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A bstract

Thesis investigates frequency-related phase relationships among returns of five 
m a jor 5-minute European stock m arket indexes and compares relative phases 
on high frequencies, w ith focus on dynamics between developed and developing 
stock m arkets from 2008 to  2015 using. Using continuous and discrete wavelet 
transform  we find significant phase relationships among the considered indexes, 
particularly we spot very strong relationship between the  developed ones w ith 
no significant phase difference on any investigated frequency. Furtherm ore we 

observe significant lag of developing m arkets behind developed ones, particu
larly on horizons between 20 and 80 minutes. We also observe th a t the  rela
tionships is fading throughout the examined period, w ith increased variance of 
the  relative phases and diminishing significance of some phase differences. The 

results indicate th a t either less developed m arkets are becoming more effective 
or it  can be a sign of decreasing inter-dependencies (e.g. lower common trends). 
This thesis contributes to  the  literature by examining noisy financial tim e series 

on highest frequencies and shows relevance of the  m ethod on simulated signals 
w ith high degree of noise.
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A bstrak t

Práce zkoumá frekvenčně závislé vztahy ve fázích pětiminutových zisků indexů 
pěti velkých Evropských trhů  a porovnává jejich relativní fáze na vysokých 
frekvencích s zamerením na vývoj mezi rozvíjejícími se a rozvinutými akciovými 
trhy v letech 2008 az 2015. Pomocí vlnkove analýzy nachazíme signifikantní vz
tahy mezi fazemi akciových indexů, zejmena pak silný vztah mezi fazemi FTSE 
a DAX a signifikantní zpozdení indexů mene rozvinutých evropských trhů, 
predevsím na frekvencích mezi 20 a 80 minutami. Pozorujeme taktez snizující 

se stabilitu techto vztahů v průbehu zkoumaneho horizontu a v nekterých 
prípadech i mizící significanci. To můze naznacovat jak postupne zefektivnovíní 
mene vyspelých trhů  tak  snizovíní zavislostí mezi evropskymi trhy (napríklad 

v podobe snizujících se spolecných trendů). Pridanou hodnotou príce  je mimo 
jine analýza silne zasumnených signalů na nejvyssích frekvencích a demostrace 
pouzitelnosti metod pomocí analýzy umelých signalů.
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P ro p o s e d  to p ic  Measuring high-frequency phase shifts between stock 

markets

M o tiv a tio n

Inform ation abou t relationships between stock m arkets around the  world is v ita l for 

portfolio m anagem ent and  diversification. Im portan t p a r t  of literatu re  has tried  to  

unveil i t .  Probably  th e  first work finding statistically  significant relationship was

paper by Fischer & Palasv irta  (1990), who found interdependence between several

stock m arkets with U.S. Stock m arket being the global leader -  for example a lag of 

48 days of C anadian stock m arket after U.S. M arket. M any others (e.g. Candelon 

et al. (2005), Loh (2013))  have investigated correlations between stock m arkets. In

teresting findings were presented by G raham  et al. (2012), who examined relations 

ships between emerging m arkets and U.S. M arket, finding evidence of co-movements 

only for part of the selected countries and consistent over tim e only for frequencies 

larger than  a year. Above mentioned works have one th ing in common -  they  all 

explore these relationships on lower frequencies of at most 1 day.
Egert & Kocenda (2007) examine high frequency (5— minutes) da ta  of western 

and CEE stock exchanges and look for long term  and short term  relationships be

tween the indexes. They find no evidence of cointegration (long-term) but sings of 

some short term  spillover effects in both  returns and volatility.

Wu et al. (2006) examined phase difference between NASDAQ and D JIA  on 

inter-day d a ta  using H ilbert-H uang m ethod. T hey find th a t some big events (9/11 

attacks) had in phase reaction, at o ther periods the two indexes were out-of- phase, 

w ith changing relationship over time. For example during 2001 and 2002 D JIA  was 

ahead in phase to  NASDAQ, implying th a t D JIA  had greater effect on NASDAQ 

th an  vice versa.

B arunik & Vacha (2013) used wavelet m ethods to  explore correlations and con

tagion of the 2008 crisis across C E E m arkets. Using high-frequency d a ta  they find

mailto:cieslarj@gmail.com
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correlations m ainly on lower frequencies. T hey  also report a  little  evidence of corre

lations on high frequencies and  find i t  only on longer horizons. Yet the  data-set used 

ends in  2009 and  th e  causality on different scales is n o t explored in  th is  work.

T his work aim s to  build on existing litera tu re  (abovem entioned stock index re

la ted  papers and  other papers using useful wavelet m ethods) and  investigate existence 

and  natu re  of th e  shift (lead-lag relationship) between stock indexes w ith focus on 

czech stock m arket.

Hypotheses

1. M arket indexes are correlated and  in  phase on higher frequency level among 

developed countries

2. Less developed m arket indexes (such as Czech or H ungarian) exhibit phase- 

shift a fter classical indexes

3. There is G ranger causality from developed to  developing stock exchanges a t  

some frequency which is increasing over tim e (lag is diminishing)

M e th odo logy

D ata  I will use for th is  thesis will be P X , BUX, DAX, FT S E  and  m aybe o ther indexes 

and  will be obtained from  Charles university database. T hen  high-frequency price 

d a ta  will be converted to  5-m inutes d a ta  — such high frequency should open the  

possibility to  explore all shifts in  the  d a ta .

To te s t the  hypotheses, I will use spectral m ethods, m ainly wavelets. For the  

s ta r t, we will follow m ethodology used by Cazelles et al. (2008) and  Torrence & 

W ebster (1999), which give us good inform ation abou t dependence structu re  of ex

am ined m arkets in  tim e-frequency dom ain. L ater, we m ay extend our m ethods to  

general frequency dom ain w ith moving windows. W avelets, unlike Fourier analysis, 

offer possibility to  analyse tim e series b o th  in  tim e and  frequency dom ains. T his will 

allow observation of tim e-evolution of the  frequency relationships. Anchor m ethod 

is going to  be wavelet phase coherency th a t  m easures how out-of- phase is one signal 

(tim e-series) com pared to  anoher on different scales.

Following Reboredo et al. (2017), I  will use G ranger (1969) causality te s t  (lin

ear and  non-linear) to  further explore the  dependencies in  the  tim e series. After 

trasform ing the  series using discrete wavelet transform  (which will decompose the  

series in to  different time-scales w ith  shortest being in  10-minutes frequency (cap tu r

ing 5-m inute moves)), i t  will be possible to  learn m ore abou t th e  causality between 

the indexes. T ha t should also help to  investigate if the difference is diminishing -  

the causality is expected to  shift across scales and parts of the d a ta  sample.
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O ther m ethods will be added during the  work to  increase robustness of the  re

sults. There is a  possibility to  use above-m entioned H ilbert-H uang m ethod and  m any 

others. Possible extension added throughout the  work m ight be observing influence 

of the  volatility (and  o ther features of th e  indexes, such as assym etricity of responses 

dependent on the  sign of the  re tu rns) on the  results.

Expected C o n tr ib u tio n

T his work will asses the  question of possible phase difference between stock m arkets 

w ith different level of developm ent. W avelet analysis brings slightly different ap

proach th an  classical econometrics since i t  works in  tim e-frequency dom ain and  thus 

allows for exploring causality and  shifts n o t only on the  entire series, b u t also on 

its  different scales (frequencies). T h a t will allow for understanding the  relationship 

m ore deeply and  m ight serve as tool to  exploit the  interdependencies between the  

m arkets.

Since the  thesis is expected to  bring new inform ation abou t stock indexes i t  m ight 

be useful for bo th  portfolio analysts and  policy m akers.

Regarding portfolio analysis, if th e  hypotheses will be  confirmed, results will be 

usable to  improve forecasting efficiency of models for speculators (short term  traders). 

W avelet analysis offer possibility of forecasting different scales separately (i.e. differ

en t horizons). Revealed connections between stock m arkets in  some of these scales 

can then  be exploited in  the  forecasting which m ostly outperform  sim pler forecast

ing (as schown by Schliiter & Deuschle (2010)). Also this thesis should bring new 

information in risk-managem ent since time-frequency m ethods show commovement 

in indexes in different horizons (Rua & Nunes (2009)).
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Chapter 1

In troduction

The study of stock m arkets' dynamics is present since the beginning of 20th 
century. Later, co-movement of stock m arket indices came under study to  
reveal possibilities of international diversification (e.g. Ansoff (1957), Grubel 
(1968), Makridakis & W heelwright (1974)). These possibilities were im portant 
bo th  for firms for whom diversification of activities could easily decrease overall 
risk as well as for investors, who could benefit from the  same.
These analysis subsequently turned into co-movement analysis of the m ar
ket indices, employing every suitable m ethod (including param etric and non
param etric m ethods, spectral inference). Up until 1990, as far as the  author is 
aware, showed lower co-movements and thus higher potential benefit of diver
sification and risk management.

In  later periods researchers observed increasing correlation among indices. Us
ing spectral m ethods, researchers could analyze co-movements of m arkets in dif
ferent horizons and firstly found evidence of increasing long-term co-movements 
implying decreased opportunity to  diversify in the  long run  b u t significant ev
idence of those opportunities for short term  investors. W ith  tim e the  higher 
co-movement spread over to  higher frequencies and after 2006 financial crisis 
m a jor indices became highly correlated (b u t left open the  opportunity to  di
versify into emerging m arkets). Some works even found co-movements among 

m arkets be th a t high th a t presence of inter-day arbitrage were rare.
One commonality of m ost previous works is th a t they employ daily, weekly
or even monthly data. Of the exceptions this study notes Egert & Kocenda 

(2007) th a t use intra-day data to examine co-movements and volatility and 
returns spillover effects (but without employing horizon-specific m ethods) and 
Vacha & Barunik (2012) who look into interdependence of European indices
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around crisis in 2008, bo th  using 5-minutes da ta.
This thesis is building upon existing literature to  examine co-movements using 
spectral m ethods, w ith particular focus on lead-lag relationships and phase 
similarities, m ethods used mainly in other fields (Cazelles et al. (2008))  b u t 
increasingly popular in analysis of financial times series as well (Loh (2013), 
Roesch et al. (2014) and others).
We examine the  phase similarities and causality from two developed stock 
m arket indices (FT SE  100 and DAX), presumably European m arket leaders 
w ith well documented high correlation, coherency and phase, to  ”developing” 
stock m arket indices (BUX, PX , W IG ). We focus on answering three questions:

•  Are FT SE  100 and DAX highly correlated and in phase?

•  Do developing m arkets exhibit phase-shift after developed m arkets th a t 

is decreasing in time?

•  Is there significant G ranger causality from developed to  developing m ar

kets th a t  shift among frequencies (from lower to  higher) in time?

We contribute to  existing literature in several ways. We examine relative phases 
on highest frequencies, where the  tendencies are no t uncoverable by methods 
which have enough power for lower ones, on d a ta  which, as far as the  author is 
aware, were no t examined by other researchers. Furtherm ore we dem onstrate 
th a t such alteration does no t change the significance of observed lags in phase. 
We also employ more m ethods and cross-valuate the  results w ith all parts of 
wavelet analysis to  seek the  explanation of the  results.
This thesis is organized as follows. C hapter 2 provides broader overview of 
literature on stock m arket co-movements and end w ith financial tim e series 

phase analysis. C hapter 3 describes the  d a ta  used in the  analysis. C hapter 4 
introduces wavelets (bo th  continuous and discrete) and related m ethods used 
in th is thesis. C hapter 5 presents the  results of all parts  of the  analysis and 
C hapter 6 provides conclusion and outlook for possible extensions.



Chapter 2

Related Works

Vast am ount of academic papers have examined relationships between stock 
m arkets of all sorts. The m atters of interest are, among others, cross-correlations, 
co-movements or lead-lag relationship between them . This chapter aims to  

bring brief overview of literature th a t  deal w ith these questions. I t  begins with 
exam ination of how academics studied co-movements of financial m arkets, then 

look into works th a t applied spectral m ethods to  explore them  and finally sum
marize works which ap art from examining co-movements specifically look into 
phase differences between financial time-series using wavelets.

2.1 Studies on co-m ovem ent and interdependence 

o f financial markets

Interdependence and inter-connectedness on financial m arkets have been ex
amined thoroughly for its  im portance in risk m anagement and asset allocation. 
Grubel (1968) stressed out benefits of cross-country diversification and was 
one of the  first who empirically shown the  potential welfare gains of interna

tional diversification on ex post returns of worlds m ajor stock exchanges. To 
confirm the  claim, Makridakis & W heelwright (1974) found no stable linear re
lationship among stock exchanges, which could have implied th a t potential of 
diversification was easily exploitable. Over tim e, the  relationships between re
lated (geographically, ideologically) stock m arkets increased significantly. Due 
to  increase inter-connectedness Brooks & Del Negro (2005) analyze the  benefits 
of diversification within and ou t of Europe and conclude (in  perspective of a 
D utch investor) th a t diversifying ou t of Europe brings twice the risk reduction 
th an  diversifying only in Europe.
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King et al. (1990) investigates m onthly d a ta  on 16 m arkets to  determine factors 
influencing conditional volatility and co-variances finding th a t only little of the 
co-variation between stock m arkets is due to  observable variables and find ev
idence to  support the  hypotheses th a t correlation is linked to  volatility. King 
& Wadhwani (1990) found empirical evidence th a t due to  investor reaction on 
price movements in other m arkets increase in the  volatility leads to  increased 
m agnitude of contagion on 1987 Black Monday. Longin & Solnik (1995) in

vestigated the  correlation among m a jor SE and found positive trend  in the 
conditional correlation in the  period 1960-1990 with periods of increased con
ditional volatility accompanied by increased correlation (b u t Longin & Solnik 
(2001) point ou t th a t  all tests assume m ultivariate normal distribution, which 
might no t be the case, a t  least for bo th  bull and bear m arket). Partially  on the 
contrary, Forbes & Rigobon (2002) investigated the  contagion accounting for 
possible heteroskedasticity and found little or no evidence of increasing correla
tions during crisis (1987, 1994 and 1997) - moreover they suggest th a t there is 
strong interdependence among economies a t  all states of the world ( it  is impor
ta n t to  note th a t Forbes & Rigobon (2002) used narrow definition of contagion 
and thus they do no t directly claim th a t there was no t any form of contagion). 
Syllignakis & Kouretas (2011) used DCC-MGARCH1  model on weekly da ta  to  

examine if there are increasing correlations between C EE countries indices and 

US, Russia and and Germany and found increased co-variances between them  
in times of crises (pointing to  increasing contagion).
Lin et al. (1994) found significant influence of information incorporated in New 
York (Tokio) SE during trading hours on setting opening prices in Tokio's 
(N Y 's) (i.e. daytim e returns of one exchange influence overnight returns of the 
other (bi-directional relationship)). Karolyi & Stulz (1996) then  investigate 
source of U.S. Japan  stock re tu rn  correlation and find only large shocks to  
stock indexes to  have stable effect on the  correlation (unlike industry shocks or 
macroeconomic announcements).
Johnson & Soenen (2003) using Geweke-Granger measure found high level of 
the  same day m arket responses among countries in America (on daily data) 
implying high integration and m arket efficiency and suggested th a t there are 
only rare cross-market adjustm ents th a t do not take place on the same day (i.e. 
cross-market arbitrage opportunities were scarce beyond 24 hours horizon).
Brooks & Del Negro (2004) looked into the  source of co-movements among na
tional stock m arkets and suggested th a t contem porary increase in co-movements

1  Dynamic Conditional Correlation M ultivariate GARCH
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is not perm anent b u t ra ther tem porary due to  stock m arket bubble which sug
gest th a t after the  bubble bursts international diversification still can be effec
tive tool to  reduce portfolio risk. Candelon et al. (2008) extend the Harding & 
Pagan (2006) model to  measure changes in stock m arket cycle synchronization 
in Asia and found an increase in synchronization among these stock markets 
in tim e.
Egert & Kocenda (2007) apply wide range of methods (VAR, cointegration 
test, Granger causality) to investigate commovements among 3 m ajor CEE 

stock market indices(BUX, W IG, PX) and their relationships with 3 Western 
European markets (DAX, FTSE 100, CAC) and find no robust cointegration 
among the stock index pairs. Additionally, they find returns spillover effects 
among both pairs of markets and from W estern Europe to CEE as well as 
volatility spillover effect in almost all directions (implying th a t even developing 
markets can influence W estern European markets suggesting th a t CEE markets 
can be considered a separate asset class and th a t should be taken into account 
for risk measurement). They also find interaction of BUX with both  PX  and 
W IG, but not among the two itself.
Gjika & Horvath (2013) examine Central European stock markets using asym
metric DDC-mGARCH model and found th a t correlation among them  has in
creased in time both  in between the Central European markets and with other 
Euro are markets resulting in very high correlation similar to the correlation 

of US and Canadian m arkets. They also suggest th a t CE stock markets have 
asymmetric conditional variance and recommend use of flexible models when 

analyzing them  to avoid drawing inappropriate conclusions.

2.2 Spectral m ethods and comovements on stock 

markets

Spectral methods have increased in popularity in last decades. Amount of lit
erature applying these methods in signal processing (Fourier Transform, Con
tinuous and discerete wavelet transform  and others) is growing rapidly and it 
is gaining reputation in financial time-series as well since it provides ability to 
analyze series from investment horizon perspective, it can be used as noise
filtering technique or ability to extract both amplitude and phase of a series 
(for example using complex wavelets).
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Fischer & Palasvirta (1990) have utilized the  advantages of spectral m eth
ods (Fourier Transform) and examined relatively high-frequency d a ta  (daily) 
on 22 stock exchanges and found coherence in index price movements, sev

eral (phase) lead-lag relationships w ith U.S. being the world price leader (e.g.
Canadian market was 0.2n (2-pi period) behind in phase after U.S. market on 
420 day frequency )) - where U.S. being the leader could imply either th a t U.S. 
price changes affect all the other prices or the existence of single pricing to 
which U.S. stocks responded the fastest. They also found evidence of possible 
existence of single pricing mechanism for several combinations of the exam
ined markets. The lead-lag relationship could result, if forecasted correctly, in 
finding arbitrage opportunities among markets.
Smith (2001) showed th a t after 1987 crisis, the phase lead-lag relationship 
among Pacific Rim were significantly smaller and increase in mean coherence 

(which can be interpreted as increased interdependence) can lead to lower po
tential benefit of international diversification.

R ua & Nunes (2009) revisit the examination of stock exchange co-movements 
using wavelet analysis using three-dimensional approach. They apply this ap
proach to asses the risk reduction from diversification thanks to the possibility 
of assessing different investment horizons (scales, frequencies) and co-movement 
changes in time simultaneously. They found th a t on low frequencies the degree 
of co-movement is relatively high implying th a t the benefits of international 

diversification over long term  may be less im portant (at least relatively to the 
benefit for the short-term  investor). They also demonstrate the impact of re
vealed co-movements on comparing VaR of international portfolio with and 
without accounting for the co-movements (i.e. om itting co-movements results 
in severe underestim ation of VaR across all frequencies with increasing magni
tude). Similarly, Dajcm an et al. (2012) use M ODW T to examine correlations 
between CEE and other m ajor markets and find the correlations to vary in both 

time and scale and PX  and BUX being highly correlated with developed m ar
kets. G raham  et al. (2012) analyze co-movements of 22 emerging markets and 

US market using wavelet coherency (on 2001-2010 weekly data) and they find 
strong co-movements on relatively lower frequencies with change after 2006, 
where they observe statistically significant coherence even at higher frequen
cies for some period (with longer periods located also on the m onthly scale in 
some of the markets). They expect th a t observed changes after 2006 are due 
to shock from the global financial crisis.
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G raham  & Nikkinen (2011) focus their wavelet coherency analysis on study of 
co-movement of Finish stocks w ith other stock m arkets and extend previous 
works 2  by examining not only (weekly) stock m arket returns co-movements bu t 

also volatility co-movements. A part from finding high co-movement between 

Finland and bo th  developed and developing m arkets on low frequencies, they 
have observed increase in co-movements on relatively higher frequencies with 
tim e, especially after 2006 and towards the  end of the  d a ta  set - they a ttribu te  
th a t to  the  substantial financial and economical deregulation th a t took place 
since 2006. For volatility, however, observed co-movements are relatively low 
in general and mainly observed in separate time-scale windows.
Gallegati (2008) apply discrete wavelet transform  (in  particular M ODW T) on 
45 years of m onthly da ta  on DJIA  index and Industrial production index for US 
to  measure if industrial firms lead the  real ou tpu t on scale-by-scale basis and 
find strongest evidence of leading the real ou tpu t on lower frequencies (w ith 
periods of 8 months and larger - in accord w ith economic theory suggesting th a t 
institutional investors w ith larger investment horizons link their investments 
w ith macroeconomic variables). They reveal the  lags computing the  correlation 
of the  growth ra te  w ith D JIA  returns in windows of 24 months for each scale and 
observation. In & Kim (2006) use M ODW T to  examine lead-lag relationship 3 

between S&P 500 index and S&P 500 futures index daily d a ta  using 8 levels of 
wavelets and find bi-directional Granger causality between stocks and futures 
on all scales and very large correlation (above 0.92 for all scales). 4

Vacha & Barunik (2012) examine co-movements and contagion among CEE and 

DAX around the  2008 crisis using wavelet m ethods on 5-minute da ta . They 
find the  highest interdependence between PX  and W IG b u t also find bo th  time 
and frequency changing nature of the relationships. Im portant feature is th a t 
they find significant correlation not only on low frequencies, b u t also on high 

frequencies (e.g. 80 minutes wavelet correlation between DAX and BUX to  
be 0.6 after fall of Lehman Brothers). R anta (2013) studied contagion among 
m a jor world stock m arkets and defined contagion as changes in tim e on low 
scales (higher frequency) w ithout changes on higher scales and they found clear 
evidence of such a  contagion. For example, DAX and FT SE started  to  have 
very high coherency after several shocks and have significant coherency of 0.8 

around the  end of da ta  set (2009) even on the  highest frequency (8 days). They

2  previous works th a t analyzed data  using wavelet coherency
3  their work also document how hedge ratio changes with wavelet scale - investment horizon
4  overall results point to  efficiency between the markets and absence of arbitrage oppor

tunity  between them
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accompany the  continuous wavelet analysis w ith M ODW T and found wavelet 
correlations between m a jority of the examined series to  reach 0.9 on 2 to  4 days 
averages.
Aloui & Hkiri (2014) used wavelet coherency to  investigate daily co-movement 
of m arkets in Gulf Cooperation Council countries and found th a t for several 
pairs the  co-movements started  to  be significant after 2006 even a t  the  lowest 
frequencies. In  general they found increasing co-movements w ith tim e towards 

the  higher frequencies, especially after external shocks, such as after the  sub
prime financial crisis.

2.3 Financial tim e  series and phase shifts

Information transmission in network of m arkets (three W estern equity indices) 

was studied by Roesch et al. (2014) who, using propagation values for all three 
indices based on work of Schmidbauer et al. (2013), aimed to  capture relative 
im portance of the  m arket in the  network a t  certain point in tim e 5 and using 
the  wavelet phase difference6 found th a t D JIA  was in ”anti-phase”  to  other two 

while FT SE 100 and Euro Stoxx are in phase to  each other (evidence found 
only on lower frequencies, on higher is the energy of propagation relatively low 

and the  relative phase was no t examined), even though range of frequencies 
w ith significant phase similarity has shrunk.
Madaleno & Pinho (2012) examine several of the largest stock m arket indices 
using CW T and find high coherency on low frequencies (in  some pairs increasing 
in tim e) b u t also identify larger periods of coherence in higher frequencies (4-64 
days) after 2006 (w ith exception of D JIA -FTSE where it  was present earlier) 
and identify lead-lag relationships using phase difference (for example they 
find D JIA  to  lead Bovespa in 32-64 days horizon and reverse leadership in 128
256 days) b u t in general changing phase positioning between pairs of indices. 
Similarly, Albulescu et al. (2015) used C W T to  examine the  contagion among 
FT SE 100, DAX 30 and CAC 40 futures on daily returns and find long term  
co-movements to  be present over entire sample and in short term  strong co
movements over selected windows in the da ta . They also use wavelet phase 
difference and find th a t DAX and CAC are following the  FT SE in the  long

5  For example there is a  peak in the values for DJIA around 13th October 1989 after failed 
deal with parent company of United Airlines since it th a t news had global impact

6  Referred to  as Cross Wavelet Power Spectra Phase
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term  and for some periods also in the short and mid-term  (th is can be evidence 

of slightly different lead-lag relationships in spot and futures m arkets).
Weekly comovements between Asian stock m arkets and U.S. and European 
stock m arkets we examined by Loh (2013). He found bo th  tim e and scale vari
ation in the comovements w ith increasingly im portant comovements on short 

scales (high frequencies) after 2006 (similarly as papers on other combinations 
of integrated m arkets). A part from wavelet coherency analysis they report 
wavelet phase differences, finding, for example, th a t  European and A ustralian 
m arkets were in phase for m ost periods and scales w ith several periods of lead 
or lag on m ost scales w ith changing relationship even w ithin a  selected scale 
(thus no overall leadership w ithin a  time-horizon could be reported). Europe 
and A ustralia combination is particularly interesting since towards the  end of 
the  data-set, they exhibit phase similarity and significant coherency across all 
scales.
Reboredo et al. (2017) examined relationships between oil and renewable en
ergy stock using wavelet coherence, phase difference and Granger causality 
(bo th  linear and non-linear) and imply th a t unveiled relationships can be used 
in two ways - absence of causality and relative independence on higher frequen
cies imply th a t oil can be used as a  hedge for renewable energies while linear 
causality in interdependence on higher frequencies imply possibility to  use one 
to  improve forecast of the  another. W hile cross wavelet phase difference do not 
indicate homogeneity in the  processes as the com puted phase difference change 
very frequently across tim e and scales, they also com puted wavelet coherence 
phase difference, where they found th a t oil does not lead the  prices of renew
able energies (they are in phase) apart from short tim e periods on some and 
ap art from the  lowest frequency examined (512 days) where oil was consistently 
leading renewable energies.



Chapter 3

D ata description

D ata used in th is thesis are on five of the  m a jor European stock indices - Finan
cial Times Stock Exchange 100 (FTSE 100), which is com puted from weighted 
prices of 100 largest companies (w ith larges m arket capitalization) th a t  are 
listed on London stock exchange,1  Deutchland Aktieindex (DAX) which is stock 

index based in Frankfurt Bourse and is comprised of 30 largest companies listed 
in Frankfurt,2 Index PX  which is com puted from prices of 25 companies w ith 
largest m arket capitalization in Czech Republic,3  Budapest Stock Exchange 

Index (BUX) computed from price changes on up  to  25 blue chip Hungarian 
companies and Warsaw stock exchange index (W IG ) constituting of 151 com- 
panies.4 D ata available s ta r t for all five indexes on 2n d  January 2008 and for 
the  first four span to  30t h  December 2015, for W IG i t  is until end of 2011.

Historical values can be found in figure 3.1. In  the  sub-figures i t  is easy to  
observe the  im pact of the  recent global financial crisis where all of the  indices 
plum m et and the  im pact of European D ebt crisis in 2010.
Table 3.1 shows correlation m atrix  of the  indices. We can see (as expected) 
very high correlation coefficients of pairs FT SE  100 — DAX (0.8), medium cor
relation coefficient between W IG and bo th  FT SE  100 and DAX and m oderate 
correlations between the  rest of indices. Correlation between PX  and BUX is 
lower then  their respective correlations w ith FT SE and DAX, however their 
correlation w ith W IG is is higher than  w ith the  developed indices. However 
th is issue can be explained by the  fact th a t  the  observed period for W IG is

1  more on which companies can be found on w w w .londonstockexchange .com
2  more on h t t p : / /e n . b o e r s e - f r a n k fu r t .d e / in d e x / c o n s t i tu e n ts /D A X # C o n s t i tu e n ts
3  how the index is computed and all constituents can be found on h t tp s : / /w w w .p s e .c z /

in d e x y /p o p is - in d e x u / in d e x - p x /
4  more can be found on h ttp s :/ /w w w .g p w .p l/o p is _ in d e k s u _ W IG _ e n

http://www.londonstockexchange.com
http://en.boerse-frankfurt.de/index/constituents/DAX%23Constituents
https://www.pse.cz/indexy/popis-indexu/index-px/
https://www.pse.cz/indexy/popis-indexu/index-px/
https://www.gpw.pl/opis_indeksu_WIG_en
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shorter than  for the  other indexes and contains global financial crisis which 

might skew the  coefficients upward.

Table 3 .1 : Correlation M atrix  of Stock Indices

FT SE DAX PX BUX W IG

FT SE 1 0.791 0.279 0.250 0.408
DAX 0.791 1 0.272 0.257 0.402
PX 0.279 0.272 1 0.211 0.291

BUX 0.250 0.257 0.211 1 0.250
W IG 0.408 0.402 0.291 0.250 1

N ext, continuously compounded returns (log-returns) are computed. Using 
d a ta  sampled in 5 minute frequency, returns are com puted as follows:

R t  =  log PP t  (3.1)

Figure 3.2 displays the  5-minute returns for all 5 series.
Table 3.2 summarizes the  descriptive statistics of the  5-minute returns d a ta  for 
all 5 stock m arkets. We can see th a t the  number of observations do differ due 
to  different length of the  trading hours and different national holidays as well 
as different time-zones (for FT SE 100). To deal w ith th is issue we use only 
d a ta  th a t are available for all stock indices (analysis w ith W IG is carried out 
separately on shorter d a ta  set due to  shorter period available) and we om it the 
first and last observations to  address the  problem of overnight returns (which 
would appear is some data-sets b u t not in all due to  the  first condition).

Table 3 .2 : Descriptive sta tistics of the  5-m inute re tu rns d a ta

FT SE  100 DAX BUX PX W IG
Mean -1.4e-07 1.4e-06 -4.7e-07 -4e-06 -3e-06

Std. dev. 0.0012 0.0015 0.0017 0.0015 0.002
Skewness -0.74 -0.26 -0.75 -5 -0.54
Kurtosis 130 14 380 1110 95

Min -0.068 -0.063 -0.12 -0.15 -0.058
Max 0.039 0.074 0.1 0.09 0.046

N 2.1e+05 2.1e+05 1.8e+05 1.6e+05 7e+04

We can see from both  table 3.2 and bo th  figures th a t best mean performance 
has DAX (positive 0.0000016 5-minute returns), while relatively the  worst per-
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formed PX  followed by W IG - b u t W IG d a ta  may not be directly comparable 
w ith statistics for other indices since it includes bo th  crisis b u t not the  other 
half of the  observations. M ost stable was FT SE 100 (w ith standard deviation 
0.0012), highest changes we on average observed in Poland (same applies as 
w ith the m ean). M aximal re tu rn  is observed on Hungarian index (10%), high

est fall on Czech (15%). High skewness and very high kurtosis imply asymm et
ric (on PX ) and much fa tter tails th an  w ith normal distribution. Interestingly, 

recalculating bo th  param eters excluding first year the  skewness of PX  returns 
falls close to  zero (-0.077) implying th a t significantly ”fatter”  left ta il occured 
mostly around the  financial crisis.

3.1 M issing data

Due to  bo th  use of Spot d a ta  and presence of less liquid m arkets (PX , W IG), 
d a ta  on some days contain missing values. I t  can be either because the  m arket 
price did not change over the  m inute, or th a t the  m arket was open for shorter 

period of tim e. To address mostly the  first issue, on certain days missing values 
were replaced by previous values. Those days had to  satisfy two conditions:

•  number of 1-minute observations had to  be a t  least 300

•  first and last trading hour had to  be a t  least 6 hours apart

This ensure th a t ”strange”5  days were not used for the  analysis b u t valid days 

were completed.

5 for example days where there were only a  single hour of observations



Chapter 4

M ethodology

4.1 B rie f in troduc tion  to  wavelets

The wavelet transform ation is a  time-frequency decomposition th a t can be in 
a  sense compared to  Fourier transformation.  The basic difference is in the 
functions th a t  are used for the  transform ation. While Fourier transform a
tion uses sines and cosines (functions periodic over the  whole axis), wavelet 
transform ation uses localized function and thus while Fourier transform ation 
transform s signal from time-domain to  the  frequency domain, wavelet transfor
m ation transform s the  signal to  the  time-frequency plane, where the  frequency 

components are usually called scales. Moreover, wavelets allow for analysis of 
non-stationary components in stochastic processes(Sifuzzaman et al. (2009)). 
The name of the transform ation is derived from central ob ject in the transfor

m ation, a  function called wavelet. I t  is a  wave-like function, th a t  is centered 
around some point and its m agnitude ra ther quickly decays to  zero (hence it 
is localized). Basic component of wavelet transform ation is then  called mother 
wavelet,  a  standard  wavelet w ith certain properties, usually defined around zero 
and from whose definition other wavelets are constructed by either moving the 

center of the  m other wavelet (also called translation) an d /o r by altering the 
w idth of the  wave-like function (called dilation) or both .
Wavelet can be any function th a t satisfies certain m athem atical properties, 
b u t in practice there are some families of functions th a t are used, for example 
H aar, Daubechies, Mexican H at, M orlet or Paul wavelets. Those functions can 
be either only real valued (Mexican h a t) or complex (M orlet wavelet). Their 
dilations can be either orthogonal to  each other, which implies th a t  information 
extracted on one scale is no t present in other scales, or redundant, which is
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common for continuous wavelet transform  and is more robust to  noise (Cazelles 
et al. (2008)).
The wavelet transform ation itself takes an  input signal and returns it in an
other form in which some properties can be investigated. I t  is then done by 

a  convolution of a  signal (financial time-series, earth  surface profile) w ith di
lated and translated  versions of m other wavelet and obtained coefficients are 
then  passed to  further analysis. Dilation of the  wavelet determines the  fre
quencies of the  information th a t are stored in the  coefficient. The com putation 

can be done either over discrete set of dilation param eters (and  thus on dis
crete scales - Discrete Wavelet Transform (DW T)) or smoothly over all possible 
scales (Continuous Wavelet Transform (C W T )). Simple use of the  DW T is 
for filtration of a  signal from high-frequency components (filter ou t noise) or 
to  different frequency components (different finesse of the  information), CW T 

can be used, for example, for analysis of time-scale variation and for search of 
coherent structures among the  time-frequency plane.
Let us define some m athem atical requirements for function to  be called (m other) 
wavelet.

4.1 .1  Form al requ irem ents

For a  wave-like function to  be called wavelet, i t  m ust satisfy some mathem atical 
properties (Addison (2017)), firstly, i t  has to  have finite energy:

E = |^ ( t ) |2dt <  œ (4.1)
—œ

where ^ ( t)  is chosen wavelet function. It is customary to choose function ^ ( t)  

such th a t it has unit energy; |^ ( t ) |2dt =  1. Secondly, it must satisfy
Admissibility condition :

l^^(/)|2

f
Cg df < œ (4.2)

0

where ÿ ( f  ) is the Fourier transform  of -^(t):

œ

^ ( t)e ( —i ( 2 n f  ) i ) dt
œ

(4.3)

Cg is called Admissibility constant. This constant is then im portant for inverse 
wavelet transform ation to recover the original signal. The implication of eq. 4.2
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is th a t  the  wave-like function has to  have zero mean ( it has no zero-frequency
component). ^ ( t)  is then called m other wavelet.

4.2 Continuous wavelet transform

4.2 .1  T h e  transfo rm

We define a translated and dilated version of the mother wavelet:

(t ) =  ' ' (  t—- ^  ) (4.4)

where t  is a translation param eter (i.e. moves the center of wavelet along the 
time axis) and s is a scaling param eter (i.e. makes the wavelet function wider 

or narrower).
Wavelet transform  of a signal x  is then defined as(Addison (2017)):

Z
œ

x ( t ) ÿ T,s (t)dt (4.5)
œ

It is convenient to set function (w(s)) to 1/  s to ensure th a t the wavelets 

have the same energy at all scales and where the bar over the wavelet function 
means complex conjugate of the function (for real valued wavelets it is equal 
to the original function). W (s, t ) then represents the extracted information 

or contribution of the particular scale at given point in time t  to the signal. 
The integral is then computed over all scales and time points and from one
dimensional signal yields two-dimensional transformed signal. The original 

signal(series) can thenbeob tainedbycom puting theinversew avelettransfo rm :

1 œ  œ  1
x(t) =  -2  Wx(s , t  ) x ( t) ^ T,s(t)dTds (4.6)C g - œ  0 s

To examine local power, the wavelet power of signal x is defined as:

Wx ,x (T, s) =  Wx(t , s) * Wx(t , s) (4.7)

W x , x (T, s) can be understood as local variance of a signal at scale s and time

T .
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We can compute the  contribution to  energy of any scale to  the  to ta l energy by:

1 r ™
E x (s) =  —  W x>x(r ,s)d s  (4.8)

Cg

4.2 .2  W ave le t cross-spectrum

To analyze common properties of two signals we can compute their wavelet 
cross-spectrum:

Wx ,y (t , s) =  W x (r ,s)  * W y (r ,s)  (4.9)

which shows the  areas where the  signal have bo th  high power and can be 
understood as analogy to  local co-variance of signals x  and y . Regarding two
Gaussian white noise signals, its expected value a t  every point is the  same as 
the  signal variance (Roesch et al. (2014)). Then for cross coefficients to  be well
interpreted, i t  is be tte r to  standardize the  signals - therefore the  returns data  
were normalized so their mean is equal to  0 and variance equal to  1.
The cross wavelet power is simply | W x ,y (t ,  s )| .
To investigate which values are significantly different from random  Red noise, 
cross-spectrum distribution is needed. Torrence & Compo (1998) note th a t 
theoretical wavelet cross-spectrum of two normalized series with Fourier spectra 
P  kx  and P  ky  should have distribution (for complex wavelets):

|Wx ,y( r . s ) | ^  Z t ï J P pî (4.10)

with Z2 (95% ~  4)1 . Significant areas with 95% confidence are enclosed by 
black contours.

4.2 .3  W ave le t coherency

Cross wavelet transform ation is useful to find areas of high common power, 
however it can be useful to investigate normalized coefficients th a t account 
for m agnitude of local powers. Such coefficients are called Wavelet squared 
coherency. Torrence & Compo (1998) defined it as:

R 2 (t , s ) | (s 1W x ,y (r , s )2 ) 1 

(s - 1 |Wx ( r , s ) |2 ) ( s - 1 |Wy ( r , s ) |2 >
(4.11)

1For precise definition of Z(-), see Torrence & Compo (1998), p. 76
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where bo th  in nom inator and denom inator there are applied smoothing op
erators (.) which stand for smoothing the wavelet power and cross-power in 
both  time and frequency domain. We can choose from a variety of smoothing 

functions. In this thesis B artle tt window was chosen which is defined as:

B  -  H (a ) =  1 -
a  -  (  N  -  1) /  2

(N  -  1 )/2

where N  stands for the  length of the  smoothing window. Such window has tri
angular shape and the  process can be understood as taking weighted average of 
the  coefficients w ith linearly decreasing weights from the  centre. The convolu

tion is done simultaneously in bo th  domains by convolution of the  coefficients
with two-dimensional version of the filter (B  — H  (a) x  (B  — H  (a) ' ), where ' 
stands for transposition of a vector and x  is m atrix multiplication.

Wavelet coherence can by definition a tta in  values from 0 to 1 and thus it can 
be understood as a spectral counterpart to a local measure of correlation co
efficient. Values close to 1 then indicate high level of local co-movement. To 

assess statistical significance of the wavelet coherence it is feasible to find which 
values are significantly different from zero, i.e. choose a null hypotheses H0  un
der which the coefficients are not statistically significant against random noise. 
Yet wavelet coherence does not have any theoretical distribution and Monte 
Carlo m ethod have to be used to determine empirical confidence intervals. 
Torrence & Compo (1998), Torrence & W ebster (1999), Cazelles et al. (2008) 
and others suggest the use of surrogate series to asses significance of wavelet 
cross-spectrum and wavelet coherence. Such series can be simple white noise, 
red noise (AR(1) series), random series with the similar spectrum  or bootstrap 
of the series. Here we choose to use simple bootstrap to assess statistical sig
nificance. The surrogate series are constructed by taking the original series 
and bootstrap from it with identical probabilities. H0 is then such th a t the 
cross-spectrum and coherence of the inspected series are not statistically dif
ferent from random signal (5% significance level). Figure 4.1 shows 90th, 95th 

and 99th percentile of wavelet squared coherence for two Red noise series with 
AR(1) coefficient 0.25, based on 1000 Monte-Carlo simulations. Similar simula
tion was run with W hite noise series, showing equal results th a t differ at third 
decimal place which might be a consequence of lower amount of simulations.
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Figure 4 .1 : Borders of Squared Coherence for 2 R ed noise signals

4.2 .4  Cone o f In fluence

The signals th a t  are observed in practice are finite. Its  implication is th a t closer 
to  the  edges of the  signal (problem atic proximity depends on size of the  scale) 
there are no values past the  edge on which the  calculation should be done and 
therefore we need to  calculate the  coefficient on some da ta . There are several 
ways how to  deal w ith this issue, such as zero-padding (placing zeroes on both  
sides of the  signal to  fill for missing values) or mirroring the series. In this 

thesis, zero-padding was used on the  edges of the  d a ta  spans. I t  follows th a t 
the  coefficients com puted using zeroes do not have to  represent real coefficients 
well and thus should not be interpreted. If subsets were investigated, longer 
series was used and then  cu t to  the  desired length. Implication of th is approach 
is th a t  there are no edge-effects in the  middle subsets and alm ost no edge-effect 
on higher frequencies a t  the  beginning and end of the  data-set.

4.2 .5  M o r le t w avelet

In  choosing of an appropriate wavelet function, we have to  decide which proper
ties we want to  investigate. Since we are interested mainly in phases, only com
plex wavelets should be considered. M orlet wavelet is deemed to  be very well 
localized in scales (Cazelles et al. (2008))  (a t  least compared to  Paul wavelet 
(Torrence & Compo (1998))), which is a  property th a t is desirable in analysis 
of the phase differences.
M orlet wavelet consists of a  complex wave enclosed within a  Gaussian envelope
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and is defined as:

2

<0(t) =  n 1 1 (ei 2 n f o t  -  e - ( 2 n f o ) 2 / 2 )e h r  (4.12)

where f 0 is called central frequency of the  wavelet. In practice, the  second term  
in the  brackets is no t used and the  wavelet then simplifies to:

t 2

^ (t)  =  n - 1 / 4 (ei 2 n f o t )e —  (4.13)

and with w =  2 n f , its Fourier transform  is V’(u) =  , / 2 (Ahuja et al.

(2005)). We can directly see th a t the zero-frequency component is not zero, 
but for u 0 larger then five the zero-frequency component is very small and it 
produces minimal error (Addison (2017)). Furthermore, the cone of influence 

for the Morlet wavelet is defined as 2s, with s standing for scale. Coefficients 
further away from the edges are only minimally influenced by the edge-effects 

The Morlet wavelet is a complex wavelet, which allows to investigate not only 
both  the local variance and co-variance but also phase and phase difference.
Moreover, the Fourier wavelength of the Morlet wavelet is A =  ------ ln  „

w0 +  (2 + w 2 )

(Torrence & Compo (1998), thus with w0 =  6 we have A ~  1.03. This means 
th a t the scales are almost proportional to the inverse of the frequency which 
greatly simplifies the interpretation.

4.2 .6  W ave le t phase

Wavelet analysis with the use of complex wavelets offer apart from the cross
spectrum  and coherency analysis also analysis of phase. For Morlet wavelet, 
measure of local phase of a signal x  is defined as(Torrence & Compo (1998)):

0x(t , s) =  tan  1
Im (W x (r ,s )
R e(W x (r ,s )

(4.14)

4.2 .7  D iscre te  w ave le t trans fo rm

Discrete wavelet transform  can be defined similarly to  the  C W T w ith the  dif

ference th a t only discrete translation and dilation coefficients T and s are con
sidered. Feasible way to  sample the  translation param eters is using the  shortest 
considered tim e steps (1 observation), while for the  the scaling param eters can 
be linked to  tim e steps by using powers of 2 (also called dyadic grid scaling
(Addison (2017))). The wavelets and the  transform  of continuous signal x  then
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become:

ÿ m ,n (t)
1 t -  n  2 m

2m

W  (  m , n  ) (t)dt

(4.15)

(4.16)

where m and n  are all integers referring to  the  scaling and dilation param eters. 
If the  wavelets form an  orthonorm al basis, simple reconstruction of the  signal by 

sum of all the  coefficients is possible and the  variance of the  signal is preserved 
in the transform ation. To lim it the number of scales in the  transform ation, 
scaling function can be introduced. Its  translated  and dilated versions are 
defined the  same as wavelets. The difference is however in the property of 
its  base version (i.e. w ith param eters m and n  both  0) in the sense th a t it 
integrates to  1:

0(t)d t =  1 (4.17)

Aproximation coeffients a t  scale m and location n  are then  defined as:

S (m , n ) x ( t) ^ m ,n (t)dt (4.18)
- œ

where S  (m , n )  is then  an  approximation of the  signal a t  scale m. They have 
such properties th a t  we can write signal x(t) in a  form:

m 0

x(t) = x m o (t) +  dm (t) (4.19)
m = - œ

where m 0 is arbitrarily chosen highest detail scale, x m 0 (t) =  53£=-oo S(m 0 , n )^ m 0 ,n (t) 
and dm (t) =  Y^=-oo W (m , n )^ m ,n (t), first part being called scaling coefficients 
and second detail coefficients. It can be shown from scaling coefficient on scale 
J  we can compute detail coefficients and scale coefficient on scale J-1 (and vice 
versa).2

W hen dealing with discrete signal, if the signal has length N being an integer 
power of 2, we can decompose the signal to J  levels of detail coefficients and 
a scaling coefficient with n being limited by the length of a signal (N  =  2J )

2  for more detailed information on the definition of father wavelet, wavelet frames, the 
computation of scaling and detail coefficients and other computations linked to  introduced 
form of definition of DW T, see Addison (2017), p. 65-87. I t  is also possible to  only define
DWT on discrete signal in a form of discrete filters (see e.g. Gencay et al. (2001)
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using multi-resolution algorithm  (also know as fast wavelet transform ) when we 
compute one level of detail coefficients a t  a  tim e from scaling coefficients until
we obtain all J  levels of details th a t  we want to  investigate (we do no t have
to compute all possible levels). Detail coefficients of level m  E J  then contains 
information from frequency band f  E (1/2m + 1 ,1 /2 m ) - i.e. lowest scale m=1 
represents periods between 2 and 4 observations. We can see th a t each step 
can be understood as applying high-pass filter on remainder of the signal. 
Unfortunately, DW T is not circular shift invariant (if signal is shifted by 1 
observation the coefficients are different, not just shifted by 1) and financial 
time-series seldom have the length of 2N  . To overcome th a t problem, maximum  

overlap discrete wavelet transform  can be introduced. Moreover, Gençay et al. 
(2001) provide a summary of feasible properties of MODWT, among which the 
most im portant is th a t M ODW T can be performed on sample of any length, 
amount of the coefficients (in time-domain) is the same as the signal length 

and it is associated with so-called zero-phase filtering. Im portant consequence 
is well alignment of time-features in the coefficients. Additionally, MODW T is 
asymptotically more efficient variance estim ator then DWT. It can be shown 
th a t MODW T coefficients preserve the variance of the signal, i.e. | |x 2 | |  =

Jm = 1  nN= 1 ||W (m ,n )| |2 +  nN= 1 | |S ( J ,n )| |2 .

4.2 .8  W ave le t co rre la tion

We estim ate variance and covariance of analyzed signals at different frequency 
bands using the MODWT. It can be used as a time-averaged complement to 
the localized correlation coefficients provided by CW T.3 Following Barunik 
et al. (2016) and Vacha & Barunik (2012), we use wavelet base estim ator of 
correlation of signals x  and y  on scale j (j  =  2m ) as:

Px ,y  (j  )
Cov(W x (m, n), W y (m, n))

V ar(W x (m, n ))V ar(W y (m, n))
(4.20)

where Cov(W x ,W y ) and Var(W f) are wavelet based covariance and variance 
estimators, defined as (covariance of signal with itself is variance):

CVovx ,y (j ) =  1
k

N 1

n = L m 1

W x (m , n )W y (m , n ) (4.21)

3  even though smoothing of the coefficient itself does, in a sense, time-averaging
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where L m  is the  length of the wavelet filter as scale m 4  and km  =  N  - L m + 1  >  0. 

Under the  assumption th a t analyzed processed are stochastic auto-regressive 
processes of order d (d is the  largest lag in the process) and L m  >  2d, M ODW T 
correlation estim ator a t  scale m  is asymptotically normally distributed around 
the  true  value w ith large sample variance N m  1  R m  ,5 i.e.:

px ,y  ( j  ) ~  N  (Px ,y  ( j  ) ,N m 1R m ) (4.22)

4.3 Continuous wavelet transform  and Phase d if

ference

A part from computing individual phases of each signal we can also compute 
phase difference or signals x and y . The com putation is the same as for the
individual phases b u t we use the  cross-transform instead and the  relative phase 
difference (smoothed) is then  simply defined as (Torrence & Compo (1998)):

0 x ,y  (t , s) =  tan  1
I m ( (W x ,y (t , s))) 
R e ( (W x , y (t , s ) (

(4.23)

with I m ( -) and Re (•) standing for imaginary and real parts of the wavelet cross 
spectrum. Note th a t the smoothing in time and scale is done before taking real 
or imaginary part and thus has to be done only once. Phase is then defined 
on (—n ,n ) . If the difference lies on the interval (—n, —n /2 )  or (0 ,n /2 ) the 
first series is leading the second, otherwise the second is leading (Roesch et al. 
(2014), Hanus & Vacha (2018)). The phase differences are evaluated on sets of 
scales due to correlation of wavelet coefficients on adjacent scales. Note tha t 
several papers (for example Hanus & Vacha (2018)) suggest to divide the cross
wavelet transform  at each scale by th a t scale before the smoothing is done, yet 
both  approaches lead to qualitatively equal results.
If one signal lags behind the other, it has to hold th a t ^>(X)—<fr(Y) =  constant =  
0 (Cazelles & Stone (2003)). W hen dealing with a noisy time-series, the relative 
phase position tend to change, either overall or on certain scales. B ut if two 
series tend to have some phase relationship (tend to be phase-locked), there

4  discrete wavelets such as Daubechies or Symlet wavelets are defined with a finite number 
of vanishing moments (equivalent of the Gaussian envelope of Morlet wavelet), i.e. they 
become 0 after some distance from the center. We than  say th a t the length of the wavelet 
filter on scale 1 is then the number of vanishing moments of the wavelet time 2m

5  for precise definition of R m  ,  see W hitcher et al. (1999)
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should be some non-zero preferred value. To deal w ith the  circularity, i.e. th a t
—n  and n are next to each other, when computing mean of the phase shifts 
we follow Addison (2018)6  and introduce circular mean phase shift of signals x 

and y as follows:

C M P D (x ,y ) =  tan - 1

{cos(^x,y (t , s))>
(4.24)

where (•> stand for averaging in time. This measure is used for calculation the 
raw mean phase difference and also for its confidence intervals described below. 
There are unfortunately no theoretical distributions available for phase dif
ference of two signals and thus approach employing Monte Carlo methods is 
needed. We examine some possible approaches and use them  to assess our 
results.
To examine the significance of the existence of the preferred value, normal
ized Shannon entropy (SE) can be used to determine significance of the peak. 
Following Hanus & Vacha (2018) the confidence intervals of the mean phase 
difference were determined with a bootstrap approach.

4.3 .1  Shannon en tropy te s t

If two noisy signals are not in any way phase synchronized, their phase differ
ences should follow uniform distribution (i.e. their m utual phase position can 
be at any point with equal probability), while if the distribution is peaked, it 
points to tendency to be synchronized. Useful measure th a t can quantify how 
different is the phase difference distribution from uniform distribution can then 

be Normalized Shannon entropy (P. Tass & Freund (1998)) tha t quantifies the 
localization of an information. Index of Shannon entropy of distribution ^ x ,y  (t) 
is defined as

N h
S  =  — Pk logpk (4.25)

k = 1

6  Addison uses different measure for phase difference when using such circular mean, how
ever it does not affect usability of this measure (even though it  decreases the scale of the 
difference between it and classic mean). Measures proposed by Addison (so-called non- 
smoothed phase differences) were tested on the artificial (noisy) signals and did not provide 
correct identification of the phase differences. This leads researcher to  the conclusion th a t 
those measures are not fit to  examine phase-positions of very noisy da ta  on higher frequencies.
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pk  is a  relative frequency of observation in bin k of a  frequency histogram  with 
N h  being the  number of bins. Normalized Shannon entropy is then

S SQ  =  SmSa x  -  S (4.26)
Sm a x

w ith S m a x  =  ln N  . Then Q  can have values between 0 and 1 w ith 0 for uniform 
distribution and 1 for Dirac like distribution, i.e. full phase synchronization. 

Two independent signals should have phase difference distribution uniform, b u t 
to  avoid m iss-interpretation of the  coefficient due to  randomness, significantly 
different value from uniform distribution is then  determined by computing the 

index for 1000 white-noise and red-noise series and and the  observed Q  is 
evaluated against noise entropies to  obtain probability of the  signals to  be 
phase-correlated due to  randomness.
I t  is im portant to  note th a t for two series to  be phase-locked over tim e their 
phase difference distribution should be unimodal - have one peak. Two (or 
several) peaked distribution can mean th a t the phase sharply shifted in certain 
period or th a t  the  relative phase switches between 2 or more states. Thus in
spection of the  phase in tim e is needed. Another issue is th a t  the insignificance 
against random  noise indicates th a t there is no interesting (or observable) re
lationship between the processes. Conversely if we find significant values it 
suggest th a t the  is phase relationship present. In  the same tim e, the  relative 
size of the  Shannon entropy statistic can be understood as a  measure of stabil
ity  of the  phase-difference. Lower values indicate lower stability,7  ,  while high 

values suggest th a t there is a  single phase lock.

4.3 .2  Phase b o o ts tra p

To establish the empirical confidence intervals we constructed 500 surrogate 
series by adding 5% white noise to  the  original ones. Then for each pair of 
series the phase difference is computed. A t each tim e point and a t  each band 
on which phase difference was obtained a  95% confidence interval is computed. 
If one series is then  significantly lagged in phase after the  other, the  phase 
should be stable and different from zero. Therefore confidence interval of the 
mean phase difference are established by taking mean over series consisting of 
the  border of significance a t  each tim e point.

7  W hite, Red and Fourier noise all seldom have Shannon entropy over 0.15
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4.3 .3  C o m p u ta tio n  o f C W T  w ith  d iscre te  in p u t signal

Financial time-series do no t provide us w ith continuous d a ta  and also all inte
grals can be numerically approxim ated w ith only finite accuracy. To address 
th is issue, it  is thus feasible to  select approximation finesse and use efficient 
m ethods for com putation of the coefficients. In tim e domain, the  shortest avail

able resolution is used (i.e. 5-minute), in frequency domain we choose to  use 
scales as powers of 2 (set of scales from one power to  another is called octave) 
and in between each power we compute 25 scales exponentially d istributed over 
the  sub-interval. Following Torrence & Compo (1998), the wavelet transform  
in discrete tim e can be then  rew ritten as

1 Z----- N - 1 _

W (T,s) =  (4.27)
k0

where x k stands for Fourier transform  of a signal x, ^ ( )  is Fourier transform  of 
the wavelet and x  stands for angular frequency which is N k  for k <  N /2  and 
— N k  otherwise. The coefficients are then computed employing Fast Fourier 

Transformation algorithm.
The scale decorrelation length was empirically determined to be 0.6 of an octave 
for Morlet wavelet (Torrence & Compo (1998))  and it was chosen as a smooth
ing window in frequency domain. The smoothing window in time represents 

trade-off between resolution in time-localization and robustness to noise. Var
ious window lengths are used in practice, for example Cazelles et al. (2008) 
use in their M atLab package window of a ten th  of time-series length. In this 
thesis it was chosen to be 400, which means tha t each coefficient is smoothed 
by observations distant up to two and a half day with linearly decaying weights. 
More details are provided in the following section.

4.3 .4  Phase differences o f a rt if ic ia l signals

To dem onstrate the strength of wavelet analysis, this section employs above 
introduced m ethod on a signals composed of single or multiple sinus waves 
with added noise and compares them  signals generated by W hite and Red 
noise processes and to phase-randomized Fourier surrogate of indexes PX  and
DAX in 2008.
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F irst pair of signals are simple sinuses shifted twice:

b(t) =  eb +  <

= n * t/6 ) +  ea (4.28)

sin(2 * n *  (t +  1)/6), if t <  2000

sin(2 * n * (t +  1)/6), if t G (2000, 4000) (4.29)

sin(2 * n * (t +  1)/6), if t >  4000

where is a random normally distributed noise with zero mean and variance 
equal to the signal w ithout it (e.g. ea N (0, 0.5)). Figure 4.2 shows the signals 
around the first shift with and without the noise. We can see th a t without the 
noise the signals periodicity and phase are very clear while with the noise, no 
apparent comovement, phase difference or shift in it are observable.
Figure 4.3 show wavelet Cross-power, squared coherence and phase difference 
of simple noisy signal a(t) and composite noisy signal b(t). On the y-axis of 
the first two graphs Cross-power shows th a t the variation is interesting only 
at periods around 6. Coherence nicely smooths the relationship and show that 
the signals are indeed highly coherent across entire existence around period 6 
but also show some random coherence on lower frequencies. However in the 
phase plot, it is easy to see th a t stable phase is present only on band 4-8, where 
it starts at -1, then shifts two -2 and reverts back to -1 - indicating changing 
lag of a(t) behind b(t).
Figure 4.4 shows the evolution of phase difference on three bands (2-4, 4-8 and 
16-32). We can see tha t the phase difference clearly shows the relationship
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(a )  W avelet Cross power

Figure 4 .3 : W avelet phase difference of a ( t)  and  b ( t)

(b )  squared Coherence ( c )  W avelet Phase difference

on the band 4-8, while no stable relationship is present for the  other bands. 
Shannon Entropies are 0.1, 0.56 and 0.08, respectively. For the band 4-8 we 
see a  value th a t never occured for random  noises in our simulation (relatively 
higher stability) while the  values for the  other two bands are no t statistically 
different from random .

Second, composite signals c (t) and d (t)  consisting of 4 sinus wave were created:

x(t) =  sin(2 * n * t/3 ) (4.30)

y (t) =  sin(2  * n * t/6 ) (4.31)

z (t) =  sin(2  * n * t/24) (4.32)

w(t) =  sin(2  * n * t/48) (4.33)

c(t) =  x(t) +  y(t) +  z(t) + w(t) +  ec (4.34)

3 * x(t) + y ( t + 1 ) ,  if t < 2 0 0 0

d(t) =  z (t) +  w(t) +  ed +  < x (t -  1) +  y(t +  2), if t e  (2000,4000) (4.35)

x ( t -  1) + y ( t + 1 ) ,  i f t  > 4 0 0 0

We can see th a t the processes are in phase for periods 24 and 48 (lower frequen
cies), and w ith changing phase difference on high frequencies (periods 3 and 6). 
Their wavelet cross-power, coherence and phase are showed in figure 4.5. I t  is 
interesting to  see the alm ost vanishing coherence on the highest frequency after 

signal d (t) 's  am plitude was lowered to  1 in comparison to  3. The phase differ
ence plot indicates quite stable phase on bands 16-32 and 32-64 and changing 
phase difference on bands 2-4 and 4-8, where darker blue colours indicate shift 
onward while shift to  red colours on band 2-4 show the  lag of d (t)  behind c(t). 
Figure 4.6 investigates few bands of the  phase difference. We can see stable
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Figure 4 .4: W avelet spectra and  phase of a ( t)  and  b ( t)

(b )  Phase histogram s

(a )  W avelet Cross power

Figure 4 .5: W avelet phase difference of c (t)  and  d ( t)

2000 4000 6000

(b )  squared Coherence ( c )  W avelet Phase difference
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Figure 4 .6: W avelet spectra and  phase of c (t)  and  d ( t)

(b )  Phase histogram s

phase-lock on band 16-32, 2 clear peaks and shift around point 2000 and band 2
4 and no clear relationship on band 64-128. Shannon entropies from top down 

are 0.3, 0.5 and 0.15. Latest can be surprising since i t  is marginally higher 
th an  w hat we get from simulations of all three types of noise. This is due 
to  the smoothing and correlation on adjacent scales as the  0 phase difference 
from scale 32-64 influenced the  result and dem onstrates im portant implication 

on Shannon entropy test: SE only rejects th a t  the  signal is a  random  noise 
process (colours white, red and Fourier phase randomized surrogate). B ut the 
coefficient remains valid to  tell us about the  relative stability of the  phase 
difference.

Noises and sm oo th ing  w indow

Changing the  size of the  smoothing window affects the  time-resolution of the 

phase-difference and thus it  is im portant to  use the  appropriate length of the 
window. F irst, let us have a  look a t  the  Red Noise phase difference. Red-noise 
can be defined asGilman et al. (1963):

R N (t) =  a  * R N (t -  1) +  a/C 1 -  a 2 ) * e, e N (0,1) (4.36)
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Figures 4.7 and 4.8 show the time-evolution of the  wavelet phase difference with 
the  windows set to  50 and 400. I t  can be seen th a t regardless of the  frequency 
band, the  distribution of the  phase difference is dispersed across the  whole 
period. Histograms 4.12 of the  phase difference look almost the  same across 
all periods and smoothing windows. W hite noise exhibit identical properties 
and the  same is valid for phase-randomized Fourier surrogate of the  indices (as 
defined by Cazelles et al. (2008)).
Figures 4.10 and 4.11 show the  time-evolution of the wavelet phase difference 
for the composite process c(t) and d (t)  w ith smoothing windows set to  be 
50 a  400. I t  can be seen th a t while for the relatively low frequency band 
(64-128) the  phase-lock can be observed w ith window 50, the  high-frequency 
components seem like a  noise and i t  is hard  to  distinguish for example between 
band 2-4 and 8-16. O n the  other hand, w ith window 400 the  relationship unveils 

itself and we can observe, even-though still noisy, the  relationships on expected 
scale while the scale 8-16 remains random . The effects of the  smoothing are 
much larger on the  highest frequencies th an  the lower ones. Reason is fairly 
straightforward - the  wavelets on higher scales work in a  broad sense as weighted 
averages themselves, and thus are smoother by definition and only less space 
for smoothing remains.
Figures below well illustrate the  effect of the smoothing. The phase-relationship 
between the  series rem ain the same, since we sm ooth the coefficients from which 

we calculate the  phase difference, not the  phases itself. T h a t has direct im pact 
for the  bootstrap  approach of obtaining the  confidence intervals of the  means of 
the  relative phases - they are quite robust to  the  changes of smoothing windows. 
Extrem e example is shown in table 4.1 where we compare Red noise processes 
w ith 19500 observations smoothed w ith windows of length 15 and 400 where 
we do not observe much change in the  confidence intervals.

Table 4 .1 : Relative phase confidence intervals and  entropies of R ed Noise series

W in d o w
le n g th

2 -4
s c a le

C o n f id e n c e
in t e r v a l

S h a n n o n
e n t r o p y

4 -8
s c a le

C o n f id e n c e
in t e r v a l

S h a n n o n
e n t r o p y

8 -1 6
s c a le

C o n f id e n c e
in t e r v a l

S h a n n o n
e n t r o p y

1 5 0 .0 4 ( - 0 .8 ,  0 .9 ) 0 .0 6 0 .0 0 ( - 0 .7 ,  0 .7 ) 0 .0 7 0 .0 3 ( - 0 .6 ,  0 .6 ) 0 .0 7
4 0 0 0 .0 7 ( - 0 .7 ,  0 .9 ) 0 .0 9 0 .1 2 ( - 0 .5 ,  0 .8 ) 0 .0 8 0 .1 5 ( - 0 .5 ,  0 .6 ) 0 .0 7

W in d o w
le n g th

1 6 -3 2
s c a le

C o n f id e n c e
in t e r v a l

S h a n n o n
e n t r o p y

3 2 -6 4
s c a le

C o n f id e n c e
in t e r v a l

S h a n n o n
e n t r o p y

6 4 -1 2 8
s c a le

C o n f id e n c e
in t e r v a l

S h a n n o n
e n t r o p y

1 5 0 .0 8 ( - 0 .5 ,  0 .6 ) 0 .0 8 0 .0 2 ( - 0 .5 ,  0 .6 ) 0 .0 8 0 .2 4 ( - 0 .3 ,  0 .8 ) 0 .0 9
4 0 0 0 .1 0 ( - 0 .5 ,  0 .6 ) 0 .0 7 0 .1 0 ( - 0 .4 ,  0 .6 ) 0 .0 8 0 .3 4 ( - 0 .2 ,  0 .9 ) 0 .1 0
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Figure 4 .7 : R ed Noise series phase difference w ith  time-window 50
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Figure 4 .8 : R ed Noise series phase difference w ith  sm oothing time-window 400
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4.3 .5  Phase synchron iza tion  w ith o u t sm ooth ing

In  recent paper Addison (2018) points out possibility to  examine phase dif
ferences on scales w ithout any smoothing of the  transform  itself. The phase- 
synchronicity is measured by averaging the  ”raw” phase difference of the  signals 
x and y  defined as

& < K y (t , s) =  5^ x (r, s) -  5^y (t , s)

=  ta n  -  1
I m (W x (t ,  s )) 
R e (W x (t ,  s )

tan - 1
I m (Wy (t ,  s )) 
R e (Wy (t ,  s )

(4.37)

This definition is however equivalent to  computing the  non-smoothed phase of 
the  cross-transform.
Addison (2018) defines so-called phase synchronization index, a  measure to  
compare phase-synchronicity of different signals, as:

P S I x ,y  (s) =  {sin (8^ x ,y  (t , s ))) 2 +  {cos(80x ,y  (t , s ))) 2 (4.38)

Such measure can have values ranging from 0 to  1, w ith 0 pointing to  full
randomness of the  series and 1 to  perfect synchronization on particular scale 
similarly to  Shannon entropy. Since the  measure produces single value for
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Figure 4 .10: Phase differences of signals c (t)  and  d (t) , sm oothing time-window 50
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Figure 4 .11 : Phase differences of signals c (t)  and  d ( t) , sm oothing time-window 
400
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Figure 4 .12: Phase difference histogram s of signals c (t)  and  d ( t)

each scale, it  is possible to  examine i t  'continuously'. I t  is no t clear which 
synchronization values are significantly larger th an  0 and no t caused only by 
finite length of the  series. We thus use bootstrap  approach on 1000 red-noise 
signal pairs to  establish indication of significance of the  synchronicity. Figure 
4.13 shows 95t h  percentile of values of PSIs between 2 random  signals (both  

white-noise and red-noise shown).
We have to  point out th a t the measure is not equivalent to  any of the  above 
measures - since here we do not sm ooth the  d a ta  nor the transform s which 

averages out p a rt of the  deviations. This can lead to  failure to  uncover existing 
relationships th a t  remain masked under noise on particular scale. O n the  other 
hand it  offers more detailed and less biased information on the  synchronicity.

4.4 M O D W T  and Granger Causality

One well known test of cross-influence between signals (time-series, indexes) is 
called linear G ranger Causality test. I t  is a spectral te st designed to  statistically 
assess if information contained in past realizations of A is useful for prediction 
of process B  after accounting for all the  information in process B (i.e. its past 
values). If such a  causality is present on some frequencies it  shows slightly
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Figure 4 .13: 95 t h  quantile of PSIs of W hite-noise and  Red-noise artificial signals

different b u t stronger picture how the  series are following each other (however 
the  presence of bidirectional causality is possible, while instantaneous lead of 
bo th  series is no t). Following Reboredo et al. (2017), we introduce VAR model 
w ithout instantaneous causality as follows:

k k

Xt  =  a i  +  5 2  a i x t - i  +  5 2  ^ i y t - i  +  (4.39)
i = 1  i = 1

k k

yt  =  a i  ^ 5 2  Yi Xt - i +  5 2  ^i yt - i +  Uy ,t (4 -4°)
i = i  i = i

where us ,t is random  term  in tim e t  for series s . To select which lags should
be used to  in VAR model, variety of m ethods are commonly used in practice 
- i.e. Aikake's, Hannan-Quinn or Schwarz's Bayesian information criterions 

or likelihood ratio  test. Dziak et al. (2012) note th a t while AIC has quickly
decreasing probability of Type I error (under-fitting) w ith increasing sample 
size, probability of Type II error remains the  same. O n the  other hand SBIC's 
probability of bo th  types of error decrease slowly w ith sample size. Since 
samples used in th is thesis are quite large, SBIC is used for lag selection.
We can set null hypotheses th a t x  does not cause y HX : ^ 1 =  ... =  fik =  0 and 
y does not cause x HX : y 1 =  ... =  y k  =  0. In presence of normally distributed
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random  term s w ith constant variance, the  te st statistic  for such a  test follows 
Fisher distribution w ith (k , T-2k-1) degrees of freedom. However, for the raw 
series, norm ality of the  error term  is a  strong and unlikely assum ption (even 

though it is satisfied for sub-series obtained by M ODW T). M antalos et al. 
(2007) show if the  underlying processes contain conditional heteroskedasticity, 
linear Granger causality te st tends to  over-reject the null hypotheses of no 
causality and therefore lead to  finding causality where none is present. Since the 
raw d a ta  exhibit auto-correlation and conditional heteroskedasticity, following 
Hafner & Herwartz (2009) we use wild bootstrap  to  establish empirical p-value 
of the Granger causality (using 5000 runs8  ).

We then  apply this model on a  sub-sample of 2008 and 2015 (2011 for W IG) 
on bo th  original series and the  filtered series obtained by inverse M ODW T 
on the  scale coefficients allowing for, apart from observing direct causality, 
also for causality localized on certain frequency band providing possibly both  
localization of causality and identification of new ones ( th a t could be covert in 
the  process by other information).

4.5 Tools used to  carry o u t the  analysis

The analysis is done in R  3.4.0. Several tools of the  tools were originally coded 
in M atLab by other researchers b u t they were rew ritten to  R  language syn- 
tax .9 Packages data.table (Dowle & Srinivasan (2017))  waveslim  and wmtsa (for 

M ODW T calculation) were used to  carry ou t the  analysis.

8  This number is a  result of compromise in which the variance between two model runs 
on the same da ta  seems negligible for the use-case whilst keeping the computational time 
reasonable (to  cope with dozens of runs)

9  particularly the wavelet transform itself



Chapter 5

Empirical results

5.1 Evidence from  C W T  and wavelet correlation

5.1 .1  F TS E  100 and D A X

We s ta r t the empirical section by comparison of the  two indexes th a t  are consid
ered as being developed m arkets, FT SE 100 and DAX. Figure A.11 shows the 

contour plots of the  evolution of wavelet cross-power, wavelet squared coher
ence and wavelet phase difference of the  two time-series, w ith significant areas 
being enclosed by solid black lines. O n the  x-axis we have tim e domain (each 
graph standing for 1 year, months as labels), on the  y-axis we have frequency 
domain. To be able to  focus on high frequency aspects, only scales of cycles 
of up  to  3 days are depicted (the  calculation was done over another octave to  
control for unwanted effects of smoothing). Thus relatively lower frequencies 
in th is study point to  scales of around 1 day. Regarding the  wavelet power, we 
can see th a t  the  the  common high power is usually located to  short time-period 
which as a  consequence causes black areas in the  plots (since every small area 
is enclosed by black line). Significant areas indicate high common energy on 

particular scale in certain points in tim e. I t  brings interesting results regard
ing where and how the significant areas are clustered - we can see a  cluster in 
the  end a t  2008 and in many other periods and those clusters span over most 
scales. However, it  is hard  to  observe any time-effects since i t  does not reflect 
significant comovements over relatively calmer periods.
O n the  other hand, wavelet coherence controls for relative energy of underlying 
processes and shows how well processes co-move w ith each after energy a t  th a t

1  All the figures of CW T to which the tex t refers are shown in the Appendix A due to 
their very large number and /o r size
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tim e and scale is account for. We can see th a t th a t the  areas of very high 
coherence indicate strong link between D A X  and F T SE  100. O n frequencies 
below 80 minutes, the coherence is alm ost always significant. Surprising is the 
time-evolution of the  coherence th a t we observe. Over tim e, the  coherence par

ticularly on highest b u t also on relatively lower frequencies decreases w ith the 
usual values falling from around 0.6 to  0.2 (w ith localized windows of higher 
significance) - even though it is still significant against random  noise. This 
effect appears to  be stronger from second half of the  2012. The reasons behind 
th a t are unclear - one possibility could be th a t the  common pricing mechanism 
th a t influences the  global prices shifts its localization to  lower frequencies (be
yond those inspected in th is work). Lowest six plots of figure A.1 show relative 
phase difference of the 2 time-series. We can observe mostly only marginally 
negative or positive values w ith exceptions on relatively lower frequencies to
wards the  end of the  sample. Figure A.2 and table 5.1 together bring more 

focused evidence on the  relative phase. During year 2008 to  2012, we can see 
th a t the phase difference fluctuates w ith very low am plitude around 0 (w ith 
small exception for band 64-128 which relates to  320-640 minutes namely in 

2008 and 2011). B ootstrap test do no t indicate any year of significant non-zero 
phase. Shannon entropies on high-frequency bands are very high (approxi
m ately 4 times higher than  highest SE for random  noise pairs) suggesting the 
overall stability of the differences. Interesting is the  observed lower stability 
of the  relative phase over the  years 2013 to  2015 where particularly on lower 
frequency bands the  phase histograms are flatter. This could be the  result of 
lower coherence of the  processes. Figure 5.1 show evolution of wavelet correla
tion on each scale across years. We can see th a t  correlation has similar values 
for all the frequency bands are the follow rather similar tim e-pattern. The cor

relations, mainly on the  highest frequency bands, undergone significant changes 
and, a t  least from 2010, they show decreasing correlations w ith minimum in 
2013. This minimum is consistent w ith stability of the  phase difference th a t 
is also lowest in 2013. These results are baffling, however possible explanation 
is th a t  the  global pricing mechanism th a t drives common changes in the series 

is becoming more stable and moves to  lower frequencies and as a  consequence 
leave less energy to  higher frequencies. The level of the  noise remains the  same 

and even when the  series are phase-locked on those frequencies, uncorrelated 
behavior increasingly dominates the observed relative phase.
In general, the results of C W T and correlations on FT SE 100 and DAX indicate 
th a t the  two indexes are well phase synchronized and are then  either in phase
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or in a  very small lag one behind the  other w ithout any indication which one 

could be the  leader. This points in favor of the  first hypotheses of th is thesis, 
however there is no test suited to  confirm it.

Year 10-20
m inutes

Confidence
interval

Shannon
entropy

20-40
m inutes

Confidence
in terval

Shannon
entropy

40-80
m inutes

Confidence
interval

Shannon
entropy

2008 -0.06 (-0.14, 0.02) 0.72 -0.04 (-0.14, 0.06) 0.70 -0.01 (-0.16, 0.13) 0.61
2009 -0.06 (-0.12, 0.00) 0.73 -0.05 (-0.13, 0.03) 0.72 0.01 (-0.11, 0.13) 0.67
2010 -0.01 (-0.08, 0.04) 0.78 -0.02 (-0.10, 0.05) 0.75 0.00 (-0.10, 0.11) 0.69
2011 -0.00 (-0.08, 0.07) 0.76 -0.02 (-0.13, 0.07) 0.71 -0.02 (-0.17, 0.12) 0.63
2012 0.00 (-0.05, 0.07) 0.76 0.00 (-0.08, 0.08) 0.67 0.03 (-0.10, 0.14) 0.65
2013 -0.01 (-0.08, 0.05) 0.72 -0.02 (-0.11, 0.06) 0.65 -0.02 (-0.16, 0.10) 0.61
2014 -0.01 (-0.08, 0.05) 0.71 -0.01 (-0.10, 0.08) 0.66 -0.01 (-0.14, 0.12) 0.59
2015 0.00 (-0.07, 0.07) 0.68 -0.01 (-0.10, 0.08) 0.64 -0.02 (-0.16, 0.12) 0.54

Year 80-160 Confidence Shannon 160-320 Confidence Shannon 320-640 Confidence Shannon
m inutes interval en tropy m inutes in terval en tropy m inutes interval en tropy

2008 0.01 (-0.19, 0.23) 0.59 0.02 (-0.27, 0.32) 0.54 0.02 (-0.39, 0.45) 0.44
2009 -0.00 (-0.17, 0.15) 0.62 0.02 (-0.21, 0.26) 0.58 -0.07 (-0.40, 0.26) 0.47
2010 -0.00 (-0.16, 0.15) 0.65 -0.02 (-0.24, 0.21) 0.58 0.01 (-0.29, 0.30) 0.54
2011 -0.03 (-0.26, 0.20) 0.58 0.01 (-0.29, 0.32) 0.51 -0.00 (-0.43, 0.44) 0.43
2012 0.03 (-0.14, 0.22) 0.53 0.02 (-0.23, 0.28) 0.49 0.02 (-0.33, 0.37) 0.45
2013 -0.05 (-0.24, 0.15) 0.50 -0.06 (-0.32, 0.21) 0.42 -0.07 (-0.40, 0.32) 0.39
2014 -0.07 (-0.27, 0.12) 0.51 0.01 (-0.27, 0.29) 0.46 -0.07 (-0.43, 0.27) 0.42
2015 -0.02 (-0.25, 0.19) 0.48 -0.01 (-0.33, 0.28) 0.41 -0.02 (-0.43, 0.39) 0.33

Table 5 .1 : M ean phases and  Shannon Entropies over years, FT S E  100 and  DAX

5.1 .2  P X

Figure A.3 show the  results of the transform  on Czech spot index prices PX  
and DAX. I t  is interesting to  observe similar patterns in wavelet power as 
between FT SE  100 and DAX. B ut for example in the  first four m onths of
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2009 the  areas appear larger on lower frequencies which m ight indicate higher 
common reaction to  Global financial crisis a t  th a t tim e (Blue Monday ). The 
coherence is however much lower. W armer colors in lower frequencies are almost 

missing indicating, even though significant, relatively low degree of correlation 
on highest scales. Nevertheless the tim e evolution share similar pa tte rn  where 
the  coherence even looses significance in m a jority of tim e periods.
The graphs of phase difference offer different picture. They imply th a t the  phase 
difference is negative and PX  is lagging behind DAX in earlier years of the  ob
served period and mainly on higher frequencies while in la tte r we observe wider 
confidence intervals and higher uncertainty over the phase-difference. This is 

supported by graphs in figure A.4 and the results showed in table 5.2. On 
the  highest frequency band (frequencies of 10 to  20 minutes standing for the 
finest information in the  da ta) the  mean of the  phase is ranging between -0.78 

and -0.46 w ith less negative values toward the  end of the  sample. W ith  time 
also the  significance falls and the  phase difference become more scattered and 
in 2015 we cannot say on 5% significance level th a t th a t  PX  is still lagging 
behind DAX. The m ost volatile phase difference can be observed in 2013 (sim

ilarly for all bands) where even though the  distribution is peaked and with 
negative mean resembles the  distribution of random  noises (Shannon entropy 
is only 0.16). Similar values we observe on next band where particularly in 
the  first half of the  subset C W T indicates highly significant non-zero values 
w ith normalized Shannon Entropy from 0.4 to  0.5. Phase difference remains 
marginally significant to  the end of the sample b u t looses much of its  stabil
ity  (as can be seen on the  shape of phase histograms in figure A.4. Identical 
pa tte rn  is present for band of scales from 40-80 minutes. O n relatively lower 
frequencies the  results point to  a  preferred value b u t w ith lower stability and 
mostly insignificantly non-zero values which imply lower phase-correlation and 

no significant lag of Prague behind Frankfurt. These patterns are supported 
by the  correlation estim ates (fig. 5.2). We can see th a t  on high frequencies, the 
correlation is relatively lower. O n band w ith frequencies of 10-20 minutes we 

observe correlations around 0.15 w ith its low of 0.05 in 2013, which corresponds 
to  the  almost-noise Shannon entropy. O n lower frequencies the correlation in
creases, though the  pa tte rn  in the  values of Shannon entropy resembles the
pa tte rn  in correlations. However, the  observed correlations serve as contrast to
results of Egert & Kocenda (2011) for time period 2003 to 2006, who calculated 
correlations on high frequency data from PX  and DAX of 0.007 while 2 years 

later we see much higher values on scales shorter than  one day.
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Year 10-20
m inutes

Confidence
interval

Shannon
entropy

20-40
m inutes

Confidence
interval

Shannon
entropy

40-80
m inutes

Confidence
in terval

Shannon
entropy

2008 -0.78 (-1.11, -0.42) 0.28 -0.69 (-0.92, -0.45) 0.45 -0.41 (-0.66, -0.14) 0.40
2009 -0.56 (-0.87, -0.21) 0.26 -0.70 (-0.91, -0.49) 0.36 -0.52 (-0.73, -0.28) 0.39
2010 -0.62 (-0.89, -0.32) 0.29 -0.64 (-0.81, -0.47) 0.47 -0.50 (-0.69, -0.30) 0.43
2011 -0.78 (-1.17, -0.37) 0.27 -0.74 (-0.97, -0.48) 0.42 -0.47 (-0.73, -0.19) 0.40
2012 -0.59 (-0.93, -0.26) 0.28 -0.72 (-0.94, -0.50) 0.39 -0.47 (-0.71, -0.24) 0.38
2013 -0.70 (-1.11, -0.19) 0.16 -0.72 (-1.03, -0.38) 0.28 -0.39 (-0.77, -0.05) 0.24
2014 -0.58 (-0.96, -0.11) 0.16 -0.64 (-1.02, -0.21) 0.24 -0.44 (-0.78, -0.10) 0.27
2015 -0.46 (-0.94, -0.00) 0.21 -0.52 (-0.84, -0.20) 0.25 -0.37 (-0.70, -0.05) 0.26

Year 80-160 Confidence Shannon 160-320 Confidence Shannon 320-640 Confidence Shannon
m inutes interval entropy m inutes interval en tropy m inutes in terval en tropy

2008 -0.27 (-0.55, 0.06) 0.41 -0.19 (-0.58, 0.23) 0.33 -0.04 (-0.59, 0.53) 0.28
2009 -0.36 (-0.59, -0.11) 0.40 -0.24 (-0.52, 0.05) 0.35 -0.19 (-0.64, 0.24) 0.29
2010 -0.28 (-0.52, -0.06) 0.42 -0.22 (-0.54, 0.09) 0.33 -0.22 (-0.60, 0.14) 0.31
2011 -0.24 (-0.62, 0.11) 0.35 -0.19 (-0.60, 0.23) 0.28 -0.06 (-0.66, 0.46) 0.26
2012 -0.36 (-0.65, -0.10) 0.41 -0.30 (-0.63, 0.04) 0.30 -0.13 (-0.64, 0.44) 0.24
2013 -0.24 (-0.67, 0.15) 0.25 -0.04 (-0.54, 0.39) 0.19 -0.24 (-0.78, 0.25) 0.18
2014 -0.33 (-0.75, 0.14) 0.26 -0.19 (-0.65, 0.24) 0.24 -0.15 (-0.66, 0.33) 0.24
2015 -0.35 (-0.72, 0.03) 0.26 -0.17 (-0.55, 0.22) 0.26 -0.09 (-0.73, 0.47) 0.22

Table 5 .2 : Phase differences w ith confidence intervals and  entropies for P X  and 
DAX

Figure A.5 depict wavelet transform ations of indexes PX  and FT SE 100. Wavelet 
power confirms the  occurrences of commonly highly volatile sessions between 
DAX, FT SE  100 and PX . We can see higher dispersion of power in 2013 and 

extremely high localized periods in 2011 and 2015 with wavelet cross-power 
over 100 (average for two white noise processes is 1 w ith 3 as upper bound of 
95% confidence interval). Coherency patterns are highly similar to  those be-
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tween DAX and PX  b u t show lower degree of coherence mainly in first half of 

2011 and from 2013 onward. Phase difference plots indicate th a t PX  lags also 
behind FT SE 100, mainly between 2008 and 2010. Figure A.6 brings evidence 
th a t the  phase difference is more unstable th an  w ith DAX. This is visible both  

on the  line plots (we can see shorter periods of stability and more periods where 
the  synchronization is not visible) and on the  values of Shannon entropy (table 
5.3). O n highest frequencies the average lag becomes insignificant on 5% level 
in 2014 and on scales between 40 and 80 minutes i t  is not significant since 2013. 
Relatively lower frequencies indicate lower level of phase-lock. The values are 
insignificantly negative (w ith several exceptions on scale around 2 hours) and 
the  Shannon Entropy approaches values of random  noise. Histogram and line 
plot for band 64-128 (320 to  640 minutes, around 1 trading day) in figure A.6 
(h ) show th a t the  preference of 0 among the  values is very weak and in many 
periods i t  escapes to  the  edges of the  cycle. Surprising are the  estim ates for 
correlations (figure 5.3), th a t are almost identical to  those w ith DAX (only 
they drop sooner on some bands).
These results are partly  in favor of the  second thesis hypotheses. We do observe 
the  phase lag of Prague behind developed stock m arkets on highest frequencies, 
b u t while on some frequencies we see significant lag throughout the observed 
periods, on some of the  investigated frequencies the  phase differences become 
statistically insignificantly different from zero.

Nonetheless, due to  the lower stability of observed phase differences, we cannot 
reject the  hypotheses th a t PX  tends to  lag less throughout the  years. For 
example on the  10-20 m inute band the  values of mean phase difference are 

closer to  0 in 2014 and 2015, however as the uncertainty regions expand the 
true  value might be even largely negative than  in previous years2  .

5.1 .3  B U X

We continue w ith comparing BUX w ith FT SE 100 and DAX. Graphical repre
sentation of the  continuous wavelet analysis is depicted in figures A.7 and 5.5, 
respectively. The cross power w ith bo th  resembles the  plots of PX , though the 
peaks have lower values (for DAX in the whole sample and FT SE  100 in sec
ond p a rt of the  d a ta  set). This observation has im pacted the coherency plots. 
Significant areas are scarcer, even more from 2013 when the  m utual coherence 

values are extremely low. Phase plots seem less stable and the  patterns are

2  we we need non-overlapping confidence intervals to  be able to  claim observed difference
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Year 10-20
m inutes

Confidence
interval

Shannon
entropy

20-40
m inutes

Confidence
interval

Shannon
entropy

40-80
m inutes

Confidence
in terval

Shannon
entropy

2008 -0.64 (-0.92, -0.28) 0.28 -0.64 (-0.88, -0.40) 0.41 -0.43 (-0.67, -0.15) 0.40
2009 -0.51 (-0.82, -0.20) 0.30 -0.66 (-0.86, -0.44) 0.35 -0.55 (-0.78, -0.29) 0.38
2010 -0.63 (-0.91, -0.32) 0.32 -0.63 (-0.79, -0.46) 0.45 -0.50 (-0.70, -0.31) 0.40
2011 -0.66 (-1.09, -0.23) 0.27 -0.67 (-0.92, -0.39) 0.38 -0.47 (-0.74, -0.18) 0.38
2012 -0.55 (-0.90, -0.23) 0.28 -0.78 (-0.99, -0.54) 0.37 -0.51 (-0.76, -0.29) 0.35
2013 -0.54 (-1.04, -0.05) 0.17 -0.71 (-1.10, -0.26) 0.22 -0.39 (-0.81, 0.02) 0.21
2014 -0.47 (-0.97, 0.14) 0.16 -0.55 (-0.96, -0.08) 0.22 -0.36 (-0.79, 0.02) 0.25
2015 -0.34 (-0.81, 0.14) 0.17 -0.47 (-0.85, -0.10) 0.23 -0.33 (-0.73, 0.08) 0.24

Year 80-160 Confidence Shannon 160-320 Confidence Shannon 320-640 Confidence Shannon
m inutes interval entropy m inutes interval en tropy m inutes in terval en tropy

2008 -0.32 (-0.60, 0.03) 0.38 -0.27 (-0.63, 0.15) 0.31 -0.13 (-0.66, 0.40) 0.26
2009 -0.38 (-0.62, -0.09) 0.36 -0.27 (-0.58, 0.03) 0.35 -0.10 (-0.58, 0.31) 0.25
2010 -0.27 (-0.51, -0.03) 0.44 -0.24 (-0.54, 0.06) 0.37 -0.28 (-0.64, 0.09) 0.30
2011 -0.26 (-0.64, 0.12) 0.30 -0.22 (-0.61, 0.20) 0.29 -0.04 (-0.58, 0.48) 0.30
2012 -0.43 (-0.73, -0.17) 0.38 -0.40 (-0.77, 0.03) 0.28 -0.11 (-0.69, 0.43) 0.24
2013 -0.30 (-0.69, 0.13) 0.22 -0.06 (-0.59, 0.39) 0.18 -0.18 (-0.76, 0.30) 0.17
2014 -0.23 (-0.74, 0.29) 0.23 -0.17 (-0.72, 0.32) 0.22 -0.12 (-0.63, 0.31) 0.22
2015 -0.28 (-0.69, 0.15) 0.24 -0.23 (-0.66, 0.22) 0.22 0.11 (-0.56, 0.78) 0.16

Table 5 .3: M ean phases and  Shannon Entropies over years, P X  and  F T S E  100

observable on frequencies between 20 and 80 minutes. We can see in tables 5.4 
and 5.5 and figures A.9 and A.10 th a t on relatively lower frequencies we find 
no significant lag of BUX after either of developed indexes. Conversely, until 
2013, on the  highest frequencies the  lag is significant and, ap art from 2008, 
quite stable. Both the stability and the  size of the  lag is higher between BUX 
and DAX than  FT SE 100. However on the  highest frequency, the  Shannon 

entropies become very low in the  second p a rt of the d a ta  set (and  for 2008) 
and in case of FT SE 100, the  relative phases are no t different from random 

noise on 10-20 m inute band. Going through the  line plots, i t  is easy to  see 
th a t there appear to  be no preferred value on the  highest frequency band. I t
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is supported by the  wavelet coherency, which approaches zero in these years. 
The results in term s of the  hypotheses are a  b it different than  in the  case of PX . 
Hungarian index seems to  follow bo th  DAX and FT SE in certain years, however 
the  stability is low not only from 2013 b u t also in 2008. The relationship 
perishes for highest frequencies and the  behavior becomes unrecognizable from 
random . There is no straight-forward explanation for th a t. I t  seems th a t the 
pricing mechanism may remain common for parts  of the  information stored 
in the prices, b u t below 20 m inute horizon there seems to  be no information 

transmission and looses stability on all high frequencies.

Year 10-20
m inutes

Confidence
interval

Shannon
entropy

20-40
m inutes

Confidence
interval

Shannon
entropy

40-80
m inutes

Confidence
in terval

Shannon
entropy

2008 -0.79 (-1.29, -0.17) 0.20 -0.62 (-0.99, -0.24) 0.30 -0.45 (-0.81, -0.04) 0.29
2009 -0.50 (-0.77, -0.25) 0.31 -0.50 (-0.71, -0.32) 0.39 -0.34 (-0.58, -0.13) 0.39
2010 -0.44 (-0.68, -0.19) 0.39 -0.40 (-0.57, -0.21) 0.45 -0.26 (-0.46, -0.02) 0.42
2011 -0.45 (-0.77, -0.10) 0.34 -0.47 (-0.71, -0.18) 0.42 -0.34 (-0.63, -0.04) 0.41
2012 -0.33 (-0.65, -0.01) 0.22 -0.40 (-0.66, -0.17) 0.30 -0.33 (-0.62, -0.05) 0.37
2013 -0.40 (-0.83, 0.13) 0.15 -0.63 (-1.04, -0.14) 0.24 -0.38 (-0.89, 0.13) 0.21
2014 -0.47 (-0.98, 0.04) 0.14 -0.57 (-0.96, -0.20) 0.24 -0.53 (-0.90, -0.06) 0.23
2015 -0.55 (-1.11, 0.13) 0.15 -0.65 (-1.03, -0.21) 0.19 -0.57 (-0.92, -0.14) 0.24

Year 80-160 Confidence Shannon 160-320 Confidence Shannon 320-640 Confidence Shannon
m inutes interval entropy m inutes interval en tropy m inutes in terval en tropy

2008 -0.32 (-0.67, 0.01) 0.35 -0.12 (-0.60, 0.30) 0.34 -0.10 (-0.69, 0.48) 0.27
2009 -0.29 (-0.55, -0.00) 0.38 -0.12 (-0.47, 0.21) 0.29 -0.14 (-0.63, 0.34) 0.30
2010 -0.21 (-0.48, 0.06) 0.39 -0.08 (-0.44, 0.28) 0.31 -0.13 (-0.58, 0.30) 0.30
2011 -0.21 (-0.60, 0.17) 0.34 -0.14 (-0.59, 0.29) 0.27 0.00 (-0.61, 0.59) 0.26
2012 -0.34 (-0.64, 0.00) 0.33 -0.07 (-0.52, 0.38) 0.23 -0.03 (-0.57, 0.56) 0.20
2013 -0.24 (-0.69, 0.20) 0.19 0.01 (-0.56, 0.55) 0.15 -0.01 (-0.75, 0.64) 0.14
2014 -0.26 (-0.72, 0.23) 0.20 -0.16 (-0.67, 0.34) 0.16 0.12 (-0.55, 0.86) 0.17
2015 -0.29 (-0.80, 0.20) 0.27 -0.23 (-0.81, 0.32) 0.21 -0.04 (-0.72, 0.61) 0.23

Table 5 .4 : M ean phases and  Shannon Entropies over years, BUX and  DAX
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Year 10-20
m inutes

Confidence
interval

Shannon
entropy

20-40
m inutes

Confidence
interval

Shannon
entropy

40-80
m inutes

Confidence
in terval

Shannon
entropy

2008 -0.60 (-1.13, 0.02) 0.16 -0.56 (-0.96, -0.16) 0.27 -0.39 (-0.77, 0.02) 0.29
2009 -0.40 (-0.68, -0.12) 0.34 -0.42 (-0.65, -0.23) 0.43 -0.32 (-0.60, -0.10) 0.38
2010 -0.47 (-0.73, -0.23) 0.37 -0.40 (-0.55, -0.21) 0.43 -0.28 (-0.52, -0.03) 0.39
2011 -0.45 (-0.78, -0.05) 0.29 -0.45 (-0.68, -0.17) 0.36 -0.29 (-0.59, 0.02) 0.37
2012 -0.38 (-0.70, 0.01) 0.22 -0.42 (-0.66, -0.13) 0.29 -0.41 (-0.68, -0.10) 0.33
2013 -0.31 (-0.83, 0.32) 0.11 -0.51 (-0.96, -0.05) 0.20 -0.26 (-0.77, 0.21) 0.19
2014 -0.32 (-0.91, 0.29) 0.12 -0.61 (-0.98, -0.12) 0.20 -0.45 (-0.95, 0.13) 0.16
2015 -0.58 (-1.15, 0.03) 0.13 -0.65 (-1.04, -0.15) 0.16 -0.54 (-1.00, 0.03) 0.19

Year 80-160 Confidence Shannon 160-320 Confidence Shannon 320-640 Confidence Shannon
m inutes interval entropy m inutes interval en tropy m inutes in terval en tropy

2008 -0.31 (-0.67, 0.07) 0.34 -0.19 (-0.64, 0.23) 0.30 -0.15 (-0.71, 0.39) 0.26
2009 -0.25 (-0.55, 0.07) 0.39 -0.13 (-0.50, 0.26) 0.28 -0.04 (-0.55, 0.42) 0.27
2010 -0.20 (-0.50, 0.11) 0.38 -0.03 (-0.39, 0.36) 0.28 -0.21 (-0.63, 0.24) 0.28
2011 -0.16 (-0.57, 0.23) 0.29 -0.18 (-0.61, 0.25) 0.28 0.00 (-0.63, 0.66) 0.19
2012 -0.39 (-0.74, -0.02) 0.29 -0.07 (-0.60, 0.42) 0.24 -0.06 (-0.69, 0.52) 0.22
2013 -0.16 (-0.62, 0.34) 0.19 -0.05 (-0.62, 0.54) 0.16 0.00 (-0.79, 0.70) 0.15
2014 -0.17 (-0.68, 0.29) 0.20 -0.12 (-0.65, 0.38) 0.16 0.05 (-0.64, 0.82) 0.15
2015 -0.26 (-0.76, 0.23) 0.16 -0.19 (-0.78, 0.36) 0.19 -0.00 (-0.72, 0.60) 0.19

Table 5 .5 : M ean phases and  Shannon Entropies over years, BUX and  F T S E  100

5.1 .4  W IG

Finally, we examine index W IG. Figure A.11 shows C W T w ith DAX, figure 

A.12 shows analysis w ith FT SE 100. We can observe similar pa tte rn  as with 
PX , however peaks of common power have lower absolute values and are spread 
more even over the  years. Wavelet coherence analysis show quite stable regions 
of comovement on frequencies below 80 minutes w ith warmer tones in 2009 
and 2010 and more localized b u t higher coherency on lower frequencies. Sim
ilar break is visible on phase difference plot w ith lag on frequencies up to  80 
minutes and changing behavior on lower ones. Wavelet correlation sheds some
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light into the tim e-pattern, w ith on average highest correlations in years 2010 

and 2011 (peak), b u t the  differences are significant only in certain scale-time 
combinations (see figure 5.6).
Tables 5.6 and 5.7 w ith figures A.13 and A.14 provide scale-by scale tim e in
spection of the relative phases. We can see th a t lag is quite small b u t significant 
in horizons of 10-20 minutes and 20-40 minutes, w ith highest stability in 2009. 
Highest frequency band very stable relationship particularly w ith DAX. How
ever we do not see any strong changes in the strength of the  lag itself. Surprising 
is th a t the  entropy is highest in 2011 even when the  correlation falls. O n the 
horizon around half an hour i t  is stable for bo th  pairs. O n frequencies of up 
to  5 hours, they appear to  be almost in phase, w ith stronger stability on the 
continent, mainly in 2011.

Year 10-20
m inutes

Confidence
interval

Shannon
entropy

20-40
m inutes

Confidence
interval

Shannon
entropy

40-80
m inutes

Confidence
in terval

Shannon
entropy

2008 -0.46 (-0.73, -0.16) 0.35 -0.38 (-0.57, -0.19) 0.46 -0.21 (-0.44, 0.01) 0.48
2009 -0.38 (-0.54, -0.22) 0.44 -0.31 (-0.44, -0.19) 0.50 -0.08 (-0.28, 0.10) 0.50
2010 -0.30 (-0.47, -0.13) 0.43 -0.27 (-0.39, -0.13) 0.51 -0.16 (-0.33, 0.03) 0.50
2011 -0.38 (-0.57, -0.23) 0.46 -0.30 (-0.45, -0.15) 0.50 -0.16 (-0.34, 0.00) 0.50

Year 80-160 Confidence Shannon 160-320 Confidence Shannon 320-640 Confidence Shannon
m inutes interval entropy m inutes interval en tropy m inutes in terval en tropy

2008 -0.11 (-0.41, 0.17) 0.43 0.01 (-0.37, 0.39) 0.36 -0.12 (-0.69, 0.48) 0.27
2009 -0.05 (-0.28, 0.15) 0.44 -0.01 (-0.37, 0.33) 0.38 -0.04 (-0.48, 0.37) 0.29
2010 -0.09 (-0.32, 0.15) 0.45 -0.08 (-0.38, 0.20) 0.40 -0.08 (-0.48, 0.28) 0.34
2011 -0.05 (-0.29, 0.18) 0.53 -0.08 (-0.39, 0.20) 0.40 -0.07 (-0.56, 0.42) 0.31

Table 5 .6 : M ean phases and  Shannon Entropies over years, W IG  and  DAX

Year 10-20
m inutes

Confidence
interval

Shannon
entropy

20-40
m inutes

Confidence
interval

Shannon
entropy

40-80
m inutes

Confidence
in terval

Shannon
entropy

2008 -0.37 (-0.59, -0.13) 0.39 -0.33 (-0.52, -0.12) 0.50 -0.22 (-0.44, 0.01) 0.47
2009 -0.29 (-0.46, -0.13) 0.43 -0.27 (-0.41, -0.15) 0.53 -0.10 (-0.32, 0.09) 0.45
2010 -0.27 (-0.47, -0.10) 0.41 -0.24 (-0.37, -0.10) 0.50 -0.17 (-0.35, 0.01) 0.48
2011 -0.50 (-0.71, -0.25) 0.35 -0.34 (-0.50, -0.19) 0.48 -0.14 (-0.34, 0.04) 0.47

Year 80-160 Confidence Shannon 160-320 Confidence Shannon 320-640 Confidence Shannon
m inutes interval entropy m inutes interval en tropy m inutes in terval en tropy

2008 -0.14 (-0.44, 0.15) 0.37 -0.01 (-0.42, 0.35) 0.31 -0.18 (-0.73, 0.40) 0.25
2009 -0.09 (-0.33, 0.14) 0.42 -0.02 (-0.37, 0.30) 0.40 0.01 (-0.40, 0.43) 0.33
2010 -0.11 (-0.37, 0.12) 0.43 -0.01 (-0.31, 0.28) 0.41 -0.11 (-0.51, 0.28) 0.31
2011 -0.13 (-0.39, 0.16) 0.44 -0.15 (-0.48, 0.19) 0.35 -0.04 (-0.60, 0.43) 0.31

Table 5 .7: M ean phases and  Shannon Entropies over years, W IG  and  F T S E  100
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5.2 Granger causality

First, G ranger causalities of the  non-decomposed indexes were examined. Ta
ble 5.8 shows the  G ranger causality results. The arrows show the  direction of
the causality, with right arrow (=^ ) indicating th a t index on the left Granger- 
causes index on the top and indicates bidirectional causality (indexes 
significantly influence each other).

We can see tha t overall th a t the interaction between the series has lowered be
tween the year 2008 and 2015, which is consistent with the decreasing wavelet 
correlations. However it is interesting to point out th a t DAX Granger caused 
FT SE 100 in 20083 , and both  of these indices tend to influence the ones con

sidered less developed. Interesting difference is th a t DAX and PX  used to have 
bidirectional relationship and it changed to one-directional in 2015. For the 

rest, the relationships remained the same (FTSE and DAX cause WIG and 
BUX). Regarding the interactions between the less developed ones (to which 
this thesis gives lower level of interest) there is a full level of bidirectional 
causality. It indicates either th a t the indices are not subject to separate pric
ing mechanisms and interact which each other on general level or tha t they are 
strongly influenced by the same th ird  factor (e.g. DAX index).

Second, all the indices were decomposed using maximum-overlap discrete wavelet 
transform  onto 6 detailed series and trend series. The detail series are thus con
structed to contain information th a t has scales (horizon) of up to 640 minutes

3  it is im portant to  note th a t the p-value for the direction FSTE 100 = - DAX was 0.066 
bu t we choose not to  reject no influence
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2008 F T S E  100 DAX P X W IG BU X 20151 F T S E  100 DAX P X W IG BUX
F T S E  100 — = = F T S E  100 — None* = = = =

DAX — DAX None * — = ^ *

P X -==■ — -==■ P X — -==■
W IG < = — W IG -==■ —
BUX -==■ — B U X -==■ -==■ —

1 2011 for W IG , left cause top , to p  cause left, b id irectional causality, *  causality  changed

Table 5 .8: G ranger causality of the  original series

(roughly corresponding to  2 days). However one of the  implications of M ODW T 

redundancy is th a t the scales (frequencies) are no t perfectly separated. Figure 
5.7 shows the  transform ation for DAX in 2008 for January. We can see the 
nice alignment of the  decomposed series and the  original one (one on the  top, 

d1 to  d6 correspond to  detail series and s6 to  6 th  level of scaling coefficient). 
Note th a t m ost of the variance is present on higher frequencies.

D
AX

■o

CM■D

CO *"0 «... . .......... . ............ ....... ■ ■■>■■.. ...... . .................................. ...

r̂"0 ■■ ...........  ■ ■■■ ...................... »wAA*̂ |fri>«iV ii- i  ■ ■■ .................. .....  ■■■■»■■■ ■■■ ■ ■%■■■ ■ ■ ■ ■rfW.K

UO-Q --------------------------------------------------------------- ------------------ ------ -„

CD"0 ---------------------------------------------------------- -------------------------------------
CDCO -------------------------------------------------------------------- —----- ---- --------—----------------------------------

F igure 5 .7 : M O D W T of DAX in  January  2008, to p  series is th e  original

Table 5.9 displays Granger-causalities of the  investigated indexed by their de
composed sub-parts. Results for pair FTSE-DAX are surprising - even though 
the  relationship seemed one-directional w ithout decomposition, apart from 20
40 m inute scale they exhibit bidirectional causality. This might be partially 
caused by the  fact th a t for the  raw series, only 1 lag was selected by the crite
rion, however various larger lags are selected for the  decomposed series. Results 
of the causality are in line w ith the  phase-results - in 2008 the series influence 
each other and as the  phase-differences become more unstable in 2015 also the 
Granger-causalities perish (a t least on the highest frequencies). However, the 
lack of linear causality does no t imply some degree of phase synchronization 
since it does no t address entirely same question.
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Index-pair F T S E —  DAX Index-pair F T S E —  P X DAX —  P X
Year 2008 2015 Year 2008 2015 2008 2015

D etail level D etail level
1 -==■ None * 1
2 None None 2
3 None* 3 -==■ -==■
4 = - : 4 -==■ -==■
5 -==■ = - : 5 -==■ -==■
6 -==■ 6 -==■ -==■ =^ *

Index-pair F T S E —  BUX DAX —  BU X Index-pair F T S E —  W IG F T S E —  W IG
Year 2008 2015 2008 2015 Year 2008 2015 2008 2015

D etail level D etail level
1 =^ = ^ = ^ 1 = ^ = ^ = ^
2 =^ 2
3 3 =^ =^
4 =^ 4 = - : -==■
5 5 -==■ -==■
6 ■ = ^ =^ ■ = ^ : 6 -==■ -==■

left cause right, right cause left, b id irectional causality, *  causality  changed

Table 5 .9 : G ranger causality of transform ed indexes

In  general we observe uni-directional causalities on highest frequencies from 
developed to  developing m arkets, on lower the  dynamics are more diverse. I t 
always holds th a t  developed m arkets Granger-cause developing (on 95% sig
nificance level) although, in m any cases, the relationship is bidirectional. This 
result is however no t contradictory to  the  observed phase-differences. Mostly, 
bidirectionality is added in the  la tte r period, w ith exception of DAX-PX on 
detail 1 and 6 and for DAX-BUX on detail level 3 and W IG -FTSE on detail 
4. Bidirectional relationship implies increased expectation of non-significant 

phase-difference, however i t  does no t have to  be the  case. In presence of semi
periodic components and w ith low restriction on size of maximal lag in VAR 
model4 ,  different dynamics can be uncovered.

Results do however suggest possibility of larger-than-expected interactions be
tween W estern indexes and Eastern ones.5  The other explanation could be th a t 

presence of general pricing mechanism to  which bo th  are subject affects indexes 
in different m anner and both  developed and developing m arkets can react to  
different types of information w ith changing speed.

4  Model selected optimal lag with maximum set to  50
5  On the other hand, significant causality does not say anything about the importance of

the causality. The effects can still be negligible for any kind of real use (e.g. predictions)



Figure 5 .9 : Tim e-evolution of Phase synchronization index of P X  and  DAX 
R ed dashed line denotes 95 t h  quantile of R ed Noise pa irs ' PSI

5.3 Non-sm oothed phase synchronization

Final p a rt of our exam ination focused on measuring the stability of the  phase 
synchronicity w ithout any upfront smoothing w ith the  PSI (figures 5.8, 5.9, 
5.10, 5.11, 5.12, 5.13 and 5.14). The lines represent years 2008, 2011, 2013 
and 2015 (2008, 2009, 2010 and 2011 for W IG ) to  capture the  evolution of the 
phase synchronization index over tim e.

We can see th a t DAX and FT SE  100 exhibit quite high values over all of the 
measured frequencies, while the  developed-developing pairs show much lower 
values. The common observed pa tte rn  is the  formation of 2 clusters (for W IG 
for all years between 2008 and 2011 form 1 cluster), before 2012 and after
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Figure 5 .12 : Tim e-evolution of Phase synchronization index of BUX and  FTSE100
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Figure 5 .13: Tim e-evolution of Phase synchronization index of W IG  and  DAX

Figure 5 .14: Tim e-evolution of Phase synchronization index of W IG  and  FTSE100
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th a t - we observe lowering phase synchronization index in the  second period. 
While for PX  and both  DAX and FT SE we see equal or marginally higher 
synchronization for 2008 in contrast to  2011 on the  highest frequencies (which 

favors the  hypotheses of th is thesis), for BUX, a t  least on the frequencies below 
80 m inutes, we see the  highest-synchronization in 2011. One explanation for 
th is m ight be th a t BUX did no t react as much to  global pricing mechanisms in 
the  beginning of the  observed sample, b u t caught up in the  second p a rt of the 
sample. Interesting are also the  values for W IG , they seem to  be the largest 
of all developed-developing pairs, unfortunately there is no straightforward 
explanation for th a t.

These results (and mainly the  comparisons) have to  be considered w ith cau
tion. We do no t have any statistical approach show th a t the differences are 
significantly different from each other. O n the  other hand, it  provides another 
confirmation of the overall results as they are in line w ith bo th  lower stability 

of the phase-plots (and thus Shannon entropies) and wider confidence intervals 
for the mean phases.



Chapter 6

Conclusion

In  th is thesis, we have built upon existing approaches to  investigate tim e
scale dependencies and phase-relationship patterns using m ethods of wavelet 
analysis, no t common in economic literature. Center point of the  work is 

the  discovery of a  suitable m ethod th a t can work w ith extremely noisy data  
such as high-frequency price development patterns. The challenge was both  
to  correctly specify and dem onstrate relevance of our approach. Continuous 
wavelet transform  and smoothed phase analysis can depend significantly on 
the  smoothing window th a t is used, and while in the frequency domain there 
is natural value for its  length, contem porary Economic research uses rather 
arbitrarily chosen window lengths1  (e.g. Roesch et al. (2014)). We show th a t 

w ith m oderately large window (in comparison to  the  length of the time-series) 
we are able to  uncover information well masked under the  random  noise. This 

property comes a t  a  price - i t  is possibly subject to  the variance-bias trade-off 
which should be investigated on more rigorous basis, possibly w ith standalone 
research.
To support our research w ith a  measure of statistical significance, ap art from 
investigation or noisy periodic signals and real series, we have compared our 
results w ith various types of random  noise (white noise, red noise (AR(1)) 
or 'Fourier' noise2  ). This serves as a  common benchmark for significance of 

Shannon entropy test (see e.g. Cazelles & Stone (2003))  or for wavelet cross
power or coherence. However assum ption of full randomness between time- 

series in our d a ta  might not be stric t enough, and since significance of phase
difference cannot be approached analytically, we also add another measure
employed by Hanus & Vacha (2018). The underlying assumption is th a t when

1  O r they do not provide deeper explanation for the chosen filter length
2  Random series th a t maintains basic spectral relationships of the investigated data
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two series have consistent phase differences, adding further noise would not 
weaken this relationship, however when the observed value is only random , we 
would observe 'diverging' phase difference patte rn  (and thus large confidence 
intervals). In  chapter 4 we show th a t the m ethod correctly identifies significant 
phase differences in artificial signals only on frequency bands on which those 
difference were p u t in data-generating process. To provide wider picture in the 
results, we contrast C W T with M ODW T approach to  measure linear Granger 
causality on d a ta  decomposed on approximately equivalent bands.
We find, in accordance w ith the first thesis hypotheses, th a t there is no sig
nificant phase difference between UK 's FTSE100 and DAX indexes. We are 

not aware of any test th a t rejects non-synchronization of the phase-differences, 
however the  measures we employ point to  very close synchronization of the  two 
indexes throughout the period on frequencies a t  least up to  daily (on highest 
frequencies, the  95% confidence intervals are wide only one 45th of the  period). 
Additionally, the  level of stability is much larger than  w ith any other investi
gated pair (supported by the  highest wavelet correlation coefficient). However 
decreasing correlation and Granger-causality points to  disappearing of linear 
influences in m ost recent year.
We observe highly significant lag of all PX , BUX and W IG behind bo th  FTSE100 
and DAX on the  highest frequency bands. I t  is the  strongest in the  first half of 

the  sample, b u t becomes lower and more volatile towards the  end of the  period. 
Exact values cannot be quantified, b u t under assumption th a t observed values 
of the  lag are the  true  values then  for example PX  on 20-40 frequency band 

(where the  stability is the  highest) would be lagging behind DAX by approxi
m ately 200 seconds in 2008 and 150 seconds in 2015. S ituation is similar for this 
frequency band for all ”developed”-”developing”  index pairs on th is frequency 
band. O n the  other frequency bands, we observe lower stability, where for 
PX  we saw stable significant phase differences only to  band 40-80 minutes and 
for PX -FTSE we saw no significant difference on th a t band in 2013. However 
throughout the  years we observe lowering stability of the differences. While 
on average they remain non-zero, the  relative phases are more volatile and its 
practical usability decreases.
Lowering stability has unfortunate suggestions for exploitabilty of the  results 
of th is thesis, especially if one would want to  use it to  improve his trading 
strategy. Even though phase-lag does not tell any story about how largely 
the  information will be transm itted  into the lagged signal, it  should provide 
indication on average direction th a t is to  come. However w ith lower stability it
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might become much harder to  create improvement of the  strategy th a t would 

generate positive expected value. A lthough th is possibility calls for further 
exploration, trading implication are above the scope of th is work.
O n the other, hand the  results provide very interesting insight on the m utual 
relationship among the  indices. We observe lower synchronicity (in sense of 

stability of bo th  synchronization and lag) and decreasing lag of developing fi
nancial m arkets, which suggest lowering gap between the developing and devel
oped financial m arkets and reduction in common trends in price-developments 
in intra-day m arkets.
Possible extensions of th is thesis could be the inspection of the average high- 
frequency phase-relationship for each day separately to  deal w ith the problem 
of breaks in the  d a ta  (we try  to  deal w ith the problem by om itting first and last 
5-minute periods of the  trading day, however it  brings disturbance to  the  cross
coefficients between the last-of-day and first-of-day returns). Downside of this 
approach would be very limited investigable frequency bands due to  only several 
observations per day and therefore large edge effects on lower frequencies.
Another suggested extension is the link of phase differences to  the  trading vol
umes, where larger liquidity would suggest obvious hypotheses of lower phase- 
difference between the  indexes, unfortunately bo th  are above the  scope of the 
thesis.
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(c) Phase differnce (c) Phase differnce (c) Phase differnce (c) Phase differnce

(c) Phase differnce (c) Phase differnce (c) Phase differnce (c) Phase differnce

Figure A .1 : Images of C W T  analysis on FT S E  100 and  DAX
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Figure A .3 : Images of C W T  analysis on P X  and  DAX
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Figure A .5 : Images of C W T  analysis on P X  and  FT S E  100



Figure A.6: Evolution of phase c
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Figure A.6: Evolution of phase c
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Figure A.6: Evolution of phase c
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Figure A.6: Evolution of phase difference of PX  and FTSE500
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Figure A .7 : Images of C W T  analysis on BUX and  DAX
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Figure A.9: Evolution of phase difference of BUX and DAX
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Figure A.9: Evolution of phase difference of BUX and DAX
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Figure A.9: Evolution of phase difference of BUX and DAX

2-4 Band

3312-01 2012-02 2312-03 2012-04 2012-05 2012-00 2012-07 2312-08 2012-09 2312-10 2012-11 2012-12 - 3 - 2 1 0 1 2 3
Ross dflairw:

2-4 Band

201301 201202 201303 201204 201205 201206 201207 331308 331309 331310 331311 331312

4-3 Band

2312-01 2312-02 2312-03 2012-04 2012-05 2012-00 2012-07 231209 2312-09 2312-10 231211 231212

4-3 Band

201201 201202 201203 201204 201205 201206 201207 331306 201309 331310 201311 331312

8-16 Band

231201 201202 231203 201204 201205 2012-00 2012-07 201208 201209 201210 201211 201212 -3 -2 -1 0 1 2 3

8-16 Band

201201 201302 201303 201304 201305 201306 201307 331308 231309 231310 231311 331312

16-32 Band

201201 3312 02 331203 201204 201205 201205 201207 201209 231209 201210 201211 201212

16-32 Band

201301 201302 201303 2Ú13Ú4 201305 2Ú13Ú6 201307 201308 201309 201310 201311 201312

32-64 Ba nd

201201 201202 201200 2012-04 201245 2012 06 201207 231209 231209 201210 201211 201212 -3 -2 1 0 1 2 3

Phase dftra-Ke

>. M
O

D
W

T
 figures

X
X



Figure A.9: Evolution of phase difference of BUX and DAX
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Figure A. 10: Evolution of phase difference of BUX and FTSE500
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Figure A. 10: Evolution of phase d
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Figure A. 10: Evolution of phase difference of BUX and FTSE500
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Figure A. 10: Evolution of phase d
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Figure A .11 : Images of C W T  analysis on W IG  and  DAX

Figure A .12 : Images of C W T  analysis on W IG  and FT S E  100



Figure A.13: Evolution of phase difference of W IG and DAX
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Figure A.13: Evolution of phase difference of W IG and DAX
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Figure A. 14: Evolution of phase c
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Figure A. 14: Evolution of phase difference of W IG and FTSE500
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