Errata

$$
\begin{aligned}
& 6^{9}: \ldots, G: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{g} \ldots \\
& 19^{11}: 0 \in \nabla f(\bar{x})+\hat{N}_{M}(\bar{x})
\end{aligned}
$$

22^{13} : Replace the last sentence with:
"Finally, in the last case we have $g_{i_{0}}\left(x^{*}, y^{*}\right)=0, \lambda_{i_{0}}^{*}=0$, which implies

$$
\begin{aligned}
& \left(\nabla \lambda_{i_{0}}^{*} g_{i_{0}}\left(x^{*}, y^{*}\right)\right)^{T} s= \\
& \quad=\lambda_{i_{0}}^{*}\left(\nabla g_{i_{0}}\left(x^{*}, y^{*}\right)\right)^{T}\left(s_{1}, \ldots, s_{m+n}\right)+g_{i_{0}}\left(x^{*}, y^{*}\right) s_{m+n+i_{0}}=0
\end{aligned}
$$

for every $s \in \mathbb{R}^{n+m+p}$. Since i_{0} was chosen arbitrarily, we have

$$
\nabla \lambda^{* T} g\left(x^{*}, y^{*}\right)^{T}=0
$$

hence the linear independence condition of the MFCQ is violated in $\left(x^{*}, y^{*}, \lambda^{*}\right)$."
25_{1} : An original modification of the proof for the following theorem is presented.
$33^{1}: \ldots\left(x^{t}, y^{t}\right)$ is the local optimal solution...
36^{10} : Replace " y geq 0 " with " $y \geq 0$ ".
42^{16} : ...variables Z such that $\mathrm{E}|Z|^{p}<\infty$ by $\mathcal{L}_{p} \ldots$

