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Claims reserve volatility and bootstrap
with application on historical data
with trend in claims development

Department of Probability and Mathematical Statistics

Supervisor of the master thesis: RNDr. Michal Pešta, Ph.D.
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s trendem ve vývoji škod
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Chapter 1

Introduction

The aim of this work is to apply stochastic reserving methods to past data
with some trend presented in development of claims in order to get an estimate of
claims reserve needed to hold to cover potential losses and to investigate volatility
of this estimate. The data chosen for this work relate to personal auto paid claims
published in Zhang (2010) which are also available in R software which is used
for application part of this work.

For most sections of the theoretical part of this work more sources of infor-
mation were used which are mentioned in the text and which often use different
notation and abbreviations or the same naming of different things. So the com-
parison of the texts requires careful reading.

This work begins with a description of the chain ladder method which serves
for estimation of claims reserve needed to hold based on observed past data. The
following chapter covers generalized linear models (GLMs) which are introduced
at first in a general view together with some derivations of expressions of probabil-
ity functions of chosen distributions with their parameters from the exponential
distribution family and with an effort of linking some other stochastic methods
with this GLM framework. Then the GLMs are presented as a stochastic frame-
work for the chain ladder method providing more information about estimates
then the deterministic method alone. Other settings in GLMs are also consid-
ered which do not exactly replicate the chain ladder estimates but which are also
suitable for estimation in claims reserving.

The main section of the theoretical part is the description of reparameter-
ization involving smoothing of linear coefficients of GLM, both for origin and
development year, in order to eliminate the influence of outliers and to get esti-
mates of unobserved tail values. The main structure of reparameterization matrix
is taken from Björkwall et al. (2011) where also one type of specific reparameter-
ization for development period coefficients is recommended which involves linear
smoothing of the latest parameters. This work extends the possibility of smooth-
ing by other suitable functions. From originally considered functions even the
simplest ones are found to be sufficient with the advantage of the possibility of
using the same reparameterization principle which does not need multiple estima-
tion and so it does not increase the errors of estimates. These functions could be
more appropriate for different datasets with different shapes of included trends
then the smoothing suggested in the literature. Extrapolation of a tail of the
development period coefficients is also considered.
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Another chapter contains description of the bootstrap technique which repli-
cates the past observed triangle in new pseudotriangles which are then studied
in the same way as the original one to get a distribution of claims reserve. Some
obligations of insurance companies for holding claims reserves including Solvency
II principle are also mentioned and calculated.

In the application part most of the described theory is applied to given data
with an aim to find the best estimate of claims reserve needed to hold by an
insurance company with respect to possible trends presented in the data and to
evaluate the volatility of the results.
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Chapter 2

Chain ladder method

Insurance companies are obligated to compensate insured entities when events
of loss, specified in insurance contracts which contain a list of covered risks,
occur. Some of these claims are settled immediately but some of them not. For
these cases insurance companies must hold some financial reserves which should
cover potential losses from claims incurred in given accident years. This includes
reserves for claims which are incurred but not reported (IBNR) and reserves
for claims which are reported but not settled yet (RBNS) during the current
accounting period. Some claims need more time to be investigated and then
settled in right way. For some lines of insurance it can take even decade.

The most known and widely used approach in actuarial practice for estimating
claims reserves necessary to hold is the chain ladder method. It uses observed
past data. Fistly it was described as a purely deterministic method with the same
approach to all datasets. Then many autors suggested some stochastic models
which can reproduce the chain ladder estimates in order to have more information
about the estimates. There were attempts to find links between these models, to
give them one common framework, they were widely compared and discussed.

2.1 Form of data and notation

Let’s start with the notation which will be used throughout this work. We
assume that a dataset which consist of past observations is available. These
observations could be incurred claims, paid amounts, numbers of claims. We
have incremental data, each relevant to some original time period and some delay

accident development year
year 1 2 3 . . . I − 1 I

1 X11 X12 X13 . . . X1,I−1 X1,I

2 X21 X22 X23 . . . X2,I−1

3 X31 X32 X33 . . .
...

...
...

...
I-1 XI−1,1 XI−1,2

I XI,1

Table 2.1: Run-off triangle of incremental data which can be observed
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period which are typically years (but also quarters etc.). The original time when
the claim incurred - the origin or accident year will be denoted by i = 1, . . . , I,
the delay time when the claim was reported or settled - the development year will
be denoted by j = 1, . . . , I. The letter k will be used for calendar year, it means
k = i + j. Our dataset consists of observations up to the given calendar year
k = I +1. So we have n = I(I +1)/2 observations which can be shown in a form
of triangle {Xij; i, j ∈ ∇}, where ∇ = {(i, j); i = 1, . . . , I; j = 1, . . . , I − i + 1},
which is shown in Table 2.1.

The aim of this work is to study volatility of an estimated reserve to be held
for claims occurred in the years under review i = 1, . . . , I but not reported or
settled up to the given calendar year. An estimate of such a reserve can be
calculated as the sum of estimates of incremental data {Xij; i, j ∈ ∆} where
∆ = {(i, j); i = 2, . . . , I; j = I − i + 2, . . . , I}. This complements the original
data triangle {Xij; i, j ∈ ∇} to the form of square as shown in Table 2.2. But
this represents only ultimate claims. Also tail values for next development years
for which we have not any observations yet can be estimated.

Total reserve of ultimate claims then can be expressed by R =
∑︁

∆ Xij =∑︁I
i=2 Ri using reserves for each accident year Ri =

∑︁
j∈∆i

Xij where ∆i is the
corresponding row of the run-off triangle. The estimates of incremental claims,
accident year reserves and total reserve will be denoted by X̂ij, R̂i =

∑︁
j∈∆i

X̂ij

and R̂ =
∑︁

∆ X̂ij, respectively.
Data can also be given in a form of triangle of cumulative observations which

means that for given accident and development year incremental observations
are summed up to that development year which is denoted by Cij =

∑︁j
l=1Xil.

Cij, i = 1, . . . , I, j = 1, . . . , I represents a random variable. We have observations
of this variable for i = 1, . . . , I; j = 1, . . . , I−i+1, the cumulative run-off triangle.
The respective estimates will be denoted by Ĉij.

2.2 Deterministic approach

A basic assumption of the chain ladder method is that the development pat-
tern is the same all the time. So observing the historical development of claims is
useful for estimation of their future development. The chain ladder method uses
a cumulative run-off triangle to estimate cumulative values which complement
the original triangle to the form of square.

accident development year
year 1 2 3 . . . I − 1 I

1
2 X2,I

3 X3,I−1 X3,I
...

...
...

I-1 XI−1,3 . . . XI−1,I−1 XI−1,I

I XI,2 XI,3 . . . XI,I−1 XI,I

Table 2.2: Target triangle of incremental data which is the subject of estimation
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At first we need to estimate so called development factors which represent
the average ratios of the growth of cumulative claims in consecutive development
periods. With the chain ladder method we assume that for each accident year we
have the same development factors, only the levels of amounts of claims differ.

Ratios of cumulative claims for each accident year i and development years
j + 1 and j where the data exists are calculated by

fij = Ci,j+1/Cij, i, j ∈ ∇− {j; j + 1 /∈ ∇}.

Weighted averages are often preferred for estimation of development factors.
These averages for given development year j are calculated by

f̂j =

∑︁I−j
i=1 Ci,j+1∑︁I−j
i=1 Cij

=

∑︁I−j
i=1 Ci,j ∗ fij∑︁I−j

i=1 Cij

, j = 1, . . . , I − 1,

see Wüthrich and Merz (2008). These development factors are sometimes called
age-to-age factors or link ratios.

Claim amounts are then estimated for each accident year using the last known
value in appropriate row of the run-off triangle by

Ĉij = Ci,I−i+1f̂I−i+1f̂I−i+1 . . . f̂j−1.

Especially the estimates for the ultimate claims amounts we can get as

ĈiI = Ci,I−i+1f̂I−i+1f̂I−i+1 . . . f̂I−1

from which also the estimates of outstanding claims reserves for each accident
year

R̂i = ĈiI − Ci,I−i+1 = Ci,I−i+1(f̂I−i+1f̂I−i+1 . . . f̂I−1 − 1)

can be gained. Also other quantities like incremental claims X̂i,j = Ĉi,j − Ĉi,j−1

can be estimated.

2.3 Mack’s model

Mack’s model is one of the results of the first attempts to link the chain ladder
method to some statistical background. The main reason for that was to obtain
the standard error of the estimates and to compare it with other claims reserving
models. Mack (1993) presents the chain ladder method as a very simple and still
distribution free technique.

The first assumption is that there exist some development factors f1, . . . , fI−1 >
0 common to all accident years which multiply the cumulative values to form the
expected value in the next development year under the condition that we know
the previous ones. It means

E (Ci,j+1|Ci1, . . . , Cij) = Cijfj, 1 ≤ i ≤ I, 1 ≤ j ≤ I − 1. (2.1)

Other two implicit assumptions of Mack’s model express independence of
given data between accident years and conditional variability of cumulative claim
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amounts equal to the previous observation with lower delay multiplied by some
variance factor also common to all accident years:

{Ci1, . . . , CiI}⊥⊥ {Cl1, . . . , ClI}, i ̸= l, (2.2)

var(Ci,j+1|Ci1, . . . , Cij) = Cijσ
2
j , 1 ≤ i ≤ I, 1 ≤ j ≤ I − 1.

Let µij = E (Ci,j+1|Ci1, . . . , Cij). Development factors can be expressed as

fj =

∑︁I−j
i=1 µi,j+1∑︁I−j
i=1 µij

, j = 1, . . . , I − 1.

The chain ladder method estimates them using the observed data by

f̂j =

∑︁I−j
i=1 Ci,j+1∑︁I−j
i=1 Cij

, j = 1, . . . , I − 1.

From the first two assumptions (2.1) and (2.2) two important facts follow.
Firstly that for ultimate cumulative claims

E (CiI |Cij; i, j ∈ ∇) = Ci,I−i+1fI−i+1 · . . . · fI−1

and secondly that ĈiI = Ci,I−if̂I−if̂I−i+1 . . . f̂I−1 is its unbiased estimator (see
Mack, 1993, for proofs). Mack’s model also allows estimation of standard error.

2.4 Smoothing and tail factors

Estimates of development factors from the chain ladder method could be
smoothed according to actuary’s expert judgement. One of the reasons for
smoothing is an extrapolation to get estimates of tail factors for the development
years j = I + 1, . . . , I + u for which we do not have any observations. Various
methods can be used for this purpose. One of the common approaches used with
the chain ladder development factors is exponential smoothing. It means that we
get their estimates from linear regression modelling dependence of logarithm of
the original chain ladder estimates decreased by one on the development year j:

log (f̂j − 1) ∼ j.

Usually we decide that the first few estimates of development factors should
keep its original chain ladder value due to their different development and only
the rest of them is smoothed. We can also decide not to include the last orig-
inal estimates into smoothing procedure. The reason is that we have not many
observations to get these estimates and that they can be somehow outlying and
the development factors are not supposed to have the same character for other
accident years.
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Chapter 3

Generalized linear models

The simple deterministic chain ladder method for estimates of ultimate claims,
even with many types of estimates of standard error, may not suffice for all pur-
poses. Sometimes we need other characteristics, measures of uncertainty, quan-
tiles, value at risk etc. That is the reason why actuaries tried to find some
stochastic methods to get these estimates. Great effort has been devoted to
specifying methods which give exactly or approximately the same results as the
chain ladder method whose results seem to be useful. Generalized linear models
(GLMs) provide good basis for the chain ladder method. Detailed information
about GLMs is provided by McCullagh and Nelder (1989) or Olsson (2002) which
are used as sources of information for a large part of this chapter.

3.1 Generalized linear model

As described in Olsson (2002) generalized linear models are generalization of
general linear models. It includes also many commonly used models for counts,
proportions and other types of responses. The examples are Poisson regression,
probit or logit models, log-linear models etc. There is no need to assume normality
or homoscedasticity. We can use other distributions from the exponential family
of distributions (see the next Section 3.2). The variance is specified by a function
of the mean, which allows other cases than homoscedastic only.

Instead of modelling the expected value of the dependent variable using linear
predictor as in general linear model, in GLM we can model some function of this
mean value which is called the link function. So we need to specify three elements:

• the distribution of the dependent variable Y ,
• the link function g(·),
• the linear predictor η = Xβ.
We denote E (Y ) = µ. Our model then has the form

g(µ) = η = Xβ

where we assume a distribution from the exponential family for Y . The link
function g(·) is a monotone and differentiable function. Monotonicity is needed
because of existence of the inverse function g−1(·) which means g−1(g(µ)) = µ.
There are different link functions suitable for different types of data. The most
commonly used function is a canonical link function for which

g(µ) = θ

9



where θ is a canonical location parameter of a distribution from the exponential
distribution family (see the next Section 3.2).

3.2 Exponential distribution family

Exponential distribution family is a designation for larger group of distribu-
tions. It includes many well-known distributions like Poisson, Normal, Gamma,
Binomial, Inverse Gaussian etc. They have common form of the density function

f(y; θ, ϕ) = exp
[︁yθ − b(θ)

a(ϕ)
+ c(y, ϕ)

]︁
, (3.1)

where θ is some function of the location parameter and it is called the canonical
parameter. Parameter ϕ is called the dispersion parameter. Further a(·), b(·), c(·)
are some functions. Function a(·) is often considered as unity. Otherwise when it
is a function of a constant dispersion parameter, the group of these distributions
can be called exponential dispersion family. Function b(·) is important because
of its relationship with the mean value

E (y) = b′(θ) (3.2)

and the variance of the distribution

var(y) = a(ϕ)b′′(θ). (3.3)

So we also have a specific relationship between these two moments of the distribu-
tion. The second derivative b′′(θ) is called the variance function and is denoted by
V (µ) (a function of the mean). Relationships (3.2) and (3.3) can be proved using
maximum likelihood theory. We will use the notation ℓ(θ, ϕ; y) = log

[︁
f(y; θ, ϕ)

]︁
for the loglikelihood function. From the equation E

(︁
∂ℓ/∂θ

)︁
= 0 we get

E {[y − b′(θ)]/a(ϕ)} = 0

from which the relationship (3.2) yields. Similarly from the equation E
(︁
∂2ℓ/∂θ2

)︁
+

E
[︁(︁
∂2ℓ/∂θ2

)︁2]︁
= 0 we get

−b′′(θ)

a(ϕ)
+

var(y)

a2(ϕ)
= 0

from which the relationship (3.3) yields.

3.2.1 Normal distribution

The probability function of normal distribution for y ∈ R and µ ∈ R, σ2 > 0
can be expressed in the form of equation (3.1) as

f(y;µ, σ2) =
1√
2πσ2

exp
{︁
−(y − µ)2

2σ2

}︁
= exp

{︁
−y2 − 2yµ− µ2

2σ2
− 1

2
log (2πσ2)

}︁
= exp

{︁yµ− µ2

2

σ2
− y2

2σ2
− 1

2
log(2πσ2)

}︁
10



where E (y) = µ. Thus

θ = µ, ϕ = σ2, a(ϕ) = ϕ,

b(θ) = θ2/2, c(y;ϕ) = −[y2/ϕ+ log(2πϕ)]/2

which means the identity canonical link, the dispersion parameter σ2 and the
variance function equal to 1.

3.2.2 Poisson distribution

The probability function of Poisson distribution for y non-negative integer
and µ > 0 can be expressed in the form of equation (3.1) as

f(y;µ) =
µy

y!
e−µ = exp

{︁
y log(µ)− µ− log(y!)

}︁
where E (y) = µ. Thus

θ = log(µ), b(θ) = exp(θ), c(y;ϕ) = − log(y!), a(ϕ) = 1

which means the logarithmic canonical link and the variance function equal to
the mean.

3.2.3 Gamma distribution

The probability function of gamma distribution for y ∈ (0;∞) and β > 0,
α > 0 can be expressed in the form of equation (3.1) as

f(y; β, α) =
βα

Γ(α)
yα−1e−βy

= exp
{︁
α log(β) + (α− 1) log(y)− βy − log

[︁
Γ(α)

]︁}︁
= exp

{︁y(−β
α
)−

[︁
− log(β

α
)
]︁

α−1
+ (α− 1) log(y) + α log(α)− log

[︁
Γ(α)

]︁}︁
where E (y) = α/β. Thus

θ = −1/µ, ϕ = α−1, a(ϕ) = ϕ,

b(θ) = − log(−θ), c(y;ϕ) = (1/ϕ− 1) log(y)− log(ϕ)/ϕ− log
[︁
Γ(1/ϕ)

]︁
which means the reciprocal canonical link, the dispersion parameter α−1 and the
variance function µ2.

3.3 GLMs for claims reserving

In claims reserving GLMs are used for incremental claims data where

E (Xij) = mij, var(Xij) = ϕmp
ij (3.4)

where p is a parameter whose value determines specific type of distribution. Spe-
cific examples are described in Renshaw and Verrall (1998) or England and Verrall
(2002).
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3.3.1 Normal and Mack’s model

For p = 0 in (3.4) we get the normal distribution. With the canonical identity
link the model becomes a special case of GLMs - linear regression model.

When we reformulate original Mack’s chain ladder model as a model for ra-
tios Cij/Ci,j−1 (a model with weights Ci,j−1), we get a similar model with the
same estimates. Since no further assumptions about the distribution are made
in Mack’s model, we are limited in the way that we can estimate only the first
two moments of the reserves. Some additional distribution based assumptions
are needed in order to estimate some other characteristics of the reserves.

3.3.2 Poisson and gamma model

The over-dispered Poisson (ODP) and the gamma distributions are the most
often used distributions in claims reserving. They are obtained by setting p = 1
for the ODP or p = 2 for the gamma distribution in (3.4). Logarithmic link
function is preferred with both these distributions, even with Gamma distribution
which has different canonical link. It means

log(mij) = ηij.

Many autors have used these models but they differ in linear predictor structure.
Different types of linear predictors are presented in Section 3.5 .

3.4 Log-normal models

Some linear predictors which are used in GLMs are taken from early works
based on stochastic models underlying the chain ladder technique where log-
normal model is used. It is assumed that Xij, i, j = 1, . . . , I are independent
and

log(Xij) = ηij + ϵij,

where ηij = E
[︁
log(Xij)

]︁
and ϵij ∼ N(0, σ2) which results in

Xij ∼ LN(ηij, σ
2),

see e.g. Björkwall et al. (2011). Random variable Yij = log(Xij) with normal
distribution then can be considered in the framework of GLMs. In this case we
use identity link function and the variance as the scale parameter ϕ = σ2 so
that mij = ηij and Yij ∼ N(mij, σ

2). Some linear predictors suggested for ηij in
log-normal models are introduced in the next section.

3.5 Linear predictors in GLMs

There are numbers of linear predictors which can be useful in modelling claims
reserves. Some of the most often used predictors are described in this chapter.
They can also be modified, extended or simplified.
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3.5.1 Chain ladder linear predictor

One of the first suggestions for linear predictors used with GLMs (and previ-
ously with log-normal models) was

ηij = c+ αi + βj. (3.5)

This is very useful when we want to get the chain ladder estimates and at the
same time to obtain more stochastic information than using the deterministic
approach. For the Poisson distribution (p = 1 in (3.4)) this log-linear model
gives exactly the same estimates as the original chain ladder method, for the
gamma distribution (p = 2 in (3.4)) the estimates are mostly really close.

3.5.2 Chain ladder with calendar year parameter

The chain ladder linear predictor can be extended by calendar year parameter

ηij = c+ αi + βj + γk, k = 2, . . . , 2k. (3.6)

Usually some constraints are imposed on the parameters because there is a large
number of them while we consider only a small number of data. In this example it
could be α1 = β1 = γ2 = 0. The log-linear model with this predictor is described
in Björkwall et al. (2011).

3.5.3 Hoerl curve

Another well-known linear predictor is the Hoerl curve which has the form

ηij = c+ αi + βi log(j) + γij.

It can be rewritten on the untransformed scale by

exp(ηij) = Aij
βieγij

where Ai = exp(c+αi). In order to estimate also the tail factors we assume that
the development time j is a continuous covariate. We can simplify the model
by taking only one parameter β and one parameter γ for all origin years which
means we suppose that there is always the same pattern for the development of
claims for each accident year. We can also leave the first few values and use this
model for the development years j > c for some c > 1.

3.5.4 Wright’s model

T. S. Wright suggested the model where Xij is the sum of Nij independent
claims whose values are Zij. This model can be reparameterized as GLM for
incremental claims where

E (Xij) = mij = exp{uij + c+ αi + βi log(j) + γij + δk},
var(Xij) = ϕijmij.

It is often assumed that ϕij = ϕ. With the logarithmic link function we have

log(mij) = ηij, ηij = uij + c+ αi + βi log(j) + γij + δk.

In some sense it is an extension of the Hoerl curve by two elements: known
uij terms representing technical adjustments and optional δk term for modelling
possible claims inflation.
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3.6 Smoothing

As in the case of deterministic methods, also with GLMs we can use smoothing
and extrapolation in order to get an extra information about a tail or in order
to find possible trends. Björkwall et al. (2011) presented GLMs with log-linear
smoothing effects where the actuary may choose which parameters should be
smoothed, how many of them are included in the smoothing procedure or how
far to extrapolate. Also other smoothing functions then their suggestions are
used in this work with the same reparameterization principle.

3.6.1 Reparameterization

In this section a reparameterization for GLMs expressed by (3.4) with log-
link function given by (3.6) introduced in Björkwall et al. (2011) which allows
for inclusion of smoothing of parameters into model selection is presented. We
suppose using of constraints α1 = β1 = γ2 = 0. Then other parameters could be
reparameterized by

α⊤ = (α2 . . . αI) = (a1 . . . aq)

⎛⎜⎝A12 . . . A1I
...

...
...

Aq2 . . . AqI

⎞⎟⎠ = a⊤A,

β⊤ = (β2 . . . βI) = (b1 . . . br)

⎛⎜⎝B12 . . . B1I
...

...
...

Br2 . . . BrI

⎞⎟⎠ = b⊤B,

γ⊤ = (γ3 . . . γI+1) = (g1 . . . gs)

⎛⎜⎝Γ13 . . . Γ1,I+1
...

...
...

Γs3 . . . Γs,I+1

⎞⎟⎠ = g⊤Γ,

where 0 ≤ q, r, s ≤ I − 1. Using matrices A,B and Γ we create a new matrix

D =

⎛⎜⎜⎝
1 0T 0T 0T

0 A 0 0
0 0 B 0
0 0 0 Γ

⎞⎟⎟⎠
⊤

(3.7)

which dimension is v∗w where v = 3I−2 is the number of original parameters and
w = 1+q+r+s is the number of new parameters. Using this new parameterization
η can be expressed by

η = (η11 . . . η1I η21 . . . η2,I−1 . . . ηI1)
⊤ = X∗ θ∗ = X∗(c α β γ)T = X∗ D θ = X θ

where X∗ θ∗ denotes the original linear predictor and X θ the reparameterized
one.

The full GLM can be obtained with q = r = s = I−1 which means that there
is no smoothing and A = B = Γ = I are identity matrices.
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3.6.2 Log-linear smoothing with simple functions

Elements of matrices A, B and Γ could be some functions of origin, devel-
opment or calendar period respectively and also of the parameters q, r or s. In
this section simple functions of time are considered. The simplest case is when
the parameters q, r or s are set to one and the corresponding matrix has the
form

(︁
1 . . . I

)︁
. Other reparameterizations considered in this work involve the

parameters set to 2 and the matrices of type(︃
1 . . . I

f(1) . . . f(I)

)︃
, (3.8)

where f(i), i = 1, . . . , I is a simple function, e.g. 1/i, exp(i), log(i),
√
i, il, l ∈ R

and others. This might be improved by keeping the first few original parameters
unchanged and smoothing only the rest of them. It means to increase the value
of q, r or s and to use a matrix e.g.⎛⎜⎜⎜⎜⎝

1 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 4 . . . I
0 0 0 f(4) . . . f(I)

⎞⎟⎟⎟⎟⎠ . (3.9)

3.6.3 Log-linear smoothing with linear functions

Björkwall et al. (2011) suggested the reparameterization with curves

αi = ai−1, 2 ≤ i ≤ q,
αi = aq−1 + aq(i− q), q + 1 ≤ i ≤ I,
βj = bj−1, 2 ≤ j ≤ r,
βj = br−1 + br(j − r), r + 1 ≤ j ≤ I,
γk = gk−1, 2 ≤ k ≤ s,
γk = gs−1 + gs(k − s), s+ 1 ≤ k ≤ I

(3.10)

where we choose the amount of smoothing in the model selection through the
values of q, r, s for which we have 1 ≤ q, r, s ≤ I − 1. For q = 1, r = 1 or s = 1
we define a0 = 0, b0 = 0 or g0 = 0. Matrices A, B or Γ then can have the form⎛⎜⎜⎜⎜⎝

1 0 0 0 0 . . . 0
0 1 0 0 0 . . . 0
0 0 1 0 0 . . . 0
0 0 0 1 1 . . . 1
0 0 0 0 1 . . . I − z

⎞⎟⎟⎟⎟⎠ , (3.11)

where z denotes one of the parameters q, r or s.
We can also try to find a reparameterization which is connected to the chain

ladder development factors. We know that for the ODP distribution (p = 1 in
(3.4)) with the log-link function and the linear predictor expressed by (3.5) we
get exactly the same estimates as using the deterministic chain ladder model. So
in the reparameterization of this model we do not have parameters for calendar
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year meaning s = 0 and Γ = 0. Theoretical development factors

fj =

∑︁I−j
i=1 µi,j+1∑︁I−j
i=1 µij

=

∑︁I−j
i=1

∑︁j+1
j=1 mil∑︁I−j

i=1

∑︁j
j=1 mil

, j = 1, . . . , I − 1

can be estimated by

f̂j =

∑︁I−j
i=1

∑︁j+1
j=1 m̂il∑︁I−j

i=1

∑︁j
j=1 m̂il

, j = 1, . . . , I − 1

which for q = r = I−1 give the same results as the chain ladder estimates. When
we let r to be 1 ≤ r < I − 1 we allow for some smoothing as in Section 2.4.

3.7 Model selection

3.7.1 Selection of the underlying distribution

The type of the underlying distribution for GLMs is connected with the pa-
rameter p in (3.4). It can take any value, even non-integer one. Three special
cases, p = 0, 1 or 2 representing Normal, Poisson or Gamma distribution, are
described in Section 3.3. We should use residual analysis to choose between these
models.

Parameter p can also be estimated in order to find the most appropriate model
for given data. For that we need adjusted unstandardized residuals defined by

radjij =

√︃
n

n− q
(Cij − m̂ij).

The mean of this value squared can be expressed by

E (r2ij) =
n

n− q
E
[︁
(Cij − m̂ij)

2
]︁
=

n

n− q
E
[︁
(Cij − Ê (Cij))

2
]︁
.

Thus from that and from the expression for the variance var(Cij) = ϕmp
ij we have

the approximate relationship

E (r2ij) ≈ var(Cij).

Then we can find the suitable value of parameter p minimizing

f(p, ϕ) =
∑︂
i,j

wij(r
2
ij − ϕm̂p

ij)
2 (3.12)

with respect to p and ϕ, where wij are weights often considered to be equal to
1. This method is useful just to determine suitable parameter p. Dispersion
parameter ϕ is then estimated using defined parameter p together with other
parameters from the model. Residual analysis is recommended to make sure we
select the right model.
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3.7.2 Selection of truncation points for smoothing of the
estimates

When using deterministic methods to estimate development factors and re-
serves, truncation points, i.e. numbers of first non-smoothed parameters, are
chosen by an actuary by eye from the graph or with the help of some additional
information. In stochastic models we can use some model selection criterion
which can help us to choose truncation points from various possible candidates.
Typically we choose the values q, r and s as the argument of minimal value of
some criterion which means

(q̂, r̂, ŝ) = argmin(q,r,s)∈JCrit(θ̂qrs)

for θ̂qrs estimated with fixed (q, r, s) in the given model where J is the set of all
the triads (q, r, s) considered with given data. The example of the set J is

J = {(I − 2, 1, 0), . . . , (I − 2, I − 1, 0), (I − 1, 1, 0), . . . , (I − 1, I − 1, 0)}

which represents the model without calendar year effect where the last accident
year parameter can be linearly interpolated from the previous two with a possibil-
ity of smoothing the development year parameters with a choice of any truncation
point.

There exist several criteria from which we can choose. The aim is to find
a good and useful model without the necessity of having very large model with
many parameters. When we use likelihood functions a good choice can be made
with information criteria. Different ways of penalization of too complex model is
shown by Akaike’s and Bayesian information criteria which are defined by

AIC(θ̂qrs) = 2w − 2ℓ(θ̂qrs),

BIC(θ̂qrs) = log (n) w − 2ℓ(θ̂qrs)

where w = 1 + q + r + s is the number of parameters in the reparameterized
model and n = I(I + 1)/2 is the number of observations for the reminder. The
expression ℓ(θ̂qrs) denotes the maximum of log-likelihood function when using
(q, r, s).

Another way of finding suitable values could be the mean squared error of
prediction (MSEP):

E
[︁
(R− R̂)2

]︁
= E

[︁
((R− E [R])− (R̂− E [R]))2

]︁
≈ E

[︁
((R− E [R])− (R̂− E [R̂]))2

]︁
= E

[︁
(R− E [R])2

]︁
− 2E

[︁
(R− E [R])(R̂− E [R̂])

]︁
+E

[︁
(R̂− E [R̂])2

]︁
≈ E

[︁
(R− E [R])2

]︁
+ E

[︁
(R̂− E [R̂])2

]︁
= var[R] + var[R̂],

where the first approximation comes from replacing of R by R̂ and the second
one holds when future observations are independent of past observations, see
England and Verrall (2002), which represents the sum of the process variance
and the estimation variance.
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The root mean squared error of prediction (RMSEP)
√︂

E
[︁
(R− R̂)2

]︁
can also

be calculated as the standard deviation of the full predictive distribution when
it is obtained. Bootstrap method can be used to achieve this distribution. And
we can replace R̂ by the bootstrap estimate of claims reserve calculated from
the bootstrapped pseudotriangles of past claims R̂∗ and also R by the bootstrap
value of future reserve R∗∗, see chapter 4 for explanation of bootstrap method.
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Chapter 4

Bootstrap

Bootstrapping is a method which uses simulations to estimate some charac-
teristics, relations or even to approximate the whole distribution of an estimate.
A single sample of data suffice to get desired results. It uses a large number
of simulations to create a pseudoreality with sets of pseudodata with the same
underlying distribution as the original one. In this bootstrap world desired char-
acteristics or relations for each pseudodata are studied and their distributions are
found and it is assumed that the results achieved there can be applied to similar
characteristics or relations from the real world represented by the observed data.

This approach is computer intensive but still simple. It is used especially in
cases where the results cannot be achieved analytically, analytical computation is
very difficult or tedious or the assumptions made are questionable. Bootstrapping
is suited for situations when we do not have any idea about a model suitable for
our data or when we have a model but it is too complex and we do not want to
oversimplify it or even when the model is simple just to check the results. It can
be helpful when we want to relax some assumptions or to find out how robust the
conclusions of analysis using our model are or whether the approximations used
are valid. This is a quick way to get approximate solutions.

As in Björkwall et al. (2009) we use the notation with star ⋆ to denote vari-
ables in the bootstrap world distributed according to the fitted distribution or
estimators derived from them when there are observations or estimates in the real
world which can be substituted by these bootstrap counterparts. Notation with
two stars ⋆⋆ will denote variables in the bootstrap world for which we do not have
any corresponding observations in the real world.

4.1 Types and approaches

Bootstrapping is widely used and therefore we can find many modifications
of this method. Basic types and approaches are presented here. More detailed
description of some of their combinations for clustered data can be found in Field
and Welsh (2007) together with properties of some estimates.

4.1.1 Paired vs. residual bootstrap

Basically there are two types of bootstrap: paired bootstrap and residual
bootstrap, both with many adjustments. In the first case we resample the obser-
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vations to make inference about them. In the second case we use the residuals of
the model applied to the data for resampling process. In both cases we assume
that the sample for bootstrapping contains observed values of independent and
identically distributed random variables.

4.1.2 Parametric vs. nonparametric bootstrap

There are two approaches: parametric and nonparametric. In the first case we
can specify a probability model for the data, in the second case it is not possible
or desirable. In the parametric analysis we work with a distribution for the data
which is determined by appropriate parameters. The nonparametric analysis uses
the data directly through the empirical distribution. The empirical distribution
function (EDF) for a random variable y is defined by

F̂ (y) =
1

n

n∑︂
j=1

I{yj ≤ y},

which means that all sample elements have the probability n−1. So unless some
value occurs in the sample multiple times it has the same probability as other
values.

A big attention must be held to outliers in the case of nonparametric boot-
strap, because if we do not omit them, they are used in the simulated sample with
the same probability as other values and especially when they are used repeat-
edly, they can greatly influence the approximate distribution. We should omit
them from the simulation or smooth the original sample to reduce their impact.

4.2 Approximations

Relationship between the real world and the bootstrap world is described in
Davison and Hinkley (1997). Generally considering a sample y1, . . . , yn which
comes from independent and identically distributed random variables Y1, . . . , Yn

we are interested in some population characteristic presented by parameter θ.
This parameter is investigated through a statistic T . For example the inference
about the mean of a distribution θ = µ is made through the sample average
T = 1

n

∑︁n
j=1 Yj = Ȳ . For this statistic we have an observed value t from the

observed sample y1, . . . , yn, in the case of the mean we have t = 1
n

∑︁n
j=1 yj = ȳ.

This value is in fact calculated from the EDF.
We describe the relationship between the characteristic θ and the population

distribution using the relationship between its estimate t from the observed data
and a fitted distribution, either EDF or cumulative distribution function (CDF)
with estimated parameters. When a fitted distribution converges to the popula-
tion distribution for increasing number of observations, n → ∞, also the statistic
T converges to characteristic θ from the property of consistency, unless t does not
converge to t for n → ∞.

When using bootstrapping we resample from the fitted distribution, either
EDF or CDF with estimated parameters. We want to get Y ⋆

1 , . . . , Y
⋆
n with inde-

pendent variables. From simulated data we then calculate the statistic T ⋆. After
B simulations we have B values T ⋆

1 , . . . , T
⋆
B whose relationship with t we can use
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to infer about properties of the relationship between T and θ. Through this pro-
cedure we will get approximate values which converge to the exact values with B
increasing from the law of large numbers.

If we want to approximate distribution or quantiles of this distribution we
use ordered values of the desired statistic calculated from B simulation samples.
When we draw these values we can see the approximate distribution.

4.3 Bootstrapping in claims reserving

At first we need to find an appropriate type of bootstrap for claims reserv-
ing. Bootstrapping requires independent and identically distributed observations
for the resampling proces. Thus the paired bootstrap is not suitable for claims
reserving because although the data are supposed to be independent we assume
that the parameters of the distribution depend on the model covariates.

Therefore we work with the residual bootstrap in claims reserving which is
based on some model for the data, usually GLM or some other model, often con-
nected with the chain ladder estimates. Residuals are assumed to be independent
and in some cases also identically distributed. When they are not, they can be
adjusted to have approximately the same distribution. Various types of residuals
used in actuarial literature are presented in Section 4.5.

4.4 The bootstrap process

The process of bootstrapping for claims reserving is described here. We have
a data in a form of the triangle as in Table 2.1. We fit the GLM (or possibly
other model) to the data so we get the fitted values. Using these values, the data
and possibly other values connected with the model (see the next section) we can
calculate the residuals needed for the resampling process.

Then we resample the residuals with replacement B times so we get B simu-
lated triangle sets of residuals where B is specified with respect to the subject of
investigation. When the aim is to get an approximate distribution of an estimate
B must be much bigger to get results with sufficient precision, e.g. B = 10000,
than in the case of investigating just the mean value or some other statistics, e.g
B = 1000 should be enough in that case.

From these simulated residual sets we calculate the simulated sets of past
claims. For each bootstrap past triangle we use the same form of GLM as in the
case of original data again to get to the bootstrap triangle of predicted future
values from which the bootstrap reserve estimates are calculated. Desired statis-
tics are obtained from this set of B reserve estimates whose ordered values make
also the predictive distribution.

4.5 Residuals

There are several types of residuals which were used for residual bootstrap
in the context of claims reserving. The most common ones are the Pearson
residuals, clearly because they are well-known. But many autors tried to use
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also other different types of residuals like the deviance residuals or the Anscombe
residuals. Some types of standardizations or adjustments are also recommended.

4.5.1 Pearson residuals

Using the notation from previous chapters, the Pearson residuals are defined
by

rPij =
Cij − µ̂ij√︁
V (µ̂ij)

.

But these residuals have generally different variances so we need some adjust-
ments to make them approximately equally distributed. There was suggested
multiplying by a correction factor

rPadj
ij =

√︃
n

n− p
rij

or the standardization using the hat matrix

rPstand
ij =

rij√︂
ϕ̂(1− hij)

, (4.1)

where hij is an element of the hat matrix H which is given for GLMs by

H = X(XTWX)−1XTW .

Here X is the model matrix of GLM and W is the diagonal matrix with

wii =
(︁
V (µij)

(︁∂ηij
∂µij

)︁2)︁−1

on the diagonal which can be rewritten by

wii = µ2−p
i

with p = 1 for the ODP and p = 2 for the gamma model (see Pinheiro et al.
(2003)).

4.5.2 Deviance residuals

As mentioned in Hartl (2010) the standardized Pearson residuals have a distri-
bution with the mean value equal to zero which means that there are lots of neg-
ative residuals which may cause also negative values in created pseudo-triangles
of past claims. Especially for small expected values of these claims negative val-
ues are almost guaranteed in each pseudo-triangle which is inconsistent with our
assumptions.

Therefore the deviance residuals could be used instead of the Pearsons resid-
uals. Their use is appropriate in some cases where the Pearson residuals make
negative values in expected claims, but it does not work in all cases. They are
defined by

rDij = sign(y − ŷ) ∗

√︄
2

∫︂ y

ŷ

y − t

V (t)
dt.

Nevertheless this function has not a simply expressible inverse. A numerical
approach to find this inverse for a special case of a distribution with identity
variance function is described in Hartl (2010).
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4.5.3 Anscombe residuals

As noted in Tee et al. (2017) another good choice of residuals could be the
Anscombe residuals which can avoid the skewness of the distribution of Pearson
residuals in non-normal cases which then do not have required properties. The
Anscombe residuals work with a transformation A(Cij) of the variable Cij in-
stead of this variable itself. This transformation tries to create a variable with a
distribution close to normal one. For GLM the Anscombe residuals are defined
by

rAij =
A(Cij)− A(µ̂ij)

A′(µ̂ij)
√︁
V (µ̂ij)

.

For the case of Poisson distribution we have

rAodp
ij =

3
2

(︁
C

2
3
ij − µ̂

2
3
ij

)︁
µ̂

1
6
ij

.

and for the gamma distribution it is

rAg
ij = 3

(︁(︁Cij

µ̂ij

)︁ 1
3 − 1

)︁
.
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Chapter 5

Regulatory requirements

5.1 Solvency II

In 2009, European parliament and council have issued the Directive on the
taking-up and pursuit of the business of Insurance and Reinsurance called Sol-
vency II which all insurance and reinsurance companies operating in EU are
required to follow. It defines own funds that insurance companies are obligated
to hold in order to cover the Solvency Capital Requirement (SCR) for facing the
risks. All possible quantifiable risks together with correlation coefficients have
to be considered in the calculation of SCR, see Ohlsson and Lauzeningks (2009),
AISAM-ACME (2007).

For each module Value-at-Risk (VaR) measure with a 99,5% confidence level
over a one-year period has to be used but the way of obtaining the probability
distribution is not specifically given, see The European Parliament and the Coun-
cil of the European Union (2009). This one year period is a big change from the
previous ultimate point of view. That is why previously used methods had to be
modified or replaced by new ones in order to meet this requirement.

SCR is calculated as VaR of Claims development result (CDR) on a confidence
level of 99.5%. As presented in Merz and Wüthrich (2008) CDR at time I + 1
can be estimated for each accident year i ∈ {1, . . . , I} by

̂CDRi(I + 1) = R̂I+1
i − (Xi,I−i+2 + R̂I+2

i ) = ĈI+1
i,I+u − ĈI+2

i,I+u, (5.1)

where upper indexes denote the year of calculation.

5.2 Modifications of bootstrap procedure for one

year view

As already said, Solvency II specifies new time horizon for calculation of cap-
ital requirements which is one year. A possibility how to meet this requirement
is modification of previously used methods in ultimate time horizon. There are
two types of modifications of the bootstrap method presented in Boisseau (2006)
and Boumezoued et al. (2011). The first one is more intuitive, the second one
has some advantages in reducing errors.
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5.2.1 First modification

One possible modification of the bootstrap procedure to meet the requirement
of one year horizon is to use more steps in each bootstrap loop: firstly to create
new subdiagonal of the starting triangle only, then to predict the next develop-
ment. Using this we get the elements of definition of observable CDR: an estimate
of claims reserves et time I + 1 (the beginning of the year), estimate of future
payments in the next year and an estimate of claims reserve at time I + 2 (the
end of the year I + 1).

Firstly we fit a GLM to the run-off triangle to get the estimates of parameters
from which we obtain the estimates of the claims reserve at time I + 1 and
we also calculate the residuals of the model. Then we resample these residuals
with replacement B times to get B simulated triangles of residuals which we
use for calculation of pseudo-triangles of past claims. For each such triangle
we fit the GLM again in order to construct the subdiagonal of expected claims
µ∗
ij, i+ j = I + 2. Incremental payments are generated using these values as the

mean values of the distributions with the variances defined by ϕ̂(µ∗
ij)

p.
Then the whole trapezoids (the triangles and the subdiagonals) are used in

GLM fitting to get new estimates of parameters for calculation of new expected
values of claims for the rest of the development. Then the sums are obtained
representing the estimates of claims reserve at time I + 2.

5.2.2 Second modification

The first method uses GLM two times in each bootstrap loop which causes
very high estimation error. Thus also other modification of the bootstrap proce-
dure with GLMs was developed for one year horizon which tries not to increase
the estimation error where it is not necessary. Another limitation of the first
method is also the dependency of the subdiagonal on the upper triangle. So the
random variables on the trapezoid used in GLM are not independent. The second
approach tries to improve this too.

The biggest change compared to the first approach is that after the estimation
of GLM parameters of the past triangle we resample the residuals B times on
the whole trapezoid, meaning the upper triangle and the subdiagonal. From
that we can calculate an estimate of claims reserve at time I + 1 and moreover
the future payments in the next year. Than the GLM is used to estimate new
parameters needed for calculation of an estimate of claims reserve at time I + 2.
So we have used the resampling and the GLM in each iteration of the bootstrap
only once which does not increase the estimation error and which does not create
dependencies in pseudo-data used for estimation.
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Chapter 6

Application

The theory described in previous chapters was applied to a data set and
the results together with some description are presented in this chapter. All
calculations have been made in R software and all graphical illustrations shown
here are also outputs from this program.

6.1 Data

Data chosen for this study is originally from Zhang (2010). The advantage is
that this data is a component of an R package called ChainLadder so it is freely
available in the software used for calculations and anyone can used it again in
the same form without any changes. From three available run off triangles the
triangle of paid losses in personal auto insurance is chosen (see Table 6.1). The
data is suitable for this work because it contains some trends in development and
accident periods as will be shown and studied in subsequent sections.

6.2 GLM

Firstly GLM was applied to given data. Logarithmic link function was used
which is preferred for claims reserving. The chain ladder linear predictor (3.5)
was chosen for its frequent use and assumed sufficiency. It means the model

log[E (Cij)] = c+ αi + βj

for i, j ∈ ∇ with condition α1 = β1 = 0 was estimated. Only two values p = 1 and
p = 2, which are the most frequently used in claims reserving, were considered for
the model specification in (3.4). From these two possibilities the first one seems to
be better. It was concluded from residual graphs where the standardized Pearson
residuals (4.1) are plotted against fitted values and origin and development period.
These plots are shown at this work only for p = 1 (see Figure 6.1). Here the
residuals are more homoscedastic and more or less evenly distributed around
zero. Another reason for choosing the ODP distribution is lower value of the
function (3.12) with equal weights, where lower value should be preferred for
estimation of p.

From now on only the case of p = 1 is considered. Estimated total reserve
calculated as the sum of expected future claims from the model with mentioned
setting is written in Table 6.3 for comparison with other results.
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6.3 Smoothing of the parameters

Estimated coefficients for original and development period can be smoothed
and in the case of development period also extrapolated to get a tail values of
expected claims. Two possibilities of smoothing of the model coefficients are
considered here.

6.3.1 Simple functions

The first possibility for smoothing is to use some simple functions fα(x) and
fβ(x) in models

E αi = a0 + a1 ∗ i+ a2 ∗ fα(i),

E βj = b0 + b1 ∗ j + b2 ∗ fβ(j).

Different types of functions were tried to smooth the particular coefficients al-
pha or beta, see the Figure 6.2. For the origin period coefficients we are not
interested in extrapolation and prediction of a tail so we prefer just the best fit
of existing values. Three of the smoothing curves of the coefficients alpha have
almost identical shape. They include the logarithm, the reciprocal function and
the square root. For these three fits the residual standard errors do not differ
till the fourth position after the decimal point. The lowest value is found for the
reciprocal function, but it can be expected that other conditions like smoothing
the beta coefficients will have greater influence on the final results and volatility.

In the case of the development period coefficients we are interested in smooth-
ing especially the latest development years, in extrapolation and tail prediction.
The coefficients corresponding to the first development years may be kept un-
changed since they can have different development then the rest of the parameters
and their estimates are based on more observations so they are not so affected
by outliers. The same functions as in the case of the coefficients alpha were tried
to smooth these parameters, see Figure 6.3. It can be seen that there is no break
or deviation even for the first years. But when comparing the plots with dif-
ferent numbers of unchanged coefficients, subjectively the best choice is to keep
estimates for the first three or four development years. Smoothing with the first
three coefficients unchanged is shown in Figure 6.3. Other possibilities mean too
heavy or on the contrary almost no tail. Options with the reciprocal function,
the logarithm and the square root are again very similar which is also proved
by similar values of the standard error of prediction for future five development
years. These values prefer the reciprocal function again but we will focus again
more on the volatility of final results.

6.3.2 Linear functions

The second possibility for smoothing used in this work is the reparameteriza-
tion described in Björkwall et al. (2011) and contained in Chapter 3.6.3 of this
work. Different options of numbers of unchanged first coefficients were tried for
both alpha and beta coefficients. It does not seem very meaningful to smooth a
greater number of original period parameters with a linear line since this curve
does not seem to smooth the data very well. A better option is to choose larger
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Figure 6.1: GLM Residual plots
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Figure 6.2: Smoothing of alpha coefficients using simple functions
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Figure 6.3: Smoothing of beta coefficients using simple functions with extrapola-
tion

number of the parameter q in order to keep more coefficients unchanged, see Fig-
ure 6.4 where the model with the same smoothing of development coefficients was
used with the number of unchanged coefficients r chosen to be the middle value
of possible ones.

For the development coefficients it may makes much more sense to use linear
functions to smooth the latest values and to extrapolate into the tail. For our
data the parameters seem to decrease linearly, see Figure 6.5 with q for estimation
of alpha coefficients chosen to be the middle value of possible ones. These lines
provide a good fit for estimated coefficients except the last one, which might
be seen as an outlier since we have only one observation for estimation of this
parameter. Subjectively larger values of r should be preferred. The choice of over-
dispersed Poisson distribution makes it impossible to use information criterions
like AIC. The choice of the most appropriate reparameterization can be based on
bootstrap estimation of mean squared error of prediction, see Section 3.7.2.

6.3.3 Reparameterization

For reparameterized GLM we need a matrix D defined by (3.7), where ma-
trices A and B can be given by (3.11) or (3.8) or matrix B even by (3.9). This
matrix D is used in calculation of a new model matrix from the old one by

X = X∗ D. (6.1)

More possible choices of reparameterizations of both original and development
coefficients were tried given the conclusions from the previous section. Then the
final model was chosen with respect to the overall results from bootstrapping
meaning especially the volatility of estimated reserve.
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Figure 6.4: Smoothing of alpha coefficients using linear functions
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When focusing only on linear functions for smoothing of both sets of coeffi-
cient, r = 4 or 7 should be preferred for the development period coefficients as
well as q = 1, 3 or 8 for the origin period coefficients with respect to volatility
of final results. It includes also smaller values of q which was not expected. But
these model produce too large MSEP and it is better to choose at least one set of
coefficients to be smoothed by other simple functions. It turned out that the re-
ciprocal function is really the best possibility for smoothing of the original period
coefficients, as it was assumed earlier. For the development period coefficients
the logarithm seems to be the best with respect to the volatility of estimated
total reserve. MSEP connected with these models are much better. The best
reparameterization of all which were considered in this work was obtained with
the combination of the reciprocal function for smoothing alpha coefficients and
the logarithm for smoothing beta coefficients with the first three original ones
(with five extrapolated tail values) which means we use the matrices

A =

(︃
1 . . . I
1 . . . 1/I

)︃
,

B =

⎛⎜⎜⎝
1 0 . . . 0
0 1 0 . . . 0
0 0 4 . . . 15
0 0 log(4) . . . log(15)

⎞⎟⎟⎠ .

6.4 Reparameterized GLM

New GLM with new model matrix reparameterized by equation (6.1) was ap-
plied to original data with other settings being the same as in the original model,
it means with the logarithmic link function, the chain ladder linear predictor and
p = 1 which was concluded as better choice with the first model estimation. Only
one other change is inclusion of the next five development years into estimation
in order to get results for unobserved tail. Expected claims for all origin and
development years are presented in Table 6.2 for comparison with original data.
The estimates of the mean reserve with and without the tail values (for bet-
ter comparison with previous result) are written in Table 6.3. New plots of the
standardized Pearson residuals against fitted values and origin and development
period do not show any strong violations from requirements (see Figure 6.6) so
the model is accepted as suitable for given data.

6.5 Bootstrapping

Residual bootstrap was used to obtain predictive distribution of claims re-
serve. The most common standardized Pearson residuals were chosen for this
purpose. Standardization presented in equation (4.1) may cause a problem with
non-positive values in bootstrapped pseudotriangles of past claims for which we
can not use the logarithmic link function. This issue is solved by setting the
value 1 instead of these values. For our data these issues do not occur very often
and absolute values of these cases are not so high (it happens often on places of

32



0 20000 40000 60000 80000 100000 120000

−2
0

0
20

40

Fitted values
St

an
da

rd
iz

ed
 re

si
du

al
s

2 4 6 8 10

−2
0

0
20

40

Origin period

St
an

da
rd

iz
ed

 re
si

du
al

s

2 4 6 8 10
−2

0
0

20
40

Development period

St
an

da
rd

iz
ed

 re
si

du
al

s

Residual plots

Figure 6.6: Reparameterized GLM Residual plots

lower values in the run-off triangle) so it does not increase the expected reserve
so significantly like non-standardized residuals decrease it.

We need to obtain a full predictive distribution in order to get the standard
deviation as an estimate of MSEP as a measure of volatility and in order to
get VaR. That is the reason why higher number of bootstrap iterations was used,
specifically B = 10000. The value of expected claims reserve is presented together
with other earlier mentioned estimates in Table 6.3 and also together with some
characteristics of this estimate in Table 6.4. The histogram and the EDF of claims
reserve are plotted in Figure 6.7.

Original 624246.8
Reparameterized 640930.7
Rep. with a tail 644227.9
Bootstrap mean 644524.1

Table 6.3: Expected claims reserve

6.6 Solvency capital requirement

SCR is calculated as VaR on 99.5% level of CDR defined by (5.1). The second
modification of bootstrap method for one year view described in Section 5.2.2 was
chosen for estimation of CDR due to its better properties. The non-standardized
Pearson residuals were used for residual bootstrap since we do not have any
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min 579940.5
1st kv. 631769.0
mean 644524.1
3rd kv. 656747.5
VaR(0.995) 691032.4
max 716828.0
sd 18280.5

Table 6.4: Estimated claims reserve characterictics
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Figure 6.7: Histogram and EDF of claims reserve

values of the hat matrix for the cases on the subdiagonal. Number B = 10000
of bootstrap replicates was used in order to get predictive distribution which is
plotted in Figure 6.8 together with the histogram of bootstrapped values which
is very symmetric. Some characteristics of the predictive distribution are also
shown in Table 6.5. SCR is equal to 111389.8.
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Figure 6.8: Histogram and EDF of CDR

min -179896.4
1st kv. -33390.4
mean -3739.7
3rd kv. 26978.0
VaR(0.995) 111389.8
max 163649.7
sd 45842.6

Table 6.5: Estimated CDR characterictics
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Chapter 7

Conclusion

The theory of the chain ladder method, GLMs and bootstrap method was
summarized from different sources of information in this work together with some
simple derivations for a purpose of its use in calculation of the best estimate of
funds needed to hold by an insurance company to cover the risks. The data used
here represent personal auto paid claims published in Zhang (2010) and available
in R software. This dataset contains trends in claims development which was
investigated too.

The over-dispersed Poisson distribution was chosen as the underlying distribu-
tion of given data based on comparison of residual graphs and calculated values of
a function convenient for this comparison. Then the GLM with origin and devel-
opment years as predictors, which in combination with chosen distribution gives
the same estimates as the chain ladder method, was used to calculate expected
future claims. Then the estimates of parameters, both for origin and development
years, were smoothed in order to reduce the impact of outliers in the years with
small numbers of observations and also to estimate the tail values of development
period without any observations.

Reparameterization used in Björkwall et al. (2011) was used together with
suggestions described there and also with other possible smoothing functions
suitable for the data presented in this thesis. It turned out that the best model
with respect to standard deviation of estimated reserve includes smoothing of
the origin period coefficients using the reciprocal function and the development
period coefficient using the logarithm with the first three original coefficients.
Extrapolation of a tail of other five development years was included too.

Residual bootstrap with 10000 of replicates was used to obtain the predictive
distribution of future claims together with standard deviation as a measure of
volatility which was compared with other considered models. The 99.5-quantile
was calculated as the estimate of own funds for covering potential losses. The
bootstrap method was also extended to make it possible to estimate the claims
development result with its predictive distribution and to calculate solvency cap-
ital requirement according to Solvency II requirements that came with one year
view on reserving risk.

The results were presented in the form of tables and figures as outputs from
the R software where all calculations were made. Some functions predefined in
the software were used but some of them needed necessary adjustments or re-
programming for this particular problem and a large part of them especially for
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smoothing purposes and searching for predictive distribution of claims develop-
ment result was defined as new functions. The best model according to used
criteria and sometimes also according to subjective decisions was found which
results should be suitable for managing the reserving risk.
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