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Abstract 

anks to their unique properties and high biocompatibilities, fluorescent 

nanodiamonds are promising representatives of modern carbon nanomaterials 

with a broad range of applications. Nevertheless, their wider use is limited 

because of weak fluorescence intensity and low colloidal stability in the 

biological environment. e optimization of treatment procedures and 

development of new suitable surface designs is therefore critically needed. 

In this study, several key steps for fluorescent nanodiamond treatment have 

been optimized, leading to both a substantial increase in fluorescence intensity 

and to significantly lower surface damage caused by graphitization. Further,  

a new high-throughput irradiation technique was developed. e influence of 

surface chemistry on the fluorescence parameters was studied using partial 

fluorination of the functional groups on the nanodiamond surface. A novel 

method which significantly affects the interaction of nanodiamonds with 

biological systems by increasing of the homogeneity and circularity was 

developed. e potential of nanodiamonds for future medical and biological 

research was demonstrated on particles with complex surface architectures that 

enabled targeting and therapy of tumor cells. Moreover, a strong and highly 

selective affinity of fibroblast growth factors to diamond surfaces was discovered 

and demonstrated using both in vitro and ex vivo models. 

  



 

 

 

Abstrakt 

 
Díky svým unikátním vlastnostem a vysoké biokompatibilitě patří 

fluorescenční nanodiamanty mezi slibné zástupce uhlíkatých nanomateriálů 

s potenciálně širokým spektrem uplatnění v mnoha odvětvích. Jejich nízká 

intenzita fluorescence a koloidní nestálost v biologickém prostředí však doposud 

brání jejich širšímu využití. Optimalizace jejich přípravy spolu s vývojem nových 

vhodných povrchových architektur tak představuje významnou výzkumnou 

výzvu. 

V rámci této práce byly navrženy a optimalizovány jednotlivé kroky přípravy 

fluorescenčních nanodiamantů, díky čemuž bylo dosaženo řádového zvýšení 

intenzity jejich fluorescence spolu s omezením poškození jejich povrchu grafitizací. 

Dále byla vyvinuta metoda ozařování nanodiamantů umožňující dramatické 

navýšení jejich produkce. S využitím částečné fluorace funkčních skupin na povrchu 

nanodiamantů byla demonstrována možnost ovlivnění parametrů jejich 

fluorescence. Byla také vyvinuta metoda zvyšující homogenitu a cirkularitu 

nanodiamantů, což významně ovlivnilo jejich interakci s biologickými strukturami. 

Možná uplatnění tohoto materiálu v medicíně a biologickém výzkumu byla 

demonstrována na přípravě částic s komplexní povrchovou architekturou 

umožňujících cílení a terapii nádorových buněk. Bylo také objevena a na in vitro  

a ex vivo modelech demonstrována vysoká a selektivní afinita fibroblastových 

růstových faktorů k povrchu nanodiamantů. 
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1. List of abbreviations 

 

AFM – Atomic-force microscopy 

CVD – Chemical vapor deposition 

DI – Deionized 

DMEM – Dulbecco's modified Eagle's medium 

DNDs – Detonation nanodiamonds 

EGF – Epidermal growth factor 

ERK – Extracellular signal–regulated kinases 

FGF – Fibroblast growth factor 

FNDs – Fluorescent nanodiamonds 

F-TEDA – 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane 

HBS – Heparin-binding site 

HeLa – Commonly used immortal cervical cancer cell line 

HPHT – “High pressure–high temperature” synthesis method 

IFN – Interferon 

IL – Interleukin 

NDs – Nanodiamonds 

MCF7 – Commonly used breast cancer cell line 

NEXAFS – Near edge X-ray absorption fine structure 

NGF – Nerve growth factor 
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NIR – Near–infrared 

PEG – Poly(ethylene oxide)  

PGNS – Plasmonic gold nanoparticles 

PGNS-Tf – Plasmonic gold nanoparticles with transferrin-modified surface 

FLI – Fluorescence intensity 

RCS – Rat chondrosarcoma cells 

SKBR3 – Adenocarcinoma cell line 

TGF – Transforming growth factor 

Tf – Transferrin 

TfR – Transferrin receptor  

XPS – X-ray photoelectron spectroscopy 

ZPL – Zero-phonon line 
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2. Preface 

Nanomaterials based on carbon allotropic modifications are perennial stars 

of scientific research. Over the last few years, many such materials have found 

their way from laboratories into commercial applications, and some have even 

become an inspiration for artists and popular culture. is thesis is dedicated to 

the study of lesser-known members of this “carbon nanozoo” known as 

nanodiamonds – remarkable materials with the same crystalline structure as 

macroscopic diamonds. However, in contrast to macroscopic diamonds, the size 

of individual nanodiamond crystallites ranges from units to hundreds of 

nanometers. is small particle size imbues them with many unique physical and 

chemical properties. Once secret byproducts of explosives research, 

nanodiamonds now show promise in addressing the challenges of medicine, 

science, and technology.

 

 

3. Introduction 

3.1. Carbon allotropes 

Carbon has several forms with different crystal lattice arrangements. e most 

well-known allotropes are amorphous carbon, graphite with a planar structure, 

and diamond with a cubic geometry. Other, more exotic forms of carbon include 

hexagonal lonsdaleite1 and complex structures created by pyrolysis or laser 
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ablation such as fibers, foams, or glassy carbon. In recent decades, the list of 

carbon structural modifications has been further extended into a broad family of 

nanocarbons.2 e most prominent of them are fullerenes, discovered by Kroto, 

Smalley, and Curl3 in 1985; nanotubes, prepared by Ijima4 in 1991; and 

graphene, obtained by Geim and Novoselov5 in 2007.  

e substantial influence of allotrope crystalline structures on material 

properties can be illustrated with the examples of graphite and diamond 

(Tab. 1). Graphite consists of planar sheets of sp2-hybridized carbon atoms 

stacked upon each other, weakly bound by van der Waals forces. Each layer has 

a honeycomb structure with a C–C bond length of 1.4210 Å.6 Each carbon atom 

is linked by three localized σ bonds to its neighboring atoms with an angle of 

120°. e fourth available valence electron is delocalized in π molecular orbitals. 

In the more stable hexagonal arrangement of graphite (α-graphite), carbon 

atoms of adjacent layers lie above and below the middle of the same hexagonal 

carbon ring with a layering sequence ABABAB. In less stable rhombohedral 

form (β-graphite), the layers are arranged in a layering sequence ABCABC. In 

both cases, the interlayer distance is 3.354 Å (Fig. 1). 6 

 

 

Figure 1. Lattice structures of (A) ABA-stacked hexagonal graphite and (B) rhombohedral ABC-

stacked graphite. Adapted from Ref.7 

 

A diamond lattice consists of sp3 hybridized carbon atoms connected by four 

identical covalent bonds in a covalent network, where each atom is surrounded 



   

17 

by four other carbon atoms with tetrahedral symmetry at the same distance of 

1.5445 Å and bond angles of 109.28°.6 Due to the strength of the C–C bonds 

(cohesive energy of diamond is 717 kJ/mol) and the absence of free electron 

pairs, diamond forms extraordinarily hard and inert colorless crystals which 

have an extremely high melting temperature (~5000 K).8 

 

Table 1. The comparison of the properties of diamond and graphite.9,10 

PROPERTY DIAMOND GRAPHITE  

CRYSTALLINE SYSTEM Cubic – (m‾3m) Hexagonal – (6/mmm) 

DIPHANEITY Transparent to translucent Opaque 

DENSITY [g·cm–3] 3.50–3.53 2.09–2.23 

ELECTRICAL CONDUCTIVITY Insulator Conductor 

MOHS SCALE HARDNESS 10 1 

THERMAL CONDUCTIVITY 
[W·cm–1∙K–1] 23.0  Anisotropic 

0.057(⊥), 19.5 (| |) 

 

 

 

3.2. Diamond classification  

At the beginning of the twentieth century, researchers discovered that most 

natural diamonds absorb in the infrared region at 6.5–15 µm.11 Diamonds with 

this optical feature, which was later linked to the presence of nitrogen in the 

crystal lattice, have been classified as type I.12 Rare, relatively nitrogen-free 

diamonds have been classified as type II.  

Type I diamonds contain N atoms as their main impurity in sufficient amounts 

to be measured by infrared (IR) spectroscopy techniques. ey can be further 

divided according to the forms in which nitrogen is present in their crystal 

lattice.13,14 Most natural diamonds belong to a subtype Ia, with aggregated 

nitrogen atoms in high concentration up to 3000 ppm. e nitrogen atoms in 
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these aggregates can be either present in pairs (IaA), large even-numbered 

clusters (IaB), or as a combination of both (IaAB). In contrast, in the less 

common Ib diamond type, nitrogen is present in the form of single substitutional 

atoms with one order of magnitude lower concentration than in the case of Ia. 

Most synthetic diamonds produced by high pressure–high temperature (HPHT) 

methods belong to the Ib subtype.  

Natural type II diamonds are extremely rare. ese diamonds can be divided 

into clear, nitrogen-, and boron-free IIa subtype, which is typical for diamonds 

produced by chemical vapor deposition (CVD) methods, and semiconducting 

boron-doped subtype IIb, with very low resistivity.15 e schematic 

representation of different diamond subtypes is summarized in Fig. 2.  

 

 

Figure 2. Schematic representation of different diamond subtypes. Adapted from Ref.16 

 

 

 

3.3. Synthesis and stability of diamond-based materials  

As a result of high cohesive and activation energies, metastable carbon 

allotropes tend to persist at pressures and temperatures far distant from their 

stability regions. For this reason, a diamond might exist under room conditions, 

even though graphite is the most thermodynamically stable form of carbon with 



   

19 

a stability boundary ranging from 1.7 GPa at 0 K to the graphite/diamond/liquid 

triple point of 12 GPa at 5000 K (Fig. 3).8 Similarly, rhombohedral graphite can 

be reversibly compressed up to approximately 80 GPa before it transforms into 

diamond (Fig. 3, conditions “E”).17  

Commercial diamond synthesis techniques therefore employ a combination 

of high pressures and temperatures (Fig. 3, conditions “A”). e first successful 

experiments with the preparation of small synthetic diamonds using this 

approach were performed in 1955, when Bundy et al. prepared diamond crystals 

with sizes up to 1 mm.18 eir high pressure–high temperature (HPHT) 

synthesis method required producing pressure of approximately 10 GPa at 

2300 °C and a metal alloy which served both as a solvent and a catalyst. e first 

HPHT diamonds were yellow in appearance due to the natural contamination of 

the metal catalyzers with traces of nitrogen impurities. e method for the 

preparation of nitrogen free, colorless crystals with HPHT was developed during 

the 1970s, utilizing nitrogen getters (Zr, Al or ).19,20 However, the removal of 

nitrogen during synthesis slowed down the growth process. Industrial-grade 

HPHT diamonds are therefore still produced with nitrogen impurities.21 For use 

in nanotechnology, the obtained micron-sized particles are further processed by 

grinding to obtain monocrystalline nanoparticles. 

Another approach to diamond synthesis takes into account the fact that the 

difference between graphite and diamond standard Gibbs free energies of 

formation is negligible (2.9 kJ/mol) in comparison to the standard Gibbs free 

energy of carbon vapor (671.3 kJ/mol).10 e condensation of carbon vapor at 

low pressure is therefore controlled mainly by the presence of suitable 

crystallization nuclei. In the case of the chemical vapor deposition (CVD) 

method developed in the 1980s, diamonds are grown on a diamond substrate 

from microwave plasma containing C2 molecules (Fig. 3, conditions “D”). 
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Figure 3. Phase and transition diagram for carbon (p,T). Equilibrium phase boundaries are 

represented by solid lines. (A) Typical conditions for commercial HPHT diamond synthesis with 

catalyst. (B) Threshold for very fast graphite/ diamond transformations. (C) Threshold for very fast 

diamond to graphite transformation. (D) Typical conditions for nonequilibrium CVD diamond 

synthesis. (E) Path along which compressed graphite reversibly loses some characteristics and 

acquires some properties of diamond-like polytypes. Adapted from Ref.8 

 

Plasma discharge is typically generated with a methane/hydrogen gas mixture 

(1–20% of methane) at 900–1200 °C in contrast to the high pressures required 

for the HPHT method, with which CVD growth occurs under non-equilibrium 

conditions in a low vacuum (20–200 Torr).22 Depending on the deposition 

parameters, CVD-produced diamonds may vary in morphology, type of structural 

defects, and crystallinity, with grain sizes from 2–5 nm to several millimeters.23 

e third commonly-used synthetic method, which produces nano-sized 

diamonds, dates back to the early 1960s, when DeCarli and Jamieson discovered 

that microscopic diamonds could be formed from graphite by exposure to an 

explosive shock.24 At about the same time, in the summer of 1963, Volkov and 

Danilenko in the former Soviet Union discovered that soot residues resulting 

from the detonation of explosives contain a significant amount of 
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nanodiamonds. Unfortunately, all experimental methods for diamond synthesis 

were strictly classified at that time, which led to repeated rediscovery of 

approaches at different research institutions across the Soviet Union during the 

subsequent 25 years.25 

e abovementioned “detonation method” utilizes explosives as a source of 

both carbon and energy. A synthetic explosion occurs in a metallic detonation 

chamber filled with an oxygen–deficient mixture of explosives such as 

1,3,5-trinitro-1,3,5-triazinane (RDX) and 2,4,6-trinitrotoluene (TNT) together 

with an inert gas or water in form of ice, which serves as a coolant. During the 

0.5 µs detonation, both temperature and pressure increase sharply, reaching the 

conditions for the formation of liquid carbon.26 With their subsequent decrease, 

small carbon nanoclusters are formed followed by condensation and 

crystallization into a diamond lattice. During the further decrease of pressure 

below the diamond/graphite equilibrium, the growth of diamonds is replaced by 

the formation of graphitic and amorphous sp2 carbon. e resulting detonation 

soot contains up to 75% detonation nanodiamonds (DNDs) with a 4–6 nm 

diamond core surrounded by 0.4–1.0 nm layer of amorphous sp2 structures.27 

However, these core particles always form extremely tight “grape shaped” 

aggregates with a diameter range of 100–200 nm.28  

Nanodiamonds can also be synthesized using other, less common methods 

such as laser ablation,29 electron irradiation of graphite,30 and chlorination of 

metal carbides.31 

e thermodynamic properties, phase equilibria, and phase transitions of 

nanomaterials are strongly influenced by size and temperature and may 

significantly differ from the bulk state. is characteristic feature of nanosystems 

is a consequence of their high surface-to-volume ratio, because of which surface 

stresses and surface free energies become increasingly important with 

decreasing size.32 is nano-thermodynamic phenomenon can be observed in 

the existence of many metastable high-pressure phases of materials such as 

CdSe, ZnS, or Fe which have not been found in a bulk state but can be easily 
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formed at the nanoscale.33 In the case of nanocarbons, the relative stability of 

diamond lattices increases with decreasing size and temperature, making NDs 

smaller than 5 nm more stable than graphite.34 Larger NDs are usually covered 

with a thin discontinuous layer of disordered sp2-carbon structures. Further 

phase transformation is effectively inhibited by high activation energy. For this 

reason, distinctive NDs graphitization starts to occur on the particle surface only 

above approximately 900 °C, creating core-shell structures with highly defective 

and curved graphitic surfaces. is process deteriorates the properties of NDs 

during annealing treatment.35 e sp2/sp3 phase ratio gradually increases with 

rising temperature up to 1500 °C, when a continuous onion-shell structure 

wrapped around a small diamond core is formed.36  

 

 

3.4. Spectral characteristics of common diamond defects 

 Diamond crystallographic defects are the result of substitutional or 

interstitial impurities (extrinsic defects) or irregularities (intrinsic defects) in 

the crystal lattice. Crystal defects strongly affect a broad spectrum of material and 

spectral properties and therefore play a crucial role in the design of new 

materials based on the diamond lattice. Many impurities of foreign elements, 

such as H, He, Li, B, N, O, Ne, P, Si, As, , Cr, Ni, Co, Zn, Zr, Ag, W, Xe, and Tl 

can be introduced into a diamond crystal lattice during growth or by ion 

implantation methods.16,37 ese elements can produce a broad spectrum of 

more than 500 known electronic optical centers. e most common among them 

are various kinds of nitrogen impurities which result in diamond classification 

(vide supra). e classification system of diamond crystal defects is still not fully 

settled and may in some cases be confusing, primarily for historical and 

customary reasons. e list below is an overview of the most common optically 

active defects with their alternative symbols, meanings of abbreviations, short 

structural descriptions, and spectral characteristics.38–41 Center energies listed 
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here correspond to the energies of zero-phonon line (ZPL) transitions or to the 

spectral position of their maxima. 

 

A-nitrogen center (A-aggregate, N=N) 

is defect is a very common in natural IaA diamonds. It consists of two 

neighboring nitrogen atoms. e A-center has an absorption continuum above 

3.4 eV at 310 nm. In the IR spectrum, the A-center has an absorption peak of 

1282 cm–1, which can be used to estimate its concentration.  

B-nitrogen center (B1, B-aggregate, N4–V) 

e B-center consists of a vacancy directly surrounded by four nitrogen atoms. It 

is a naturally occurring defect in Ia diamonds. Diamonds in which this form of 

nitrogen distribution predominates are classified as IaB. It does not induce 

ultraviolet (UV) nor visible absorption. In the IR spectrum, the B-center has  

a characteristic sharp peak at 1332 cm–1 and the most intensive absorption peak 

at 1175 cm–1. 

GR1 center (V0, general radiation 1) 

is defect is a neutral, single, isolated vacancy in the diamond lattice. It is the 

main optical feature of irradiated diamonds and one of the most heavily studied 

defects. It is created by almost any high-energy irradiation. However, it might be 

influenced by impurities. is center is annealed out normally at temperatures 

above 600 °C due to the migration and annihilation of vacancies. Its 

characteristic feature is a Zero phonon line (ZPL) doublet at 1.673 and 1.665 eV 

(740.9 and 744.4 nm). 

3H center 

e transition at 2.462 eV (503.4 nm) corresponding to this center is observed 

in all types of diamonds aer irradiation. Its intensity is proportional to the 

nitrogen content and usually occurs in conjunction with GR1 defects. e center 

anneals out at temperatures above 500 °C. Even though several structure models 
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have been proposed, its nature is unclear. e center is probably related to 

interstitial carbon atoms in the diamond lattice. 

H2 center (heat treatment 2, N-V-N–) 

An H2 center with a ZPL at 1.256 eV (986.3 nm) can be observed in I type 

diamonds aer irradiation and subsequent annealing at temperatures above 

500°C or in synthetic type Ib diamonds aer annealing at 1700 °C. A possible 

model of the H2 center consists of two nitrogen atoms sandwiching a vacancy 

along the [110] direction. 

H3 center (heat treatment 3, N-V-N0) 

is uncharged center with ZPL at 2.463 eV (503.2 nm) is the most common 

naturally occurring optical feature of nitrogen-containing diamonds. e H3 

center is formed from the A-aggregate of nitrogen and vacancies which probably 

form an N-V-N or V-N-N-V complex (A-nitrogen center bound to two vacancies). 

It can be created in type I diamonds with any irradiation and subsequent 

annealing. In synthetic diamonds, the H3 center may be created by annealing at 

1100 °C at normal pressure; however, the annealing behavior varies according 

to the irradiation condition and diamond type.  

H4 nitrogen center (heat treatment 4, 3N-V-V-N) 

is center can be found naturally in IaB diamonds, producing their yellow color 

with ZPL at 2.498 eV (496.2 nm). It can be induced by any irradiation and 

subsequent annealing at temperatures above 600°C. It consists of 4 nitrogen 

atoms separated by 2 vacancies. 

N3 nitrogen center (naturally occurring 3, N3-V) 

e N3 defect is common in most Ia natural diamonds with B-nitrogen 

aggregates. It is made up of a vacancy surrounded by the 3 nearest substitutional 

nitrogen atoms in the [111] plane. is center is paramagnetic and can produce 

blue fluorescence at 2.985 eV (415.2 nm). 
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NV– center (nitrogen-vacancy, N-V–) 

is center is a naturally occurring feature of nitrogen-containing diamonds. 

However, its concentration is usually negligible. e center consists of a nitrogen 

atom in a pair with a vacancy and is suppressed with boron doping. e ZPL is 

pronounced at 1.945 eV (638 nm), resulting in a purple coloration of synthetic 

diamonds. 

NV0 center (nitrogen-vacancy, T1, N-V0) 

is neutral charged center is closely related to the NV– center and differs 

because of an extra electron located at the vacancy site. Both centers can be 

mutually converted by a change of the Fermi level position. e ZPL is 

pronounced at 2.156 eV (575.5 nm). 

 

 

3.5. Nitrogen-vacancy (NV) centers 

From the perspective of optical and magnetic properties, diamond represents 

an unique material with a broad spectrum of applications in quantum 

computing,42–44 bioimaging,45,46 and single-spin magnetometry.47,48 Over 500 

types of electronic color centers are hosted by the diamond lattice and the NV 

center belongs to the most extensively studied. is center was first described 

experimentally in 1976.49 Nevertheless, such centers came into the focus of 

scientific investigation only with the discovery of their perfect photostability and 

ability to serve as a bright single-photon source. 

e NV center is a crystal lattice point defect consisting of the nearest-

neighbor pair of a nitrogen atom and a lattice vacancy oriented along the [111] 

crystal direction (Fig. 4).51 eir natural concentration in diamonds is 

negligible; thus, they must be prepared artificially through the recombination of 

nitrogen atoms and vacancies. In the case of the HPHT Ib diamond type, 

nitrogen atoms occur in the crystal lattice naturally as an impurity in 
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concentration up to 300 ppm.52 Vacancies are subsequently created by 

irradiation with high-energy particles.46 

 

 

 

Figure 4. The structure of a nitrogen-vacancy center in diamond. Adapted from Ref.50 

 

In NDs, the NV centers are produced by annealing of irradiated material at 

600−900 °C in an inert atmosphere. During this process, vacancies migrate in 

their neutral form (V0) through the diamond lattice and recombine with nitrogen 

atoms with energetically favorable aggregation.53,54 e activation energy of 

vacancy migration in natural, type I diamonds is 2.30–2.45 eV.55  

NV centers exist in two charge states with different photoluminescence and 

spin properties: neutral NV0 and negative NV–, with ZPL at 575 nm (2.156 eV) 

and 638 nm (1.945 eV), respectively.56 A typical excitation and emission 

spectrum for NV– is depicted in Fig. 5A. e ZPL has vibronic bands which are 

generated by the interactions of electronic and vibrational degrees of freedom 

extending from ZPLs to lower energy.57 is effect, related to the Franck-Condon 

principle, is also co-responsible for different positions of excitation and 

emission maxima. For NDs larger than 5 nm, NV– centers are resistant to 

photobleaching and photoblinking58,59 and their photoluminescence occurs at 

longer timescales than biological autofluorescence (≈17 ns for NDs and 11.6 ns 
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for bulk diamond).60 eir photoluminescence spectrum can be also altered by 

applying a magnetic field,61 electric field,62 microwave radiation,63 or by 

modifying the diamond surface.56  

 

Figure 5. (A) Excitation (green) and emission (red) spectrum of NV– center with zero phonon line 

at 638 nm.64 (B) Electronic energy level scheme for the NV− transitions. Adapted from Ref.65 

 

NV– centers contain a three-level emission system with a parallel decay 

channel through a metastable state with a long emission time (Fig. 5B). Two of 

the six electrons of the center are unpaired. us, both the ground and the first 

excited states, are spin triplets.66 Due to the magnetic interaction between the 

two unpaired electrons, the electronic spin states are split into 3A2 (ms = 0) and 

doubly degenerate 3A2 (ms = ±1) sublevels with an energy gap of 2.87 GHz. e 

smaller splitting for 3E sublevels (1.42 GHz) is caused by larger electron–

electron separation in the excited state. e primary transition between triplet 

ground and excited states is predominantly spin conserving.65 e course of 

optical excitation differs according to involved spin sublevels: While excitation 

from 3A2 (ms = 0) to 3E (ms = 0) results in radiative decay, excitation from 3A2 

(ms = ±1) can either be followed by radiative deexcitation to 3E (ms = ±1), or by 

intersystem crossing through the intermediate singlet states (1A1 and 1E). is 
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might play an important role in the quenching of photoluminescence. is 

deexcitation is predominantly nonradiative, although it may be accompanied by 

feeble infrared emission (1042 nm).65,49,67 

e ms = ±1 states can be split by an external magnetic field. e position of 

their lines in the electron spin resonance (ESR) spectrum allows for calculations 

of the external field magnitude. According to this principle, highly sensitive 

scanning probe magnetometers, which can detect fields of single electrons in 

nanometer scale, can be constructed.48,68 If the magnetic field oriented along the 

axis of the defect splits the 3E or 3A2 states with energies of 1.42 GHz or 2.87 

GHz, respectively, the corresponding ms = –1 and ms = 0 sublevel states become 

energetically equal. is interaction results in spin polarization observable as  

a drop in luminescence intensity.69 In a similar fashion, splitting can be 

modulated by applying a static electric field.70 Another approach for the 

modulation of luminescence intensity is based on changing the electron 

populations between ms = 0 and ms = ±1 states using microwave radiation.71 In 

addition to static perturbations, numerous dynamic effects, such as Rabi 

oscillations or spin echo, have been also studied.72–74  

 

 

3.6. Generation of vacancies in the ND lattice 

e fraction of pristine nitrogen-rich HPHT NDs particles which naturally 

contain NV centers is negligible. To increase their concentration, sufficient 

amount of vacancies in a crystal lattice of Ib NDs (naturally containing nitrogen 

impurities) must be generated with high-energy particles such as 4He+ 

particles,46,75 protons,60,76 and electrons.77,78 Another approach, suitable for 

thin diamond films, uses the direct implantation of N+ ions which serve both as 

vacancy-generating particles and as a source of nitrogen in the lattice.79,80,42 e 

efficiency of ionizing particles in the generation of crystal lattice defects is 

determined by their mass, energy, and charge. For charged particles, coulombic 
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interactions are the dominant cause of ionization damage. In the case of 

energetic electrons, their interactions occur predominantly with other electrons 

as an elastic (Rutherford) scattering resulting in considerable change of particle 

direction in accordance with the laws of conservation of momentum and 

energy.81 is type of interaction produces mainly single vacancies in the crystal 

lattice.  

Heavier charged particles, such as protons, deuterons, or alpha particles, 

tend to scatter the significantly lighter electrons without considerable energy 

loss. eir deflection in the collision is negligible and therefore, their 

penetration paths have substantially straighter trajectories. Heavy ions 

traversing matter lose energy primarily through the ionization and excitation of 

atoms. During collisions, they may also transfer sufficient momentum to produce 

“knock-on” atoms which may further displace other surrounding atoms, causing 

a cascade of collisions within a small distance. e result is extensive lattice 

damage with clusters of vacancies.82  

e effect of neutron irradiation on a diamond lattice differs from other heavy 

particles mainly due to the absence of charge. Neutrons do not interact with 

orbital electrons and their main interaction is limited to a ballistic one, where 

neutrons collide with atom nuclei.83 e cross-section of this reaction is small 

for thermal and epithermal neutrons, but complex and significant for fast 

neutrons, producing a cascade of “knock-on” atoms and damage occurs in the 

form of vacancy clusters.84 e thermal and epithermal neutrons typically 

interact with neutron capture, producing heavier isotopes which can undergo 

radioactive decay and form different elements.81 is phenomenon can be 

utilized for neutron activation analysis or doping.85  

e rate of energy loss in the material is called stopping power. For non-

relativistic heavy charged particles, it can be described using the Bethe formula 

as a function of atomic number, velocity, and environmental parameters (Fig. 6). 
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Figure 6. The Bethe formula for stopping power of a uniform medium for a heavy charged particle, 

where z = atomic number of the heavy particle, n = density of electrons in medium, β = v/c = speed 

of the particle relative to c, and I = mean excitation energy of the medium. Adapted from Ref.86 

 

With decreasing particle velocity, the factor in front of the bracket increases 

as β → 0 causing a peak at the point when the kinetic energy of a particle starts to 

be comparable to the energy of the orbital electrons of the surrounding atoms. 

Aer this point, the particle can acquire electrons, rapidly lose energy, become 

uncharged, and the curve tails off.87 is peak in energy loss function, the Bragg 

peak, allows for the delivery of a significant fraction of energy at the end of the 

particle range (Fig. 7).  

 

Figure 7. Relative energy loss rate of different types of particles in tissue (normalized). Unlike 

electrons and γ-photons, the dose from protons to tissue is maximal just over the last few millimeters 

of the particle range, forming a Bragg peak (red dashed line). Adapted from Ref.89 
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is feature is crucial for applications which require energy focused in  

a precisely defined position, such as proton radiation therapy of cancer.88 

An effort to produce sufficient amounts of highly fluorescent nanodiamonds 

by homogeneous irradiation inevitably brings with it many technical challenges. 

e most prominent are limited particles range, spatial and energetic 

inhomogeneity of particle distribution, uneven rate of energy loss in irradiation 

targets, and sample overheating. ese issues are especially significant in the 

case of irradiation by heavy ions with short range and considerable Bragg peaks. 

Traditional solid-state irradiation techniques usually compensate for these 

obstacles with irradiation of thin layers of samples. is significantly limits the 

amount of irradiated material and increases the cost (Fig. 8).46,90  

 

 

Figure 8. Schematic diagram of a 40-keV He+ ion beam facility for routine production of FNDs. A thin 

diamond film is prepared on a copper ribbon which rolls in a vacuum to allow continuous exposure 

of the nanoparticles to the ion beam for irradiation. Adapted from Ref.91  

 

 

 

3.7. Colloidal properties and surface structures on NDs 

Perfect colloidal stability is a key prerequisite for the use of NDs in 

bioapplications. e behavior of solid nanoparticles in solution is determined by 

the sum of all repulsive and attractive forces among them. e intensity of these 

forces is influenced by many factors, such as the size, shape and surface charge 
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of the nanoparticles; the composition of chemical groups on their surfaces; and 

the solvent composition. One of the most important measurable indicators of 

colloidal stability is zeta-potential, which is closely related to the electrophoretic 

mobility and surface charge. Its magnitude indicates the degree of electrostatic 

repulsion between similarly charged particles in solution. Colloids with an 

absolute value of zeta-potential higher than 30 mV are generally considered to 

be electrically stabilized, whereas colloids with lower zeta-potentials tend to 

aggregate and require further steric stabilization.92 

e zeta-potential of NDs varies significantly according to the synthesis 

method and subsequent purification treatment. ese differences are especially 

prominent for DNDs. Particles obtained by de-aggregation of pristine aggregates 

by milling with zirconia microbeads and sonication have a positive zeta–

potential at 45–50 mV.93 Aer treatment with ozone or with a mixture of 

H2SO4-KMnO4, particles, a strong negative zeta-potential is obtained.94–96 

Subsequent annealing at 700 °C in a vacuum can change the zeta-potential of 

DNDs back to positive values. is behavior can be explained since the negative 

charge of thermally sensitive functional groups on DNDs and because of partial 

surface graphitization. e chemical structure of groups responsible for negative 

zeta-potential is still not fully understood. However, it has been suggested that 

the surface of negatively charged DNDs is covered with a mixture of oxidic 

functional groups such as phenols, pyrenes and carboxylic groups.97–99 For 

positively charged surfaces, the chemical origin of zeta-potential values is 

understood even less, and several surface models are under consideration. e 

most probable explanation of their basic properties is the presence of pyrone-

like structures on the edges of the polyaromatic layers connected in  

a π-conjugated system.100,101 

Unlike “bottom-up” DNDs synthesis, HPHT and CVD NDs are prepared 

according to a “top-down” approach in which bulk crystals are milled and 

consequently size-sorted with centrifugation. eir surface structure therefore 

differs from DNDs. e surface of commercially produced HPHT NDs is usually 
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covered with residues of graphitic carbon which reduces their colloidal stability 

and worsens their photoluminescence properties. For these reasons, high-

temperature oxidation with air followed by wet oxidation with a mixture of 

oxidizers and strong acids is usually performed prior to further use.97 According 

to X-ray photoelectron spectroscopy (XPS) and Near edge X-ray absorption fine 

structure (NEXAFS) analysis, the surface of oxidized HPHT NDs is occupied 

predominantly with hydroxyl groups together with a small fraction (~2%) of 

carboxyl groups. is corresponds more to the typical surface of a bulk diamond 

crystals than to the surface of DNDs.102 

e most important environmental factors which affect NDs colloidal stability 

are solvents and their ionic strength. Bare NDs with an oxidic surface are usually 

stable only in very polar solvents such as water or dimethyl sulfoxide. Unlike 

HPHT NDs, DNDs can be also dispersed in alcohols and glycols.93 e 

stabilization in less polar solvents is possible only with surface modification 

using hydrophobic functional groups.103 As typical colloidal dispersions, NDs 

lose their colloidal stability and start to aggregate at ionic strengths higher than 

50 mM due to contractions in the stabilizing electric double layer.104 is 

behavior limits direct use of bare NDs for bioapplications on account of the high 

concentration of salts in media and biological fluids, e.g. normal saline solution 

with ionic strength of 154 mM. is weakness can be overcome by chemical 

modification of the surface with hydrophilic and bulky molecules.105  

e behavior of particles in solution is also influenced by their size and 

density. While single digit ND particles cannot be quantitatively separated from 

a solution without a use of ultracentrifuges, particles larger than approximately 

100 nm tend to sediment slowly even at laboratory conditions. is effect is even 

more distinct in the case of ND hybrid particles with metal shells, due to their 

density.106 
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3.8. Chemical properties of NDs 

In comparison to bulk diamonds, nanodiamonds are significantly more 

reactive. is feature might be explained by their large surface/volume ratio, 

larger number of surface and crystal lattice defects, and changes of sp3/sp2 

carbon thermodynamic equilibrium in nanoscale.33 ese effects increase the 

number of reactive groups on ND surfaces and facilitate their transformation 

into other forms of carbon.107 e chemical properties of NDs also vary 

significantly based on the production methods. For both historical and practical 

reasons, DNDs belong to the most thoroughly studied systems. Unfortunately, 

due to their higher reactivity compared to NDs produced by other synthetic 

methods, functionalization strategies used on this material are generally not 

directly transferable. is difference is usually not emphasized in the literature 

and comprehensive comparative studies have not yet been undertaken.  

e chemistry of NDs is affected by extreme steric hindrance of functional 

groups on their surfaces and by the heterogeneous nature of nanoparticles. 

ese factors, together with the limited spectrum of available methods for 

surface analysis, make even common organic reactions synthetically very 

challenging.  

As it was outlined in the previous chapter, the surface of commercially 

available NDs varies according to their manufacturing processes. ey usually 

involve treatment with strong oxidizing agents in order to obtain  

a heterogeneous mixture of functional groups such as carboxyls, hydroxyls, 

lactones, ketones, and ethers together with a certain amount of heterogeneous 

sp2 residues.108 To ensure reproducibility and selective high-yield 

functionalization, standardized homogenization methods are required. Initial 

homogenization strategies include surface oxidation, graphitization, reduction, 

and halogenation. ese approaches are summarized in Fig. 9.  
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Figure 9. Common NDs surface modification pathways. 

 

Probably the most frequently used approach is oxidation, which transforms 

surface moieties into a combination of carboxyl and hydroxyl groups. It can be 

performed with various mixtures of sulphuric, nitric, hydrofluoric, and 

perchloric acids109,110 in a piranha solution (freshly prepared mixture of 

hydrogen peroxide with sulphuric acid),111 air,97 or ozone.96 Except for ozone 

treatment, these reactions are performed at high temperatures and occasionally 

also at elevated pressures. ey are also usually applicable for both DNDs and 

HPHT NDs.  

Partially reduced (hydroxylated) NDs can be obtained from carboxylated NDs 

by reduction with lithium aluminum hydride112 or borane-THF complex.113 

Another approach uses oxidative decarboxylation with Fenton’s reagent.114 

Hydrogen-terminated NDs can be produced by the reaction with hydrogen at 

elevated temperatures115 or in a CVD plasma reactor.116 

Commonly used halogenation methods for sp2-nanocarbon materials are 

difficult to apply to sp3-diamond surfaces because of their fundamentally 
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different chemical natures and lower reactivities. A halogenated diamond surface 

can be obtained by treatment with elemental gas or halogenating reagents.117 

e fluorination approaches for nanodiamond surfaces typically involve highly 

corrosive gasses such as fluorine,118,119 chlorine trifluoride,120,121 fluorine-

containing plasmas,117,122,123 or an ultrahigh-vacuum fluorine atomic beam.124  

 

 

3.9. Surface modification using polymers and 
biomolecules 

e surface of an ND can be further modified with graing of polymers. 

Typically, this kind of modification is intended to achieve colloidal stability in  

a high ionic strength environment (buffers, cell culture media or blood plasma); 

to increase particle homogeneity; and in the case of in vivo use, to significantly 

reduce the immune response. Appropriately selected side functional groups of 

the polymer also allow subsequent conjugation with other moieties. Both 

graing-from104,125 and graing-to109,126 approaches are used to produce NDs 

with surface polymers. Another approach employs a non-covalent graing of 

polymers to ND surfaces.127 Relatively newer techniques include coating of NDs 

with a porous silica layer that allows the use of well-known chemical methods 

based on silica chemistry.128,129 e advantage of this method is higher 

monodispersity and sphericity of silica-coated NDs in comparison to the starting 

materials. 

Various types of biomolecules such as peptides,130 enzymes,131 antibodies, or 

nucleic acids are oen attached to an ND surface by both covalent and non-

covalent interactions in order to obtain the desired properties and behaviors. 

Non-covalent linkage can be typically accomplished by the simple incubation of 

nanoparticles in a solution of biomolecules. However, the disadvantages of non-

covalent absorption are low surface specificity and low stability to an exchange 

with other biomolecules in solution. ese issues can be solved using covalent 
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graing employing coupling reactions. Another common solution is a reaction 

of isocyanate with amine and Cu(I)-catalyzed alkyne-azide cycloaddition (“click 

reaction”). e conjugated molecules are sometimes separated from the 

nanoparticles by a linker in order to preserve bioactivity, to avoid steric 

hindrance, and to limit nonspecific interactions. 
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4. Scope of the thesis 

Fluorescent nanodiamonds represent a promising material with unique 

properties. Unfortunately, their possible use is limited by many factors, such as 

low fluorescence intensity of individual nanoparticles, heterogeneity of surface 

functional groups, poor colloidal stability in biological environment, and broad 

size distribution of nanoparticles. e experimental part of this thesis is focused 

on the improvement of FND material properties to overcome the above-

mentioned obstacles and to demonstrate potential applications of the improved 

NDs. 

 

e aims of this work are following: 

1. To develop procedures for the large-scale production of FNDs with 

improved fluorescent properties in terms of fluorescence intensity 

and fluorescence homogeneity of individual nanoparticles.  

2. To modify ND shape, size distribution and surface chemistry in order 

to facilitate their use in bio-applications.  

3. To demonstrate novel use of developed architectures on NDs in 

medicinal or biological applications. 

 

e results obtained from experiments undertaken for this thesis are divided 

into three sections: 
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e first section (Chapter 5.1.) summarizes the obtained results related to the 

improvement of fluorescent properties. It is dedicated to the boosting of 

fluorescence intensity, homogeneity of NV centers in nanoparticles, removal of 

surface graphitized structures, and scale-up of FNDs production. All related 

results are covered by two publications and a manuscript appended as 

Appendices A, C, and E. 

e second section (Chapter 5.2.) deals with ND surface and shape 

modifications. It describes the fluorination of surfaces and the adjustment of size 

distribution and circularity of nanoparticles. All related data are included in the 

publications and manuscript reprinted in Appendices D and G. 

e third section (Chapter 5.3.) encompasses biological and medicinal 

applications for NDs. Two different approaches demonstrate the versatility of 

NDs. First, a complex architecture on an ND surface allows selective targeting, 

detection, and therapy of cancer cells. Second, a specific surface chemistry of 

NDs is utilized for selective inhibition of cell signaling. e topic is completed 

by the paper and manuscript reprinted in Appendices B and F. 
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5. Results and discussion 

5.1. Boosting of ND fluorescence intensity and production 
optimization 

FND production represents a technological challenge in terms of fluorescence 

intensity, achievable yields and of production costs. Surprisingly, only limited 

attention was paid to this subject in the literature to date. is section focuses 

on the development and optimization of new production methods that meet the 

requirements for the possible use in bio-applications.  

 

Development of a novel method for direct homogeneous 

irradiation of NDs in colloidal solution1 

e vacancies in ND crystals are created by a coulombic interaction of carbon 

atoms with accelerated particles during their path through an irradiation target. e 

penetration depth of heavy charged ions is relatively low and energy deposition is 

uneven, with a maximum at the Bragg peak at the end of the particle path. is 

problem is usually compensated with irradiation of thin ND layers on a flat surface 

such as long metallic tape (Fig. 8) or a pellet target (Fig. 10). Both methods 

significantly limit the achievable amount of NDs per one irradiation. Further 

technological challenges arise from various types of irradiation-dose uncertainties 

caused by the technical design of systems such as the energy spread of particles in an 

                                                 
1 Published as: Stursa, J.; Havlik, J.; Petrakova, V.; Gulka, M.; Ralis, J.; Zach, V.; Pulec, Z.; 
Stepan, V.; Zargaleh, S. A.; Ledvina, M.; Nesladek, M.; Treussart, F.; Cigler, P.; Mass Production 
of Fluorescent Nanodiamonds with a Narrow Emission Intensity Distribution. Carbon 2016, 96,  
812–818. 
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accelerated beam or the differences in the density of solid sample pellet. Moreover, 

the particle beam from the accelerator must be defocused before it reaches a target in 

order to irradiate a sufficient amount of NDs. All of these effects influence particle 

energy and density distribution in the cross-section of a beam, resulting in changes of 

the Bragg peak position. is significantly affects irradiation dose homogeneity. 

Another technical complication is the risk of local sample overheating causing ND 

graphitization and deterioration of colloidal properties. 

e aims of this study were to develop a new type of irradiation target which 

would reduce the negative influence of the above-mentioned factors and 

experimentally compare properties of this design with a traditionally used pellet 

target (Fig 10A). e proposed liquid target design allows direct irradiation of 

NDs in the form of a colloidal solution (Fig 10B).  

 

Figure 10. ND pellet target (A) and liquid target (B) irradiation configurations. The pellet target 

contains a compressed solid ND pellet. The liquid target is filled with a 5% ND aqueous solution. The 

“active stopping zone” for protons in the liquid target is outlined by the proton range (red area). 

Adapted from Ref.132 

 

e proposed target consists of a niobium chamber separated from the 

irradiation site with a combination of thin niobium and Havar foils which are 

easily penetrable for the proton beam arriving from the accelerator. e chamber 
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can be filled with a 5% NDs colloidal solution through an inlet and outlet system 

using pressurized helium gas. e whole target is cooled during irradiation with 

a combination of water and helium gas.  

In order to assess the suitability of liquid target design, energy deposition 

during irradiation was simulated for both target designs using Geant4 soware. 

Obtained depth-dose distribution curves for 16 MeV protons show that the 

maxima of energy deposition (Bragg peaks) are at a depth of approximately 

1.5 mm and 2.7 mm for pellet and liquid targets, respectively (Fig. 11). For the 

solid target, this value limits the possible thickness of the pellet to ~1.6 mm. In 

the liquid target is the actual irradiated amount significantly increased by 

thermal convection of the liquid. e ND solution in a ~2.8 mm layer behind the 

niobium foil is heated by the beam stopping energy and mixes with the rest of 

the solution with convective currents. anks to this effect, all nanoparticles in 

the solution are continuously exchanged in an active irradiation zone which 

allows for more uniform irradiation in comparison with the solid target. 

 

 

Figure 11. Normalized depth-dose distribution of a 16 MeV proton beam in a compressed solid ND 

pellet (dashed line), 5% ND aqueous solution (solid line) and water (dotted line). Adapted from Ref.132 

 

To prove the superiority of a liquid target over a pellet target and to 

quantitatively assess material properties, HPHT NDs were irradiated using both 
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targets and compared. Surface graphitization caused by irradiation damage and 

local overheating were evaluated using Raman spectroscopy. e measured 

spectra show a significantly lower intensity of the so-called G-band133 at 

~1600 cm–1 for the liquid target in comparison with the pellet target. is 

indicates reduced surface graphitization damage (Fig. 12). is effect can be 

explained by the colloidal state of the sample, in which nanoparticles 

surrounded by water are effectively protected against local overheating. 

 

 

Figure 12. Raman spectra of NDs from the pellet target and liquid target after irradiation. The liquid 

target shows significantly lower intensity of the G-band at ~1600 cm–1 indicating lower surface 

graphitization. Adapted from Ref.132  

 

To create fluorescent NV– centers, the irradiated material was processed by 

annealing at 900 °C for 1 hour in an argon atmosphere followed by air oxidation 

at 510 °C for 4 hours. e fluorescent properties of FNDs obtained from both 

types of targets were evaluated using simultaneous atomic force microscopy 

(AFM) and confocal fluorescence spectroscopy techniques at the single particle 

level, which allowed the simultaneous comparison of both size and fluorescence 

intensity. e results of the analysis show a significantly larger fraction of 

fluorescent particles in the sample for the liquid target (77%) compared to the 

pellet target with only 24% of fluorescent particles (Fig. 13). In contrast, NDs 
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from the pellet target exhibited higher mean brightness with a small fraction of 

exceptionally fluorescent particles. is observation is in accordance with the 

expected random motion of particles in a solution through an active irradiation 

zone, leading to lower but more homogenous irradiation in comparison with the 

stationary particles in a pellet target. 

 

Figure 13. Normalized distribution of single FND fluorescence intensity and single particle analysis 

of fluorescence intensity for pellet and liquid targets. These results were obtained from 175 and 950 

NDs analyzed by AFM for liquid and pellet targets respectively. Adapted from Ref.132  

 

In summary, a new method of FND production using direct irradiation in  

a colloidal solution was developed. NDs prepared with this approach 

substantiate lower damage with regards to surface graphitization in comparison 

with particles from a solid pellet target. Moreover, the analysis of the 

fluorescence intensity distribution showed more homogeneous distribution of 

NV centers per particle for new target design. is feature is important for 

applications in bioimaging and physics. 
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Boosting nanodiamond fluorescence: optimization of annealing 

and post-annealing treatment2 

Fluorescent nanodiamonds represent a promising photoluminescent material with 

exceptional biocompatibility. anks to the properties of NV centers, FNDs are 

distinguished because of extreme photostability, no photobleaching or photoblinking 

(for nanocrystals bigger than 5 nm), and suitable emission wavelengths located in 

NIR windows of biological tissues. However, their broader applications are limited by 

relatively insufficient particle brightness in comparison with probes such as quantum 

dots. Optimization of NV center formation in FNDs is therefore critically needed. 

In contrast to the relatively well-described formation of NV centers for bulk 

single crystal diamonds, a systematic study of ND annealing parameters has been 

missing from the research literature to date. One of the unanswered questions 

was whether the commonly used annealing parameters (700–800 °C for 1–2 

hours) are in the thermal and kinetic optimum of the annealing treatment. To 

shed light on this problem, mapping of optimal annealing parameters was 

performed in this study with two sizes of HPHT proton-irradiated NDs (45 nm 

and 140 nm in diameter). e set of FNDs, containing 24 samples for each ND 

size, was prepared with annealing in an argon atmosphere with a variation of 

temperature and time conditions (700–950 °C, 0.5–8 h). All samples were 

subsequently treated with a mixture of H2SO4 and HNO3 to oxidize sp2 structures 

on the ND surfaces.  

e photoluminescence spectroscopy measurements showed significant 

differences in fluorescence intensity (FLI) among the samples (Fig. 14). e FLI 

                                                 
2 Published as: Havlik, J.; Petrakova, V.; Rehor, I.; Petrak, V.; Gulka, M.; Stursa, J.; Kucka, J.; 
Ralis, J.; Rendler, T.; Lee, S.-Y.; Reuter, R.; Wrachtrup, J.; Ledvina, M.; Nesladek, M.; Cigler, P.; 
Boosting Nanodiamond Fluorescence: Towards Development of Brighter Probes. Nanoscale 2013, 5, 
3208–3211. 
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of 140 nm NDs was approximately tenfold higher in comparison with 45 nm 

NDs. is result is in agreement with previously observed behaviors and can be 

explained by the higher volume-to-surface ratio of bigger particles. In larger 

nanoparticles, migrating vacancies are more likely to be captured by a nitrogen 

atom before their termination on the ND surfaces.  

In accordance with these observations, measurements of NV concentration in 

single nanodiamond particles with anti-bunching time-correlation spectroscopy 

have shown that an average 45 nm particle contains ~1.7 NV centers, whereas 

approximately 360 NV centers were present in 140 nm particles. 

 For both 45 nm and 140 nm NDs, discrete FLI maxima were identified for the 

conditions of 1 hour of annealing at 900 °C. Under these conditions, FLI is 

approximately three times higher when compared to the commonly used 

parameters (700 °C, 2 hours).  

 

 

Figure 14. Normalized total FLI of NV centers (NV– + NV0) for (A) 140 nm and (B) 45 nm ND particles 

as a function of annealing time and temperature. Black dots represent the individual points of the 

matrix of annealing conditions. Darker colors represent brighter samples.134 

 

e evolution of sp2 structures on ND surfaces during thermal annealing was 

analyzed using Raman spectroscopy measurements normalized to the diamond 

Raman signal at 1332 cm–1. e occurrence of amorphized sp2 carbons is 

markedly higher for smaller (45 nm) particles, probably due to a higher surface 



 

48 

to volume ratio. e formation of sp2 impurities is caused by a rearrangement of 

the surface at high temperature and it negatively affects both particle FLI and 

colloidal stability in aqueous solutions. To remove sp2 carbons and increase the 

FND brightness, different oxidation treatments with air, oxygen plasma, and 

melted potassium nitrate were studied (Fig. 15). Oxidation with air at 510 °C for 

4.5 hours shows results comparable to oxygen plasma treatment, with 

approximately twofold higher FLI when compared to an untreated sample. e 

most significant result was achieved with a novel treatment of NDs in molten 

KNO3 at 560 °C for 10 minutes, producing 2.5-fold brighter FNDs with excellent 

colloidal properties. e thermal and kinetic formation optimum of NV centers 

in FNDs was identified. A new oxidation method using molten potassium was 

developed. e combination of these approaches allows the preparation of 

particles one order of magnitude brighter in comparison to commonly treated 

FNDs. 

 

 

Figure 15. Normalized fluorescence spectra of fNDs oxidized under various conditions.134 
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Rapid irradiation of large ND quantities with ions generated in 

situ by a nuclear reaction3 

From the viewpoint of material throughput and production costs, the irradiation 

of NDs constitutes the most limiting step in the manufacturing of FNDs. Traditional 

methods using direct irradiation with charged particles are limited in penetration 

depth, inhomogeneity of deposition energy, and long irradiation times. ese factors 

make the potential scale-up of FNDs production very challenging. Development of 

novel mass production methods is therefore critically needed for the potential broad 

use of FNDs.  

To fulfill these requirements, a new approach for nanoparticle irradiation was 

suggested. It utilizes a dispersion of NDs in 10B-isotopically enriched boron(III) 

oxide in the form of a pulverized glassy melt. Aer placing the mixture in  

a nuclear reactor channel, captured thermal neutrons induce a nuclear reaction 

on 10B with a high absorption cross section of 3869 barn (10–24 cm2), forming an 

all-directional localized flux of charged ions. e mixture of in situ generated  

α-particles and 7Li ions uniformly irradiates the surrounding NDs and creates 

vacancies in their crystal lattices (Fig. 16). is approach combines the 

advantages of a long penetration depth for uncharged neutrons together with  

a high ionization potential of heavy ions generated homogeneously in the whole 

sample volume.  

To quantitatively assess the irradiation efficiency, the trajectories of alpha 

and Li3
7  particles in glassy melt were simulated using a Geant 4 toolkit. Projected 

range, energy deposition, and average number of ND particle hits per one alpha 

or Li3
7  particle were calculated from 106 simulated particle trajectories. e 

                                                 
3 Manuscript submitted as: Havlik, J.; Kucka, J.; Raabova, H.; Petrakova, V.; Stepan, V.; 
Zlamalova Cilova, Z.; Kucera, J.; Hruby, M.; Cigler, P.; Extremely rapid irradiation of nanoparticles 
with ions generated in situ by a nuclear reaction 
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simulation results confirmed the efficiency of this approach. e results of 

calculations for alpha particles show that one alpha particle interacts on average 

with 37 nanodiamond particles per along the ~4.0 µm trajectory. Similarly, Li3
7  

ion interacts along its ~1.7 µm trajectory with another 19 NDs (Fig. 17). 

 

 

Figure 16. General scheme of the implantation of energetic ions into NDs generated in situ by 10B 

neutron capture. (A) A capsule containing nanoparticles embedded in a glassy melt of 10B2O3 is 

exposed to a neutron flux. (B) Schematic representation of alpha and 7Li+ particles formation 

mechanism and subsequent creation of a vacancy in a nanodiamond. 

 

ese values indicate that particles generated from a single 10B split can create 

vacancies in tens of individual surrounding NDs. If the reactions of 10B atoms 

with neutrons occur randomly in the entire volume of the melt, the creation of 

vacancies can be homogenous and efficient. 

To experimentally confirm the abovementioned simulations, the glass melts 

containing 33% dispersion of 35 nm and 150 nm NDs in 10B2O3 were irradiated 

in a nuclear reactor at various time intervals ranging from 3–100 minutes. Aer 

the dissolution of the B2O3 glassy matrix, NDs were processed with annealing 

and subsequent oxidation treatment. Zeta potentials of obtained colloidal 

solutions were –46.7 mV for 35 nm particles and –41.0 mV for 150 nm particles. 

is indicates strong stabilization of the surface with the negative charge of 

deprotonated carboxylates on cleaned NDs. e absence of major aggregates and 

unchanged particle size distribution aer treatment was also confirmed by TEM 

image analysis. 
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Figure 17. Compared to 7Li+ particles, α particles interact with a higher number of ND particles and 

deposit lower energy over larger distances in 33 wt.% dispersion of 35-nm spherical NDs in 10B2O3. 

(A) The number of ND hits per one α particle and 7Li+ ion and (B) energy deposition of these  

α particles (black) and 7Li+ ions (red) along their trajectory. 

 

To find the optimal ratio between ND brightness and the necessary 

irradiation time, FLIs of NDs irradiated for 3–100 minutes were analyzed and 

compared (Fig. 18). Surprisingly, FLIs of NDs irradiated for the shortest 

technically available time (3 minutes) are fully comparable to both NDs 

irradiated for longer irradiation times (Fig. 18C). e possibility of substantial 

irradiation time reduction provides enables an increase in daily production 

output of FNDs by a factor of approximately 103. 

Further analysis of crystal lattice damage using Raman spectroscopy 

confirmed an expected increase in sp2 carbon content with increasing irradiation 

time related to lattice degradation (Fig. 18A, B). is correlates with an observed 

decrease in FLI for NDs irradiated for more than 20 minutes. e spectral 

characteristic of FNDs prepared in a nuclear reactor is similar to FNDs produced 

by direct cyclotron irradiation (Fig 18D). e single particle fluorescence 

homogeneity is increased by a factor of 2.6 in comparison with solid pellet target 

(49% vs. 19% of fluorescent particles fraction). ese values are close to the 

results achieved for a homogeneous liquid target. 
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In summary, a novel method for the production of FNDs was developed. It 

utilizes indirect irradiation of NDs with ions generated in situ from 10B-enriched 

boron oxide in neutron flux. is method provides a material with a high fraction 

of bright FNDs. Moreover, the demonstrated approach opens the doors to the 

large-scale production of FNDs for more affordable applications in bioimaging, 

nanomedicine, and quantum sensing. 

 

 

Figure 18. Spectral characterization of irradiated 35-nm and 150-nm NDs reveals how increased 

radiation damage (A, B) lowers relative fluorescence intensities (C) with increasing irradiation time 

in a nuclear reactor. (A) Content of sp3 carbon in irradiated samples. (B) Raman spectra showing 

increasing amount of sp2 impurities (below and above a diamond signal at 1332 cm–1). (C) Relative 

fluorescence intensity of irradiated samples. (D) Comparison of photoluminescence spectra of 

samples irradiated in a nuclear reactor [n-α] with samples irradiated in a cyclotron with protons [p+] 

or with α particles [α]. The spectra in (D) are normalized at their maxima. 
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5.2. Surface and shape modification of NDs 

e nature of surface groups significantly affects not only colloidal stability 

but also the fluorescence properties of NDs. Unfortunately, due to steric 

hindering, low reactivity, and the limitations of conventional analytical 

methods, the chemistry of ND surfaces still represents a challenging and 

relatively poorly understood field of synthetic chemistry. In addition to surface 

chemistry, the in vivo behavior of nanoparticles is also substantially influenced 

by their shapes and size distribution. e following section is focused on the 

development of effective methods for ND surface functionalization and shape 

and size modifications. 

 

Benchtop fluorination of FNDs on a preparative scale4 

Carbon nanomaterial fluorination methods have attracted considerable interest 

over the last two decades thanks to the ability of a C–F bond to shi optical, 

electromagnetic, and mechanical properties of nanomaterials and increase their 

hydrophobicity. In the case of FNDs, surface fluorination can stabilize the negatively 

charged form of fluorescent NV centers (NV–). Whereas traditionally used fluorination 

methods typically require harsh and technically demanding treatment conditions, the 

preparative method described in this study can be carried out on a benchtop using 

modest synthetic equipment. 

                                                 
4 Published as: Havlik, J.; Raabova, H.; Gulka, M.; Petrakova, V.; Krecmarova, M.; Masek, 

V.; Lousa, P.; Stursa, J.; Boyen, H.-G.; Nesladek, M.; Cigler, P.; Benchtop Fluorination of 
Fluorescent Nanodiamonds on a Preparative Scale: Toward Unusually Hydrophilic Bright Particles. 
Adv. Funct. Mater. 2016, 26, 4134–4142 
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To utilize the effect of surface fluorination while maintaining the colloidal 

stability of nanoparticles in water, a surface modification method based on dual 

functionality involving both fluorine and hydrophilic oxygen-containing groups 

has been proposed. Functional groups on the surface of nanodiamonds are 

represented primarily by hydroxyl, carbonyl, and ether groups, while carboxyl 

groups represent only about 2−7%. We assumed that even a limited number of 

fluorine atoms on the surface of nanoparticles would suffice to affect the spectral 

properties of NV centers. For this reason, the recently described selective partial 

substitution of carboxyls for fluorine groups was used to modify the surface, 

while hydroxyl groups, together with the remaining carboxyls, would keep the 

fluorinated NDs hydrophilic and colloidally stable in an aqueous environment. 

e procedure is based on a silver-catalyzed decarboxylative fluorination 

reaction utilizing the electrophilic fluorinating reagent Selectfluor (F-TEDA+ 

BF4−). e complex reaction mechanism is shown in Fig. 19. 

e reaction was tested at various temperatures and duration times. e 

fluorination yield of the reaction was determined by combustion of the samples 

in an oxygen atmosphere followed by an analysis of fluoride anion content using 

ion exchange chromatography. e highest fluorine content (0.13 wt%) was 

obtained for 2 days of fluorination at 95 °C. e conversion of the reaction was 

determined from the following estimate of the maximum fluoride content on the 

ND surfaces. e total number of available terminal carbon atoms on the ND 

surfaces was calculated from the size distribution of nanoparticles, obtained 

with a precise image analysis of NDs using TEM images. Assuming a [111] 

diamond surface, the maximal theoretical load of fluorine on a perfluorinated 

NDs surface is 3.7 mmol g–1. Considering the experimentally determined 

coverage of NDs with carboxyl groups as 2 % of all surface functionalities, the 

maximal total theoretical fluorine content is ≈0.14 wt%, which corresponds to  

a 94% reaction conversion for the most fluorinated sample. Although this result 

is strongly affected by the accuracy of the input value of carboxyl content, the 

fluorination proceeds with a high conversion. 
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Figure 19. Simplified scheme showing the catalytic cycle for decarboxylative fluorination of NDs. The 

ND is represented by a fragment of the diamond lattice.135 

 

Fluorinated NDs were analyzed using XPS to obtain information about the 

chemical environment of fluorine atoms from binding energy shis of 

appropriate core levels. A single line centered at 687.3 eV, corresponding to  

a transition of C–F bonds (687.5 eV), confirmed stable attachment of fluorine 

atoms to ND surfaces. A semiquantitative analysis of surface coverage resulted 

in an intensity ratio of C–C (sp3) peak at 285.3 eV and C–F shoulder at 287.4 eV 

(4.3% of line intensity). is observation confirms that the ND surfaces were 

partially functionalized. 

e colloidal behavior of fluorinated particles in water was analyzed using 

DLS and zeta-potential measurements. Both fluorinated and non-fluorinated 

control NDs have an average particle diameter of 38 nm and typical size 

distribution for HPHT NDs. is confirms that colloidal stability was not affected 
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by fluorination. e zeta-potential of fluorinated diamonds (–46 mV) differs by 

only 2 mV from the non-fluorinated diamonds (–48 mV), most likely due to 

stabilization of the surface with the remaining unreacted carboxyl groups. 

Structural and morphological analysis with TEM further confirmed that ND 

fluorination does not affect the size distribution or circularity. is observation 

indirectly confirms that, unlike other fluorination methods, radical fluorination 

proceeds without a loss of particle mass by surface etching. 

C−F termination is currently considered to be the most powerful surface 

termination for stabilization of NV– charge state. To assess the effect of surface 

fluorination on the spectral shape and NV–/NV0 ratio, fluorescence spectra 

measured in colloidal aqueous solution were quantitatively compared (Fig. 20). 

A ≈5% increase in emission intensity of the NV− state upon fluorination of 

oxidized NDs was observed. is change can be considered significant since the 

fluorine surface coverage is relatively low and the presence of oxidic groups 

already contributes to a strong inversion of surface dipole polarity. 

 

Figure 20. Fluorescence spectra of oxidized and fluorinated FNDs measured in aqueous colloidal 

solutions and normalized to NV0 intensity.135 
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In conclusion, a synthetic pathway for the selective substitution of ND surface 

carboxyl groups with fluorine atoms was developed. Mixed oxygen-fluorine 

termination on the surface of sterically demanding NDs was synthesized. In 

contrast to the traditional harsh fluorination procedures, this procedure can be 

easily performed on the benchtop under mild conditions in an aqueous 

environment. e decarboxylative fluorination boosts the fluorescence intensity 

of treated fNDs while maintaining their colloidal stability, shape, and size 

distribution. 
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Production of rounded monodisperse nanodiamonds5 

Small FNDs of suitable size for bio-applications are produced from larger HPHT 

microcrystals by grinding and rough size separation. Industrially-produced material 

prepared in this manner is relatively non-uniform in size and shape. Moreover, the 

nanoparticles contain sharp edges and spike vertexes which negatively affect their 

properties, such as the distribution in living systems or single particle fluorescence 

homogeneity. Recent studies have also shown that spiky particles may induce 

cytotoxicity in cells. e development of a simple and large-scale technique for the 

preparation of pseudospherical monodisperse nanodiamonds is thus an important 

step in the production of new diagnostic fluorescent probes or biosensors. 

Based on a review of available methods, etching in the melt of potassium 

nitrate was chosen as the most promising way to influence the size and shape of 

NDs. Preliminary studies have shown that short exposure of NDs to the oxidation 

environment of KNO3 melt at temperatures between 500–580 °C results in 

rounded NDs (RNDs) with shied size distributions. A large systematic study 

has been proposed in order to find the optimal conditions for a maximal yield of 

maximum RNDs. In the initial experiments with a small amount of NDs, it was 

found that for yield enhancement, higher temperatures and shorter etching 

times were favored. Reaction times were therefore set in a range of 

3−8.5 minutes. To prevent aggregation and to achieve rapid homogenization 

even for a large-scale reaction with 0.5 g raw NDs, small changes were made in 

the treatment procedure. Instead of slowly heating the whole mixture in  

a furnace, NDs were first homogenized with a small amount of KNO3 and then 

added to an excess of preheated KNO3 melt set to 567 °C, slightly above the KNO3 

                                                 
5 Manuscript in preparation as: Rehor, I.; Raabova, H.; Havlik, J.; Fiserova, A.; Richter, J.; 

Turner, S.; Van Tendeloo, G.; Stursa, J.; Petrakova, V.; Dai, L.; Cigler, P.; Rounded monodisperse 
nanodiamonds: properties and mass production 
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decomposition temperature. Several parameters, such as RND yield, particle size 

distribution, sp2 carbon content, and colloidal stability have been measured for 

the etched particles. e obtained data were used to determine optimal etching 

conditions, primarily considering particle circularity and reaction yield. 

e rounding effect was evaluated using image analysis of TEM pictures. e 

analysis shows that for a very short treatment time, the rounding effect increases 

at the expense of yield; however, aer 6 minutes, this effect reaches its maximum 

and further etching only causes material loss without additional rounding 

(Fig. 21).  

 

 

Figure 21. Polydisperse HPHT nanodiamonds are etched in molten potassium nitrate in order to 

round the particles while maintaining maximal reaction yield. (A) The whole etching process is 

illustrated with a series of etching times at a fixed starting temperature (567 °C); the optimum etching 

time is found at 6 minutes. (B) Number-weighted particle size distributions are shifted to larger 

particles since the small particle fractions are reduced and digested by a prolonged etching process. 

 

A more detailed image of surface morphology was obtained from a high-

resolution TEM (HRTEM) analysis. e surface of NDs treated by etching 

represents a multitude of atomic steps with preferential exposure of the [111] 

planes and a small amount of remaining sp2 impurities. It was also found that 

etching, unlike conventional oxidation by air, significantly affects particle size 

distribution. Although the etching process resulted in increased roundness and 

reduced non-diamond carbon content, the samples have remained relatively 
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polydisperse, with two major particle size populations (<10 nm and 20–50 nm). 

e fractions containing larger particles were separated to achieve brighter NDs 

for the possible application as fluorescent probes. A method involving several 

consecutive centrifugation separations was developed to remove both very small 

diamonds and large aggregates with possible impurities. An analysis of the 

obtained colloids showed an average particle size 35−40 nm and the almost 

complete removal of particles with size below 10 nm. e dispersity of particles 

(for details see Appendix G) also significantly dropped from 2.5 for original 

RNDs to 1.6 for NDs aer separation (Fig. 22). 

 

 

Figure 22. Preparation and appearance of monodisperse RNDs. (A) Particles from a manufacturer 

are rounded by etching and consequently separated by centrifugation to obtain particles of narrow 

size distribution, approximately 40 nm. The NDs drawings shown here are illustrative. (B) TEM 

micrographs of air-oxidized diamonds before etching, (C) rounded diamonds after etching, and (D) 

rounded diamonds separated by ultracentrifugation. The insets show examples of particles in the 

form of a binary image, used for image analysis. The scale bar corresponds to 100 nm for TEM 

microphotography and to 50 nm for the inset. 
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e obtained RNDs were irradiated in a cyclotron, resulting in the production 

of FNDs. e measurements of FLI using Raman spectroscopy confirm similar 

fluorescent behavior in comparison to non-rounded NDs irradiated under same 

conditions. RNDs produced by this method can therefore be used as a source for 

FNDs. 

e etching of NDs in molten potassium nitrate can be used as a rounding and 

surface oxidation procedure in the scale of grams. e optimal compromise 

etching condition between the etching yield and particle circularity was found, 

and the method for a significant decrease in material polydispersity using 

centrifugal fractionation was developed. Overall, the results show that the 

combination of etching and subsequent fractionation is an effective way towards 

the production of a monodisperse material which can be transformed into  

a fluorescent material for bio-applications. 
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5.3. Medicinal and bio-applications 

A key area for the modification of nanoparticle surfaces is the design of 

surface architectures. Materials such as amorphous silica, polymers, gold, 

proteins, nucleic acids, or fluorescent molecules are oen combined in a non-

orthodox way to achieve the desired properties of the particles. e surface of 

NDs contains a broad spectrum of functional groups. e knowledge of their 

interactions with living systems together with appropriately chosen surface 

design can utilize the enormous specific surface of NDs to scavenge large 

signalizing molecules and effectively influence their metabolic functions. 

 

Plasmonic nanodiamonds for cancer cell thermoablation6 

Plasmon nanoparticles represent a unique structural system that allows the 

construction of nanosensors and nanoparticles with theranostic (therapeutic and 

diagnostic) properties. eir specific quantum properties are illustrated by a resonant 

oscillation of conduction electrons associated with the strong absorption of certain 

wavelengths. is occurs in structures of precious metals and their composites with 

dimensions corresponding to the wavelength of the incident photons. e absorbed 

energy is effectively converted to heat by plasmon nanoparticles. is enables possible 

applications for the design of selective theranostic agents in cancer therapy by 

thermoablation. 

                                                 
6 Published as: Rehor, I.; Lee, K. L.; Chen, K.; Hajek, M.; Havlik, J.; Lokajova, J.; Masat, M.; 
Slegerova, J.; Shukla, S.; Heidari, H.; Bals, S.; Steinmetz, N. F.; Cigler, P.; Plasmonic 
Nanodiamonds: Targeted Core-Shell Type Nanoparticles for Cancer Cell ermoablation. Adv. 
Healthcare Mater. 2015, 4, 460–468. 
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To create plasmonic gold nanoparticles (PGNS), a core-shell design with 

multistep encapsulation based on ND diamagnetic cores was proposed, serving 

as a suitable dielectric and optically transparent material, covered with 

functional layers using multistep encapsulation (Fig. 23). In this study, the 

irregular shape of a 35-nm diamagnetic diamond core was normalized first with 

an approximately 20 nm thick silica shell. ereaer, small gold nanoparticles 

(2–3 nm) were electrostatically attached to the layer of silica and served as 

nucleation centers for the subsequent growth of a gold shell in the reductive 

environment containing Au(III), yielding a deep blue solution with a broad 

plasmonic band and an absorption maximum at 675 nm.  

To employ the particles in biological applications, it was necessary to protect 

them against aggregation caused by high ionic strength and to prevent 

undesirable interactions with the immune system. is was achieved using 

polyethylene glycol (PEG) polymer nanointerface functionalization, consisting 

of PEG terminated with lipoic acid at one end and aliphatic alkyne at the other. 

e lipoic acid served as an anchor with a strong affinity to the gold surface. e 

alkyne groups allowed the subsequent connection of the requested biomolecules 

by a “click reaction”: Cu(I)-catalyzed alkyne-azide cycloaddition. e functional 

design was confirmed with subsequent colloidal stability tests. ese tests 

showed high colloidal stability in PBS, the physiological solution, and even in 

the cell growth media. 

To obtain fluorescent particles for flow cytometry and confocal microscopy 

analysis, the alkyne-bearing surface was conjugated with an Alexa Fluor 647-

azide dye. Aer this step, human holotransferrin (Tf) was conjugated to the 

remaining alkynes with a ”click reaction” under similar conditions. is 

glycoprotein was recognized by the corresponding receptor (TfR) expressed in 

an increased amount on the surface of cancer cells and may thus serve as a 

targeting ligand for internalization through clathrin-mediated endocytosis. 
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Figure 23. (A) Schematic representation of PGNS preparation. The particles contain a diamond core 

encapsulated in a silica layer, which is then covered with a gold plasmonic shell and protected by a 

PEG surface modification. (B) A slice through the 3D representation of the gold shell demonstrating 

its homogeneity. (C) The absorption spectrum of PGNS in water at 15 μM concentration. Adapted 

from Ref.106 

 

Target-specificity and cellular uptake of particles were evaluated in 

TfR-expressing SKBR3 cells (a human breast cancer cell line) using flow 

cytometry. e analysis indicated that PGNS with attached transferrin (PGNS-Tf) 

was targeted to 26% of the cell population, while non-specific uptake of PGNS 

without transferrin (PGNS-nTf) was attributed to 18% of the cells. e fate of 

the particles in cells was investigated by confocal microscopy. e data 

confirmed that even though both formulations can bind to cellular membranes, 

only PGNS-Tf is internalized. Moreover, aer 24-hour incubation, the cells with 

PGNS did not show any significant differences in cell viability compared to non-

treated cells. is indicates that PGNS are not cytotoxic. 

e ability of PGNS to kill cancer cells with thermoablation was demonstrated 

in vitro. HeLa cells were incubated with PGNS-Tf, washed, and irradiated with  

a :Sapphire pulse laser (37W/cm2). Aer one minute of irradiation, cells were 

incubated for 24 hours and their viability was estimated. e viability of HeLa 
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cells exposed to laser radiation alone or PGNS-Tf alone was not affected. Only 

the cells exposed to both nanoparticles and laser irradiation were affected and 

almost completely ablated (Fig. 24). 

A novel plasmonic nanomaterial consisting of nanodiamond core coated with 

a silica layer and encapsulated in a thin gold nanoshell was synthesized. e 

attached PEG chains were modified with Alexa Fluor 647 dye and transferring by 

“click chemistry”. e ability of PGNS-Tf to bind and internalize into an SKBR3 

human breast cancer cell was observed with no toxic effects. e ability of 

internalized PGNS-Tf to kill cancer cells upon 750 nm pulse laser irradiation 

while leaving cells without PGNS-Tf treatment viable was demonstrated in vitro. 

 

 

Figure 24. HeLa cells incubated with PGNS-Tf nanoparticles after laser ablation with 37 W/cm2 

intensity. The viability was estimated by luciferase assay with 24 h delay after 1 minute irradiation. 

The viability of cells treated with PGNS-Tf and laser was ≈0.15%. The viability of cells in controls 

without laser ablation or without PGNS-Tf stayed unchanged. Adapted from Ref.106 
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DNDs as a specific inhibitor of fibroblast growth factors7 

Numerous observations in living systems indicate that the surface of nanoparticles 

interacts with a broad range of proteins thanks to a high surface to volume ratio and 

the possibility of polyvalent display of binding site. is feature can significantly affect 

their pharmacokinetic and pharmacodynamic behaviors and enable their application 

in targeted drug delivery systems. Even though the specificity of nanoparticle-protein 

interactions with regard to the composition of functional groups on the surface is still 

not well understood, research in this area holds great potential. e steric, 

thermodynamic, and kinetic similarity of certain nanoparticles to biomolecules such 

as globular proteins may allow binding, blocking, and mimicking of specific proteins 

in living organisms. is may have a dramatic effect on cell behavior, even at negligible 

nanoparticle concentrations. 

In this study, we identified the strong interaction between NDs and members 

of fibroblast growth factors (FGF) already at sub-nanomolar concentrations. 

FGFs represent a large family of polypeptide growth factors. FGFs are involved 

in angiogenesis, embryonic development, and various signaling pathways. ey 

also play an irreplaceable role in cell proliferation, migration, and 

differentiation. Some FGFs can also contribute to the pathogenesis of cancer.136  

e hypothesis that NDs inhibit FGF signalizing in cells was tested on rat 

chondrosarcoma cells (RCS). ese types of cells were chosen because of their 

well-characterized array of cell phenotype changes in response to the activation 

FGF receptors. Cells with a growth-arrest caused by preincubation with FGF2 

were treated with five different types of NDs that varied in size, synthesis 

method, origin, and zeta-potential (Fig. 25 A, B). Activity was shown in the case 

of a DND sample with positive zeta-potential, which, unlike other NDs, rescued 

                                                 
7 Manuscript submitted as: Balek, L.; Buchtova, M.; Foldynova-Trantirkova, S.; Havlik J.; 

Varecha, M.; Turner, S.; Vesela, I.; Klimaschewski, L.; Claus, P.; Trantirek, L.; Cigler, P.; Krejci, 
P.; Nanodiamonds as artificial proteins: regulation of a cell signalling system using picomolar solutions 
of inorganic nanocrystals 
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the growth-arrest caused by FGF2. It was anticipated that this interaction might 

be size dependent. erefore, a fraction of DNDs with different sizes and size-

distributions were separated using ultracentrifugation. e rescue of FGF-

mediated RCS growth arrest was more effective as the size of DNDs particles 

decreased (Fig. 25C).  

 

Figure 25. (A) Zeta-potential of NDs employed. ND-HPHT – smallest isolated fraction of HPHT NDs, 

ND-PL and ND1 – DNDs with negative and positive zeta-potentials, respectively. (B) Size distribution 

of DND fractions separated from ND1 by ultracentrifugation measured by DLS. ND2 – supernatant 

after ND1 centrifugation at 15,000 rfc, 2 h. ND3 – supernatant after subsequent ND2 centrifugation 

at 30,000 rfc, 2 h (C) ND inhibition of FGF2 signalizing in cells. RCS cells were treated in medium 

containing 10% FBS serum with FGF2 (10 ng/ml) alone or together with four types of fNDs differing 

in zeta-potential and particle size. 

 

To exclude the influence of any other compound in the form of a minor 

impurity, DND colloidal solutions were dialyzed five times against DI water and 
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tested for activity. A second test was performed on a supernatant obtained from 

DNDs ultra-centrifuged at 200,000 g for 4 hours. While the washed DNDs 

retained their activities unchanged, their supernatant without detectable DNDs 

did not inhibit FGF2 signaling in RCS cells. ese results indicate that positively 

charged DNDs are responsible for the observed effect. 

To gain insight into the mechanisms of ND-mediated inhibition for FGF 

signaling, the effect of DNDs on activation of FGF receptors was analyzed. e 

absence of FGF2-mediated phosphorylation of signaling mediators indicates an 

inhibition of extracellular signal–regulated kinase (ERK) activation. 

All the aforementioned experiments were successfully performed in tissue 

culture media containing 10% fetal bovine serum (FBS). e total concentration 

of proteins in the solution was 105-fold higher when compared to FGF, and the 

concentration of extremely diluted DNDs was ≤10 µg/ml. is corresponds to 

approximately ≤50 pM. ese findings illustrate the remarkably strong nature of 

FGF2−DND interactions. 

e specificity of DNDs was further investigated on other ligands belonging 

to the FGF family. Studies of RCS and MCF7 (human breast cancer) cells proved 

that ERK activation mediated by FGF2,9,18 and FGF7,10,22, respectively, could 

be rescued using DND treatments. It was also demonstrated that DNDs do not 

interfere with five FGF-unrelated ligand-receptor systems (TGF, IL6, IFN, EGF 

and NGF). 

e mechanisms of DND actions were also studied with the hypothesis that 

DNDs inhibit FGF signaling by the sequestration of FGFs from receptors. To 

confirm the mechanism, human recombinant FGFs were incubated with DNDs 

in a DMEM (Dulbecco’s modified Eagle's minimal essential medium) 

supplemented with fetal bovine serum. DNDs were collected aerward using 

ultracentrifugation and analyzed for the presence of FGF with FGF-specific 

antibodies. Efficient depletion of recombinant FGF 1,4,8,10,14, and 22 was 

found. However, clearance was less effective for FGF hormones (FGF 19,21, and 

23) and insignificant for other cytokines (IL6, IFNγ and IL1β). e less efficient 
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depletion of FGF19,21, and 23 can be explained by their structure which 

contains impaired heparin binding site (HBS). is hypothesis was tested by 

substituting FGF23 with a chimeric FGF23 protein with inserted HBS from 

FGF2. e addition of HBS significantly improved the clearance of FGF23 from 

the culture media, demonstrating that HBS contributes to the specific interaction 

of FGFs with DNDs. 

e effect of DNDs on FGF signaling obtained on RCS cells was further 

extended in a study of in vitro cultures of limb rudiments isolated from mouse 

CD1 embryos (Fig. 26). Continuous treatment with FGF2 without DNDs caused 

significant inhibition of limb rudiment growth accompanied by a reduction in 

hypertrophic cartilage evidenced by changes in growth plate anatomical 

appearance. is effect was suppressed by a treatment with DNDs, which 

partially rescued the FGF2 growth-inhibitory effect, including restoration of the 

hypertrophic cartilage. Moreover, the normal growth of limb rudiments with 

DNDs in the absence of FGF2 suggests a negligible influence of DNDs on FGF-

unrelated signaling pathways.  

 

Figure 26. The length differences of tibias isolated from mice embryos after 8 days cultivation with 

FGF2 and two fractions of DNDs varying in mean particle size (ND2 and ND3). Statistically significant 

differences are highlighted (Student's t-test, ***p<0.001). The results are a compilation of six 

independent experiments; n is the number of tibias analyzed. 

 

Up to now, an unexplored system for selective protein-protein regulation 

using purely inorganic nanoparticles in biological environment has not yet been 
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discovered. It was found that DNDs with a positive zeta-potential can interact 

with members of FGF growth factor family and sequester FGFs at their 

biologically relevant concentrations. DNDs compete by this interaction with 

FGFR which can mitigate their inhibitory effects on cell growth. is type of 

regulation was found to be highly selective, without any influence on other 

signaling systems unrelated to FGF. e ability of DNDs to mitigate pathologic 

FGF signaling was demonstrated using a restoration of cartilage growth in  

a mouse limb rudiment model. Moreover, no manifestation of DND toxicity was 

observed. ese findings suggest the potential applicability of DNDs in the 

treatment of diseases and regulation of signal transduction in biological systems. 

e high selectivity and strength of interaction between DND and FGF could also 

be used in novel biotechnology applications. 

 



 

71 

 

 

6. Conclusions 

is thesis was devoted to the research and development of surface-modified 

fluorescent nanodiamonds. In the theoretical introduction, the properties of 

NDs were summarized using relevant literature. Attention was devoted mainly to 

the question of fluorescence because this property makes NDs unique. In 

addition to highlighting the strong points and successful employments of NDs, 

the study also describes weaknesses preventing possible wider use do date. 

ese findings were used to formulate the aims of this work. In the first 

section of the practical part, new nanodiamond irradiation procedures were 

developed to produce NDs that have a tenfold higher fluorescence intensity and, 

compared to previously described materials, an increased fraction of fluorescent 

NDs within the material and lower surface damage caused by graphitization. e 

newly developed method of indirect neutron irradiation in the nuclear reactor 

also enabled shortening the required irradiation time to just minutes as well as 

opening the door to cheap and fast preparation of up to a hundredfold larger 

amount of FNDs. Findings were summarized in two papers in impact journals 

and one manuscript, currently under review. 

e second section was focused on investigating influences on the size, shape, 

and surface chemistry of NDs. As a new approach to direct modification of the 

surface of NDs, a synthetic pathway utilizing selective substitutions of carboxyl 

groups with fluorine atoms was developed. e effect of this partial surface 

substitution on the stabilization of NV– centers was also demonstrated. e 

published results constitute an experimental foundation for future studies 

utilizing the described effects in sensing. Further, a novel shaping process which 

combines treatment of NDs in molten KNO3 and subsequent size-sorting of the 
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nanoparticles by ultracentrifugation was developed. With this combined 

technique, the feasibility of obtaining rounded particles with narrow 

polydispersity was illustrated, providing one of the key assumptions for possible 

future in vivo applications. e article summarizing this research is currently 

being prepared for publication. 

e last section of the experimental part focused on applications of NDs in 

the biosciences. is section consisted of two projects differing in approach. e 

first study built on the development of a plasmonic surface architecture on the 

NDs aimed at recognition and internalization of cancer cells and their 

subsequent destruction with laser irradiation. e synthesized material showed 

an ability to bind and internalize into SKBR3 cancer cells in vitro and kill them 

upon 750 nm pulse laser irradiation while leaving untreated cells untouched. e 

obtained results were summarized in a publication in an impact journal. e 

second project identified highly selective binding between DNDs with a positive 

zeta-potential and FGFs. e occurrence of DNDs in picomolar concentration in 

the cell medium effectively inhibited FGF-related signal pathways, while the 

function of other signal proteins remained unaffected. is ability was confirmed 

in both in vitro and ex vivo models. Moreover, no toxicity of DNDs was observed. 

e manuscript bringing the results of this study showing the great potential of 

NDs for the regulation of signal transduction was, at the time of writing this 

thesis, undergoing review. 

e multifaceted, multidisciplinary nature of nanodiamond research which 

pervades this thesis demonstrates how scientific wealth oen hides behind the 

boundaries of established disciplines. It is very difficult to make predictions 

about the future development of a rapidly growing field such as nanodiamond 

research or even nanotechnology in general. However, it is certain that the most 

fruitful research paths will be led primarily by intensive and close cooperation of 

scientists from diverse fields. 
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