P. acuta (host to Gigantobilharzia huronensis,
Trichobilharzia physellae, and Trichobilharzia querquedulae)
thrives in both natural and altered environments, with a wide
tolerance for water temperature and chemistry, including the con-
ditions found in ponds, drainage ditches, rivers, marshes, and
ephemeral water (109–111). In Europe, the lymnaeid snail L. stag-
nalis (host of Trichobilharzia szidati) has also been linked to cases
of dermatitis in people who acquired it while working with
aquaria (112, 113), providing evidence of the snail’s ability to per-
sist, in addition to its local global presence.

From an evolutionary perspective, the vagility and habitat
specificity of most bird hosts, in concert with the availability of
snails in aquatic habitats, are likely mechanisms for widespread
host switching in snails, and thus for diversification of avian schis-
tosomes (12, 114). Our knowledge of the current schistosome-
snail associations indicates that once a schistosome is hosted by a
particular species of snail, it possesses little ability to utilize more
than a few species within that genus (e.g., Radix, Stagnicola, and
Physa) (115). Two exceptions are Dendritobilharzia pulverulenta,
which uses Anisus vortex in Europe (116) and Gyraulus parvus in
North America (117), both of which are small, related planorbid
snails, and Trichobilharzia regenti, which employs lymnaeid snails
of the genus Radix in Europe and Austropeplea tomentosa in New
Zealand (118). There is little evidence of schistosome species
crossing snail families, naturally or experimentally (for an excep-
tion, see references 119 and 120). Trichobilharzia franki was re-
ported to be widespread across Europe, but detailed molecular
studies are showing that it may represent several species related to
snail host use (70, 121, 122).

Cercarial dermatitis is caused not only by species of schisto-
somes from indigenous snails but also by those from invasive or
introduced snails. For example, Haminoea japonica (originally
from Japan but now off the California coast) and Ilyanassa obso-
leta (originally from the east coast but now on the west coast of
North America) are responsible for annual dermatitis outbreaks at
marine swimming beaches (25, 64). In freshwater, L. stagnalis is
found commonly in the northern Eastern hemisphere, yet in the
northern Western hemisphere it is only locally common. When L.
stagnalis is found to be infected, the infecting species is related to a
common European species, Trichobilharzia szidati (70, 123). In-
terestingly, P. acuta is one of the most invasive pulmonate snails
and can host at least four species of avian schistosomes in North
America (10, 70), yet there are no reports of this snail hosting
schistosomes in their invasive range (outside North America). It is
also noteworthy that most of the schistosome species transmitted
by physid snails have thus far been found only in North America
(at least based on genetic comparisons) (e.g., G. huronensis, T.
physellae, and one undescribed lineage of schistosome [10]). The
lymnaeid snail genera Stagnicola (found in North America) and
Radix (found in the Eastern Hemisphere) are the main snail hosts
for most species of Trichobilharzia; in fact, thus far, Radix main-
tains most of the reported species diversity of Trichobilharzia
(122). Trichobilharzia regenti has been recognized to cause derma-
titis in Lake Wanaka in New Zealand, and it may have been intro-
duced from Europe in wild duck breeds (Anas platyrhynchos) used
for hunting. It is now found commonly in the endemic nonmigra-

tory scaup Aythya novaeseelandiae and the snail Austropeplea to-
mentosa (118). Schistosomes seem to be specific to particular snail
hosts at the species or genus level, but not as much to their avian or
mammalian hosts, though loose specificity of definitive host use
exists at higher taxonomic levels (Table 1) (e.g., Schistosoma
haematobium in humans, Bivitellobilharzia in elephants, and Allo-
bilharzia in swans).

The diversity of avian schistosomes found around the world is
in no small part due to the ability of thousands of migratory birds
to carry their parasites across several latitudes and longitudes, ex-
posing commonly encountered snails. This propensity to migrate
large distances distinguishes avian schistosomes from mammalian
schistosomes in terms of distribution, diversification, and host
use, perhaps with the exception of Schistosoma mansoni (in terms
of long-distance migration only) (124). Yet the schistosome spe-
cies found in a wide range of avian host orders (e.g., Bilharziella
and Dendritobilharzia) (Table 1) are not the ones recurrently re-
sponsible for outbreaks and are also species that are not genetically
diverse compared to other species (69, 125, 126). Currently, D.
pulverulenta might be the most widespread single species of avian
schistosome, crossing both the Northern and Southern Hemi-
spheres (117, 125, 127, 128).

The most derived clade, or most recently evolved clade, in clade
D has three genera: Allobilharzia, Anserobilharzia, and Trichobil-
harzia (Fig. 1). Allobilharzia, from swans, and Anserobilharzia,
from geese, both have a circumpolar distribution (69, 70, 105, 129,
130). Anserobilharzia brantae, which is common in North Amer-
ica (in the Canada goose [Branta canadensis] and the snow goose
[Chen caerulescens]) but also found in Europe (in the greylag
goose [Anser anser]), has been identified in at least one outbreak of
dermatitis in the United States (10). The area was a eutrophic
municipal lake/pond with a dense population of Gyraulus parvus
snails and Canada geese. The third genus, Trichobilharzia, the
most species-rich genus in the family, is found almost exclusively
in ducks. It should be noted that there are several species of Tricho-
bilharzia reported from other avian families (Trichobilharzia corvi
from passeriforms, along with other species [131, 132]), but based
on the morphology of adults and eggs and snail host use (when
known), these probably represent new genera, or these avian hosts
are not the primary (competent) hosts or might be aberrant cases
(70, 78). Within the genus Trichobilharzia, several clades are spe-
cific to certain groups of ducks: for example, Trichobilharzia stag-
nicolae and Trichobilharzia mergi are found in mergansers (Mer-
ginae) (70, 133), T. querquedulae in the “blue-winged duck” clade
(Anas clypeata, Anas discors, and Anas cyanoptera) (70, 134), T.
physellae in an ecological group of diving ducks that includes
ducks of the Aythinae and Merginae, and a common, undescribed
species of Trichobilharzia, species A, in Anas americana (70). It is
not yet clear which duck groups (phylogenetic or ecological) are
more specific for T. franki or T. szidati. Interestingly, T. regenti has
probably been reported from the most diverse duck species (135)
and does not appear to have a preferred host within the Anatidae.
In North America, T. stagnicolae and T. physellae are most often
identified in dermatitis outbreaks (70).

INTRAMOLLUSCAN DEVELOPMENT OF AVIAN
SCHISTOSOMES
As noted above, Trichobilharzia is the most diverse schistosome
genus and has most often been implicated in outbreaks of cercarial
dermatitis. As a result, studies on the avian schistosome-snail in-
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termediate host relationship have focused primarily on species of
the genus Trichobilharzia. Additionally, long-term laboratory
maintenance of T. szidati and L. stagnalis enabled the experiments
that uncovered the intimate molecular interactions of avian schis-
tosomes and their snail hosts. (The Trichobilharzia ocellata organ-
ism used as an experimental model in European laboratories for
the last few decades is identical to T. szidati, and the latter name is
preferred and is used here [123]. If T. ocellata is used in the text
body, then it refers to the non-European isolates of the parasite.)

After hatching from eggs in an aquatic environment, schisto-
some miracidia search for and invade an appropriate snail host
species. This behavior must be accomplished quickly, as miracidia
have a temperature-dependent limited life span of around 20 h, as
reported for, e.g., T. stagnicolae (136). Studies on the miracidial
behavior of T. szidati have shown a progression of steps from host
finding to penetration and migration. Miracidia respond to envi-
ronmental stimuli, such as light or gravity, that direct them to the
microhabitat occupied by the host snails (137). Snails release var-
ious chemical compounds that form an “active space” around
them and serve as chemoattractants for the miracidia. Miracidia
recognize macromolecular glycoconjugates, termed miracidium-
attracting glycoproteins (MAGs) or miraxones, that consist of a
protein core and carbohydrate chains linked O-glycosidically via
N-acetyl-D-galactosamine and serine/threonine (138, 139). The
attractant for miracidia is encoded in these carbohydrate moieties.
Upon entering the “active space” of the snail, miracidia modify
their movement by increased random turns within the increasing
attractant gradient and by a turn-back form of swimming within
the decreasing attractant gradient (140). This mode of orientation
(chemokinesis), observed, e.g., in T. szidati or T. franki (115, 138),
results in the first contact of the miracidia with the snail, which is
then followed by repeated investigation/probing of the snail sur-
face and, finally, miracidial attachment (140). Penetration of the
snail surface follows, although the factors contributing to this pro-
cess, such as the components of miracidial penetration glands,
remain largely unknown.

After penetrating the surface epithelium of the snail, miracidia
of avian schistosomes transform into mother sporocysts that give
rise to daughter sporocysts, which migrate to the snail hepatopan-
creas, where production of the final larval stage, the cercariae,
takes place (13). The prepatent period lasts about 3 to 10 weeks,
depending on several factors, such as the miracidial dose or tem-
perature (13, 141). Infection by avian schistosomes may lead to
alterations of the snail internal defense system (IDS), metabolism,
and endocrine functions. Such alterations have been studied
widely in L. stagnalis, the intermediate host of T. szidati (142–145).

The snail IDS is based solely on innate immune mechanisms
composed of humoral and cellular limbs. Lectins are essential hu-
moral components, whereas hemocytes represent the main effec-
tor cells (146, 147). Both limbs of the L. stagnalis IDS appear to be
activated and then suppressed during early and late stages, respec-
tively, of a T. szidati infection (143). In vitro, hemocytes failed to
encapsulate and destroy T. szidati sporocysts (148). It has been
suggested that parasite excretory-secretory products participate in
the modulation of hemocyte activities (149). Disruption of hemo-
cyte signaling pathways, such as protein kinase C (PKC) and ex-
tracellular signal-regulated kinase (ERK) pathways, may also
influence hemocyte activities (150–152). For example, carbohy-
drates known to be present on larval surfaces of T. szidati and T.
regenti, such as D-galactose and L-fucose (153–156), affected he-

mocyte PKC and ERK signaling in L. stagnalis, which suggests an
immunosuppressive role (157, 158). However, experiments inves-
tigating the direct effect of Trichobilharzia larvae on hemocyte
signaling have not been performed. Alterations of humoral de-
fense components also occur during infections by avian schisto-
somes, and at least two molecules, molluscan defense molecule
(MDM) and granularin, have been investigated in this respect
(159, 160). Both molecules, produced in L. stagnalis by granular
cells of connective tissue, are related to phagocytic activity of he-
mocytes. MDM enhances phagocytosis of hemocytes, and the ex-
pression of a corresponding gene for MDM is downregulated in L.
stagnalis infected with T. szidati (159, 161). In contrast, treatment
of hemocytes with granularin decreases phagocytic activity, and
the encoding gene is upregulated in parasitized snails (160, 161).

In the snail host, avian schistosomes also interfere with metab-
olism, such as causing abnormal body growth, and endocrine
functions, such as causing a reduction of egg laying (161). In L.
stagnalis, these processes are regulated by neuroendocrine cells in
the central nervous system (CNS) (162, 163). Trichobilharzia szi-
dati releases an undescribed substance that induces the snail host
to produce schistosomin (a peptide of 8.7 kDa consisting of 79
amino acids) from its connective tissue and hemocytes (145).
Schistosomin acts as a neuropeptide that interferes with some
hormones, such as calfluxin, a neuropeptide that stimulates the
influx of Ca2# into the mitochondria of albumen gland cells (164,
165). As a consequence, ovulation and egg laying are inhibited in
the snail. Excitability of neuroendocrine cells (light green cells
[LGCs]) responsible for growth (162) increases in response to
schistosomin (166). As a result, the body size of infected snails
may become considerably larger than that of uninfected snails
(142, 161). Other neuropeptides (FMRFamide-related peptides)
are also upregulated during infection of L. stagnalis by T. szidati,
and these peptides, via inhibition of neuroendocrine cells, may be
responsible for the suppression of snail metabolism and repro-
duction (167). All these changes in infected snails may provide
energy resources and space that can be exploited by the schisto-
somes for development (145, 161).

The survival rate of infected snails releasing schistosome cer-
cariae as the agent of cercarial dermatitis varies among species. A
limited number of studies have focused on survival rates of avian
schistosome-infected versus uninfected snails. As an example,
90% of L. stagnalis snails infected experimentally with a single
miracidium of T. ocellata (North American isolate) were alive at
28 weeks of age (three infected snails were alive for 19 months),
whereas all uninfected snails were dead (168). In contrast, L. stag-
nalis or Planorbarius corneus snails naturally infected with T. szi-
dati or Bilharziella polonica, respectively, lived a shorter time, on
average, than the corresponding uninfected individuals (169,
170).

VERTEBRATE HOST FINDING AND PENETRATION
Cercariae emerging from the snail intermediate host are the infec-
tive stage to the definitive host and are also the stage responsible
for causing cercarial dermatitis. A cercaria is a multicellular larva
comprised of an oblong body and a slender tail that is bifurcated
(furcocercous) at the posterior end (Fig. 2). Cercariae of schisto-
somes leave their snail hosts actively. For this purpose, they em-
ploy a pair of specialized unicellular escape glands that are obvious
in mature cercariae within sporocysts. Once the cercariae have
emerged, only their ducts lined by microtubules are visible, sug-
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gesting a release of granular gland content likely containing histo-
lytic enzymes during their migration through the snail tissue
(171).

Once in the water, schistosome cercariae express a complex
pattern of behaviors that is composed of movement cycles that are
repeated in defined frequencies (172). In general, they express
negative geotaxy and positive phototaxy, which result in the con-
centration of cercariae just beneath the water surface, where ap-
propriate definitive hosts may occur (173). Surface tension of the
water enables clinging of cercariae via their ventral sucker (acetab-
ulum) (173). This resting phase is interrupted by phases of active
swimming (173). The effect of light on the behavior of swimming
cercariae was studied in detail for Trichobilharzia szidati. Cercar-
iae are able to react to a moving shadow stimulus (produced by a
potential host) by a burst of forward swimming (body first) away
from the source of light, to deeper levels, where they can encoun-
ter the feet of duck definitive hosts. A shadow stimulus applied in
the active phase inhibits swimming and prolongs the following
passive phase (173). Two types of photoreceptors, located near the
dorsal surface of the body, were described for this species: a pair of
lens-covered pigment cup ocelli and a special type of unpig-
mented, rhabdomeric photoreceptors, composed of three cells ar-
ranged in a three-dimensional (3-D) configuration. The lens-cov-

ered pigment cup ocelli probably serve to detect the direction of
incoming light and to control the direction of swimming in rela-
tion to a light source, while the unpigmented photoreceptors serve
as monitors for light intensity (174). The pigmented ocelli are also
present in other genera of avian (Bilharziella, Dendritobilharzia,
Gigantobilharzia, and Austrobilharzia) and mammalian (Schisto-
somatium and Heterobilharzia) schistosomes but are absent in
Schistosoma.

Moving shadows also trigger a readiness for cercarial attach-
ment to substrates, further stimulated by thermal and chemical
host cues (172). As for the latter signals, compounds in the host
skin (ceramides and cholesterol) stimulate enduring contact of
cercariae of T. szidati with the host skin (173, 175). There is vari-
ability among schistosome species in responses to light, shadow,
physical, and chemical cues, such that for different species, some
of the signals may not work or may include some additional ones,
such as touch, water turbulence, and/or additional chemical com-
pounds (172, 176). The variation among the different avian schis-
tosome species reflects the diversity in biology and ecology of
schistosomes and their adaptations to the spectra of avian hosts
(172, 176).

Invasion of the bird or mammal skin is initiated by the cercar-
iae receiving the proper signal. Surprisingly, there were few differ-
ences between the avian T. szidati and human S. mansoni organ-
isms in their pattern of invasive behavior toward living human
skin; most cercariae did not penetrate the skin immediately after
attachment but performed a leech-like creeping which lasted 0 to
80 s for T. szidati and 15 s to 5.58 min for S. mansoni (177). Such
behavior guided the cercariae to skin wrinkles or hair follicles,
where most penetration sites were located (178) (Fig. 3). Penetra-
tion behavior and production of secretions stimulate neighboring
cercariae to use the same entry site on the skin (177, 178). Invasion
of the skin is facilitated by secretions of cercarial penetration
glands released from openings at the apex of the muscular head
organ by spasmodic contractions of cercarial body musculature
(179). The head organ performs concurrent thrust movements
against the skin surface while the cercaria is firmly attached by the
ventral sucker (176, 178, 180). Signals for skin invasion seem to be
universal for schistosomes—fatty acids, especially polyunsatu-
rated fatty acids containing 18 carbons and two or three cis double
bonds (linoleic and linolenic acids), which are bound in cell mem-
branes and occur as free molecules on the surface of human and
bird skin (176).

For T. szidati, the tail is shed within 0 to 105 s after the onset of
penetration, sometimes during creeping. This shedding seems to
be generated at least partially by contractions of a muscular collar
at the body-tail junction, which plays a role in the closure of the
cercarial hind body after tail shedding. Cercarial penetration oc-
curs in a nearly surface-parallel direction, while the spined ventral
sucker supports squeezing of the cercarial body into the opening
in the skin caused by histolytic gland secretions. Full penetration
of living human skin was achieved within a mean of 4 min (83 s to
13.3 min), which was significantly faster than the case for the
human parasite S. mansoni (6.58 min, on average) (177). Faster
penetration of avian schistosome cercariae might be a conse-
quence of these parasites’ adaptation to lower concentrations of
fatty acids in duck skin; therefore, reaction to higher concentra-
tions in human skin may induce faster invasion (177, 178). An-
other explanation may be that different histolytic enzymes are
used for penetration (see below). Skin penetration success rates

FIG 2 Furcocercaria of Trichobilharzia regenti with protruded acetabulum
(arrow), lateral view. Bar, 200 $m. (Courtesy of J. Bulantová, reproduced with
permission.)
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may vary greatly. In experiments with T. szidati and human vol-
unteers, the highest penetration success rate was 49% underneath
the forearm (181).

The ultrastructure and chemical composition of avian schisto-
some cercarial penetration glands and their secretions have been
poorly studied relative to the case for human schistosomes (Schis-
tosoma). In fact, most of our knowledge is based on only two
species of Trichobilharzia. There are five pairs of unicellular pen-
etration glands: three pairs are located behind the ventral sucker
(postacetabular glands), and two pairs are located around the ven-
tral sucker (circumacetabular or preacetabular glands). These
glands are filled with secretory vesicles that are released through
the gland processes at the surface of the head organ. A 3-D model
of T. regenti acetabular glands shows that they occupy more than
one-fourth of the cercarial body volume (postacetabular glands,
ca. 15%; and circumacetabular glands, ca. 12%). Differences were
observed in the appearance of granular material/secretory vesicles
contained in the glands, pH value, and the ability to bind various
dyes and fluorescent markers (180, 182).

In T. szidati, proteolytic activity was detected in cercarial gland
secretions induced by linoleic acid. This activity was linked with
an orthologue of a chymotrypsin-like serine peptidase, named
cercarial elastase and characterized from S. mansoni and S. haema-
tobium cercariae. A protein on blots of T. szidati cercarial secre-
tions as well as in histological sections of penetration glands im-
munologically cross-reacted with antibodies against elastases of S.
mansoni and S. haematobium (183, 184). However, in another
study, the reaction of antibodies raised against elastase of S. man-
soni was observed neither with the penetration glands of T. szidati
nor with the cercarial secretions on Western blots (180). In con-
trast, high activities of cysteine peptidases were noticed in induced
cercarial secretions and homogenates for T. szidati and T. regenti
(180, 185). In addition, the presence of cercarial elastase in the
latter species was not confirmed by screening of a cDNA library
(186). On the other hand, a papain-like cysteine peptidase, termed
cathepsin B2, was found in the postacetabular penetration glands
of T. regenti. This enzyme was shown to cleave proteins of the host
skin, similar to the case with S. japonicum (187, 188). Its expres-
sion was even higher in intravertebrate stages (schistosomula and
adults), suggesting that there are multiple roles of this enzyme
during the life cycle (189). It seems that the use of particular pep-
tidase families for skin penetration and tissue invasion is diverse
among schistosomes (190) and may confer host specificity.

In the postacetabular penetration glands of T. szidati and T.
regenti cercariae, a lectin(s) specific for %-1,3- and %-1,4-linked
saccharide chains and their sulfated derivatives is present, though
its biological function is still unknown (180, 191). It is interesting
that there are high concentrations of calcium in the circumac-
etabular glands of both species (180). Several hypotheses suggest
that the role(s) of calcium in the glands (including those of S.
mansoni) may be to regulate gland peptidase activity, stimulate
glycocalyx removal, interact with connective tissue proteoglycans,
regulate host blood coagulation, or polymerize the adhesive sub-
stance from postacetabular glands. However, none of these hy-
potheses (except for a regulation of peptidase activity) has been
confirmed adequately (180, 192, 193). Following contact with the
host skin or a linoleic acid-coated surface (L. Mikeš, unpublished
data), cercariae start to expel small amounts of gland content dur-
ing the creeping movement, which is “printed” as the cercariae
touch the surface—these “kissing marks” are made of a sticky
substance. In S. mansoni, this substance is a product of the posta-
cetabular glands and is composed of neutral and acidic mucosub-
stances (194). This product might serve adhesive or enzyme-di-
rective functions. Similar material is produced by cercariae of
Trichobilharzia spp. yet differs in chemical composition (180).
Finally, the production of three types of eicosanoids by T. szidati
cercariae is stimulated by linoleate (195). Eicosanoids may have a
role in host invasion (vasodilatation), and their involvement in
immune evasion was proven by the inhibition of superoxide pro-
duction by human neutrophils (195).

During cercarial penetration, dramatic changes of surface
structures and metabolism lead to the transformation of the cer-
caria to a schistosomulum. The thick glycocalyx that served as a
protective layer for the free-living cercaria is shed, as its carbohy-
drate-rich composition is a target of the host complement cascade.
In the schistosome species studied so far, the glycocalyx is mark-
edly rich in fucose residues (154, 196–198). There is an obvious
loss of saccharide moieties at the surfaces of transformed schisto-
somula of T. szidati and T. regenti, leading to reduced immunore-
activity and attractiveness for fucose-specific lectins (154, 155,
199, 200). Also, similar to the case for human schistosomes and
members of other families of blood flukes, the trilaminar surface
membrane of the outer cercarial tegument gradually changes to
the doubled heptalaminar membrane of the schistosomulum,
which has a protective function against the host immune system
(199). In T. regenti stimulated by linoleate in vitro, shedding of the

FIG 3 Scanning electron micrographs of cercariae of Trichobilharzia regenti penetrating the skin of a duck leg. (A) An individual larva entering the skin; the tail
is still preserved. (B) Tails of three cercariae penetrating the skin in a group. Bars, 100 $m. (Courtesy of J. Bulantová, reproduced with permission.)
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glycocalyx starts at the anterior of the cercaria, surrounding the
openings of penetration glands (J. Chaloupecká and L. Mikeš,
unpublished data). Sticky products of the glands adhere to the
surface of the body, and as the cercaria crawls forward, the glyco-
calyx, with the gland products, is shed in a sleeve-like manner,
until it is detached at the end of the hind body (Fig. 4). Trans-
formed cercariae/schistosomula then lose their osmotic resistance
toward water and become dependent on isosmotic conditions of
the host (Chaloupecká and Mikeš, unpublished data). Whether
any compounds of gland secretions take part directly (e.g., enzy-
matically) in the process of glycocalyx shedding is still unclear.

It should be mentioned that cercariae of avian schistosomes
readily penetrate other (soft) tissues, and peroral infections of
birds (definitive hosts) and mice (accidental hosts) with cercariae
of T. regenti and T. szidati have been confirmed (L. Kolářová, K.
Blažová, V. Pech, and P. Horák, unpublished data). This phenom-
enon is also known for mammalian schistosomes of the genus
Schistosoma (201–203). It is not clear, however, how much these
peroral infections contribute to the transmission of schistosomes
under natural conditions. Due to the features of the esophageal
mucosa, the penetration of Trichobilharzia cercariae does not re-
quire the penetration glands to be emptied completely, and their
tails may be preserved for some time. The stimuli triggering this
penetration behavior remain unknown.

PATHOGENICITY OF AND IMMUNE REACTIONS AGAINST
AVIAN SCHISTOSOMES

Survival and Migration in Avian Hosts
Once the cercariae have transformed into schistosomula and
reached their final location, it is not clear how long avian schisto-
somes live in their definitive hosts. For example, in experimental
infections of ducks, adults of Trichobilharzia parocellata were
found at 86 days postinfection (p.i.) (204). Whereas experimental
infections with T. szidati and T. regenti last for about 3 to 5 weeks
(13, 205), the adult worms of a Canadian isolate of T. ocellata were
found in the liver at 370 days p.i. (206). Data describing the schis-
tosome life span and length of time for egg release in a bird host
will be necessary in considering the epidemiology of dermatitis.
Nonetheless, avian schistosomes have a preference for two major

habitats within the avian host: the visceral venous system (mesen-
teric, renal, cloacal, and portal vessels) and the nasal passages (ex-
cept for Dendritobilharzia, which is found in the arterial system)
(13).

Migration and localization have been characterized for a few
visceral schistosomes and only one (T. regenti) of the eight nasal
schistosomes (205, 207). Visceral schistosomes in birds have a
migration pattern similar to those of Schistosoma spp. in mam-
mals. After skin penetration, schistosomula of T. szidati navigate
toward deeper skin layers by following dark and higher concen-
trations of D-glucose and L-arginine (208, 209). Once a blood cap-
illary is found, the worms penetrate it and migrate to the heart and
lungs. In the lungs, the worms enter free air space and then reenter
the blood system (206, 210). Finally, visceral blood vessels (usually
portal and mesenteric veins) are the preferred habitat (13). How-
ever, there are at least two exceptions, as follows: (i) the adults of T.
szidati/T. ocellata leave the blood system and enter the layers of the
host intestinal wall and mucosa (206, 211) and (ii) Dendritobilhar-
zia pulverulenta prefers the arterial system of its hosts, where it is
found in the lower dorsal aorta and the femoral arteries (212). For
the nasal schistosome T. regenti, migration is dramatically differ-
ent. Schistosomula leave the skin and then seek and penetrate
peripheral nerves (Fig. 5) to migrate to the spinal cord and brain of
their host. From there, the adult worms appear intra- and ex-
travascularly in the nasal mucosa (207).

Pathology Caused by Visceral Species in Birds and
Mammals

Most pathological studies of avian schistosomes in the avian host
have been detailed for experimental birds, though there are a few
reports from wild birds. As for accidental mammalian hosts, only
experimental infections have been evaluated. The schistosomula
migrate through the heart and lungs of birds and mammals, and
only in the avian host do they reach their final destination. Migra-
tion through host lungs has been shown to cause damage (16, 210,
213). Infections of duck and mouse lungs by T. szidati are accom-
panied by hemorrhages in the periphery of the lungs (210). Mi-
gration of schistosomula in the lungs of ducks leads to formation
of lymphocytic lesions and an influx of macrophages, heterophils,

FIG 4 Living Trichobilharzia regenti cercaria in vitro, shedding its glycocalyx upon stimulation by linoleate. The sticky products of the penetration glands, stained
with lithium carmine, adhere to the surface of the body, and as the cercaria crawls forward by periodical constrictions (A) and extensions (B), the glycocalyx and
bound secretions are removed from the surface in a sleeve-like manner. Arrows indicate detached sleeve-like remnants of glycocalyx and gland products. Bar, 100
$m. (Courtesy of J. Chaloupecká, reproduced with permission.)
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and eosinophils into the afflicted tissue (210). However, in mouse
lungs, schistosomula do not evoke a specific inflammatory reac-
tion; only alveolar congestion and edema are observed (210).
Damage to the lung tissue in general, and formation of alveolar
congestion in particular, might be caused by schistosomula that
leave the blood system and localize extravascularly in the alveolar
walls. Their inability to reenter the blood system might be linked
to their relative size and loss of orientation in a noncompatible
mouse host (210). Similarly, migrations to mammalian lungs and
accompanied hemorrhages have been observed in hamsters,
guinea pigs, rabbits, and rhesus monkeys experimentally exposed
to three species of Trichobilharzia (213). Pulmonary infections of
chickens and pigeons with the marine schistosome Ornithobilhar-
zia canaliculata led to the development of lesions in the arterial
and venous vascular systems (lymphocytic endarteritis, periarteri-
tis, and segmental proliferation of the vascular endothelium), hy-
perplasia of smooth muscles in tertiary bronchi, and thickening of
alveolar septa. Cellular infiltrates consisted mainly of histiocytes,
heterophils, and lymphocytes (16). In contrast to the case with
visceral schistosomes, infections of duck and mouse lungs with the
nasal species T. regenti probably represent an ectopic localization
of schistosomula (207, 214, 215).

As for patent infections (exclusively in birds), major pathology
is caused by granulomas around eggs and only partly by adult

worms. Obliterative endophlebitis caused by adult schistosomes
(probably Trichobilharzia filiformis) in the intestinal veins of mute
swans (Cygnus olor) has been recorded (216). The intestinal sur-
face showed various stages of villous atrophy with intestinal mu-
cosal lesions, associated with infiltration of the lamina propria of
the jejunum and ileum by lymphocytes and plasma cells and by a
smaller number of heterophils and eosinophils. Eggs were ob-
served multifocally in the lamina propria of the small and large
intestines, and their presence triggered mild to severe granuloma-
tous reactions (216). Eggs laid by the adult worms of Austrobilhar-
zia variglandis in experimentally infected chickens caused edema,
cellular infiltration, and hyperplasia of smooth muscle of the mus-
cularis externa of the intestine. Around the eggs, mononuclear
cells formed early granulomas with a few eosinophils and hetero-
phils, followed by accumulation of giant and epithelioid cells
(217).

Similarly, examination of Atlantic brant geese (Branta bernicla
hrota) infected with Trichobilharzia sp. (probably Anserobilharzia
brantae, based on current taxonomy) revealed the development of
granulomas around eggs located in the colon (218). Granulomas
were also observed in the duodenum and small intestine of pi-
geons infected with Ornithobilharzia canaliculata (16). Three spe-
cies of ducks infected with T. physellae showed no associated tissue
reaction in the vicinity of adults located in mesenteric veins, but a
granulomatous reaction around the eggs was detected occasion-
ally in the mucosa and submucosa of the intestine (219). On the
other hand, the most serious lesions and fibroplasia of the portal
triads and adjacent parenchyma were observed in the livers of
those ducks and were attributed to mature T. physellae (219). In
the case of pigeons infected with O. canaliculata, granulomatous
lesions surrounding collapsed eggs were observed in the liver pa-
renchyma (16). Intestinal pathology may be accompanied by poor
nutritional conditions, as noticed in pigeons infected with O.
canaliculata (16). Exceptionally, a more serious manifestation of
the infection in naturally infected wild ducks was reported where
the adults and eggs of T. physellae caused partial to complete pa-
ralysis of the cervical, wing, and leg muscles, foul-smelling diar-
rhea, and half-closed pasted eyelids (219).

Pathology Caused by Nasal Species in Birds and Mice
Histological examination of the nasal tissue of birds showed the
extra- and intravascular locations of adult worms of T. regenti
(220), with their first appearance on day 13 p.i. (205). Immature
eggs appeared from day 15 p.i., and at day 19 p.i., eggs were fully
developed and observed extravascularly in the nasal mucosa, with
the maximum number of eggs seen on day 22 p.i. (221). The area
surrounding the eggs was infiltrated by numerous eosinophils,
heterophils, histiocytes, and multinucleated giant cells and a few
plasma cells and mononucleated cells (220). The formation of
granulomas around the eggs was noted from day 22 p.i. (221).
Miracidia that hatched directly in the host tissue were surrounded
by lymphocytes, eosinophils, and heterophils, without granuloma
formation (221). While an infected bird is drinking/feeding, only
the miracidia leave the tissue to enter the water, which represents
an exceptional mode of transmission among schistosomes (205).
The presence of adults only did not initiate an influx of immune
cells to their vicinity, but the presence of large worms and eggs
caused the development of focal hemorrhages throughout the na-
sal mucosa (207, 221). Probably the more devastating aspect of the
pathology of this species is the effect on the CNS of hosts (birds

FIG 5 Cercaria of Trichobilharzia regenti in vitro, penetrating a peripheral
nerve isolated from a duck. The tail is already detached, and the head organ
burrows into the nerve. Bar, 200 $m. (Courtesy of J. Bulantová, reproduced
with permission.)
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and experimental mammals). As stated above, cercariae penetrate
the skin and migrate to the nasal passages via the CNS rather than
the circulatory system.

CNS infections of ducks and mice by T. regenti may lead to the
development of various transient or permanent neuromotor
symptoms, such as weak to severe leg paralysis and balance/orien-
tation disorders (207, 214, 215). In avian hosts, schistosomula in
the CNS initiated an accumulation of inflammatory cells, such as
eosinophils and heterophils, that represented the most abundant
cell infiltrates, yet minimal damage to nervous system cells was
detected (220). In a few cases, however, damage to the CNS was
observed in birds with visceral schistosomes. For example, gran-
ulomatous encephalitis in mute swans, caused by Dendritobilhar-
zia sp., has been described (222, 223). Schistosome eggs found in
the cerebrums and cerebellums of naturally infected swans were
surrounded by giant cells, macrophages, lymphocytes, and, to a
lesser extent, heterophils and fibroblasts (223). The presence of
Dendritobilharzia eggs in the CNS represents an ectopic localiza-
tion.

Because of the pathology caused by T. regenti, and thus the
implications for human health, most experimental work has been
done in mice rather than birds. For up to 3 days p.i., migration of
schistosomula through the murine nervous tissue did not evoke
inflammation or tissue damage, and all detected parasites were
intact (215, 224). A host reaction to the infection was visible on
days 6 and 7 p.i. The presence of parasites led to the accumulation
of immune cells, predominantly microglia, macrophages, and
neutrophils and, to a lesser extent, CD3# lymphocytes (215, 224).

Proliferating astrocytes formed “glial scars” at the sites of previ-
ously migrating schistosomula (215). Ongoing infection was as-
sociated with a more intense inflammatory reaction in white and
gray matter of the spinal cord. Microglia, macrophages, neutro-
phils, eosinophils, and CD3# lymphocytes participated in the for-
mation of inflammatory lesions surrounding the disintegrating
schistosomula, and damage to the axons was detected (215) (Fig.
6). The localization of schistosomula outside the solid tissue, in
the subarachnoidal space of the spinal cord and the brain and in
the cavity of the 4th ventricle of the brain, led neither to damage
nor to inflammation of the adjacent nervous tissue (215). It seems
that schistosomula located in the cavities of CNS were able to
delay destruction by the immune cells. Nevertheless, most of the
worms were eliminated by 21 days p.i. (215). Challenge infections
triggered a strong immune response, which efficiently and rapidly
eliminated the schistosomes (215, 224).

In immunodeficient SCID mice, primary infections as well as
reinfections did not evoke a significant skin reaction, and the
schistosomula often escaped from the skin to the CNS (224),
where migrating schistosomula caused axonal damage and an in-
flux of immune cells (215). In comparison to the case with immu-
nocompetent mice, the schistosomula survived longer in the CNS,
probably due to the absence of T and B lymphocytes (215, 224),
cells that may represent important effectors in destruction of
schistosomula. Larger numbers of schistosomula in the CNS and
their extended time of migration via nervous tissue resulted in a
higher rate of occurrence of paralysis of immunodeficient SCID
mice (215).

FIG 6 Destruction of a schistosomulum (arrows) in the thoracic part of the spinal cord of a BALB/c mouse at 21 days p.i. (longitudinal sections). (A and B)
Inflammatory lesion consisting of CD3# lymphocytes (dark spots) (A) and microglia cells (brown-stained ramified cells) (B) that were detected by use of
anti-mouse CD3# and anti-mouse Iba-1 antibodies, respectively. Nuclei of other cells were stained blue by hematoxylin. (C and D) Tissue around the
schistosomulum contains damaged axons. Axonal damage was accompanied by formation of spheroids (asterisks) in the site of axonal disruption and was
visualized immunohistochemically by use of anti-mouse nonphosphorylated and phosphorylated neurofilament antibodies (SMI-311 and SMI-312, respec-
tively) (C) and anti-mouse %-amyloid precursor protein antibodies (D). Bars, 100 $m (A and B) and 50 $m (C and D). (The figure was created by L.
Lichtenbergová.)
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The above-mentioned damage to the nervous tissues of birds
and mice demonstrates that not only the eggs but also the other
stages of schistosomes are responsible for major pathology. In this
particular case, just the schistosomula (migrating juveniles) of T.
regenti can be regarded as the most pathogenic stage of the para-
site.

Skin Immune Response and Cercarial Dermatitis
Skin immune reactions of birds to the penetration of avian schis-
tosome cercariae are insufficiently described. In any case, birds do
respond to penetrating cercariae, as shown in a histological obser-
vation of chicken skin infected by Ornithobilharzia canaliculata.
Severe infiltrations of the dermis by histiocytes and heterophils
and aggregation of lymphocytes around dilated capillaries in the
dermis were recorded (16). Dead and destructed schistosomula
surrounded by heterophils and histiocytes were found in the epi-
dermises of chickens at 12 h p.i. At 24 h p.i., lymphocytes, histio-
cytes, and heterophils still persisted in the dermis, but the number
of immune cells decreased (16).

Immunohistopathology of cercarial dermatitis in humans rec-
ognized three phases of cellular responses (leucocytic, lympho-
cytic, and histiocytic) against Trichobilharzia larvae (225). How-
ever, because studies on humans are rarely performed (112, 225,
226), a mouse model was established to provide more-detailed
studies on immunohistopathology. Primary infection of mice
with T. regenti causes an acute inflammatory reaction with edema
and vasodilatation (227). Parasites located in the dermis are sur-
rounded by large inflammatory cellular foci that are formed by
neutrophils, macrophages, mast cells, major histocompatibility
complex class II (MHC II) antigen-presenting cells, and a small
number of CD4# lymphocytes (227). Repeated infections cause
perivasculitis, folliculitis, and substantially more influx of the
same cell types that are noted after primary infection (227). Ex-
tensive skin inflammation leads to the formation of large abscesses
and subsequently to dermal and epidermal necrosis. Sites of pre-
vious cercarial penetration are characterized by intraepidermal
pustulae and parakeratosis (227).

In vitro culture of skin biopsy specimens from primary mouse
infections by T. regenti revealed a release of the acute-phase cyto-
kines interleukin-1% (IL-1%) and IL-6 and an increased produc-
tion of IL-12 (227). Larger amounts of IL-12 correlated with ele-
vated production of gamma interferon (IFN-&) in the cell culture
supernatant (antigen-stimulated lymphocytes) from the skin
draining lymph nodes (227). IFN-& and IL-12 are associated with
Th1 cell differentiation, and IL-1% and IL-6 are important in Th17
polarization (228). Although the role of Th17 in host tissue im-
munopathology has been described for some infections by hel-
minths (e.g., human schistosomes) (228), participation of Th17
cells in the processes associated with skin penetration by avian
schistosomes needs to be clarified.

Reinfections of mice with T. regenti were accompanied by
edema that developed as a consequence of local vascular permea-
bility caused by histamine released from activated mast cells (227).
Histamine has a regulatory function in the Th1 and Th2 polariza-
tion of the immune response (229). Mast cells also rapidly released
a large amount of IL-4, which has been detected in the superna-
tants of skin biopsy specimens from T. regenti-reinfected mice
(227). Like mast cells, basophils degranulate and release IL-4 as a
response to the presence of T. regenti antigens (230). Elevation of
total serum IgE levels implies that histamine and IL-4 production

by mast cells and basophils occurs in an IgE-dependent manner
(227, 230). Dominance of the Th2 response was also supported by
an elevation of antigen-specific IgG1 antibodies and a decrease of
IgG2b antibodies (Th1 associated) in the sera of mice reinfected
with T. regenti (230). Cercarial dermatitis in reinfected mice is
therefore Th2 polarized, with a response comprised of an early
type I hypersensitivity reaction and late-phase skin inflammation
(227).

It has been shown in several cases that mammals (including
humans) are unsuitable hosts for avian schistosomes, such that
the worms cannot mature and reproduce (except for Austrobilhar-
zia variglandis, which is able to reach sexual maturity in the lungs
of Meriones unguiculatus gerbils [231]). Nevertheless, cercarial
dermatitis is probably not the only interaction of avian schisto-
somes and mammals. Dermatitis develops as an immune (aller-
gic) reaction of the already sensitized person; it represents a pow-
erful protection of the body against worms in the skin. However,
in a naive (nonsensitized) or immunodeficient experimental host,
at least some worms survive, leave the skin, and migrate through-
out the body (213, 232). Mild to severe consequences of such
migration may appear (see above); most importantly, T. regenti is
neurotropic and can cause damage to the central nervous system
(155, 207, 214, 215, 220, 224). To date, no information about
migration of avian schistosomes in human bodies is available. It
therefore seems that laboratory animals (mice, rats, etc.) are in-
dispensable for assessing all risks associated with infections of
mammals (humans) by avian schistosomes.

DETECTION AND IDENTIFICATION OF AVIAN
SCHISTOSOMES
Prior to or during the dermatitis season, especially following a
dermatitis outbreak, a standard protocol for the detection of
schistosome cercariae involves the collection of and screening for
cercarial emergence in snails. Usually, in a laboratory, individual
snails are placed in a beaker/small wells with clean water and ex-
posed to a lamp to stimulate shedding of cercariae. Subsequently,
cercariae are collected and identified under a light microscope. If
no cercariae emerge from the snails, there are three options: the
snails can be dissected to find the schistosomes, the snail tissue can
be pooled and molecular techniques applied to detect a schisto-
some infection, and/or additional snails can be collected from
affected and surrounding areas (233, 234). Detection of microor-
ganisms directly from water samples is developing rapidly, but
among schistosomes, these techniques have been optimized for
human schistosomes (235, 236). Methods thus far to detect avian
schistosomes, Trichobilharzia in particular (237, 238), involve
concentrating the cercariae from a water sample and using a PCR
assay to detect a single cercaria in plankton (0.5 g) and snail tissues
(0.25 g) (239). Using definitive host-seeking behavior, cercariae
can be lured to a trap that contains linoleic acid, a known stimulus
for cercarial penetration (240). Irrespective of a dermatitis out-
break, identifying which adult worms can be found in the habitat
can be completed by examination of feces for eggs by using sedi-
mentation/flotation (241) or Kato-Katz fecal smear methods
(242) and/or postmortem examination of the arterial/venous sys-
tem, nasals, liver, or kidney of the host. For nasal schistosome
species, lavage of the nasal cavity of birds represents a method of
choice. After rinsing out the nasal cavity with saline or water, freely
moving miracidia (and partly the liberated eggs) can be detected
in the wash fluid (13). The above-described examination of snails
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and birds for avian schistosomes is thoroughly summarized in
reference 243.

Examination of water or the snail or bird host is important for
species delineation. Not only is there a highly diverse population
of schistosomes, especially avian schistosomes, that are responsi-
ble for dermatitis, but these species differ markedly in their mor-
phology and pathogenicity in birds and experimental animals (12,
13). Identification of schistosomes, particularly avian schisto-
somes, is challenging. Traditional methods using morphology
(adults mostly, but also eggs and cercariae) are usually not suffi-
cient to separate species, particularly within a genus, as these char-
acteristics can be missing or minute, and their recognition often
depends on the experience of the observer. However, some char-
acteristics have been found to be informative for rough species
identification, such as the position of internal organs and tegu-
ment spination of adults (13), morphology of eggs (244), or dis-
tribution of sensory papillae on cercariae (68, 198).

In addition to the morphological features, there are some non-
morphological criteria that can be used to differentiate species, for
example, the behavior of cercariae (245), compatibility with the
snail hosts, and organ/tissue affinity of adults in birds (135). If eggs
and adults from a host are examined, it is not always clear which
adults/eggs are conspecific or which match cercariae from snails
unless experimental trials are conducted. Experimental infections
with cercariae from snails to obtain adult worms for morpholog-
ical assessment are ideal, but these are time-consuming and often
yield low prevalences of infection. Because of the reported species,
morphological, and pathogenic diversity of avian schistosomes
(12, 13), from an epidemiological perspective on dermatitis, there
is a need for species delineation and host use, and molecular tech-
niques have proven a necessary and excellent tool for more rapid
identifications (63, 70, 135). Such techniques have allowed us to
genetically connect larval stages from snails to adult stages from
birds, greatly advancing the epizootology and epidemiology of
avian schistosomes in particular (10, 40, 123).

Molecular identification of an avian schistosome provides
clues to the host source and biology and possible targets for con-
trol. There have been steady efforts and testing of markers that
have revealed some consistency and validity for species identifica-
tion of schistosomes (123, 246, 247). Molecular phylogenetics has
had a major impact on the taxonomy and discovery of new lin-
eages of avian schistosomes, particularly the major etiological
agents of cercarial dermatitis, i.e., species of Trichobilharzia (10,
40, 63, 67, 69, 70, 121–123, 125, 129, 135, 248–251). Most of the
effort has been conducted using three gene regions. To date, the
nuclear ribosomal DNA D1-D2 regions of 28S, the internal tran-
scribed spacer (ITS) region, and the mitochondrial cox1 gene have
been tested as molecular markers for systematics (40, 63, 67, 69,
70, 105, 123, 248, 249, 251), epidemiology (252), and diagnostics
(121, 253). Sequencing of gene regions such as the nuclear ITS
region and the mitochondrial cox1 gene not only has linked life
cycle stages but also has suggested that our recognition of the
diversity of avian schistosomes continues to grow (10, 12, 40, 65–
67, 69, 70, 105, 129, 133, 135).

While the molecular identification of avian schistosomes is still
in the early stages, these markers have thus far proved successful in
attributing most samples to a known species. At the level of (infr-
a)populations, genetic diversity of T. szidati cercariae from 7 snails
collected at 3 localities in Russia was recently shown by use of
randomly amplified polymorphic DNA (RAPD) (254). At this

time, neither microsatellite markers nor next-generation sequenc-
ing protocols have been developed that would allow detection of
specific populations or host strains. The development of genome-
wide sequencing protocols for population genetic analyses would
greatly aid in identifying the epidemiological determinants of cer-
carial dermatitis outbreaks. Although genetic identifications have
provided a framework for circumscribing species and for rapid
detection, caution must be exercised, since genetic identification
alone is not sufficient in the absence of data on disease dynamics
and morphology (255, 256). A species designation should ideally
reflect all data available, i.e., host species, location, and morpho-
logical characteristics of adult worms and eggs. In addition, com-
parative molecular analyses must be performed to obtain reliable
and convincing results of species identification.

Most importantly, specimens and other data, e.g., genetic data,
should be archived in a permanent museum collection or an ar-
chivable Web-based database for data resulting from a specimen,
such as the sequence archive GenBank. Voucher samples of any
life cycle stage of these schistosomes (or any parasite and host)
should be preserved and deposited in a permanent museum col-
lection (257–259). This is imperative for several reasons: the most
important is for the question that has not yet been asked. In the
event that the parasite sample does not match known species or
has odd features, further work may be necessary. Access to images
and measurements, plus an additional sample(s), will be used in
further sequencing. Moreover, documentation of any species of
schistosome coming through a clinic is an important record that
can contribute to epidemiological studies, especially if it is associ-
ated with people affected by dermatitis.

CLINICAL FEATURES, DIAGNOSIS, TREATMENT, AND
PROPHYLAXIS OF HUMAN INFECTIONS
As for the clinical symptoms and signs, penetration of avian schis-
tosome cercariae into mammalian (human) skin may initiate an
immediate prickling sensation that persists for approximately 1 h
(4, 260). The development and intensity of the subsequent allergic
reaction depend on the number and duration of previous cercarial
contacts, as well as individual susceptibility (4, 7, 260). The pri-
mary contact with cercariae may lead to either an imperceptible
(7, 261) or mild skin reaction, with the development of small and
transient macules, maculopapules, or inconspicuous papules of
about 1 to 2 mm after 0.5 to 2 days p.i. A delayed reaction in the
form of small papules can be observed in some persons as late as 8
days p.i. (7, 238).

Repeated infections cause a more pronounced cutaneous reac-
tion followed by diffuse edema and development of erythematous
papules or papulovesicles (4, 261). More specifically, the first tran-
sitory macules (up to 10 mm) and primary itching can appear as
soon as 4 to 20 min after exposure. Thereafter (1 to 15 h p.i.),
macules are replaced by papules (about 3 to 8 mm), and an intense
itching (secondary itching) is experienced. In addition, erythema
and edema may occur in the afflicted area for a few days. Vesicles
of about 1 to 8 mm may form on papules at 2 to 3 days p.i. and may
rupture as a result of scratching. As a consequence, bacterial su-
perinfection may result in formation of pustules. Papules usually
regress and disappear at 4 to 10 days p.i., leaving a pigmented spot
(about 1 to 4 mm) on the skin for weeks (7, 225, 238); however, in
some cases, the symptoms may persist for about 20 days p.i. (7,
238, 262, 263). Every macula/papula is a reaction against the pen-
etrating cercaria(e) and thus represents the part of the body in
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direct contact with cercariae (Fig. 7). An attack by many cercariae
may be accompanied by generalized reactions, such as limb and
lymph node swelling, nausea, diarrhea, and fever (7, 238).

Diagnosis is rather problematic. Skin reactions to cercariae
from freshwater or marine environments may resemble insect
bites, bacterial dermatitis, contact dermatitis, or skin reactions
against nematocysts of larval cnidarians (sea anemones, thimble
jellyfish, etc.) (7). Anamnestic data (suggesting recent contact
with water reservoirs) and maculopapular skin eruption on the
body parts that were in contact with water are important indica-
tors. Direct proof of schistosome infection may be shown by skin
biopsy of the papulae no later than 48 h p.i. Individual papulae
should be excised/shaved off under local anesthesia, put in Bouin’s
fixative, cut into 10-$m sections, and stained with hematoxylin-
eosin (225, 226). As for basic laboratory tests, increased eosinophil
counts and elevated levels of total IgE may indicate an attack by
avian schistosomes (7, 230, 238). Specific immunological/serolog-
ical assays (skin test, “Cercarienhüllenreaktion” [a precipitation
reaction surrounding the cercarial body in the presence of a spe-
cific antibody], indirect fluorescent-antibody test [IFAT], en-
zyme-linked immunosorbent assay [ELISA], and complement
fixation test) to detect penetration by avian schistosomes are not
sufficiently specific or sensitive (7, 238). Exceptionally, some re-
action has been obtained with sera of dermatitis patients and a
heterologous antigen—Schistosoma mansoni cercariae— used in
Cercarienhüllenreaktion and IFAT (263, 264). Selection of a reli-
able (recombinant) antigen or primer for serological or DNA-
based tests, respectively, is in progress (our unpublished data).

Therapy for afflicted areas includes only symptomatic (not
causal) treatment of the condition in the form of soothing agents.
For example, water chestnut planters in India use mustard oil to

relieve the itching and rash in mild cases of dermatitis (265). In
serious cases, application of systemic antihistamines (tablets or
gels, e.g., hydroxyzine) or mild corticosteroids (e.g., 0.1% triam-
cinolon cream or 1% hydrocortisone ointment) may be consid-
ered (7, 226, 262, 266).

There are several recommendations to protect individuals.
Wearing rubber waders or gloves or neoprene diving suits is 100%
reliable, although not always appropriate or realistic. Upon con-
tact with cercariae in water, the number of penetrating larvae can
be reduced if action is taken within seconds to a few minutes (see
the part on vertebrate host penetration above). For example, thor-
ough toweling and exposure of skin to the sun are recommended
for bathers immediately after leaving water. In the case of an acci-
dental exposure in the laboratory, skin can be washed with 70%
ethanol or warm water (as much as one can tolerate) and soap
(our personal experience). Several chemicals have been tested as
barriers to cercarial penetration. For example, LipoDEET, a long-
acting liposome formulation of DEET (N,N-diethyl-m-tolua-
mide), a common, safe, and available insect repellent, has been
used successfully to prevent penetration of S. mansoni (267).
However, a cream formulation of DEET was poorly effective
against T. szidati penetrating living human skin (181). Two other
formulations were effective: (i) SafeSea lotion against jellyfish
stings, where the effective compound may be H1-antihistamine
diphenhydramine; and (ii) niclosamide in a dosage as low as 0.1%
in water-resistant sunscreens. We hypothesize that sunscreens
based on plant oils (nonmedicated) will trigger cercarial penetra-
tion due to a high content of unsaturated fatty acids. In this regard,
a negative effect in terms of human protection was observed for
dimethicones (polydimethylsiloxanes and silicone oils), which are
common ingredients in many skin care products (181).

FIG 7 Development of cercarial dermatitis on the dorsal (1) and ventral (2) parts of the left hand of a sensitized volunteer infected experimentally by
Trichobilharzia szidati (the whole hand was immersed into a beaker containing water with cercariae). Images were taken at 1 (A), 2 (B), 3 (C), and 4 (D) days
postexposure. Formation of macules (A) and papules with vesicles (B to D) can be seen. No penetration/reaction was recorded for the palm. Noticeable swelling
of the hand is shown mainly in panel B1. (The figure was created by H. Kulíková and P. Horák.)
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ECOLOGICAL FACTORS INFLUENCING THE OCCURRENCE OF
AVIAN SCHISTOSOMES AND CERCARIAL DERMATITIS
Due to climate changes and land alterations, the seasonal window
for parasite transmission may become longer, in addition to
changes in the behavioral and physiological patterns of parasite
hosts. For example, the accelerated growth of both snail and trem-
atode larval populations (71) or changes in phenology of aquatic
migratory birds to sedentary (268–270) can increase chances for
outbreaks of cercarial dermatitis in both space and time.

Global Warming and Eutrophication

At least in temperate climates, schistosome cercariae occur seasonally
once the ambient temperature is high enough for snail activity and
thus cercarial emergence (271). Also, snails infected during late sum-
mer can survive through the winter season and serve as a source of
cercariae in spring (13, 272, 273). Global warming is predicted to have
a positive effect on trematode intramolluscan stages, because their
development is strongly temperature dependent, leading to increased
cercarial emission rates. For example, a shorter prepatent period in
relation to higher temperatures was demonstrated in experimental
infections with T. szidati (141, 274). A slight rise in temperature will
increase developmental rates and transmission success (number of
cercariae available to find the definitive host). For example, a 5-fold
increase in cercarial emergence with a 10°C increase in temperature
was recorded for Trichobilharzia sp. from Radix peregra (275). In
addition, a link has been suggested between the rise of 0.8°C within
the last century and the increased frequency of cercarial dermatitis
and Trichobilharzia prevalence at higher latitudes in Europe (9, 276).
What does not change is the life span of cercariae, which is limited to
the restricted source of reserve glycogen (cercariae do not take up any
food). In this regard, temperature strongly affects cercarial survival.
For example, the half-life of T. szidati was 16 h at 16°C but only 7.8
h at 25°C (169), and the life span of Trichobilharzia arcuata was 72
h at 4°C but only 48 h at 26°C (277). Infected snails change their
thermal microhabitat selection, e.g., Lymnaea stagnalis infected with
T. szidati prefers a colder water temperature than that preferred by
uninfected snails (19.97°C versus 25°C). This may be an adaptation
for either the snail or the schistosome, because at these temperatures
larval development is slower and the rate of cercarial emission is
lower, leading to less tissue damage in the snail (169, 170).

Eutrophication promotes excessive plant growth and decay,
causing alterations in the dynamics of freshwater communities
and thus leading to an increased risk of acquiring cercarial derma-
titis (11, 278–280). Greater biomass of primary producers is asso-
ciated with faster development and growth of snails due to the
increase in food availability (280–282). Dense snail populations
may increase the probability that a miracidium will find a snail
and lead to a higher prevalence of infection. In addition, aquatic
birds are attracted to such nutrient-rich environments, also con-
tributing to an increase in parasite transmission (283). Using data
from a mark-recapture study of L. stagnalis in eutrophic fish-
ponds, rapid trematode recruitment into the snail populations
was demonstrated (284). Maximum annual rates of colonization/
recruitment for T. szidati were shown to reach up to 300%, such
that the odds of trematode establishment in an individual snail
were 3 times per year versus once in 10 years in other, mainly
marine trematode-snail systems (284, 285).

Large snail populations with a high prevalence of avian schisto-
somes have been reported for several localities in Europe (71,

286–288), North America (289, 290), and Australia (291). Usu-
ally, natural preserves support diverse and abundant populations
of potential hosts of schistosomes, so these areas may serve as hot
spots for outbreaks of cercarial dermatitis. Although eutrophica-
tion contributes to infection risk, cases of cercarial dermatitis or
findings of avian schistosomes have also been reported from oli-
gotrophic or mesotrophic systems (8). In addition, other abiotic
and biotic factors and human-induced habitat alterations may
influence the occurrence of schistosomes and cercarial dermatitis,
such as altered hydrology conditions with water-level fluctuation,
ice cover, acidification, or dam constructions (268, 292, 293), an-
thropogenic pollutants (268, 294–297), biodiversity change in
terms of introducing nonindigenous species that may affect en-
demic parasites (298), host susceptibility or resistance (9), preda-
tion upon trematode free-swimming larval stages by fish and
other aquatic animals (295, 299, 300), or interspecific competition
of parasites within the same snail host (301–303).

Recreational Activities and Cercarial Dermatitis
The data in the literature suggest that lakes represent high-risk
areas for cercarial dermatitis, as they are attractive for a large num-
ber of people, usually for recreational purposes (8). Cercarial der-
matitis develops as a result of sensitization of the human immune
system (232, 260), and repeated exposures to cercariae influence
the occurrence and intensity of subsequent infections. For exam-
ple, longer exposure in water increases cercarial penetration via
frequent water visits and more time spent in shallow water (4,
304–306). While gender does not influence the risk of infection (4,
304, 305, 307), some studies found a higher risk among children of
less than 15 years of age, since they tend to spend more time in
shallow water (280, 308, 309). There are rare cases of nonsensitive
individuals that may be due to host desensitization (310) or indi-
vidual nonsusceptibility/nonattractivity to cercariae (4, 311).

Locally, the highest risk of infection usually occurs in shallow,
warm, and vegetation-rich shore areas, where the snails accumu-
late and release cercariae (308, 309). Cercariae of avian schisto-
somes are concentrated just beneath the water surface (see the
information on host finding), so swimming in deeper water may
reduce the infection probability (280). However, snail preferences
for habitat differ: Lymnaea stagnalis is found mostly in patches of
aquatic vegetation, feeding on periphyton; Radix spp. accumulate
in vegetation-free areas, on stones or muddy sediments; and phy-
sid snails prefer detritus as a source of food (312, 313). In addition,
cercariae of avian schistosomes can be transported by wind and
water currents for several kilometers (2, 304, 305). Therefore, tak-
ing the local situation into account is essential for risk assessment,
because conditions unsuitable for one snail species may provide
an ideal habitat for another.

Season and time of day were shown to have considerable effects.
Most cases of cercarial dermatitis correlate with high air and water
temperatures during the summer months, when schistosome devel-
opment in snails is amplified and emission rates of cercariae are stim-
ulated by sunlight (4, 11, 279, 280, 304, 305, 309, 314). Production
can reach several thousands of cercariae/snail/day (169, 300, 315),
and these emission rates may even counterbalance the loss of cercarial
capability to survive and infect hosts at high temperatures (see
above). Irrespective of the season, outbreaks of cercarial dermatitis
have been reported in geothermally heated lakes and ponds in Iceland
(71). Time of day proved to be another risk factor. Production of
schistosome cercariae is usually discontinuous—particular species
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may differ in circadian rhythms of cercarial release. This is usually
attributed to the peak activity of the preferred definitive hosts. Thus,
Trichobilharzia and some other genera infecting aquatic birds leave
the snail host during the light period of the day, mainly in the morn-
ing hours (2, 4, 280, 305). Increased illumination, temperature, and
snail locomotory activity trigger cercarial emergence (169, 211, 316,
317). Patterns of cercarial emergence can be changed almost imme-
diately by reversing the dark-light regimen, suggesting that light has a
decisive influence on the direction of the process (317, 318). The
number of cercariae released from snails may vary greatly depending
on the parasite/host species and the phase (age) of infection; large
species of snails represent a higher risk, as more cercariae are pro-
duced per snail and released into the environment (10, 275, 315). This
may also explain why some species of avian schistosomes that use
smaller species of snails are not often detected during an outbreak.

Control Measures Related to the Ecology of Avian
Schistosomes
In order to reduce the risk of cercarial dermatitis, either water use
during peak cercarial emergence should be avoided or the life
cycle of avian schistosomes should be interrupted. Interruption of
the schistosome life cycle has been tried on a number of occasions.
One option is to reduce the prevalence of adult avian schistosomes
in birds by eliminating ducks from high-risk areas. However, pub-
lic acceptance of regular hunting or repelling of birds (ducks) at
recreational lakes during summer months is uncertain. Another
option is to treat birds with the antihelminthic drug praziquantel.
Birds are captured in the field by use of modified dive traps and
subsequently treated with praziquantel and then released. Recap-
ture results showed a significant reduction of infections in mal-
lards (319–321). Furthermore, in the subsequent year, there was a
marked decline in prevalence of avian schistosomes in snails
(320). However, treatment of the entire duck population is time-
consuming and labor-intensive.

Reduction or elimination of snail populations is another strat-
egy of cercarial dermatitis control by interrupting the life cycle. In
the past, application of commercial molluscicides, such as niclos-
amide or copper sulfate, was common (319). However, repeated
and unlimited treatments had a deleterious effect on animal com-
munities. In addition, after repeated exposures, some snails may
become resistant to copper sulfate or avoid the treatment by bur-
rowing into the mud (322, 323). Manual collection of snails (309,
324) or destruction of their habitats by local removal of littoral
vegetation (2) represents a less harmful approach to snail control.
Large-scale destruction of snail populations by use of heavy ma-
chines along the shores of Annecy Lake (France) and Cultus Lake
(Canada) led to substantial reductions of cercarial dermatitis (2).
As for the biological control of snail populations, use of mollus-
civorous fish or prawns as natural snail predators is promising for
long-term control (325–328), although it represents a risk for na-
tive flora and fauna if nonindigenous organisms are introduced.

Free-swimming miracidia and cercariae may represent a prom-
ising target for life cycle interruption. Snail finding and recogni-
tion by miracidia are based markedly on recognition of host mol-
ecules called miraxones (see the information on intramolluscan
development), which led to a proposal to use miracidial traps
containing miraxones (329). Unfortunately, due to the high level
of diversity of avian schistosomes and presumed variability of
snail recognition (139), this proposal proved unrealistic. Simi-
larly, cercarial traps based on species-specific host-finding behav-

ior (see the information on vertebrate host finding) might provide
local protection (330). For example, fatty acid-stimulated trans-
formation to the schistosomulum stage could be initiated in these
traps, leading to the loss of resistance against a hypo-osmotic wa-
ter environment (178, 331, 332). As far as trophic interactions of
organisms are concerned, predation by small aquatic animals may
represent a promising means of biological control. Schistosome
miracidia and cercariae may serve as prey for larval aquatic insects,
crustaceans, oligochaetes, shrimps, and fish (271, 333–338). In
particular, the annelid Chaetogaster limnaei sensu lato, living com-
mensally or parasitically on the shell surface or in the mantle and
pulmonary cavities of freshwater snails, may act as an efficient
predator and prevent penetration of miracidia (339, 340) or feed
on cercariae as they are released from the snail (341, 342).

Finally, competitive interactions among trematode larval com-
munities within an individual snail can substantially influence es-
tablishment and survival of schistosome intramolluscan stages. In
terms of interspecific interactions, particular species of trema-
todes can be dominant, usually by producing competitively ag-
gressive rediae, or subordinate because they have less aggressive
sporocysts and no redial stage. Schistosomes belong to the latter
group, and their sporocysts are eliminated via the predatory inter-
actions of redia-producing trematodes, e.g., echinostomes (301,
343). Yet schistosomes may exert a dominant effect in some cases.
The avian schistosome Trichobilharzia brevis persists in coinfec-
tions with two dominant echinostomes, Echinostoma audyi and
Hypoderaeum dingeri (343), and can cause developmental sup-
pression of the latter species. The nonpredatory exclusion of H.
dingeri by T. brevis has also been shown experimentally (344).
Intertrematode competition was recently identified as an impor-
tant determinant in transmission of avian schistosomes. For ex-
ample, competitive exclusion was estimated to result in an 18.0%
reduction of Trichobilharzia szidati in Lymnaea stagnalis (345).
Interestingly, T. szidati may represent a subordinate species, yet it
frequently cooccurs in snails with other trematodes. Therefore, T.
szidati may be either an obligate secondary invader of snails with a
compromised immune system or a schistosome that can coexist in
double infections, as was demonstrated for other species of
Trichobilharzia and Austrobilharzia (302, 343, 346).

PERSPECTIVES
The more we know about avian schistosome diversity and distri-
bution, the better we are positioned to understand their evolu-
tionary history and potential for the future dynamics of dermatitis
outbreaks. These days, we have practical means for their identifi-
cation and can better gauge the likelihood that some of these spe-
cies may emerge in new contexts to cause unexpected problems.
An effort to describe the avian schistosome species diversity in
their hosts in the circumpolar regions, where most migratory
birds spend the summer (and young birds become infected),
seems to be a critical component to understanding the epidemi-
ology of cercarial dermatitis. In addition, the condition itself and
the host-parasite interaction require further characterization at
the molecular level. At least three examples of future applications
can be mentioned. (i) A more detailed knowledge of cercarial
penetration mechanisms may help in the prevention of dermatitis
by introducing new formulations containing inhibitory mole-
cules. (ii) Characterization of biologically active secretions pro-
duced by avian schistosomes may help us to understand the mo-
lecular basis of tissue pathology in avian and mammalian hosts.
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(iii) Newly designed primers or carefully selected antigens may be
developed for reliable antibody- or DNA-based diagnostic tools.
Such tools may be used to screen people or animals with health
problems following recent water contact to assess the risk associ-
ated with exposure to cercariae of avian schistosomes.
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135. Jouet D, Skírnisson K, Kolářová L, Ferté H. 2010. Final hosts and
variability of Trichobilharzia regenti under natural conditions. Parasitol
Res 107:923–930. http://dx.doi.org/10.1007/s00436-010-1953-4.

136. Murray JA. 2002. Effect of temperature on the longevity and infectivity
of Trichobilharzia stagnicolae miracidia in Stagnicola emarginata, p 13.
7th Int Cong Med Appl Malacol, Los Banos, Laguna, Philippines.

137. Hertel J, Holweg A, Haberl B, Kalbe M, Haas W. 2006. Snail odour-
clouds: spreading and contribution to the transmission success of Tricho-
bilharzia ocellata (Trematoda: Digenea) miracidia. Oecologia 147:173–
180. http://dx.doi.org/10.1007/s00442-005-0239-5.

138. Kalbe M, Haberl B, Haas W. 1997. Miracidial host-finding in Fasciola
hepatica and Trichobilharzia ocellata is stimulated by species-specific gly-
coconjugates released from the host snails. Parasitol Res 83:806 – 812.
http://dx.doi.org/10.1007/s004360050344.

139. Kalbe M, Haberl B, Haas W. 2000. Snail host finding by Fasciola hepat-
ica and Trichobilharzia ocellata: compounds analysis of “miracidia-
attracting glycoproteins.” Exp Parasitol 96:231–242. http://dx.doi.org/10
.1006/expr.2000.4579.

140. Haas W, Haberl B, Kalbe M, Körner M. 1995. Snail-host-finding by
miracidia and cercariae: chemical host cues. Parasitology 11:468 – 472.

141. Sluiters JE, Brussaard-Wust CM, Meuleman EA. 1980. The relationship
between miracidial dose, production of cercariae, and reproductive ac-
tivity of the host in the combination Trichobilharzia ocellata and Lym-
naea stagnalis. Z Parasitenkd 63:13–26. http://dx.doi.org/10.1007
/BF00927722.

142. Joosse J, Van Elk R. 1986. Trichobilharzia ocellata: physiological char-
acterization of giant growth, glycogen depletion, and absence of repro-
ductive activity in the intermediate snail host, Lymnaea stagnalis. Exp
Parasitol 62:1–13. http://dx.doi.org/10.1016/0014-4894(86)90002-0.

143. Amen RI, Baggen JMC, Bezemer PD, de Jong-Brink M. 1992. Modu-
lation of the activity of the internal defence system of the pond snail
Lymnaea stagnalis by the avian schistosome Trichobilharzia ocellata. Par-
asitology 104:33– 40. http://dx.doi.org/10.1017/S0031182000060777.

144. Nuñez PE, Adema CM, de Jong-Brink M. 1994. Modulation of the
bacterial clearance activity of haemocytes from the freshwater mollusc,
Lymnaea stagnalis, by the avian schistosome, Trichobilharzia ocellata.
Parasitology 109:299 –310. http://dx.doi.org/10.1017/S003118200007
8331.

145. de Jong-Brink M. 1995. How schistosomes profit from the stress re-
sponses they elicit in their hosts. Adv Parasitol 35:177–256. http://dx.doi
.org/10.1016/S0065-308X(08)60072-X.

146. Horák P, van der Knaap WPW. 1997. Lectins in snail-trematode im-
mune interactions: a review. Folia Parasitol 44:161–172.

147. van der Knaap WPW, Adema CM, Sminia T. 1993. Invertebrate blood
cells: morphological and functional aspects of the haemocytes in the
pond snail Lymnaea stagnalis. Comp Haematol Int 3:20 –26. http://dx
.doi.org/10.1007/BF00394923.

148. Adema CM, van Deutekom-Mulder EC, van der Knaap WPW, Sminia
T. 1994. Schistosomicidal activities of Lymnaea stagnalis haemocytes: the
role of oxygen radicals. Parasitology 109:479 – 485. http://dx.doi.org/10
.1017/S0031182000080732.

149. Nuñez PE, de Jong-Brink M. 1997. The suppressive excretory-secretory
product of Trichobilharzia ocellata: a possible factor for determining

compatibility in parasite-host interactions. Parasitology 115:193–203.
http://dx.doi.org/10.1017/S0031182097001169.

150. Plows LD, Cook RT, Davies AJ, Walker AJ. 2004. Activation of extra-
cellular-signal regulated kinase is required for phagocytosis by Lymnaea
stagnalis haemocytes. Biochim Biophys Acta 1692:25–33. http://dx.doi
.org/10.1016/S0167-4889(04)00042-4.

151. Lacchini AH, Davies AJ, Mackintosh D, Walker AJ. 2006. Beta-1,3-
glucan modulates PKC signalling in Lymnaea stagnalis defence cells: a
role for PKC in H2O2 production and downstream ERK activation. J Exp
Biol 209:4829 – 4840. http://dx.doi.org/10.1242/jeb.02561.

152. Walker AJ, Lacchini AH, Sealey KL, Mackintosh D, Davies AJ. 2010.
Spreading by snail (Lymnaea stagnalis) defence cells is regulated through
integrated PKC, FAK and Src signaling. Cell Tissue Res 341:131–145.
http://dx.doi.org/10.1007/s00441-010-0986-4.

153. Gerhardus MJT, Baggen JMC, van der Knaap WPW, Sminia T. 1991.
Analysis of surface carbohydrates of Trichobilharzia ocellata miracidia
and sporocysts using lectin binding techniques. Parasitology 103:51–59.
http://dx.doi.org/10.1017/S003118200005928X.

154. Horák P. 1995. Developmentally regulated expression of surface carbo-
hydrate residues on larval stages of the avian schistosome Trichobilharzia
szidati. Folia Parasitol 42:255–265.

155. Blažová K, Horák P. 2005. Trichobilharzia regenti: the developmental
differences in natural and abnormal hosts. Parasitol Int 54:167–172. http:
//dx.doi.org/10.1016/j.parint.2005.03.003.

156. Chanová M, Bulantová J, Máslo P, Horák P. 2009. In vitro cultivation
of early schistosomula of nasal and visceral bird schistosomes (Trichobil-
harzia spp., Schistosomatidae). Parasitol Res 104:1445–1452. http://dx
.doi.org/10.1007/s00436-009-1343-y.

157. Plows LD, Cook RT, Davies AJ, Walker AJ. 2005. Carbohydrates that
mimic schistosome surface coat components affect ERK and PKC signal-
ling in Lymnaea stagnalis haemocytes. Int J Parasitol 35:293–302. http:
//dx.doi.org/10.1016/j.ijpara.2004.11.012.

158. Walker AJ. 2006. Do trematode parasites disrupt defence cell signalling
in their snail host? Trends Parasitol 22:154 –159. http://dx.doi.org/10
.1016/j.pt.2006.02.003.

159. Hoek RM, Smit AB, Frings H, Vink JM, de Jong-Brink M, Geraerts
WPM. 1996. A new Ig-superfamily member, molluscan defence mole-
cule (MDM) from Lymnaea stagnalis, is down-regulated during parasi-
tosis. Eur J Immunol 26:939 –944. http://dx.doi.org/10.1002/eji.1830260
433.

160. Smit AB, de Jong-Brink M, Li KW, Sassen MM, Spijker S, Van Elk R,
Buijs S, Van Minnen J, Van Kesteren RE. 2004. Granularin, a novel
molluscan opsonin comprising a single vWF type C domain is up-
regulated during parasitation. FASEB J 18:845– 847. http://dx.doi.org/10
.1096/fj.03-0590fje.

161. de Jong-Brink M, Bergamin-Sassen M, Solis Soto M. 2001. Multiple
strategies of schistosomes to meet their requirements in the intermediate
snail host. Parasitology 123:S129 –S141.

162. Geraerts WP. 1992. Neurohormonal control of growth and carbohy-
drate metabolism by the light green cells in Lymnaea stagnalis. Gen
Comp Endocrinol 86:433– 444. http://dx.doi.org/10.1016/0016-6480
(92)90068-U.

163. Hermann PM, de Lange RP, Pieneman AW, ter Maat A, Jansen RF.
1997. Role of neuropeptides encoded on CDCH-1 gene in the organiza-
tion of egg-laying behavior in the pond snail, Lymnaea stagnalis. J Neu-
rophysiol 78:2859 –2869.

164. de Jong-Brink M, Elsaadany M, Soto M. 1991. The occurrence of
schistosomin, an antagonist of female gonadotropic hormones, is a gen-
eral phenomenon in haemolymph of schistosome-infected freshwater
snails. Parasitology 103:371–378. http://dx.doi.org/10.1017/S003118200
0059886.

165. Schallig HDFH, Sassen MJM, Hordijk PL, de Jong-Brink M. 1991.
Trichobilharzia ocellata: influence of infection on the fecundity of its
intermediate snail host Lymnaea stagnalis and cercarial induction of the
release of schistosomin, a snail neuropeptide antagonizing female gonad-
otropic hormones. Parasitology 102:85–91. http://dx.doi.org/10.1017
/S0031182000060376.

166. Hordijk PL, de Jong-Brink M, ter Maat A, Pieneman AW, Lodder JC,
Kits KS. 1992. The neuropeptide schistosomin and haemolymph from
parasitized snails induce similar changes in excitability in neuroendo-
crine cells controlling reproduction and growth in a fresh-water snail.
Neurosci Lett 136:193–197. http://dx.doi.org/10.1016/0304-3940(92)
90047-B.

Horák et al.

184 cmr.asm.org January 2015 Volume 28 Number 1Clinical Microbiology Reviews

http://dx.doi.org/10.1016/j.parint.2005.10.009
http://dx.doi.org/10.1016/j.parint.2005.10.009
http://dx.doi.org/10.14411/fp.2007.013
http://dx.doi.org/10.14411/fp.2007.013
http://dx.doi.org/10.1079/JOH2005321
http://dx.doi.org/10.1079/JOH2005321
http://dx.doi.org/10.1016/j.parint.2013.03.002
http://dx.doi.org/10.1016/j.parint.2013.03.002
http://dx.doi.org/10.2307/4089339
http://dx.doi.org/10.1007/s00436-010-1953-4
http://dx.doi.org/10.1007/s00442-005-0239-5
http://dx.doi.org/10.1007/s004360050344
http://dx.doi.org/10.1006/expr.2000.4579
http://dx.doi.org/10.1006/expr.2000.4579
http://dx.doi.org/10.1007/BF00927722
http://dx.doi.org/10.1007/BF00927722
http://dx.doi.org/10.1016/0014-4894(86)90002-0
http://dx.doi.org/10.1017/S0031182000060777
http://dx.doi.org/10.1017/S0031182000078331
http://dx.doi.org/10.1017/S0031182000078331
http://dx.doi.org/10.1016/S0065-308X(08)60072-X
http://dx.doi.org/10.1016/S0065-308X(08)60072-X
http://dx.doi.org/10.1007/BF00394923
http://dx.doi.org/10.1007/BF00394923
http://dx.doi.org/10.1017/S0031182000080732
http://dx.doi.org/10.1017/S0031182000080732
http://dx.doi.org/10.1017/S0031182097001169
http://dx.doi.org/10.1016/S0167-4889(04)00042-4
http://dx.doi.org/10.1016/S0167-4889(04)00042-4
http://dx.doi.org/10.1242/jeb.02561
http://dx.doi.org/10.1007/s00441-010-0986-4
http://dx.doi.org/10.1017/S003118200005928X
http://dx.doi.org/10.1016/j.parint.2005.03.003
http://dx.doi.org/10.1016/j.parint.2005.03.003
http://dx.doi.org/10.1007/s00436-009-1343-y
http://dx.doi.org/10.1007/s00436-009-1343-y
http://dx.doi.org/10.1016/j.ijpara.2004.11.012
http://dx.doi.org/10.1016/j.ijpara.2004.11.012
http://dx.doi.org/10.1016/j.pt.2006.02.003
http://dx.doi.org/10.1016/j.pt.2006.02.003
http://dx.doi.org/10.1002/eji.1830260433
http://dx.doi.org/10.1002/eji.1830260433
http://dx.doi.org/10.1096/fj.03-0590fje
http://dx.doi.org/10.1096/fj.03-0590fje
http://dx.doi.org/10.1016/0016-6480(92)90068-U
http://dx.doi.org/10.1016/0016-6480(92)90068-U
http://dx.doi.org/10.1017/S0031182000059886
http://dx.doi.org/10.1017/S0031182000059886
http://dx.doi.org/10.1017/S0031182000060376
http://dx.doi.org/10.1017/S0031182000060376
http://dx.doi.org/10.1016/0304-3940(92)90047-B
http://dx.doi.org/10.1016/0304-3940(92)90047-B
http://cmr.asm.org


167. Hoek RM, Li KW, van Minnen J, Lodder JC, de Jong-Brink M, Smit
AB, van Kesteren RE. 2005. LFRFamides: a novel family of parasitation-
induced -RFamide neuropeptides that inhibit the activity of neuroendo-
crine cells in Lymnaea stagnalis. J Neurochem 92:1073–1080. http://dx
.doi.org/10.1111/j.1471-4159.2004.02927.x.

168. McClelland G, Bourns TKR. 1969. Effects of Trichobilharzia ocellata on
growth, reproduction, and survival of Lymnaea stagnalis. Exp Parasitol
24:137–146. http://dx.doi.org/10.1016/0014-4894(69)90150-7.

169. Zbikowska E. 2005. Do larvae of Trichobilharzia szidati and Echinostoma
revolutum generate behavioral fever in Lymnaea stagnalis individuals?
Parasitol Res 97:68 –72. http://dx.doi.org/10.1007/s00436-005-1394-7.

170. Zbikowska E, Cichy A. 2012. Symptoms of behavioural anapyrexia—
reverse fever as a defence response of snails to fluke invasion. J Invertebr
Pathol 109:269 –273. http://dx.doi.org/10.1016/j.jip.2011.12.006.

171. Stirewalt MA. 1974. Schistosoma mansoni: cercaria to schistosomule.
Adv Parasitol 12:115–182. http://dx.doi.org/10.1016/S0065-308X(08)60
388-7.

172. Haas W. 1992. Physiological analysis of cercarial behavior. J Parasitol
78:243–255. http://dx.doi.org/10.2307/3283471.

173. Feiler W, Haas W. 1988. Host-finding in Trichobilharzia ocellata cercar-
iae—swimming and attachment to the host. Parasitology 96:493–505.
http://dx.doi.org/10.1017/S0031182000080136.

174. Sopott-Ehlers B, Haas W, Ehlers U. 2003. Ultrastructure of pigmented
and unpigmented photoreceptors in cercariae of Trichobilharzia ocellata
(Plathelminthes, Trematoda, Schistosomatidae): evidence for the evolu-
tion of parasitism in Neodermata. Parasitol Res 91:109 –116. http://dx
.doi.org/10.1007/s00436-003-0933-3.

175. Feiler W, Haas W. 1988. Trichobilharzia ocellata— chemical stimuli of
duck skin for cercarial attachment. Parasitology 96:507–517. http://dx
.doi.org/10.1017/S0031182000080148.

176. Haas W. 2003. Parasitic worms: strategies of host finding, recognition
and invasion. Zoology 106:349 –364. http://dx.doi.org/10.1078/0944
-2006-00125.

177. Haas W, Häberlein S. 2009. Penetration of cercariae into the living
human skin: Schistosoma mansoni vs. Trichobilharzia szidati. Parasitol
Res 105:1061–1066. http://dx.doi.org/10.1007/s00436-009-1516-8.

178. Haas W, van de Roemer A. 1998. Invasion of the vertebrate skin by
cercariae of Trichobilharzia ocellata: penetration processes and stimulat-
ing host signals. Parasitol Res 84:787–795. http://dx.doi.org/10.1007
/s004360050489.

179. Bulantová J, Chanová M, Houžvičková L, Horák P. 2011. Trichobil-
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Abstract

Radix lagotis is an intermediate snail host of the nasal bird schistosome Trichobilharzia regenti. Changes in defence
responses in infected snails that might be related to host-parasite compatibility are not known. This study therefore aimed
to characterize R. lagotis haemocyte defence mechanisms and determine the extent to which they are modulated by T.
regenti. Histological observations of R. lagotis infected with T. regenti revealed that early phases of infection were
accompanied by haemocyte accumulation around the developing larvae 2–36 h post exposure (p.e.) to the parasite. At later
time points, 44–92 h p.e., no haemocytes were observed around T. regenti. Additionally, microtubular aggregates likely
corresponding to phagocytosed ciliary plates of T. regenti miracidia were observed within haemocytes by use of
transmission electron microscopy. When the infection was in the patent phase, haemocyte phagocytic activity and
hydrogen peroxide production were significantly reduced in infected R. lagotis when compared to uninfected counterparts,
whereas haemocyte abundance increased in infected snails. At a molecular level, protein kinase C (PKC) and extracellular-
signal regulated kinase (ERK) were found to play an important role in regulating these defence reactions in R. lagotis.
Moreover, haemocytes from snails with patent infection displayed lower PKC and ERK activity in cell adhesion assays when
compared to those from uninfected snails, which may therefore be related to the reduced defence activities of these cells.
These data provide the first integrated insight into the immunobiology of R. lagotis and demonstrate modulation of
haemocyte-mediated responses in patent T. regenti infected snails. Given that immunomodulation occurs during patency,
interference of snail-host defence by T. regenti might be important for the sustained production and/or release of infective
cercariae.

Citation: Skála V, Černı́ková A, Jindrová Z, Kašný M, Vostrý M, et al. (2014) Influence of Trichobilharzia regenti (Digenea: Schistosomatidae) on the Defence Activity
of Radix lagotis (Lymnaeidae) Haemocytes. PLoS ONE 9(11): e111696. doi:10.1371/journal.pone.0111696

Editor: Daniel Doucet, Natural Resources Canada, Canada

Received July 4, 2014; Accepted October 7, 2014; Published November 5, 2014
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Introduction

Aquatic snails serve as intermediate hosts of many trematodes,

including those important in veterinary and human medicine.

Compatibility between such parasites and the host snail is partially

governed by innate immunological processes that comprise

cellular and humoral components. Mobile phagocytic cells called

haemocytes play the major role in mediating the cellular defence

response whereas lectins are considered as the most essential

recognition molecules of humoral response [1], [2]. Haemocyte-

mediated defence responses that are important for eliminating

foreign invaders such as parasites include phagocytosis, encapsu-

lation, and production of reactive oxygen species (ROS) [1], [3],

[4].

Phagocytosis is used to eliminate small non-self particles,

primarily bacteria; however, pieces of trematode tegument are

also known to be actively engulfed by haemocytes after

encapsulation [3]. The phagocytic response also triggers genera-

tion of ROS [5], [6]. Among the ROS, hydrogen peroxide (H2O2)

is an important metabolite known for killing sporocysts of the

human parasite Schistosoma mansoni [4]. At the molecular level,

snail haemocyte defence responses are regulated by complex

networks of intracellular signalling pathways, including the

evolutionarily conserved protein kinase C (PKC) and mitogen-

activated protein kinase (MAPK) pathways [7–10]. Activation of

PKC, p38 MAPK and/or extracellular signal-regulated kinase

(ERK) is required for efficient phagocytosis and H2O2 production

by snail haemocytes; other kinases such as phosphatidylinositol 3-

kinase also play a crucial role in these processes [7], [9–12].
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During infection, compatible trematodes alter snail host defence

responses presumably to help ensure survival and replication of the

parasite. Phagocytic activity of haemocytes is decreased e.g. in the

gastropods Biomphalaria glabrata and Lymnaea stagnalis infected

with Echinostoma paraensei [13] and Trichobilharzia szidati [14],

respectively. In the prosobranch snail, Littorina littorea, infection

with Himasthla elongata reduces haemocyte ROS production,

which correlates with increased haemocyte number in the snail

circulation [15]. Such alterations of host defence mechanisms

might be caused by trematode-derived components interfering

with signalling pathways of snail haemocytes [16]. This hypothesis

is supported by results showing that S. mansoni excretory-

secretory products (ESPs) generated during development of

miracidia to mother sporocysts impair H2O2 production in B.
glabrata haemocytes [10] and disrupt ERK signalling in these cells

[17].

Radix lagotis is an important intermediate host of the nasal bird

schistosome Trichobilharzia regenti [18], [19], a causative agent of

cercarial dermatitis in humans [20]. Following penetration into the

snail, T. regenti miracidia develop to mother sporocysts, which in

turn produce daughter sporocysts [21]. This latter stage gives rise

to cercariae that are released into the water during the patent

phase of infection. As far as immunological aspects of infection are

concerned, snail defence responses related to the initiation of T.
regenti infection, and changes in R. lagotis haemocyte activities in

the patent phase of infection are unknown.

The present paper combines histological observations of

juvenile R. lagotis snails infected with T. regenti miracidia, with

comparisons of haemocyte abundance and haemocyte phagocytic

activity and H2O2 production between uninfected and infected

snails in the patent phase of T. regenti infection. At the molecular

level, basal PKC and ERK phosphorylation in haemocytes from

both snail groups was compared and their possible roles in

regulation of haemocyte phagocytic activity and H2O2 production

explored. Such complementary approaches provide the first and

integrated insight into the immunobiology of R. lagotis snails

demonstrating modulation of defence responses during infection of

snails with the compatible trematode parasite.

Methods

Uninfected and T. regenti-infected R. lagotis
Uninfected R. lagotis were maintained in the laboratory at

ambient room temperature (19–22uC; RT) in aquaria filled with

aerated tap water and were fed fresh lettuce ad libitum. Juvenile

and adult snails (together with the eggs laid) were reared together.

Juvenile snails with shell heights 5–8 mm were infected with T.
regenti miracidia obtained as described by Horák et al. (1998)

[18]. The snails were placed individually into wells of a 24-well

culture plate (Nunc) containing tap water and each exposed to 3–8

miracidia for 5 h, with 15 miracidia used to infect each snail for

histological analysis. After exposure, the snails were placed in a

separate aquarium for 5 weeks, and they were then checked under

a direct light source for shedding of T. regenti cercariae. Snails

releasing cercariae (infected snails) were then maintained in a

further separate aquarium.

Light microscopy
Two juvenile R. lagotis were dissected for each infection time

point studied, 1, 2, 3, 5, 12, 16, 20, 36, 44, 60 and 92 h post–

exposure (p.e.) of snails to T. regenti miracidia. The soft body of

each snail was carefully removed from its shell and fixed in Bouin-

Hollande fixative at RT for 24 h. The specimens were then

embedded in JB-4 resin (Polysciences), sections cut to 2 mm with a

microtome (Finesse ME, Shandon Scientific) and stained with

Wright-Giemsa (Polysciences). Finally, sections were individually

embedded in DPX medium (Sigma), examined under an Olympus

BX 51 light microscope and digital images captured using a DP70

digital camera system.

Transmission electron microscopy
For transmission electron microscopy (TEM), juvenile R. lagotis

were dissected 5 and 15 h p.e. and fixed in 2.5% glutaraldehyde

(Sigma) in complete sterile snail saline (SSS+: 3 mM Hepes,

3.7 mM NaOH, 36 mM NaCl, 2 mM KCl, 2 mM MgCl2, 4 mM

CaCl2, pH 7.8, 100 mOsm; [5]) at 4uC for 24 h. The specimens

were then post–fixed in 1% OsO4 (Polysciences) in SSS+ for 2 h,

washed three times in SSS+, dehydrated in ethanol (50%, 80%,

96%, twice each for 15 min, and 100% three times each for 5 min)

and acetone (100%, three times each for 5 min). Subsequently, the

tissue was incubated in 100% acetone:Spurr mixture at increasing

Spurr concentrations: 2:1 for 2 h, 1:1 for 5 h, 1:2 for 12 h,

followed by pure Spurr resin three times each for 12 h. Then, the

material in fresh Spurr resin was transferred to plastic capsules and

incubated at 60uC for 48 h. The embedded samples were first

sectioned at 2 mm thick sections with a Finesse ME microtome,

stained with 1% toluidine blue (Polysciences) and observed under

a light microscope (Olympus BX 51). When larvae of T. regenti
were detected, 60–70 nm thick sections were prepared using

ultramicrotome Ultracut E (Reichert-Jung). These sections were

stained with uranyl acetate and lead citrate [22] and evaluated

under TEM JEOL 1011 microscope. Digital images were captured

using associated software.

Haemolymph extraction and enumeration of
haemocytes in uninfected and infected R. lagotis

Uninfected and infected R. lagotis with shell heights 1.0–1.6 cm

were selected for haemolymph extraction with infected snails

extracted no later than 2 months post-patency. The snails were

washed with distilled water, dried, and haemolymph was extracted

by head-foot retraction [23].

Haemocyte numbers were quantified for individual uninfected

and infected snails. Haemolymph from each snail was pooled on

parafilm (Sigma) and diluted 1:1, 2:1, or 3:1 (one part = 10 ml) in

incomplete sterile snail saline (SSS-) where 2 mM MgCl2 and

4 mM CaCl2 were omitted, and 2% ethylenediaminetetra-acetic

acid (EDTA; Sigma) added (SSS-/EDTA) to reduce haemocyte

aggregation/adhesion; SSS-/EDTA buffer was exclusively used

for counting haemocytes. Enumeration was carried out with

Bürker haemocytometers and haemocyte numbers were expressed

as haemocytes/ml of haemolymph. The data were analysed for

normality (Shapiro-Wilk normality test) using R 2.13.0 statistical

software (www.r-project.org). Spearman’s correlation test was used

to assess the relationship between shell heights and haemocyte

numbers of individual snails. Haemocyte numbers between the

snail groups were compared using Wilcoxon signed-rank test (non-

parametric two-sample test; Wilcoxon test).

Preparation of haemocyte monolayers
Haemolymph from uninfected and infected snails (shell heights

1.3–1.6 cm) was extracted in alternating order to ensure similar

conditions for both haemolymph types while the monolayers were

prepared. Aliquots of haemolymph drawn from the snails were

pipetted directly into the wells of a 96-well culture plate (Nunc)

containing 50 ml SSS+ to achieve a final volume of 250 ml/well

(final ratio: 4 parts haemolymph: 1 part SSS+). Ten to forty snails

were required to obtain sufficient haemolymph for each mono-

Trichobilharzia regenti and Activity of Radix lagotis Haemocytes

PLOS ONE | www.plosone.org 2 November 2014 | Volume 9 | Issue 11 | e111696

www.r-project.org


layer. Haemocytes were left to settle and adhere to the bottom of

the wells for 30 min at RT. Monolayers were then washed with

SSS+ (see below) and their quality checked under a microscope

(Olympus IX 71). Any wells containing haemocyte clumps or

discontinuous monolayers were not used. When haemocyte

numbers per well were enumerated, aliquots of haemolymph

were also collected on parafilm and diluted with equal amount of

SSS-/EDTA; haemocytes were then enumerated as described

above.

Phagocytosis assays
Haemocyte monolayers were washed three times with 250 ml

SSS+ and equilibrated in 190 ml SSS+ for 30 min at RT. 10 ml of

Escherichia coli bioparticles (pHrodo red; Molecular Probes)

prepared following manufacturer’s instructions were then added

to each well and plates incubated at RT in the dark for 2 h. These

bioparticles are non-fluorescent outside cells, but become fluores-

cent in phagosomes. Therefore, no washing was necessary after

incubation and intracellular fluorescence was immediately quan-

tified using Tecan Infinite M200 microplate reader at 545 nm

excitation and 600 nm emission. The signal of E. coli bioparticles

alone in wells was also measured in each assay and the value

subtracted from all values obtained from wells containing

haemocytes and E. coli bioparticles.

Phagocytic activity of haemocytes from uninfected and infected

snails was then expressed per volume of haemolymph (200 ml) and

per 50,000 haemocytes, in case infection altered haemocyte

number. Uninfected snails were also used to study the effects of

inhibition of PKC and ERK signalling on phagocytic activity.

Haemocyte monolayers were pre-incubated for 30 min at RT with

1 mM or 10 mM inhibitor of PKC (GF109203X; Sigma), MEK

(U0126; Cell Signalling Technology - CST), which is the

immediate upstream activator of ERK, or in DMSO vehicle

alone (0.05%; Sigma) prior to adding bioparticles. Effects of

inhibition assays were evaluated in terms of haemolymph volume

(200 ml).

Using R 2.13.0 statistical software, raw fluorescence intensity

data for each measurement were analysed for normality (Shapiro-

Wilk normality test). Wilcoxon test was then used to compare the

phagocytic activity between uninfected and infected snails,

whereas paired t-test was applied to data when assessing the effect

of GF109203X and U0126 on phagocytosis by R. lagotis
haemocytes. For graphic representation, the data for uninfected

snails were assigned a value of 100%.

Hydrogen peroxide assays
Haemocyte monolayers were prepared and haemocyte num-

bers/well enumerated as described above except that 50 ml

haemolymph and 12.5 ml SSS+ were used per well. After washing

monolayers twice with 250 ml SSS+, haemocytes were left to

equilibrate for 30 min at RT in 100 ml SSS+. H2O2 output by

haemocytes was monitored using the Amplex red hydrogen

peroxide/peroxidase assay kit (Molecular Probes) in which

Amplex red reacts with H2O2 to produce the red-fluorescent

product, resorufin. Working solutions of the assay mixture that

were prepared in SSS+ contained: 0.1 U ml21 horseradish

peroxidase (HRP), 50 mM Amplex red reagent, and either 0.1%

DMSO or 10 mM PMA (phorbol 12-myristate 13-acetate; Sigma)

in DMSO. PMA was used because in other molluscs this phorbol

ester increases ROS production by haemocytes [10], [24], [25].

100 ml of the respective working solution was added to each

individual haemocyte monolayer and the plate was incubated in

the dark for 30 min at RT. For inhibition assays using uninfected

snails, haemocytes were exposed to 5 mM GF109203X, U0126 or

DMSO (vehicle) alone (0.025%) for 30 min at RT prior to adding

the working solution containing PMA. The final concentration of

DMSO after adding the working solutions was 0.1% in all cases.

Fluorescence was monitored at 520 nm and 615 nm excitation

and emission, respectively, in a microplate reader (Tecan Infinite

M200) for 60 min. H2O2 output by uninfected and infected snail

haemocytes was evaluated per volume of haemolymph (50 ml) and

haemocyte number with adjustment to 50,000 cells. Inhibition

assays were evaluated per volume of haemolymph (200 ml).

The data sets were tested for normality (Shapiro-Wilk normality

test) and for equality of variances (Two-variances F-test). Two-

sample t-test or Wilcoxon test was used to compare basal and

PMA-modulated H2O2 production between uninfected and

infected snails. Experiments investigating the effects of PKC and

ERK inhibition on H2O2 production were analysed using either

parametric or nonparametric paired tests. Since the tests at

different time points are dependent, a Fisher’s combination test

using inverse normal method [26] was used for further processing

of p-values. The resulting test statistic was compared to Pocock’s

critical value 2.49. If the test statistic was higher than this critical

value, a significant difference between data sets was confirmed.

SDS-PAGE and western blot analysis
Haemocyte monolayers prepared as detailed above were

washed three times with 250 ml SSS+, and left to equilibrate in

250 ml SSS+ at RT for 30 min. The SSS+ was then removed and

haemocytes lysed by adding 25 ml of hot (95uC) SDS-PAGE

sample buffer. Proteins were separated by gel electrophoresis (10%

Mini-Protean TGX precast gel; Bio-Rad) and transffered to

Immun-Blot PVDF membrane (Bio-Rad) using Trans-Blot turbo

blotting system (Bio-Rad). Membranes were blocked with 5% non-

fat dried milk (Bio-Rad) in 0.1% Tween/Tris-buffered saline

(TTBS) at RT for 45 min, and incubated overnight at 4uC in

either anti-phospho-PKC (pan) (bII Ser660) rabbit polyclonal

antibodies or anti-phospho-p44/42 MAPK (Erk1/2) (Thr202/

Tyr204) (197G2) rabbit monoclonal antibodies (CST) (1:1000 in

TTBS). These antibodies were previously validated for detection

of exclusively phosphorylated (activated) forms of PKC and ERK

in L. stagnalis haemocytes [7], [27], and were also used in other

studies of molluscs [17]. Following further incubation at RT for

2 h, membranes were washed 365 min in TTBS and incubated

for 2 h at RT in anti-rabbit IgG HRP-conjugated secondary

antibodies (1:4000 in TTBS) (CST). Immunoreactive bands were

then visualised using SuperSignal West Dura extended duration

substrate (Thermo Scientific) and a LAS 4000 Luminescent image

analyser. Blots were stripped in Restore Western blot stripping

buffer (Thermo Scientific) for 2 h at RT, and re-probed overnight

in p44/p42 MAPK (Erk1/2) antibody (CST) (1:1000 in TTBS),

which recognizes ERK regardless of its phosphorylation state.

Finally, the blots were stripped and re-probed with anti-actin

antibodies (Sigma) (1:4000 in TTBS) for 1 h at RT to confirm

equal loading of proteins between lanes.

The intensities of immunoreactive bands were analysed using

Multi Gauge 3.2. software. The values for PKC and ERK

phosphorylation and for total ERK in haemocytes of uninfected

snails were standardised as 100% and differences in PKC and

ERK phosphorylation and in total ERK from infected snails

calculated. The data were evaluated for normality (Shapiro-Wilk

normality test) and for equality of variances (Two-variances F-test).

Two-sample t-test was then applied using R 2.13.0 statistical

software.
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Results

Histological observations of R. lagotis experimentally
infected with T. regenti

Histological observations of R. lagotis experimentally infected

with T. regenti provided insights into the encapsulation responses

within the snail tissue between 1 and 92 h p.e. Haemocytes were

not evident in close proximity to the parasite at 1 h p.e.

(Figure 1A). However, considerable accumulation of haemocytes

was observed close to the developing T. regenti between 2 and

16 h p.e. (Figure 1B–C). Haemocytes appeared to surround the

developing mother sporocysts irregularly in several layers;

however, it was not clear whether the cells were directly attached

to the parasite surface. Thereafter, at 20 and 36 h p.e. the

haemocytic response against the parasite appeared to decline (data

not shown) and while the haemocytes occurred individually in the

vicinity of mother sporocysts, they did not accumulate in layers. At

the latter time points, 44, 60 and 92 h p.e. no haemocytes were

observed close to T. regenti (Figure 1D).

Transmission electron microscopy of T. regenti mother

sporocysts within the snail tissue at 5 and 15 h p.e. (Figure 2;

15 h p.e. shown) showed that the larvae remained apparently

undamaged despite numerous haemocytes being adjacent to the

parasite (Figure 2A). Furthermore, some haemocytes were in a

tight contact with sporocyst surface microvilli, and microtubular

aggregates were observed within their phagosomes (Figure 2A–B).

Haemocyte number in uninfected and T. regenti-infected
R. lagotis

Evaluation of haemocyte number/ml haemolymph in 23

individuals of uninfected and infected R. lagotis demonstrated

that the concentration of circulating haemocytes did not correlate

with the shell height of the snails (Figure 3). Considerable variation

in haemocyte number was observed within the extracted

haemolymph for snails of similar size. In uninfected snails, the

lowest haemocyte concentration was 4.26104 cells/ml (shell height

1.40 cm) whereas the highest was 74.96104 cells/ml (shell height

1.57 cm) (Figure 3). In infected snails, the lowest haemocyte

concentration was 4.76104 cells/ml (shell height 1.04 cm) whereas

the highest was 180.46104 cells/ml (shell height 1.26 cm)

(Figure 3). Statistical analysis revealed that mean haemocyte

number/ml haemolymph of infected snails was 79% greater than

that of uninfected snails (45.96104 cells/ml vs. 25.66104 cells/ml;

p,0.05).

Defence responses of haemocytes from uninfected and
T. regenti-infected R. lagotis

To explore the effects of T. regenti infection on haemocyte

defence, we measured phagocytic activity and H2O2 production

by haemocytes derived from uninfected and T. regenti-infected R.
lagotis. Haemocyte phagocytic activity was determined by the

ability of these cells to internalise E. coli bioparticles (Figure 4A).

Comparisons made in a physiological context, which consider

activity per volume of haemolymph (200 ml), revealed that

phagocytosis by haemocytes from infected snails was not

significantly different from that of uninfected snails (Figure 4B).

However, when the phagocytic activity was compared taking into

account the different numbers of haemocytes in the extracted

haemolymph, with more haemocytes present as a result of parasite

infection, phagocytosis by infected snail haemocytes was reduced

significantly to approximately 50% of that of uninfected snails (p,

0.05; Figure 4B).

For H2O2 production we studied basal and PMA-stimulated

output by haemocytes from uninfected and infected snails

(Figures 5–6). Evaluation per volume of haemolymph (50 ml)

revealed that the basal output of H2O2 by haemocytes from

infected snails was similar to that of uninfected snails, despite the

infected snails possessing greater numbers of haemocytes/ml

Figure 1. Trichobilharzia regenti larvae within the tissue of Radix lagotis revealed by light microscopy between 1–92 h p.e.; Wright-
Giemsa stained sections. (A) Miracidium of T. regenti (a) containing germ cells (b) occurs within the snail tissue without haemocyte infiltration 1 h
p.e. (B) and (C) Haemocytes (c) are present in the vicinity of developing T. regenti mother sporocyst (a) 2 and 16 h p.e., respectively; germ cells (b) and
gland structure (d) of the parasite are visible. (D) The area around T. regenti mother sporocyst (a) contains no haemocytes 92 h p.e. Gland structure (d)
is located in the body of the parasite. Scale bar = 20 mm. The images shown are representative of the situation seen in all sections observed during
these experiments.
doi:10.1371/journal.pone.0111696.g001
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(Figure 5). In contrast, when the data were adjusted for haemocyte

number (50,000), the cells from uninfected snails produced

significantly more H2O2 than those from infected snails at each

time point after 20 min (p,0.05; Figure 5).

In the presence of 5 mM PMA (an activator of PKC) haemocyte

H2O2 production increased 270% and 240% when considering

haemolymph volume (50 ml) in uninfected and infected snails after

60 min, respectively (Figure 6); the difference between snail

groups was not statistically significant. In contrast, when consid-

ering haemocyte number (50,000) H2O2 production by haemo-

cytes from uninfected snails in the presence of PMA was

approximately 2-fold that of haemocytes from infected snails at

all time points studied after 20 min (p,0.01; Figure 6).

PKC and ERK activation in haemocytes from uninfected
and T. regenti-infected R. lagotis

Because signalling pathways are known to regulate haemocyte

defence responses such as phagocytosis and H2O2 output [7], [9–

12], and because these defence responses were supressed in R.
lagotis haemocytes as a result of T. regenti infection, we aimed to

determine PKC and ERK activation in haemocyte monolayers

derived from uninfected and infected R. lagotis. Western blotting

of haemocyte proteins with anti-phosphospecific PKC and ERK

antibodies, which detect only the active forms of these kinases in

snails [7], [8], [27], followed by densitometric analysis of

immunoreactive bands from several independent blots revealed

that PKC and ERK phosphorylation were reduced by 57% and

55%, respectively, in haemocytes from infected snails when

compared to those from uninfected snails (p,0.01; Figure 7A–

B). We reasoned, therefore that ERK expression might also be

suppressed. However, western blots performed to determine the

quantity of ERK in haemocytes using antibodies that detect ERK

irrespective of its phosphorylation state (Figure 7C) demonstrated

that mean levels of ERK were 24% higher in infected snails when

compared to uninfected ones, although this difference was not

statistically significant. Unfortunately, lack of a suitable anti-PKC

antibody for snails prevented evaluation of total PKC protein

levels.

Figure 2. Trichobilharzia regenti mother sporocysts within the
tissue of Radix lagotis 15 h p.e.; TEM images. (A) Mother sporocyst
of T. regenti (a) is surrounded by haemocytes with remarkable nuclei (b).
Phagosome (c) of one haemocyte with internalised microtubular
aggregates (d) is visible (B in detail). Another haemocyte (e) is located
near the parasite. Scale bar = 5 mm. (B) Microvilli (b) are present on the
surface of T. regenti mother sporocyst (a). Haemocyte adjacent to the
sporocyst contains phagosomes (c) with microtubular aggregates (d).
Scale bar = 1 mm.
doi:10.1371/journal.pone.0111696.g002

Figure 3. Number of haemocytes/ml of haemolymph of individual uninfected (black diamond) and Trichobilharzia regenti infected
(grey box) Radix lagotis. The numbers of haemocytes/ml from individual snails with different shell heights were enumerated using a Bürker
haemocytometer.
doi:10.1371/journal.pone.0111696.g003
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Figure 4. Phagocytosis of E. coli bioparticles by haemocytes from uninfected and Trichobilharzia regenti infected Radix lagotis.
Phagocytic activities were assessed by incubating E. coli bioparticles with haemocyte monolayers and assessing the relative fluorescence of
internalised particles after 2 h using a microplate reader. (A) The combined (phase-contrast and fluorescence) image of E. coli bioparticles (a) within a
haemocyte (b); scale bar = 10 mm. (B) Data were evaluated per volume of haemolymph (200 ml) and per number of haemocytes (50,000) (shown as
mean values 6 SEM; n = 7) with uninfected snails considered as having 100% activity. *p,0.05 when compared to uninfected snails (50,000
haemocytes); Wilcoxon test.
doi:10.1371/journal.pone.0111696.g004

Figure 5. Basal H2O2 production in haemocytes from uninfected and Trichobilharzia regenti infected Radix lagotis. H2O2 output by
haemocyte monolayers was detected by Amplex red and the intensity of fluorescence measured by microplate reader over 60 min. The mean relative
fluorescence values are shown (6 SEM; n = 7) and represent the increase in H2O2 production over time. Data were evaluated per volume of
haemolymph (50 ml) and per number of haemocytes (50,000). *p,0.05, **p,0.01, when compared to infected snails (50,000 haemocytes); two-
sample t-test or Wilcoxon test combined with Fishers’s combination test.
doi:10.1371/journal.pone.0111696.g005
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Effect of PKC and MEK inhibitors on phagocytosis and
H2O2 production

To investigate the possible role of PKC and ERK in the

regulation of phagocytosis by R. lagotis haemocytes, cells from

uninfected snails were incubated with the PKC or MEK inhibitors

GF109203X or U0126, respectively, compounds that have been

shown to decrease PKC or ERK phosphorylation (activation) in L.
stagnalis haemocytes [7], [27]. Phagocytosis was blocked in a

dose-dependent manner, with 1 mM and 10 mM GF109203X

significantly suppressing uptake of bioparticles by approximately

35% and 70%, respectively (p,0.01, p,0.001; Figure 8A). U0126

at 1 mM and 10 mM concentration significantly reduced phago-

cytic activity of haemocytes by approximately 33% and 67%,

respectively (p,0.01, p,0.001; Figure 8B).

Treatment of haemocytes from uninfected R. lagotis with 5 mM

PMA resulted in a 212% increase in H2O2 production after

60 min in contrast to an 80% increase in the absence of PMA;

thus at this time point PMA stimulated H2O2 output approxi-

mately 2.6-fold when compared to controls (p,0.001; Figure 9).

Next, the ability of PKC (GF109203X; 5 mM) and MEK (U0126;

5 mM) inhibitors to affect haemocyte H2O2 production was tested.

GF109203X substantially attenuated H2O2 release by PMA-

stimulated haemocytes when compared to haemocytes treated

with DMSO (vehicle) and PMA at all time points (p,0.01, p,

0.001; Figure 9), reducing H2O2 output to levels similar to those

seen under basal conditions. In addition, DMSO did not

significantly affect PMA-stimulated H2O2 production when

compared to that of cells treated with PMA only. U0126 also

significantly reduced PMA-stimulated H2O2 production by R.
lagotis haemocytes (Figure 10). After 60 min, the increase in H2O2

production as a result of PMA exposure was reduced by 37% (p,

0.001; Figure 10).

Discussion

Histological observation of T. regenti in R. lagotis
We evaluated by histology haemocyte migratory/encapsulation

responses triggered in R. lagotis by the bird schistosome, T.
regenti. The timing of this haemocyte response should be

interpreted with a tolerance of +5 h, because the snails were

exposed to T. regenti miracidia for 5 h, after which the specimens

were fixed at different time points between 1 and 92 h p.e. Taking

this into account, between 1 and 6 h p.e. the response varied

where some larvae were encapsulated by haemocytes while others

appeared without haemocytic infiltration. In the case of Biom-
phalaria alexandrina infected with S. mansoni, haemocytes were

also not observed around some miracidia while others underwent

encapsulation 6 h p.e. [28]. Haemocytes then surrounded

developing T. regenti sporocysts in our study between 7 and

21 h p.e., and their occurrence started to fluctuate at the latter

time points. This encapsulation, however, did not lead to killing of

the parasites that appeared to be morphologically intact. Similarly,

compatible S. mansoni larvae have also been seen encapsulated

but not destroyed by B. glabrata haemocytes in in vitro

experiments or by Biomphalaria tenagophila fibrous cells observed

in vivo [29–31]. Haemocytes of R. lagotis might be attracted

towards T. regenti by ciliary plates shed during miracidium-

mother sporocyst transformation [21]. A role of T. szidati ciliary

plates in activating L. stagnalis haemocytes has been previously

suggested [32], [33]. Furthermore, within haemocytes we observed

microtubular aggregates that likely corresponded to the remnants

of phagocytosed ciliary plates. Ciliary plates of S. mansoni
miracidia are also phagocytosed by B. glabrata haemocytes [34].

Then, up until 41 h p.e., the haemocytic response against the

developing T. regenti appeared to decline and no haemocytes were

observed in the proximity of larvae between 44 and 97 h p.e.

Haemocyte motility might be affected by parasite-derived

components such as ESPs, which in the case of E. paraensei repel

B. glabrata haemocytes [35]. Based on our observations, we

suggest that the developing sporocysts of T. regenti escaped the

cellular defence response of R. lagotis enabling successful parasite

development. However, it is also possible that not all larvae that

penetrated the snails were observed and some of these might have

been destroyed after encapsulation. Both normally developing and

encapsulated sporocysts of S. mansoni within B. glabrata have

previously been observed [36].

Interestingly, in our laboratory-reared T. regenti, approximately

90% of R. lagotis snails become infected with the parasite while

Figure 6. PMA-stimulated H2O2 production in haemocytes from uninfected and Trichobilharzia regenti infected Radix lagotis. H2O2

output by haemocyte monolayers treated with 5 mM PMA was detected by Amplex red and the intensity of fluorescence was measured by microplate
reader over 60 min. The mean relative fluorescence values are shown (6 SEM; n = 7) and represent the increase in H2O2 production over time. Data
were evaluated per volume of haemolymph (50 ml) and per number of haemocytes (50,000). **p,0.01, ***p,0.001, when compared to infected
snails (50,000 haemocytes); two-sample t-test or Wilcoxon test combined with Fishers’s combination test.
doi:10.1371/journal.pone.0111696.g006
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the remainder appear resistant (data not shown). This phenom-

enon, reduced compatibility, may be a consequence of long-term

passage of the parasite in laboratory conditions [37]. However,

reduced compatibility may already arise earlier as shown for the

first generation of offspring of B. alexandrina snails susceptible to

S. mansoni [38].

Quantities of circulating haemocytes from uninfected
and T. regenti-infected R. lagotis

Haemocyte numbers/ml haemolymph, phagocytic activity and

H2O2 production were compared between uninfected and infected

R. lagotis snails, with infected snails studied during the patent

period of infection by T. regenti. Correlation analysis revealed that

the levels of circulating haemocytes were not influenced by age

(shell height) of individual R. lagotis from both groups. In contrast,

older specimens of Lymnaea acuminata f. rufescens, Indoplanorbis
exustus and Ruditapes decussatus have been shown to possess

significantly higher haemocyte counts per volume of haemolymph

than the younger individuals [39], [40].

Despite variation in haemocyte concentration in uninfected and

infected R. lagotis, the infected snails had significantly more (1.8-

Figure 7. PKC and ERK phosphorylation and total ERK levels in
haemocytes from uninfected and Trichobilharzia regenti infected
Radix lagotis. Representative blots showing (A) PKC and (B) ERK
phosphorylation in adherent haemocytes from uninfected and infected
snails. (C) Levels of total ERK in uninfected and infected snails. Band
intensities were measured and the mean (6 SEM) haemocyte PKC and

ERK phosphorylation (n = 10) and total ERK levels (n = 5) calculated
(shown in the graphs) with uninfected values considered as 100%. **p,
0.01 when compared to haemocyte PKC and ERK phosphorylation levels
in uninfected snails; two-sample t-test.
doi:10.1371/journal.pone.0111696.g007

Figure 8. Effect of PKC (GF109203X) and MEK (U0126)
inhibitors on phagocytosis by haemocytes from uninfected
Radix lagotis. Haemocyte monolayers were pre-incubated with (A)
GF109203X, (B) U0126, or vehicle (DMSO; shown as controls) prior to
challenge with E. coli bioparticles. The intracellular fluorescence
resulting from phagocytosis was measured using a microplate reader
and mean (6 SEM; n = 7) levels of phagocytosis expressed in relation to
control (100%) values. **p,0.01, ***p,0.001, when compared to
control values; paired t-test.
doi:10.1371/journal.pone.0111696.g008
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fold) circulating haemocytes/ml haemolymph, when compared to

their uninfected counterparts. Similar differences in haemocyte

number were previously found between uninfected and H.
elongata-infected L. littorea [15]. Infection of B. glabrata with

E. liei or E. paraensei also results in increased numbers of

haemocytes in the circulation [41], [42]. On the other hand,

haemocyte concentrations appeared constant in L. stagnalis snails

infected with Diplostomum spathaceum [43], suggesting that

increased haemocyte number is not a general response of snails

to trematode infection.

Comparison of defence activities of haemocytes from
uninfected and T. regenti-infected R. lagotis and the
influence of PKC and ERK activities

In-vitro experiments with haemocytes from either uninfected or

T. regenti-infected R. lagotis were particularly challenging because

preparation of cell monolayers from haemolymph pools main-

tained on ice as done for L. stagnalis and B. glabrata [7], [17] was

intractable for R. lagotis. The majority of haemocytes clumped

during such manipulation and, therefore, aliquots of haemolymph

expelled during head-foot retraction were transferred directly from

the snails to the wells. Furthermore, variation in the numbers of

Figure 9. PMA-stimulated H2O2 production in haemocytes from uninfected Radix lagotis, and the effect of PKC inhibition on H2O2

production. H2O2 output by haemocyte monolayers in the presence of PMA (5 mM), GF109203X (5 mM) and PMA, DMSO (vehicle) and PMA, or SSS+
alone was detected by Amplex red and the intensity of fluorescence was measured by microplate reader over 60 min. The mean (6 SEM; n = 7)
relative fluorescence values shown represent the increase in H2O2 production over time in the various treatments. *p,0.05, **p,0.01, ***p,0.001,
for PMA values compared to basal production, and **p,0.01, ***p,0.001 for GF109203X+PMA compared to DMSO+PMA; paired t-test or paired-
samples Wilcoxon test combined with Fishers’s combination test.
doi:10.1371/journal.pone.0111696.g009

Figure 10. The effect of MEK inhibition on PMA-stimulated H2O2 production in haemocytes from uninfected Radix lagotis. H2O2

output by haemocyte monolayers in SSS+ alone, U0126 (5 mM) and PMA, or DMSO (vehicle) and PMA was detected by Amplex red and the intensity
of fluorescence was measured by microplate reader over 60 min. The mean (6 SEM; n = 3 for SSS+ otherwise n = 7) relative fluorescence values
shown represent the increase in H2O2 production over time in the various treatments. *p,0.05, **p,0.01 and ***p,0.001 for U0126+PMA compared
to DMSO+PMA; paired t-test or paired-samples Wilcoxon test combined with Fishers’s combination test.
doi:10.1371/journal.pone.0111696.g010
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circulating haemocytes in R. lagotis necessitated haemocyte

counting in each experiment. Wells with haemolymph from

infected snails usually contained almost twice the number of cells

in haemolymph from uninfected snails.

Phagocytosis of E. coli bioparticles, evaluated using equal

numbers of haemocytes (50,000), was approximately 50% lower in

infected snails when compared to that of uninfected snails,

although when considering haemolymph volume (200 ml) phago-

cytic activities were similar. Because bioparticles were used in

excess and were found free in the incubation medium after

exposure to haemocytes, we conclude that the phagocytic activity

of haemocytes was not limited by E. coli bioparticles availability,

but was supressed as a result of T. regenti infection. However, it

remains to be determined whether individual haemocytes exhib-

ited lower phagocytic activity generally or whether some

populations were more affected than others. The increased

concentration of haemocytes in infected snails which was 1.8-fold

higher in comparison to uninfected snails likely compensated for

the overall decreased phagocytic capacity.

Haemocytes obtained from B. glabrata or L. stagnalis infected

with E. paraensei or T. szidati, respectively, also possess reduced

phagocytic activity [13], [14], [44]. Such suppression was observed

several days or weeks after exposure to parasites. Furthermore,

phagocytic activity of haemocytes was reduced in haemocytes

exposed to parasite-derived ESPs [45], [46]. Although specific

bioactive molecules of T. regenti were not investigated in our

study, the phagocytic capacity of R. lagotis haemocytes might be

affected by products of daughter sporocysts or cercariae as these

stages persist in snails in the patent phase of infection.

The PKC and ERK pathways have been found to be essential

for efficient phagocytosis by haemocytes of L. stagnalis, B.
glabrata or Mytilus galloprovincialis [7], [47], [48]. We therefore

explored the possible regulatory role of PKC and ERK in

phagocytosis by R. lagotis haemocytes. Inhibitors of PKC

(GF109203X) and MEK (U0126) significantly blocked haemocyte

phagocytic activity in a dose-dependent manner. At 1 mM and

10 mM, GF109203X decreased phagocytosis by 35% and 70%

whereas U0126 by 33% and 67%, respectively. This supports the

involvement of PKC and ERK in phagocytosis of E. coli
bioparticles by R. lagotis haemocytes. Furthermore, levels of

PKC and ERK phosphorylation (activation) were 57% and 55%

lower, respectively, in haemocytes from infected snails compared

to uninfected snails following adhesion. Thus, the reduced

phagocytic activity of haemocytes from infected snails might be

caused (at least partly) by supressed PKC and ERK activation in

these cells. Because the level of total (phosphorylated and non-

phosphorylated) ERK was not reduced in these cells it is possible

that the expression of upstream signalling elements might be

suppressed; these could include integrin which is known to activate

ERK and to be important in cell adhesion [49], [50]. The

expression of PKC protein was not studied in the current work

since available antibodies are generally ineffective at recognizing

PKCs in snail haemocytes (unpublished results).

Infected and uninfected R. lagotis haemocytes were further

compared in their capacity to generate H2O2. Amplex red utilized

in our study was previously used for monitoring H2O2 production

by snail haemocytes [9], [24]. Basal and PMA-stimulated H2O2

production did not differ significantly between uninfected and

infected snails when considering only the volume of haemolymph

(50 ml). On the other hand, basal H2O2 production calculated per

number of haemocytes (50,000) was significantly different, with

haemocytes from uninfected snails producing more H2O2 as early

as 20 min. Similarly, PMA-stimulated H2O2 production by

haemocytes from uninfected snails increased significantly with

time from 20 min, being approximately 2-fold higher after 60 min

when compared to that of haemocytes from infected snails. The

reduced capacity of haemocytes from infected snails to generate

H2O2 might be important for T. regenti survival, as H2O2 was

previously shown to be an important ROS involved in in-vitro

killing of S. mansoni sporocysts [4]. In L. littorea, haemocytes from

snails infected with H. elongata produce 2-fold less superoxide

[15], a precursor of H2O2 [4], [51]. As with phagocytosis, it is

possible that R. lagotis compensate for decreased H2O2 generation

by haemocytes by increasing their number in the circulation.

Nevertheless, whether all haemocytes or their proportion were

inhibited remains unknown as well as components of T. regenti
responsible for such alteration. In B. glabrata, PMA-stimulated

production of H2O2 was significantly reduced when haemocytes

were simultaneously exposed to PMA and ESPs of S. mansoni
[10].

As PMA is an activator of PKC, a role of this kinase in the

regulation of H2O2 production by haemocytes from uninfected R.
lagotis snails was further investigated; participation of ERK

signalling in this process using the MEK inhibitor (U0126) was

also explored. Haemocytes exposed to GF109203X displayed

substantially reduced PMA-stimulated H2O2 production that was

similar to levels comparable with basal (unstimulated) H2O2

output. U0126 also significantly affected PMA-stimulated H2O2

output by snail haemocytes, although at less extent than

GF109203X. Thus, PKC and ERK appear to play a role in

regulating H2O2 production by R. lagotis haemocytes. PKC and

ERK signalling were previously found to be crucial in regulation of

H2O2 production by haemocytes of B. glabrata [10], [24] and L.
stagnalis [9]. As already mentioned for haemocytes of infected

snails, basal levels of PKC and ERK phosphorylation (activation)

were significantly lower than in haemocytes of uninfected snails;

lower H2O2 production by haemocytes from infected snails could

therefore be the result of lower PKC and ERK activities in

response to the parasite. Our study and a previous report

suggesting that ESPs may attenuate PKC and ERK phosphory-

lation in snail haemocytes [17] support the notion that parasites

modulate haemocyte defence pathways at the level of cell

signalling [16] and possibly at multiple phases during develop-

ment.

The present paper provides the first insights into the immuno-

biology of the snail R. lagotis, an important intermediate host of

the nasal bird schistosome T. regenti. Histological study of the R.
lagotis response against T. regenti showed that haemocytes are

able to accumulate near the invading larvae, but they do not

destroy the parasite. This enables further development of

trematode larvae, leading to patent phase of T. regenti infection

in snails. The phagocytic activity and capacity for H2O2

generation were suppressed in haemocytes of infected snails.

Importantly, PKC and ERK that appear to regulate such

responses in R. lagotis were also shown to be less active in

haemocytes from infected snails. It is hypothesized that attenua-

tion of both responses in haemocytes is partially compensated by

increased concentration of haemocytes in the circulation of

infected snails, enabling the snail to fend off other pathogens such

as bacteria. Further research is needed to understand how this

impacts survival and continued cercarial production of T. regenti
in R. lagotis, and to determine the parasite-derived molecules

responsible for alterations in R. lagotis haemocyte responses.
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a b s t r a c t

The discovery that mammalian neutrophils generate extracellular chromatin fibers that entrap/kill
bacteria supported a new paradigm for innate immunity in animals. Similar findings in other models
across diverse taxa have led to the hypothesis that the phenomenon is ancient and evolutionary
conserved. Here, using a variety of synthetic (e.g. peptidoglycan) and biological (e.g. trematode larvae)
components to investigate extracellular trap-like (ET-like) fiber production in vitro by haemocytes of
Lymnaea stagnalis, Radix lagotis and Planorbarius corneus snails, ET-like fibers were rarely observed. We
suggest, therefore, that ET-like fibers play a marginal role in defence of these snail species and thus the
fiber production may not be a critical process underpinning immunity in all invertebrate species.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Reticulated DNA fibers produced by neutrophils (neutrophil
extracellular traps; NETs), eosinophils (extracellular traps; ETs) and
other cells of the vertebrate innate immune system are considered
important structures that facilitate the elimination of bacteria and
eukaryotic unicellular/multicellular parasites extracellularly (von
K€ockritz-Blickwede and Nizet, 2009; Zawrotniak and Rapala-
Kozik, 2013; Hermosilla et al., 2014). In invertebrates, immunity
typically relies on haemocytes that cooperate with humoral
recognition factors such as lectins and fibrinogen-related proteins
to deliver the defence response. While extracellular nucleic acids
can bolster immunity as shown in the greater wax moth Galleria
mellonella (Altincicek et al., 2008), ET-like fibers resembling NETs of
vertebrates have recently also been found to mediate defence of
Litopenaeus vannamei (Ng et al., 2013) and Carcinus maenas (Robb
et al., 2014) haemocytes. Interestingly, mesogleal cells of the sea

anemone Actinia equina (Robb et al., 2014), and sentinel cells of the
social amoeba Dictyostelium discoideum (Zhang et al., 2016) have
also been shown to release DNA fibers extracellularly. In molluscs,
ET-like fibers have been reported in bivalves (Mytilus edulis, Cras-
sostrea gigas) (Robb et al., 2014; Poirier et al., 2014), and gastropods
(Arion lusitanicus, Limax maximus and Achatina fulica) in which the
fibers entrapped metastrongyloid larvae (Lange et al., 2017). In the
latter case, different types of ET-like fibers (i.e. aggregated, spread
and diffuse) were observed, with histones and myeloperoxidase as
fiber constituents (Lange et al., 2017).

In the current study, we employed haemocytes of Lymnaea
stagnalis and two other species of freshwater gastropod snails,
Radix lagotis and Planorbarius corneus to elucidate ET-like fiber
production in snails that serve as intermediate hosts of trematode
larvae. For comparative purposes, we used Mytilus edulis haemo-
cytes that are known to release ET-like fibers.

2. Materials and methods

2.1. ET-like fiber release by Mytilus edulis haemocytes

Haemocytes of M. edulis were utilized for initial experiments.
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Haemolymph was extracted and haemocyte monolayers were
prepared as previously described (Robb et al., 2014) in 96-well
tissue culture plates (Nunc) employing 250 ml haemolymph/well
diluted (1:1) with 0.05 M Tris-HCl buffer, pH 7.6, supplemented
with 2% glucose, 2% NaCl, 0.5% EDTA. Haemocytes were incubated
with 20 mM phorbol 12-myristate 13-acetate (PMA, Sigma-Aldrich)
at 10 �C for 48 h, stained with 1 mM Sytox green (Thermo Fisher
Scientific) that effectively binds DNA of dead cells (Thakur et al.,
2015) and examined for ET-like fiber release under a fluorescence
microscope (Olympus IX71).

2.2. Snails and haemocytes

Laboratory-reared L. stagnalis and R. lagotis were maintained at
19e22 �C in aerated aquaria, and fed fresh lettuce ad libitum. Pla-
norbarius corneus snails were obtained from a local pond (Prague)
and examined for cercarial shedding; infected snails were excluded
from experiments. Haemolymph from snails was extracted ac-
cording to Sminia (1972). Samples from L. stagnalis and P. corneus
were pooled on ice, diluted 2:1 with sterile snail saline (SSS; Adema
et al., 1991) and 250 ml transferred into individual wells of a 96-well
plate. Experiments with P. corneuswere also conducted in Chernin's
balanced salt solution (CBSS; Chernin, 1963). Haemolymph from R.
lagotiswas handled as described previously (Sk�ala et al., 2014). The
haemocyte number per well was approx. 2.8 � 105 for L. stagnalis,
6� 104 for R. lagotis and 1.2� 105 for P. corneus, enumerated using a
Bürker haemocytometer.

2.3. Preparation of parasite material

Miracidia of Trichobilharzia regenti were obtained via the labo-
ratory life cycle according to Hor�ak et al. (1998), fixed in 2% (v/v)
paraformaldehyde for 30 min and free aldehyde groups blocked in
1% glycine at 4 �C overnight (Zahoor et al., 2008). The larvae were
then washed twice with SSS and stored at �20 �C. Homogenised
miracidia were prepared by sonicating miracidia for three cycles
(7W, 20 s each, Vibracell-72405 100-W ultrasonicator, Bioblock
Scientific, France) in SSS followed by determination of protein
concentration using Quant-iT Protein Assay Kit (Invitrogen).

2.4. Haemocyte exposure

Lymnaea stagnalis haemocyte monolayers were treated with SSS
containing peptidoglycan (PGN; 0.1, 1.0 and 10.0 mg/ml), E. coli
lipopolysaccharide serotype 0111:B4 (LPS; 0.1, 1.0 and 10.0 mg/ml),
PMA (0.1, 1.0, 10.0 mM), D-galactose or L-fucose (200, 400, 800 nM, 1
and 10 mM), D-galactose-L-fucose in combination (800 nM of each in
SSS) (all purchased from Sigma-Aldrich), live/heat-killed Staphylo-
coccus saprophyticus at ~10, ~100 and ~1000 bacteria/haemocyte, or
miracidial homogenate (1 or 10 mg/ml). All incubations were per-
formed at room temperature (e.g. Plows et al., 2005) for 3 h and
24 h. Three independent experiments were performed with one
replicate for each condition/duration. The haemocytes were then
stained with 1 mM Sytox Green in SSS for 20 min and the entire cell
populations examined visually under the fluorescence microscope;
haemocytes producing ET-like fibers were enumerated.

For intact parasite exposure, 200 miracidia in 100 ml SSS were
transferred to individual wells of a chamber slide (Lab-Tek); 200 ml
complete L. stagnalis haemolymph were added and after 1 h incu-
bation, 100 ml supernatant were replaced by 100 ml fresh haemo-
lymph. This step was done to enhance the continuous migration of
haemocytes towards the parasite. Incubation times/Sytox green
staining were as above; the experiments were performed twice
independently. Finally, specimens were embedded in Vectashield
(Vector Laboratories), examined using a Zeiss LSM880 laser

scanning confocal microscope, and images analysed using FIJI Im-
age J (Schindelin et al., 2012).

Haemocyte monolayers obtained from R. lagotis and P. corneus
were incubated in SSS containing PMA (0.1, 1, 5, 10 mM), LPS (0.1, 1.0,
10.0 mg/ml), or heat-killed S. saprophyticus at ~100 bacteria/
haemocyte.

3. Results and discussion

Initial experiments were performed with haemocytes of M.
edulis, previously shown to produce ET-like fibers (Robb et al.,
2014), to demonstrate fiber release in our laboratory. Similar to
Robb et al. (2014), PMA clearly induced ET-like fiber release (Fig. 1A
and B in Supplementary Materials) that was ETotic.

Next, snail haemocytes were exposed to PMA or LPS, com-
pounds that were shown previously to stimulate effective NETs/ET-
like fiber formation (von K€ockritz-Blickwede and Nizet, 2009; Robb
et al., 2014; Ng et al., 2013). Other components (e.g. L-fucose/D-
galactose) were employed because they are linked to snail-
trematode interactions (Plows et al., 2005).

The screening assays revealed that L. stagnalis, R. lagotis and P.
corneus haemocytes produced only low numbers of extracellular
DNA fibers (Table 1) and, therefore, other components associated
with ET-like fibers such as histones (Ng et al., 2013; Robb et al.,
2014) were impossible to investigate. However, given that occa-
sional DNA fibers were observed in all species studied (Fig. 1) we
define the fibers as ‘ET-like’ as in other invertebrates (Ng et al.,
2013; Robb et al., 2014; Poirier et al., 2014; Lange et al., 2017).

That compounds such as PGN or PMA failed to elicit robust ET-
like fiber production in L. stagnalis was surprising (Table 1). Simi-
larly, PMA did not stimulate ET-like fiber formation by C. gigas
haemocytes (Poirier et al., 2014). Exposure of haemocytes to 20 mM
PMA in SSS or in modified SSS (SSS supplemented with D-trehalose
(1 g/L), D-glucose (1 g/L) (Sigma-Aldrich) and antibiotics (peni-
cillin/streptomycin; Lonza)), enabling longer-term L. stagnalis
haemocyte survival for 48 h also did not evoke haemocyte ETotic
responses (data not shown). On the other hand, M. edulis haemo-
cytes produced fibers when exposed to 50 mM PMA for 48 h (Robb
et al., 2014). In R. lagotis, haemocytes exposed to PMA produced
only few ET-like fibers (Table 1, Fig. 1H). This finding was unex-
pected because PMA induces the respiratory burst in R. lagotis
haemocytes (Sk�ala et al., 2014), a reaction considered essential for
ET-like fiber formation (Robb et al., 2014; Poirier et al., 2014).

Although LPS significantly induced NETs/ET-like fiber formation
in mammalian neutrophils or shrimp haemocytes (von K€ockritz-
Blickwede and Nizet, 2009; Ng et al., 2013), only two ET-like fi-
bers were produced by L. stagnalis haemocytes (Table 1, Fig. 1A).
Additionally, no ET-like fibers were observed when these haemo-
cytes were treated with 25 mg/ml LPS in modified SSS for 24 h, and
the protocol of Brinkmann et al. (2010) was used to visualise the
fibers (data not shown). With P. corneus, one ET-like fiber was
observed when haemocytes were exposed to 10 mg/ml LPS in CBSS
for 24 h (Fig. 1F) whereas nine fibers were observed in SSS (Table 1).
Thus, these different culture media did not seem to largely influ-
ence the outcome with respect to ET-like fiber formation.

PMA and LPS activate protein kinase C (PKC) in L. stagnalis
haemocytes (Walker and Plows, 2003; Wright et al., 2006), which
stimulates NO production (Wright et al., 2006). Such responses
might, at least in part, explain the inability of PMA and LPS to
effectively promote ET-like fiber production. However, D-galactose
and L-fucose attenuate PKC and extracellular-signal regulated ki-
nase (ERK) activation in L. stagnalis haemocytes, with subsequent
suppression of phagocytosis (Plows et al., 2005). These sugars are
present on the surface of the helminth T. regenti (Bla�zov�a and
Hor�ak, 2005; Chanov�a et al., 2009), an incompatible parasite that
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penetrates but does not survive in L. stagnalis. However, exposure
to these sugars did not affect ET-like fiber production (Table 1).

As the soluble compounds did not substantially stimulate ET-
like fiber formation by the snail haemocytes, we tested pathogen-
haemocyte combinations. Heat-killed S. saprophyticus bacteria
were phagocytosed by the snail haemocytes (Fig. 1C in Supple-
mentary Materials) whereas several ET-like fibers were produced
with unclear function (Table 1); similar results were also obtained
with live S. saprophyticus (data not shown). In contrast, ET-like fi-
bers produced by C. gigas haemocytes were shown to entrap Lis-
tonella anguillarum (Poirier et al., 2014), whereas fibers produced by
L. vannamei trapped and killed E. coli (Ng et al., 2013).

Experiments using fixed T. regenti miracidia and whole snail
haemolymph showed that haemocytes encapsulate the parasite
(Fig. 1D-E). Moreover, confocal microscopy revealed that several
haemocytes expelled ET-like fibers against T. regenti during 3 h
exposure (Fig. 1DeE). In gastropods, haemocyte derived ET-like fi-
bers were demonstrated previously in A. fulica, which trapped
viable Angiostrongylus vasorum larvae in vitro (Lange et al., 2017).

Release of ET-like structures was also observed in vivo in the mu-
cous extrapallial space of L. maximus in response to invading A.
vasorum (Lange et al., 2017). However, in our study, only a few L.
stagnalis haemocytes produced ET-like fibers against T. regenti
(Fig. 1DeE) and thus the fibers are unlikely the main defence tool
for parasite elimination. Although attempted, evaluation of T.
regenti and L. stagnalis interactions in snail histological sections was
technically demanding (results not shown) and, therefore, the
extent of ET-like fiber production in vivo remains unknown. Finally,
homogenised T. regenti miracidia did not stimulate significant ET-
like fiber production (Table 1, Fig. 1BeC).

To conclude, we examined the ability of several compounds and
pathogens to elicit ET-like fiber production in the freshwater snails
L. stagnalis, R. lagotis and P. corneus in vitro. ET-like fiber production
has previously been reported in several invertebrates including
molluscs. Together with reports on vertebrates, it is postulated that
NETs/ET-like fiber release is a widely shared and effective defence
mechanism among animals. The findings presented here highlight
variation in ET-like fiber-based innate immune mechanisms in

Fig. 1. Extracellular trap-like (ET-like) fiber production by haemocytes of Lymnaea stagnalis (AeE), Planorbarius corneus (FeG) and Radix lagotis (H). Green fluorescence represents
DNA positive material - cell nuclei and ET-like fibers (arrows). (A) Low magnification of haemocyte monolayer shows that one cell produces ET-like fiber when treated with LPS
(1 mg/ml) for 3 h. (B, C) ET-like fibers produced after the treatment of cells with homogenised Trichobilharzia regentimiracidia (10 mg/ml) for 3 h (B) and 24 h (C). (D, E) Encapsulation
of T. regentimiracidia (arrowheads) by snail haemocytes, and expulsion of ET-like fibers (arrows) against the parasite during 3 h confrontation; detailed view in the insets. (F) ET-like
fiber produced after the treatment of haemocytes with LPS (10 mg/ml) in CBSS for 24 h. (G) ET-like fiber formed in the presence of Staphylococcus saprophyticus for 3 h. (H) ET-like
fiber produced after the treatment of cells with PMA (5 mM) for 3 h. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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invertebrates, since no significant ET-like fiber production was
achieved with the investigated haemocytes following exposure to a
wide range of stimulants used in other studies. For further confir-
mation, in vivo studies are required.

Funding

The study was financially supported by the Charles University
research programmes UNCE-204017, SVV 244-260432/2017, PRO-
GRES Q43 and by a research grant of the Malacological Society of
London to VS.

Acknowledgments

We would like to thank Veronika Siegelov�a (Charles University)
for laboratory maintenance of snails and parasites, and Veronika
Harsov�a (Charles University) for excellent technical support. We
also would like to thank Dr. Petr Petr�a�s (The National Institute of
Public Health) for kind provision of Staphylococcus saprophyticus.

Appendix A. Supplementary data

Supplementary data related to this article can be found at
https://doi.org/10.1016/j.dci.2017.10.011.

References

Adema, C.M., van Deutekom-Mulder, E.C., van der Knaap, W.P., Meuleman, E.A.,
Sminia, T., 1991. Generation of oxygen radicals in hemocytes of the snail

Lymnaea stagnalis in relation to the rate of phagocytosis. Dev. Comp. Immunol.
https://doi.org/10.1016/0145-305x(91)90043-X.

Altincicek, B., St€otzel, S., Wygrecka, M., Preissner, K.T., Vilcinskas, A., 2008. Host-
derived extracellular nucleic acids enhance innate immune responses, induce
coagulation, and prolong survival upon infection in insects. J. Immunol. https://
doi.org/10.4049/jimmunol.181.4.2705.

Bla�zov�a, K., Hor�ak, P., 2005. Trichobilharzia regenti: The developmental differences
in natural and abnormal hosts. Parasitol. Int. https://doi.org/10.1016/j.parint.
2005.03.003.

Brinkmann, V., Laube, B., Abed, U.A., Goosmann, C., Zychlinsky, A., 2010. Neutrophil
extracellular traps: how to generate and visualize them. J. Vis. Exp. https://doi.
org/10.3791/1724.

Chanov�a, M., Bulantov�a, J., M�aslo, P., Hor�ak, P., 2009. In vitro cultivation of early
schistosomula of nasal and visceral bird schistosomes (Trichobilharzia spp.,
Schistosomatidae). Parasitol. Res. https://doi.org/10.1007/s00436-009-1343-y.

Chernin, E., 1963. Observations on hearts explanted in vitro from the snail Aus-
tralorbis glabratus. J. Parasitol. https://doi.org/10.2307/3275797.

Hermosilla, C., Caro, T.M., Silva, L.M., Ruiz, A., Taubert, A., 2014. The intriguing host
innate immune response: novel anti-parasitic defence by neutrophil extracel-
lular traps. Parasitol. https://doi.org/10.1017/S0031182014000316.

Hor�ak, P., Kol�a�rov�a, L., Dvo�r�ak, J., 1998. Trichobilharzia regenti n. sp. (Schistosoma-
tidae, Bilharziellinae), a new nasal schistosome from Europe. Parasite. https://
doi.org/10.1051/parasite/1998054349.

Lange, M.K., Penagos-Tabares, F., Mu~noz-Caro, T., G€artner, U., Mejer, H., Schaper, R.,
Hermosilla, C., Taubert, A., 2017. Gastropod-derived haemocyte extracellular
traps entrap metastrongyloid larval stages of Angiostrongylus vasorum, Aelur-
ostrongylus abstrusus and Troglostrongylus brevior. Parasite Vector. https://doi.
org/10.1186/s13071-016-1961-z.

Ng, T.H., Chang, S.H., Wu, M.H., Wang, H.C., 2013. Shrimp hemocytes release
extracellular traps that kill bacteria. Dev. Comp. Immunol. https://doi.org/10.
1016/j.dci.2013.06.014.

Plows, L.D., Cook, R.T., Davies, A.J., Walker, A.J., 2005. Carbohydrates that mimic
schistosome surface coat components affect ERK and PKC signalling in Lymnaea
stagnalis haemocytes. Int. J. Parasitol. https://doi.org/10.1016/j.ijpara.2004.11.
012.

Poirier, A.C., Schmitt, P., Rosa, R.D., Vanhove, A.S., Kieffer-Jaquinod, S., Rubio, T.P.,
Charri�ere, G.M., Destoumieux-Garz�on, D., 2014. Antimicrobial histones and DNA

Table 1
An overview of compounds/pathogens and conditions used to stimulate extracellular trap-like fiber production by haemocytes of the freshwater snail species Lymnaea
stagnalis, Radix lagotis and Planorbarius corneus.

species compound/pathogen in SSS buffer condition duration (h) no. of ET-like fibers observed

Lymnaea stagnalis

phorbol 12-myristate 13-acetate 0, 0.1, 1, 10 (mM)
3 0, 0, 0, 0

24 0, 0, 0, 0

lipopolysaccharide 0, 0.1, 1, 10 (mg/ml)
3 0, 1, 2, 2

24 0, 1, 0, 0

peptidoglycan 0, 0.1, 1, 10 (mg/ml)
3 0, 6, 7, 4

24 1, 1, 6, 3

D-galactose

0, 200, 400, 800 (nM); 1, 10 (mM)

3 2, 3, 4, 7; 0, 0

24 2, 1, 8, 5; 0, 0

L-fucose
3 2, 5, 0, 1; 0, 0

24 2, 1, 1, 2; 0, 0

D-galactose/L-fucose 0, 800/800 (nM)
3 2, 6

24 2, 0

S. saprophyticus 0, 10, 100, 1000 bacteria/haemocyte
3 0, 0, 0, 0

24 0, 4, 0, 0

homogenised T. regenti miracidia 0, 1, 10 (mg/ml)
3 1, 6, 7

24 0, 3, 6

Radix lagotis

phorbol 12-myristate 13-acetate 0, 0.1, 1, 5, 10 (mM)
3 2, 1, 2, 3, 3

24 2, 0, 0, 0, 0

S. saprophyticus 0, 100 bacteria/haemocyte
3 2, 0

24 0, 0

Planorbarius corneus

lipopolysaccharide 0, 0.1, 1, 10 (mg/ml)
3 0, 9, 0, 0

24 0, 0, 0, 0

S. saprophyticus 0, 100 bacteria/haemocyte
3 0, 1

24 1, 0

V. Sk�ala et al. / Developmental and Comparative Immunology 79 (2018) 137e141140

https://doi.org/10.1016/j.dci.2017.10.011
https://doi.org/10.1016/0145-305x(91)90043-X
https://doi.org/10.4049/jimmunol.181.4.2705
https://doi.org/10.4049/jimmunol.181.4.2705
https://doi.org/10.1016/j.parint.2005.03.003
https://doi.org/10.1016/j.parint.2005.03.003
https://doi.org/10.3791/1724
https://doi.org/10.3791/1724
https://doi.org/10.1007/s00436-009-1343-y
https://doi.org/10.2307/3275797
https://doi.org/10.1017/S0031182014000316
https://doi.org/10.1051/parasite/1998054349
https://doi.org/10.1051/parasite/1998054349
https://doi.org/10.1186/s13071-016-1961-z
https://doi.org/10.1186/s13071-016-1961-z
https://doi.org/10.1016/j.dci.2013.06.014
https://doi.org/10.1016/j.dci.2013.06.014
https://doi.org/10.1016/j.ijpara.2004.11.012
https://doi.org/10.1016/j.ijpara.2004.11.012


traps in invertebrate immunity evidences in crassostrea gigas. J. Biol. Chem.
https://doi.org/10.1074/jbc.M114.576546.

Robb, C.T., Dyrynda, E.A., Gray, R.D., Rossi, A.G., Smith, V.J., 2014. Invertebrate
extracellular phagocyte traps show that chromatin is an ancient defence
weapon. Nat. Commun. https://doi.org/10.1038/ncomms5627.

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T.,
Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.Y., White, D.J.,
Hartenstein, V., Eliceiri, K., Tomancak, P., Cardona, A., 2012. Fiji: an open-source
platform for biological-image analysis. Nat. Met. https://doi.org/10.1038/nmeth.
2019.

Sk�ala, V., �Cerníkov�a, A., Jindrov�a, Z., Ka�sný, M., Vostrý, M., Walker, A.J., Hor�ak, P.,
2014. Influence of Trichobilharzia regenti (Digenea: Schistosomatidae) on the
defence activity of Radix lagotis (Lymnaeidae) haemocytes. PLoS One. https://
doi.org/10.1371/journal.pone.0111696.

Sminia, T., 1972. Structure and function of blood and connective tissue cells of the
fresh water pulmonate Lymnaea stagnalis studied by electron microscopy and
enzyme histochemistry. Z. Zellforsch. Mik. An. https://doi.org/10.1007/
BF00307004.

Thakur, S., Cattoni, D.I., N€ollmann, M., 2015. The fluorescence properties and
binding mechanism of SYTOX green, a bright, low photo-damage DNA

intercalating agent. Eur. Biophys. J. https://doi.org/10.1007/s00249-015-1027-8.
von K€ockritz-Blickwede, M., Nizet, V., 2009. Innate immunity turned inside-out:

antimicrobial defense by phagocyte extracellular traps. J. Mol. Med. https://
doi.org/10.1007/s00109-009-0481-0.

Walker, A.J., Plows, L.D., 2003. Bacterial lipopolysaccharide modulates protein ki-
nase C signalling in Lymnaea stagnalis haemocytes. Biol. Cell. https://doi.org/10.
1016/j.biolcel.2003.09.001.

Wright, B., Lacchini, A.H., Davies, A.J., Walker, A.J., 2006. Regulation of nitric oxide
production in snail (Lymnaea stagnalis) defence cells: a role for PKC and ERK
signalling pathways. Biol. Cell. https://doi.org/10.1042/BC20050066.

Zahoor, Z., Davies, A.J., Kirk, R.S., Rollinson, D., Walker, A.J., 2008. Disruption of ERK
signalling in Biomphalaria glabrata defence cells by Schistosoma mansoni: im-
plications for parasite survival in the snail host. Dev. Comp. Immunol. https://
doi.org/10.1016/j.dci.2008.05.014.

Zawrotniak, M., Rapala-Kozik, M., 2013. Neutrophil extracellular traps (NETs)-for-
mation and implications. Acta Biochim. Pol. 60, 277e284.

Zhang, X., Zhuchenko, O., Kuspa, A., Soldati, T., 2016. Social amoebae trap and kill
bacteria by casting DNA nets. Nat. Commun. https://doi.org/10.1038/
ncomms10938.

V. Sk�ala et al. / Developmental and Comparative Immunology 79 (2018) 137e141 141

https://doi.org/10.1074/jbc.M114.576546
https://doi.org/10.1038/ncomms5627
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1371/journal.pone.0111696
https://doi.org/10.1371/journal.pone.0111696
https://doi.org/10.1007/BF00307004
https://doi.org/10.1007/BF00307004
https://doi.org/10.1007/s00249-015-1027-8
https://doi.org/10.1007/s00109-009-0481-0
https://doi.org/10.1007/s00109-009-0481-0
https://doi.org/10.1016/j.biolcel.2003.09.001
https://doi.org/10.1016/j.biolcel.2003.09.001
https://doi.org/10.1042/BC20050066
https://doi.org/10.1016/j.dci.2008.05.014
https://doi.org/10.1016/j.dci.2008.05.014
http://refhub.elsevier.com/S0145-305X(17)30370-1/sref22
http://refhub.elsevier.com/S0145-305X(17)30370-1/sref22
http://refhub.elsevier.com/S0145-305X(17)30370-1/sref22
https://doi.org/10.1038/ncomms10938
https://doi.org/10.1038/ncomms10938


24 
 

Conclusions 

The review of the literature revealed that the immune interactions between 

T. regenti and compatible/incompatible snail hosts have not previously been studied. 

Therefore, the results presented in the thesis provide the first insight into the immune 

reactions of snails against T. regenti and provide an important contribution to knowledge 

regarding compatibility/incompatibility in snail-schistosome interactions. 

 

 

The most significant findings: 

• Most studies on bird schistosome-snail intermediate host relationships have focused on 

Trichobilharzia szidati-Lymnaea stagnalis. In L. stagnalis, T. szidati interferes with the 

immune system or metabolism in order to ensure its survival and reproduction. 

 

• Penetration of T. regenti into compatible R. lagotis snails activates haemocytes that migrate 

and aggregate near the parasite. Failure of haemocytes to eliminate T. regenti enables parasite 

development to the cercarial stage in the patent phase of infection.    

 

• Modulation of R. lagotis haemocyte activities, as demonstrated for phagocytosis and 

hydrogen peroxide production, might be important for the continuous production and/or 

release of infective cercariae. 

 

• Activation of cellular signalling cascades is important for defence activities of R. lagotis 

haemocytes. Attenuation of cell signalling in snails during the patent phase of infection by 

T. regenti might be responsible for immunomodulation.  
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• Haemocytes of incompatible L. stagnalis snails encapsulate T. regenti miracidia and produce 

a few extracellular trap-like (ET-like) fibers; formation of ET-like fibers represents a novel 

type of immune response.  

 

•ET-like fibers are probably not crucial for T. regenti elimination by L. stagnalis haemocytes.  

 

• Comparatively, R. lagotis and P. corneus haemocytes produce a low number of ET-like 

fibers and thus these structures are likely not always pivotal in the defence of invertebrates.  
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