
MASTER THESIS

Filip Klimovič

Terahertz Radiation in Nanostructures

Department of Chemical Physics and Optics

Supervisor of the master thesis: doc. RNDr. Tomáš Ostatnický, Ph.D.
Study programme: Physics

Study branch: Optics and Optoelectronics

Prague 2019



I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In Prague on 3 January 2019 signature of the author

i



Title: Terahertz Radiation in Nanostructures

Author: Filip Klimovič

Department: Department of Chemical Physics and Optics

Supervisor: doc. RNDr. Tomáš Ostatnický, Ph.D., Department of Chemical
Physics and Optics

Abstract: In this theoretical work, we study quantum mechanical phenomena
exhibited by electrons confined in nanocrystals. First, a model of quantum dots
as potential wells is derived. We argue that only the volume, not shape, is a sig-
nificant parameter of the model in scope of terahertz spectroscopy. The studied
geometries are interchangeable and we may choose among them in order to sim-
plify given problems to solve. Then we choose the spherical symmetry for inves-
tigating depolarization effects, which are reflected in Maxwell Garnett effective
medium theory by a depolarization factor. Within the first order perturbation,
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Table of constants
e = 1.602 × 10−19 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . elementary charge

m0 = 9.109 × 10−31 kg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . free electron rest mass

ε0 = 8.854 × 10−12 F m−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .vacuum permittivity

ℏ = 6.582 × 10−16 eV s rad−1 . . . . . . . . . . . . . . . . . . . . . . . . reduced Planck’s constant

kB = 8.61733 × 10−5 eV K−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Boltzmann’s constant

1 eV = e J C−1 = 1.602 × 10−19 J . . . . . . . . . . . . . . one electronvolt, unit of energy

General notation

The upper index asterisk ∗ denotes complex cojugation.

Symbol c.c. stands for a complex conjugate term.

The hat ˆ sign indicates an operator.

The imaginary unit
√

−1 is represented by symbol i.
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1. Introduction

Introduction to THz conductivity
Terahertz spectroscopy is a rapidly developing field over the last decades thanks
to novel materials and techniques that allow for better generation and detection
of terahertz pulses. It can provide us with great amounts of information on phe-
nomena concerning charge transport on nanometric distances, Lloyd-Hughes
and Jeon [1]. The electron scattering rate in solids is often higher than the
probing field frequency around 1 THz ∼ 4.1 meV or in multiterahertz spectral
ranges. Quantum dots and various other semiconductor nanostructures are un-
der investigation for their potential to be at the core of nanoelectronic devices.
However corresponding theoretical models of microscopic conductivity are far be-
hind experimental obtaining of complex permittivity spectra. Far-field terahertz
spectroscopy is a potent method for probing large ensembles of nanostructures,
Němec et al. [2]. In such case, one obtains spectra proprietary to the effective
material parameters of the composite materials. Microscopic theories to fully
describe and explain all phenomena are yet to be derived.

Objectives
We are interested in theoretical models for effective permittivity of a composite
material in the THz spectral range. The main aim of our work is to address the
depolarization effects in semiconductor nanostructures with quantum mechanical
approach, for classical electrostatics don’t apply. We do two major changes to
the classical approach:

• We use quantum mechanical formula for the microscopic conductivity of
the nanoparticles within linear response regime instead of bulk Drude con-
ductivity.

• We look closely at expressions for the local field inside the nanoparticles
within the quantum perturbation theory.

In Part one of our work, we summarize relevant theoretical background. We
give the basic quantum mechanical formalism we use throughout the work and
we present the classical effective medium theory for composite materials.

In Part two, we address the geometry of our model of nanoparticles. We
compare asymptotic behaviour of density of states, of dipole moments and con-
ductivity spectra for cubic and spherical geometries. We show that while not
equivalent, the geometries are interchangeable in the scope of THz spectroscopy,
as long as we keep volume the same. This is handy for solving different problems.

In Part three, we apply the first order perturbation theory in order to find the
electric field generated by electrons displaced by the external field as a perturba-
tion. We recreate the self-consistent condition for a local electric intensity inside
spherical nanoparticles. Based on that, we derive the depolarization factor, whose
values differ from those given by the classical electrostatics. The depolarization
factor is an important element in the effective medium approximation.
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Part I

Theoretical Background
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2. Quantum Mechanics
Formalism
In this chapter sumarize the general description of interaction of electrons with
external electromagnetic radiation and we give a basic model of nanostructures.
First we address density of states and distribution of electrons over the energy
levels. Then we derive the semi-classical interaction hamiltonian within the dipole
approximation. We find first order perturbation stationary states of density ma-
trix of the system and we inspect its response to the electric field within linear
response formalism.

2.1 Electron states
Possible quantum-mechanical states |k⟩ of the system and their energy are found
by solving the time-independent Schrödinger equation. That is finding the eigen-
system of the hamiltonian Ĥ of an electron in the nanostructure.

Ĥ |k⟩ = Ek |k⟩ (2.1)

Due to confinement of the electrons, we assume a discrete spectrum of bound
single-electron states. The energy of state |k⟩ is Ek = ℏωk. The form of the
hamiltonian is

Ĥ = p̂2

2m + V (r) (2.2)

within the effective mass approximation and V (r) is the potential confining the
electron.

Occupation of states
The electrons are fermions and as such, they obey the Pauli exclusion principle.
The equilibrium or thermal distribution of the electrons over the energy levels
follows the Fermi-Dirac statistics, see e.g. Callen [3]. The occupation of a state
with energy E is given by

f(E , µF , T ) = 1

e
E−µF
kBT + 1

(2.3)

where µF is the chemical potential, in semiconductor science often called the
Fermi level, and T is the absolute temperature.

The total number of particles in the system can be formally expressed as

N =
∫ +∞

−∞
f(E , µF , T )n(E) dE (2.4)

where n(E) is the density of states or explicitly for discrete levels

N =
∑

states k

fk =
∑

levels l

glfl (2.5)
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for fk and fl denote f(Ek, µF , T ), f(El, µF , T ) respectively and gl is the degeneracy
factor of the level El, due to which we must distinguish between levels and states.
The spin degeneracy factor of 2 is included in the summation over all of the states
k and in the degeneracy factor gl.

Suppose a certain density of carriers is injected e.g. by photoexcitation by
a pump of controlled intensity into the system. In order to accommodate a
given number of electrons N in the quantum dot, one needs to solve the implicit
equation (2.5) for the chemical potential µF . For this purpose, numerical methods
are employed.

2.2 Dynamics of the system
We apply external electric field to the system. The interaction strength between
the system and magnetic part of the electromagnetic radiation is of lower order
of magnitude. We suppose that the electric field doesn’t affect the original sys-
tem substantially, i.e. the system retains the structure of energy levels and the
interaction with the external field can be viewed as a perturbation.

Interaction hamiltonian
We follow Marder [4]. The hamiltonian of minimal coupling1is

Ĥ = (p̂ − eA)2

2m + V (r) (2.6)

where p̂ is the momentum operator and A is the vector potential of the field. By
performing the second power we obtain

Ĥ = p̂2

2m + V (r) − e

2m (p̂ · A + A · p̂) − e2A2

2m (2.7)

The first two terms on the right hand side form the hemiltonian Ĥ0 of the un-
perturbed system. The rightmost term is of second order in the perturbation
∝ A2 and therefore can be neglected. We choose the x-representation to further
simplify the rest. The momentum operator is p̂ = −iℏ∇. Hence

(p̂ · A + A · p̂)ψ(r) = −iℏ (∇ · Aψ(r) + A · ∇ψ(r))
= −iℏ [(∇ · A)ψ(r) + 2A · ∇ψ(r)]
= 2A · p̂ ψ(r)

(2.8)

In the last step we exploited the Coulomb calibration of the vector potential
∇ · A = 0. The hamiltonian is now

Ĥ = Ĥ0 − e

m
A · p̂ (2.9)

The electric field intensity E is given by

E = −∂A
∂t

− ∇Φ (2.10)

1The hamiltonian of interaction does not account for non-zero spin effects.
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Let us suppose the gradient of the scalar potential Φ is zero and a harmonic time
dependence of the field E = Ẽe−iωt + c.c. and A = Ã0e−iωt + c.c. with Ẽ and Ã
constant amplitudes. Therefore A = − i

ω
E which leads to

Ĥ = Ĥ0 + ie

mω

(
Ẽ · p̂ e−iωt − c.c.

)
(2.11)

The matrix elements of the hamiltonian are⟨
f
⏐⏐⏐Ĥ⏐⏐⏐ i⟩ =

⟨
f
⏐⏐⏐Ĥ0

⏐⏐⏐ i⟩+ ie

mω

(⟨
f
⏐⏐⏐Ẽ · p̂

⏐⏐⏐ i⟩ e−iωt − c.c.
)

(2.12)

We consider the field homogeneous on a scale larger than the entire quantum dot.
For the interaction is strictly local, we may apply the dipole approximation:⟨

f
⏐⏐⏐Ẽ · p̂

⏐⏐⏐ i⟩ = Ẽ · ⟨f |p̂| i⟩ (2.13)

It can be shown that

− iℏ

m
⟨f |p̂| i⟩ =

⟨
f
⏐⏐⏐[Ĥ0, r

]⏐⏐⏐ i⟩ = ℏωfi

e

⟨
f
⏐⏐⏐er⏐⏐⏐ i⟩ (2.14)

where square brackets
[
α̂, β̂

]
denote a commutator of operators α̂ and β̂. ωfi

stands for ωf − ωi. The hamiltonian elements can be expressed as⟨
f
⏐⏐⏐Ĥ⏐⏐⏐ i⟩ = ℏωiδfi − ωfi

ω

⟨
f
⏐⏐⏐er⏐⏐⏐ i⟩ · Ẽe−iωt (2.15)

We also applied the rotating wave approximation, eliminating the complex con-
jugate term oscillating on high frequencies of ω+ωfi compared to the frequencies
ω − ωfi of the term we are left with. The unperturbed hamiltonian Ĥ0 is diago-
nal in the eigenstates basis, as expressed by the Kronecker delta symbol δfi. The
interaction hamiltonian is off-diagonal in such basis. The bra-ket ⟨f |−er| i⟩ is
called the dipole moment for transitions of electrons between states |i⟩ and |f⟩.

Density matrix
The density matrix ρ̂, also called the statistical operator, is used to describe a
quantum system in a mixed state. An expectation value of an operator Â over
the entire system is calculated using the density matrix⟨

Â
⟩

= Tr
(
ρ̂Â
)

(2.16)

by evaluating the trace of their product. For instance the total number of particles
in the system is N = Tr ρ̂.

The equation of motion for the density matrix is given by the Liouville-von
Neumann equation

iℏ
∂ρ̂(t)
∂t

=
[
Ĥ(t), ρ̂(t)

]
(2.17)

Let us define the hamiltonian and the density matrix of the system responding to
external field in the following way: Ĥ = Ĥ0 + Ĥint and ρ̂ = ρ̂0 + ρ̂1, where index
’int’ stands for interaction and the 1 for the first order perturbation term2. We
may then expand the commutator in eq. (2.17) as[

Ĥ, ρ̂
]

=
[
Ĥ0, ρ̂0

]
+
[
Ĥint, ρ̂0

]
+
[
Ĥ0, ρ̂1

]
+
[
Ĥint, ρ̂1

]
(2.18)
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The rightmost term is of the second order of magnitude of the perturbation and
will be neglected henceforth.

The density matrix of the system in thermal equilibrium, which is an incoher-
ent mixture of states, is

ρ̂0 =
∑

states k

fk |k⟩⟨k| (2.19)

Within the perturbation theory the occupation of states doesn’t change over time
and for the equilibrium part of the density matrix holds ∂

∂t
ρ̂0 = 0. Therefore we

are left with the equation of motion for the first order perturbation:

∂ρ̂1(t)
∂t

= − i

ℏ

[
Ĥint(t), ρ̂0(t)

]
− i

ℏ

[
Ĥ0(t), ρ̂1(t)

]
− γρ̂1(t) (2.20)

where the last term represents a relaxation of correlation or a thermalization of
the system. γ = 1/τ is the dephasing rate, τ being the relaxation time. The
relaxation mechanism was not included in the hamiltonian, so it must have been
introduced to the Liouville-von Neumann equation a posteriori.

The formal solution is

ρ̂1(t) = 1
iℏ

∫ +∞

−∞
Θ(t− t′)

{[
Ĥint(t′), ρ̂0(t′)

]
+
[
Ĥ0(t′), ρ̂1(t′)

]
− iℏγρ̂1(t′)

}
dt′

(2.21)
where Θ(t − t′) is the Heaviside step function to preserve the causality. The
explicit stationary solution to the equation of motion for the correlation part of
the density matrix within the first order perturbation theory is

(ρ̂1)kl(t) = fkl

ℏ

⟨k |er| l⟩ · Ẽe−iωt

ω − ωkl + iγ
|k⟩⟨l| (2.22)

where fkl stands for the difference in occupation of the two states in terms of the
Fermi-Dirac distribution function fkl = f(ℏωk) − f(ℏωl).

2.3 Electric conductivity
Within the linear response regime, we study the material by probing it using
external (e.g. electric) field of sufficiently weak intensity, so that it doesn’t alter
the material’s properties under investigation. Throughout the derivation below,
we follow Pushkarev et al. [5]and apply first order perturbation theory.

The (linear) electric conductivity σ is defined by the Ohm’s law as follows:

j = σ · E (2.23)

or explicitly in components:

jλ(ω) =
3∑

µ=1
σλµ(ω)Eµ(ω) (2.24)

2We suppose the probing terahertz pulse doesn’t affect the equilibrium distribution of elec-
trons over states k. The perturbation term is off-diagonal, describing correlation.

9



where j is the electric current density and E the electric intensity. Due to the
vectorial character of both j and E the conductivity is a second rank tensor.
Within the first order perturbation theory the current density is

jλ(ω) = − e

V

∂

∂t
⟨xλ⟩ = − e

V

∂

∂t
Tr
(
ρ̂1xλ

)
(2.25)

Recalling the explicit solution to the Liouville-von Neumann equation (2.22), we
can evaluate the trace:

jλ(ω) = − e

V

∂

∂t

∑
n,k,l

⟨n|k⟩ fkl

ℏ

⟨k |er| l⟩ · Ẽe−iωt

ω − ωkl + iγ
⟨l |xλ|n⟩ (2.26)

By the orthogonality relation ⟨n|k⟩ = δnk and performing the derivative we get

jλ(ω) = iωe

V

∑
k,l

fkl

ℏ

⟨k |er| l⟩ · Ẽe−iωt

ω − ωkl + iγ
⟨l |xλ| k⟩ (2.27)

In order to obtain the conductivity components, we apply a projector P̂µ in the
direction of µ to the vectors on the right side and divide the current by electric
intensity σ = j/E.

σλµ(ω) = iωe2

V

∑
k,l

fkl

ℏ

⟨
k |xµ| l

⟩ ⟨
l |xλ| k

⟩
ω − ωkl + iγ

(2.28)

Within the linear response regime, the response function (conductivity in this
case) depends only on the properties of the material. It does not depend on
any external fields. We see the dipole moments are of crucial importance to the
electric conductivity.

2.4 Quantum dots
Semiconductor nanostructures are heterostructures of semiconductor materials
whose characteristic scale is nanometric in at least one or up to all three dimen-
sions. In this work, we address the elementary type of nanostructures: single
nanocrystals, also called nanoparticles or quantum dots.

Charge carriers are confined in such structures on scales which are typically
smaller than Bohr radius of an exciton. This leads to so called strong confinement
regime where quantum properties of electrons broadly manifest. In particular,
we need to take into account the quantization of energy of the electron, as the
band structure breaks into discrete levels. In this regime we can also neglect the
Coulomb interaction between the electron and a hole within the exciton and we
can look at the electron in the nanocrystal as a particle subjected only to the
confining potential V (x). Let us choose a form of a rectangular potential well,
see fig. 2.1. Geometry and potential barrier height of the well will be addressed
later.

We will neglect the holes in the valence band. We assume the holes’ effective
mass is of higher order than that of an electron and hence the holes can be ignored

10



Figure 2.1: A scheme of a one-dimensional potential well. From
Cohen-Tannoudji et al. [6].

completely or described by classical models. However, the primary reason here is
simplicity. One can handle electrons and holes as two separate systems and add
their contributions afterwards.

We choose GaAs as an example of a semiconductor material with direct band
gap. The dispersion in the near vicinity of the Γ-point allows for the effective mass
approximation. Other qualities of the material include high conductivity among
semiconductors and its general accessibility for experimental measurements. For
the relevant material properties of GaAs refer to tab. 2.1.

property value
relative permittivity (static) εr = 12.85
electron effective mass m∗

e = 0.067 m0
hole effective mass m∗

h = 0.47 m0
el. momentum scattering time τ = 270 fs
electron mobility (bulk) µ0 = 7200 cm2 V−1 s−1

Table 2.1: Relevant material properties of GaAs. From Chelikowsky and
Louie [7].
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3. Effective Medium Theory
A composite medium is a structure of either metal or dielectric inclusions in a
dielectric matrix. The electromagnetic field inside the inclusions can be con-
sidered as homogeneous due to the characteristic dimensions much smaller than
applicable radiation wavelengths. It was shown by Maxwell Garnett that such
medium can be described by an effective dielectric function, see Garnett [8].
Other effective medium approximations are represented e.g. by Bruggeman’s
model Bruggeman [9] for percolated mixtures. In this chapter we summarize
the classical approach to composite materials adopting Maxwell Garnett’s mixing
formula.

3.1 Effective permittivity
We consider a composite medium made of semiconductor inclusions which are not
percolated and are sparsely distributed in a dielectric matrix with the permittivity
εd. The semiconductor is undoped, i.e. in the ground state it is characterized
by a real frequency-independent permittivity εs in the THz spectral range. The
effective permittivity εg of the composite can be found as a function of the filling
fraction f , i.e. the portion of total volume occupied by the inclusions.

Let Es be local electric intensity inside the semiconductor inclusions and Ed

intensity in the dielectric matrix. We suppose the materials are isotropic. From
the constitutive relation for mean electric induction D and electric intensity E

D = ε0εgE (3.1)

following Landau et al. [10] one obtains

εg = D

ε0E
= fεsEs + (1 − f)εdEd

fEs + (1 − f)Ed

. (3.2)

Subject to an external electric field E0, the material becomes polarized. The
local electric intensity Eloc is hence lowered by a depolarization term

Eloc = E0 − L
P
ε0

(3.3)

where L is depolarization factor describing the shape of the inclusion and P is
the polarization

P = ε0εrEloc − ε0Eloc. (3.4)
which makes the equation for the local field (3.3) self-consistent. We find that

Eloc = E0
εd

εd(1 − L) + Lεs

(3.5)

when εr = εs

εd
for the inclusions inside the matrix. Inserting the local field electric

intensities1 Ed = E0 and Es = Eloc into (3.2) we find the Maxwell Garnett mixing
formula:

εg = εd
fεs + (1 − f) [εd(1 − L) + εsL]
fεd + (1 − f) [εd(1 − L) + εsL] . (3.6)

1The depolarization factor for the matrix is L = 0.
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Depolarization factor
We refer to Landau et al. [10]. The depolarization factor L describes depo-
larization effects in a polarized body. It depends solely on the geometry (shape
and orientation) of the body, not on its size. Its values may range between 0 and
1. The sum of the depolarization factors in three perpendicular directions of the
body must be unity

Lx + Ly + Lz = 1 (3.7)
An analytic expression of the depolarization factor L can be found for any ellip-
soid. For some specific geometries, the factor can be found easily based on some
physical insight and symmetry. Some values are shown in tab. 3.1.

geometry value
desk (perpendicular to the field) 1
sphere 1

3
cylinder (axis perpendicular to the field) 1

2
cylinder (axis parallel to the field) 0

Table 3.1: Depolarization factor values for selected geometries.

Photoexcited conductivity
Let us now consider free electrons injected into the semiconductor inclusions (e.g.
by photoexcitation). They provide an additional contribution to the (otherwise
zero) far-infrared conductivity. For bulk crystals, Drude model Drude [11] is
usually applied to describe the conductivity. The Drude-like character is of form:

∆σp = σ0

1 + iωτ
(3.8)

with σ0 = ne2τ/m where n is the concentration, −e the charge of an electron,
τ momentum scattering time and m the effective mass of the electrons. We
introduce the plasma frequency ωp

ωp =
√
ne2

mε0
(3.9)

exploiting which, the conductivity ∆σp can be expressed as

∆σp =
ω2

pε0τ

1 + iωτ
. (3.10)

The normalized conductivity per electron (electron mobility) µ = σ
en

is shown in
fig. 3.1. The complex relative permittivity of the photoexcited semiconductor is

εp(ω) = εs + ∆εp = εs + i∆σp

ωε0
(3.11)

or the additional contribution explicitly, with γ = 1
τ

∆εp =
ω2

p

iγω − ω2 (3.12)
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Figure 3.1: Normalized Drude conductivity (mobility) of pho-
toexcited bulk GaAs.

The Drude model, which is over a hundred years old, yields good results
for bulk materials. The note that the conductivity has its maximum at zero fre-
quency. However, we may easily argue that the DC-conductivity of a nanoparticle
must be equal to zero. In external electric field, the localized electrons cannot drift
towards infinity. These different qualitative features of nanostructures’ response
spectra are appointed to plasmon resonances, Nienhuys and Sundström [12],
Pitarke et al. [13]. The appearance of a plasmonic resonance is explained in
the following section. However, other microscopic theories of conductivity were
introduced as well, e.g. Drude-Smith phenomenological extension of the model,
Smith [14]. Its physical foundation has been improved recently, Cocker et al.
[15], based on diffusive restoring current. For another example, Monte Carlo sim-
ulation method, see Němec et al. [16]. In our work we will use the quantum
mechanical formula (2.28) for electron conductivity presented in the preceding
chapter.

3.2 Plasmonic resonance
Let us assume spherical shape of the conducting inclusions. The depolarization
factor for a sphere is L = 1

3 . It can be shown from elementary electrostatics
that the field outside a polarized or conductive sphere in a homogeneous external
electric field has form as if caused by a dipole of a moment p = 4π

3 R
3P, where

R is the radius of the sphere. Due to boundary condition of continuity of the
potential, the field inside the sphere is homogeneous. For spherical inclusions
(3.5) therefore becomes

Eloc = E0
3εd

2εd + εs

(3.13)
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which simplifies the general mixing formula (3.6) in the following.
The effective permittivity εeff(ω) of the composite of the photoexcited semi-

conductor inclusions and the dielectric matrix within the Maxwell Garnett model
is now a complex-valued function:

εeff = εd
(2 − 2f)εd + (1 + 2f)εp

(2 + f)εd + (1 − f)εp

. (3.14)

The contribution ∆εeff(ω) of the free carriers to this effective permittivity is given
as the difference between the permittivities of the photoexcited and ground state

εeff = εg + ∆εeff (3.15)
and can be expressed as follows

∆εeff = ∆εp
(1 + 2f)εd − (1 − f)εg

(2 + f)εd + (1 − f)εs + (1 − f)∆εp

(3.16)

or explicitly

∆εeff = (1 + 2f)εd − (1 − f)εg

(2 + f)εd + (1 − f)εs

ω2
p

(1−f)
(2+f)εd+(1−f)εs

ω2
p − ω2 + iγω

(3.17)

where we can observe the form of the spectral dependence, see fig. 3.2. The
spectrum of the response of the free carriers in the composite to far-infrared
field has a form of response of a damped harmonic oscillator. The damping is
caused by the scattering term iγω. Opposed to the Drude-like character (3.12)
of the contribution of the free carriers to the permittivity of the semiconductor
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Figure 3.2: Contribution of the photoexcited free charge carriers
to permittivity ∆εeff of a composite material. εs = 12.85, εd =
11.7, f = 0.1, n = 104 µm−3
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itself, here we can identify an effective restoring force in the term including ω2
p,

hence the oscillator analogy. Such restoring force is introduced to the system
due to the localization of plasmonic oscillations and consequent screening of the
external field, whence the depolarization term in (3.3). The plasma frequency is
the resonant frequency of plasmonic oscillations.
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Part II

Model of Nanoparticles
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4. Density of States
In this chapter, we find the bound states for a cube (or a cuboid prism) and
a sphere by solving the time-independent Schrödinger equation. Although the
wavefunctions differ dramatically for cubic and spherical geometries, we show
that the volume is the only important parameter when it comes to asymptotic
behaviour of densities of states. We also show that decrease in height of potential
barrier of a finite potential well acts as an increase in the effective volume. In
this chapter we omit the spin degeneracy factor of 2.

4.1 Cubic symmetry

Infinite potential well
The hamiltonian of a free particle is

Ĥ = − ℏ
2

2m∆ (4.1)

where m is the effective mass of the electron. Let the potential V (x, y, z) be equal
to 0 for x ∈ (0, A), y ∈ (0, B), z ∈ (0, C) and equal to +∞ otherwise. It forms a
box for the electron to occupy. The time-independent Schrödinger equation for
this problem is [

− ℏ
2

2m∆ + V (x, y, z)
]

Ψ(x, y, z) = EnΨ(x, y, z) (4.2)

The wavefunction must obey the normalization condition∫
Ψ∗Ψ d3x = 1 (4.3)

For the cubic symmetry, the wavefunction can be separated as follows:

Ψ(x, y, z) = ψx(x)ψy(y)ψz(z) (4.4)

which allows us to look for the solutions of the 1D problem only. The wavefunction
needs to be normalized and must be equal to zero outside of the box with zero
potential. The solution to the particle in a box problem is:

Ψ(x, y, z) =
√

2
A

sin(kxx)
√

2
B

sin(kyy)
√

2
C

sin(kzz) (4.5)

where kx = nπ
A

, ky = mπ
B

, kz = lπ
C

and n,m, l are positive integers with the energy

E = ℏ
2k2

2m (4.6)

where k2 = k2
x + k2

y + k2
z is the square of the wavevector. Therefore the energy

levels are:
Enml = ℏ

2π2

2m

(
n2

A2 + m2

B2 + l2

C2

)
(4.7)

We could choose A = B = C in which case we would be dealing with a cube.
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Finite potential well
Now we proceed to a potential well with finite height V0 of the barrier. Let the
potential be equal to 0 for x, y, z ∈ (−L

2 ,
L
2 ) and equal to V0 otherwise. The

electron can now tunnel into the barrier. That is described by fast-decaying
however non-zero wavefunction inside the barrier region. Attention must be paid
to more complicated boundary conditions. We neglect intricate behaviour of the
wavefunction beyond edges and vertices of the cube, hence the wavefunction can
still be factorized

ψ(x, y, z) = ψx(x)ψy(y)ψz(z). (4.8)

For bound states (E < V0) the 1D wavefunction is of form:

ψx(x) = ψ1(x) = A1eQx for x < −L

2
= ψ2(x) = A2 cos(qx) for − L

2 < x <
L

2 symmetric solution

= ψ2(x) = A2 sin(qx) for − L

2 < x <
L

2 antisymmetric solution

= ψ3(x) = A3e−Qx for x > L

2

(4.9)

where q =
√

2mE
ℏ

and Q =
√

2m(V0−E)
ℏ

. From boundary conditions

ψ1

(
−L

2

)
= ψ2

(
−L

2

)
(4.10)

d
dxψ1(x)

⏐⏐⏐⏐⏐
x=− L

2

= d
dxψ2(x)

⏐⏐⏐⏐⏐
x=− L

2

(4.11)

and likewise at x = L
2 we find implicit equations for the wavevector k√

u2
0 − v2 = +v tan v symmetric solution (4.12)√
u2

0 − v2 = −v cot v antisymmetric solution, (4.13)

which can be further simplified by introducing dimensionless wavevectors

v = qL

2
u = QL

2

u0 =
√

2mV0L

2ℏ

(4.14)

The energy of nth bound state is then:

En = ℏ
2q2

n

2m = 2ℏ2v2
n

mL2 (4.15)

where vn is the solution of either (4.12) or (4.13).
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Furthermore from the boundary conditions we find that the wavefunction
constant factors are in the following relations:

A1 = +A2
cos(q L

2 )
exp(−Q L

2 ) = +A3 symmetric solution (4.16)

A1 = −A2
sin(q L

2 )
exp(−Q L

2 ) = −A3 antisymmetric solution (4.17)

The absolute value of these factors is to be found using the normalization condi-
tion.

4.2 Spherical symmetry

Infinite potential well
Addressing spherical quantum dots, we perform the analysis in the spherical
coordinates: radial distance r, polar angle or inclination θ ∈ (0, π) and azimuthal
angle φ ∈ (0, 2π). Given the geometry, the transformation relations are given as:

r =
√
x2 + y2 + z2

θ = arccos
(
z

r

)
φ = arctan

(
y

x

) (4.18)

It can be handy to express φ as arg(x+ iy) for it returns the angle φ ∈ (0, 2π).
Let the potential be equal to 0 for r ∈ (0, R) and equal to +∞ otherwise. The

wavefunction can be separated into a radial and an angular part:

ψ(r, θ, φ) = Rnl(r)Ylm(θ, φ) = Nnljl(knlr)Ylm(θ, φ). (4.19)

The quantum numbers are n = 1, 2, 3..., l = 0, 1, 2... and m = −l, ...,+l. The
wavevector satisfies: knlR = znl where znl is the n-th zero of the spherical Bessel
function jl(z):

jl(z) =
√
π

2zJl+ 1
2
(z) (4.20)

which is defined using the Bessel function Jα(z) of the first kind. The normaliza-
tion factor of the radial part Nnl is

Nnl =
√∫ R

0
j2

l (knlr)r2 dr
−1

=
√

2
a3 j

−1
l+1(znl) (4.21)

under the zero-value boundary condition.
Ylm(θ, φ) is the spherical harmonic function of degree l and order m. The

sphercial harmonics are normalized and orthogonal∫ 2π

0

∫ π

0
Y ∗

lm(θ, φ)Yl′m′(θ, φ) sin(θ) dθ dφ = δll′δmm′ (4.22)

where we exploited the Kronecker δ-symbol. The energy levels are:

Enl = ℏ
2z2

nl

2mR2 (4.23)
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By inspecting the dependence of the radial part of the wavefunction on the
angular momentum quantum number l, we see that the probability density for
the particle is shifting towards the outer boundary of the quantum dot as the
angular momentum increases. That is caused by the centrifugal barrier term in
the Schrödinger’s equation. The total effective potential can be seen in fig. 4.1.

Figure 4.1: A rectangular potential well with the addition of the
centrifugal barrier. From Dunlap [17].

Finite potential well
Let the potential be equal to 0 for r ∈ (0, R) and equal to V0 otherwise. The
angular part remains unchanged Ylm(θ, φ). The solution to the equation for the
radial part of the bound states is

R(r) = R1(r) = A1jl(qr) for r < R

= R2(r) = A2kl(Qr) for r > R
(4.24)

where q =
√

2mE
ℏ

and Q =
√

2m(V0−E)
ℏ

. jl(r) is the lth spherical Bessel function of
the first kind and kl(r) is the lth modified spherical Bessel function of the second
kind.

The boundary conditions are

R1(R) = R2(R) (4.25)
d
drR1(r)

⏐⏐⏐⏐⏐
r=R

= d
drR2(r)

⏐⏐⏐⏐⏐
r=R

(4.26)

or explicitly, employing the recurrence formulas for the derivatives of the (modi-
fied) spherical Bessel functions, see e.g. Olver et al. [18]

A1jl(qR) = A2kl (QR) (4.27)

qA1

[
l

qR
jl(qR) − jl+1(qR)

]
= QA2

[
l

QR
kl (QR) − kl+1 (QR)

]
(4.28)
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By eliminating A1, A2 we get implicit equation for the wavevector q (or dimen-
sionless number qR) to be solved numerically:

qR
jl+1(qR)
jl(qR) =

√
G2 − q2R

kl+1
(√

G2 − q2R
)

kl

(√
G2 − q2R

) (4.29)

where G =
√

2mV0
ℏ

,
√
G2 − q2 = Q. The condition (4.29) is, applying some Bessel

functions identities, in agreement with results from Leyronas and Combescot
[19]. The constant factors A1, A2 are then to be determined by combining the
boundary (4.27), (4.28) and the normalization (4.3) conditions.

4.3 Comparison of densities
The energy spectra of confined electrons systems are discrete. A comparison of
densities of such states (represented by Dirac δ-functions) wouldn’t be very clear.
Instead, we compare total count of states with energy smaller or equal to given
energy level.

The volume of a cube of size a is V = a3, whereas the volume of a sphere of
radius r is V = 4π

3 r
3. We want to show that the asymptotic behaviour of the

densities does not depend on the geometry as long as the volume of the quantum
dot is kept the same. However we are used to describe the nanoparticles by their
linear dimensions. Therefore we choose notation that ’cube(s)’ stands for a cube
with size a = s nm and volume V = s3 nm3 and ’sphere(s)’ stands for a sphere
with the same volume V = s3 nm3 and thus radius R = s

(
3

4π

)1/3
nm, unless

explicitly stated otherwise.
For an infinite depth potential well we compare total counts of states for

a given energy level for cubes of size 20 nm and 30 nm with spheres of the
corresponding radius, see fig. 4.2. We observe that even though the densities
are different (with different distributions of δ-functions), they are equivalent on a
sufficiently large intervals of energies. The total states counts visualized by steps
scale in the same manner with the current energy level. Furthermore we add two
densities of states for a cube and a sphere with the same linear dimensions to
the comparison. The condition of the same volume is therefore broken and the
resulting densities’ asymptotes vary significantly. We observe that the smaller
the volume of the quantum dot, the greater the separation of energy levels is.
That leads to lower density of the states.

We may inspect closely the detailed structure of the density of states in
fig. 4.3 where we added an asymmetric cuboid of dimensions a = 20 nm, b =
20

√
π nm, c = 20 (

√
π)−1 nm with volume V = 203 nm3 in addition to the

cube(20) and the sphere(20) with the same volume. High steps in the total
states count indicate a random degeneracy of the energy level. We can see that
a sphere has the highest degeneracy g = 2l + 1 where l is the orbital quantum
number of the given level. The projection quantum number m has no effect on the
resulting energy. The cube also shows degeneracy given either by a permutation
of the quantum numbers n,m, l or by coincidence of the sums of the squares of
the quantum numbers, i.e. the energy only depends on the absolute value of the
wavevector and not on its direction in case of isotropic effective mass. No such
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Figure 4.2: Comparison of densities of states for an infinite po-
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degeneracy can be observed within the cuboid with the choice of the dimensions
stated above.
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Figure 4.4: Comparison of densities of states in quantum dots
with the same real volume V but different potential barrier height
V0: infinite, 12 eV, 5 eV. The densities vary as the effective volume
effective volume Veff changes.

In case of finite height of the potential barrier of the quantum dot we witness
decreasing of the separation between energy level as if an effective volume of the
nanocrystal was increasing. See fig. 4.4a and 4.4b for finite barrier cubes and
spheres respectively. The phenomenon can be explained by the possibility of an
electron to penetrate into the walls of the well to a certain depth given by the
exponential decay of the wavefunction inside the barrier, see eq. (4.9). Density
of states of a free particle in three dimensions per unit volume is given as

n(E) = m
3
2

ℏ3π2
√

2
√

E (4.30)

The total count of states in volume V is then

N(E) = V
m

3
2

ℏ3π2
√

2
2
3E

3
2 (4.31)

We expect the same functional form for scaling of the densities and total counts of
bound states for a quantum dot. Therefore we can estimate the effective volume
for a finite potential barrier from fitting the densities of states with functions
N(E) = αE3/2 where the parameter is proportional the volume α ∝ V . In
particular let α be the fitted parameter for an infinite barrier sphere(20) and β
belong to a finite height V0 = 5 eV barrier sphere(20). The effective volume of
the latter can be estimated as

Veff = V
β

α
(4.32)

In this case of a finite height V0 = 5 eV barrier the effective volume Veff of the
sphere seems to be ca. 8% greater than the real volume V .

This allows us to proceed with infinite height potential barrier in further
calculations, even though we cannot expect infinite barrier in raelity. Despite
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the strong confinement regime, the material properties of the nanocrystals and
surrounding matrix are quite similar. However the finite barrier height can be
compensated by increasing the effective volume in our calculations.

A note on GaAs
We have chosen GaAs as demonstration material. We use its material properties
and we don’t pay much attention to real shapes of GaAs quantum dots being
fabricated. They can be grown in a pyramidal shape (Bauhuis et al. [20])
either by epitaxial growth or by self-assembly methods such as Stranski-Krastnow
procedure. In Vorobiev et al. [21] energy spectrum is computed for a pyramid
with square base of size a and height a/2 using even mirror boundary condition. It
is stated that energy levels separation appears to be larger for a pyramid compared
to prism geometry. However such pyramid has six times lesser volume than a cube
of the same size. Also the even mirror boundary condition corresponds to weak
confinement of the electron. Therefore the asymptotic behaviour of the energy
spectrum is not directly comparable with our results.
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5. Dipole Moments
The interaction of our electronic system with external electric field is characterized
by dipole moments for the electron transitions between individual states. In this
chapter, we calculate the dipole moments for cubic and spherical geometry. We
show that while selection rules differ in the two geometries, the total amount
of transitions is the same.

5.1 Selection rules

Cubic symmetry
Let us assume x-polarization of the electric intensity component of the radiation.
For reasons of symmetry, the parity of the system’s state must change during
a dipole transition. The group analysis can be found in the appendix [A.2].
The parity change defines the dipole selection rules. Furthermore, we know the
wavefunction can be separated, see eq. (4.4), and therefore we obtain

⟨klm |x| k′l′m′⟩ = ⟨k |x| k′⟩⟨l|l′⟩⟨m|m′⟩ (5.1)

Due to the orthogonality of the states we may write ⟨l|l′⟩⟨m|m′⟩ = δll′δmm′ using
the Kronecker δ-symbol. We also know that for increasing quantum number nx

denoting energy levels, there are alternating symmetric (odd nx) and antisym-
metric (even nx) solutions for the wavefunction, see eq. (4.9). This is exactly the
change in parity required by the symmetries. Hence the selection rules in terms
of quantum numbers nx, ny, nz are

∆nx = 2k + 1 k ∈ Z
∆ny = 0
∆nz = 0

(5.2)

Let us now evaluate the non-zero dipole moments. For an infinite potential
well we have

⟨k |x| k′⟩ = 2
A

∫ A

0
sin

(
nπ

A
x
)

sin
(
mπ

A
x
)
x dx (5.3)

By substitution ξ = x/A we obtain

⟨k |x| k′⟩ = 2A
∫ 1

0
sin (nπξ) sin (mπξ) dξ (5.4)

An analytical expression for the integral can be found:

⟨k |x| k′⟩ = A

π2

{
π(m− n) sin [π(m− n)] + cos [π(m− n)] − 1

(m− n)2 −

− π(m+ n) sin [π(m+ n)] + cos [π(m+ n)] − 1
(m+ n)2

}
(5.5)
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For a finite height potential barrier the analytic expression is possible as well.
It greatly reduces time complexity of computational algorithms compared to nu-
merical integration. We won’t show the integral here, but we mention the need
to integrate over the three domains in (4.9) separately. For the potential barrier
high enough, which corresponds to the strong confinement regime, we can use
an approximation of the dipole moments by the formula for infinite barrier given
above.
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Figure 5.1: A map of normalized dipole transition rates for
cube(20).

In fig. 5.1 we show a map of dipole moments squared |µkl|2 = |⟨k |ex| l⟩|2
between energy levels in a cube of size of 20 nm, for those are included in the
diagonal elements of the conductivity tensor we are interested in. The values are
normalized to unit size and unit charge. The distance from the diagonal of the
figure represents the energy difference Ekl between levels k, l. We observe that
no transitions lay on the diagonal and that the transitions are aligned to lines
parallel to the diagonal due to the periodicity of the sine function and hence the
constant separation between energy levels. Degeneracy of the levels has been
summed over.

Spherical symmetry
For x-polarization the dipole selection rules for spherical symmetry are as follows.
Derivation based on symmetry analysis is presented in the appendix [A.2].

∆n = k k ∈ Z
∆l = ±1
∆m = ±1

(5.6)
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Figure 5.2: A map of normalized dipole transition rates for
sphere(20).

While evaluating the dipole moments, we can separate the radial and the angular
parts (4.19) of the wavefunctions

Ψnlm(r, θ, φ) = Rnl(r)Ylm(θ, φ) (5.7)

The operator of the dipole moment transforms to spherical coordinates as x =
r sin(θ) cos(φ). Therefore

⟨n′l′m′ |x|nlm⟩ =
∫ ∞

0
R∗

n′l′(r)Rnl(r)r3 dr×

×
∫ 2π

0

∫ π

0
Y ∗

l′m′(θ, φ)Ylm(θ, φ) sin2(θ) cos(φ) dθ dφ (5.8)

The integral of the angular part ⟨l′m′ |x| lm⟩Ω can be expressed explicitly. The
selection rules (5.6) give four possibilities:

⟨l + 1,m+ 1 |x| lm⟩Ω = +1
2

√(l +m+ 1)(l +m+ 2)
(2l + 1)(2l + 3) (5.9)

⟨l − 1,m+ 1 |x| lm⟩Ω = −1
2

√(l −m− 1)(l −m)
(2l − 1)(2l + 1) (5.10)

⟨l + 1,m− 1 |x| lm⟩Ω = −1
2

√(l −m+ 1)(l −m+ 2)
(2l + 1)(2l + 3) (5.11)

⟨l − 1,m− 1 |x| lm⟩Ω = +1
2

√(l +m− 1)(l +m)
(2l − 1)(2l + 1) (5.12)
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The radial part integral

⟨n′l′ |x|nl⟩r = Nn′l′Nnl

∫ R

0
jl′(qn′l′r)jl(qnlr)r3 dr (5.13)

is to be evaluated numerically. We employ the adaptive Gauss-Kronrod quadra-
ture integration algorithm, Shampine [22]. Squares of dipole moments |µkl|2
between states k and l for sphere(20) are depicted in fig. 5.2. As opposed to a
cube, the transitions don’t form parallel lines, for the distances between consec-
utive zeros of the Bessel functions are not the same. They do however approach
the parallel pattern for high energies due to the asymptotic form of the spherical
Bessel function of the first kind jl(z) for large z:

jl(z) →
sin

(
z − lπ

2

)
z

(5.14)

We note that a dipole moment also has its phase. The moments’ phases de-
pend on the phases of the wavefunctions of the states ⟨k |x| l⟩ = ⟨k0 |x| l0⟩ eiϕke−iϕl .
The phase is not, however, an observable physical quantity. Therefore the phase
is either compensated by the wavefunctions’ phase itself when computing e.g.
density of particles: ρkl(x) = ⟨k |x| l⟩⟨x|k⟩⟨l|x⟩, or a square of the size of the
moment is taken, as e.g. in the Fermi golden rule for the transition rates

Λk→l = 2π
ℏ

⏐⏐⏐⟨k ⏐⏐⏐er ⏐⏐⏐ l⟩ · E
⏐⏐⏐2 nl (5.15)

where nl is the density of final states. As expected, the transition rate Λk→l is
real-valued and its dimension is [s−1].

5.2 Comparison of dipole moments
Same as for the comparison of the densities of states for cubic and spherical
geometries of the quantum dot, we want to show that, despite apparent differences
in the dipole transition maps, the dipole moments are equivalent in an integral
sense for the two geometries. In this sense of equivalence, if the dephasing rate is
high enough, one cannot tell the difference between distinct transitions and the
overall dipole moments are the same for cubic and spherical geometries.

Therefore we compute densities of the transitions in the energy-energy plane
and take an average over a certain area. The two averaged maps for cube(20) and
sphere(20) can be seen in fig. 5.3 and fig. 5.4 respectively. The moments were
averaged by weighting the contributions by a Gauss function. The greater the
variance, the better the correspondence of both maps. However we are interested
in rather small scales. The chosen standard deviation is σ = 0.04 eV1. It can
be seen that on a sufficiently large scale, the intensities of dipole moments are
equivalent for both geometries.

1The dephasing rate in GaAs corresponds to γ = 0.00244 eV. If such is our resolution of
distinct transitions (i.e. σ = γ), one can distinguish between different transitions in both
cube(20) and sphere(20). The averaged maps become the same at ca. 60 nm.
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Figure 5.3: Averaged normalized dipole moments for cube(20).
Average weighted by a Gaussian, σ = 0.04 eV.
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Figure 5.4: Averaged normalized dipole moments for sphere(20).
Average weighted by a Gaussian, σ = 0.04 eV.
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6. Terahertz Conductivity
In this chapter we will see electric conductivity spectra in terahertz range ob-
tained within the linear response theory. We have already derived the expression
(2.28) for the conductivity tensor elements in chapter 2. In linear regime, only
the diagonal elements in directions of significance to symmetry are nonzero. It is
shown within the symmetry group analysis in the appendix [A.3]. The conduc-
tivity in the direction of x is

σx(ω) = iωe2

V

∑
k,l

fkl

ℏ

|⟨k |x| l⟩|2

ω − ωkl + iγ
(6.1)

where k and l denote states of the system. Obviously, this simple model of
conductivity neglects many incoherent phenomena1. All incoherent effects are
substituted by the phenomenological dephasing rate γ in the formula above.

6.1 Mobility spectra
We continue the comparison of cubic and spherical geometries. This time we
compare the mobility spectra for the two geometries, again with the same volume.
We mention that the spectra belong to quantum dots as a whole, not only the
material they consist of (GaAs in our example). The mobility represents the
microscopic conductivity2.

For small dimensions of the quantum dot, the dipole transitions contributing
to the mobility spectrum are resonant at multiterahertz frequencies, as seen in
fig. 6.1. We can also notice that the separation of transitions between distinct
pairs of energy levels is wide, so that distinct peaks are formed. In spite of the
fact the response of cube(20) and sphere(20) varies in shape, we may find some
similarities. The tails of the spectra are basically at the same frequencies and the
total area under the curve is very similar for both geometries. This reflects the
same asympototical behaviour of the densities of states and the dipole moments
from previous chapters.

For increasing dimensions of the nanocrystal, the number of peaks in the
spectra increases while their separation decreases. Eventually, the distinct peaks
join together, as observed in fig. 6.2. In a cube, multiple transitions contribute
to the same peaks, therefore the apparent lesser density of peaks in the spectrum
than in a sphere. Recall fig. 5.1 and 5.2 of dipole moments for a cube and a
sphere respectively, where the distance of the mark from the diagonal shows the
energy of the dipole transition. The marks form straight lines in case of a cube.

1Scattering processes play an important role throughout condensed matter physics, charge
transport in particular. Within a band structure, an accelerating particle can get into a neigh-
bouring Brillouin zone, where it acquires negative velocity while gaining momentum. This
phenomenon is known as the Bloch oscillations. Casually it is prevented by scattering mecha-
nisms, that also let us remain within the effective mass approximation.

2Although the nanoparticles are conductive on the microscopic level, they become polarized
in external field as they are isolated and therefore they act as dielectric on the macroscopic
scale.

31



0

500

1000

1500

2000

2500

0 5 10 15 20

R
e
M
o
b
il
it
y
[c
m

2
V

−
1
s−

1
]

Frequency [THz]

cube(20) sphere(20)

(a) Real part.

−1000

−500

0

500

1000

0 5 10 15 20

Im
M
ob

il
it
y
[c
m

2
V

−
1
s−

1
]

Frequency [THz]

cube(20) sphere(20)

(b) Imaginary part.

Figure 6.1: Comparison of mobility spectra for cubic and spher-
ical geometries of the quantum dot with the same volume. Size
of the cube is 20 nm.
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Figure 6.2: Mobility spectra for cubic and spherical quantum
dots with the same volume. Size of the cube is 50 nm.
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Figure 6.3: Mobility spectra for cubic and spherical quantum
dots with the same volume. Size of the cube is 200 nm
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For quantum dots large enough, we do not observe any qualitative differences
in the shapes of the mobility spectra for the two geometries. For electron mo-
bilities in cube(200) and sphere(200), see fig. 6.3 The response of the cube only
appears a little smaller then that of a sphere. For increasing volume of the crystal,
the spectrum shift towards lower frequencies. That is enabled by higher density
of energy levels the electrons may occupy. Later in this chapter, this will also be
commented upon further.

Temperature dependence
The contributions of individual dipole transitions are weighted by the difference
in population of the participating levels fkl. The difference depends on the shape
of Fermi-Dirac distribution, which is affected by temperature and number of
electrons in the system, hence altering the temperature and/or electron density
results in a change of the mobility spectrum. The temperature dependence is
demonstrated in fig. 6.4. We can see that at low temperature (10 K) only the
ground level is occupied and only the transition to the first excited level may
occur, while at high temperature (300 K) the thermal distribution covers more
levels and a transition from the first to the second excited level can be seen. The
density of electrons is n = 104 µm−3. Cube(20) has been chosen because there
we can observe the individual transitions form distinct peaks in the spectrum.
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Figure 6.4: Comparison of mobility spectra for the same cubic
quantum dot at temperatures 10 K and 300 K.

Finite potential well
In chapter 4 we have argued that the finite height of the energy barrier forming the
potential well acts effectively as increasing of volume of an infinite potential well,
as the wavefunction penetrates into the barrier. However the density of carriers
doesn’t reflect the larger effective volume and the dipole moments are slightly
different due to overlap of the exponential decaying parts of the wavefunction
inside the barrier region. Fig. 6.5 illustrates that the decreasing energy barrier
of the potential well shifts the spectrum towards the one of a larger volume
quantum dot with the infinite barrier. Therefore the increasing effective volume
approximation is reasonable and applicable.
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Figure 6.5: Mobility spectra for various effective volumes due to
the finite potential well. T = 300 K, n = 104 µm−3.

Large volume limit
In fig. 6.6 we compare mobility spectra of larger nanocrystals with bulk Drude
mobility. We observe the spectra are nearing the Drude model for increasing
volume, but they remain zero for zero frequency. In order to reproduce the
non-zero conductivity for DC case, we would need to prevent the electrons from
restoring of the initial distribution on loss of coherence in the equations of motion.
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Figure 6.6: Comparison of mobilities obtained by using the quan-
tum mechanical linear response theory with the classical Drude
model.

6.2 Further comments
Another parameter with influence on the mobility spectra is the dephasing rate
γ. It controls the width of the distinct Lorentzian spectral lines corresponding to
resonant frequencies. However in our work we have chosen a fixed value of the
dephasing energy ℏγ = 0.00244 eV, corresponding to τ = 270 fs for GaAs.
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Alternate approach: Kubo formula
The electric conductivity tensor can be also obtained as a response function within
the linear response formalism using the Kubo formula, see Rössler [23],

σλµ(ω) = i

ℏω

∫ +∞

0
eiωt Tr

(
ρ̂0 [jλ(t), jµ(0)]

)
dt (6.2)

which yields result

σx(ω) = −ie2

V

∑
k,l

ωkl
fkl

ℏ

|⟨k |x| l⟩|2

ω − ωkl + iγ
(6.3)

as in Marder [4]. Comparing our formula for conductivity (6.1) to the expression
(6.3), one can see the latter does not vanish in the DC limit ω = 0, which
doesn’t fit the model of confined carriers. Close to equilibrium, the dephasing
term has been neglected in the Kubo formula. Such approximation does not
pose any problems in translation invariant bulk materials, where the electrons
satisfy the equilibrium distribution right after a scattering event. However, in
nanostructures, a diffusive restoration current, which is present due to broken
translational symmetry of the system, must be taken into account, Ostatnický
et al. [24], Cocker et al. [15].

We have not neglected the dephasing term in the derivation of conductivity
tensor (6.1) in chapter 2, therefore the restoring of the equilibrium distribution
(mathematically extinction of ρ̂1) is accounted for. We only have to bear in
mind that the dephasing rate γ does not correspond to the pure momentum
scattering time τ , but the carriers also need some time to return to their initial
thermal distribution. By setting γ = 1/τ we assume the electrons return to their
equilibrium distribution upon scattering instantaneously.

Momentum conservation principle
We can notice that for small quantum dots dipole transitions occur for large en-
ergy gaps corresponding to multiterahertz frequencies. For large quantum dots
the contribution of high energy transitions is negligible, even though pairs of lev-
els with these gaps obviously do exist. However it is the dipole moments that
extinguish these transitions. The electrons must obey the momentum conserva-
tion principle, although it does not explicitly enter the equations of motion. The
incident photons carry enough energy for the transitions between levels happen,
but by far not enough momentum. This inconvenience is counteracted by the
uncertainty principle

σxσp ≥ ℏ

2 (6.4)

The more precise the localization of the electron within the confining potential is,
the greater the momentum uncertainty becomes. The momentum conservation
principle then needs to be satisfied within the momentum uncertainty, which
allows for larger momentum differences between levels participating in transitions
for smaller quantum dots. Mathematically the dipole moments, the energy gaps
and the momentum uncertainty are tied together.
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6.3 Shape discussion conclusion
We have compared properties of cubic and spherical geometries of our model
of a quantum dot. We have seen the same asymptotic behaviour of densities
of states for cubes and spheres of the same volume in chapter 4 as well as the
same averaged dipole moment density in chapter 5. Now we have compared the
mobility spectra.

In this chapter we have seen, that for small quantum dots the mobility spectra
for a cube and a sphere differ in detailed structure of the dipole transition reso-
nance peaks, while still having some similar features. Increasing the size makes
the differences less apparent and eventually the shape of the spectra becomes the
same. Moreover if we consider a real sample, we must take into account imperfec-
tions and distributions of sizes of the nanoparticles that cause non-homogeneous
broadening of the spectral lines. Therefore the fine structure of the spectrum will
never be observable and we will not be able to tell the difference between the
response of composite materials consisting of spheres or cubes. The geometry
plays a certain role, but only the volume of quantum dot is a significant param-
eter. At least in cases where the conductivity tensor is symmetric, that is. We
conclude that in the scope of terahertz spectroscopy we may choose a geometry
of quantum dots that simplifies solving equations of given problems, while the
results are still relevant for other geometries as well.

Also the finite height of energy barrier of the potential well can be approached
by the increasing effective volume approximation.
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Part III

Depolarization Effects
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7. Depolarization Field
Exposed to external electric field, the material becomes polarized. Displacement
of the electrons inside the nanostructures causes screening of the external field.
The inclusions respond to different local field than the matrix. The depolarization
field has been known from classical electrostatics. However in quantum mechan-
ical approach, the electrons do not form a surface charge but are distributed in
the volume according to the wavefunction. In this chapter, we will provide a gen-
eral derivation of the local electric field from the charge distribution. For solving
Poisson’s equation is generally a formidable task, we will also derive a depolar-
ization factor depending on the inclusions’ parameters in order to simplify later
calculations of effective response functions of composite materials.

7.1 Electric charge distribution
The density function in x-representation is obtained from the density matrix

n(r) =
∑
k,l

⟨x|ρ̂kl|x⟩ (7.1)

Let us write explicit forms of the equilibrium density and the perturbation term
separately based on (2.19) and (2.22)

n0(r) =
∑

k

fk Ψ∗
k(r)Ψk(r) (7.2)

n1(r) =
∑
k,l

fk − fl

ℏ

⟨k |er | l⟩ · Ẽ e−iωt

ω − (ωk − ωl) + iγ
Ψ∗

l (r)Ψk(r) (7.3)

The densities obey ∫
n0(r) dµ = N0 (7.4)∫
n1(r) dµ = 0 (7.5)

while µ being measure.
The equilibrium radial density of electrons is plotted in fig. 7.1 for sphere(20)

and sphere(100). We remind the notation from chapter 4: sphere(t) stands for
a sphere with radius r =

(
3

4π

)1/3
t so that it has the same volume as a cube of

size t. The angular dependence of equilibrium density is trivial, for the ground
state is fully symmetric. It is evident from the figure that the electrons are not
allowed to occupy the space near the surface. The larger the volume, the flatter
the distribution is and the smaller is the vacant area. In the large scale limit,
the distribution is uniform. That is in correspondence with the classical image.
Positive-charge holes we neglected earlier due to very large effective mass obey
this uniform distribution.

The density of electric charge is

ρ(r) = −ene(r) + enh(r) (7.6)
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Figure 7.1: The equilibrium radial distribution of electrons and
holes for sphere(20) and sphere(100) at given temperature and
carrier density T = 300 K, n = 104 µm−3.

where ne and nh represent densities of electrons and holes respectively. Obviously,
an electric field must arise from the difference between positive and negative
charge distributions. However, in the equilibrium state no net force is driving the
electrons. Thus the electric force must be compensated by a ’quantum force’ of
the potential well. We will ignore this equilibrium contribution to electric field.

Contribution of the perturbation electric charge density will be of larger sig-
nificance. From eq. (7.3) can be seen that the perturbation density n1(r) is
complex-valued and frequency-dependent.

Poisson’s equation
In order to find the electric intensity E1 of the depolarization field caused by
displaced electric charge distributed in volume of a body, one needs to solve the
Poisson’s equation for the electric potential Φ

∆Φ(r) = ρ1(r)
ε0

(7.7)

Note that the classical Poisson’s equation makes use of the permittivity of the
material ε = εrε0. That is a self-consistent feature, which is not however in
compliance with our first order perturbation theory approach and we proceed
with the vacuum permittivity only.

For now, suppose we have found a formal solution to the equation. The electric
intensity of the depolarization field is then obtained by taking the gradient of the
potential

E1(r) = −∇Φ(r) (7.8)

7.2 Depolarization factor
Ultimately, we will employ an effective medium approximation for our composite
material. The Maxwell Garnett theory presented in chapter 3, assumes uniform
electric field. Note that the susceptibility obtained from linear response formalism

39



in chapter 6 is also an average for the whole nanocrystal. Therefore we are
looking for a way to find an effective uniform field magnitude instead of its spatial
distribution and then how to derive it from susceptibility itself.

Mean electric field
A classical way to find the average field over given volume is

⟨E1⟩c = 1
V

∫
E1(r) dµ (7.9)

However, the electric field in a given point is only relevant when it acts (locally) on
a charged particle. Therefore the averaged field is being weighted by probability
of finding an electron in the area. The mean field is

⟨E1⟩ = 1
N0

∫
E1(r)n0(r) dµ (7.10)

to the first order of perturbation theory. The weight taken into account is the
equilibrium single electron probability density. N0 is the total number of elec-
trons. Note that in classical limit, i.e. the equilibrium distribution of electrons
is uniform n0(r) = N0

V
, the two mean values yield the same result ⟨E1⟩ = ⟨E1⟩c.

Similarly, if the field E1(r) is homogeneous, the two mean values yield the same
result as well. However opposed to classical approach, when the electrons are
distributed according to their wavefunctions, neither the density nor the field is
homogeneous.

Depolarization factor
As mentioned before, the inclusions respond to the local field Eloc inside. It is
given by a self-consistent condition

Eloc = E0 + E1(Eloc) (7.11)

The depolarization field, to the first order of perturbation, E1 is caused by the
electrons displaced by the local field Eloc = Ẽ e−iωt driving them, density given by
(7.3). In order for us to be able to exploit the classical effective medium theory,
we take the average of the depolarization field

Eloc = E0 + ⟨E1⟩ (7.12)

For finding the field E1 by solving Poisson’s equation is a formidable task in
general and for we need the mean value only, we introduce a depolarization factor
L in order to simplify the self consistent condition for the local electric field Eloc.

Eloc = E0 − L
P
ε0

(7.13)

where P = ε0∆χEloc is (linear) polarization of the material due to the displace-
ment of free electrons. The depolarization factor L is defined as a ratio of the
actual screening field (induction) ε0⟨E1⟩ to the polarization P

L = −ε0⟨E1(Eloc)⟩
P (Eloc)

= −⟨E1(Eloc)⟩
∆χEloc

(7.14)
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The free electrons contribution to electric susceptibility ∆χ(ω) can be obtained
from the conductivity spectra σ(ω) we calculated in chapter 6 using formula
(3.11).

In order to prevent ambiguity in the depolarization factor interpretation, in
the following we show that within the linear response regime it gives both the
first order perturbation E ′ to the external field E0 as well as the depolarization
field E1 fulfilling the self-consistent condition for the local field Eloc. We assume
a linear dependence of the depolarization field E1 on the local field Eloc

E1 = −αEloc (7.15)

Then it follows from eq. (7.11) that

Eloc = E0

1 + α
(7.16)

Now let us introduce the first order perturbation E ′ caused by the external field
E0

E ′ = −βE0 (7.17)

Higher orders of perturbation are obtained by reapplying this relation to itself.
The depolarization field is then given by the sum of the perturbation series to
infinity, whence the local field is

Eloc = E0 +
∞∑

k=1
(−β)kE0 = E0

∞∑
k=0

(−β)k = E0

1 + β
(7.18)

By comparison of eq. (7.16) and (7.18) we see that α = β. Relation to the
depolarization factor is α = L∆χ.

In the following chapters, we will calculate the depolarization factor in a one-
dimensional case and for a sphere.

41



8. 1D Case
In this chapter, we study one-dimensional case for it is rather simple and in
order to acquire some insight before addressing the three-dimensional problem
in the following chapter. We will find the electric field caused by the displaced
conductive electrons and we will calculate the depolarization factor.

8.1 Desk analogy
The general approach to solving the Poisson’s equation (as any other partial
differential equation defined on the entire space) is the Fourier transform. In
one-dimensional case, one needs not to solve the Poisson’s equation at all in
order to find the electric intensity. It can be obtained by a single integration

E1(x) = −
∫ ρ1(x)

ε0
dx (8.1)

That is not however instructive with respect to the three-dimensional case. Also
in the 1D universe, the dimension of the electric intensity is [Vm] instead of
[Vm−1]. To fix this, we present the analogy to an infinite perpendicular desk
in three-dimensional space. In both cases, the Poisson’s equation is mathemati-
cally equivalent. Due to reasons of symmetry, the partial derivatives in y and z
directions are zero.

Fig. 8.1 explains the way to construct the perpendicular desk using one-
dimensional rods. The equidistant spacing of the rods must be as follows, so that
the equilibrium volumetric density n of electrons is isotropic from a macroscopic
point of view. Say there are N0 electrons in a rod of length A. The linear density

(a) Single 1D rod. (b) Array of rods. (c) Perpendicular desk.

Figure 8.1: Construction of an infinite perpendicular desk in
three-dimensional space using an array of equidistantly spaced
one-dimensional rods. Courtesy of Vojtěch Klimovič.

of electrons is then λ = N0/A. It holds for densities that

n = λ3 = N3
0

A3 (8.2)

and so the surface density of the rods must be

σ = N2
0

A2 (8.3)
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or equivalently their spacing in the grid must be a = A/N0.
Now that we operate in the three-dimensional space with electrostatics well

defined, we can exploit the Gauss law of electrostatics to simplify the problem.
Same as within the classical electrostatics, any charged infinite layer creates a field
constant in the space. The electric field outside the desk is zero, for the entire
desk is electrically neutral. Furthermore in the quantum mechanical approach,
where the electrons are distributed in the volume according to the wavefunction,
the charge at the boundaries of the desk is zero. From that we can see that not
only outside, but also at the boundary the field is zero and therefore we can derive
a zero-derivative boundary condition for the potential Φ(x). We are thus enabled
to use a discrete Fourier series expansion.

The physics of the one-dimensional rod and the perpendicular desk is however
not exactly the same. In the desk we would discover sub-bands emerging in
the dispersion relation of a band structure caused by unrestrained movement of
electrons in the perpendicular directions. This also leads to different densities
of states. These two physical models are not equivalent, although we can justify
this analogy from the point of view of electrostatics.

8.2 Poisson’s equation
We are left with the task of finding the electric intensity inside the desk. Hence
we solve the Poisson’s equation for the potential with the aforementioned zero-
derivative boundary condition.

The wavefunctions with the zero-value boundary condition have the form

Ψk(x) =
√

2
A

sin
(
kπ

A
x

)
(8.4)

In order to solve the Poisson’s equation, we will perform a Fourier series
expansion of the electron density distribution (7.2) and (7.3):

n0(x) =
∑
N

ANϕN(x) (8.5)

n1(x) =
∑
N

BNξN(x) (8.6)

Once we know the expansion coeficients BN , we can easily solve the Poisson’s
equation

∆Φ(x) = − e

ε0

∑
N

BNξN(x) (8.7)

using the eigenvalue relation

∆ξN(x) = λNξN(x) (8.8)

The solution is given by

Φ(x) = − e

ε0

∑
N

BN

λN

ξN(x) (8.9)

The expansion basis is to be chosen as an orthogonal set among the eigenfunc-
tions of the "one-dimensional Laplace operator" d2

dx2 by the boundary condition.
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Differing from the wavefunction, the dimension of the electron density n(x) is
[m−1]. Such must be also the dimension of the expansion basis functions and the
expansion coefficients must be dimensionless numbers. For the coefficients are
given by scalar product, it must be defined as follows:

⟨ϕ|ψ⟩ = A
∫ A

0
ϕ∗(x)ψ(x) dx (8.10)

The normalized expansion basis is then

ϕN(x) =
√

2
A

cos
(
Nπ

A
x
)

for N = 0, 2, 4, ... (8.11)

ξN(x) =
√

2
A

cos
(
Nπ

A
x
)

for N = 1, 3, 5, ... (8.12)

ϕN with N even for the equilibrium density n0, while ξN with odd N for the
first order perturbation density n1. It follows from the non-trivial Fourier series
coefficients

S|k−l| = A
∫ A

0
ϕ∗

|k−l|(x)Ψ∗
k(x)Ψl(x) dx = 1√

2
(8.13)

Sk+l = A
∫ A

0
ϕ∗

k+l(x)Ψ∗
k(x)Ψl(x) dx = − 1√

2
(8.14)

for the density matrix has only non-zero elements for m = n in equilibrium while
in the first order of perturbation only pairs of wavefunctions of opposite parity
are allowed by the dipole selection rules. Hence the expansion coefficients for the
densities are

AN =
∑

k

fk√
2

(δN,0 − δN,2k) (8.15)

BN =
∑
k,l

αkl√
2
(
δN,|k−l| − δN,k+l

)
(8.16)

where we used the Kronecker-δ symbol and where

αkl = fk − fl

ℏ

⟨k |er | l⟩ · Ẽ e−iωt

ω − (ωk − ωl) + iγ
(8.17)

The explicit forms of the expansion of the densities are

n0(x) =
∑

k

fk

[
1√
2
ϕ0(x) − 1√

2
ϕ2k(x)

]
(8.18)

n1(x) =
∑
k,l

αkl

[
1√
2
ξ|k−l|(x) − 1√

2
ξk+l(x)

]
(8.19)

The eigenvalues of the expansion basis functions are

λN = −N2π2

A2 (8.20)

and the explicit form of the solution for the potential Φ(x) is

Φ(x) = e

ε0

∑
N

√
2A

N2π2 BN cos
(
Nπ

A
x
)

(8.21)
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Electric field
The electric intensity E1(x) is obtained by taking the gradient of the potential

E1(x) = −∇Φ(x) = − e

ε0

∑
N

√
2

Nπ
BN sin

(
Nπ

A
x
)

(8.22)

As it was noted before, in 1D case the dimension of the electric intensity is [Vm].
To fix this issue, we multiply the field by the surface density σ of the rods given
by (8.3). E1(x) → σE1(x).

The mean electric field according to the classical averaging over the length
can be integrated analytically

⟨E1⟩c = 1
A

∫ A

0
E1(x)dx = − e

ε0
σ
∑
N

2
√

2
N2π2 BN (8.23)

which holds for N odd. This is fine for the first order perturbation expansion has
non-zero coefficients just only for odd N . The mean value weighted by electron
probability density is as follows.

⟨E1⟩ = 1
N0

∫ A

0
E1(x)n0(x)dx = 1

N0

∫ A

0
E1(x)

∑
k

fk |Ψk(x)|2 dx (8.24)

The integral of a product of three sines can be expressed analytically as well
∫ A

0
sin

(
Nπ

A
x
) 2
A

sin2
(
kπ

A
x

)
dx = 8k2

Nπ(4k2 −N2) (8.25)

again well defined for odd N and hence

⟨E1⟩ = − e

ε0
σ
∑
N

∑
k

8
√

2k2

N2π2(4k2 −N2)
fk

N0
BN (8.26)

8.3 Depolarization factor
For unitary local electric intensity Eloc = 1 (at given frequency ω), the definition
relation of the depolarization factor L (7.14) simplifies to

L = −⟨E1⟩
∆χ (8.27)

We have already calculated the mean depolarization field ⟨E1⟩ above. The free
electrons’ contribution to the susceptibility ∆χ can be obtained from the conduc-
tivity σ(ω) as in (6.1) through relation (3.11):

∆χ(ω) = iσ(ω)
ωε0

(8.28)

The mean electric field ⟨E1⟩ turns out to have the same spectral dependence
as the susceptibility ∆χ. That means the depolarization factor, as their ratio, is
real-valued and frequency-independent. We shall distinguish between L and Lc,
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depending on the averaging used to calculate the mean field. The value of the
depolarization factor while using the classical averaging is

Lc = 1 (8.29)

independent of size of the 1D quantum dot or any other parameters. This result
matches the classical theory.

The values of the depolarization factor obtained utilizing the weighted aver-
aging, however, differ. Dependence on the size, temperature and excitation is
observed. Results for the depolarization factor L are plotted in fig. 8.2. It takes
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Figure 8.2: Dependence of the depolarization factor L on size of
the quantum dot for various temperatures. Density of electrons
n = 104 µm−3.

upon values between 1 and 8
5 . The unity is the classical limit for large dimensions

of the structure, high concentrations of electrons and high temperatures. On the
other hand, the 8

5 is the ratio of ⟨E1⟩ to ⟨E1⟩c in the most non-classical case, when
only the ground level is occupied and only the transition from the ground to the
first excited level occurs. In such case, the only non-zero expansion coefficients
for the perturbation density are B1 = 1√

2(α12 + α21) and B3 = − 1√
2(α12 + α21).

Then we get

⟨E1⟩ = − eσ

ε0π2
16
9 (α12 + α21) (8.30)

⟨E1⟩c = − eσ

ε0π2
128
45 (α12 + α21) (8.31)

and the result of the division is
⟨E1⟩
⟨E1⟩c

= 8
5 (8.32)
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In this chapter, we have seen that for obtaining the true depolarization factor
for nanostructures within the quantum theory, it is necessary to take into consid-
eration both the non-uniform equilibrium distribution of electrons in the volume
of the quantum dot and the non-homogeneous electric field inside caused by the
electrons displaced in volume as well. Neither of these phenomena is accounted
for within the classical electrostatics.
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9. Sphere
We proceed analogically to the 1D case. We are focused on finding the values
of depolarization factor applicable for nanometric spherical inclusions. We will
employ the corrected depolarization factor within the Maxwell Garnett effective
medium approximation.

9.1 Multipole expansion
Also in the three-dimensional case, the Poisson’s equation on the entire space is
generally solved by applying the Fourier analysis. In the spherical coordinate sys-
tem, one expands the angular part in the spherical harmonic series1 and performs
the Fourier-Bessel transform (also known as Hankel transform) on the radial part.

We are primarily interested in the electric intensity inside of the polarized
conductive sphere. The electric field outside is not of much importance to us, but
it can be found rather easily utilizing the multipole expansion. The knowledge of
the field outside will enable us to formulate boundary conditions for the Poisson’s
equation to be solved inside the sphere and therefore will allow us to use the
discrete Fourier-Bessel series (also known as Dini series) expansion of the radial
part.

The densities of the electrons (7.2) and (7.3) are

n0(r) =
∑
nlm

fnl N 2
nlj

2
l (knlr) |Ylm|2 (9.1)

n1(r) =
∑

nlmn′l′m′
αnlmn′l′m′ jl(knlr) jl′(kn′l′r)Y ∗

l′m′(θ, φ)Ylm(θ, φ) (9.2)

where

αnlmn′l′m′ = e

ℏ

(fn′l′ − fnl)E0e−iωt

ω − (ωn′l′ − ωnl) + iγ
⟨n′l′m′|x|nlm⟩ Nn′l′Nnl (9.3)

We exploit that the displaced electric charge ρ1(r′) = −en1(r′) is confined inside
the sphere of radius R to obtain a valid multipole expansion of the potential Φ(r)
in terms of the spherical harmonics outside the sphere, Lacava [26]

Φ(r) = 1
4πε0

[
4π
∑
LM

1
2L+ 1

1
rL+1 qLMYLM(θ, φ)

]
(9.4)

where
qLM =

∫
Y ∗

LM(θ′, φ′)(r′)lρ1(r′) d3r′ (9.5)

For the densities represent sums of products of two wavefunctions, which are
eigenfunctions of the Laplace’s operator as well2, we will need to evaluate integrals

1The general spherical harmonics transform can be done on concentric spherical surfaces of
different radii independently, but it fails to represent the radial dependence effectively, Kazhdan
et al. [25]. However from the separated structure of solution to the Schrödinger equation, we
know the angular dependence is the same for any radius.
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of products of three spherical harmonics, Arfken et al. [27]:∫ 2π

0

∫ π

0
Y ∗

LM(θ, φ)Yl1m1(θ, φ)Yl2m2(θ, φ) sin(θ) dθ dφ =

=

√(2l1 + 1)(2l2 + 1)
4π(2L+ 1) ⟨l1 l2 0 0|L 0⟩ ⟨l1 l2 m1 m2|L M⟩

(9.6)

where ⟨l1 l2 m1 m2|L M⟩ are the Clebsch-Gordan coefficients for coupling of an-
gular momenta, Cohen-Tannoudji et al. [6]. The formula holds for ’physical’
degrees l and orders m of the spherical harmonics. For the wavefunctions are
solutions to the Schrödinger equation, they indeed are physical. The identity

Y ∗
l,m(θ, φ) = (−1)mYl,−m(θ, φ) (9.7)

is another utile formula. Applying (9.7) to (9.5), due to properties of the Clebsh-
Gordan coefficients one finds that

qLM ̸= 0 only for L = 1 (9.8)
It is not a surprising result, since the dipole selection rules only allow transitions
with ∆l = ±1. The explicit form of the potential Φ(r) outside is

Φ(r) = 1
3ε0

1
r2 q11

[
Y11(θ, φ) − Y1−1(θ, φ)

]
(9.9)

We employed relation q11 = −q1−1 which follows from reasons of symmetry. The
potential Φ(r) is that of a dipole aligned with x-axis. Alas the field outside the
sphere generated by the first order perturbation density of charge has form as if
induced by an electric dipole in the center of the sphere.

The situation is the same in classical electrostatics. The field outside of a
polarized sphere has a dipole component only. However from the surface charge
density and continuity condition of the potential, one can find the electric field
inside the sphere is homogeneous. This does not hold in our quantum approach,
as the charge remains displaced in the volume rather than on the surface. The
surface charge is zero. Therefore the formula for potential outside the sphere must
also hold at the surface. Electric intensity, which can be obtained by taking the
gradient of the potential, is then also defined on the surface. These observations
allow us to formulate a boundary condition for the radial part of the potential
Φ(r) to be found as a solution to the Poisson’s equation inside the sphere. The
potential on the surface is

Φ(r)
⏐⏐⏐⏐⏐
r=R

= 1
3ε0

q11
[
Y11(θ, φ) − Y1−1(θ, φ)

] 1
R2 (9.10)

and its derivative with respect to the radial coordinate r is
∂Φ(r)
∂r

⏐⏐⏐⏐⏐
r=R

= − 2
3ε0

q11
[
Y11(θ, φ) − Y1−1(θ, φ)

] 1
R3 (9.11)

By comparing the two, one gets the boundary condition

r
∂Φ(r)
∂r

⏐⏐⏐⏐⏐
r=R

= −2 Φ(r)
⏐⏐⏐⏐⏐
r=R

(9.12)

for the radial part of the potential inside the sphere.
2Consider the structure of the time-independent Schrödinger equation (4.2).
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9.2 Poisson’s equation
We will perform the expansion of the electron density distribution (9.1) and (9.2)
to their respective eigenfunction bases:

n0(x) =
∑
N

ANϕN(x) (9.13)

n1(x) =
∑
N

BNξN(x) (9.14)

Once we know the expansion coeficients BN , we can easily solve the Poisson’s
equation

∆Φ(x) = − e

ε0

∑
N

BNξN(x) (9.15)

using the eigenvalue relation

∆ξN(x) = λNξN(x) (9.16)

The solution is given by

Φ(x) = − e

ε0

∑
N

BN

λN

ξN(x) (9.17)

Expansion basis
The eigenfunctions are the spherical harmonics Yl,m(θ, φ) for the angular part
and the spherical Bessel functions of the first kind jl(z) for the radial part of the
Laplace’s operator. The generally known procedure of expansion to the Fourier-
Bessel series, also known as Dini series, is modified for the spherical coordinates,
Chen [28].

We will choose degree l and order m of the spherical harmonics of the ex-
pansion basis by reasoning on symmetry. The spherical harmonic for expanding
the equilibrium density n0(r) will be Y0,0 for both are totally symmetric. For
the electric field E is x-polarized, the angular part of the basis for expanding the
perturbation density n1(r) will be Y1,1(θ, φ) − Y1,−1(θ, φ). We refer to (A.9) in
order to comply with the choice of basis we made, under which we obtained the
dipole selection rules (5.6).

The type l of the basis spherical Bessel function must correspond to the spher-
ical harmonics chosen for basis, therefore j0(z) form the basis for expansion of
the radial part of n0(r) and j1(z) for n1(r). The orthogonal set of the spherical
Bessel functions on interval [0,R] will be specified by the boundary condition.

The dimension of the electron density n(r) is [m−3]. Such must be also the
dimension of the expansion basis functions and the expansion coefficients must
be dimensionless numbers. For the coefficients are given by the scalar product,
it must be defined as follows:

⟨ϕ|ψ⟩ = V
∫
ϕ∗(r)ψ(r) d3r (9.18)

We can express the basis functions ϕN and ξN :

ϕN(r) = 1√
V

NN j0(qNr) Y0,0(θ, φ) (9.19)

ξN(r) = 1√
V

MN j1(kNr)
1√
2

[Y1,1(θ, φ) − Y1,−1(θ, φ)] (9.20)
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where NN and MN are normalization factors of the corresponding spherical Bessel
functions. Wavevectors qN and kN are to be determined from the boundary
condition. For ϕN(r) are not used as a basis to differential equation solutions, we
may choose arbitrary boundary condition for the expansion basis. We proceed
with zero-value boundary condition3

j0(qNR) = 0 (9.21)

which, considering the explicit form of j0(z)

j0(z) = sin(z)
z

(9.22)

gives
qNR = Nπ (9.23)

for integer N > 0. The normalization is given by

NN = Nπ

√
2
R3 (9.24)

Concerning basis functions ξN(r), we apply the condition (9.12) to the radial
part j1(kNr):

r
∂j1(kNr)

∂r

⏐⏐⏐⏐⏐
r=R

= −2 j1(kNr)
⏐⏐⏐⏐⏐
r=R

(9.25)

We use one of the recurrence formulas, Olver et al. [18], for differentiation of
the spherical Bessel functions

d
dz jl(z) = l

z
jl(z) − jl+1(z) (9.26)

to perform the derivative on the boundary condition. We obtain

3 j1(kNR) − kNR j2(kNR) = 0 (9.27)

Using another recursive identity for spherical Bessel functions

jl−1(z) + jl+1(z) = 2l + 1
z

jl(z) (9.28)

we simplify the boundary condition to

kNR j0(kNR) = 0 (9.29)

which holds for the zeros given by

kNR = Nπ (9.30)

for integer N > 0. The normalization is given by MN = D−1/2
N where

DN = R3

2

{
(j′

l)2(kNR) + 1
kNR

jl(kNR)j′
l(kNR) +

[
1 − l(l + 1)

k2
NR

2

]
j2

l (kNR)
}
(9.31)

3We will see that this choice is handy later, when we calculate the mean electric field. Due
to (9.23) and (9.30), some of the expressions will turn out as orthogonality relations.
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according to Lebedev and Silverman [29]. Note that the prime symbol j′
l here

stands for a derivative with respect to the entire argument. For l = 1 it can be
simplified to

DN = R3

2
{
j2

1(kNR) − j0(kNR)j2(kNR)
}

(9.32)

The rightmost term is zero due to the boundary condition. Exploiting the explicit
formula for j1(z):

j1(z) = sin(z)
z2 − cos(z)

z
(9.33)

one finds that also

MN = Nπ

√
2
R3 (9.34)

The eigenvalues λN for eigenfunctions ξN(r) of the Laplace’s operator are

λN = −k2
N (9.35)

The potential Φ can be then expressed

Φ(r) = e

ε0

∑
N

BN

k2
N

ξN(r) (9.36)

Now we are left with expansion coefficients BN to be evaluated.

Expansion coefficients
Let us perform the expansions. The formal expressions for the coefficients are:

AN = ⟨ϕN |n0⟩ (9.37)
BN = ⟨ξN |n1⟩ (9.38)

Coefficients AN are

AN =
∑
nlm

fnl V
∫
ϕ∗

N(r)Ψ∗
nlm(r)Ψnlm(r) d3x =

=
∑
nl

fnl

√
V
∫ R

0
NNN 2

nlj0(qNr) j2
l (knlr)r2dr×

×
∑
m

∫ 2π

0

∫ π

0
Y ∗

00(θ, φ)Y ∗
lm(θ, φ)Ylm(θ, φ) sin(θ) dθ dφ

(9.39)

Using the explicit form of Y00(θ, φ) = 1√
4π

, the angular part integration reduces
to orthogonality relation for the spherical harmonics. We get

AN =
√
V
∑
nl

fnl
2l + 1√

4π
NNN 2

nl

∫ R

0
j0(qNr) j2

l (knlr)r2dr (9.40)

The radial part is to be integrated numerically using the adaptive Gauss-Kronrod
quadrature, Shampine [22].
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The situation is a little more complicated for the perturbation density expan-
sion.

BN =
∑

nlmn′l′m′
αnln′l′ ⟨n′l′m′|x|nlm⟩V

∫
ξ∗

N(r)Ψ∗
n′l′m′(r)Ψnlm(r)d3x =

=
∑

nln′l′
αnln′l′MNNn′l′Nnl

√
V
∫ R

0
j1(kNr) jl(knlr) jl′(kn′l′r)r2dr×

×
∑
mm′

⟨n′l′m′|x|nlm⟩
∫ 2π

0

∫ π

0

1√
2
[
Y ∗

1,1(θ, φ) − Y ∗
1,−1(θ, φ)

]
×

× Y ∗
l′m′(θ, φ)Ylm(θ, φ) sin(θ) dθ dφ

(9.41)

where αnln′l′ is

αnln′l′ = e

ℏ

(fn′l′ − fnl)Ẽ0e−iωt

ω − (ωn′l′ − ωnl) + iγ
(9.42)

We apply (9.7) to either Y ∗
1,±1(θ, φ) or Y ∗

l′m′(θ, φ) in the angular part integral, so
that we can exploit (9.6) directly. Then we evaluate the Clebsch-Gordan coeffi-
cients using method from Thompson [30] along with the rest of the expression.

We have computed the expansion coefficients BN . The perturbation density
can be then expressed in terms of eigenfunctions as

n1(r) = 1√
V

∑
N

BNMN j1(kNr)
1√
2

[Y1,1(θ, φ) − Y1,−1(θ, φ)] (9.43)

and we may proceed to the solution of the Poisson’s equation (9.36) for the electric
potential Φ

Φ(r) =
∑
N

CN j1(kNr) [Y1,1(θ, φ) − Y1,−1(θ, φ)] (9.44)

where we introduced
CN = 1√

2V
e

ε0k2
N

BNMN (9.45)

Electric intensity
The electric intensity E1(r) is obtained by taking the gradient of the potential

E1(r) = −∇Φ(r) (9.46)

Formulas for the derivative of the spherical harmonics with respect to φ is

∂Ylm(θ, φ)
∂φ

= imYlm(θ, φ) (9.47)

and with respect to θ the first for m ≥ 0:

∂Ylm(θ, φ)
∂θ

= m cot(θ)Ylm(θ, φ) +
√

(l −m)(l +m+ 1) e−iφYl,m+1(θ, φ) (9.48)

∂Ylm(θ, φ)
∂θ

= −m cot(θ)Ylm(θ, φ) −
√

(l +m)(l −m+ 1) eiφYl,m−1(θ, φ) (9.49)

53



and the second for m < 0, Abramowitz and Stegun [31]. Performing the
gradient and using explicit forms for the spherical harmonics we find the electric
intensity in spherical coordinates

Er =
√

3
2π sin(θ) cos(φ)

∑
N

CN

[1
r
j1(kNr) − kNj2(kNr)

]
(9.50)

Eθ =
√

3
2π cos(θ) cos(φ)

∑
N

CN
1
r
j1(kNr) (9.51)

Eφ = −
√

3
2π sin(φ)

∑
N

CN
1
r
j1(kNr) (9.52)

Now we know the distribution of the electric field inside the spherical quantum
dot due to perturbation in the distribution of electrons. For the distribution of
the field, see fig. 9.1. The field inside the sphere is the solution to the Poisson’s
equation with the boundary condition, the field outside is given by the multipole
expansion.
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Figure 9.1: The electric field E1 in x, y plane inside sphere(20)
caused by perturbation of unitary driving field Eloc(ω = 0).
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Mean electric field
The mean electric intensity will have only the x-component non-zero. y and z-
components will vanish for reasons of symmetry. The x-component of the field is
obtained from the spherical ones (9.50) as

Ex(r, θ, φ) = sin(θ) cos(φ)Er + cos(θ) cos(φ)Eθ − sin(φ)Eφ =

=
√

3
2π

∑
N

CN

[
j1(kNr)

r
− sin2(θ) cos2(φ)kNj2(kNr)

] (9.53)

where we exploited the trigonometric unity identity. Let us recall the expansion
of the equilibrium density

n0(r) =
∑
N

AN
NN√
V
j0(qNr)Y00(θ, φ) (9.54)

The explicit form of the angular dependence is Y00(θ, φ) = 1√
4π

. Let us define
A′

N = ANNN/
√
V . The mean electric intensity is then

⟨Ex⟩ = 1
2πN0

√
3
2
∑
N

∑
M

A′
NCM

[∫ R

0

j0(qNr)j1(kMr)
r

r2dr
∫ 2π

0

∫ π

0
sin(θ)dθdφ−

−
∫ R

0
kM j0(qNr)j2(kMr)r2dr

∫ 2π

0

∫ π

0
sin3(θ) cos2(φ)dθdφ

]
(9.55)

We evaluate the angular integrals∫ 2π

0

∫ π

0
sin(θ)dθdφ = 4π (9.56)∫ 2π

0

∫ π

0
sin3(θ) cos2(φ)dθdφ = 4

3π (9.57)

yielding

⟨Ex⟩ =
√

6
N0

∑
N

∑
M

A′
NCM

∫ R

0
j0(qNr)j1(kMr)r − kM

3 j0(qNr)j2(kMr)r2dr =

=
√

6
N0

∑
N

∑
M

A′
NCM

kM

3

∫ R

0
j0(qNr)j0(kMr)r2dr =

=
√

6
N0

∑
N

∑
M

A′
NCM

1
3qN

∫ R

0
sin(qNr) sin(kMr)dr

(9.58)

Considering conditions (9.23) and (9.30) we obtain∫ R

0
sin(qNr) sin(kMr)dr = R

2 δMN (9.59)

Then finally

⟨Ex⟩ =
√

6
N0

R

6
∑
M

A′
MCM

qM

(9.60)
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Obviously the mean field is frequency-dependent due to CM = f(ω).
Analogically, the classical averaging method gives

⟨Ex⟩c =
√

4π
√

6
V

∑
M

CM

∫ R

0
j1(kMr)r − kM

3 j2(kMr)r2dr =

=
√

4π
√

6
V

∑
M

CM
kM

3

∫ R

0
j0(kMr)r2dr =

=
√

4π
√

6
V

∑
M

CM
1
3

∫ R

0
sin(kMr)rdr

(9.61)

The radial part can be easily integrated by parts which gives∫ R

0
sin(kMr)rdr = (−1)M+1 R

kM

(9.62)

and hence
⟨Ex⟩c =

√
4π

√
6

V

R

3
∑
M

(−1)M+1 CM

kM

(9.63)

9.3 Depolarization factor
For unitary local electric intensity Eloc = 1 (at given frequency ω), the definition
relation of the depolarization factor L (7.14) simplifies to

L = −⟨E1⟩
∆χ (9.64)

We have already calculated the mean depolarization field ⟨E1⟩ above. The free
electrons’ contribution to the susceptibility ∆χ can be obtained from the conduc-
tivity σ(ω) as in (6.1) through relation (3.11):

∆χ(ω) = iσ(ω)
ωε0

(9.65)

The mean electric field ⟨E1⟩ turns out to have the same spectral dependence
as the susceptibility ∆χ. That means the depolarization factor, as their ratio, is
real-valued and frequency-independent.We shall distinguish between L and
Lc, depending on the averaging used to calculate the mean field. The value of
the depolarization factor while using the classical averaging is

Lc = 1
3 (9.66)

independent of size of the quantum dot or any other parameters. This result
matches the classical theory.

The values of depolarization factor L obtained while using the weighted aver-
aging, however, vary for different sizes, temperatures and charge densities. The
dependence on size for various temperatures is plotted in fig. 9.2. We remind the
notation from chapter 4: sphere(s) stands for a sphere with radius R = s

(
3

4π

)1/3

so that it has the same volume as a cube of size s. This is meant by size on the
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Figure 9.2: Dependence of the depolarization factor L on size of
the spherical quantum dot for various temperatures. Density of
electrons n = 104 µm−3.

horizontal axis in the figure. The classical limit, i.e. for large sizes, high tem-
peratures and densities, is 1

3 . That corresponds with the result of the classical
theory. On the other hand, the saturation limit for the most non-classical cases
Lmax is elevated. We find the maximal depolarization factor Lmax for the most
non-classical case, analogically to our one-dimensional problem analysis, as

Lmax = Lc
⟨Ex⟩
⟨Ex⟩c

(9.67)

when only the ground state is occupied and only the transition from the ground
to the first excited level occurs. The derivation is presented in the appendix B.1.
Evaluating the exact expression returns value

Lmax ≈ 1.08164 (9.68)

For our demonstration material GaAs, we have analyzed the dependence of
the depolarization factor on the size, temperature and carrier density, and we
have derived an approximate analytic formula. These material-specific results
are shown in appendix B.2.

In general, we know that the depolarization factor reaches its maximum Lmax
in the most non-classical case when only the ground state is occupied. We may
identify a transition from a non-degenerate to a degenerate regime,
where the depolarization effects start changing in quality. For low con-
centration of conductive electrons, low temperature and small sizes, the system
is non-degenerate. Adding more carriers (higher excitation pump intensity) that
still occupy no excited levels increases magnitude of the response of the composite
material to the external field, but does not cause any qualitative changes of the
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response. On the other hand, when excited levels are occupied as well, the sys-
tem becomes degenerate and the depolarization response is changing in quality,
and hence the decreasing depolarization factor L. The transition between non-
degenerate and degenerate regimes can be observed in fig. 9.2 where the bends
are located.

9.4 Effective medium approximation
We adapt formula (3.5) for deployment of both classical Lc and the new L values
of the depolarization factor where applicable. For the local field Eloc we obtain
in the quantum approach

Eloc = E0
εd

εd(1 − Lc) + εsLc + ∆χ(ω)L(s, n, T ) (9.69)

while in the classical way it remains

Eloc = E0
εd

εd(1 − Lc) + εsLc + ∆χ(ω)Lc

(9.70)

In order to see the impact of modified values of the depolarization factor L
on the permittivity of the composite material, we may express the contribution
of the conductive electrons as

∆εeff(ω) = εeff(ω) − εg (9.71)

We find both εeff(ω) and εg from the constitutive relation (3.2), for the former
with the additive contribution of the free electrons susceptibility εs+∆χ obtained
from the quantum formula for conductivity, and for the latter without, only εs.
The output depends on which of the two formulas for the local field (9.69) or
(9.70) we used while calculating εeff(ω). Both results are shown in fig. 9.3 and
fig. 9.4 for sphere(50) and sphere(25) respectively. Parameters of the effective
medium εg without the photoexcited free carriers are εs = 12.85 for the GaAs
inclusions in GaInAs matrix εd = 13.90, filling fraction f = 0.1.

We may observe in the figures that the increased values of the non-classical
depolarization factor L cause the susceptibility spectra to shift towards higher
frequencies. We can also notice a certain decrease in magnitude. Larger depolar-
ization factor means a stronger effective restoring force of the localized plasmonic
oscillations. This force is also proportional to concentration of the displaced elec-
trons. In order to demonstrate how the depolarization field affects the effective
permittivity, we choose the carrier density n = 105 µm−3 and we maximize the
depolarization factor for given size by selecting low temperature T = 10 K. The
apparent shift in frequency is about 1 THz to higher frequencies in both instances
of sphere(50) and sphere(25).
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Figure 9.3: Contribution ∆εeff of conductive electrons to the total
effective permittivity. Sphere(50), T = 10 K, n = 105 µm−3,
L = 0.66.
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Figure 9.4: Contribution ∆εeff of conductive electrons to the total
effective permittivity. Sphere(25), T = 10 K, n = 105 µm−3,
L = 1.08.

Effective volume
Let us define an effective susceptibility ∆χeff which would give us the same result
while using the classical value of the depolarization factor Lc as we get from the
actual susceptibility ∆χ and depolarization factor L: L∆χ = Lc∆χeff . Then

L

Lc

= ∆χeff

∆χ = σeff(ω)
σ(ω) = −eµ(ω)neff

−eµ(ω)n = neff

n
=

N
Veff
N
V

= V

Veff
(9.72)

For L > Lc, then Veff < V . This can be interpreted that the same number of
electrons is effectively confined in a smaller volume Veff . The volume of inclusions
does not enter the local field condition directly as a parameter, but the density of
carriers n does enter through χ in (3.3). Then if we use Lc∆χeff instead of L∆χ,
it is mathematically equivalent to truncation of the spheres from V to Veff . The
outer area is then treated as part of the matrix. The dipole field the quantum
dot generates in the matrix is neglected the same way as in the original Maxwell
Garnett approximation. Obviously, a mathematical operation cannot change the
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number of electrons in the system. Therefore one needs to lower the filling fraction
f , as a parameter of the Maxwell Garnett mixing formula, accordingly.
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10. Conclusion
We have revised the theoretical basics of quantum mechannics and electric con-
ductivity in terahertz spectral range with particular attention given to composite
materials.

We performed a direct comparison of densities of states of a quantum dot
in chapter 4. We have shown that, despite differences in detailed structure, the
asymptotic behaviour of densities of states is the same for various geometries,
most notably a cube and a sphere, as long as they have the same volume. We
also compared dipole moments of transitions between energy levels for a cube and
a sphere in chapter 5 along with comparison of conductivity spectra in chapter 6.
We have seen that the geometry doesn’t play a crucial importance as opposed to
volume. Although the spectra are not identical, we can say that the conductivities
are the same, if we consider e.g. non-homogeneous broadening of the spectral lines
by distribution of sizes in a sample. The different geometries are interchangeable
in the scope of terahertz spectroscopy. That is handy, for we may choose an
arbitrary geometry to simplify solving given problems.

In the strong confinement regime in nanostructures, the electrons are dis-
tributed in the volume according to the wavefunction, rather than to classical
models. Therefore in chapter 7, we have derived the general way of finding the
electric field generated by electrons displaced due to perturbation. In chapter 8
we have studied the depolarization effects in a one-dimensional case before mov-
ing on to a sphere in chapter 9. We have calculated the depolarization factor
that varies largely from its classical value in nanoparticles, but converges to it in
the classical limit. We have shown that the greater depolarization factor values
affect spectra of the contribution of the conductive electrons to the total effec-
tive medium permittivity by shifting the plasmonic resonances towards higher
frequencies.

This work contributes to theoretical models of terahertz conductivity in linear
response regime. The conductivity of composite materials consisting of nanopar-
ticles is affected by depolarization effects therein. We have shown that their
strength is somewhat different from the one predicted by classical electrostat-
ics approach. Along with the proposed correction to the depolarization factor,
the Maxwell Garnett effective medium approximation formulates a comprehen-
sive theory of dielectric properties of the composite materials with the inclusions
sparsely distributed.
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A. Symmetry Groups Analysis
In this chapter we address symmetry of the quantum dots in a general manner.
The symmetry of any object is independent of system of coordinates. Therefore
reasoning based on symmetry allows for finding e.g. conserved integrals of motion
or degeneracy of energy levels without the need to solve the actual equations of
motion. We will be identifying allowed dipole transitions and non-zero elements
of the conductivity tensor. We shall employ the formalism of symmetry groups
and the theory of representations. We introduce only necessary basics of the
formalism.

We keep in mind: the response of a system coupled to an external
field is always conditioned by its symmetry and by the symmetry of
the field in question.

A.1 Introduction to theory of representations
We may apply point operations to the geometry of a quantum dot transforming
it in space. An operation of symmetry is called such, that it transforms a con-
cerned object on itself. Physical properties must be invariant. Identity is always
an operation of symmetry. Others may include the congruent transformations,
i.e. rotations, reflections, point inversion or improper rotations. All of these op-
erations always map one point to itself: the center of mass. Hence the name of
point operations.

A group G is an algebraic structure consisting of a set of symmetry operations
S, a binary operation ∗ and a relation of equivalence =.

G = {S, ∗,=} (A.1)

The group must satisfy four conditions: closure, associativity, include an identity
operation and an inverse operation.

Let us consider a group of operations G. Let there be a set of matrices M
that represent the operations S in a given system of coordinates. let M form a
group M with the matrix multiplication. As long as there is a homomorphism φ
such that φ : M → G, we call M the matrix representation of the group G.

For a symmetry group, irreducible representations Γ can be found. The ir-
reducible representations of point groups, corresponding characters of operations
and basis functions can be found in tables, see Koster [32]. There are exactly
32 crystallographic point groups. Irreducible representations can be in a sense
compared to orthogonal basis of a vector space. The irreducible representations
are often labeled by letters based on their dimensions d: A,B for 1, E for 2, T for 3
and so forth in case of the crystallographic point groups, whilst Σ for 1, Π for 2, ∆
for 3 and so on for linear groups with at least one complete rotational symmetry.
Further indexing denotes (anti-)symmetries under reflection or inversion.

A representation Γk describes the symmetry of its corresponding basis function
ψk. Within a symmetry group G, symmetry of a product of basis functions ψk ×ψl

is given by the direct product Γk ⊗ Γl of appropriate representations. A direct
product of representations is also a representation of the group G. It is not
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however an irreducible representation in general. It can be expressed using the
irreducible representations:

Γk ⊗ Γl = a1Γ1 ⊕ a2Γ2 ⊕ a3Γ3 ⊕ ... (A.2)

in the sense of equivalence. These decompositions can be found in the multipli-
cation tables as well.

When evaluating an integral using calculus, we can determine if the integral
is zero due to eventual odd parity of the integrand. In a similar fashion we will
be able to decide whether a bra-ket (an integral) is zero based on the symmetries
of the elements participating.

theorem: (Integral of basis function). Let ψk be a kth basis function of repre-
sentation Γ. ∀k = 1, ..., dΓ holds:∫

ψk(x) d3x = 0 (A.3)

unless Γ is the totally symmetric representation, often denoted Γ1 or A1,Σ+.

Proof. We provide only an argument on this introduction’s level of rigor. For
the formal proof see e.g. Wigner and Griffin [33]. First we realize that the
operations of symmetry R̂ have no effect on the resulting integral:∫

ψk(x) d3x = ÔR

∫
ψk(x) d3x =

∫
ÔRψk(x) d3x

since it must be independent of choice of coordinate system. However, if ψk

doesn’t belong to the totally symmetric representation Γ1, in general it changes
under operations of symmetry of the group ÔRψk(x) ̸= ψk(x) and hence also its
non-zero integral would, which is a contradiction. Therefore

∫
ψk(x) d3x = 0 for

Γ ̸= Γ1. q.e.d.

In other words the bra-ket⟨
α
⏐⏐⏐Ôβ

⏐⏐⏐ γ⟩ =
∫
ψ∗

α(x)Ôβψγ(x) d3x (A.4)

can be non-zero only if the product of representations contains the totally sym-
metric representation Γ1, i.e. with a1 ̸= 0:

Γ∗
α ⊗ Γβ ⊗ Γγ = a1Γ1 ⊕ a2Γ2 ⊕ a3Γ3 ⊕ ... (A.5)

This will help us in the next section to determine which dipole transitions are
allowed.

A.2 Dipole moments
We are interested in the system’s interaction with an external electric field. The
group of symmetry of a homogeneous electric field is C∞v. However that is not of
a significant importance to us. We know the exact form of the dipole operator: er.
For the purpose of the symmetry discussion we omit the electric elementary charge
e. The operator then has form x, y, z1depending on the polarization of the field.
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It is convenient that functions x, y, z are the basis functions of various irreducible
representations of the point groups. Hence for a given quantum dot geometry,
we only need to determine its group of symmetry and the rest can be read from
tables.

The bra-ket under investigation is ⟨k | r | l⟩. We will treat the components of
the dipole moment vector separately: ⟨k |x| l⟩, ⟨k |y| l⟩, ⟨k |z| l⟩.

Cuboid
For instance, let us take a look at a cuboid geometry. Its group of symmetry is
D2h. The representations to whom basis functions x, y, z belong are B3u,B2u,B1u
respectively. The ’u’ from German ungerade stands for odd. First, let us suppose
the initial state is the ground (totally symmetric) state |l⟩ = Ag, ’g’ form gerade
for even. The representation of symmetry of the bra-ket for x-polarization is then

Γ = Γ∗
(k) ⊗ B3u ⊗ Ag (A.6)

By a look into the multiplication table, in order to have Γ include Ag, the sym-
metry of the bra- needs to be Γ∗

(k) = B3u, for B3u ⊗ B3u = Ag. Apparently the
the state of the system must change parity g → u.

The electric field converted the ground state to a new state |k⟩ = B3u. Let us
apply the field again. For ⟨q |x| k⟩ we now get

Γ = Γ∗
(q) ⊗ B3u ⊗ B3u (A.7)

which only allows for |q⟩ = Ag that has the same symmetry as the ground state.
It doesn’t necessarily mean the system is in the ground state though.

For a change, let us apply y-polarized field to the first excited state we obtained
by the x-polarized pulse:

Γ = Γ∗
(q′) ⊗ B2u ⊗ B3u = Γ∗

(q′) ⊗ B1g (A.8)

The only viable evolution of the system – other than no interaction at all – is
|q′⟩ = B1g. The basis function is the axial vector Sz. The system changes parity
again, but its symmetry is no longer that of the ground state.

Sphere
In the preceding part, we chose an asymmetric cuboid over a cube and thus
we have avoided degeneracy. To contrast that we now choose a sphere, whose
group K has the full rotational symmetry. The representations are Σ with total
symmetry, Π with dimension of 3 indicating three-fold degeneracy, ∆, Φ,... The
basis functions are the spherical harmonics Ylm. The symmetry C∞v of both the

1A photon also has group of symmetry C∞v. Say it propagates along axis z. As a boson
with spin s=1, its corresponding representation is Π and the tabular basis functions are x, y
based on polarization, which is in agreement with the results for the field.
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field (or the photon) and the spherical harmonics for l = 1 lets us make choice

x → 1√
2

(Y1,1 − Y1,−1)

y → 1√
2

(Y1,1 + Y1,−1)

z → Y1,0

(A.9)

Let us begin with ⟨k |z| l⟩ where the initial state is the ground state |l⟩ =
Σ+ = Y0,0. Let us express the integrand with basis functions directly

ψ∗
kY1,0Y0,0 = ψ∗

kY1,0 (A.10)

From tables follows that only the choice ψ∗
k = Y1,0 gives a result containing

Σ+ = Y0,0, for:

Y1,0Y1,0 = − 1√
3
Y0,0 +

√
2
3Y2,0 (A.11)

Only the first term contributes to non-zero dipole moment. Once more the change
of parity from Σ+ to Π−

z .
Applying the field to the system again, coupled by ⟨q |z| k⟩, we obtain

ψ∗
qY1,0Y1,0 = ψ∗

k

⎧⎨⎩− 1√
3
Y0,0 +

√
2
3Y2,0

⎫⎬⎭ (A.12)

which allows for ψ∗
q become either Y0,0 or Y2,0 which yield non-zero coefficient for

Y0,0 in the decomposition of the product.
We can see that interaction with z-polarization of the field is allowed for

∆l = ±1,∆m = 0. It can be shown that for x and y polarizations the transitions
are allowed for ∆l = ±1,∆m = ±1. The seeming difference between z as opposed
to x and y polarizations is not caused by any physical symmetry breaking, but
only by our choice of coordinates for mathematical description of the spherical
harmonics. The physical properties are independent of the coordinate system.

The result from this section is following. The parity of the state of the
system must change so that a dipole transition can occur. Although this
is not the only requirement for the dipole transition to happen. The initial and
final orbitals must overlap and the energy of photons must be close to resonance
with the energy difference of the two levels.2

We note that clearly the selection rules are identical for geometries sharing
the same symmetry group. There is no way that radial structure of a studied
object is affected by point operations of symmetry. Therefore within this analysis
the following shapes are equivalent: e.g. a cylinder, a rotational ellipsoid, a tube
and even a toroid with group D∞,h.

2This analysis based on groups of symmetry is not exhaustive. We will continue the inves-
tigation of dipole moments in chapter 5.
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A.3 Conductivity tensor
As follows from (2.28), the dependence of the tensor of conductivity on symmetry
of the quantum dot is characterized by the product of two dipole moments. Both
of the bra-kets need to be non-zero in order to produce a non-zero element of the
conductivity tensor

σλµ ∝
⟨
k
⏐⏐⏐xλ

⏐⏐⏐ l⟩⟨l ⏐⏐⏐xµ

⏐⏐⏐ k⟩ (A.13)
We suppose no magnetic fields and thus no loops of electric current. We

also don’t take spin representations into account. The structure of multiplica-
tion tables of representations and their basis functions is such that the totally
symmetric representation Γ1 only appears on the diagonal. Therefore in the coor-
dinate system given by the choice of basis functions one cannot obtain a non-zero
off-diagonal element of the conductivity tensor. The conductivity tensor can be
always diagonalized; the basis functions of the group representations determine
the axes along which the tensor is diagonal.

The question stands, whether it is possible to find a coordinate system in
which the tensor is non-diagonal for a given point group. It is very well possible
to rotate the coordinate system and find non-zero off-diagonal elements if the
diagonal elements in the initial basis have not all the same value, i.e. if we are
dealing with anisotropic material/object. We can decide whether the diagonal
elements have the same values or not based on eventual degeneracy of levels.

In the linear response regime, we assume the initial state of the system is the
ground state |k⟩ = Γ1. Then let bra-kets ⟨k|x|l⟩⟨l|x|k⟩ yield non-zero product.
There is only one3such representation basis function |l⟩ – and it is indeed different
from |m⟩ – that yields non-zero product of ⟨k|x|m⟩⟨m|x|k⟩. Contribution of these
bra-ket products to the conductivity are weighted by a factor of form 1

ω+ωkν+iγ
, see

(2.28), where ν stands for either l or m. The contribution to diagonal conductivity
elements can be the same only if ωkl = ωkm, which implies degeneracy of the
states.

As an exemplary geometry let us pick a square-base pyramid. The corre-
sponding point group is C4v. Functions x, y form basis of a representation E of a
two-fold degenerated state, while function z forms a basis of the totally symmet-
ric representation A1. Therefore σxx = σyy ̸= σzz. Let us rotate the coordinate
system about the axis z by an angle α. The off-diagonal elements are

σx′y′ = −σxx cos(α) sin(α) + σyy sin(α) cos(α) = 0 (A.14)
σy′x′ = −σxx sin(α) cos(α) + σyy cos(α) sin(α) = 0 (A.15)

for σxx = σyy. That is not surprising because we only rotated the system in the
plane spanned by the basis functions x and y of a degenerated state. Let us now
in contrast rotate around axis y. Then

σx′z′ = sin(α) cos(α)(−σxx + σzz) (A.16)
σz′x′ = sin(α) cos(α)(−σxx + σzz) (A.17)

which are non-zero.
Let us suppose a cube, point group Oh. All three functions x, y, z form basis

of the same representation T1u of three-fold degenerated states. Within the linear
3Recall the diagonal structure of multiplication tables.
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response, there is no coordinate system in which the conductivity tensor acquired
any non-zero off-diagonal elements. However by a pump pulse preceding the prob-
ing pulse for non-linear response measurement, we would break the degeneracy in
at least one direction. Then the diagonal elements begin to differ from each other
and a coordinate system can be found, in which non-zero off-diagonal elements
arise.
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B. Depolarization Factor Analysis
In chapter 9, we have calculated the depolarization factor L by evaluating the
quantum formula for electric current while simultaneously solving the Poisson’s
equation with the perturbation distribution of electrons. Here we provide the
derivation of the exact value of the maximum Lmax.

Calculation the depolarization factor is a formidable task, therefore we will be
looking for an approximate analytic expression that would yield – for given size
s, carrier density n and temperature T – the correct value of the depolarization
factor L(s, n, T ) directly.

B.1 Exact maximum
In analogy to our one-dimensional problem analysis, we find the maximal depo-
larization factor Lmax for the most non-classical case as

Lmax = Lc
⟨Ex⟩
⟨Ex⟩c

(B.1)

when only the ground state is occupied, i.e. f1,0 = N0 while fnl = 0 other-
wise, and only the transition from the ground to the first excited level occurs,
i.e. |n = 1, l = 0,m = 0⟩ → |n′ = 1, l′ = 1,m′ = ±1⟩. Using (9.60) and (9.63) we
obtain

Lmax = Lc
V

2
√

4πN0

∑
N

A′
NCN

qN∑
M

(−1)M+1 CM

kM

(B.2)

Equilibrium expansion coefficients
When only the ground state is occupied, the expansion coefficients for the equi-
librium density are

A′
N = N0√

4π
N 2

NN 2
1,0

∫ R

0
j0(qNr)j2

0(k1,0r)r2dr =

= N0√
4π

N 2
NN 2

1,0
1

qNk2
1,0

∫ R

0

sin(qNr) sin2(k1,0r)
r

dr
(B.3)

The integral can be expressed analytically using the sine integral function Si
as follows ∫ R

0

sin(qNr) sin2(k1,0r)
r

dr =

= 1
4
[
2Si(qNR) + Si(2k1,0R − qNR) − Si(2k1,0R + qNR)

] (B.4)

The sine integral Si is defined as

Si(z) =
∫ z

0

sin(x)
x

dx (B.5)
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which can be evaluated to arbitrary precision. Considering qN = Nπ
R

, k1,0 = π
R

and N 2
N = 2N2π2

R3 , N 2
1,0 = 2π2

R3 , we may simplify the expression for the coefficients

A′
N = N0√

4π
π

R3NSN (B.6)

where we introduced

SN =
[
2Si(Nπ) + Si(2π −Nπ) − Si(2π +Nπ)

]
(B.7)

We also recall that kM = Mπ
R

and hence the upper bound for for the depolarization
factor Lmax is

Lmax = Lc
π

6

∑
N

SN CN

∑
M

(−1)M+1

M
CM

(B.8)

Unlike in the one-dimensional case, here we will not be able to divide the sums
without finding the expansion coefficients of the electric field CN , CM respectively.

Perturbation expansion coefficients
Only the transition from the ground to the first excited level taken into consid-
eration, the coefficients are

CN =α1,0,1,1

2
e

ε0k2
N

M2
NN1,0N1,1

∫ R

0
j1(kNr)j0(k1,0r)j1(k1,1r)r2dr×

×
∫ 2π

0

∫ π

0
sin(θ)×

×
[
⟨1, 0, 0|x|1, 1, 1⟩

(
Y ∗

1,1(θ, φ) − Y ∗
1,−1(θ, φ)

)
Y ∗

0,0(θ, φ)Y1,1(θ, φ)+

+⟨1, 0, 0|x|1, 1,−1⟩
(
Y ∗

1,1(θ, φ) − Y ∗
1,−1(θ, φ)

)
Y ∗

0,0(θ, φ)Y1,−1(θ, φ)
]

dθdφ
(B.9)

Using the explicit form of Y0,0 = 1√
4π

, the angular part reduces to orthogonality
relation for the spherical harmonics∫ 2π

0

∫ π

0

(
Y ∗

1,1 − Y ∗
1,−1

)
Y1,±1 sin(θ)dθdφ = δ1,1δ1,±1 − δ1,1δ−1,±1 (B.10)

Exploiting that and knowing ⟨1, 0, 0|x|1, 1,−1⟩ = −⟨1, 0, 0|x|1, 1, 1⟩, one obtains

CN = α1,0,1,1

2
e

ε0

M2
N

k2
N

N1,0N1,1
2√
4π

⟨1, 0, 0|x|1, 1, 1⟩×

×
∫ R

0
j1(kNr)j0(k1,0r)j1(k1,1r)r2dr

(B.11)

Recalling M2
N = 2N2π2

R3 and kN = Nπ
R

, and therefore

M2
N

k2
N

= 2
R

(B.12)
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One can see the only part of CN that depends on N is the radial integral.
We know the wavevectors kN = Nπ

R
and k1,0 = π

R
, but we cannot express

k1,1 explicitly. k satisfying the boundary condition j1(kR) = 0 are solutions to
transcendent equation

tan(kR) − kR = 0 (B.13)
The zeros can be approximated by zeros of the cosine for large n, but for n = 1
the relative error is large. Therefore k1,1 is to be found numerically. We employ
at least the explicit forms of kN and k1,0 in order to facilitate the integration:∫ R

0
j1(kNr)j0(k1,0r)j1(k1,1r)r2dr = R

8k2
1,1π

3
k2

1,1R
2 + (N2 − 1)π2

N2 UN (B.14)

where we introduced
UN =

[
Si(k1,1R + (N− 1)π) + Si(k1,1R − (N− 1)π)−

−Si(k1,1R + (N+ 1)π) − Si(k1,1R − (N+ 1)π)
] (B.15)

The coefficients CN can be now expressed as

CN = c
k2

1,1R
2 + (N2 − 1)π2

N2 UN (B.16)

where c is a constant independent of N that will cancel when calculating Lmax.

Results

Lmax = Lc
π

6

∑
N

k2
1,1R

2 + (N2 − 1)π2

N2 UN SN

∑
M

k2
1,1R

2 + (M2 − 1)π2

M2 UM
(−1)M+1

M

(B.17)

For sufficiently large N , all the sine integrals obtained above can be approximated
by Si(±Mπ) and converge to its either positive or negative limit. Then, due to
their structure, coefficients SN and UN approach zero for increasing N , and so
do the entire summands. The sums in both numerator and denominator are
convergent. Evaluated numerically, the saturation limit of the depolarization
factor in the most non-classical case is

Lmax ≈ 1.08164 (B.18)
Lmax is the saturation limit of the depolarization factor for non-degenerate regime
of the system of conductive electrons in a sphere.

B.2 Approximate analytic formula
We have shown that Lmax ≈ 1.08164. For convenience, here we set its value to
13/12 = 1.083

Lmax ≈ 13
12 = 13

4 Lc (B.19)

∆Lmax ≈ 3
4 = 9

4Lc (B.20)

We remind the notation used throughout the thesis: s corresponds to radius
R = s

(
3

4π

)1/3
so that the sphere has the same volume as a cube of size s.
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Functional form
The additive correction to the classical depolarization factor ∆L = L−Lc can be
seen in fig. B.1 in the log-log scale for certain temperatures and el. concentrations.
The slope of the decreasing values of additions to the depolarization factor after
the bend is ∆y

∆x
= −1. Such slope in the log-log scale means the dependence is

reciprocal ∆L ∼ s−1. Therefore the data are fitted using function

∆L(s, n, T ) = α(n, T )
s− β(n, T ) (B.21)

An eventual additive constant is zero, for ∆L has to vanish in the classical limit
s → ∞. The shift β on the x-axis causes the deformation of the straight lines
of x−1 in the log-log plot. The fitted values of α and β show certain correlation
within the fit error in most cases

α = 2β (B.22)

Fit using the single-parameter function

∆L(s, n, T ) = 2β(n, T )
s− β(n, T ) (B.23)

is also performed. Both fits are also plotted in the fig. B.1. For simplicity,
we use the single-parameter fitting function henceforth. The results appear as
sufficiently precise within our approximation.
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Figure B.1: The additive correction to the classical depolarization
factor ∆L dependence on size s in the log-log scale. Solid black
lines are fitted via two parameters; dotted lines are fitted using
a single parameter.

The parameter β controls the position of the bend s0 in the dependence of
the depolarization factor on size of the sphere. We define the bend position as
the intersection of the fitted dependence ∆L(s, n, T ) with the ∆L = ∆Lmax

2β(n, T )
s0(n, T ) − β(n, T ) = 3

4 (B.24)
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which gives
s0(n, T ) = 11

3 β(n, T ) (B.25)

Note that for β → 0 and s → s0 (i.e. zero as well), the depolarization factor
correction as given by eq. (B.23) is well defined and yields ∆L → ∆Lmax, which
holds true also for α = 2β and hence supports the ansatz, although strictly
speaking it only requires that for β → 0 also α → 0.

Asymptotes
The dependence of the parameter β(n, T ) on carrier density n and temperature
T is shown in fig. B.2. We observe that both temperature and density impose an
upper limit for β independently of each other. We can see that for low concen-
trations of conductive electrons the parameter β depends solely on temperature,
while for concentrations large enough it depends on concentration indifferent of
temperature. Similarly for low temperatures the parameter β depends on con-
centration, while for high temperatures the concentration dependence becomes
less significant. In this manner the influence of concentration and temperature
is symmetric. The asymptotes of the density βn(n) and temperature dependence
βT (T ) are fitted in fig. B.2a and fig. B.2b respectively.
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Figure B.2: Parameter β(n, T ). Solid lines represent the asymp-
totes fitted in the plot, dotted lines represent values of the asymp-
totes from the other plot.

The function form of the asymptotes is as follows. From fig. B.2a we can
determine the slope in the log-log scale ∆y

∆x
= −1

3 , therefore βn(n) ∼ n−1/3.
Similarly in fig. B.2b we observe ∆y

∆x
= −1

2 and thus βT (T ) ∼ T−1/2.

βn(n) = γ

n
1
3 + λ

+ κ (B.26)

βT (T ) = δ

T
1
2 + λ

+ κ (B.27)

The exponents (and dimensions of γ and δ seen below) can also be justified
by the underlying physics. The bend position s0 shifts to the largest size of
the quantum dot, for which the electrons inside occupy the ground state only
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(or, more accurately, the excited states occupation can be neglected) for given
concentration n and temperature T . The ground energy level can accommodate
up to two electrons (due to the spin degeneracy). The number of electrons in
the quantum dot is given by N0 = nV0. By taking the cube root we obtain
const. = n1/3s0 and hence β ∼ s0 ∼ n−1/3. Also for s0, the width of the Fermi-
Dirac distribution given by kBT must scale with the separation of the ground and
excited energy levels ∆E proportional to s−2. Therefore we find that kBT ∼ s−2

0
which yields β ∼ s0 ∼ T−1/2.

Furthermore the parameters κ and λ must be zero having considered the fol-
lowing limits. For arbitrary finite n and T , one can find sufficiently small size s
of a potential well so that the number of electrons N inside is low enough and
the separation of energy levels ∆E is high enough for only the ground state to
be occupied. As we established earlier, that is the most non-classical case corre-
sponding to the saturation limit of the depolarization factor Lmax. An analytic
continuation for n → ∞ and/or T → ∞ gives s0(n, T ) → 0, and so β(n, T ) → 0,
leaving κ = 0. Concerning λ, β(n, T ) needs to be well defined for n → 0 and
T → 0 and also in the limit only the ground state will be occupied for arbitrarily
large s, so it cannot shift the asymptote to the right nor to the left on the x-axis,
setting λ = 0. We are left with the asymptotes in the form of

βn(n) = 0.312 n− 1
3 (B.28)

βT (T ) = 64.5 T− 1
2 (B.29)

where the values of the non-zero parameters γ = 0.312 ± 0.004 (dimensionless)
and δ = 64.5 ± 0.7 nm K1/2 have been determined by the fit in fig. B.2a and
fig. B.2b respectively.

The unifying parameter to dependencies on size, temperature and density of
electrons appears to be the relative occupation of ground and excited energy
levels. That is, however, not an input parameter of the model. Instead, we
derived L(s, n, T ) formula as follows

L(s, n, T ) = min
[
Lmax;Lc + 2 min [βn(n); βT (T )]

s− min [βn(n); βT (T )]

]
(B.30)

This formula holds at least approximately. Certain errors appear in the vicinity
of points where the asymptotic values meet and where the actually correct de-
pendencies bend smoothly, i.e. when βn(n) ≈ βT (T ) and also L(s, n, T ) ≈ Lmax.
The errors can be seen in fig. B.3. The latter is inherent to all size dependencies.
The case of βn(n) ≈ βT (T ) is observed for 30 K in the figure. The smooth bend,
see the T = 30 K, n = 104 µm−3 point (fig. B.2), is not accounted for. The
asymptotic value of βT (30) is used instead and hence the offset. The size depen-
dencies in the fig. B.3 for 300 K and 100 K correspond well to the asymptotic
values of βT (T ), while for 10 K it follows the βn(n) asymptote.
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Figure B.3: Dependence of the depolarization factor L on size
of the spherical quantum dot for various temperatures. Density
of electrons n = 104 µm−3. Horizontal dotted lines show values
L = Lc and L = Lmax. The black solid lines show the estimated
depolarization factor based on our formula L(s, n, T ).

Different materials
The depolarization factor values used for fitting in this analysis have been cal-
culated specifically for our demonstration material GaAs. Its convenient prop-
erties like isotropic effective mass, holes significantly heavier then electrons and
single energy minimum in the conduction band facilitate the analysis, but are
not common to most materials. Therefore the derivation presented above is not
universally applicable, but may serve as a guideline for such analysis in other
materials.

Different material properties would lead to different fitted values of parameters
γ and δ. Changing the effective mass of electrons will affect mostly parameter δ,
for it controls separation of energy levels. Anisotropy of the effective mass would,
presumably, cause anisotropy of the depolarization factor as well, in a similar
manner as breaking of the symmetry of the shape of inclusions does. Eventual
multiple minima of the energy bands most probably scale parameter γ, as they
effectively increase degeneracy of the energy levels. Finally, while performing this
analysis for materials in which the effective mass approximation is not applicable
at all, one must handle the density of states as needed.
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