Abstract

This thesis is focused on the study of glycosphingolipids in the rat liver in different

types of cholestasis and the effect of oxidative stress on changes in the composition and

localization of gangliosides.

First, it was necessary to optimize the immunochemical detection of

glycosphingolipids. GM1 ganglioside was selected as a representative of a large glycolipid

family. We found that minimum water content in the fixing solution was a key condition for

fixation of histological sections. Optimized method of GM1 detection was subsequently used

in in vivo experiments.

We have demonstrated that estrogen-induced cholestasis characterized by high

concentrations of bile acids and increased oxidative stress caused changes in the synthesis and

distribution of liver gangliosides. HMOX induction is associated with a reduction in oxidative

stress level and accompanied by normalization in GSL content.

In experiments with obstructive cholestasis, we found that changes in the distribution

and synthesis of gangliosides were not strictly specific to a particular type of cholestasis. We

assume that it represents a general mechanism of hepatoprotection. We also confirmed the

important role of bilirubin, product of HMOX reaction, in protection of hepatocytes against

oxidative damage caused by high concentrations of bile acids in obstructive cholestasis.

The results of the thesis demonstrate that accumulated bile acids and increased

oxidative stress in the liver result in changes in the synthesis and distribution of

glycosphingolipids. These molecules play important role in hepatoprotection due to their

physical-chemical properties. HMOX induction may reduce oxidative stress and affect

metabolism of gangliosides.

Key words: GM1 ganglioside, Heme oxygenase, Cholestasis, Oxidative stress