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Introduction
Every investor meets with situation in which he/she has to make decision about
selecting some of the available investment opportunities. This means that this de-
cision has to be somehow optimal and has to describe investor’s attitude towards
risk and his/her return expectation. In literature we can find a lot of different
approaches which try to optimize profitability of the investments which returns
are random variables.

In the last decades several portfolio selection models were developed. The ba-
sics of the modern portfolio theory was introduced in 1952 by Harry Markowitz
in Markowitz [1952]. This model maximizes expected return and minimizes vari-
ance of the portfolio. There are certain shortcomings of this model. Markowitz
approach comprises historical variance as measure of risk and doesn’t take into
account higher moments of return distribution. Later, risk measurement became
very important and alternative measures as semi-variance or mean absolute devi-
ation were introduced. An alternative approach uses utility functions introduced
in von Neumann and Morgenstern [1944]. In the 21st century V aR and CV aR
became the most popular risk measures because of their economical meaning. In
this work we will show portfolio optimization problem with usage of stochastic
dominance constrains. It is usually very complicated to exactly specify investor’s
utility function. In portfolio selection using stochastic dominance constrains we
consider whole classes of utility functions representing groups of investors with the
same risk/return attitude. Stochastic dominance also takes into account whole
distribution of returns rather than just some of the moments.

In the first chapter we present assumptions for efficient market needed for
Markowitz model. We provide the general solution for optimal portfolio con-
struction in case of short sales allowed. We include both, case without riskfree
asset and with riskfree included. Then we introduce alternative definitions of risk
including axioms of coherent risk measures.

In the second chapter we introduce the concept of stochastic dominance and
the formulation of portfolio optimization problem with stochastic dominance con-
strains. We present the formulation proposed in Dentcheva and Ruszczynski
[2006]. In the end of the chapter we mention portfolio efficiency tests introduced
by Kuosmanen [2004].

In the last chapter we apply both of the approaches on real data. We make
a comparison of performances between the obtained portfolio and Dow Jones
Industrial Average index.
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1. Markowitz model
In this chapter we introduce basic model for portfolio optimization presented

by H.Markowitz. All of the information in this chapter originate from Dupačová
et al. [2002].

1.1 Efficient Market
First we provide assumptions needed for the Markowitz model to work well.

(1)The investors have homogeneous expectations. Which means that investors
make decisions on their portfolios based only on the expected returns and covari-
ances. All of the information about means and covariances are equally available
to all investors at the same time.

(2)The investors are risk averse and behave rationally. They prefer portfolios
with the highest expected return among portfolios with the same level of risk
or they prefer portfolios with the smallest risk among portfolios with the same
expected return.

(3)All investors invest on the same period of time on the market without trans-
action fees and no taxes.

(4)All assets are marketable and infinitely divisible.

(5)Short sales are allowed.

(6)There is only one risk free interest rate. All investors are able to lend or
borrow any amount of funds at this interest rate.

(7)On the market are just small investors without ability to affect returns of
the individual assets.

Market fulfilling assumptions above is called efficient. Market equilibrium occurs
because investors are risk averse, behave rationally and have perfect information
about the market.

1.2 Portfolio Theory
Let us assume that we want to invest our wealth (divisible money equal to

1) to portfolio consisting of N assets, n = 1, . . . , N . Vector x = (x1, . . . , xN)T

is a vector of individual weights of the assets in portfolio. Variable xn repre-
sents the selection of investors wealth invested in the nth asset of the portfolio,
n = 1, . . . , N , while the following holds: 1T x = 1.

There are two possible assumptions for variable xn. If we assume that xn ≥ 0
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that means that short sales are forbidden. If investor can sell short it implies
that he can sell an asset or stock that he does not own. It is a transaction in
which an investor sells borrowed securities in expectation of a price drop. For the
moment we suppose no restrictions for xn. So we define a set of possible weights
as χ = {x ∈ Rn : x1 + x2 + . . . + xn = 1}.

Definition 1. We define expected returns of N assets of a portfolio as r = ER =
(r1, . . . , rN)T where rate of returns R = (R1, . . . , RN)T is a random vector.

We will denote covariance matrix as V = (σij) where σij = cov(ρi, ρj), i, j =
1, . . . , N . We will denote standard deviation of the returns as: σi = √

σii.
Expected return on the portfolio p composed of weights x is

rp = rT x (1.1)

and the variance of the portfolio return p is

σ2
p = xT V x. (1.2)

Standard deviation of the returns of the portfolio p is

σp =
√

σ2
p. (1.3)

Definition 2. Any portfolio consisting of the assets in the same ratio as they show
on the capital market, stated by their capitalization, is called market portfolio.

Definition 3. A portfolio x∗ ∈ χ is called mean - variance efficient if there is
no other portfolio x ∈ χ that satisfies

(rT x∗ < rT x ∧ x∗T V x∗ ≥ xT V x) ∨ (rT x∗ = rT x ∧ x∗T V x∗ > xT V x).

1.2.1 Construction of Optimal Portfolio
As mentioned above, investors want to maximize possible returns and simul-

taneously minimize possible risks. Investors are looking for an efficient portfolio.
There are more possible formulations of optimization problems for finding mean-
variance efficient portfolios.
We can find a mean-variance efficient portfolio by solving:

max
x∈χ

λrT x − 1
2xT V x (1.4)

parameter λ ≥ 0 reflects investor’s risk attitude. Large values of λ are related
to investors who are more likely to invest to riskier investment, small values are
associated with risk averse investors.
Another formulation of the problem is by setting parameter µ expressing minimal
acceptable return

min
x∈χ

xT V x (1.5)

subject to

4



rT x ≥ µ.

In both of the formulations above may occur following instances: x ∈ Rn (short
sales allowed), x ≥ 0 (short sales are forbidden). Matrix V is positive semidefi-
nite which implies that (1.4) and (1.5) are problems of convex optimization.

Remark 1.2.1 There is no difference between efficient portfolios acquired
when we quantify risk by the variance of the portfolio return or its standard devi-
ation. This holds because

√
xT V x is strictly increasing transformation of xT V x.

Remark 1.2.2 Another example of risk-adjust return of the portfolio is Sharpe
Ratio:

rT x√
xT V x

.

1.2.2 General Solution
Risky Assets

Now we will focus on case of risky assets and short sales allowed. We will find
solution for the problem

min 1
2xT V x (1.6)

subject to
1T x = 1, rT x ≥ µ

where µ is predetermined minimal acceptable return.
Assume that V is positive definite. Primary we exclude the trivial case where
r = c1 for some constant c. We may easily solve this case by selecting asset n0
for which following holds: n0 = arg min1≤n≤N σ2

n. Next we will use the method
of Lagrange multipliers.
The Lagrange function is

L(x, λ1, λ2) = 1
2xT V x + λ1(1 − 1T x) + λ2(µ − rT x)

after derivative
∂

∂x
L = V x − λ11 − λ2r = 0

we obtain the optimal solution

x∗ = λ1V
−1 + λ2V

−1r. (1.7)

To determine λ1 and λ2, we apply the two constraints

1 = 1T x = λ11T V −11 + λ21T V −1r

µ ≤ rT x = λ1r
T V −11 + λ2r

T V −1r.

Put A := 1T V −11, B := 1T V −1r, C := rT V −1r and ∆ := AC − B2.
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Since V is positive definite and 1 and r are linearly independent, then A > 0
and C > 0, ∆ > 0 results from Cauchy-Schwarz inequality.
If λ2 = 0 then

1 = 1T x = λ1A

implies
λ1 = 1

A
.

Otherwise, we obtain constants λ1 and λ2 from initial conditions:

1 = 1T x = λ1A + λ2B

µ = rT x = λ1B + λ2C

so that
λ1 = C − µB

∆ , λ2 = µA − B

∆ .

There are two possible cases for B:
(a) 1T V −1r = 0
It is not probable that this could happen in practise however, it is theoretically
possible.
Thus

λ1 = 1
1T V −11

, λ2 = µ

rT V −1r
,

than the optimal portfolio is

x∗ = V −11
1T V −11

+ µV −1r

rT V −1r
.

(b) 1T V −1r ̸= 0
Put x1 = V −11

1T V −11 , x2 = V −1r
rT V −1r

.
Solution for this case is

x∗ = δ(µ)x1 + (1 − δ(µ))x2 (1.8)

where
δ(µ) := A(C − µB)

∆ .

Remark 1.2.3 Note that portfolios x1 and x2 are independent of given µ how-
ever, δ(µ) depends on µ. Moreover, portfolio x1 is called global minimum variance
portfolio that we get when minimizing the variance without the expected return
constraint. Finally, portfolio x2 maximizes the Sharpe’s Ratio.

Riskfree Asset

Remark 1.2.4 By a riskfree asset we mean an asset with a certain future return.
In practise we consider government bonds as riskfree.
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If we include a riskfree asset into our problem then matrix V becomes singular
and we have to find different solution. Same as above we assume N risky assets
1, . . . , N with expected returns r where r ̸= c1 and c is a constant. Furthermore,
we suppose a riskfree asset denoted by index 0 with return r0. Vector of returns
now has dimension (N + 1) × 1 and we define it as ρ̃ = (r0, ρT )T . Now investor
divides his wealth between N + 1 assets 0, 1, . . . , N with weights x0, x1, . . . , xN .
We are looking for a portfolio p expressed as x̃ = (x0, xT )T which means finding
solution for the problem

min 1
2xT V x (1.9)

subject to
1T x̃ = 1, x0r0 + rT x ≥ µ

where µ is predetermined minimal acceptable return and covariance matrix of
returns of risky assets V is positive definite. Since x0 = 1 − 1T x, following holds:
(r − r01)T x = µ − r0 := µe.
Now we have to solve the problem

min 1
2xT V x

subject to
(r − r01)T x ≥ µe.

Same as before we will use the method of Lagrange multipliers. The Lagrange
function is

L(x, γ) = 1
2xT V x + γ(µe − (r − r01)T x)

after derivative
∂L

∂x
= V x + γ(r01 − r) = 0

we get the optimal solution

x∗ = γV −1(r − r01), x∗
0 = 1 − 1T x∗. (1.10)

If (r −r01)T γV −1(r −r01) > µe then optimal solution is investing our wealth
into riskfree asset x0 = 1 and x = 0.

Otherwise following holds

(r − r01)T γV −1(r − r01) = µe

hence
γ = µe

Ar2
0 − 2Br0 + C

.

We define portfolio consisting only of riskfree asset as x̃1 := (1, 0, . . . , 0)T and
by

xt = V −1(r − r01)
B − Ar0

we define tangency portfolio as x̃2 := (0, xtT )T .
Theorem 1. Every mean-variance efficient portfolio can be expressed as

x̃∗ = δx̃1 + (1 − δ)x̃2.

Proof can be found in Dupačová et al. [2002]
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Short Sales not Allowed

If we add this restriction to our problem we are not able to express the solution
explicitly anymore. In this case selection of optimal portfolio leads to quadratic
optimization problem

min 1
2xT V x

under the conditions
x ∈ Rn

+, 1T x = 1, rT x ≥ µ.

Alternatively we can formulate this problem as maximization

max rT x

under the conditions

x ∈ Rn
+, 1T x = 1, xT V x ≤ σ2

0

1.2.3 Alternative definitions of Risk
Harry Markowitz was the first one to invent consistent framework for portfo-

lio risk measurement and diversification. Later on more measures of risk were
defined. For instance, it is also possible to measure a risk as the mean absolute
deviation

Definition 4. Mean absolute deviation is defined as follows

m(x) := E

⏐⏐⏐⏐⏐⏐
∑

j

ρjxj −
∑

j

rjxj

⏐⏐⏐⏐⏐⏐ (1.11)

In this case, finding an efficient portfolio means to solve

min
x∈χ

E

⏐⏐⏐⏐⏐⏐
∑

j

ρjxj −
∑

j

rjxj

⏐⏐⏐⏐⏐⏐ (1.12)

subject to ∑
j

rjxj ≥ µ.

Value at Risk

All of the models above are based on risk and return relations. Value at Risk
(VaR) is a holistic approach meaning that it considers all important information
about risk. In this case, risk measurement is expressed by losses rather than
expected return.

Definition 5. We define VaR as

V aRα(Y ) = F −1
Y (α) (1.13)

where
Y is a random loss variable, E|Y | < ∞ and FY is a cumulative distribution
function of Y .
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Later on axioms of risk measurement were introduced.

Definition 6. We have two portfolios with future losses Y and Z. We define four
axioms of risk measurement
1. if Y ≤ Z then ρ(Y ) ≤ ρ(Z) (risk is monotonic);
2. ρ(λY ) = λρ(Y ) for λ > 0 (risk is homogeneous);
3. ρ(Y + Γ) = ρ(Y ) + Γ,
where Γ is a loss of a riskless bond (riskless translation invariance);
4. ρ(Y + Z) ≤ ρ(Y ) + ρ(Z) (risk is sub − additive).
When risk measure ρ(·) satisfies all of the assumptions above it is called coherent
risk measure.

Last of the axioms (subadditivity) says that it is possible to effectively diver-
sify our portfolio. We achieve lower risk when investing in Y and Z together.
VaR does not fulfill subadditivity axiom therefore it is not coherent risk measure.

Conditional Value at Risk

After introduction of risk measurement axioms new measures were invented. Con-
ditional Value at Risk (CVaR) adheres these axioms and keeps the features of
VaR.

Definition 7. CVaR is the expected loss when the VaR loss is exceeded,

CV aRα(Y ) = E[Y |Y > V aRα(Y )]. (1.14)

Remark 1.2.5 In contrast with VaR, coherent risk measures are convex.
More about risk measures in quantitative finance can be found in Mitra [2009].
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2. Stochastic Dominance
Throughout the years many portfolio selection models were introduced.

Markowitz model introduced in the previous chapter takes into account distribu-
tion characteristics as mean and variance but ignores higher moments of return
distribution. On the other hand, with usage of Stochastic Dominance (SD) con-
strains it is possible to develop a more universal concept. The principle advantage
of using SD constrains when constructing optimal portfolio is, that it considers
entire probability distribution of returns rather than just some particular mo-
ments and does not assume any explicit investor’s preferences. In SD approach
we don’t have to specify exact utility function for an investor, SD requires a class
of utility functions representing whole group of investors with same preferences.
According to investor’s different preferences relevant orders of SD were created.
Note, that Stochastic Dominance gives a partial order. Source for information in
sections 2.1 - 2.2 was Dentcheva and Ruszczynski [2006].

2.1 Stochastic Dominance Orders
Stochastic Dominance is based on comparing cumulative distribution functions

(CDF) of random variables.

Definition 8. We define that a random variable K stochastically dominates ran-
dom variable S in the first order if

F (K; µ) ≤ F (S; µ) ∀µ ∈ R,

where
F (K; µ) = P{K ≤ µ} for µ ∈ R.

We say that K dominates S in FSD sense, denoted K ≽(1) S.
If moreover exists at least one µ for which F (K; µ) < F (S; µ) then we say

that K strictly dominates S and we denote it as K ≻(1) S.

In addition, K FSD dominates S if and only if

E[u(K)] ≥ E[u(S)] ∀u ∈ U1,

where U1 is set of all non-decreasing functions for which these expected values
are finite.

First order Stochastic Dominance (FSD) corresponds to decision makers who
prefer more than less (non-satiation) without giving any assumptions about risk
aversion.

Definition 9. We define that a random variable K stochastically dominates ran-
dom variable S in the second order if

F2(K; µ) ≤ F2(S; µ) ∀µ ∈ R,

where
F2(K; µ) =

∫ µ

−∞
F (K; ξ) dξ for µ ∈ R.
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We say that K dominates S in SSD sense, denoted K ≽(2) S. If moreover exists at
least one µ for which F2(K; µ) < F2(S; µ) then we say that K strictly dominates
S and we denote it as K ≻(2) S.

Furthemore, K SSD dominates S if and only if

E[u(K)] ≥ E[u(S)] ∀u ∈ U2,

where U2 is set of all non-decreasing and concave functions for which these ex-
pected values are finite.

Second order Stochastic Dominance (SSD) is more appealing than FSD in
problem of portfolio optimization. It is because of the added assumption of
non-decreasing concave utility functions which reflect investor’s risk aversion.

Remark 2.1.1 It is possible to denote the function F2(K, ; ) as the expected
shortfall

F2(K; µ) = E[(µ − K)+], (2.1)

where (µ − K)+ = max(µ − K, 0).
Similarly to the case with random variables we say that portfolio x FSD dominates
portfolio y if

F (R(x); µ) ≤ F (R(y); µ) ∀µ ∈ R

and portfolio x SSD dominates portfolio y if

F2(R(x); µ) ≤ F2(R(y); µ) ∀µ ∈ R,

where we assume that E[|Rj|] < ∞ ∀ j = 1, . . . , N and R(x) = R1x1 + R2x2 +
. . . + Rnxn denotes the return rate of whole portfolio. For now we do not allow
short sales therefore, we define the set of feasible weights as

X = {x ∈ Rn : x1 + x2 + . . . + xn = 1, xj ≥ 0, j = 1, 2, . . . , N}.

Definition 10. We define portfolio x as SSD-efficient (or FSD-efficient) in a set
of portfolios X if there exists no portfolio y ∈ X satisfying R(y) ≻(2) R(x) (or
R(y) ≻(1) R(x)).

It is important to mention that it is possible to formulate dominance with
CVaR constraints equivalent to SSD restriction. In terms of return rates we
define Conditional Value at Risk as

CV aRα(R(x)) = E[R(x)|R(x) ≤ ξα(R(x))]

where ξα(R(x)) is the right α-quantile of random return rate R(x).
Theorem 2. The SSD constraint, R(x) ≽(2) Y , is equivalent to the continuum of
CVaR restrictions

CV aRα(R(x)) ≥ CV aRα(Y ) for all α ∈ (0, 1]. (2.2)

Proof can be found in Dentcheva and Ruszczynski [2006].
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2.2 Construction of Optimal Portfolio
Now we will focus on theory regarding portfolio optimization with second order

stochastic dominance constrains which refers to risk averse investors. In this case
we include benchmark which return rate we want to dominate in terms of SSD.
This benchmark could be a stock market index or our current portfolio. We work
with non-decreasing and concave utility functions. In mean-variance approach
we don’t work with whole distribution of returns.

2.2.1 Portfolio selection with dominance constrains
We want to solve following optimization problem :

max f(x) (2.3)

subject to

R(x) ≽(2) Y (2.4)
x ∈ X (2.5)

where f(x) = E[R(x)] or another concave continuous function.

Now we will try to simplify our optimization problem. We propose that
in case when assets included in our benchmark portfolio Y have return rates
with discrete joint distribution and realizations yi, i = 1, . . . , m then constraint
R(x) ≽(2) Y is equivalent to

E[(yi − R(x))+] ≤ E[(yi − Y )+], i = 1, . . . , m. (2.6)

From now on, we assume that return rates of the assets are random vari-
ables with discrete joint distribution given by T realizations (scenarios) rjt, t =
1, . . . , T, j = 1, . . . , N which occur with probabilities pt, t = 1, . . . , T . We denote
shortfall of R(x) below yi as sit where

sit = max(0, yi −
n∑

j=1
xjrjt), i = 1, . . . , m, t = 1, . . . , T.

With these assumptions we can formulate our optimization problem as

max f(x) (2.7)

n∑
j=1

xjrjt + sit ≥ yi, i = 1, . . . , m, t = 1, . . . , T ; (2.8)

T∑
t=1

ptsit ≤ F2(Y ; yi), i = 1, . . . , m; (2.9)

sit ≥ 0, i = 1, . . . , m, t = 1, . . . , T ; (2.10)
x ∈ X. (2.11)
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For every possible x fulfilling (2.3) - (2.5) we get a feasible pair (x, s) for (2.7)
- (2.11). Contrariwise, for any pair (x, s) fulfilling (2.7) - (2.11), constrains (2.8)
and (2.10) imply that

sit ≥ max(0, yi −
n∑

j=1
xjrjt), i = 1, . . . , m, t = 1, . . . , T.

Now we can modify this inequality by using expected value of both sides, then
constraint (2.9) gives us following result

F2(R(x)); yi) ≤ F2(Y ; yi), i = 1, . . . , T.

We proposed above that R(x) ≽(2) Y is equivalent to
E[(yi − R(x))+] ≤ E[(yi − Y )+], i = 1, . . . , m which implies that x is feasible
for optimization problem (2.3) - (2.5) which results in the following statement

Proposition 1 If Rj, j = 1, . . . , N and Y have discrete distributions then opti-
mization problem (2.3) - (2.5) is equivalent to problem (2.7) - (2.11).

Proof can be found in Dentcheva and Ruszczynski [2006].

Optimality

As above we assume that there are finitely many outcomes of benchmark Y
and they have discrete probability distribution, same holds for return rates. Fur-
thermore, we assume that realizations of Y are ordered: y1 < y2 < . . . < ym.
Realizations occur with probabilities πi, i = 1, . . . , m.

We define set U of functions u : R → R which adhere following conditions

u(·) is non-decreasing concave function;
u(·) is piecewise linear function with break points yi, i = 1, . . . , m;
u(t) = 0 ∀ t ≥ ym.

It is obvious that U is a convex cone.

Now we will define the Lagrangian function of (2.3) - (2.5), L : Rn × U → R,

L(x, u) = f(x) + E[u(R(x))] − E[u(Y )]. (2.12)

Theorem 3. If x̂ is an optimal solution of (2.3) - (2.5) then there exists a function
û ∈ U such that following holds:

L(x̂, û) = max
x∈X

L(x, û) (2.13)

and
E[û(R(x̂)] = E[û(Y )]. (2.14)

On the contrary, if for some function û ∈ U an optimal solution x̂ of (2.13) meets
(2.4) and (2.14), then x̂ is an optimal solution of (2.3) - (2.5).

Proof can be found in Dentcheva and Ruszczynski [2006].
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2.3 Portfolio efficiency tests
In this section we will focus on tests analyzing portfolio efficiency in terms of

FSD and SSD. These tests provide us with information about efficiency of given
portfolio due to all possible portfolios composed of a set of base assets.

We assume that we have N assets and return rate of each of these assets has
T possible scenarios τ ≡ {1, . . . , T} which occur with the same probabilities. We
represent this data by matrix G ≡ (G1, . . . , GN) where Gj ≡ (rj1, . . . , rjT ).

2.3.1 Kuosmanen criteria
Now we will introduce efficiency tests based on FSD and SSD introduced in

Kuosmanen [2004]. Note that it is possible to represent portfolios by portfolio
weights or by portfolio return profiles.

FSD Test

θ1(y0) = max
x0,P

(
T∑

t=1

N+1∑
i=1

G0
itx

0
i −

T∑
t=1

y0t

)
/T

s.t
N+1∑
i=1

G0
itx

0
i ≥

T∑
j=1

Ptjy0j ∀t ∈ τ

P ∈ Π
x0 ∈ X0,

where P is permutation matrix and

Π ≡
{

[Pij]T ×T | Pij ∈ {0, 1},
T∑

i=1
Pij =

T∑
j=1

Pij = 1 ∀i, j ∈ τ

}
,

matrix G0 = (G, y0) is our data matrix augmented by benchmark portfolio return
profile and X0 = {(xT , xb)T ∈ RN+1; xb ≥ 0, x ∈ X}.
Theorem 4. θ1(y0) = 0 is both necessary and sufficient condition for FSD efficiency
of the benchmark.

Proof can be found in Kuosmanen [2004].
Test statistic θ1(y0) reflects inefficiency of y0 in terms of expected return. If
θ1(y0) > 0 it is possible to select portfolio with higher expected return which
dominates the benchmark.

Necessary SSD Test

θN
2 (y0) = max

x0,W

(
T∑

t=1

N+1∑
i=1

G0
itx

0
i −

T∑
t=1

y0t

)
/T

s.t.
N+1∑
i=1

G0
itx

0
i ≥

T∑
j=1

Wtjy0j ∀t ∈ τ

W ∈ Ξ
x0 ∈ X0
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where matrix W is called doubly stochastic and

Ξ ≡
{

[Wij]T ×T | 0 ≤ Wij ≤ 1;
T∑

i=1
Wij =

T∑
j=1

Wij = 1 ∀i, j ∈ τ

}
.

Theorem 5. Necessary condition for SSD efficiency of benchmark portfolio is
θN

2 (y0) = 0.
Proof can be found in Kuosmanen [2004].
It is possible to interpret the test statistic θN

2 (y0) as inefficiency measure of
the benchmark portfolio. It expresses the maximum possible increase of expected
return we would get by selecting another portfolio which SSD dominates the
benchmark. Therefore if this statistic equals zero there is no other SSD dominat-
ing portfolio with higher expected return.

Sufficient SSD Test

θS
2 (y0) = min

W,x0,s+,s−

T∑
j=1

T∑
i=1

(s+
ij + s−

ij)

s.t.
N+1∑
n=1

G0
tnx0

i =
T∑

j=1
Wtjy0j ∀t ∈ τ

s+
ij − s−

ij = Wij − 1
2 ∀i, j ∈ τ

s+
ij, s−

ij ≥ 0 ∀i, j ∈ τ

W ∈ Ξ
x0 ∈ X0

where S+ = {s+
ij}T

i,j=1, S− = {s−
ij}T

i,j=1 and W = {wij}T
i,j=1.

In Kuosmanen [2004] we can find theoretical maximum and minimum of
θS

2 (y0). When we set Wij = 1/T ∀ i, j we obtain minimal value. Maximum
depends on number of repeating values in vector of returns of the benchmark.
We introduce variable d0k which reflects number of k-way ties in y0.

θS
2 (y0) ∈

[
1
2T 2 − T,

1
2T 2 −

T∑
k=1

kd0k

]

Remark 2.3.1.1 We say it is a 3-way tie if y0i = y0j = y0k etc.
Theorem 6. The benchmark portfolio is SSD efficient if satisfies necessary and
sufficient condition:

θN
2 (y0) = 0 ∧ θS

2 (y0) = T 2

2 −
T∑

k=1
kd0k.

Proof can be found in Kuosmanen [2004].
If the necessary condition isn’t satisfied there is no need to evaluate sufficient

test statistic.
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Construction using the Kuosmanen’s Test

It is possible to find weights x0 of optimal portfolio solving optimization prob-
lem based on the Kuosmanen’s necessary SSD test.

max
x0,W

(
T∑

t=1

N+1∑
i=1

G0
itx

0
i )/T

s.t.
N+1∑
i=1

G0
itx

0
i ≥

T∑
j=1

Wtjy0j∀t ∈ τ

W ∈ Ξ
x0 ∈ X0.

This approach is easier to implement than (2.7)− (2.11), therefore we will use
it in practical section.
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3. Real Data Application
In this chapter we will provide empirical study in which we will compare per-

formance of the portfolio optimization approaches stated in the first and second
chapter. We will formulate this problem in both cases as a maximization of re-
turn. As a benchmark we chose Dow Jones Industrial Average (DJIA) index that
indicates the value of 30 publicly owned companies based in the United States.

We formulated optimization problem using Markowitz approach as

max rT x

under the conditions

x ∈ Rn
+, 1T x = 1, xT V x ≤ σ2

0

where σ2
0 is variance of the DJIA index.

For SSD constraint approach we used formulation based on the Kuosmanen’s
necessary SSD test

max
x0,W

(
T∑

t=1

N+1∑
i=1

G0
itx

0
i )/T

s.t.
N+1∑
i=1

G0
itx

0
i ≥

T∑
j=1

Wtjy0j∀t ∈ τ

W ∈ Ξ
x0 ∈ X0.

Remark 3.1.1 In general, x0 includes the weight of investment to the bench-
mark portfolio. However, it’s equal to 0 if a dominating portfolio exists. Therefore
we can compare optimal portfolios of SSD constrained problems with those of the
Markowitz model.

We downloaded daily returns for DJIA index and it’s components from
yahoo.finance.com. For our analysis we chose five years period starting
15/10/2013. During this period happened two significant changes in DJIA index.
First change of the components occured in 2015 when Apple replaced AT&T,
second change happened in 2018 when Walgreen Boots Alliance replaced General
Electric. Because of these changes we decided to include 2 sets of assets that we
used in our analysis. We present intersection set, consisting of assets which were
part of the DJIA index during whole analyzed period. Second set is union set
representing all of the assets which were present in the DJIA index during our 5
year period.
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Company Symbol Intersection
3M MMM Yes
American Express AXP Yes
Apple AAPL No
AT&T T No
Boeing BA Yes
Caterpillar CAT Yes
Chevron CVX Yes
Cisco Systems CSCO Yes
Coca-Cola KO Yes
DowDuPont DWDP Yes
ExxonMobil XOM Yes
General Electrics GE No
Goldman Sachs GS Yes
The Home Depot HD Yes
IBM IBM Yes
Intel INTC Yes
Johnson & Johnson JNJ Yes
JPMorgan Chase JPM Yes
McDonald’s MCD Yes
Merck & Company MRK Yes
Microsoft MSFT Yes
Nike NKE Yes
Pfizer PFE Yes
Procter & Gamble PG Yes
Travelers TRV Yes
UnitedHealth Group UNH Yes
United Technologies UTX Yes
Verizon VZ Yes
Visa V Yes
Walmart WMT Yes
Walgreens Boots Alliance WBA No
Walt Disney DIS Yes

Table 3.1: Assets included in Analysis

As mentioned before, SSD is most appealing from the stochastic dominance
orders because it represents non-satiable, risk averse decision makers. We wanted
our portfolio to dominate DJIA index in terms of SSD which leads to linear pro-
gramming problem.

We presented general solutions for Markowitz approach when we constructed
optimal portfolio in case of short sales in first chapter. In the practical application
we formulated our problem as maximization of return and we didn’t allow short
sales which leads to quadratic optimization problem.
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For our analysis we chose three different periods during which we optimized
our weights.

Optimization Period Set
SSD 7, 14, 60 Intersection, Union
Markowitz 7, 14, 60 Intersection, Union

Table 3.2: All of the cases analysed in empirical study

We divide our empirical study into 2 parts, out of sample analysis and in
sample analysis. First we will present in sample analysis where we will illustrate
FSD dominance graphically. In sample means that for analysis we are using data
which were used in the sample for optimization. Then we will compare ratio
of portfolios dominating in both FSD and SSD sense for different optimization
periods. After that we will check if portfolios obtained by Markowitz approach
show signs of SSD dominance. Out of sample analysis means that we will try
to use our results from optimization on the data which were not part of the
optimization window. In all cases we use one week right after the end of the
optimization period for out of sample analysis.

Software implementation

We solved all of our optimization problems in GAMS from which we obtained
optimal weights for given periods. Weights for each week for every case were
exported from GAMS to text files. After that we loaded the text files into R which
we used for evaluating and plotting our out of sample and in sample analysis.

3.1 In Sample Analysis
In first part of our in sample analysis we will focus on answering the question

how many of our SSD dominating portfolios dominate the benchmark also in the
FSD sense.

Now we will provide illustration graphs showing SSD portfolio dominating
also in the FSD sense and portfolio which dominates just in SSD sense.
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Figure 3.1: Graphic illustration of SSD portfolio dominating the DJIA index also
in the FSD sense

On the graph we can see plotted sorted returns of SSD portfolio and bench-
mark during first 60 days of our data. SSD portfolio was optimized using the
same 60 days. We can observe that sorted returns of the DJIA index are always
lower or equal to sorted returns of our SSD dominating portfolio which implies
that our portfolio dominates the benchmark also in the FSD sense.

Figure 3.2: Graphic illustration of SSD portfolio not dominating DJIA in FSD
sense

In this graph we are showing sorted SSD and benchmark portfolio returns
during 160th sixty day window. There are 15 cases when DJIA returns are higher
which means that our portfolio doesn’t dominate the benchmark in FSD sense.
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Intersection Union
7 days 78.8 81
14 days 62.9 63.5
60 days 31.4 26.7

Table 3.3: Percentage of SSD portfolios dominating the benchmark also in the
FSD sense

We can observe that number of portfolios dominating in both FSD and SSD
sense is decreasing when we increase number of days included in optimization
period.

Now for the comparison we will check how many of portfolios created by
Markowitz approach also satisfy constrains of SSD dominance.

Intersection Union
7 days 90.1 89.9
14 days 80.3 83.7
60 days 59.9 51.7

Table 3.4: Percentage of Markowitz portfolios dominating the benchmark in the
SSD sense

With optimization period 7 days long there is very high number of Markowitz
portfolios which dominate the benchmark in SSD sense but we can see that num-
bers for 60 days optimization period are much lower.

3.2 Out of Sample Analysis
Now we will provide observations and conclusions we obtained from out of sam-

ple analysis. We decided to use weights obtained from our optimization and hold
these portfolios always for a week beginning right after the end of optimization
period.

7 days optimization period

First we will present results obtained by investing in portfolios which we ob-
tained from 7 days optimization period.
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Figure 3.3: Performance of Markowitz and SSD portfolio consisting of assets from
intersection set against performance of DJIA index during a 5 years period with
usage of historical data from 7 days

Both Markowitz portfolio and portfolio obtained from optimization with SSD
constraints had outperformed DJIA index in 48.9% of weeks.

When we compare cumulative product of returns after 5 years we can see
that we didn’t manage to beat the index. However, Markowitz portfolio at least
managed to keep the track with DJIA till the end but SSD portfolio didn’t do so
well.

If we examine the 2013 - 2015 period we can see that SSD was performing
much better than in later years. We can observe that SSD portfolio didn’t man-
age to follow the sharp increase of the DJIA index.

Figure 3.4: Performance of Markowitz and SSD portfolio consisting of assets from
union set against performance of DJIA index during a 5 years period with usage
of historical data from 7 days
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SSD portfolio outperformed DJIA in 44.9% of weeks while Markowitz portfolio
in 47.2% weeks. In this case we also didn’t beat the index and in the table
below we can see that with inclusion of more assets we actually obtained lower
performance after 5 years.

Intersection Union
Markowitz 1.066104 1.036665
SSD 1.008157 0.9643255
DJIA 1.084231 1.084231

Table 3.5: Cumulative product of return after 5 years, 7 days optimization period

14 days optimization period

Now we will see if including more historical data to our optimization helps us
to achieve higher returns.

Figure 3.5: Performance of Markowitz and SSD portfolio consisting of assets from
intersection set against performance of DJIA index during a 5 years period with
usage of historical data from 14 days

This is the first case where one of our portfolios managed to perform better
in more than half of instances. Markowitz portfolio had better performance in
53.1 % of weeks, SSD portfolio performed better in 47.5% cases.

This is also first time we accomplished better return after 5 years with
Markowitz portolio but still didn’t beat the DJIA index with SSD portfolio. But
we can see that adding more historical data to our analysis helped SSD to better
results in years 2015 - 2018.
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Figure 3.6: Performance of Markowitz and SSD portfolio consisting of assets from
union set against performance of DJIA index during a 5 years period with usage
of historical data from 14 days

Similarly as in 7 days optimization window with more assets in our set our
results were worse than in case of an intersection but this time Markowitz portfolio
has been more affected by this change than SSD portfolio which could be observed
in the following table.

Intersection Union
Markowitz 1.097468 1.073082
SSD 1.046023 1.044652
DJIA 1.082931 1.082931

Table 3.6: Cumulative product of return after 5 years, 14 days optimization
period

60 days optimization period

Finally we get to the longest optimization period when we used 60 days of
historical data for our optimization.
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Figure 3.7: Performance of Markowitz and SSD portfolio consisting of assets from
intersection set against performance of DJIA index during a 5 years period with
usage of historical data from 60 days

Here we can observe our portfolios doing very well in comparison with DJIA
index which is beaten by both of them. We can see both portfolios having higher
cumulative product of return than DJIA index during the whole period after first
few weeks. Final return for Markowitz and SSD portfolio is almost the same.

Figure 3.8: Performance of Markowitz and SSD portfolio consisting of assets from
union set against performance of DJIA index during a 5 years period with usage
of historical data from 60 days

In the last case our SSD portfolio performed better than DJIA index and
also beat Markowitz portfolio. In contrast with previous optimization periods,
including more assets to our consideration lead to better results.
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Intersection Union
Markowitz 1.137511 1.131316
SSD 1.136667 1.148797
DJIA 1.067128 1.067128

Table 3.7: Cumulative product of return after 5 years, 60 days optimization
period

In our out of sample analysis we showed that it is possible to beat the DJIA
index using both of the approaches and our chances of performing better seem
to be positively correlated with length of the optimization window. Only with
60 days optimization period our SSD portfolio managed to catch the increasing
trend of DJIA index in years 2015 - 2018.
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Conclusion
In this work we focused on problem of portfolio optimization considering two

different approaches. In the first chapter we included basic assumptions for effi-
cient market and portfolio theory definitions that we needed for introduction of
Markowitz model. We introduced mean-variance framework and provided basic
formulations of the optimization problem. Then we present general solutions for
portfolios with short sales allowed and we included the case of risky assets and
also case with inclusion of risk free asset. In the end of the first chapter we present
alternative definitions of risk.

In the second part of the work we discussed differences between Markowitz
mean-variance model and portfolio optimization with stochastic dominance re-
strictions. We introduced definitions of different orders of stochastic dominance,
presented their attributes and discussed differences among them. We mentioned
important relationship between CV aR and second order stochastic dominance
constraint. Then we focused on simplification of our problem with assumption
of discrete distribution for return rates. Later we introduced portfolio efficiency
test based on both FSD and SSD.

In the last chapter of the work we used both of the approaches defined before
and tried to beat the performance of Dow Jones Industrial Average index. We
used 5 years of historical data during which we optimized with different optimiza-
tion periods and different sets of assets. In our out of sample analysis we provide
for comparison graphs and tables with evaluated performances. We can conclude
that with longest optimization window we managed to beat the DJIA index with
both approaches. In our in sample analysis we illustrate ratio of SSD dominating
portfolios that actually dominate also in the FSD sense and ratio of Markowitz
portfolios satisfying restrictions of SSD dominance.
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