Errata

$$6^9$$
: ..., $G: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^g$...

19¹¹:
$$0 \in \nabla f(\overline{x}) + \hat{N}_M(\overline{x})$$

 22^{13} : Replace the last sentence with:

"Finally, in the last case we have $g_{i_0}(x^*, y^*) = 0$, $\lambda_{i_0}^* = 0$, which implies

$$(\nabla \lambda_{i_0}^* g_{i_0}(x^*, y^*))^T s =$$

$$= \lambda_{i_0}^* (\nabla g_{i_0}(x^*, y^*))^T (s_1, \dots, s_{m+n}) + g_{i_0}(x^*, y^*) s_{m+n+i_0} = 0$$

for every $s \in \mathbb{R}^{n+m+p}$. Since i_0 was chosen arbitrarily, we have

$$\nabla \lambda^{*T} g(x^*, y^*)^T = 0,$$

hence the linear independence condition of the MFCQ is violated in (x^*, y^*, λ^*) ."

25₁: An original modification of the proof for the following theorem is presented.

33¹: ... (x^t, y^t) is the local optimal solution...

36¹⁰: Replace "y geq 0" with " $y \ge 0$ ".

42¹⁶: ...variables Z such that $\mathsf{E}|Z|^p < \infty$ by \mathcal{L}_p ...