
DOCTORAL THESIS

Ahmad Aghaebrahimian

Hybrid Deep Question Answering

Institute of Formal and Applied Linguistics

Supervisor of the doctoral thesis: RNDr. Martin Holub, Ph.D.

Study programme: Computer Science

Study branch: Mathematical Linguistics (4I3)

Prague 2018

I declare that I carried out this doctoral thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In date signature of the author

i

I would like to express my gratitude to my supervisor Dr. Martin Holub for his
valuable feedbacks and continuous help. I also appreciate my ex-supervisor Dr.
Filip Jurčíček for his helpful advice and discussions as well as providing me with
an excellent opportunity to grow professionally. I am in debt for the enlightening
guidance I received through the classes by my senior colleagues Prof. Jan Hajič,
Dr. Pavel Pecina, Dr. Zdeněk Žabokrtský, and Dr. Martin Popel too. I would
also like to thank my fellow friends Lukáš Žilka, Ondřej Dušek, Natalia Klyueva,
and Ondřej Plátek for their many bits of help through my studies at the Institute
of Formal and Applied Linguistics.

Last but not least, I would like to express my appreciation to my family for
their constant encouragement and support through all these years.

ii

Title: Hybrid Deep Question Answering

Author: Ahmad Aghaebrahimian

Institute: Institute of Formal and Applied Linguistics

Supervisor: RNDr. Martin Holub, Ph.D., Institute of Formal and Applied Lin-
guistics

Abstract: As one of the oldest tasks of Natural Language Processing, Question
Answering is one of the most exciting and challenging research areas with lots
of scientific and commercial applications. Question Answering as a discipline in
the conjunction of computer science, statistics, linguistics, and cognitive science
is concerned with building systems that automatically retrieve answers to ques-
tions posed by humans in a natural language. This doctoral dissertation presents
the author’s research carried out in this discipline. It highlights his studies and
research toward a hybrid Question Answering system consisting of two engines
for Question Answering over structured and unstructured data. The structured
engine comprises a state-of-the-art Question Answering system based on knowl-
edge graphs. The unstructured engine consists of a state-of-the-art sentence-level
Question Answering system and a word-level Question Answering system with
results near to human performance. This work introduces a new Question An-
swering dataset for answering word- and sentence-level questions as well. Start-
ing from a simple Logistic Regression model, the author presents more advanced
models including multi-layer Neural Network, Convolution Neural Network and
Recurrent Neural Network solutions for different Question Answering systems
mentioned above. Although the core of all developed modules in this work are new
Deep Neural Network architectures, several linguistic intuitions such as phrase
structure theory and constituency relations are integrated into them to improve
their performance.

Keywords: Question Answering, Word-level Question Answering, Sentence-level
Question Answering, Neural Network, Knowledge Graph, Convolution Neural
Network, Recurrent Neural Network, Constituency Relation

iii

Název práce: Hybridní hluboké metody pro automatické odpovídání na otázky

Autor: Ahmad Aghaebrahimian

Ústav: Ústav Formální a Aplikované Lingvistiky

Vedoucí disertační práce: RNDr. Martin Holub, Ph.D., Ústav Formální a Ap-
likované Lingvistiky

Abstrakt: Automatické odpovídání na otázky jakožto jedna z nejstarších úloh
z oblasti zpracování přirozeného jazyka je jednou z nejzajímavějších a nejná-
ročnějších oblastí výzkumu s množstvím vědeckých a komerčních uplatnění. Od-
povídání na otázky jakožto disciplína se ve spojení s informatikou, statistikou,
lingvistikou a kognitivní vědou zabývá tvorbou systémů, které automaticky vy-
hledávají odpovědi na otázky kladené lidmi v přirozeném jazyce. Tato doktorská
disertační práce představuje autorův výzkum uskutečněný v uvedené oblasti. Au-
tor předkládá především své studie a výzkum zaměřený na hybridní systémy
pro odpovídání na otázky zahrnující vyhledávací stroje pracující jak se struktu-
rovanými, tak s nestrukturovanými daty. Jádrem strukturovaného vyhledávacího
stroje je state-of-the-art systém založený na znalostních grafech. Nestrukturovaný
vyhledávací stroj je tvořen state-of-the-art systémem pro odpovídání na otázky
na větné úrovni a systémem pro odpovídání na otázky na úrovni slov s výsledky,
které se blíží tomu, čeho dosahují lidé. Tato práce představuje také nově vy-
vinutý standardní soubor “zlatých” dat pro odpovídání na otázky jak na větné
úrovni, tak na úrovni slov. Počínaje jednoduchým modelem logistické regrese,
autor postupně prezentuje pokročilejší modely včetně řešení pomocí vícevrstvé
neuronové sítě, konvoluční neuronové sítě a rekurentní neuronové sítě pro různé
výše uvedené systémy pro odpovídání na otázky. Přestože jádrem všech modulů
vyvinutých v této práci jsou nově navržené struktury hlubokých neuronových sítí,
je do nich také zaintegrováno několik principů založených na jazykové intuici jako
např. teorie frázové struktury a vztahy konstituentů, a to za účelem zlepšení
jejich výkonnosti.

Klíčová slova: Odpovídání na otázky, odpovídání na otázky na úrovni slov, od-
povídání na otázky na úrovni vět, neuronová síť, znalostní graf, konvoluční neu-
ronová síť, rekurentní neuronová síť, vztah konstituentů

iv

Contents

1 Introduction 4
1.1 Hybrid Open-Domain QA . 5

1.1.1 Structured Engine . 9
1.1.2 Unstructured Engine . 9

1.2 Objectives and Contributions . 11
1.3 Organization of the thesis . 12

2 Essentials 15
2.1 Machine Learning Basics . 15

2.1.1 Logistic Regression . 15
2.1.2 Neural Networks . 19
2.1.3 Convolution Neural Networks 20
2.1.4 Recurrent Neural Network 22

2.2 Knowledge Graph . 26
2.3 Similarity Measures . 28
2.4 Evaluation Metrics . 31

3 An Overview of Question Answering Systems 34
3.1 Question Answering: Methods . 37
3.2 Question Answering: Architectures 40

3.2.1 Question Processing . 41
3.2.2 Passage Retrieval . 42
3.2.3 Answer Ranker . 42
3.2.4 Question Analyzer . 43
3.2.5 Answer Selector . 43
3.2.6 Answer Validator . 44

4 Existing Datasets for Question Answering 45
4.1 WikiQA . 45
4.2 TrecQA . 45
4.3 SimpleQuestions . 46
4.4 SQuAD . 47
4.5 MS MARCO . 47

1

4.6 Q2AD . 48

5 Quora Question Answering Dataset 49
5.1 Introduction . 49
5.2 Dataset Compilation . 50

5.2.1 Question Screening . 51
5.2.2 Passage Selection . 52
5.2.3 Answer Annotation . 53

5.3 Evaluation . 54
5.4 Conclusions . 55

6 Structured Question Answering 56
6.1 Introduction . 56
6.2 Method . 57
6.3 Training . 60

6.3.1 Property Detection . 61
6.3.2 Entity Detection . 63
6.3.3 Entity Disambiguation . 65

6.4 Experiment . 65
6.5 Results . 66
6.6 Error Analysis . 67
6.7 Conclusions . 68

7 Sentence Selection 70
7.1 Introduction . 70
7.2 Architecture . 71
7.3 Dataset . 75
7.4 Experimental Results . 76
7.5 Conclusions . 77

8 Unstructured Question Answering 79
8.1 Introduction . 79
8.2 Constituency Relations . 82
8.3 System Architecture . 83

8.3.1 Representation Learning 83
8.3.2 Training . 87

2

8.4 Dataset . 88
8.5 Experiment . 89
8.6 Results . 90
8.7 Ablation and Error Analysis . 91
8.8 Conclusions . 93

9 Conclusion 95

Acknowledgments 97

Bibliography 98

List of Figures 111

List of Tables 113

A Structured Models 116
A.1 Features . 116
A.2 Hyper-parameters . 116

B Sentence-Level Models 118
B.1 Hyper-parameters . 118

C Unstructured Models 119
C.1 Hyper-parameters . 119
C.2 Constituent Types . 119

D Q2AD 120

E List of Publications 121

3

1. Introduction

Question Answering (hereinafter, QA) as a commercially appealing and scientifi-
cally challenging research area has fascinated many engineers and scientists from
the earliest days of artificial intelligence in the 60’s. QA has been even suggested
to replace the Turing test as a measure of intelligence (Clark and Etzioni, 2016).
It has gained worldwide fame since IBM Watson (Ferrucci et al., 2010) beat two
lifelong champions of Jeopardy quiz show in 2011 with a large margin.

Although many significant strides have been made in recent years in this field,
QA is still far from being solved. Until recently with some few exceptions (e.g.,
IBM Watson), QA was mainly limited to some expert systems in limited domains
such as air traffic information systems.

Nowadays, however, due to substantial public interest in information access,
open-domain QA systems have attracted much more attention. The emergence
of big data repositories, textual databases, knowledge graphs, various social net-
works, and generally the Internet in addition to the introduction of some advanced
learning techniques such as Deep Neural Networks (DNN) have all opened up an
excellent opportunity for developing open-domain QA systems. These systems
have posed a challenge and an opportunity in the field at the same time. They
are challenging because inferring the answer of a question among so much data is
not a trivial task. They also offer an opportunity, because they pave the way for
developing a wide array of useful applications such as dialogue systems, tutoring
systems, scientist’s assistants, etc.

In recent years, open-domain QA systems succeeded to make use of knowledge
graphs efficiently and successfully (Aghaebrahimian and Jurčíček, 2016a; Bordes
et al., 2015; Berant et al., 2013). Knowledge graphs (e.g., Freebase (Bollacker
et al., 2007)) are large ontologies of concepts and their relations1. They are clean,
efficient and scalable data structures for entity detection and relation extraction.
However, they are sparse, and they lack many entities, and properties2. It is
because new concepts and properties are always being evolved and any newly
compiled knowledge graph today, irrespective of how much comprehensive it is,
will be obsolete after passing some relatively short time.

Moreover, knowledge graphs are only able to provide an answer to structured
1To read more and get the basics of knowledge graphs, please see Section 2.2.
2An entity is a popular thing, place or person. A property is an attribute which is defined

by an entity.

4

or factoid questions. Factoid questions are those questions which ask about an
entity. In contrast, unstructured questions are mostly seeking for a non-entity
answer such as a definition or any span of consecutive words.

Unstructured3 QA (Rajpurkar et al., 2016) is a somewhat new challenge in
open-domain QA in which the questions are answered by searching through or
reasoning over semi-structured or unstructured repositories of data like Wikipedia
or the Internet. This type of QA can be defined with different granularities, from
sentence-level to phrasal or word-level QA. Compared to structured QA systems
based on knowledge graphs, unstructured QA is much more computationally
demanding.

To answer structured and unstructured questions by making use of the rich
data structure of knowledge graphs and the dynamic and evergrowing structure of
Wikipedia, we have developed a hybrid system which consists of two modules: the
unstructured module which extracts answers from Wikipedia and the structured
module which extracts answers from a knowledge graph. In the next section, we
describe our hybrid QA system in more details.

1.1 Hybrid Open-Domain QA

In a broad perspective, QA systems fall into domain-dependent and domain-
independent systems.

In domain-dependent systems, the questions are limited to a specific domain
like health care. In these systems, the entities (e.g., different drugs, diseases,
products, etc.) and properties (e.g., symptoms, side effects, etc.) are limited and
already defined.

A domain-independent or open-domain QA system, in contrast, recognizes a
non-deterministic number of entities and properties. It requires having access to
a significant source of information like knowledge graphs. Some knowledge graphs
are big enough to accommodate millions of entities and thousands of properties.
However, they have some issues which limit their functionality for open-domain
QA.

Knowledge graphs are not dynamic, and due to sparsity inherent in them, they
cannot recognize new entities and properties. For instance, consider ‘Parenthood’
as a typical property in a typical knowledge graph like Freebase. One can query

3Free text or non-factoid QA are other names for this type of QA.

5

‘Barack Obama’ for his parents, however querying ‘Brad Pitt’ for his parents
returns no answer because the node of ‘Brad Pitt’ in the Freebase graph has no
value for ‘Parenthood’ property.

In an open-domain system, new entities and properties are evolved continu-
ously. Therefore, the system should be able to get new knowledge steadily. This
process should be done automatically and without any human intervention. The
other problem with knowledge graphs is that they are not designed to answer
non-factoid questions.

One feasible solution for addressing these issues is to use the Internet to sup-
port the knowledge graph for its missing facts. The Internet is a dynamic source
of information. However, compared to knowledge graph-based models, web-based
QA models usually perform sub-optimal in answering factoid questions.

By a hybrid open-domain system (Aghaebrahimian, 2017c), we mean a unified
system which is composed of a knowledge graph and a web-based QA models.
Integrating these two technologies in a system makes up for the deficiencies of
each and makes the final performance superior to the one of each.

In the rest of this section, we enumerate three classes of questions that our
hybrid system is designed to answer. Then, we explain the type of reasoning re-
quired to answer each class. Finally, we describe the architecture of our system.
We use the following passage as a reference context for all the following questions.

On May 21, 2013, NFL owners at their spring meetings in Boston voted and
awarded the game to Levi’s Stadium. Troy Vincent, the NFL vice President, then
went to have a meeting with the authorities of the stadium.

Our hybrid system is designed to answer these three categories of questions.

1. Structured questions with available answers in a knowledge graph:

Structured questions are answered by querying a knowledge graph using one
property and one entity.

Question: Who is the vice president of NFL?
Entity: NFL
Property: Vice President
Answer: Troy Vincent
Reasoning: Knowledge graph types and lexical distance

6

2. Structured questions with non-available answers in a knowledge graph:

Similar to the questions in the previous group, the answers to these questions
are an entity. However, due to sparsity, their answers are not available in
a knowledge graph. These questions are answered using unstructured search
techniques.

Question: Who did award the games to Levi’s Stadium?
Property: game_awarded_by
Entity: Levi’s Stadium
Answer: NFL owners
Reasoning: Constituency and neural

3. Unstructured questions with available answers on the Internet:

Unlike the questions in two previous groups, the answers to these questions
are a definition, description or generally a span of consecutive words. These
questions are answered using unstructured search techniques too.

Question: What decision did NFL owners make On
May 21, 2013?

Answer: Awarded the game to Levi’s Stadium
Reasoning: Constituency and neural

We explain the components required for answering the first class of questions in
Chapter 6. Then we describe the components necessary for answering the other
two classes of questions in Chapters 7 and 8 respectively. All the components are
depicted in the system architecture in Figure 1.1. In this figure, the components
in green are used for doing preprocessing tasks for which we use available off-the-
shelf toolkits. They include:

• A syntactic parser and an embedding module: The syntactic parser gener-
ates constituency parse trees for the system. We use the Stanford Core NLP
toolkit (Manning et al., 2014) in this module. We also use NLTK toolkit
to perform some preprocessing and normalization tasks like tokenization,
removing stop words, removing punctuation, etc. The embedding module
is implemented in three ways; as a look-up table which is trained using
available training data, as a pre-trained model using Word2Vec (Mikolov
et al., 2011) toolkit and using pre-trained Glove vectors (Pennington et al.,
2014a).

7

Question

Answer

Knowledge Graph

Property Detection

Entity Recognition

Free Texts

Sentence Selection

Preprocessing

Answer Selection

Unstructured
Engine

Structured
Engine

Figure 1.1: General system architecture

The components in orange are the data sources from where the answers are
extracted. They include:

• Free texts component which is a corpus of Wikipedia articles included in
the SQuAD (Rajpurkar et al., 2016) dataset.

• Knowledge graph which is a copy of the Freebase (data dumps, 2015) loaded
into the Virtuoso engine.

The blocks in blue are the components of the structured engine for answering
factoid questions. They include:

• Property detection component which returns a distribution over the sys-
tem’s properties given each question.

• Entity recognition component which selects the best matching entity given
each question.

The red blocks are the components of the unstructured engine for answering
unstructured questions. They include:

• Sentence selection component which selects the best possible answer sen-
tence given a question.

• Answer selection component which selects the shortest best answer from
the best-selected sentence.

8

In the rest of this section, we briefly introduce the structured and unstructured
engines. For a more exhaustive description of the system modules, please refer
to Chapters 6, 7, and 8 for Structured QA, Sentence Selection, and Unstructured
QA modules respectively.

1.1.1 Structured Engine

The structured engine is optimized to answer factoid questions (i.e., questions in
the first class). It makes use of two components: property detection and entity
recognition.

The property detection component uses different models to estimate a distri-
bution over its knowledge graph properties given each question. It generates a
list of n-best property for each question.

Given a list of n-best property and a question, the entity recognition compo-
nent reasons over all possible entities available in the question to select the best.
The reasoning process is two folded; reasoning over the types of the entities4 and
reasoning over the similarity between knowledge graph’s entities and question’s
entities. It computes a score for each possible combination of properties and en-
tities in a given question and returns the highest scored combination as the best
answer.

1.1.2 Unstructured Engine

The unstructured engine answers unstructured questions (i.e., the second and the
third class of questions explained above). Given a question and a paragraph, the
task in unstructured QA is to extract the shortest possible span of words out of
the accompanying context (e.g., paragraph). Statistically, we are interested in
estimating

p(a|q, p)

where a is an answer given question q and paragraph p. Maximizing this
4To read more about the knowledge graph typing system, please refer to Fig.2.5 and Sec-

tion 2.2 for description.

9

probability returns the most probable answer given each question.

abest = argmaxa p(a|q, p)

We decompose this objective into two objectives; one for sentence selection
and the other for answer extraction.

Sentence Selection. Since the search space in a paragraph for searching all
possible span of words is too big, in the first step, the Sentence Selection compo-
nent selects a sentence which contains the answer and limits the search space to
the spans available in it.

sbest = argmaxs∈p p(s|q)

In some applications, we are interested not only in the answer but also in the
evidence based on which the question is answered. The best sentence selected by
this component is also used as an evidence to support the extracted answer.

Sentence Selection component provides a mean of early error detection as well.
If it could not find a sentence with confidence higher than a predefined threshold,
it asks the user to rephrase the question. It prevents providing the user with
irrelevant or false information.

Answer Selection. Given a question and its best-selected sentence by the
Sentence Selection component, the job of the Answer Selection component is to
extract the shortest span of consecutive words as the final answer.

abest = argmaxa∈sbest p(a|q)

10

In our system, structured questions are provided with a knowledge graph while
unstructured questions are equipped with a textual database (e.g., Wikipedia).
Therefore, depending on the input data which is provided with each question
either one of the unstructured or structured engines retrieves an answer and
returns it to the user.

1.2 Objectives and Contributions

The goal of this thesis is to explore and advance state of the art in Question
Answering by integrating new deep neural architectures and addressing some of
its issues such as scalability, domain dependence, and answer quality.

The core of this thesis consists of the material that the author has already
published in the form of several scientific papers (Aghaebrahimian and Jurčíček,
2016a,b; Aghaebrahimian, 2017a,b, 2018a,b) accepted and presented at inter-
national scientific conferences including NAACL, COLING, CoNLL, and TSD
among others.

The contributions of this work are the following:

• Property-driven QA:

State-Of-The-Art and highly scalable structured QA

While the space of entities in an open-domain QA system in infinite, the
scope of properties is usually much smaller and finite. In this system, we
proposed to break the process of Question Answering into two separate
processes; one for detecting the property of a question and the other for
recognizing the entity from a knowledge graph. With this formulation, our
system not only beat the state-of-the-art in simple Question Answering but
also scaled up to a knowledge graph with more than fifty million entities
while other systems were limited to at most five million entities.

• Multi-part QA dataset:

A small dataset for unstructured sentence- and word-level QA

This work proposed a new challenge to QA datasets, and that is answering
questions with chunks of texts taken from different parts of the accompa-
nying text. This feature adds a new layer of complexity to QA systems for
answering the questions whose answers are not limited to only one section
of text.

11

• Deep Sentence Selection:

State-of-the-art unstructured sentence-level QA

We proposed a neural architecture using which we can enforce textual fea-
tures (e.g., textual similarity) as a hard constraint at the time of training.
We also demonstrated that our architecture is highly effective when inte-
grated with the transfer learning technique.

• Constituency-based QA:

Unstructured word-level QA with results near-to-human performance

We proposed an architecture which can be trained on linguistic constituents
hence generating more eloquent and valid answers and in this way enhancing
the overall answer quality of the QA system.

1.3 Organization of the thesis

We organize the remaining of this thesis in the following chapters based on which
different groups of readers may decide which chapters they would like to read.

In chapter 2, we describe some essential terminology and techniques that are
going to be used frequently in the rest of the thesis. This chapter includes a section
on Machine Learning (ML) techniques including, Logistic Regression, standard
Neural Networks (NN) as well as Recurrent, and Convolution Neural Networks
(RNN, CNN). We include a section in this chapter to describe the structure
and characteristics of Freebase (Bollacker et al., 2007). We also enumerate the
evaluation metrics which are used in our different experiments and the similarity
measures which are used as semantic similarity metrics in further chapters.

In chapter 3 a comprehensive literature review on QA is presented. In this
chapter, we describe various models, methods and state-of-the-art systems of QA.

In Chapter 4 we enumerate several datasets which have been used for system
evaluation in our work. This chapter is a prelude to the next one in which we
introduce our Quora Question Answering Dataset (Q2AD).

Chapter 4 is the last introductory research part of this thesis. The next
chapter makes the borderline where the author’s own contribution to the field
starts.

Chapter 5 describes the process of compiling the Q2AD dataset, a multi-part
dataset for unstructured sentence- and word-level QA. We use this dataset to eval-

12

uate our Sentence Selection system presented in Chapter 7. The content of this
chapter is based on a paper (Aghaebrahimian, 2017b) presented and published
by the thesis author during his Ph.D. program.

In Chapter 6 we describe our QA system for answering structured questions
using knowledge graphs. This chapter is taken from a paper (Aghaebrahimian
and Jurčíček, 2016a) which was prepared by the thesis author together with
his supervisor and was published at the Human-Computer Question Answering
workshop at NAACL 2016. Sections 2.2 and 2.4 and Chapter 4 are prerequisite
readings for this chapter.

In Chapter 7 and 8 two deep neural models are introduced for unstructured
sentence-level and word-level QA respectively.

Chapter 7 describes a state-of-the-art sentence selection architecture accom-
panied by the experiments on Q2AD and two other well-studied datasets. The
content of this chapter is the shortened text of a paper (Aghaebrahimian, 2017a)
which was published at TSD 2017 and was prepared by the thesis author while
he was working on his Ph.D. thesis.

Chapter 8 describes a neural model enhanced by constituency relations and
optimized for answering unstructured word-level questions. The content of this
chapter is taken from a paper (Aghaebrahimian, 2018a) which was written by the
thesis author during his Ph.D. study and was published in the proceedings of the
CoNLL 2018 conference.

Our respected readers with different interests may choose where to start by
checking the reading plan in Figure 1.2.

Figure 1.2: The thesis reading plan

13

Although we have tried to keep the chapters self-contained as much as possible,
some of them have some dependencies on other chapters which are illustrated in
Figure 1.3.

Figure 1.3: The chapter dependencies. The chapters in rows depend on the
chapters in columns.

14

2. Essentials

To make this thesis as self-contained as possible, in this chapter, we try to explain
some technical terms and notions that are going to be mentioned in the next sec-
tions frequently. We do not intend to make this chapter as a general introduction
to Machine Learning. Instead, we only describe particular methods that are used
in further chapters. We represent them in the same order as they are used later.

2.1 Machine Learning Basics

2.1.1 Logistic Regression

Logistic Regression is one of the most mathematically elegant and straightfor-
ward techniques of supervised machine learning for classification. In supervised
machine learning, we have a set of discrete classes, and some samples each la-
beled with one of the classes. If the number of the classes is less then three, then
we deal with a binary classification task. Otherwise, it would be a multi-class
classification task.

Inputs to the Logistic Regression algorithm:

training data: (x1, y1), (x2, y2), ..., (xm, ym)

classes: yi ∈ [y1, y2, ..., yn]

The superscripts on the data points above are their index. Therefore we have
m training samples. The data points are multidimensional, so we use subscripts
to refer to specific dimensions of a data point. For instance, x4

2 refers to the
second dimension of the fourth data point. The labels’ subscripts are their index,
and their superscripts say to which data points they belong. For instance y5

2

mentions that the label of the fifth data point is the second class in the set of
classes.

15

As a simple example let’s suppose we need to classify some emails into spam
and non-spam classes. Then our classes would be y ∈ [1, 0], 1 for spam or 0 for
non-spam. We have a large number of emails each labeled as either 1 or 0.

(x1, 1), (x2, 1), (x3, 0), ..., (xm, 1)

For simplicity, we assume the text of each email as a collection of words.
Therefore each xi ∈ IN|V| is a |V | dimensional vector. |V | is the number of all
unique words in the collection of all emails. Each xi

j mentions how many times
the jth word is seen in the ith sample. This technique for text representation is
called Bag-of-Words (BOW).

Although BOW is not based on any linguistic theory, it works astonishingly
good in many NLP tasks. There are more advanced techniques for text represen-
tation like word embeddings which will be discussed in the next section. For now,
let’s assume we transform our emails into BOW representation in |V | dimensional
vectors. We need to decide how much each of the dimensions or features in each
email vector is responsible for assigning either 1 or 0 to it. Hence we should learn
a new vector called λ which is a |V | dimensional vector again. Learning λ or the
parameter vector is the beginning point in machine learning. The goal is to train
λ and use it in the linear function

y = λ⊺x + b (2.1)

to predict the label of new data points. For more expressiveness of the model,
we add a bias term in the function. The output of this function is a real number
called logit. To transform logits into probabilities, we use the sigmoid function
(Equation 2.2) which converts the logits into a monotonically increasing value
from 0 to 1. The output of the sigmoid function is the probability of getting
y = 1.

16

sig(λ⊺x + b) = 1
1 + e(−λ⊺x+b) (2.2)

Now we define the objective function which computes the number of errors
made by this algorithm. To tune the parameters, we need to know how much each
parameter is responsible for the mistakes. To find out this, we need to derivate
the sigmoid function with respect to each of the parameters. Unfortunately,
the sigmoid function is not convex which means using this function we can not
guaranty finding a global minimum for our algorithm.

In simple words, a convex function has only one global minimum. mathemat-
ically, a function f : IRn → IR is convex if the domain of f is a convex set or
formally

f(θx + (1− θ)y) ⩽ θf(x) + (1− θ)f(y)

st : 0 ⩽ θ ⩽ 1, and for all x, y ∈ IRn

To rectify this problem, we use the logarithm of this function and define a
two-part objective function.

objective =

⎧⎪⎨⎪⎩− log(f(x)), if y = 1.

− log(1− f(x)), otherwise.
(2.3)

In Equation 2.3, f(x) is the sigmoid function defined in Equation 2.2. These
two terms are the cost for one data point. To compute the cost for all data points,
we combine these two terms in one equation and compute it for all m samples.

17

objective = 1
m

[m∑
i=1
−yi log(f(xi))− (1− yi) log(1− f(xi))

]
(2.4)

To improve the generalizability of the model and to prevent it from over-fitting
or under-fitting, we add a regularization term to Equation 2.4 and tune it using
θ, the regularization term.

objective = 1
m

[m∑
i=1
−yi log(f(xi))− (1− yi) log(1− f(xi))

]
+ θ

2m

n∑
j

λ2
j (2.5)

Now we can compute the gradients of the objective function with respect to
each of the parameters.

∂objective

∂λj

= 1
m

m∑
i=1

(f(xi)− yi)xi
j (2.6)

In this equation, xi
j refers to the jth dimension of the ith training sample. Now

we can use our labeled training data and an iterative technique called Gradient
Descent (GD) to train our parameters.

Gradient Descent
Gradient-based methods are one of the widely used classes of optimizers for min-
imizing the objective functions in machine learning. Gradient Descent or Batch
Gradient Descent as a method of this class is an unconstrained first-order opti-
mization algorithm. The intuition of this method is as follows:

We initialize our parameters with random numbers and compute the gradients
▽ (i.e., derivative of the objective function with respect to each of the parame-
ters). Then we take a step of length η▽ on the opposite direction of the gradient
to find new parameters.

18

x1

x...

xn

Figure 2.1: A simple Neural Network architecture

λ1 = λ0 − η▽x0 f(x) (2.7)

Then, we compute the gradient at this new point and proceed until we reach a
minimum. If we managed to reach the global minimum the norm of the gradient
shall be zero (i.e || ▽ f(x) = 0||). If not, we can define a threshold based on
the number of iterations or the value of the norm and stop minimizing after we
passed the threshold.

In Batch Gradient Descent for each new step, we need to compute the gra-
dients using all training samples. In large datasets, though, it is very time-
consuming. A more practical way is to choose some examples stochastically and
compute the gradients of them instead. This method does not guaranty obtain-
ing the global minimum but it is much faster, and usually, the difference between
the local minimum obtained by Stochastic Gradient Descent (SGD), and batch
Gradient Descent is not noticeable.

2.1.2 Neural Networks

To describe the basics of Neural Networks, we return to our logistic unit in Equa-
tion 2.5. A Neural Network is a generalization of logistic units. They feed the
output of a linear function to a non-linearity (sigmoid here) and stack them on
top of each other to generate complex non-linear functions. Figure 2.1 is a simple
Neural Network in which each red circle is a logistic unit. The first and last layers
are called the input and output layers respectively, and the inside layer is called
the hidden layer. This arrangement helps us to use a simple linear model for
building complex non-linear models.

19

The objective function in Neural Networks is similar to Equation 2.5 with
the difference that the objective here should be computed for each neuron. It
means that in addition to x which is parametrized for each sample, y is also
parametrized for each layer. Moreover, in the regularization term, each parame-
ter itself is parametrized by previous and next layer.

objective = 1
m

[K∑
k=1

m∑
i=1
−yi

k log(f(xi)k)− (1− yi
k) log(1− f(xi)k)

]
+

θ

2m

L−1∑
l=1

sl∑
i=1

ns+1∑
j=1

(Λl
ji)2

(2.8)

In Equation 2.8, s is the number of neurons in layer l, Λ is the matrix of all
parameters for all neurons in all layers, K is the number of neurons in the last
layer (i.e., number of classes) and θ is the regularization term.

2.1.3 Convolution Neural Networks

Convolution Neural Networks (CNN) (LeCun et al., 1998) is one of the widely
recognized variants of Deep Neural Networks (DNN). A DNN is a neural network
with a large number of layers as the hidden layer. CNNs are mostly recognized
for their influence on image recognition. However, we will see that they can be
beneficial in NLP too.

Convolution is a feature extraction mechanism which can be thought of as
a sliding window applied to a design matrix. The design matrix is a matrix
in which the rows are tokens in sentences typically a word or even characters,
and the columns are features of the symbols. These features can be one-hot
vectors indexing words in a vocabulary set or pre-trained word embeddings like
Word2Vec (Mikolov et al., 2013) or GloVe (Pennington et al., 2014a). In a real
application, there are hundreds of such convolutions known as filters, kernels or
feature detectors of different sizes. There are wights associated with each cell in
filters which are learned through training. For more elaboration, we assume we
have a sentence with five tokens where each token has a 5-dimensional vector.
Then we have a 5*5 dimensional design matrix.

In contrast to image recognition applications, in NLP, convolution filters are

20

slid only vertically, and their width is always the same as the number of columns
in the design matrix. Their length, however, can be variable and is usually be-
tween one and seven. In a typical CNN, we can have several filters each with
different lengths.

conv = nonlinearity(W ⊺x + b) (2.9)

With each cell of these filters, a parameter (i.e. weight) is associated. These
filters slide over the design matrix vertically with various step-sizes. A non-
linearity function like Hyperbolic tangent (tanh)(Equation 2.10) or Rectified Lin-
ear Unit(ReLU)(Equation 2.11)

tanh(x) = 1− e−2x

1 + e−2x
(2.10)

ReLU(x) = x+ = max(0, x) (2.11)

is applied to the linear combination of their weights and the features. Each fil-
ter outputs a real number and sliding these filters with different length over the
design matrix generates feature vectors with different lengths. To create a fix
length vector usually a max-pooling or average-pooling layer is applied after the
convolution layer to extract the max or average values out of all extracted convo-
luted vectors. The pooling mechanism not only fixates the vector size which is a
must for the classification task but also reduces the dimensionality of the input by
retaining the most salient information in vectors. In the end, a softmax function
(Equation 2.12) is applied to the max or average-pooled vectors to determine the
class.

For more illustration, we consider the design matrix above with 5*5 dimen-
sions. We assume that we have three 3*5 filters. Then by sliding the filters on
our design matrix, we will have three 3-dimensional vectors. If we max pool these
vectors we will have a 3-dimensional vector which can be fed into a softmax func-
tion. Figure 2.2 illustrates a simple CNN with the components described above.

21

Convolution Max Pooling Fully Connected Softmax
 0.1 0.0 -0.1 0.5 0.0

 0.05

-0.06

0.01

 0.0 0.1 0.0 0.1 0.0

 0.05 0.1 0.0 0.0 -0.1 0.0

0.0 -0.1 0.0 0.0 0.0

0.0 0.1 -0.1 0.0 0.1

-0.1 0.0 0.0 0.1 0.0

0.0 0.5 0.1 0.0 0.1

 -0.5 0.0 0.1 0.0 0.1

This

is

a

sample

sentence

Figure 2.2: A CNN with three convolution filters, Max pooling layer, and a fully
connected softmax

softmax(x)i = exi∑|x|
j=1 exj

(2.12)

Compared to the n-gram approach in which all possible n-ary combinations
of adjacent words are considered, convolutions learn word representations very
efficiently. Computing word representations more than tri-grams especially when
we are dealing with large vocabularies is very expensive and not efficient. How-
ever, convolution filters with different length represent words very similar to the
way n-grams do but in a very compact and efficient form.

2.1.4 Recurrent Neural Network

Recurrent Neural Network (RNN) (Elman, 1990) is another variant of DNNs.
Compared to CNN, Recurrent Neural Networks are more intuitive when we think
about language as a left to right or right to left processing task. For a sequence
of length n, an RNN repeats itself n times by receiving the output of the previous
layer as the input of the current layer.

22

(a) RNN layers (b) An unrolled RNN

Figure 2.3: a. A regular RNN unrolled in b. U, V, and W are input, output,
and internal RNN weight matrices. An RNN cell repeats itself for each token in
a sentence.

In simple Logistic Regression or Neural Network models based on BOW, we
assume that each word is independent of the others. It is a wrong assumption.
RNN is a sequential model which considers the dependence of each word on its
previous history (words). RNN persists the information across steps by looping
over tokens in a sequence.

As depicted in Figure 2.3 an RNN receives the input as xt to compute st, the
hidden state of the RNN in step t:

st = nonlinearity(U⊺xt + W ⊺st−1) (2.13)

The nonlinearity is usually tanh or relu. The output is computed using soft-
max of ht over all possible classes.

ot = softmax(V ⊺st) (2.14)

23

Figure 2.4: An LSTM with the internal gates1.

Theoretically, an RNN can memorize the information of an arbitrarily long
sequence. However, since the parameters (i.e., U, W, V) in RNNs are shared
across all steps to decrease the total number of parameters, they are only capable
of learning short-distance dependencies.

RNN’s parameters are trained using backpropagation, the same technique
used for training simple and Convolution Neural Networks. However, since the
weights in RNN layers are shared, at each step gradient computations should be
done for all steps. It means if we are in step five we need to backpropagate and
sum up all gradients until step one. This is called backpropagation through time
(BPTT).

Due to the vanishing/exploding gradient problem caused by BPTT, very long-
distance dependencies are not detectable in regular RNNs. Therefore we resort
to a variation of RNN called Long Short-Term Memory (LSTM) (Hochreiter and
Schmidhuber, 1997) which is specifically designed to address this problem.

The primary distinction that separates LSTMs from vanilla versions RNNs is
their capacity to learn long-distance dependencies. LSTMs make use of previous
history ht−1, current input xt, and current memory st to decide what to add to,
what to keep in and what to forget from memory.

As shown in Figure 2.4, an LSTM cell consists of four neural networks (com-
pared to a regular RNN which includes one) arranged in a specific architecture.

1Image courtesy: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

24

Ct is cell state in step t. LSTMs can manipulate their cell state by adding or
removing information to/from it. They do it using specific structures called gates.
Gates consist of a sigmoid nonlinearity and a pointwise multiplication operation.
The output of sigmoid is between 0 and 1, and when multiplied by a feature, it
determines how much of it should be retained and how much should be forgotten.
Zero means to forget all and one means to retain all. An LSTM has three gates;
the forget, the input and the output gate.

The first gate is the forget gate ft. For each feature in Ct the forget gate gen-
erates a real number between zero and one to decide how much of them should
be retained and how much should be thrown away.

ft = σ(Wf .[ht−1, xt] + bf) (2.15)

The next gate, input gate, decides what information should be added to cell
state. It does it in two steps. First, it generates a vector of data that could be
added using a tanh nonlinearity nt. Then a sigmoid nonlinearity generates a real
number it for each feature in nt to determine how much of each should be added
to the cell state. The result of pointwise multiplication between i and n is then
added to the cell state.

nt = tanh(Wn.[ht−1, xt] + bc) (2.16)

it = σ(Wi.[ht−1, xt] + bi) (2.17)

Before we continue with the output state, we can update the cell state ct by
the vectors generated by the forget and input gates. It is done by scaling the cell
state in the previous step ct−1 by point-wise multiplying it with the forget vector
and then to add the result to the scaled input vector.

ct = ft ∗ ct−1 + it ∗ nt (2.18)

25

Finally, the output gate decides what information the LSTM cell should out-
put. For doing so, in the first step, a tanh nonlinearity is applied to the cell state.
The resulting vector is then scaled using a sigmoid nonlinearity which is applied
to the concatenation of previous cell output ht−1 and current input xt.

ot = σ(Wo.[ht−1, xt] + bo) (2.19)

ht = ot ∗ tanh(ct) (2.20)

In the end, A softmax of ht over all possible classes determine the most prob-
able class given each sample.

2.2 Knowledge Graph

Knowledge graphs contain significant quantities of factual information about en-
tities and their attributes such as Place of birth or Profession. Large knowledge
graphs generally cover numerous domains, and they may be a solution for scaling
up domain-dependent systems to open-domain ones by expanding their boundary
of entity and property recognition. Besides, knowledge graphs are instances of
linked-data technologies. In other words, they can be connected easily to any
different knowledge graph, and it increases their domain of recognition. In this
section, we describe the structure of the Freebase knowledge graph (Bollacker
et al., 2007) which is used in this thesis for answering structured question.

Like ontologies, knowledge graphs like the Freebase or Wikipedia are knowl-
edge bases of entities and their relationships. Structurally, a knowledge graph
can be described as a graph of entities where some links connect the entities to
each other.

A unique characteristic of the Freebase is that the links are labeled to describe
the relationship between two entities at two ends of each link. Since the links are
bidirectional, they have two labels for each direction. The other unique charac-
teristic of the Freebase is that every entity in it has two unique identifiers which
are reliable ways for referencing. These identifiers are ‘ID’ and ‘MID’ which are
human-readable and machine-readable codes respectively.

26

The entities in knowledge graphs do not have any meaning by themselves.
These are the properties connected to them which create the meaning. For in-
stance an entity with ‘MID = m/02cft’ does not mean anything until one follows
the links connected to it like ‘name = Dublin’ etc. Therefore every meaning in
the graph is represented by a link.

Beside entity specific properties such as Place of birth for people entities or
Capital for country entities, ‘ID, MID, name, type’, and ‘expected type’ are some
other links which tell essential information about each entity and property.

‘name’ is a surface form and is usually a literal string in the form of raw
text, date or a numerical value. Each entity has a set of ‘types’ which describe
what kind of entity it is. For instance, an entity like Dublin may have types like
Location, Genre, etc. Each link (a.k.a property) has zero or at most one ‘expected
type’ which predicts the type of the target entity. For instance, ‘time_zone’ is
the expected type of ‘/time_zones’ property2.

The data in a knowledge graph is arranged in a specific structure called as-
sertion. An assertion3 is a small labeled, directed graph structure in which a
subject entity is connected to an object entity. The connection is made by a link
which is labeled by an attribute about the subject. For instance, in Figure 2.5,
‘m/02cft’ as the subject is connected to ‘m/5ghi’ as the object. ‘time_zones’
property makes this connection.

Figure 2.5: The Freebase graph structure

Big knowledge graphs like the Freebase or Wikipedia cover tens of domains
and contains millions of entities. As of winter 2015, the Freebase contained over

2Properties are in abbreviated form to save space. For instance, the full form for this
property is ‘location/location/time_zones’

3Please see the dotted line in Figure 2.5

27

50 million entities and over 500 million links with over 14K different types in
more than 80 domains.

The Freebase is accessed whether using the Freebase API provided by Google
using Metaweb Query Language (MQL)4 or using SQARQL query language on
its dump data. The Freebase integrated into Google knowledge graph in 2015,
and since then, it can be accessed using the Google API dedicated to this knowl-
edge graph. The following queries are MQL and SQARQL equivalent queries for
retrieving the name of the entity with ‘MID = m/02cft’ :

// MQL

{"mid":"m/02cft",

"name":null}

// SPARQL

PREFIX fb: <http://freebase.com/>

SELECT ?name

WHERE {

?mid fb:mid "m/02cft" .

?mid fb:name ?name .

}

Listing 2.1: MQL and SPARQL query for name retrieving. http://freebase.com/
is the URI defined in a SPARQL triple store engine like the virtuoso. It is not a
valid URL address.

2.3 Similarity Measures

The first step in performing machine learning algorithms on textual strings is
to transform them into vector space. The simplest way to do so is to translate
them into one-hot vectors. One-hot vectors are |V | dimensional vectors where
each dimension is an element of the vocabulary. A One-hot vector transforms a
string into a point and place it in a |V | dimensional space where each word in
the vocabulary is an axis.

One-hot representation is a naive and sparse representation. Since each word
is considered as a discrete entity, the semantic similarities among the words are

4MQL is a template-based querying language which uses Google API service for querying
the Freebase in real time.

28

disregarded. One approach to improve this deficiency is to include bigrams,
trigrams, and more combined units of vocabularies as the separate axis in the
space of vocabularies. However, by expanding the size of the vocabulary, the size
of the vectors in this method increases with no boundaries which makes it an
inefficient representation for applications with open-class vocabularies.

The solution to this problem is to use RNNs to learn low-dimensional word
vectors called word embeddings (Mikolov et al., 2013) and use them instead of
words.

When textual strings are transformed into vector space either using one-hot
vectors or word embeddings they are basically some points in a multidimensional
space hence the distance or similarity among them can be computed mathemat-
ically.

The first choice for distance estimation is the Euclidean distance. Euclidean
distance is the straight-line distance between two points in Euclidean space. How-
ever, Euclidean vectors for documents with different length is large. Let’s imagine
two very similar vectors in a vector space. The distance between the two vectors
is quite large because the angle between them is tiny. Therefore, the angle be-
tween two vectors is a better representative of their semantic contents. In this
way, when the similarity between two sentences increases, the angle between their
vectors decreases and vice versa.

Since the angle is a discrete value, we use the Cosine of the angle which is
a monotonically decreasing function between 0-180 degrees. Therefore, dropping
the Cosine is the same as increasing the angle and hence decreasing similarity. In
other words, the higher the Cosine between two vectors the more similar they are.
Before we compute the Cosine, we need to make the vectors’ length normalized.
Length normalization puts the vectors on the surface of the unit hypersphere. It
is done by dividing the elements of the vectors by its length. For this purpose,
we can use L2 norm function (Please see Equation 2.21).

∥x∥2 =
√∑

i

x2
i (2.21)

When the length of vectors is normalized, the Cosine similarity between them
is defined as the dot product or sum over element-wise multiplication between
two vectors.

29

cos(# »v1, # »v2) = # »v1. # »v2 =

√ |V |∑
i

v1i
· v2i

(2.22)

A full survey of lexical association measures is presented in Pecina (2008). For
the sake of completeness, we enumerate some of the most common vector space
similarity functions according to Feng et al. (2015b).

• Polynomial:

(# »v1, # »v2) = (γ # »v1. # »v2 + c)d

• Sigmoid:

(# »v1, # »v2) = tanh (γ ∗ # »v1. # »v2 + c)

• Radial Basis:

(# »v1, #»s) = exp(−γ ∥ # »v1 − # »v2∥2)

• Euclidean:

(# »v1, # »v2) = 1
1+∥ # »v1− # »v2∥

• Exponential:

(# »v1, # »v2) = exp(−γ ∥ # »v1 − # »v2∥)

• The Geometric mean of Euclidean and Sigmoid Dot product:

(GESD)(# »v1, # »v2) = 1
1+∥ # »v1− # »v2∥ ∗

1
1+exp(−γ(# »v1. # »v2+c))

The hyperparameters in all cases including γ, c, and d are determined using
validation data.

30

2.4 Evaluation Metrics

The performance of a QA system can be evaluated using several statistical mea-
sures depending on the task which is accomplished in the system. In this section,
we describe exact match Accuracy, F1 (Macro-averaged), Path Accuracy, Mean
Average Precision (MAP), Mean Reciprocal rank (MRR), BLEU and ROUGE as
various evaluation metrics which we used in different experiments in this work.

In a structured QA system where the answer is an entity, the answer is either
true or false. Therefore, the Accuracy is the most convenient and informative
metric for system evaluation.

Accuracy = |correct answers|
|questions| (2.23)

In QA systems based on knowledge graphs, the answer extraction process is a
graph traversal problem where to find an answer, one needs to know the correct
source entity and the correct property. So in such systems, an answer is consid-
ered correct only if the predicted entity and property are both correct. In these
systems, we use the Path Accuracy.

Path Accuracy = |answers with correct entity AND property|
|questions| (2.24)

The Accuracy is used when there is only one ground-truth answer, and the
predicted response can be either the same as or different from it. However, when
the ground-truth answers consist of more than one part, we need to use F1 score
which is the harmonic mean of the Precision and the Recall.

Precision = |predicted correct answers|
|all correct answers| (2.25)

31

Recall = |predicted correct answers|
|all answers| (2.26)

F1 = 2 · Precision ·Recall

Precision + Recall
(2.27)

Macro-averaged F1 is used to evaluate QA systems in which the predicted
answer as a span of words can be a subpart of ground-truth responses. This
metric measures the average overlap between a prediction and the ground-truth
answer. For each question, the prediction and the ground-truth answer are treated
like bags of tokens on which their F1 is computed. The average of all calculated
F1 for all questions is then reported as the Macro-averaged F1.

In all the measures mentioned above, we assume that the QA system predicts
only one answer. In some QA systems, the prediction consists of a ranked list
of answers. In such systems, it is desirable to consider the order in which the
predicted responses are presented. The performance of these systems is measured
using the mean of the average precision (MAP) and the mean of the reciprocal
ranks (MRR).

The MAP is the mean of the average precision of all questions in a test dataset.
Average precision of a question is defined as the sum of precision of predicated
answers each in kth cut-off over the number of retrieved answers.

Average Precision =
∑n

k=1 precision(k) · id(k)
|all correct answers| (2.28)

In Equation 2.28 k is the rank in the sequence of retrieved answers, n is the
number of extracted answers, precision(k) is the precision at cut-off k in the list,
and id(k) is an indicator function equaling one if the item at rank k is a correct
answer, zero otherwise.

MRR is the mean of the reciprocal ranks of all questions in a test dataset.
Reciprocal rank is another statistical measure for evaluating QA systems that
predict a list of possible answers to a question, ordered by their probability of
correctness. The reciprocal rank of the answers to a question is the multiplicative
inverse of the rank of the first correct answer.

32

Reciprocal Rank = 1
|q|

|q|∑
i=1

1
ranki

(2.29)

In Equation 2.29, ranki refers to the rank position of the first correct answer
for the ith question and |q| is the number of questions.

BLEU(bilingual evaluation understudy) (Papineni et al., 2002) and ROUGE
(Recall-Oriented Understudy for Gisting Evaluation) (Lin, 2004) are metrics for
assessing the quality of an automatically extracted or generated text against a
set of references (human-produced).

BLEU compares the number of common n-grams (uni-grams through four-
grams) between the extracted text and the references and penalizes the result with
the length of the text. ROUGE has several variations like ROUGE-L (Longest
Common Subsequence) which identifies the longest co-occurring n-gram sequence.
It also takes sentence level structure similarity into account.

33

3. An Overview of Question
Answering Systems

Natural Language Interface to Database (NLIDB) and Machine Comprehension
(MC) are two main areas of research which have primarily contributed to the
development of QA systems. In an attempt to place our QA system detailed in
Section 1.1 in a proper context, we will explain 1) NLIDB systems, 2) cloze-type
QA, 3) non-factoid and, finally 4) factoid QA systems1. Then, we will have a
review on some conventional methods for QA in Section 3.1 and finally, we will
elaborate on standard architectures of QA systems in Section 3.2.

NLIDB was the earliest instance of domain-dependent QA systems. Base-
ball (Green et al., 1961) and Lunar (Woods, 1973) were among the first NLIDB
systems.

Baseball was designed to answer questions about American baseball league,
and Lunar was a scientist’s assistant which was able to answer questions about
geology. They were intended to help people communicate with databases in
a natural language. They used sophisticated language knowledge to translate
users’ questions into a standard database query. Although the syntactic parsing
capacity of these systems was primarily limited, they were able to answer complex
questions.

NLIDB systems did not flourish much in the 80s. One primary reason for
this decline was the complexity of the natural language which was used in these
systems. Their interface language was not much more straightforward than the
database query language itself. According to Androutsopoulos et al. (1995), they
even diminished almost entirely in the 90s2. However, after the 90s, the advent
of some efficient semantic parsing approaches and the possibility of using natural
language without any restriction helped to revive QA in some limited-domain
applications such as geographical or public transportation QA systems. The
ARPA sponsored project, ATIS in air traffic domain and many other projects in
restaurant domain flourished at that time.

Compared to NLIDB systems, use of QA as a measure of Machine Compre-
1There are other types of systems such as QA for solving mathematical problems (Liguda

and Pfeiffer, 2011) or QA for answering questions which require complex reasoning (Khashabi
et al., 2016). However, these systems are domain-dependent hence are not in the focus of this
work.

2The reasons for the decline of NLIDB systems are elaborated in Copestake and Jones (1989).

34

hension (MC) (Kadlec et al., 2016; Hermann et al., 2015) is rather a new research
area. The primary goal of these systems is to make a machine read a text and
then answer some multiple-answer (cloze-type) questions.

The first study in statistical MC dates back to Hirschman et al. (1999) who
devised the first data-driven approach for QA on a small dataset. The dataset
included 600 elementary-school-level reading comprehension questions. Long be-
fore that though, in the 60s, Philips A.V. developed Routine (Phillips, 1960) as
the first rule-based open-domain QA system for comprehension tests.

Routine is designed to read a text and to answer simple reading comprehension
questions. The system categorizes the tokens in a passage into some subject,
object, verb, place and time expressions. Then, it analyzes each question based
on the training data to decide what expression is the best match for it.

Yang et al. (1999) used QA for MC in an open-domain context too. In his
approach, in the first step, the best sentence which possibly contains the answer to
a given question is detected. Then, the actual answer can be extracted from this
sentence using factor graph on multiple sentences (Sun et al., 2013), dependency
trees (Shen and Klakow, 2006), or bootstrapping surface patterns (Ravichandran
and Hovy, 2002).

Answer Selection is another form of QA which can be used as a measure
of MC (Kadlec et al., 2016; Hermann et al., 2015). In this setting, a typical
QA system reads a text and then answers either multiple-answer (cloze-type) or
free-text questions. Cloze-type answers are limited to multiple distinct entities
(usually 4 or 5) while a span of words answers free-text questions.

The level of understanding in cloze-type questions is variable depending on
the type of missing elements. The missing elements in these systems can be a
simple word or a phrase or even a full sentence. The possibility of using different
types of missing elements makes different levels of difficulty in these systems (Hill
et al., 2015). For instance, due to cohesion inherent in original texts, finding
prepositions is relatively easy, while looking for named entities is more difficult.

Single-word QA algorithms usually are tested on cloze-type datasets. Cloze-
type QA systems are word-level systems where the system is trained to select the
answer among four or five answer choices. There are a wide range of datasets
for cloze-type (Hermann et al., 2015; Hill et al., 2015) QA. CBT (Hill et al.,
2015) and CNN (Hermann et al., 2015) are among the most significant cloze-
type datasets which contain more than half a million and one and half a million
questions respectively. Cloze-type QA datasets are easy to compile because they

35

can be generated automatically.

Cloze-type QA provides a reliable measure for MC. However, in QA systems
for other purposes like the dialogue systems or scientist’s assistants, the answers
are not known in advance. It is assumed that they are available somewhere on
the Internet. Free-texts searching is a reasonable approach to these systems. In
contrast to cloze-type questions, in free-texts or non-factoid QA systems (Ra-
jpurkar et al., 2016), the answers, their boundaries and their types (e.g., proper
noun, adjective, noun phrase, etc.) are not known in advance, and it makes this
type of QA more challenging. In this setting, free-text QA or QA over unstruc-
tured data (Rajpurkar et al., 2016; Cui et al., 2016) is advocated where answers
are spans of multiple consecutive words in large repositories of textual data like
Wikipedia.

Unstructured QA in recent years has been studied with a few distinguish-
able different settings such as Answer Selection, Answer Trigging, and Answer
Extraction.

In Answer Selection (Aghaebrahimian, 2017a; Wang et al., 2016; Yu et al.,
2014) and Answer Trigging (Jurczyk et al., 2016) the goal is to find the best
answer sentence given each question. These answer sentences may be non-existent
in the provided context for Answer Triggering. In Answer Extraction (Shen and
Klakow, 2015; Sultan et al., 2016) a chunk of a sentence as the shortest possible
answer is extracted.

Many successful studies have been performed for free-text (i.e., phrase) an-
swer extraction from SQuAD (Rajpurkar et al., 2016) since its release in 2016.
Almost all of these models benefited from a form of DNN architecture and a
majority of them integrated a kind of the attention mechanism (Seo et al., 2016).
Some of these studies incorporated attention to predicting the physical location
of answers (Xiong et al., 2016; Cui et al., 2016; Hu et al., 2017). Others made an
effort to find a match between queries and their contexts (Cui et al., 2016) or to
compute a global distribution over the tokens in the context given a query (Wang
and Jiang, 2016). Still, some other models integrated other mechanisms like
memory networks (Pan et al., 2017), reinforcement learning (Shen et al., 2016)
or constituency relations (Aghaebrahimian, 2018a) to enhance their attention
performance.

The last group of QA systems in our review are factoid or simple QA sys-
tems (Bordes et al., 2015; Aghaebrahimian and Jurčíček, 2016a,b) like air traffic
information (ATIS) or the dialogue systems. Simple QA is a factual retrieval

36

technique which attempts to find an answer entity in a structured data reposi-
tory like a knowledge graph. Simple in this context does not mean that it is a
simple task. It refers to the fact that answering these questions requires knowing
just one property and one entity. Although the systems in this category scale
well to big knowledge graphs (e.g., Freebase (Bollacker et al., 2007)), they suffer
from sparsity which makes them unable to answer some questions.

The dialogue system is another research area which has helped the evolution
of QA systems too. ELIZA (Weizenbaum, 1966) is one of the first QA dialogue
systems which uses a sequence of pattern matching and string replacement to
make a conversation with patients. ATIS (1989-1995), Verbmobile (1996-2000),
How may I help you? (2001), AMITIES (2001-2004), TALK (2009-2011), Classic
(2008-2011), Parlance (2011-2014), Carnegie Mellon Communicator (1999-2002),
Companions (2006-2010) and Alex (2012-2016) are among other dialogue systems
each of which specialized in answering questions in a specific domain.

3.1 Question Answering: Methods

All possible QA methods can be roughly organized into three broad categories;
Semantic Parsing (SP), Information Retrieval (IR)/Information Extraction (IE)
and most recently, end-to-end Neural Networks (NN).

In QA systems based on SP (Clarke et al., 2010; Kwiatkowski et al., 2010;
Wong and Mooney, 2007; Zettlemoyer and Collins, 2005; Zelle and Mooney, 1996)
natural language utterances are translated into a logical representation of their
meaning in a knowledge representation language like lambda calculus expres-
sions (Carpenter, 1997), lambda-Dependency Compositional Semantics (Liang,
2013), robot controller language (Matuszek et al., 2012), etc.

In this approach, a standard procedure is to over-generate possible mean-
ing representation candidates out of a limited number of predefined entities and
properties (i.e., the lexicon). Then, these meaning representations are rated us-
ing different possible machine learning methods3. Eventually, the highest rated
meaning representation is queried against a relevant database to fetch the answer.
The domain of available entities and properties in the lexicon of these systems is
usually limited and small.

In domain-specific QA, this limitation is handled using a static lexicon for
3Please see (Aghaebrahimian and Jurčíček, 2015a) for a review of machine learning ap-

proaches for semantic parsing.

37

mapping surface forms of the entities to their logical forms (Clarke et al., 2010;
Kwiatkowski et al., 2010; Wong and Mooney, 2007; Zettlemoyer and Collins, 2005;
Zelle and Mooney, 1996). However, scaling up such limited lexicons which usually
contain from hundreds to several thousand entities is neither easy nor efficient in
open-domain QA. This limitation makes it difficult for QA systems to scale well
to open-domain or even to a large ontology. Knowledge graphs Instead, contain
millions of entities and are highly efficient structures which can be used for entity
recognition.

Knowledge graphs provide rich databases of factual information on well-known
people, things and places and they proved to be beneficial for different tasks in
NLP including Question Answering. Using big knowledge graphs like Freebase or
Wikipedia has been shown beneficial (Berant et al., 2013; Cai and Yates, 2013;
Kwiatkowski et al., 2013; Berant and Liang, 2014; Bordes et al., 2015; Aghae-
brahimian and Jurčíček, 2016a,b) for expanding the scope of language under-
standing in such cases. We briefly explained knowledge graphs and their structure
in Section 2.2.

There are many studies on using knowledge graphs for QA either through an
Information Retrieval approach (Yao and Durme, 2014; Bordes et al., 2015) or
Semantic Parsing (Berant et al., 2013; Berant and Liang, 2014; Cai and Yates,
2013; Kwiatkowski et al., 2013). Even in these studies, there is still a list of
predefined lexicons for entity recognition (Berant et al., 2013; Cai and Yates,
2013). Essentially, they use knowledge graphs only for validating their generated
logical forms and for entity recognition they still depend on some initial lexicons.

The most recent work and state-of-the-art on QA in knowledge graphs belongs
to Bordes et al. (2015) in which they used memory networks for answering the
questions in SimpleQuestions dataset (Bordes et al., 2015). They tested their
system on two limited sub-graphs of Freebase containing two and five million
entities (FB2M, FB5M). A 0.5 % decrease in the performance of their system
when scaling from FB2M to FB5M suggests that QA in a full knowledge graph
is quite a difficult task.

The problem with QA systems based on knowledge graph is that their data
in the best case is limited to their knowledge graph beyond which, they are not
able to recognize any new entity or property. Besides, in the best case, they are
only able to answer factoid questions. Hence, knowledge graphs should have the
capacity of expansion if they are supposed to be used in an open-domain QA
system.

38

Vast amount of works are devoted to knowledge graph expansion by adding
new information which are extracted by parsing external textual corpora (Sucha-
nek et al., 2007; Socher et al., 2013; Fader et al., 2011; Snow et al., 2005). However,
arbitrarily adding data to knowledge graphs does not guarantee an effective data
expansion procedure and it does not scale well through time. A more efficient and
scalable way for knowledge graph expansion is to resort to an unlimited source
of information like the Internet.

Use of knowledge graphs is popular in IR/IE based systems too. In contrast
to SP-based QA systems, IR/IE-based systems (Yao and Durme, 2014; Bordes
et al., 2015) directly retrieve or extract the answer from a database using different
statistical methods. These methods range from simple techniques like Point-wise
Mutual Information(PMI) (Church and Hanks, 1990) to more complex ones like
Deep Neural Networks (Aghaebrahimian and Jurčíček, 2016b; Dai et al., 2016).

Beside SP and IR/IE based systems, there are some other less-popular va-
rieties like entailment-based systems (Bentivogli et al., 2008) or ensemble mod-
els (Clark et al., 2016) which are mostly proposed for domain-dependent QA
systems.

In the entailment approach, the system assumes that the entailment ‘ques-
tion+answer’ is available in the corpus and tries to detect the answer by finding
the corresponding entailment. In ensemble models, an array of solvers each with
specific inference algorithm is utilized to infer the answer. These algorithms may
range from statistical IR to rule-based or constraint optimization solutions.

Constraint optimization is another active research area in QA in both SP and
IE approaches. Constraint optimization using Integer Linear Programming (ILP)
has been demonstrated being useful and productive in several NLP tasks (Chang
et al., 2012; Srikumar and Roth, 2011; Goldwasser and Roth, 2011; Chang et al.,
2010; Roth and Yih, 2004). Especially, it has been reported to obtain state-of-
the-art results for answering questions which require complex scientific reason-
ing (Khashabi et al., 2016).

Constraints are essentially Boolean inequalities which are defined based on
some prior linguistic information (e.g., types of entities or properties). Prior
knowledge about linguistic structures plays a crucial role in structure prediction
especially, where there is not enough annotated training data or when models are
too simple to detect long dependencies (Chang et al., 2012).

The last common method of QA is end-to-end neural network (NN) systems.
QA in the context of NN is addressed mostly as a sequences prediction or classi-

39

fication/ranking problem.

A group of NN architectures called Deep Neural Networks (DNN) are mainly
known for their superior performance in many NLP tasks including QA. DNNs
stack a large number of layers in a Neural Network to extract different levels of
representation. In recent years, QA has been largely benefited from the develop-
ment of DNN architectures largely in the form of Convolution Neural Networks
(CNN) (LeCun et al., 1998) or Recurrent Neural Networks (RNN) (Elman, 1990).
Neural tensor networks (Socher et al., 2013), recursive neural networks (Iyyer
et al., 2014), CNN-based models (Yin et al., 2015a; Dong et al., 2015; Yih et al.,
2014), attention models (Hermann et al., 2015; Yin et al., 2015a; Santos et al.,
2014) and memory networks (Graves et al., 2014; Weston et al., 2015; Kumar
et al., 2016; Sukhbaatar et al., 2015) are some of the QA varieties that benefited
from DNNs. Many of the QA systems mentioned above like QA systems based
on Semantic Parsing (Clarke et al., 2010; Kwiatkowski et al., 2010), IR-based
systems (Yao and Durme, 2014), cloze-type (Kadlec et al., 2016; Hermann et al.,
2015), factoid (Bordes et al., 2015; Aghaebrahimian and Jurčíček, 2016b) and
non-factoid systems (Rajpurkar et al., 2016; Aghaebrahimian, 2018a) also have
been improved by using DNNs.

There are at least three reasons why the use of DNNs attracted so much
attention these days. First, a long-term goal of QA systems is to build general
dialogue systems (Weston et al., 2016) and recently, end-to-end DNNs have shown
excellent performance in dialogue systems. Second, the use of DNNs in QA helps
to get rid of many cumbersome intermediate processes such as feature engineering
at least in end-to-end systems. Finally, DNNs reduce the need for domain-specific
knowledge and makes domain adaptation easier.

3.2 Question Answering: Architectures

A typical QA system includes some core and some peripheral subsystems. There
are three core subsystems which can be almost always recognized both in se-
quential pipelines (Turmo et al., 2009) and end-to-end architectures. They are
Question Processing, Passage Retrieval, and Answer Ranker components. Some
QA systems may use other peripheral components or may join these components
into a single one. In the following sections, we explain the core and some pe-
ripheral components of a typical QA system. Figure 3.1 schematically illustrates
some of these subsystems.

40

Model 1

Model 2

Model 3

Question
Processing

Passage
Retrieval

Answer
Rankere

Answer
Selector

Answer
Validator

Question
Analyzer

Figure 3.1: The core and peripheral subsystems in a typical QA system. The
subsystems in red are core, and those in blue are peripheral.

3.2.1 Question Processing

Each question entails an explicit or implicit intention and contains possibly one
or more entities. Recognizing these intentions and entities (i.e., question under-
standing) is the job of the Question Processing component.

In factoid QA systems, this component recognizes one property and one entity.
In non-factoid QA systems, it extracts the intentions and their associated phrases
and entities. For instance, in the question ‘what decision did NFL owners make
on May 21, 2013?’, a question processing component realizes ‘decision_made’ as
the intention and “NFL owners” and “May 21, 2013” as the entity and the time
phrase which are associated to this intention.

In the SP approach, the Question Processing component treats each question
as a combination of arguments and predicates (Berant et al., 2013). These com-
binations are trained using a machine learning technique to assign the highest
rank to the combination which returns the correct answer.

In IR/IE approach, each question is processed either as a bag of words or as
a low dimensional vector which is used to train a classifier to estimate a distribu-
tion over some predefined intentions given each question (Aghaebrahimian and
Jurčíček, 2016a,b).

41

3.2.2 Passage Retrieval

Using the extracted keywords, syntactic structures (e.g., dependency or con-
stituency trees) or statistical models from a Question Processing component,
the Passage Retrieval component obtains a document or a short passage like a
paragraph which hopefully contains the answer. These passages can be obtained
from a specific repository like Wikipedia articles or directly from the Internet.
Passage retrieval is usually done using a local IR engine or a commercial search
engine.

Although an accurate Passage Retrieval component reduces the computational
complexity and answer space for the next component (i.e., the Answer Ranker),
sometimes finding a passage which contains the desired answer is as hard as
finding the answer itself. So, some systems eliminate the need for Passage Ranker
component from the QA pipeline by providing the correct passages (Rajpurkar
et al., 2016).

3.2.3 Answer Ranker

The Answer Ranker component ranks the answers based on their relevance, ac-
curacy, etc. and returns the highest or n-highest ones.

In factoid QA systems, the candidate answers are usually a named entity,
a noun or a verb (Sun et al., 2005). In non-factoid QA, the constituents (e.g.,
noun phrases, adjective phrases, etc.) make the majority of the answers (Aghae-
brahimian, 2018a, 2017c). The rest of the answers are non-constituents or any
arbitrary string of consecutive tokens, and it makes the task of answer ranking
much more difficult.

Symbolic and statistical techniques are the two broad approaches for Answer
Ranking modules. A symbolic (or linguistic) approach assumes having access to
rules, patterns or other possible linguistic measures like the similarity to deter-
mine whether a token or a series of tokens is the answer to a question. Similarity
can be defined in terms of lexical (e.g., edit distance) (Aghaebrahimian and Ju-
rčíček, 2016a) or syntactic measures (Moschitti and Quarteroni, 2010).

A statistical approach, in contrast, does not assume having access to such
patterns. Instead, it has access to large quantities of data out of which it tries to
derive some useful patterns. A conventional approach in statistical approaches is
to check how probable is for an answer phrase to come with a question (Dumais

42

et al., 2002; Lin and Katz, 2003).

Question processing and answer ranking can be both benefited through typ-
ing information. Typing systems may use named entity types (Wu et al., 2005),
typing system of an ontology (Hovy et al., 2001), or available types in a knowl-
edge graph (Aghaebrahimian and Jurčíček, 2016a,b). Type enforcement is done
through hand-crafted lexical rules (Prager et al., 2000), syntactic rules (Magnini
et al., 2002) or machine learning classifiers (Punyakanok et al., 2004).

The Question Processing, the Passage Processing, and the Answer Ranker
are almost always detectable in all QA systems. They constitute the essential
components of a QA system. In addition to them, it is possible to see QA systems
with some extended capabilities like the ones which follow:

3.2.4 Question Analyzer

The Question Analyzer component comes before the Question Processing compo-
nent. It extracts temporal and spatial information and binds them to the answers
in the list of its Answer Ranker component for retrieving finer answers (Kalyan-
pur et al., 2011; Hartrumpf et al., 2009). For instance, in the question ‘what
decision did NFL make on May 21, 2013’, the Answer Analyzer extracts ‘May
21, 2013’ and helps the Answer Ranker component to increase the score of the
candidate answers which are relevant to this date.

3.2.5 Answer Selector

Each QA system is only able to answer a specific type of questions. A system
which performs superbly for IE-type questions performs treble for reasoning-type
questions because the answers to reasoning-type questions are not explicitly men-
tioned in a corpus; an assumption which only holds true for IE-type questions.
Therefore, ensemble models (Aghaebrahimian, 2017c; Ko et al., 2007; Mendes
and Coheur, 2011; Clark et al., 2016) which include a stack of QA systems with
different architectures often outperform each of the included systems individually.
In these systems, each model generates an answer, and the final answer is chosen
by an Answer Selector module which may use different possible approaches like
ordering by likelihood, classification, etc.

43

3.2.6 Answer Validator

Providing answers with high precision is a critical task in some QA systems (Khani
et al., 2016). In these systems, the answer validation component plays a crucial
role. It is possible to validate answers using statistical or linguistic measures. In
entailment checking as a statistical measure, an answer is validated by comparing
it with its question to see if the former entails the latter (Wang and Neumann,
2007). Linguistic measures do the same job by reasoning over sentences which
are generated out of the question and its answer using syntax rewriting rules.

44

4. Existing Datasets for Question
Answering

In this chapter, we describe the datasets that we used for various parts of this
work. We can roughly recognize all QA datasets as either sentence-level or word-
level datasets. Given each question, a sentence-level QA dataset provides one or
more correct sentences (Yao et al., 2013; Yang et al., 2015) while a word-level
dataset offers one answer in the form of a single word (Richardson, 2013) or a
span of consecutive words (Rajpurkar et al., 2016).

4.1 WikiQA

WikiQA (Yang et al., 2015) is a widely studied dataset for sentence-level QA. It
is compiled from the query logs of the Bing search engine. The Wikipedia page
selected for each query is used as the passage for that question. All sentences
in the summary paragraph of the selected passage are used as the candidate
sentences which in turn are presented to crowd workers for sentence selection.
The questions in the dataset are mainly in six classes such as Location, Human,
etc. The distribution of the classes and some statistics of the dataset are reported
in Table 4.1 and Table 4.2 respectively.

Classes Percentage of the questions
Location 12%
Human 16%
Numeric 22%
Abbreviation 1%
Entity 14%
Description 26%

Table 4.1: WikiQA classes and their proportions

4.2 TrecQA

TrecQA (Voorhees and Tice, 2000) is a standard and well-studied benchmark for
answer sentence selection experiments. It is compiled using the data in TREC
8-13 QA tracks. Like WikiQA, the source of questions in TrecQA is users’ log

45

Train Set Dev. Set Test Set Total
Questions 2,118 296 633 3,047
Sentences 20,360 2,733 6,165 29,258
Answers 1,040 140 293 1,473
Questions with no answer 1,245 170 390 1,805
Questions average length 7.16 7.23 7.26 7.18
Sentences average length 25.29 24.59 24.95 25.15

Table 4.2: WikiQA statistics

files. In both WikiQA and TrecQA, each question is mapped to more than one
correct and several wrong sentences and QA systems are expected to return an
ordered list of correct sentences.

The mapping between the questions to paragraphs for some of the questions
in both WikiQA and TrecQA is not accurate due to indeterministic retrieval
methods used for data retrieval in the first place. This is the reason why some of
the questions in both datasets have no answer.

There is a modified version of the TrecQA dataset available in which the
unanswered questions and questions with only one positive and negative sentences
are removed from the development, and the test set divisions. The training
questions in both the original and the modified versions are the same.

4.3 SimpleQuestions

SimpleQuestions (SQ) (Bordes et al., 2015) is another dataset for single-word
QA. The answers in SQ are entity answers extracted from the assertions in a sub-
graph of Freebase (Bollacker et al., 2007) which is limited to 2 million entities (i.e.,
FB2M). Therefore, all answers to the questions can be found in FB2M1. The SQ
dataset is a collection of 108,442 questions composed in natural language. Each
question in the dataset is mapped to a triple of subject-predicate-object (a.k.a
assertion) in the Freebase knowledge graph.

Crowd workers synthesize the questions in this dataset. They are posed to
Freebase facts and are asked to synthesize a question. The SQ is a dataset
for entity selection where the entities are limited to the entities in the system’s
knowledge graph. The dataset is randomly shuffled and divided into train set
(70%), development set (10%) and test set (20%).

1For more information about FB2M and FB5M which are subgraphs of the Freebase please
refer to Bordes et al. (2015)

46

Classes Percent of the questions
Date 8.9%
Other Numeric 10.9%
Person 12.9%
Location 4.4%
Other Entity 15.3%
Common Noun Phrase 31.8%
Adjective Phrase 3.9 %
Verb Phrase 5.5%
Clause 3.7%
Other 2.7%

Table 4.3: The SQuAD classes and their proportions

4.4 SQuAD

Although some answers in SQ may contain more than one words, since the whole
response is considered as one unit, SQ is regarded as a single-word dataset. In
contrast, in the Stanford Question Answering Dataset (SQuAD) (Rajpurkar et al.,
2016) all answers are treated as chunks of words. The SQuAD is a dataset for QA
in the context of machine comprehension. It includes 107,785 question-answer
pairs posed by crowd workers on 536 Wikipedia articles. The answers in the
SQuAD can be any span of consecutive words in a paragraph which comes with
each question. The dataset is randomly shuffled and divided into train set (80%),
development set (10%) and test set (10%). The answers in the dataset cover a
wide range of classes (Table 4.3).

4.5 MS MARCO

MS MARCO, (Microsoft MAchine Reading COmprehension) is a large-scale data-
set for reading comprehension and Question Answering. It contains 1,010,916
queries which are sampled from anonymized user queries. For each query ten
context passages are extracted from web documents using the Bing search en-
gine. Crowd workers generated 182,669 answers out of these passages only if a
passage summary could answer the corresponding query. BLEU (Papineni et al.,
2002) and ROUGE-L (Lin, 2004) are used to measure the performance of QA
systems testes on this dataset.

47

4.6 Q2AD

The last dataset we used in our experiments is the Quora Question Answering
Dataset (Q2AD) (Aghaebrahimian, 2017b) which is one of the contributions of
this work. The Q2AD is a dataset for sentence- and word-level QA. It is composed
of the questions which are posted on Quora Question Answering site. Currently, it
is a small size dataset, and we intend to expand it using a crowdsourcing platform
in the near future.

One of the unique characteristics of the Q2AD is the presence of multi-part
answers. The answers in the Q2AD contain several sections and each section
either as a sentence or as a span of words is located in different part of the
accompanying passage. A full answer to a question in the Q2AD is the one which
contains all the separate sections.

The other characteristic of the dataset is the authenticity and originality of
the questions. While in many other datasets the questions are synthetic, both
questions and answers in the Q2AD are generated by humans for an authentic
and original purpose.

The process of dataset compilation for the Q2AD is described in Chapter 5.
We summarized some statistics of all the datasets in Table 4.4 for more straight-
forward comparison.

Train Set Dev. Set Test Set type evaluation
Original TrecQA 1229 82 100 sentence-level MRR/MAP
Modified TrecQA 1229 65 68 sentence-level MRR/MAP
WIKIQA 873 126 243 sentence-level MRR/MAP
Simple Questions 75910 10845 21687 entity-level Path Acc.
SQuAD 86228 10778 10778 word-level F1/Exact match
MS MARCO 80000 10000 10000 Human gen-

erated
BLEU/ ROUGE-L

Quora 210 30 60 word-level
sentence-level

MRR/MAP

Table 4.4: Comparative statistics of all the datasets

48

5. Quora Question Answering
Dataset

In this chapter, we introduce Quora Question Answering Dataset (Q2AD), a
small but progressing sentence-level and word-level QA dataset with authentic
questions and multiple-part answers, which has been developed during the Ph.D.
studies of the thesis author. He authored the dataset with the assistance of a few
anonymous annotators. The content of this chapter is based on a paper (Aghae-
brahimian, 2017b) presented and published by him at the TSD 2017 conference.

5.1 Introduction

In an answer sentence selection system each question is accompanied by a passage,
and the task is to return a sentence or an ordered list of sentences from the passage
as the answer given a question. An answer sentence extraction system may be
used as a stand-alone or as a subpart of a word-level QA system either to provide
a proof for where the final answer is extracted from or to decrease the complexity
of search space (Aghaebrahimian, 2018a).

To address the issues mentioned in the last chapter about QA datasets, we
present Quora Question Answering Dataset (Q2AD) which is compiled from the
questions in Quora. Quora is a question answering site where people ask their
questions, and other people answer them according to their expertise or experi-
ence. The answers in Quora have a high degree of variance since each question is
answered by a variety of people with different perspectives.

In contrast to previous datasets in which the questions are synthetic or answer-
oriented (Rajpurkar et al., 2016; Bordes et al., 2015), the questions in the Q2AD
are authentic. It means that real people asked these questions for obtaining
factual information. Moreover, the answers are generated for real questions to
address real problems which makes the dataset more reliable in real-life QA sys-
tems.

The Q2AD is the only dataset with multi-part answers, both in sentence-
level and word-level formats. In contrast to other datasets where the answers are
either one entity (Bordes et al., 2015) or a span of consecutive words from one
part of the accompanying context (Rajpurkar et al., 2016), the answers in the

49

Q2AD are generally multiple-part answers each from different sentences of their
accompanying passages.

To establish a baseline for the Q2AD, we tested it using our state-of-the-art
answer sentence selection system (Aghaebrahimian, 2017a) which is described
in Chapter 7. We also used human annotation to establish an upper bound
for the dataset. Our results show a wide margin between machine and human
performance on the dataset which demonstrates the difficulty of the task.

In the rest of this chapter, we explain the process of dataset compilation in
Section 5.2 and evaluate it in Section 5.3 before we conclude in Section 5.4.

5.2 Dataset Compilation

The Q2AD consists of 300 questions accompanied by their sentence-level and
word-level answers. It is divided between the training set with 80% and test
set with 20% of the questions1. Each question in the dataset is provided with a
full-text context which contains the sentence-level and word-level answers to the
question.

The sentence-level answers are complete sentences in full-text passages, and
the word-level answers are any possible span of consecutive words in the sentence-
level answers.

As shown in Table 5.1, the question ‘How do I push myself to study in the
afternoon?’ is answered by three full sentence-level and three word-level answers.
The word-level answers are a span of consecutive words from the sentence-level
answers. However, the choice of the boundary is entirely arbitrary, and each
answer is from different parts of the context. As shown in the same table, there
are no any common words between a question and its responses. This feature
makes answer selection difficult for QA systems which work based on the overlap
between queries and answers2.

The Q2AD is compiled in three steps; Question Screening, Passage Selection,
and Answer Annotation. These steps are explained in details in the following
subsections.

1In our experiments we used the last 10% of data in training set for validation.
2For more samples from the dataset please see Appendix D.

50

Question How do I push myself to study in the afternoon?
Full text passage Many people have a down cycle after lunch. You can eat a light lunch

which will help. That way your body isn’t processing a heavy load of
carbs and not as much energy is spent on the digestion of your meal.You
can also build in a small amount of exercise: stretching, a short walk.
Exercise helps digestion and helps improve your overall energy level.You
can also deliberately set a timer for a work period. There is a method
called the Pomodoro method you can check out which lets you set a clock
and at the end of that time, you stop your work, rest for 5 minutes and
then reset the clock. This method has been scientifically proven to help
people be more productive.

Sentence-level answers You can eat a light lunch which will help.
You can also build in a small amount of exercise: stretching, a short
walk.
You can also deliberately set a timer for a work period.

Word-level answers eat a light lunch
exercise
set a timer for a work period

Table 5.1: A sample question with its answers from the Q2AD. Correct sentences
are full sentences from the context, and short answers are spans of words taken
from correct sentences.

5.2.1 Question Screening

In the Question Screening step, a list of questions which are suitable for the data-
set is compiled. Questions for inclusion in the dataset should be straightforward,
well stated and eloquent. Besides, they should be answerable in at least one and
at most three explicit sentences. To satisfy these conditions, to maintain a good
variance in the dataset and to make sure that we choose our questions randomly
enough, we underwent the following process.

At the time of dataset compilation, Quora had hosted around 200K answered
questions. To collect the most popular questions, we did a weighted sampling
to select 5000 questions. We defined the weights as the product of the ‘Views’
parameter and the number of answers associated with each question both nor-
malized by the number of all questions.

We recruited a group of ten annotators for doing human annotation on the
dataset. They were all native speakers of English and college graduate students.
We asked the annotators to go through the questions one by one to eliminate
questions which ask about more than one thing (e.g., which computer system
should I buy? apple or Asus, why and preferably where?).

Afterward, they were asked to eliminate opinionated or subjective (e.g., what
is the nastiest things happen to you recently?) and descriptive or procedural
(e.g., how can I reinstall windows on my pc?) questions. The answer to these
questions is usually very long. Besides, there is often, no way to answer them
explicitly.

51

Finally, the annotators extracted questions which were self-explanatory and
could be answered with no further clarification3. At this point we had around
4000 questions for processing in the next step, Passage Selection.

5.2.2 Passage Selection

In the last step, we compiled a list of questions. Our annotators chose a passage
for each of these questions in this step. Passage selection is made on the merit of
answering questions explicitly and providing enough context for answering them
correctly.

A different number of people answer each question in Quora. Some of the
questions are answered more than 100 times. It means that there are a large
number of different answers with different length to each question.

A good passage for answering a question should be long enough to convey
the message adequately. Too short passages do not provide enough context for
answering questions. Hence, the first step in the passage selection is to eliminate
too short passages. We rejected questions with passages less than 100 words in
length. We did not care about too long passages since the system should be able
to deal with it in real-life applications.

A good passage for answering a question should also be able to provide an
explicit answer to their questions, and it can not be decided merely based on
the ‘Up-vote’ statistic associated with them. The best full-text passage is not
necessarily the one which has the highest up-votes. It is the one which contains
correct answer sentences and short answers explicitly. Empirically, we proved
this idea when we observed that more than 40% of the passages selected by our
annotators were not from the answers with the highest ‘Up-vote’. Therefore,
given a question and its remaining full-text passages after the screening above,
we asked our annotators to choose the best passage which satisfies the criteria
mentioned above.

The passage of each question is extracted by at least two annotators to increase
the confidence margin on the extracted passages. Since the annotators were
trained with the same principles and all of them began from the highest up-voted
answers and continued to the lowest ones, the chance of getting the same passage
for each question from two or more annotators was high. We computed the

3Some users in Quora provides their questions with a comment which helps to clarify their
question.

52

train dataset test data
Number of sentences 1212 302
Number of questions 240 60
One sentence 81 22
Two sentences 108 30
Three sentences 51 8
One answer 76 16
Two answers 104 33
Three answers 60 11
Average Sentence Length 60 11

Table 5.2: The Q2AD statistics.

Cohen’s Kappa score for the inter-agreement among different annotators. The
score was 86% which suggests high predictability and confidence in the process of
passage selection. Since we needed only one passage per question, we extracted
the question for which all annotators had chosen the same passage.

5.2.3 Answer Annotation

In the Answer Annotation step, sentence-level and word-level answers are an-
notated in the passages. The answers in the Q2AD are multifaceted. It means
that a response to a question may contain different aspects which are expressed
in multiple sentences. For this reason, the number of correct sentence-level and
word-level answers are different for each question. The answers in the Q2AD may
contain at least one and at most three different aspects (Table 5.2).

Given a list of questions accompanied by their passages, our annotators were
asked to extract correct sentence-level and word-level answers. They were asked,
first to choose the right sentences as sentence-level answers, and then to choose
the right spans of words among the correct sentences as word-level answers.

As one could expect due to the fine passage selection in the last step, the inter-
rater agreement (Kappa) in this step increased and reached 89%. To dissolve
the disagreement among the annotators, we extracted the questions for which
different annotators selected the same answers. Table 5.3 summarizes the length
of questions, passages, and answers in the Q2AD.

53

Length train dataset test data
Questions: Max 31 30
Questions: Min 3 3
Questions: Mean 10.64 10.52
Full text: Max 337 302
Full text: Min 34 40
Full text: Mean 102.25 107.43
Sentence-level Answers: Max 51 59
Sentence-level Answers: Min 1 1
Sentence-level Answers: Mean 15.17 15.08
Word-level Answers: Max 33 17
Word-level Answers: Min 1 1
Word-level Answers: Mean 5.7 5.6

Table 5.3: The Q2AD questions and answer length

5.3 Evaluation

We used a state-of-the-art sentence-level QA system (Aghaebrahimian, 2017a)
to measure the difficulty of the dataset and to establish a baseline. Given each
question, the system generates an ordered list of word-level and sentence-level an-
swers. Therefore, we used Mean Average Precision (MAP) and Mean Reciprocal
Rank (MRR) to measure the performance of the system.

To obtain the human performance on the Q2AD, we asked our annotators to
select correct sentences for the questions in the Q2AD test set. Then, we com-
puted MRR and MAP scores for each annotator, and we reported their average.

Table 5.4 summarizes the results of the Q2AD evaluation for random guess,
upper bound and baseline experiments. In this work, we report the system per-
formance only on sentence selection.

MRR MAP
Random guess 35.6 31.4
State-of-the-art 61.2 45.9
Upper bound 94.6 92.8

Table 5.4: Experimental results. State-of-the-art refers to (Aghaebrahimian,
2017a)

The wide margin between the random guess and the state-of-the-art results
in Table 5.4 suggests the effectiveness of the approach used in (Aghaebrahimian,

54

2017a). However, there is a wide gap between machine and human performances
which suggests there is still a lot of room for improvement.

An error analysis done on the responses shows that by increasing the number
of answers in the answer set of each question the error rate decreases. It shows
that most errors are attributed to single answer questions while least errors are
attributed to triple answer ones.

5.4 Conclusions

In contrast to WikiQA or TrecQA, the connection between the questions and
their passages in Q2AD is deterministic and direct. Answer up-voting by users
strengthen this connection. So the answers in Q2AD are tailored toward the
questions. Moreover and unlike to SQ or SQuAD, the questions in Q2AD are
authentic and original because, in Quora, people ask questions to elicit useful
information while in SQ or SQuAD crowd workers are asked to generate a question
provided with an assertion or a paragraph.

This dataset poses a new challenge for QA systems for answering the ques-
tions which are seeking multi-part answers. Some questions require an answer
which contains several sections each of which is taken from different parts of their
accompanying paragraph. This feature to the best of the author’s knowledge is
absent in previous QA datasets.

All of these attributes make the Q2AD an ideal source for experimentation on
open-domain Question Answering. In our future work, we intend to expand the
number of questions in the Q2AD to an amount which makes more data-intensive
approaches possible.

55

6. Structured Question
Answering

Structure QA is the task of answering questions with the data provided in struc-
tured databases like relational databases or knowledge graphs. In this chapter, we
describe our own original QA system based on the knowledge graph for answer-
ing simple open-domain questions. This chapter is taken from a paper (Aghae-
brahimian and Jurčíček, 2016a) which was prepared by the thesis author together
with his supervisor and was published at the Human-Computer Question Answer-
ing workshop at NAACL 2016.

6.1 Introduction

Simple open-domain QA is the task of answering questions using a knowledge
graph (Bordes et al., 2015). Simple in this context does not mean that this is an
easy task. It says that the answers can be obtained only by knowing one entity
and one property1. Flexible and unbound number of entities and their proper-
ties in open-domain questions is an intimidating challenge for entity recognition.
The Freebase (Bollacker et al., 2007), the knowledge graph which we used in
our experiments, contains about 58 million entities and more than 14 thousands
properties.

In our approach, we use a classifier for detecting properties and some heuristics
based on the structure of the Freebase for recognizing entities in questions. The
features of the classifier are defined using the words in the questions2. Of course,
the most straightforward approach for doing so is to represent the words as one-
hot vectors and train a classifier on them. However, representing words as discreet
entities leads the classifier to disregard possible similarities between two tokens.
This issue is known as the sparsity problem, and the low-dimensional vector
representation of words known as embeddings partially solves this issue.

Word vectors or embeddings capture useful information about words and their
relations to one another. Some studies show that there are meaningful connections
among learned word vectors like gender (king → queen) or even major city of

1Entity is a thing, place or people and property is an attribute which is asked about a specific
entity. For instance, in the question, ‘What is the time zone in Dublin?’, Dublin is an entity
and time zone is a property.

2For a description of features in this system please refer to Appendix A

56

countries (Germany → Berlin) (Collobert et al., 2011). This attribute makes
embeddings useful features for different NLP tasks especially those which require
making decisions on the semantic contents of the texts. We use word embeddings
as features in our Logistics Regression model. In our Neural models, we use two
alternatives; learning the word vectors through training and using pre-trained
word vectors.

We use the Freebase to recognize entities at test time. Defining a model for
entity disambiguation on a single question instead of a whole dataset lets us scale
the system up to a large knowledge graph irrespective to its size. We elaborate
on entity recognition in Sections 6.3.2 and 6.3.3.

A study done by Bordes et al. (2015) shows that 86% of the questions in
the WebQuestions dataset (Berant et al., 2013) are simple questions. WebQues-
tions is compiled using the Google Suggest API. It shows that a large number of
questions asked on the Internet by ordinary people are simple questions, and it
emphasizes the importance of simple QA systems. The best result of this task is
63.9% (Bordes et al., 2015) which suggests simple QA is still an unresolved task
in NLP.

6.2 Method

We define P and E as the space of all properties and entities in a question. For
each question like ‘What is the time zone in Dublin?’, we intend to find the tuple
(p, e) ∈ P×E for which p’s probability and e’s score with respect to some features
are maximal. We would like to get ‘/location/location/time_zones’3 as the best
property and ‘/en/Dublin’ as the best-matching entity in this question.

We decompose the learning model into two steps, namely; property detection
and entity recognition. In property detection, we decide which property best
describes the purpose of a given question. In this step, we model the assignment
of properties given questions using the probability distribution in Equation 6.1.
We use Logistic Regression technique to train the model and use the model for
assigning an n-best property list to each question at test time.

P (p|q) =
exp(ωT

p ϕ(q))
Σpi

exp(ωT
pi

ϕ(q)) (6.1)

3i.e., /Type 1/Type 2/Predicate

57

Given a question q , the aim is to find an n-best property list which best
describes the content of q and generates the correct answer when querying against
the knowledge graph. ϕ in Equation 6.1 is a feature set representing the questions
in vector space, and ω is the parameters of the model. p is the set of properties in
SimpleQuestions(SQ) (Section 4.3) which we used to evaluate our system. There
are 1629 properties in the training set of SQ. In Figure 6.1 the distribution and
some of the most common properties of the Freebase as the source of SQ is
illustrated.

Figure 6.1: The long tail of properties in the Freebase

In the second step, i.e., entity recognition, we detect and disambiguate the
primary entity of a question. We use a set of heuristics for assigning the best-
matching entity to each test question at test time. Entity recognition consists of
entity detection and entity disambiguation.

In entity detection, we try to detect the primary entity of a question. A typical
question usually contains tokens that all are available in the Freebase while only
one of them has the primary focus. For instance, in the question ‘what is the
time zone in Dublin?’, there are eleven entities all of which are available in the
Freebase (‘time, zone, time zone, ..., Dublin’) while the focus of the question is
on ‘Dublin’. (Please see Figure 6.2)

58

Figure 6.2: The spans of different available entities in a question

The detected entities are mostly ambiguous. Given an entity like ‘Dublin’,
we want to know which Dublin (i.e., Dublin in Ireland, Dublin in Ohio, etc.) is
meant in the question and it is not a trivial task. An increase in the number of
tokens in questions leads to an exponential rise in the number of possible entities
among which we should disambiguate. In Figure 6.3 the growth of entities by an
increase in the length of questions is depicted. To help the system with entity
disambiguation, we use some heuristics to increase the chance of correct entities.

0 5 10 15 20 25 30
Tokens in Questions

0

2000

4000

6000

8000

10000

En
tit
ie
s

Avrage Number of Entites per Questoin

Figure 6.3: The graph of the exponential growth of ambiguous entities by an in-
crease in the tokens of a question. The statistics are extracted from the questions
in the SQ dataset.

Having an n-best list of properties assigned to each question, we use two
heuristics namely type and similarity heuristics to select the best matching entity.

• The type heuristic enforces the type of answers obtained by querying (pq, ep)
to be equal to the expected type of pq. pq is the detected property for
question q and ep is the matched entity for that property.

• The similarity heuristic dictates that ep score which is the lexical similarity
ratio (i.e. edit distance) between the string values of ‘name’ and ‘id’ (see
Figure 2.5) properties connected to it should be maximal among all other
eps .

59

The type heuristic helps in detecting the primary entity of a given question
among other entities. Despite the assigned properties, each question has E num-
ber of valid entities. By valid we mean entities which are available in the Freebase.

After property detection, a set of n-best properties is assigned to each question
each of which has no or at most one ‘expected_type’. The Cartesian product
between the n-best properties and the E valid entities gives us N × E tuples
of (property, entity). We query each tuple against the Freebase and obtain the
respective answer. Each of the answers has a set of ‘type’s. If the ‘expected_type’
of the property of each tuple was available in the set of its answer’s ‘type’s, the
type heuristic for the tuple holds true otherwise false.

The similarity heuristic helps in entity disambiguation. Each entity has an
‘id’ and a ‘name’ property. Ambiguous entities usually have the same ‘name’
but different ‘id’s. For instance, entities ‘/m/02cft’ and ‘/m/013jm1’ both have
‘Dublin’ as their ‘name’ while the ‘id’ for the first is ‘/en/dublin’ and for the
last is ‘/en/dublin_ohio’. This is also the case for more than forty other different
entities whose ‘name’ are ‘Dublin’. In this case, the similarity heuristic for entity
‘/m/02cft’ holds true because among all other entities, it has the minimal edit
distance (i.e maximal similarity) ratio between its ‘name’ and ‘id’ values. It is
possible that the content of ‘id’ property for an entity is the same as its mid. In
such cases, instead ‘id’, we use ‘alias’ property which contains a set of aliases for
entities.

6.3 Training

At training time, we have training questions accompanied by their Freebase as-
sertions each of which includes an entity, a property, and an answer. Entities
and answers are in their mid formats. We also have access to the Freebase (data
dumps, 2015) through an MQL query API.

First, all questions are fixated on 20 tokens. Then we chunk them into their
symbols and compute ϕ(q) by replacing each token with its vector representation.
To train our classifier, we assign a unique index to each property in the training
data set and use them as a label for the training questions. Given a test question
at test time, we first get the n-best properties using our trained model as it is
explained below.

60

6.3.1 Property Detection

In property detection, we train a model which assigns an n-best property list
to each question based on its content. We use three models for this purpose
namely Logistic Regression4, a simple Neural Network5, and a Convolution Neural
Network6. The task in all of these models is to assign a property to each question.

In the Logistic Regression model, the features are the words in questions
replaced by their word vectors taken from pre-trained Word2Vec vectors (Mikolov
et al., 2013). Although it is not an efficient representation of questions, this model
obtains a competitive result in the SQ dataset. Figure 6.4 illustrates the Logistic
Regression model.

∼
P(p|q)

φ1 φ2 φ...φ3 φn

ωnω...ω3ω2ω1

Figure 6.4: The Logistic Regression model. Each circle represents a token, ϕ is the
features, and ω is the weights. We use the Sigmoid function as the non-linearity
(∼) in the model.

In the next experiment, we added more layers to our Logistic Regression
model to enhance the performance of the classifier. Figure 6.5 illustrates the
Neural Network model.

4For a detailed description of this model please see Section 2.1.1
5For a detailed description of this model please see Section 2.1.2
6For a detailed description of this model please see Section 2.1.3

61

∼

∼∼∼

P(p|q)

φ1 φ2 φ...φ3 φn

ω1

ω2

Hidden Layer

Figure 6.5: The Neural Network model. The non-linearity in the hidden layer is
sigmoid and in the last layer is softmax.

Finally, to enhance the model even further, we use a Convolution Neural
Network (CNN) with different filter sizes and with a max pool layer on the top.
The architecture of our CNN model is similar to Yoon Kim (Kim, 2014) with
some minor modifications.

The CNN model contains four consecutive layers. The first layer embeds
words into a low dimensional vector representation. In this layer, we adopt two
approaches to learning embeddings. In the first approach, we let the graph to
learn word embeddings directly from data by initializing it with a random uniform
distribution. In the second approach, we use pre-trained Word2Vec word embed-
dings. In both methods, we keet the model updating the embeddings through
training. The two alternatives show no significant difference in the final results.

The second layer slides a convolution window with different sizes over the
embeddings and the third layer max pools the result into a vector which is fed
into a softmax layer for classification in the last layer. For convolution layer, we
use one, two and three-size windows and for the next layer, we try average and
max pooling.

Finally, we use a fully connected softmax layer at the end. We train a model
in training time, and then we use it to obtain an n-best property list at test time.
Figure 6.7 illustrates the learning curve of the three models mentioned above on
the SQ validation set. Figure 6.6 illustrates the CNN model.

62

Figure 6.6: The CNN model

0 2 4 6 8
Epochs

0

10

20

30

40

50

60

70

80

Pe
rfo

rm
an

ce

Logistics Regression
Simple Neural Network
Convolution Neural Network

Figure 6.7: The leaning curve of the Logistic Regression, Neural Network, and
Convolution Neural Network models as the function of the number of training
epochs

Having the properties, the next step in the model is entity recognition which
includes entity detection and entity disambiguation.

6.3.2 Entity Detection

At the test time, instead of relying on external lexicons for mapping surface
forms to logical forms, we match surface forms and their mids directly using
the Freebase. For entity detection, we extract the spans in questions which are
available in the Freebase. To do so, we slide a flexible size window over each
question and obtain all possible spans with all possible sizes. We query the live
and full version of the Freebase using Meta-Web Query Language (MQL).

63

We query the entity mid of each span against the Freebase using the following
query.

{"mid":[],

"name": a span of word(s)}

This query returns the mid-list of all entities which have the same name as the
provided span. We have two alternatives to obtain entity mids, namely greedy
and full.

In the greedy approach, only the longest valid entities are reserved, and the
rest which may be still valid is disregard. In full approach, however, all the
entities are reserved. For instance, in a simple span like ‘time zone’, while greedy
approach returns only ‘time zone’, full approach returns ‘time’,‘zone’ and ‘time
zone’.

The spans with at least one entity mid are recognized as valid entities. For
each mid, we again query the Freebase to get the id and the types of the entity
using the following query.

{"mid":mid,

"type":[],

"id":[]}

For each mid, this query returns a list of ids and the associated types. As
described in Section 6.2, we generate the Cartesian product between the n-best
properties which is generated using the models in the previous section and the
mids of the current question. Enforcing the type heuristic on these products
distinguishes relevant entities from irrelevant ones. In other words, we remove
the products in which the expected type of the property is not available in the
list of the types of answer entities.

64

6.3.3 Entity Disambiguation

Detected entities in the last step in many cases are ambiguous. Entities in large
knowledge graphs each have different meanings and interpretations. In a large
knowledge graph, it is possible to find ‘Dublin’ as the name of a city as well as the
name of a book. Moreover, when it is the name of a city, that name is not still
unique as we saw in the earlier section. We use lexical similarity between ‘id’ and
‘name’ properties connected to that entity as a heuristic to get the best-matching
entity. Therefore for all remained (pq, ep) combinations from the previous step we
compute the edit distance between the name and id associated to the mid and
take the combination with the smallest distance.

6.4 Experiment

We use the following algorithm to train and test our system.

Algorithm: Property-driven QA
Input: train, validation and test sets, KG
Output: assertions for test questions
Training:
Train a classifier on train and validation sets
Testing:
For each question in the test data set

• Get n-best properties using the trained model

• Query KG to get the entity mids of word spans in the ques-
tion

• Entity recognition (type and similarity heuristics)

• Query KG to get the answer

return assertion(entity, property, answer)

We tested our system on the SimpleQuestions (SQ) data set (Bordes et al.,
2015)7. To make our results comparable to the results of SimpleQuestion authors,
we conducted our experiments on the official separations of the dataset. The input
for the training step in our approach is the training and validation sets with their
knowledge graph assertions. Using Word2Vec toolkit (Mikolov et al., 2011), we
replaced the tokens in the datasets with their vector representations and used
them as ϕ(q) in our model. We pruned questions with more than twenty tokens
in length and fixate shorter ones by adding extra <.> token. We already did some
simple pre-processing jobs on the input data such as removing non-alphanumeric
characters.

7For more about this dataset please see 4.3

65

Using these features and the model described above, we trained a classifier
using Logistic Regression, Neural Network, and CNN technique. We used the
trained classifier at test time for detecting 100-best properties for each test ques-
tion. For Neural Network, we used two hidden layers each with 1024 neurons,
and for CNN we used the same number of neurons for convolution and softmax
layers.

We tried to enforce regularization on weight vectors, however as already tested
in (Zhang and Wallace, 2015) it did not affect the final results in a meaningful
way. We also included a new channel in our CNN using POS tags of tokens, and
it improved the last model but not significantly. A comparative illustration of the
three models is depicted in Figure 6.7 and the results of hyper-parameter tunings
are reported in Appendix A.

The trained classifier, test questions and the Freebase knowledge graph (Feb-
ruary 2016) are the inputs at test time. Performing entity detection and disam-
biguation on the spans of a question using the detected properties, we obtain
a path (i.e., an entity and a property) using which we can evaluate the system
performance.

We used the Path Accuracy for evaluating the system. This is the same
evaluation metric which is used by the dataset authors. We obtained our best
validation accuracy using the greedy approach for entity recognition and 128-
dimensional embeddings for property detection. Using the same configuration,
we reported the accuracy of our system on test data.

6.5 Results

For training our system, we only used SimpleQuestions. Then, we reported the
results of official test data separation. The results of our system are reported in
Table 6.1.

We reported the accuracy of property detection and overall system separately.
In these series of experiments, the improvement in overall system accuracy is due
only to the gain on property detection. Although our system makes a query
on the whole knowledge graph, to make sure our results are comparable, we
eliminate entities which are not available in FB5M. In this settings, with 99%
coverage, we obtained 61.2% accuracy in our Logistic Regression model which
is competitive to the results in (Bordes et al., 2015) when training on the same
dataset (61.6%). Our Neural Network system obtained 63.89% accuracy which

66

trained on property Acc. over all Acc. knowledge graph
Bordes et al. SQ - 61.6 FB5M
Constraint-based(LR) SQ 69.80 61.20 Full FB
Constraint-based(NN) SQ 74.08 63.89 Full FB
Constraint-based(CNN-1) SQ 78.02 65.16 Full FB
Constraint-based(CNN-2) SQ 78.82 65.19 Full FB

Table 6.1: Experimental results on the test set of the SimpleQuestions (SQ)
dataset. LR stands for Logistic Regression, NN for Neural Network, CNN-1 for
Convolution Neural Network with one channel and CNN-2 for the CNN with two
channels.

is the same with (Bordes et al., 2015) best results when they trained on three
training data sets (WebQuestions and paraphrase data sets in addition to Simple
Question). Finally, our CNN model obtained 65.19% accuracy only trained on
SimpleQuestions. Since we work on the full knowledge graph, we hope that our
system can answer every possible simple question posed on the full graph of the
Freebase.

6.6 Error Analysis

Although the Logistic Regression and Neural Network models converged after
80% of the training data, as the learning curve in Figure 6.8 suggests, the CNN
model has still more capacity for learning. Therefore providing more training
data could improve the performance of this model.

20 40 60 80 100
Percentage of Training Data

0

10

20

30

40

50

60

70

80

Pe
rfo

rm
an

ce

Logistics Regression
Simple Neural Network
Convolution Neural Network

Figure 6.8: The learning curve of Logistic Regression, Neural Network and Con-
volution Neural Network models as the function of the number of training data

67

The errors made by the system can be categorized into three major categories:
Errors made on property classification, errors due to entity detection, and errors
due to entity disambiguation.

Around 20% of the errors are made directly by the property classification.
The mistake made in the classifier is mainly due to either too identical properties
or lack of enough training data for less represented properties. About 8% of the
errors in this part is due to wrongly assigned very similar properties like ’mu-
sic/artist/genre’ and ’music/album/genre’ which is a characteristic of the data-
set. Other 5% of the errors are made because of the lack of enough training data
on rarely-used properties such as ’geography/glacier/terminus’ or ’socialdance/-
dancer/styles.’ These properties are in the long tail of the properties and are not
used very often. These errors can be eliminated by including more training data
for these under-represented properties.

The reaming 7 to 8% errors made by the classifier are attributed to imperfectly
trained word vectors and the lack of enough training data especially for the CNN
model (See Figure 6.8).

The entity detection is the source of the second class of errors due to the
typing system of the Freebase. In some cases, the assignment of the expected
type to properties seems non-deterministic like the assignment of ’genre’ and
’book’ both to book/book − edition/publisher. Nevertheless, the proportion of
the errors made by this module is not noticeable.

Ambiguous entities make the third class of errors. In this errors the detected
property and the surface name of the entity are correct, but the recognized mid
is not. A more powerful entity linking approach can resolve these errors.

6.7 Conclusions

The class of entities in open-domain applications is open and expanding. Train-
ing a statistical model for classifying millions of entities is practically infeasible
because it is costly and there is not enough training data available. Since entity
decisions are made on one question and does not affect the next one, the en-
tity model can be optimized for each question at test time and on the heuristics
specific to that question.

In contrast, the class of properties is closed, and the property decisions usually
are global ones. Therefore, a property model can be optimized once at training

68

time and for all the questions. In this way, by making decisions on properties
first, we decrease the decision space for entities by a large extent, and it makes
our approach insensitive to the size of the knowledge graph. As we demonstrated
in our experiment, optimizing entity recognition model on a single question lets
the system scale efficiently to large knowledge graphs.

Dependence on predefined lexicons limits the scope of language understanding
only to those predefined ones. In our approach, we do not use any data set or
lexicon for entity recognition. Instead, we disambiguate entities by querying the
knowledge graph at test time. Then, we apply some heuristics to entities to get
the correct entity for each question. In this way, we can expand the domain of
language understanding irrespective to the size of the knowledge graph.

While our system is tested on the Freebase which contains more than 50
million entities, other systems limit their entity recognition on two subsets of
this knowledge graph which contain only two and five million entities each. To
reiterate how difficult is to scale up a system to such massive number of entities,
we refer to an experiment done by Bordes et al. (2015) in which scaling the
experiment from two million entities to five million entities deteriorates their
system accuracy from 62.7% to 62.2%.

69

7. Sentence Selection

In this chapter, we introduce the Constrained Deep Neural Network (CDNN) as a
simple deep neural model for sentence-level answer extraction. CDNN compounds
neural reasoning with symbolic constraints to enhance final predictions. On a
well-studied dataset for sentence-level answer selection, our model improves state
of the art in answer sentence selection significantly. The content of this chapter
is the shortened text of a paper (Aghaebrahimian, 2017a) which was prepared by
the thesis author while he was working on his Ph.D. thesis.

7.1 Introduction

A typical Question Answering (QA) system consists of three primary compo-
nents; Passage Retrieval, Sentence Selection, and Answer Extraction (Tellex
et al., 2003). In this chapter, we focus on Sentence Selection.

The Sentence Selection component or a sentence-level QA system is designed
to extract a subset of sentences in a passage given a question. If a more specific
answer is expected, another component (i.e., Answer Extraction or word-level
QA) extracts a word or a span of nearby words from the selected sentences.

The Sentence Selection component is beneficial in at least two ways. First,
it helps the Answer Extraction component by eliminating non-relevant sentences
and reducing the search space. Second, it provides a sentence which can be
used as evidence for the final answer. Some other Natural Language Processing
(NLP) tasks such as paraphrase detection (Yin et al., 2015b) benefit from this
formulation of QA too.

Deep Neural Networks (DNN) has been shown to outperform traditional ma-
chine learning algorithms in many NLP tasks. A natural choice for sentence
selection using DNNs is the Hinge approximation approach in which the weights
associated to correct question-answer pairs are increased, and those associated to
wrong pairs are decreased (Rao et al., 2016; Santos et al., 2014) through training.
We extend this idea to integrate the number of shared patterns of question-answer
pairs into the model.

Such a large DNN has millions of parameters that should be adequately
trained, and It requires a large number of samples which are not available in
regular datasets. However, DNNs work astonishingly well with transfer learn-

70

ing (i.e., training a model on a sizeable general-purpose dataset and optimize it
using a smaller specialized dataset for a specific task). To provide the network
with enough training samples, we use SQuAD (Rajpurkar et al., 2016) to train
our model as a mean of transfer learning, and we show that the model performs
remarkably better than previous best models.

7.2 Architecture

In a sentence selection experiment, we want to estimate a probability distribution
over all sentences given each question and to get the sentence with the highest
probability.

sbest = argmaxs p(s|q) (7.1)

To compute the probability, in the first step, we need to project the questions
and sentences into n-dimensional space. To do this, we used the Recurrent Neural
Network (RNN) (Elman, 1990) architectures to encode textual strings into vector
representations. Long Short-Term Memory (LSTM) (Hochreiter and Schmidhu-
ber, 1997) and Gated Recurrent Unit (GRU) (Cho et al., 2014) are two widely
studied variants of RNNs. In our study, we used LSTM cells since they showed
better and more stable performance in our experiments1.

To provide LSTM layers with their inputs, in the first layer, we used a lookup
table to cast words into word embeddings (Equation 7.2). W in Equations 7.2
is the one-hot representation of the words in sentences whose production with
pre-trained embedding matrix E generates word vector Wi,t for the words in the
ith sample sentence each in time step t.

In the next layer, a forward RNN layer accepts word vectors and generates a
sequence of vectors for each time step. A similar RNN does the same job but in
opposite order to generate backward RNN vectors. We did max pooling (MP)
(Equations 7.4 and 7.6) over RNN vectors to get the most relevant features and
then concatenated them in Equation 7.7. The final result of this process, S is
a forward and backward vector representation of textual strings. We used this
architecture to encode our questions.

1For a detailed description of this model, please see Section 2.1.4

71

Wi,t = E⊺Wk (7.2)
−→S i,t = RNN(−→S i,t−1, Wi,t) (7.3)
−→S i = MP(−→S i,t) (7.4)
←−S i,t = RNN(←−S i,t+1, Wi,t) (7.5)
←−S i = MP(←−S i,t) (7.6)

Si = [−→S i;
←−S i] (7.7)

Answer sentences are encoded like questions with an additional attention layer,
which helps the encoder to recognize the most relevant features by emphasizing
on critical points of the answer sentence given each question. Therefore, simi-
lar to the question encoder explained above, the sentence encoder receives the
initial embeddings from a lookup table over a pre-trained embedding matrix.
The forward RNN in the next layer transforms the embeddings into a sequence
of vectors which finally are fed into an attention layer with attention on source
sentence vectors (Equation 7.8). The resulted vector then is max pooled to be
eliminated from non-relevant and useless features. The same process is done for
the backward RNN, and the resulting vectors are concatenated.

Wi,t = E⊺Wk

−→T i,t = RNN(−→T i,t−1, Wi,t)
−→T i,t = ATT (−→T i,t, Si) (7.8)
−→T i = MP(−→T i,t)
←−T i,t = RNN(←−T i,t+1, Wi,t)
−→T i,t = ATT (←−T i,t, Si) (7.9)
←−T i = MP(←−T i,t)

Ti = [−→T i;
←−T i]

72

All sentences including correct and wrong sentences are encoded using this
procedure. In the end, question vectors in addition to right and wrong answer
vectors are ready to be used as the inputs of a Hinge objective function. Using
this function, we try to maximize the similarity in right question/sentence sets
while minimizing it in wrong question/sentence sets. Therefore, the next step is
to measure the similarity between questions and sentences in the right and wrong
sets.

The similarity between two vectors can be estimated via different approaches
such as Jaccard, Cosine, Polynomial or Manhattan, etc. But it seems that an
adequate similarity measure highly depends on the task. We experimented several
similarity measures (please see 2.3) including Cosine, exponential, etc. and we
adopted Geometric mean of Euclidean and Sigmoid Dot product (GESD) (Feng
et al., 2015b) which seems to outperform other similarity measures in this model.

GESD linearly combines two other similarity measures called L2-norm and
inner product. L2-norm is the forward-line semantic distance between two sen-
tences, and inner product measures the angle between two sentence vectors (please
see Equation 7.10)2.

GESD(q, s) = 1
1 + exp (−(q · s)) ∗

1
1 + ∥q − s∥

(7.10)

To distinguish correct question/sentences from wrong ones, we need to train
their vectors in a way which increases the similarity for right and decreases it for
wrong question/sentences. Hinge objective function does the trick for us (Equa-
tion 7.11). We also modify it in a way that not only considers the similarity
between questions and their sentences but also enforces their pattern similarity
as a hard constraint (see Equation 7.11).

ℓ = ∑
i max(0, m + β ∗GESD(Si, T−

i)− α ∗GESD(Si, T+
i)) (7.11)

2For a comparative analysis of various similarity measures in this experiment, please refer
to Appendix B

73

Figure 7.1: Abstract model architecture. Numbered components in the figure are
1-Forward LSTM, 2-Backward LSTM, 3-Forward Attentive LSTM, 4-Backward
Attentive LSTM, 5-Backward max-pooling, 6-Forward max-pooling, 7-Question
vector, 8-correct sample vector, 9-wrong sample vector.

Any similarity between a question and its correct sentence decreases the loss
and vice versa (i.e., the loss increases with the similarity between a question and
its wrong samples.). Parameter m which is a value in range 0.01 and 0.1 makes
a trade-off between the number of mistakes in true and false classification in the
model. s+ are correct, and s− are wrong sentences. α and β are the numbers
of shared patterns between a question and its right and wrong sentences respec-
tively. Finally, GESD (Equation 7.10) is the similarity function that computes
the similarity between the vectors of questions and sentences. After training,
the model estimates a probability for each pair of question and sentence (i.e.,
p(question|sentence)).

Figure 7.1 describes the equations above schematically. In training a sentence-
level QA system, correct and wrong sentences are equally informative. Therefore
to learn the probability associated with each question and sentence either right
or wrong we should feed the network with right and wrong sentences at the same
time to let the network to learn to contrast them.

Based on the equations above and as shown in Figure 7.1, questions are passed
through four layers. The first layer is an embedding layer. The word vectors in
this layer are initialized with pre-trained 300-dimensional Glove vectors (Pen-
nington et al., 2014a).

74

In the second layer, two rows of LSTM cells are allocated to each question to
form a forward and backward representations. Given a question, in the forward
LSTM, each LSTM cell receives the output of its previous cell as the input layer.
The process repeats from left to right to cover all the tokens. The first LSTM
gets the embedding layer output as its input, and the output of the last LSTM
is fed into the max-pooling layer.

In the backward LSTM, the same question is fed into the same LSTM, but in
reverse order (i.e., from right to left). The outputs of the forward and backward
LSTMs then go through a max-pooling layer. Similar to Santos et al. (2014), the
max-pooling layer is a column-wise max operator that estimates the importance
of each token given the surrounding context. Both forward and backward LSTM
vectors are passed from the max-pooling layer, and the resulting vectors are
concatenated.

To generate correct and wrong vectors right and wrong samples are passed
through a similar network but with attention LSTM cells instead of regular ones
over corresponding questions. In the end, we have a pair of correct and wrong
sentence vectors for each question. By putting the similarity of right and wrong
pairs into the loss function, we can train the network to maximize the similarity
between questions and the corresponding correct sentences and to minimize the
similarity between questions and wrong sentences.

Finally, we rearrange the scores generated by the model by a coefficient of
question-sentence shared patterns similar to what we use in the loss function. In
the end, we use a softmax to turn the generated logits into probabilities.

7.3 Dataset

We used two widely studied datasets for sentence selection, namely TrecQA3

and SQuAD4. We used the TrecQA dataset to evaluate the performance of the
system on sentence selection and the SQuAD to assess the system performance
on transfer learning for sentence selection task. Although the SQuAD is not
designed originally for answer sentence selection, the correct answer sentences
can be easily extracted using the pointers defined on the beginning and ending
characters of correct word-level answers.

Wrong sentences are collected using two different settings, which seem to cause
3For more about this dataset, please refer to Section 4.2
4For more about this dataset, please see Section 4.4

75

no real difference in the final results. In the first setting, given a question, we
detected the correct sentence as explained above and used the other sentences in
the same paragraph as wrong samples. In the other setting, we sampled wrong
sentences for a given question from all the paragraphs disregarding to which
paragraph the question belongs. In the end, we had one correct and up to five
wrong samples for each question.

The original test set of the SQuAD is unseen and is not available online.
Hence, for our experiments, we used the original training set for both training
and development purposes. For testing purpose, we used the original development
set. Since this is the first time that the SQuAD is being tested in a sentence
selection experiment, we established a simple baseline for sentence selection in
our test set. We counted the number of shared uni, bi, and trigrams in each
question and sentence and assigned the sentence with the most shared patterns
to the question. Then we reported the Accuracy of this method as the baseline.

7.4 Experimental Results

We used 128-dimensional LSTM cells and set the margin of the loss to 0.05. We
used Adam (Kingma and Ba, 2014) to optimize the parameters using SGD. As
the curve in Figure 7.2 shows the model benefits from all the training data.

20 40 60 80 100
Percentage of Training Data

0

20

40

60

80

Pe
rfo

rm
an

ce

MAP
MRR
ACC

Figure 7.2: The learning Curve of the model as function of the percentage of
training data

Given each question, there is more than one correct sentence in the TrecQA
dataset. Therefore, the output of the model for this dataset is an ordered list
of sentences which requires us to use the Mean Average Precision (MAP) and

76

trained on test set MRR(%) MAP(%) ACC.(%)
state-of-the-art TrecQA TrecQA-mod 87.7 80.1 -
state-of-the-art TrecQA TrecQA-org 83.4 78.8 -
Current Paper SQuAD + TrecQA TrecQA-mod 86.2 73.2 -
Current Paper SQuAD + TrecQA TrecQA-org 89.5 79.5 -
Baseline SQuAD SQuAD - - 69
This work SQuAD SQuAD 93.4 90.1 86

Table 7.1: Experimental results. The TrecQA-org is the original TrecQA, the
TrecQA-mod is the modified TrecQA, and state-of-the-art refers to (Rao et al.,
2016)

the Mean Reciprocal Rank (MRR) for evaluation purposes5. In contrast, the
questions in the SQuAD are provided only with one right answer. For this reason,
we use the Accuracy measure to evaluate the performance of the model. Please
note that the Accuracy measure is the floor measure for the performance of this
system though6. The experimental results are presented in Table 7.1.

The errors made by the system are of three types. Around 8% of mistakes
are formed due to long sentences with nested structures for which the LSTMs in
our system failed to generate correct or sufficient representations. Approximately
4% of the errors are due to unknown words for which we did not have word vec-
tors. Since they scarcely occurred in the dataset, the algorithm couldn’t provide
them with accurate word vectors. The last 2% of errors are caused by syntactic
problems such as incomplete sentences or typos in either questions or answers.

7.5 Conclusions

In this chapter, we presented a QA system with a state-of-the-art result in
sentence-level answer extraction. The proposed architecture is designed to dis-
tinguish between good and bad sentence answers given a question. It is also
designed to accept explicit textual features such as the common words between a
question and an answer as a hard constraint in its objective function. It provides
the architecture with more flexibility for applying heuristics specific to each use
case.

Sentence selection can be considered either as a stand-alone QA system or as
the first component for a fine-grained QA system. In the latter case, it enhances
the precision and performance of the overall system by providing the correct

5Please see Section 2.4 for a detailed description of these measures.
6Compared to MRR and MAP, the accuracy is a pessimistic measure for this experiment

because it just considers the first selected answer and disregards the others.

77

sentence hence decreasing the search space for the following components while in
the first case it directly provides users with a coarse-grained answer.

We also showed that using models which are trained on large datasets and
tuned on smaller datasets for other similar tasks (i.e., transfer learning) can be
beneficial for QA. Designing architectures which can handle transfer learning is
of prime importance, especially when dealing with small datasets or limited data.
These architectures let us train our model with large datasets and tune and
customize it with our little available data in the end. This model is also proved
beneficial for other sentence-level inference tasks such as multi-lingual sentence
alignment (Aghaebrahimian, 2018b).

78

8. Unstructured Question
Answering

In this chapter, we describe our unstructured QA module for answering non-
factoid questions from unstructured data. This module advocates a linguistically-
based approach to answering non-factoid open-domain questions. First, we elab-
orate on an architecture for textual encoding based on which we introduce a
deep end-to-end neural model. This architecture benefits from a bilateral atten-
tion mechanism which helps the model to focus on a question and the answer
sentence at the same time for phrasal answer extraction. Second, we feed the
output of a constituency parser into the model directly and integrate linguistic
constituents into the network to help it concentrate on chunks of an answer rather
than on its single words for generating more natural output. By providing a way
to exploit syntax in the model we impose constraints on the candidate space,
limit errors and make the system more efficient. By optimizing this architecture,
we managed to obtain results near to human performance and competitive to a
state-of-the-art system on SQuAD and MS-MARCO datasets respectively. The
content of this chapter is taken from a paper (Aghaebrahimian, 2018a) which
was written by the thesis author during his Ph.D. study and is published in the
proceedings of the CoNLL 2018 conference.

8.1 Introduction

Reading, comprehending and reasoning over texts and answering a question about
them is a fundamental aspect of computational intelligence. Question Answering
(QA), as a measure of intelligence, has been even suggested to replace the Turing
test (Clark and Etzioni, 2016).

The development of large datasets of QA in recent years (Hermann et al., 2015;
Hill et al., 2015; Bordes et al., 2015; Rajpurkar et al., 2016) advanced the field
especially for two significant branches of QA namely factoid (Aghaebrahimian
and Jurčíček, 2016b,a) and non-factoid1 (Rajpurkar et al., 2016) QA.

Non-factoid QA or QA over unstructured data is a somewhat new challenge
in open-domain QA. A non-factoid QA system answers questions by reading

1While the answer to a non-factoid question is a chunk of one or more adjacent words, the
answer to a factoid question is only an entity.

79

and comprehending a context. The context in which we assume the answer is
mentioned may have different granularities from a single sentence or paragraph
to larger units of text. A QA system is supposed to extract a phrase answer from
the provided paragraph or sentence depending on its granularity level.

Text: The 2008 Summer Olympics torch relay was run from
March 24 until August 8, 2008, prior to the 2008 Summer
Olympics, with the theme of "one world, one dream". Plans for
the relay were announced on April 26, 2007, in Beijing, China.
The relay, also called by the organizers as the "Journey of Har-
mony", lasted 129 days and carried the torch 137,000 km (85,000
mi) – the longest distance of any Olympic torch relay since the
tradition was started ahead of the 1936 Summer Olympics.

Question: Where were the details of the torch relay made
known?
Sentence Answer: Plans for the relay were announced on April
26, 2007, in Beijing, China.
Phrase Answer: Beijing, China.

Box 8.1: Question Answering over unstructured data. The sample is taken from
the SQuAD (Rajpurkar et al., 2016).

The context for answering questions is usually extracted using an Information
Retrieval (IR) technique. Then, a QA system should extract the best answer
sentence. There are many studies about extracting answer sentences including
but not limited to (He et al., 2015; He and Lin, 2016; Yih et al., 2013; Yu et al.,
2014; Rao et al., 2016; Aghaebrahimian, 2017a).

Extracting the final or shortest possible answer from a set of candidate answer
sentences is addressed in many studies as well. (Zhang et al., 2017; Gong and
Bowman, 2017; Shen et al., 2016; Weissenborn et al., 2017b). Instead of reasoning
over and making inference on linguistic symbols (i.e., words or characters), almost
all of these models use a neural architecture to encode contexts and questions into
a vector representation and to reason over them.

A typical pattern in most of the current models is the use of a variant of
uni- or bi-directional attention schemes (question to context and vice-versa) to
encode the semantic content of questions’ words with a focus on their context’s
words (Seo et al., 2016; Xiong et al., 2016; Weissenborn et al., 2017a; Chen et al.,
2017; Wang et al., 2017). Compared to these models the novelty of our work is in
explicitly conducting attention over both the context and the question for each
candidate constituent2 answer. The fact that this is better than attending only
to the question words is investigated and proved according to the results reported
in Section 8.6.

2From now on and for the sake of brevity by constituents we mean linguistic constituents as
they are referred to in Phrase Structure Grammar (Noam Chomsky, 1957).

80

Constituents Type Training set Development set
NP 59 % 62 %
ROOT 8 % 6 %
NNP 5 % 4 %
NN 4 % 2 %
JJ 3 % 1 %
VP 3 % 4 %
CD 3 % 2 %
PP 2 % 4 %
S 2 % 2 %
others 11 %(each < 2%) 13 %(each < 2%)

Table 8.1: The distribution of constituent types of answers in the SQuAD train-
ing and development sets. For constituency parsing the Standford CoreNLP
tool (Manning et al., 2014) is used. To see the full list of available constituency
types in the dataset please refer to Appendix C.2

Another observation is that a majority of recent studies are purely based on
data science where one can barely see a linguistic intuition towards the problem.
We show that a pure linguistic intuition could help neural reasoning and attention
mechanisms to achieve quantitatively and qualitatively better results in QA.

By analyzing a human-generated QA dataset called SQuAD (Rajpurkar et al.,
2016), we realized that people tend to answer questions in units called constituents
(please see Table 8.1). They expect an answer to a question to be a valid con-
stituent otherwise it would probably not be grammatical.

Constituents and Constituency relations are the bases of Phrase Structure
Grammar first proposed by Noam Chomsky (Noam Chomsky, 1957). Phrase
Structure Grammar and many of its variants including Government and Bind-
ing theory (Chomsky, 1993) or Generalized and Head-driven Phrase Structure
Grammar (Gazdar et al., 1994; Pollard and Sag, 1994) define hierarchical binary
relations between the constituents of a text, and hence help to realize an exact
and natural answer boundary for answer extraction.

Having these two points in mind and inspired by attentive pooling networks
by Santos et al. (2014) we designed an attentive bilateral model and trained
it on the constituents of questions and answers. We attempted to use some
information from the parser, so to go beyond a simple word-based or vector-
based representation as well as to show the relevance of linguistic constituents for
answer extraction.

The results obtained by the model are near to human performance on SQuAD
dataset and competitive to a state-of-the-art system on MS-MARCO dataset.

81

8.2 Constituency Relations

There is hardly a universal agreement upon the definition of the term ‘constituent’.
In general, a constituent is an inseparable unit that can appear in different places
of a sentence. Instead of defining what a constituent is, linguists define a set of
experiments such as replacement or expansion to distinguish between constituents
and non-constituents.

For instance, let’s consider the sentence ‘Plans for the relay were announced
on April 26, 2007, in Beijing, China.’ We can replace or expand some constituents
in Figure 8.1 and rephrase the sentence as ‘on April 26, 2007, plans for the relay
were announced, in Beijing, China.’ or ‘Plans for the great and important relay
were announced on April 26, 2007, in Beijing, China.’ while we are sure that
these rephrases are not only both syntactically and semantically correct but also
convey the same meaning as the original sentence. Zhang et al. (2017) and Xie and
Eric (2017) are some of the earliest works which tried to integrate more linguistic
structures into QA. Using TreeLSTM, Zhang et al. (2017) tried to incorporate
linguistic structure into QA implicitly. At the prediction step, they used pointer
network (Vinyals et al., 2017) to detect the beginning and the end of answer
chunks. In contrast, Xie and Eric (2017) explicitly modeled candidate answers
as sequences of constituents by encoding individual constituents using a chain of-
trees LSTM (CT-LSTM) and tree-guided attention mechanism. However, their
formulation of constituents is more complicated than ours, and as we will see,
direct use of constituents as answer chunk is much less cumbersome and yields
better results.

Figure 8.1: Constituency parse tree of the sentence ’Plans for the relay were
announced on April 26, 2007, in Beijing, China.’. Blue tokens are surface words,
and red tags are constituency types. The immediate tags attached to surface
forms are word-level, and others are phrase level constituency types.

82

8.3 System Architecture

In this section, we describe how to represent questions, sentences and answers in
vector space in Subsection 8.3.1 and then we train the vectors in Subsection 8.3.2
using a specific loss function and distance measure.

8.3.1 Representation Learning

Our goal is to extract constituent answers by loading their vector representations
with the semantic content of their question and their containing answer sentence.
To achieve this end, we integrated a bilateral attention mechanism into our model
which lets us estimate a joint vector representation between answers when they
are attending questions and when they are attending sentences.

To encode the semantic information in questions and sentences, we used a
simple encoding unit (see Equations 8.1 to 8.6). In this unit, Wk ∈ R|V | are
words in one-hot vector representations where kth element of each vector is one
and others are 0. V are all vocabularies in questions and answers. E ∈ R|V |×de

is the embedding matrix and de is the embedding dimension. The product of the
multiplication in Equation 8.1 is the word embeddings in which each cell Wi,t is
the word in time step t in sample i. This is the input of forward and backward
RNN cells in Equations 8.2 and 8.4.

As RNN cell, we used Long Short-Term Memory architecture (LSTM) (Hoch-
reiter and Schmidhuber, 1997). Hu et al. (2017) and Pan et al. (2017) show that
bi-directional LSTM architectures provide more accurate representations of tex-
tual data. The common practice to form a bidirectional LSTM is to concatenate
the last vectors in forward and backward LSTMs. Instead, we used a stepwise
max pooling (STMP) mechanism which takes the most essential vectors from the
forward and backward LSTMs in Equations 8.3 and 8.5 and concatenate them in
Equations 8.6.

83

Figure 8.2: The encoding unit. The embedding lookup uses pre-trained Glove
word vectors (Pennington et al., 2014a) and updates them through training. The
output is the concatenation of max-pooled vectors of LSTM encoders.

Wi,t = E⊤Wk (8.1)
−→enci,t = LSTM(−→enci,t−1, Wi,t) (8.2)
−→enci = SWMP (−→enci,t) (8.3)
←−enci,t = LSTM(←−enci,t+1, Wi,t) (8.4)
←−enci = SWMP (←−enci,t) (8.5)

enci = [−→enci;←−enci] (8.6)

Using our encoding unit (see Figure 8.2) we encode questions and sentences
and then concatenate the resulted vectors to generate a joint representation of
questions and their answer sentences in Equation 8.7.

encQS
i = [encQ

i ; encS
i] (8.7)

84

W A
i,t = E⊤W A

k (8.8)
−→
hi,t = LSTM(−−−→hi,t−1, W A

i,t) (8.9)
−−→
h

AQ

i,t = ATT (−→hi,t, encQ
i) (8.10)

−−→
h

AQ

i = SWMP (
−−→
h

AQ

i,t) (8.11)
←−−
h

AQ

i,t = LSTM(←−−−hi,t+1, W A
i,t) (8.12)

←−−
h

AQ

i,t = ATT (
←−−
h

AQ

i,t , encQ
i) (8.13)

←−−
h

AQ

i = SWMP (
←−−
h

AQ

i,t) (8.14)

h
AQ

i = [
−−→
h

AQ

i ;
←−−
h

AQ

i] (8.15)

In the next step, we need to encode the constituent answers. Our answer
encoding unit has two modules, one with attention on questions encQ

i (Equations
8.8 - 8.15) and the other with attention on sentences encS

i (Equations 8.16 - 8.23).
In both modules, we used an architecture similar to the one in the encoding unit
with an additional attention unit.

In the answer encoding unit, again the input to LSTM cells are word embed-
dings generated by the lookup table W A

i,t. Two attention layers in this unit receive
the output sequences of the forward and backward LSTM cells and focus once on
questions and once on sentences.

W A
i,t = E⊤W A

k (8.16)
−→
hi,t = LSTM(−−−→hi,t−1, W A

i,t) (8.17)
−−→
hAS

i,t = ATT (−→hi,t, encS
i) (8.18)

−−→
hAS

i = SWMP (
−−→
hAS

i,t) (8.19)
←−−
hAS

i,t = LSTM(←−−−hi,t+1, W A
i,t) (8.20)

←−−
hAS

i,t = ATT (
←−−
hAS

i,t , encS
i) (8.21)

←−−
hAS

i = SWMP (
←−−
hAS

i,t) (8.22)

hAS
i = [

−−→
hAS

i ;
←−−
hAS

i] (8.23)

85

In the end, the vectors generated by these two modules are concatenated3

to form a general attentive representation of constituents with respect to their
corresponding questions and sentences.

h
AQS

i = [hAQ

i ; hAS
i] (8.24)

Figure 8.3: The system architecture. The encoding units are illustrated in Fig-
ure 8.2. Two answer modules, one with attention on questions and the other on
sentences, provide a joint representation containing all required information with
respect to questions and sentences for making inference on true constituents. The
Hinge loss function accepts three inputs, joint representation of question and an-
swer sentence, true answer representation and false answer representation both
with attention to respective question and sentence. Given each question and a
series of constituents, it generates a score for each constituent and returns their
argmax as the final answer.

At training time, we try to learn the vector representations of questions, sen-
tences, and their constituents jointly. However, we like to learn the vectors in a
way that leads to a small distance between questions and their true constituents
and a long distance between them and their false constituents. For this purpose,

3All concatenations are performed on the last layer (i.e., data dimensions).

86

for each pair of question and sentence, we compute a true answer A+
QS and false

answer A−
QS vectors.

These vectors are generated by passing a correct constituent A+ and a ran-
dom wrong constituent A− through question-attentive (Equations 8.8 - 8.15) and
sentence-attentive (Equations 8.16 - 8.23) modules and by concatenating the out-
puts.

8.3.2 Training

In this section, we train our model. Given a question and the constituents asso-
ciated with its answer sentence, the model generates a score for each constituent.
The score is an estimate of how similar the constituent to the gold answer is. The
model returns the id of its true predicted constituent by taking the argmax over
the scores.

To train the model, we need to compute the distance between questions and
their true constituents and to contrast it with the distance between questions and
their false constituents.

There are various measures of distance or similarity between two vectors each
with its own merits. Feng et al. (2015a) did an exhaustive study on different dis-
tance measures for text classification and proposed some new measures including
the Geometric mean of Euclidean and Sigmoid Dot product (GESD) (following
equation) which outperformed other measures in his study4.

DIS(Q, A) = 1
1 + exp(−(Q.A)) ∗

1
1 + ||Q− A||

We integrated GESD in our work to estimate the distance between questions
and their true and false constituents. GESD linearly combines two other mea-
sures called L2-norm and inner product. L2-norm is the forward-line semantic
distance between two sentences and inner product measures the angle between
two sentence vectors.

Now everything is ready to train the model. The overall system architecture
is illustrated in Figure 8.3. We use the Hinge loss to estimate the loss of each

4For an ablation study on the effect of various distance measures please see Appendix C

87

question-answer combination. The Hinge function increases the loss with the
distance between a question and its true constituents while decreases it with the
distance between a question and its false constituents. In our Hinge function
as seen in the following equation, encQS is the joint vector representation of
questions and their answer sentences, h

A−
QS

i is the vector of wrong answers, hA+
QS

is the vectors of right answers. Finally, m is the margin between positive and
negative answers. It makes a trade-off between the mistakes in positive and
negative classes.

L =
∑

i

max(0, m + DIS(encQS
i , h

A+
QS

i)−DIS(encQS
i , h

A−
QS

i))

8.4 Dataset

We used the SQuAD to evaluate the performance of our model5. The answers in
the SQuAD can be any span of adjacent words and are guaranteed to be existent
in the paragraph which comes with each question. These answers are categorized
into ten types including Person, Date, Location, etc (Rajpurkar et al., 2016).
However, there are no statistics available on the constituent type of each answer.

To pre-process the questions and sentences in the dataset, we removed all
non-alphanumeric characters from all contents. Then, we replaced numeric values
with ‘9’ since we needed to control the vocabulary size by eliminating redundant
numeric values, but at the same time, we wanted to parse the contents, and we
needed to keep the semantic values of numeric tokens. Then we used CoreNLP
tool (Manning et al., 2014) to tokenize and to perform constituency parsing on
the contents.

After extracting constituents from the tree of sentences and comparing them
with gold answers, we realized that 72% of the responses are constituents. Other
16% of the responses had slight divergences from a constituent, like lacking or
having an extra determiner or punctuation mark which were eventually going
to be disregarded in the official evaluation script. The remaining 12% was a
combination of two smaller constituents or a part of a larger one.

In the training set, to use constituents as answers, we replaced non-matching
responses with the smallest and most similar constituents. Since at the evaluation
time, we needed the gold answers and not their replaced constituents, we didn’t
change the answers in the development set.

5For more about this dataset, please see Section 4.4

88

Total number of 48 different constituents including both terminal and non-
terminal ones are extracted from the SQuAD. The percentage of each constituent
type in training and development sets are presented in Table 8.1. The figures for
the development set are computed only based on exact match answers.

We used SQuAD’s development set for testing the system and reporting the
results. To prepare the dataset for training and evaluating our system we used
a state-of-the-art answer sentence selection system Aghaebrahimian (2017a) to
extract the best answer sentences. The system provided us with the best sentence
with 94.4 % accuracy given each question. After pre-processing the sentenc as
explained above, we extracted its constituents and trained the model using the
correct constituents as true and other constituents as negative samples.

For evaluation purpose, we used the SQuAD’s official evaluation script which
computes the Exact Match and F1. The Exact Match is the percentage of pre-
dictions which exactly match the gold answer and F1 (Macro-averaged) is the
overlap between predictions and gold answers6.

To perform more experiments with other datasets, we tried our model on
MS-MARCO dataset (Nguyen et al., 2015) too. As a machine comprehension
dataset, MS-MARCO has two fundamental differences with SQuAD. Every ques-
tion in MS-MARCO has several passages from which the best answer should be
retrieved. Moreover, the responses in MS-MARCO are not necessarily sub-spans
of the provided contexts so that BLEU (Papineni et al., 2002) and ROUGE (Lin,
2004) should be used as the metrics for evaluation. These are the two metrics
which are used in the official MS-MARCO evaluation tool. During training we
used the highest BLEU scored constituent as the answer and in the assessment,
we computed the BLEU and ROUGE scores of the constituents selected by the
system. As the results in Table 8.2 show, our system obtained competitive results
to another state-of-the-art system trained on the same dataset.

8.5 Experiment

To evaluate our new architecture and to see how integrating linguistic constituents
affects its performance we set up two settings. We designed one setting for as-
sessing the effect of using constituents instead of words (constituent-base vs.
word-base) and another to evaluate the impact of using attention mechanism on
top of vector training modules (uni- vs. bi-attention). Therefore we conducted

6For more about the evaluation metrics please refer to Section 2.4

89

four experiments on both datasets or eight experiments in total.

In the constituent-base setting, we generated the training and test data as
described in Section 8.4. In the word-base setting, however, we replaced con-
stituents with the tokens in answer sentences for both train and test sets and
trained our model to compute two scores for initial and final positions of answer
chunks. In the constituent-base setting at test time, we directly used the pre-
dicted constituent as the final answer. In the word-base setting, however, we got
the final answer using the highest-scored words for initial and final positions.

For training our model, we used 300-dimensional pre-trained Glove word vec-
tors (Pennington et al., 2014b) to generate the embedding matrix and kept the
embedding matrix updated through training. We used 128-dimensional LSTMs
for all recurrent networks and used ‘Adam’ with parameters learning rate=0.001,
β1 = 0.9, β2 = 0.999 for optimization. We set batch size to 32 and dropout rate
to 0.5 for all LSTMs and embedding layers. We performed the accuracy check
only on the first best answer.

We also investigated the effect of bilateral attention on the model performance.
In the bi-attention model, we used the model as described in Section 8.3. In the
uni-attention model, we eliminated the attention on sentences and only used the
module for attention on questions. The details and statistics of the experiments
are presented in Section 8.6.

Using the early-stopping technique for training, we run all models for ten
epochs. The learning curves of the models are illustrated in Figure 8.4.

8.6 Results

The results of our experiments are summarized in Table 8.2. By contrast-
ing the results of uni-/bi-attention and word/constituent-base models, we can
see that the proposed bi-attention mechanism with linguistic constituents inte-
grated into it makes a significant improvement on answer extraction. Another
interesting observation is that the Exact Match metric benefits from restriction
to constituents as answers. Concerning the MS-MARCO dataset, the results are
competitive to the state-of-the-art system on the same dataset (Wang et al., 2017)
.

We did a study on the learning capacity of the model as well. As the learning

90

Figure 8.4: The learning curves as a function of the number of epochs.

curves in Figure8.5 illustrate, the model saturated after around 60,000 training
sentences, which suggests that a larger model with more parameters can make
use of extra available training samples. We intend to pursue this objective in our
future work.

SQuAD Development set MS-MARCO Evaluation set
Exact-match(%) F1(%) BLEU ROUGE

Logistic Regression (Rajpurkar et al., 2016) 40.00 % 51.00 % - -
Uni-Attention Word-base (this work) 55.12 % 57.98 % 35.6 35.1
Bi-Attention Word-base (this work) 59.84 % 63.08 % 38.1 38.4
Uni-Attention Constituency-base (this work) 73.82 % 77.43 % 39.6 39.9
TreeLSTM (Zhang et al., 2017) 69.10 % 78.38 % - -
BIDAF (Seo et al., 2016) 72.6 % 80.7 % - -
CCNN (Xie and Eric, 2017) 74.1 % 82.6 % - -
R-net (Wang et al., 2017) 75.60 % 82.80 % 42.2 42.9
Bi-Attention Constituency-base (this work) 80.72 % 83.25 % 42.1 42.7
Human Performance (Rajpurkar et al., 2016) 82.30 % 91.22 % - -

Table 8.2: The performances of different models in the exact match/F1 metrics
for the SQuAD and BLEU/ROUGE for the MS-MARCO dataset.

8.7 Ablation and Error Analysis

In this section, we analyze the SQuAD concerning answer distribution over dif-
ferent query types. Table 8.1 shows that the NP type constituents are the most
prominent type among all other answers. However, to investigate the importance
of other types in overall system performance, we performed an ablation study
where we studied the influence of each constituent type on overall accuracy. The

91

10000 20000 30000 40000 50000 60000 70000 80000
Training Sample

0

10

20

30

40

50

60

70

80

Pe
rfo

rm
an
ce

Bi-Atention: Word-based
Bi-Atention: Constituency-based
Uni-Atention: Word-based
Uni-Atention: Constituency-based

Figure 8.5: The learning curve as a function of the number of training samples.
After around 60,000 samples the models didn’t improve anymore.

results are presented in Figure 8.6. We also examined how much the model suc-
ceeded in retrieving answers from each type. The results are presented in the
same figure. This table also shows how often does the method succeed in cases
where the correct answer is, in fact, a constituent span.

As seen in Figure 8.6, the answers are mostly singular noun phrases after which
with a significant difference are proper nouns, verb phrases, and prepositional
phrases. We can also see how the model performed for each constituent. It seems
that extracting cardinal numbers is much easier for the model than retrieving
roots or full sentences.

An analysis of the errors shows that false answer sentence, non-constituent
answers, parsing errors, overlapping constituents and unknown words are the
primary reasons for the mistakes made by our system. The sentence selection
process brought about six percent incorrect answers. The next primary reason
for making mistakes is the constituents which contain other smaller constituents.
While in all cases we extract the smallest constituent, in about three percent of
overlapping constituents the more extended ones are the correct answer. Parsing
errors where the constituents are not retrieved correctly and unknown words
where the embeddings are not appropriately trained are responsible for other
four percent of the mistakes. Finally, non-constituent answers led to around
eight percent false answers in the system output.

92

NP ROOT NNP NN JJ VP CD PP S Others
Constituent Type

0.0

0.2

0.4

0.6

0.8

Pe
rfo

rm
an

ce

Model Performance
Type Contribution

Figure 8.6: Blue lines are the contribution of each type in the overall system
performance using the best model and at the convergence time. Red bars repre-
sent the performance of the model in retrieving each constituent type when the
model is converged. Performance is expressed in the exact match metric (%). As
a guide to how to read the chars, the first blue line for NP type says that 50%
of all correctly extracted answers by the system are NP type-answers. The red
line of the same type says that our system managed to retrieve about 87% of all
NP-type answers in the dataset.

8.8 Conclusions

We described a new linguistically-based end-to-end DNN for Question Answering
from unstructured data. This model is a neural formulation in which linguistic
constituents are explicitly modeled. It operates an LSTM over the constituents
and uses the resulting hidden states to attend both to question and to the en-
compassing context sentence, thereby enriching the constituent’s representation
with both.

We successfully integrated some linguistic information from the parser into
the network, so to go beyond a simple word-based or vector-based representation
as well as to show the relevance of linguistic constituents for answer extraction.

The use of constituents instead of an arbitrary string of words in answers
improves the system performance in several ways. First, it increases the precision
of the system. By looking at the small gap between the F1 and the exact match
metrics in our system and compare it to the ones for the other systems, we can

93

see that the ratio of exact-match answers in our system is higher than that of
the other ones. It says that the answers extracted in this system has relatively
higher level of precision.

Second, it helps an answer to look more like a human-generated one. Con-
sidering prediction and ground truth as bags of tokens, the F1 (Macro-averaged)
metric computes the average overlap between the prediction and ground truth
answer. While a predicted response may have a full overlap with the ground
truth hence gain a high F1 score, due to the irrelevant words, it contains, it poses
an incoherent answer to users. Users generally expect an answer to be a valid
constituent otherwise it would probably not be grammatical. The longer the gap
between exact match and F1 measures, the more irrelevant words appear in re-
sponses. This is primarily an essential factor in the overall quality of dialogue
QA systems where users expect to receive a natural and human-generated-like
answer.

Last but not least, imposing constraints on the candidate space, limit errors
and make the system more efficient by decreasing the search space and weeding
out non-relevant answers. In the future, we plan to integrate dependency rela-
tions into the model by designing a larger model and to evaluate it on other QA
datasets.

94

9. Conclusion

The goal we pursued in this thesis was to advance the state of the art in Question
Answering by designing and integrating new machine learning technologies with
an emphasis on Deep Neural Networks in QA. Based on the results of our work
we believe that we accomplished this goal successfully.

The theoretical foundations of Question Answering are collected in this thesis.
The first chapter gives the readers an overview of the field while the second chapter
presents them a fundamental understanding of the techniques and technologies
which are going to be used in further chapters. An in-depth overview of QA
systems is presented in chapter three. Datasets in QA are introduced in chapter
four as an introduction to chapter five which describes the Q2AD, one of the
contributions of this work.

In chapter six the readers are introduced to a structured QA system based on
a knowledge graph and three different machine learning models namely Logistic
Regression, Neural Network, and Convolution Neural Network. In chapter seven
a Deep Neural Network based on Long Short-Term Memory cells is presented
for sentence-level answer extraction and in chapter eight a bi-attention Deep
Neural Network enhanced by constituency relations is described. In these last
three chapters, the readers get an in-depth presentation of three different QA
subsystems which make up our hybrid QA system.

A hybrid QA system and a dataset for sentence- and word-level QA, in addi-
tion to several publications in different international NLP conferences whose the
leading researcher is this thesis author are the main contributions of this work.

In this work, we presented a hybrid system which integrates knowledge graphs
and free texts for answering open-domain structured and unstructured questions.
To the best of our knowledge, this is the first fully neural system incorporating
knowledge graphs and free texts as a hybrid QA system. All modules in this
system benefit from DNNs, due to the state-of-the-art performance of them not
only in our system but also in many other NLP tasks. This system is composed
of a structured entity-level, an unstructured sentence-level, and an unstructured
word-level QA subsystems all with state-of-the-art results.

In the structured QA subsystem, we introduced a highly scalable approach for
open-domain structured or factoid QA. In contrast to many similar factoid QA
systems which work on limited versions of the Freebase, our system seamlessly

95

works with a live and full version of the Freebase which makes it able to extract
the most relevant and up-to-date answers given any time.

In the unstructured sentence-level QA subsystem, we proposed the Con-
strained Deep Neural Network (CDNN) which can enforce hard constraints on
the parameters of a Deep Neural Network for sentence answer selection. The
CDNN makes its predictions based on the neural reasoning compound with some
symbolic constraints. We also presented a successful case of transfer learning
technique on a model with large learning capacity and showed that it could ob-
tain excellent results without dependence on any external resources or doing any
time-consuming feature designing procedure.

And in the unstructured word-level QA subsystem, we proposed a new ap-
proach to answering open-domain questions from unstructured data. In this
approach, we introduced a deep end-to-end neural model which benefits from a
bilateral attention mechanism. This architecture can focus on a question and the
answer sentence at the same time for answer extraction. Then, we integrated
constituency relations into the network to help it concentrate on chunks of an
answer rather than on its single words.

We also introduced Quora Question Answer Dataset (Q2AD). The Q2AD is
composed of questions which are posed in Quora Question Answering site. It
is the only dataset which provides multiple-part sentence-level and word-level
answers. Moreover, the questions in the dataset are authentic which is much
more realistic for real-life Question Answering systems.

For the future of this work, the author is seeking forward integrating more
challenging components such as complex QA or mathematical QA as separate
modules into the system as well as crowdsourcing the Q2AD for compiling a
large scale dataset.

To conclude, the main contribution of the thesis is thorough research and
developing experimental systems with significant empirical results in the three
most prevalent and challenging QA types, namely;

• structured factoid,

• unstructured sentence-level, and

• unstructured word-level Question Answering.

96

Acknowledgments

The Ministry of Education, Youth and Sports of the Czech Republic partially
funded this research under the grant agreement LK11221, core research funding,
SVV project numbers 260 333 and 260 453, and GAUK 207-10/250098 of Charles
University in Prague. This work has also been using language resources dis-
tributed by the LINDAT/CLARIN project of the Ministry of Education, Youth
and Sports of the Czech Republic (project LM2010013). The author gratefully
appreciates the thesis reviewers as well as his supervisor for their helpful com-
ments on the final draft. He is also thankful to anonymous annotators for doing
a great job in the Q2AD compilation.

97

Bibliography

Ahmad Aghaebrahimian. Constraint-based Semantic Parsing. In proceeding of
the Week of Doctoral Studies, Charles University, Faculty of Mathematics and
Physics, 2015.

Ahmad Aghaebrahimian. Constrained Deep Answer Sentence Selection. In Pro-
ceedings of the 20th International Conference on Text, Speech, and Dialogue
(TSD), 2017a.

Ahmad Aghaebrahimian. Quora Question Answer Dataset. In 20th International
Conference on Text, Speech, and Dialogue (TSD), 2017b.

Ahmad Aghaebrahimian. Hybrid Deep Open-Domain Question Answering. In
Proceedings of the 8th Language and Technology Conference (LTC), 2017c.

Ahmad Aghaebrahimian. Linguistically-Based Deep Unstructured Question An-
swering. In Proceedings of the Conference on Computational Natural Language
Learning (CoNLL 2018), Brussels, Belgium, 2018a.

Ahmad Aghaebrahimian. Deep Neural Networks at the Service of Multilingual
Parallel Sentence Extraction. In Proceedings of the 27th International Confer-
ence on Computational Linguistics (COLING 2018), Santa Fe, New-Mexico,
USA, 2018b.

Ahmad Aghaebrahimian and Filip Jurčíček. Machine Learning for Semantic Pars-
ing in Review. In Proceedings of the 7th Langauge and Technology Conference
(LTC), Poznan, Poland, 2015a.

Ahmad Aghaebrahimian and Filip Jurčíček. Constraint-based Statistical Spoken
Dialogue Systems. In Proceedings of the young researcher roundtable in spoken
dialog (YRRSDS), 2015b.

Ahmad Aghaebrahimian and Filip Jurčíček. Open-domain Factoid Question An-
swering via Knowledge Graph Search. In Proceedings of the Workshop on
Human-Computer Question Answering, The North American Chapter of the
Association for Computational Linguistics (NAACL), 2016a.

Ahmad Aghaebrahimian and Filip Jurčíček. Constraint-Based Open Domain
Question Answering Using Knowledge Graph Search. In Proceedings of the 19th
International Conference on Text, Speech and Dialogue (TSD), LNAI 9924,
2016b.

98

I. Androutsopoulos, G. Ritchie, and P. Thanisch. Natural language interfaces to
databases, an introduction. Natural Language Engineering, 1995.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo Giampiccolo. The sixth pas-
cal recognizing textual entailment challenge. Text Analysis Conference (TAC),
2008.

Jonathan Berant and Percy Liang. Semantic parsing via paraphrasing. In Pro-
ceedings of Association for Computational Linguistics (ACL), 2014.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic Parsing
on Freebase from Question-Answer Pairs. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing (EMNLP), 2013.

Kurt Bollacker, Patrick Tufts, Tomi Pierce, and Robert Cook. A Platform for
Scalable, Collaborative, Structured Information Integration. In Proceedings of
the Sixth International Workshop on Information Integration on the Web, 2007.

Antoine Bordes, Nicolas Usunier, Sumit Chopra, and Jason Weston. Large-
scale simple question answering with memory networks. arXiv preprint
arXiv:1506.02075, 2015.

Qingqing Cai and Alexander Yates. Large-scale semantic parsing via schema
matching and lexicon extension. In Proceedings of of Association for Compu-
tational Linguistics (ACL), 2013.

Bob Carpenter. Type-Logical Semantics. The MIT Press, 1997.

Ming-Wei Chang, Dan Goldwasser, Dan Roth, and Vivek Srikumar. Discrim-
inative learning over constrained latent representations. In Proceedings of
The North American Chapter of the Association for Computational Linguis-
tics (NAACL), 2010.

Ming-Wei Chang, Lev Ratinov, and Dan Roth. Learning with Constrained Con-
ditional Models. Machine Learning, page 399–431, 2012.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading wikipedia
to answer open-domain questions. arXiv preprintarXiv:1704.00051, 2017.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio.
On the properties of neural machine translation: Encoder-decoder approaches.
In Proceedings of the Eighth Workshop on Syntax, Semantics and Structure in
Statistical Translation, 2014.

99

Noam Chomsky. Lectures on Government and Binding: The Pisa Lectures. Mou-
ton de Gruyter, 1993.

Kenneth Ward Church and Patrick Hanks. Word Association Norms, Mutual
Information, and Lexicography. Computational Linguistics, 16(1), March 1990.
ISSN 0891-2017.

Peter Clark and Oren Etzioni. My computer is an honor student but how intel-
ligent is it? standardized tests as a measure of AI. AI Magazine, 2016.

Peter Clark, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Oyvind Tafjord, Pe-
ter Turney, and Daniel Khashabi. Combining retrieval, statistics, and inference
to answer elementary science questions. In Proceedings of the 30th conference
of the Association for the Advancement of Artificial Intelligence (AAAI), 2016.

James Clarke, Dan Goldwasser, Ming-Wei Chang, and Dan Roth. Driving Se-
mantic Parsing from the World’s Response. In Proceedings of the Conference
on Computational Natural Language Learning (CoNLL), 2010.

Ronan Collobert, Jason Weston, Leon Bottou, Michael Karlen, Koray
Kavukcuoglu, and Pavel Kuksa. Natural Language Processing (almost) from
Scratch. Machine Learning Research, 2011.

Ann Copestake and Karen Sparck Jones. Natural language interfaces to
databases. Knowledge Engineering Review, 1989.

Yiming Cui, Zhipeng Chen, Si Wei, Shijin Wang, Ting Liu, and Guoping Hu.
Attention-over-Attention Neural Networks for Reading Comprehension. arXiv
preprint arXiv:1607.04423, 2016.

Zihang Dai, Lei Li, and Wei Xu. CFO: Conditional focused neural question
answering with large-scale knowledge bases. In Proceedings of the Association
for Computational Linguistics (ACL), 2016.

Freebase data dumps. https://developers.google.com/freebase/, 2015. Ac-
cessed: 2015-09-30.

Li Dong, Furu Wei, Ming Zhou, and Ke Xu. Question answering over Free-
base with multi-column convolutional neural networks. In Proceedings of the
53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing (ACL/JC-
NLP), 2015.

100

https://developers.google.com/freebase/

Susan Dumais, Michele Banko, Eric Brill, Jimmy Lin, and Andrew Ng. Web
question qnswering: Is more always better? In Proceedings of the 25th an-
nual international conference of ACM Special Interest Group on Information
Retrieval (SIGIR), 2002.

Jeffry L. Elman. Finding structure in time. Cognitive Science, 14(2), 1990.

Anthony Fader, Stephen Soderland, and Oren Etzioni. Identifying relations for
open information extraction. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP), 2011.

Minwei Feng, Bing Xiang, Michael R. Glass, Lidan Wang, and Bowen Zhou.
Applying deep learning to answer selection: a study and an open task. In
Proceedings of IEEE ASRU Workshop, 2015a.

Minwei Feng, Bing Xiang, Michael R. Glass, Lidan Wang, and Bowen Zhou.
Applying deep learning to answer selection: A study and an open task. In
Proceedings of IEEE ASRU workshop, 2015b.

David Ferrucci, Eric Brown, Jennifer Chu-Carroll, James Fan, David Gondek,
Aditya a. Kalyanpur, Adam Lally, J. William Murdock, Eric Nyberg, John
Prager, Nico Schlaefer, and Chris Welty. Building Watson: An Overview of
the DeepQA Project. AI Magazine, 31(3), 2010.

Gerald Gazdar, Ewan H. Klein, Geoffrey K. Pullum, and Ivan A. Sag. Generalized
Phrase Structure Grammar. Blackwell, Oxford, 1994.

Dan Goldwasser and Dan Roth. Learning from natural instructions. In Pro-
ceedings of International Joint Conference on Artificial Intelligence (IJCAI),
2011.

Yichen Gong and Samuel R. Bowman. Ruminating reader: Reasoning with gated
multi-hop attention. arXiv preprint arXiv:1704.07415, 2017.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural Turing Machines. arXiv
preprint arXiv:1410.5401, 2014.

Bert F. Jr. Green, Alice K. Wolf, Carol Chomsky, and Kenneth Laughery. Base-
ball: an automatic question answerer. Massachusetts Institute of Technology-
Lincoln Laboratory, 1961.

Sven Hartrumpf, Ingo Glöckner, and Johannes Leveling. Efficient question an-
swering with question decomposition and multiple answer streams. In proceed-
ings of the conference on Evaluating Systems for Multilingual and Multimodal
Information Access, 2009.

101

Hua He and Jimmy Lin. Pairwise word interaction modeling with deep neural
networks for semantic similarity measurement. In Proceedings of the North
American Chapter of the Association for Computational Linguistics (NAACL),
2016.

Hua He, Kevin Gimpel, and Jimmy Lin. Multi-perspective sentence similarity
modeling with convolutional neural networks. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing (EMNLP), 2015.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt,
Will Kay, Mustafa Suleyman, and Phil Blunsom. Teaching machines to read
and comprehend. In Advances in Neural Information Processing Systems, 2015.

Felix Hill, Antoine Bordes, Sumit Chopra, and Jason Weston. The goldilocks prin-
ciple: Reading children’s books with explicit memory representations. arXiv
preprint arXiv :1511.02301, 2015.

Lynette Hirschman, Marc Light, Eric Breck, and John D. Burger. Deep read: A
reading comprehension system. In Proceedings of the Association for Compu-
tational Linguistics (ACL), 1999.

Sepp Hochreiter and Jurgen Schmidhuber. Long short-term memory. Neural
Computation, 9(8), 1997.

Eduard Hovy, Laurie Gerber, Ulf Hermjakob, Michael Junk, and Chin-Yew Lin.
Question answering in webclopedia. In Proceedings of the Tenth Text REtrieval
Conference (TREC-2001), 2001.

Minghao Hu, Yuxing Peng, and Xipeng Qiu. Reinforced mnemonic reader for
machine comprehension. arXiv preprint arXiv:1705.02798, 2017.

Mohit Iyyer, Jordan Boyd-Graber, Leonardo Claudino, Richard Socher, and Hal
Daumé III. A neural network for factoid question answering over paragraphs.
In Proceedings of the Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2014.

Tomasz Jurczyk, Michael Zhai, and Jinho D. Choi. SelQA: A New Benchmark for
Selection- based Question Answering. In Proceedings of the 28th International
Conference on Tools with Artificial Intelligence, 2016.

Rudolf Kadlec, Martin Schmid, Ondrej Bajgar, and Jan Kleindienst. Text un-
derstanding with the attention sum reader network. In Proceedings of the
Association for Computational Linguistics (ACL), 2016.

102

Aditya Kalyanpur, Siddharth Patwardhan, Branimir Boguraev, Adam Lally, and
Jennifer Chu-Carroll. Fact-based question decomposition for candidate answer
re-ranking. In Proceedings of the 20th ACM international conference on Infor-
mation and knowledge management, 2011.

Fereshte Khani, Martin Rinard, and Percy Liang. Unanimous prediction for
100semantic mappings. In Proceedings of the Association for Computational
Linguistics (ACL), 2016.

Daniel Khashabi, Tushar Khot, Ashish Sabharwal, Peter Clark, Oren Etzioni, and
Dan Roth. Question Answering via Integer Programming over Semi-Structured
Knowledge. In Proceedings of International Joint Conference on Artificial In-
telligence (IJCAI), 2016.

Y. Kim. Convolutional neural networks for sentence classification. In Proceed-
ings of the Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2014.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

Jeongwoo Ko, Luo Si, and Eric Nyberg. A probabilistic graphical model for joint
answer ranking in question answering. In Proceedings of the 30th ACM Special
Interest Group on Information Retrieval (SIGIR), 2007.

Ankit Kumar, Ozan Irsoy, Jonathan Su, James Bradbury, Robert English, Brian
Pierce, Peter Ondruska, Ishaan Gulrajani, and Richard Socher. Ask me any-
thing: Dynamic memory networks for natural language processing. In Pro-
ceedings of The 33rd International Conference on Machine Learning, page
1378–1387, 2016.

Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwater, and Mark Steedman.
Inducing probabilistic CCG grammars from logical form with higher-order uni-
fication. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2010.

Tom Kwiatkowski, Eunsol Choi, Yoav Artzi, and Luke Zettlemoyer. Scaling se-
mantic parsers with on-the-fly ontology matching. Proceedings of the Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP), 2013.

Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. In Proceedings of the IEEE, vol-
ume 86, 1998.

103

Percy Liang. Lambda Dependency-based Compositional Semantics. arXiv
preprint arXiv:1309.4408, 2013.

Christian Liguda and Thies Pfeiffer. A question answer system for math word
problems. In Proceedings of the First International Workshop on Algorithmic
Intelligence, 2011.

Chin-Yew Lin. ROUGE: a Package for Automatic Evaluation of Summaries.
In Proceedings of the Workshop on Text Summarization Branches Out (WAS
2004), 2004.

Jimmy Lin and Boris Katz. Question answering from the web using knowledge
annotation and knowledge mining techniques. In Proceedings of the twelfth
international conference on Information and knowledge management, ACM,
page 116–123, 2003.

Bernardo Magnini, Matteo Negri, Roberto Prevete, and Hristo Tanev. Mining
knowledge from repeated cooccurrences: DIOGENE at TREC-2002. In Pro-
ceedings of the Eleventh Text REtrieval Conference (TREC-2002), 2002.

Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J.
Bethard, and David McClosky. The Stanford CoreNLP Natural Language Pro-
cessing Toolkit. In Association for Computational Linguistics (ACL) System
Demonstrations, 2014.

Cynthia Matuszek, Evan Herbst, Luke Zettlemoyer, and Dieter Fox. Learning to
Parse Natural Language Commands to a Robot Control System. In Proceedings
of the 13th International Symposium on Experimental Robotics, 2012.

Ana Cristina Mendes and Luisa Coheur. An approach to answer selection in
question-answering based on semantic relations. In Proceedings of the Twenty-
Second International Joint Conference on Artificial Intelligence (IJCAI), 2011.

Tomas Mikolov, Stefan Kombrink, Anoop Deoras, Lukas Burget, and Jan Honza
Cernocky. RNNLM - Recurrent Neural Network Language Modeling Toolkit.
In Proceedings of the 2011 ASRU Workshop, 2011.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation
of Word Representations in Vector Space. In Proceedings of ICLR Workshop,
2013.

Alessandro Moschitti and Silvia Quarteroni. Linguistic kernels for answer re-
ranking in question answering systems. In Proceedinds of the conference on
Information Processing and Management, 2010.

104

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan
Majumder, and Li Deng. MS MARCO: A human generated machine reading
comprehension dataset. CoRR, abs/1611.09268, 2015.

Noam Chomsky. Syntactic structures. The Hague, Paris: Mouton, 1957.

Boyuan Pan, Hao Li, Zhou Zhao, Bin Cao, Deng Cai, and Xiaofei He. MEMEN:
Multi-layer embedding with memory networks for machine comprehension.
arXiv preprint arXiv:1707.09098, 2017.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: a
method for automatic evaluation of machine translation. In Proceedings of
40th Annual meeting of the Association for Computational Linguistics (ACL),
2002.

Pavel Pecina. Lexical Association Measures: Collocation Extraction. Institute of
Formal and Applied Linguistics, 2008.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global
vectors for word representation. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP), 2014a.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. GloVe: Global
Vectors for Word Representation. In Procedings of the conference Empirical
Methods in Natural Language Processing (EMNLP), 2014b.

A. V. Phillips. A Question-Answering Routine. Technical report, Massachusetts
Institute of Technology, Cambridge, MA, USA, 1960.

Carl Pollard and Ivan A. Sag. Head-driven phrase structure grammar. University
of Chicago Press, Chicago, 1994.

John Prager, Eric Brown, and Anni Coden. Question answering by predictive
annotation. In Proceedings of the ACM Special Interest Group on Information
Retrieval (SIGIR), 2000.

Vasin Punyakanok, Dan Roth, and Wen-tau Yih. Natural language inference via
dependency tree mapping: An application to question answering. In Compu-
tational Linguistics, 2004.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD:
100,000+ Questions for Machine Comprehension of Text. arXiv preprint
arXiv:1606.05250, 2016.

105

Jinfeng Rao, Hua He, and Jimmy Lin. Noise-Contrastive Estimation for Answer
Selection with Deep Neural Networks. In Proceedings of the 25th ACM Inter-
national on Conference on Information and Knowledge Management, CIKM
’16, 2016.

Deepak Ravichandran and Eduard Hovy. Learning surface text patterns for a
question answering system. Association for Computational Linguistics (ACL),
2002.

Matthew Richardson. Mctest: A challenge dataset for the open-domain machine
comprehension of text. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing (EMNLP), 2013.

Dan Roth and Wen-tau Yih. A linear programming formulation for global infer-
ence in natural language tasks. In Proceedings of the Conference on Computa-
tional Natural Language Learning (CoNLL), 2004.

Cicero dos Santos, Ming Tan, Bing Xiang, and Bowen Zhou. Attentive pooling
networks. arXiv preprint arXiv:1602.03609v1, 2014.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi.
Bidirectional attention flow for machine comprehension. arXiv preprint
arXiv:1611.01603, 2016.

Dan Shen and Dietrich Klakow. Exploring correlation of dependency relation
paths for answer extraction. International Conference on Computational Lin-
guistics and Association for Computational Linguistics (COLING/ACL), page
889–896, 2006.

Dan Shen and Dietrich Klakow. Exploring correlation of dependency relation
paths for answer extraction. Proceedings of the 21st International Conference
on Computational Linguistics, 2015.

Yelong Shen, Po-Sen Huang, Jianfeng Gao, and Weizhu Chen. Reasonet: Learn-
ing to stop reading in machine comprehension. In Proceedings of the Workshop
on Cognitive Computation: Integrating neural and symbolic approaches 2016
co-located with the 30th Annual Conference on Neural Information Processing
Systems (NIPS 2016), 2016.

Rion Snow, Daniel Jurafsky, and Andrew Y. Ng. Learning syntactic patterns
for automatic hypernym discovery. In Proceedings of the Conference on Neural
Information Processing Systems (NIPS), 2005.

106

Richard Socher, Danqi Chen, Christopher D. Manning, and Andrew Ng. Reason-
ing with neural tensor networks for knowledge base completion. In Proceedings
of the Advances in Neural Information Processing Systems, 2013.

Vivek Srikumar and Dan Roth. A joint model for extended semantic role labeling.
In Proceedings of the Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2011.

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of
semantic knowledge. In Proceedings of the 16th international conference on
World Wide Web, 2007.

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus. End-to-
End Memory Networks. In Advances in Neural Information Processing Systems
28, 2015.

Md Arafat Sultan, Vittorio Castelli, and Radu Florian. A joint model for answer
sentence ranking and answer extraction. Transactions of the Association for
Computational Linguistics (ACL), 2016.

Hong Sun, Nan Duan, Yajuan Duan, and Ming Zhou. Answer extraction from
passage graph for question answering. In Proceedings of International Joint
Conference on Artificial Intelligence (IJCAI), 2013.

Renxu Sun, Jing Jiang, Yee Fan, Tan Hang, Cui Tat-seng, and Chua Min-yen
Kan. Using syntactic and semantic relation analysis in question answering. In
Proceedings of Fourteen Text Retrieval Conference (TREC-2005), 2005.

Stefanie Tellex, Boris Katz, Jimmy Lin, Aaron Fernandes, and Gregory Marton.
Quantitative evaluation of passage retrieval algorithms for question answer-
ing. In Proceedings of ACM Special Interest Group on Information Retrieval
(SIGIR), 2003.

J. Turmo, P. Comas, S. Rosset, O. Galibert, N. Moreau, D. Mostefa, P. Rosso,
and D. Buscaldi. Overview of QAst 2009. In Proceedings of the CLEF 2009
Workshop, 2009.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Pro-
ceedings of NIPS, 2017.

Ellen M. Voorhees and Dawn M. Tice. Building a question answering test collec-
tion. ACM Special Interest Group on Information Retrieval (SIGIR), 2000.

107

Rui Wang and Günter Neumann. DFKI-LT at AVE 2007: Using recognizing
textual entailment for answer validation. In online proceedings of CLEF, 2007.

Shuohang Wang and Jing Jiang. Machine comprehension using match-lstm and
answer pointer. arXiv preprint arXiv:1608.07905, 2016.

Wenhui Wang, Nan Yang, Furu Wei, Baobao Chang, and Ming Zhou. Gated
self-matching networks for reading comprehension and question answering. In
Proceedings of Association for Computational Linguistics (ACL), 2017.

Zhiguo Wang, Haitao Mi, and Abraham Ittycheriah. Sentence Similarity Learning
by Lexical Decomposition and Composition. arXiv preprint arXiv:1602.07019.,
2016.

Dirk Weissenborn, Georg Wiese, and Laura Seiffe. Making neural qa as simple as
possible but not simpler. In Proceedings of the Conference on Computational
Natural Language Learning (CoNLL), 2017a.

Dirk Weissenborn, Georg Wiese, and Laura Seiffe. Fastqa: A simple and efficient
neural architecture for question answering. arXiv preprint arXiv:1703.04816,
2017b.

Joseph Weizenbaum. ELIZA—a computer program for the study of natural lan-
guage communication between man and machine. In Communications of the
Association for Computing Machinery (ACM), 1966.

Jason Weston, Sumit Chopra, and Bordes Antoine. Memory networks. In Pro-
ceedings of the International Conference on Learning Representations (ICLR),
2015.

Jason Weston, Antoine Bordes, Sumit Chopra, Alexander M. Rush, Bart van Mer-
riënboer, Armand Joulin, and Tomas Mikolov. Towards AI complete question
answering: A set of prerequisite toy tasks. arXiv preprint arXiv:1502.05698,
2016.

Yuk Wah Wong and Raymond J. Mooney. Learning synchronous grammars for
semantic parsing with lambda calculus. In Proceedings of Association for Com-
putational Linguistics (ACL), 2007.

William Woods. Progress in Natural Language Understanding - An Application
to Lunar Geology. In Proceedings of the American Federation of Information
Processing Societies (AFIPS), volume 42, 1973.

108

Min Wu, Mingyuan Duan, Samira Shaikh, Sharon Small, and Tomek Strza-
lkowski. ILQUA - an IE-driven question answering system. In Proceedings
of the Fourteenth Text REtrieval Conference (TREC), 2005.

Pengtao Xie and Xing Eric. A Constituent-Centric Neural Architecture for Read-
ing Comprehension. In Proceedings of the 55th Annual Meeting of the Associ-
ation for Computational Linguistics, 2017.

Caiming Xiong, Victor Zhong, and Richard Socher. Dynamic coattention net-
works for question answering. arXiv preprint arXiv:1611.01604, 2016.

Yi Yang, Wen tau Yih, and Christopher Meek. WikiQA: A challenge dataset for
open-domain question answering. In Proceedings of the Conference on Empir-
ical Methods in Natural Language Processing (EMNLP), 1999.

Yi Yang, Wen-tau Yih, and Christopher Meek. Wikiqa: A challenge dataset for
open-domain question answering. In Proceedings of the Conference on Empir-
ical Methods in Natural Language Processing (EMNLP), 2015.

X. Yao and B. Van Durme. Information extraction over structured data: Question
Answering with Freebase. In Proceedings of Association for Computational
Linguistics (ACL), 2014.

Xuchen Yao, Benjamin Van Durme, Chris Callison-Burch, and Peter Clark. An-
swer extraction as sequence tagging with tree edit distance. In Proceedings
of HLT-The North American Chapter of the Association for Computational
Linguistics (NAACL), 2013.

Wen-tau Yih, Ming-Wei Chang, Christopher Meek, and Andrzej Pastusiak. Ques-
tion answering using enhanced lexical semantic models. In Proceedings of As-
sociation for Computational Linguistics (ACL), 2013.

Wen-tau Yih, Xiaodong He, and Christopher Meek. Semantic parsing for single-
relation question answering. In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (ACL), page 643–648, 2014.

Wenpeng Yin, Sebastian Ebert, and Hinrich Schütze. Attention-based con-
volutional neural network for machine comprehension. arXiv preprint
arXiv:1602.04341v1, 2015a.

Wenpeng Yin, Hinrich Schütze, Bing Xiang, and Bowen Zhou. Abcnn: Attention-
based convolutional neural network for modeling sentence pairs. arXiv preprint
arXiv:1512.05193, 2015b.

109

Lei Yu, Karl Moritz Hermann, Phil Blunsom, and Stephen Pulman. Deep learn-
ing for answer sentence selection. In Proceedings of the Conference on Neural
Information Processing Systems (NIPS) - Deep learning workshop, 2014.

J. M. Zelle and R. J. Mooney. Learning to parse database queries using induc-
tive logic proramming. In Proceedings of the National Conference on Artificial
Intelligence, 1996.

L. Zettlemoyer and M. Collins. Learning to map sentences to logical form: Struc-
tured classification with probabilistic categorial grammars. In Proceedings of
the Annual Conference in Uncertainty in Artificial Intelligence (UAI), 2005.

Junbei Zhang, Xiaodan Zhu, Qian Chen, Lirong Dai, and Hui Jiang. Explor-
ing question understanding and adaptation in neural-network-based question
answering. arXiv preprint arXiv:1703.04617, 2017.

Ye Zhang and Byron Wallace. A sensitivity analysis of (and practitioners’ guide
to) convolutional neural networks for sentence classification. arXiv preprint
arXiv:1510.03820, 2015.

110

List of Figures

1.1 General system architecture . 8

1.2 The thesis reading plan . 13

1.3 The chapter dependencies. 14

2.1 A simple Neural Network architecture 19

2.2 A typical CNN architecture . 22

2.3 RNN layers unrolled . 23

2.4 An LSTM . 24

2.5 The Freebase graph structure . 27

3.1 A QA system with its core and peripheral subsystems 41

6.1 The long tail of properties in the Freebase 58

6.2 The spans of different available entities in a question 59

6.3 Ambiguous entities . 59

6.4 The Logistic Regression model . 61

6.5 The Neural Network model . 62

6.6 The CNN model . 63

6.7 The learning curve for training epochs 63

6.8 The learning curve for training data 67

7.1 Abstract model architecture . 74

7.2 The learning curve for training data 76

8.1 A constituency parse tree . 82

8.2 The encoding unit . 84

8.3 The system architecture . 86

111

8.4 The learning curves . 91

8.5 The learning curve . 92

8.6 The ablation study . 93

A.1 The Logistic Regression features 116

112

List of Tables

4.1 WikiQA classes and their proportions 45

4.2 WikiQA statistics . 46

4.3 The SQuAD classes and their proportions 47

4.4 Comparative statistics . 48

5.1 A sample Q2AD question . 51

5.2 The Q2AD statistics. 53

5.3 The Q2AD questions and answer length 54

5.4 Experimental results . 54

6.1 Experimental results . 67

7.1 Experimental results . 77

8.1 Distribution of constituent types of answers 81

8.2 The performances of different models 91

A.1 The Logistic Regression model hyper-parameters 117

A.2 The Neural Network model hyper-parameters 117

A.3 The CNN model hyper-parameters 117

B.1 The Sentence-level model hyper-parameters 118

B.2 Similarity measures . 118

C.1 The unstructured model hyper-parameters 119

C.2 Distance measures . 119

D.1 The Q2AD sample questions . 120

113

List of Abbreviations

ACC, Accuracy, Chapter 6

ATIS, Air Traffic Information System, Chapter 2

BOW, Bag Of Words, Chapter 1

BPTT, Back-Propagation Through Time, Chapter 1

CDNN, Constrained Deep Neural Network, Chapter 6

CNN, Convolution Neural Network, Chapter Introduction

COLING, The international conference on Computational Linguistics, Chap-
ter 1

CoNLL, The conference on Computational Natural Language Learning, Chap-
ter 1

DNN, Deep Neural Network, Chapter Introduction

EMNLP, The conference on Empirical Methods in Natural Language Process-
ing, Chapter 1

GD, Gradient Descent, Chapter 1

GESD, the Geometric mean of Euclidean and Sigmoid Dot product, Chapter 6

GRU, Gated Recurrent Unit, Chapter 6

id, identifier, Chapter 6

ILP, Integer Linear Programming, Chapter 2

LR, Logistic Regression, Chapter 5

LSTM, Long Short-Term Memory, Chapter 1

MAP, Mean Average Precision, Chapter 1

MC, Machine Comprehension, Chapter 1

mid, machine identifier, Chapter 5

MQL, Meta-web Query Language, Chapter 1

MRR, Mean Reciprocal Rank, Chapter 1

114

NAACL, The North American Chapter of the Association for Computational
Linguistics, Chapter 1

NLIDB, Natural Language Interface to Database, Chapter 2

NLP, Natural Language Processing, Chapter Introduction

NN, Neural Network, Chapter Introduction

PMI, Point-wise Mutual Information, Chapter 2

Q2AD, Quora Question Answering Dataset, Chapter Introduction

QA, Question Answering, Chapter Introduction

RNN, Recurrent Neural Network, Chapter Introduction

SGD, Stochastic Gradient Descent, Chapter 1

SP, Semantic Parsing, Chapter 2

SPARQL, SPARQL Protocol, and RDF Query Language, Chapter 1

SQ, SimpleQuestion, Chapter 3

SQuAD, Stanford Question Answering Dataset, Chapter 2

TSD, The international conference on Text, Speech, and Dialogue, Chapter 1

115

A. Structured Models

A.1 Features

The features in the Logistic Regression model are simply the words replaced
with their word embeddings. (Please see Figure A.1). The word embeddings
are obtained by either training word vectors on the dataset using Word2Vec
toolkit (Mikolov et al., 2011) or using the pre-trained Word2Vec word vectors
trained on GoogleNews. The Neural Network model uses the same features.

X:

φ:

This sample sentence

Look Up Table

0.1 0.0 -0.1 0.5 0.0

 0.1 0.0 -0.1 0.5 0.0

 0.0 0.1 -0.1 0.0 0.1

-0.1 0.0 0.0 0.1 0.0

 0.0 0.5 0.1 0.0 0.1

 0.0 0.5 0.1 0.0 0.1 -0.5 0.0 0.1 0.0 0.1 -0.5 0.0 0.1 0.0 0.1

This

is

a

sample

sentence

Figure A.1: The features in the Logistic Regression model

In the CNN model, two groups of features are used. First, the word tokens
replaced with their embeddings like the way they were used in the models men-
tioned above. In the CNN the pre-trained word embeddings can be updated
through training on the dataset as well. The second group of features is Part-
Of-Speech tags of the words which are used in the second channel of the CNN
model.

A.2 Hyper-parameters

In the Logistic Regression model, the hyperparameters are the dimensions of the
word embeddings and the length of the questions1. In the Neural Network model
in addition to question length and embedding dimension, the number of hidden

1To generate a fixed dimensional vector for all the questions, all of them are fixated into a
predefined length.

116

layers and the number of neurons in each layer are hyper-parameters. The result
of hyper-parameter tunning for the Logistic Regression and the Neural Network
model are reported in Tables A.1 and A.2 respectively. The parameter question
length is not changed in the NN and CNN models anymore since the tuned value
for it in Logistic Regression experiment is used. In the following tables, all the
scores are path accuracies in percent scale.

Emb. Dimentions Question Length Emb. Training
100 300 10 20 30 trained on data pretrained

Logistic Regression Model 59.5 61.2 48.9 61.2 59.7 61.2 60.9

Table A.1: Comparative results for different choices of hyper-parameters for the
Logistic Regression model. The difference between using pre-trained embedding
and training them on the dataset is not statistically significant.

Emb. Dimensions Num. of Hidden Layers Num. of Neurons
100 300 1 2 512 1024 2048

Neural Network Model 61.7 63.89 63.89 52.8 60.7 63.89 57.4

Table A.2: Comparative results for different choices of hyper-parameters for the
Neural Network model. The decrease in performance by an increase in complexity
of the model like an increase in the number of layers of neurons is a signal of over-
fitting.

Finally, in the CNN model, In addition to question length and embedding
dimension, the number and the length of filters and the number of channels
are hyper-parameters. The result of hyper-parameter tunning are reported in
Table A.3.

Emb. Dimensions Num. of Channels Num. of filters Length of filters
100 300 1 2 128 256 512 2 3 4

CNN Model 63.41% 65.19 65.16 65.19 63.84 65.19 64.58 61.42 65.19 65.18

Table A.3: Comparative results for different choices of hyper-parameters for the
CNN model. The numbers for length of filters represents the max length of the
filters (i.e. 2 means filters with lengths 1 and 2, 3 means filters with lengths 1, 2,
and 3, etc).

117

B. Sentence-Level Models

B.1 Hyper-parameters

In this model the dimension of the word embedding, the number of layers in the
LSTMs, the drop-out rate, and the margin in the loss function are the hyper-
parameters. The same model is used for Q2AD evaluation in the last chapter
hence the same hyper-parameters applies there too. The results reported here
are MRR on the TrecQA dataset. The decrease in the performance of the system
with more LSTM layers is due to over-fitting. In the following tables, all scores
are MRR in percent scale.

Emb. Dimensions LSTM Layers drop-out ratio Margin
100 300 64 128 256 0.3 0.5 0.7 0.02 0.05 0.08

Sentence-Level Model 88.2 89.5 84.7 89.5 87.1 87.4 89.5 81.7 88.4 89.5 87.9

Table B.1: Comparative results for different choices of hyper-parameters for the
Sentence-level model

We also investigated the system performance on using various similarity mea-
sures, and the results are reported in Table B.2

Similarity measure MRR(%)
Cosine 81.7
Polynomial 73.4
Radial Basis Function 84.2
Euclidean 79.6
Exponential 85.3
GESD 89.5

Table B.2: Evaluation on different similarity measures integrated in the model

118

C. Unstructured Models

C.1 Hyper-parameters

In addition to the type of constituents which were studied in the ablation study
in Chapter 8, the dimension of word embeddings, the number of layers in the
LSTMs, the drop-out rate, and the margin in the loss function are the hyper-
parameters. In the following tables, all scores are F1 in percent scale.

Emb. Dimensions LSTM Layers drop-out ratio Learning Rate
100 300 64 128 256 0.1 0.3 0.5 0.0007 0.001 0.003

Bi-Attention Model 76.4 79.5 73.6 79.5 77.9 76.3 79.5 78.1 76.8 79.5 77.4

Table C.1: Comparative results for different choices of hyper-parameters for the
unstructured model

The results of an ablation study on the effect of using various distance mea-
sures are reported in Table C.2

Distance measure F1(%)
Cosine 72.3
Polynomial 75.8
Radial Basis Function 73.1
Euclidean 70.8
Exponential 74.9
GESD 79.5

Table C.2: The evaluation on different integrated distance measures in the model

C.2 Constituent Types

Other constituent types include: NP, ROOT, NNP, NN, JJ, VP, CD, PP, S, NNS,
ADJP, SBAR, NP-TMP, QP, ADVP, VBG, DT, VBN, IN, NNPS, VB, RB, VBD,
VBZ, JJR, VBP, UCP, X, CC, FRAG, WHNP, JJS, NAC, NX, FW, TO, RBR,
PDT, PRN, INTJ, PRT, WHPP, PRP, SINV, WHADJP, MD, RRC, WHADVP

For a description of each type please refer to Manning et al. (2014)

119

D. Q2AD

Some samples of the questions in the Q2AD (Aghaebrahimian, 2017b) are listed
in the following table.

Question What’s a good way to get stronger?
Sentence-level answers You get stronger by giving your body a reason to get stronger.

Liftings weights is one of the best ways to do this, but it is not the only way.
You could, for example, use bodyweight exercises.

Word-level answers giving your body a reason to get stronger
Liftings weights
bodyweight exercises

Question As a conservative what bothers you about other conservatives?
Sentence-level answers What bothers me most is when conservatives say things that aren’t at all conservative.

I also don’t have a lot of respect for conservatives who seem only to care about money.
I see a lot of hypocrisy amongst Christians who have become vicious in their hatred of Muslims, anger towards
the government, and complete lack of virtue in both speech and practice.

Word-level answers when conservatives say things that aren’t at all conservative
conservatives who seem only to care about money
hatred of Muslims, anger towards the government, and complete lack of virtue in both speech and practice

Question Why is Prince Philip not as popular as Queen Elizabeth II?
Sentence-level answers Because he’s not as courteous and gracious as she is.

He’s a joker, and some of his jokes are insulting or racist.
He breaks the boundaries of formal protocol required by diplomacy, while she is the consummate diplomat.

Word-level answers he’s not as courteous and gracious as she is
He’s a joker
He breaks the boundaries of formal protocol required by diplomacy.

Question What effect would occur if I stopped eating everything but chicken nuggets?
Sentence-level answers You’d become malnourished within a few days more than likely.

You would also experience a great deal of constipation due to a lack of fiber as well as a myriad of differing
illness (potentially including but not limited to scurvy, rickets, and weight gain) due to vitamin deficiency and
the high fat content of deep fried nuggets.
Eventually your body would begin to shut down due to lack of proper nutrition and you’d more than likely die.

Word-level answers You’d become malnourished
You would also experience a great deal of constipation
Eventually your body would begin to shut down

Question Why do so many people like Harry Potter and the Prisoner of Azkaban?
Sentence-level answers My answer is: because Prisoner of Azkaban was the first book when the series showed its potential.

Prisoner of Azkaban was the first book in the series that really impressed me.
The third book was the one that changed my mind.

Word-level answers Prisoner of Azkaban was the first book when the series showed its potential
really impressed me
changed my mind

Table D.1: The Q2AD sample questions and answers

120

E. List of Publications

• Ahmad Aghaebrahimian. Linguistically-Based Deep Unstructured Question
Answering. In Proceedings of the Conference on Computational Natural
Language Learning (CoNLL 2018), Brussels, Belgium, 2018a

• Ahmad Aghaebrahimian. Deep Neural Networks at the Service of Multilin-
gual Parallel Sentence Extraction. In Proceedings of the 27th International
Conference on Computational Linguistics (COLING 2018), Santa Fe, New-
Mexico, USA, 2018b

• Ahmad Aghaebrahimian. Constrained Deep Answer Sentence Selection.
In Proceedings of the 20th International Conference on Text, Speech, and
Dialogue (TSD), 2017a

• Ahmad Aghaebrahimian. Quora Question Answer Dataset. In 20th Inter-
national Conference on Text, Speech, and Dialogue (TSD), 2017b

• Ahmad Aghaebrahimian. Hybrid Deep Open-Domain Question Answering.
In Proceedings of the 8th Language and Technology Conference (LTC), 2017c

• Ahmad Aghaebrahimian and Filip Jurčíček. Open-domain Factoid Question
Answering via Knowledge Graph Search. In Proceedings of the Workshop
on Human-Computer Question Answering, The North American Chapter
of the Association for Computational Linguistics (NAACL), 2016a

• Ahmad Aghaebrahimian and Filip Jurčíček. Constraint-Based Open Do-
main Question Answering Using Knowledge Graph Search. In Proceedings
of the 19th International Conference on Text, Speech and Dialogue (TSD),
LNAI 9924, 2016b

• Ahmad Aghaebrahimian and Filip Jurčíček. Machine Learning for Semantic
Parsing in Review. In Proceedings of the 7th Langauge and Technology
Conference (LTC), Poznan, Poland, 2015a

• Ahmad Aghaebrahimian and Filip Jurčíček. Constraint-based Statistical
Spoken Dialogue Systems. In Proceedings of the young researcher roundtable
in spoken dialog (YRRSDS), 2015b

• Ahmad Aghaebrahimian. Constraint-based Semantic Parsing. In proceeding
of the Week of Doctoral Studies, Charles University, Faculty of Mathematics
and Physics, 2015

121

	Introduction
	Hybrid Open-Domain QA
	Structured Engine
	Unstructured Engine

	Objectives and Contributions
	Organization of the thesis

	Essentials
	Machine Learning Basics
	Logistic Regression
	Neural Networks
	Convolution Neural Networks
	Recurrent Neural Network

	Knowledge Graph
	Similarity Measures
	Evaluation Metrics

	An Overview of Question Answering Systems
	Question Answering: Methods
	Question Answering: Architectures
	Question Processing
	Passage Retrieval
	Answer Ranker
	Question Analyzer
	Answer Selector
	Answer Validator

	Existing Datasets for Question Answering
	WikiQA
	TrecQA
	SimpleQuestions
	SQuAD
	MS MARCO
	Q2AD

	Quora Question Answering Dataset
	Introduction
	Dataset Compilation
	Question Screening
	Passage Selection
	Answer Annotation

	Evaluation
	Conclusions

	Structured Question Answering
	Introduction
	Method
	Training
	Property Detection
	Entity Detection
	Entity Disambiguation

	Experiment
	Results
	Error Analysis
	Conclusions

	Sentence Selection
	Introduction
	Architecture
	Dataset
	Experimental Results
	Conclusions

	Unstructured Question Answering
	Introduction
	Constituency Relations
	System Architecture
	Representation Learning
	Training

	Dataset
	Experiment
	Results
	Ablation and Error Analysis
	Conclusions

	Conclusion
	Acknowledgments
	Bibliography
	List of Figures
	List of Tables
	Structured Models
	Features
	Hyper-parameters

	Sentence-Level Models
	Hyper-parameters

	Unstructured Models
	Hyper-parameters
	Constituent Types

	Q2AD
	List of Publications

