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Introduction
One of important analytical solutions of Einstein-Maxwell equations is the Ma-
jumdar-Papapetrou solution [1], [2], which represents an arbitrary finite set of
stationary, extremally charged black holes in equilibrium. The spacetime is de-
scribed by a single function, which is a solution of Laplace’s equation. Hartle
and Hawking [3] assumed a flat spatial infinity and showed that any solution to
the Laplace equation with non point-like sources must contain a naked singular-
ity. There are, however, interesting classes of solutions of different asymptotics.
In this thesis we assume a line source that extends to infinity along a straight
line and we thus do not have a flat spatial infinity. Our goal is to interpret this
spacetime and its parameters.

We first investigate an analogous solution in classical physics. Then we calcu-
late electrogeodesic motion of charged test particles and trajectories of photons
and look for horizons. We also find the properties of the singularities and at the
end we investigate the Newtonian limit.

Kastor and Traschen [4] found that the static Majumdar-Papapetrou solution
with a discrete number of black holes can be extended to a non-static case with
a positive cosmological constant. We generalize the extremal charged line, too,
investigate its geometry and compare it to the static case. Finally, we study a
spacetime constructed of an infinite number of extremal point sources. We look
at its geometry and compare it to the line source.

Conventions
We use formalism of general relativity, Einstein summation convention is used.
Greek indices have values from 0 to 3 and can be also labelled by coordinates.
The spacetime metric tensor is denoted as gµν and has signature (−,+,+,+).
Tetrad components are written using round brackets, e.g. A(t). Symmetrization
of two or more indices is denoted with round brackets and antisymmetrization
with square brackets:

B(µν) = 1
2 (Bµν +Bνµ) , B[µν] = 1

2 (Bµν −Bνµ) . (1)

Partial derivatives are denoted by ∂ or a comma,
∂f

∂x
= ∂xf = f,x. (2)

In classical physics the dot denotes derivative with respect to time t, in GR it
denotes derivative with respect to affine parameter τ . Covariant derivative is
denoted with semicolon and is chosen so that it annihilates the metric and is
torsion-free. Christoffel symbols Γ are defined as

Γµνλ = 1
2 (gµν,λ + gλµ,ν − gνλ,µ) . (3)

The Riemann tensor is defined as the commutator of the second covariant deriva-
tives of a vector field:

vµ;νλ − vµ;λν = Rµ
αλνv

α, (4)
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or, explicitly

Rµνκλ = 1
2 (gµλ,νκ + gνκ,µλ − gµκ,νλ − gνλ,µκ) + gασ

(
ΓαµλΓσνκ − ΓαµκΓσνλ

)
. (5)

Ricci tensor and Ricci scalar are defined
Ricαβ = Rµ

αµβ, R = Ricαα. (6)
The Weyl tensor is defined as

Cκλµν = Rκλµν + 1
2 (Ricλµgκν +Ricκνgλµ −Ricλνgκµ −Ricκµgλν) + (7)

+ R

6 (gκµgλν − gκνgλµ) .

Einstein equations with a cosmological constant Λ are of the form

Ricµν − R

2 gµν + Λgµν = 8πTµν . (8)

We use stress energy T tensor of electromagnetic field F constructed from four-
potential A

F = dA ⇔ Fµν = Aν;µ − Aµ;ν . (9)
Maxwell equations with source current Jµ for electromagnetic tensor read

F µν
;ν = 4πJµ, Fµν;λ + Fλµ;ν + Fνλ;µ = 0. (10)

Finally, stress energy tensor of electromagnetic field is defined as

T µν = 1
4π

(
F µ

βF
νβ − F

4 gµν
)
,F = FµνF

µν . (11)

Hodge dual is denoted with ∗ and, for a totally antisymmetric form σ of order p,
it is defined as

(∗σ)β1...βd−p
= 1
p!σ

α1...αpϵα1...αpβ1...βd−p
. (12)

Congruences
To investigate (electro-)geodesics, we calculate the properties of congruences. For
a timelike congruence with a tangent unit vector field uµ (it does not need to be
geodesic) we define

Θµν ≡ u(µ;ν) + a(µuν),Ωµν ≡ u[µ;ν] + a[µuν], hµν ≡ gµν + uµuν , (13)

σµν ≡ Θµν − 1
3Θhµν ,Θ ≡ Θµ

µ,Ω2 ≡ 1
2ΩµνΩµν , σ2 ≡ 1

2σµνσ
µν , (14)

where Θ is expansion scalar, σµν is shear tensor, Θµν is expansion tensor, Ωµν is
vorticity tensor and hµν is metric on three-surfaces perpendicular to uµ and with
a the acceleration aµ. For null geodesic congruence of velocity kµ, using arbitrary
null field lµ such as kµkµ = lµlµ = 0, kµlµ = −1, we can define these quantities in
similar way:

hµν ≡ gµν + kµlν + lµkν , σµν ≡ Θµν − 1
2Θhµν , (15)

Θµν ≡ hα(µh
β
ν)kα;β,Ωµν ≡ hα[µh

β
ν]kα;β. (16)

Here hµν is metric on two-surfaces perpendicular to kµ and lµ. Quantities Ω2, σ2,Θ
are defined in the same way as in timelike case.
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1. Charged string in classical
mechanics
Our classical system consists of static infinite rod, which has constant linear
mass and charge densities. It is located along the z-axis. To find the electric and
gravitational potentials of the rod, we have to solve Poisson’s equation (outside
of the source)

ϕ,xx + ϕ,yy + ϕ,zz = 0, (1.1)
for both potentials. Assuming cylindrical symmetry, we obtain solutions

ϕG = µ ln x
2 + y2

P 2
1

, ϕE = −λ ln x
2 + y2

P 2
2

, (1.2)

where constant µ is mass per unit length, λ is charge per unit length, ϕG is
gravitational potential and ϕE is electrostatic potential. The constants P1, P2
determine the surfaces of vanishing potentials. However, we can rewrite P2 using
P1, so a new constant term appears in one of the potentials, which will not affect
Euler-Lagrange equations governing test-particle motion. Thus we take without
loss of generality P1 = P2 ≡ P . From this point, we will use dimensionless
coordinates, with xi/P → xi, and we will work in the CGS unit system. Before
writing the Lagrangian, we introduce cylindrical coordinates

ρ ≡
√
x2 + y2, φ ≡ arctan y

x
. (1.3)

Then the gravitational potential ϕG and electrostatic potential ϕE read

ϕG = 2µ ln ρ, ϕE = −2λ ln ρ. (1.4)

Now it can be easily seen that λ is indeed the linear charge density:

Q

ϵ0
=
∮
S
EinidS = −

∮
S
ϕE,in

idS =
∫ 2π

0

∫ h

0
2λdφdz = 4πλh. (1.5)

The classical Lagrangian per unit mass and divided by P 2 for test massive charged
particle with charge-to-mass ratio q is

L = 1
2
(
ρ̇2 + ρ2φ̇2 + ż2

)
− (qϕE + ϕG) . (1.6)

The Lagrangian does not depend on φ, z and does not explicitly depend on t, so
we have the following integrals of motion:

E ≡
∑
i

∂L
∂q̇i

q̇i = 1
2
(
ρ̇2 + ρ2φ̇2 + ż2

)
+ ϕG + qϕE = (1.7)

= 1
2
(
ρ̇2 + ρ2φ̇2 + ż2

)
+ 2A ln ρ,

Lz ≡ ∂L
∂φ̇

= ρ2φ̇, (1.8)

pz ≡ ∂L
∂ż

= ż, (1.9)
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where we defined
A ≡ µ− qλ. (1.10)

Thanks to the integrals of motion, the equation for ρ reads

ρ2φ̇2 − ρρ̈− 2A = 0, (1.11)

and it is time derivative of (1.7) if we put in definitions of integrals of motion.

1.1 Static solution
For simplicity we search for static solutions first. By setting coordinate derivatives
to zero, we obtain the condition

A = E = pz = Lz = 0, (1.12)

which can be seen from eq. (1.7) - (1.11). The first condition is derived from
(1.11) and is restriction for charge-to-mass ratio q of the test particle. We see
that if the rod is charged extremally, i.e., µ = λ, the test particle has to be
charged extremally, too. We use the term ‘extremal’ due to the fact that a
Reissner-Nordström black hole with Q = M has a degenerate, extremal horizon
and adding any further charge will produce a naked singularity.

1.2 Cylindrical radial motion
In case of cylindrical radial motion, where z and φ are constant, we obtain

E = 1
2
[
ρ̇2 + 4A ln ρ

]
, Lz = pz = 0, (1.13)

where the equation for ρ can be rewritten as

ρ̇2 = 2 [E − 2A ln ρ] , (1.14)

where the right-hand side can be understood as effective potential. The motion
then is possible if and only if the right side is non-negative. If the motion is not
free, i.e., A does not vanish, there exists a turning point, which can be found by
solving ρ̇ = 0:

ρtp = exp E

2A
. (1.15)

It is not possible to be static there, since radial acceleration for non-free solution
reads

A ≠ 0 ⇒ ρ̈ = −2A
ρ

̸= 0. (1.16)

Thus if A < 0, the radial acceleration is greater than zero and forces the particle
to escape to infinity. Rewriting the radius as ρ(t) = ρtp exp [R(t)], we have

ρ2
tp exp [R(t)] Ṙ2(t) = −4AR(t) ⇒ AR(t) ≤ 0, (1.17)

so the motion for A < 0 is possible only above the turning radius, as R ≥ 0 and
thus ρ ≥ ρtp. The same argument is used for A > 0, where the acceleration is
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negative and forces the particle to fall upon the charged string, and from previous
equation we see that motion is possible only for R ≤ 0. From the expressions
of radial velocity and acceleration we see that velocity increases when particle
moves from charged string, but the acceleration decreases. So there exist three
solutions, which are summarized in Table 1.1.

E A ρ Description of motion End of motion (ρ)
E ∈ R A < 0 ρ ≥ ρtp Away from rod ∞
E ≥ 0 A = 0 ρ > 0 Free motion 0 or ∞
E ∈ R A > 0 ρ ≤ ρtp Vicinity of rod 0

Table 1.1: Regions, where classical cylindrical radial motion is possible.

At the end we present analytical solutions in each region, using parametriza-
tion ρ(t) = ρtp exp R(t) for non-free solutions:

R(t) =

⎧⎪⎪⎨⎪⎪⎩
[
erfi -1

(√
−A

π
2(t0−t)
ρtp

)]2
, A < 0,

−
[
erf -1

(
1 −

√
A
π

2(t−tf)
ρtp

)]2
, A > 0,

where erf(x) is the error function (A.1) and erfi(x) is the imaginary error function
(A.2). We can check the consistency of non-free solutions.

First let us check region ρ ≤ ρtp. Argument of erf -1(x) is equal to minus one
for

ti = tf −
√

A
π
ρtp, lim

t→ti
ρ(t) = 0, (1.18)

which would correspond to particle emitted by charged string. Argument of
erf -1(x) is one for t = tf , for which limt→tf ρ(t) = 0 and corresponds to final time,
at which particle ends in charged string. In the region ρ ≥ ρtp the time t → ±∞
corresponds to ρ → ∞ and t = t0 corresponds to ρ = ρtp.

1.3 Circular orbit
For a circular orbit, where ρ and z are constant, we obtain the following equations
of motion

2A = ρ2φ̇2, (1.19)
Lz = ρ2φ̇, pz = 0, (1.20)

E = 1
2
[
ρ2φ̇2 + 4A ln ρ

]
. (1.21)

Since Lz is constant, it is clear that φ̇ has to be time-independent, too. We
denote ω = φ̇. Then we express ω and substitute in the first equation, from
which we obtain dependence of radius on particle parameters. The solution can
be summarized as

φ = ωt+ φ0, ρ
2 = L2

z

2A
,A > 0, (1.22)

where the angular velocity reads

ω2 = L2
z

ρ4 = 4A2

L2
z

= 2 A
ρ2 ,A > 0. (1.23)
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Figure 1.1: Cylindrical radial motion - dependence of cylindrical radius on time
for E = 0.3, q = 0.5, µ = 0.25, λ = 1 for various starting radii.

8



Figure 1.2: Cylindrical radial motion - dependence of cylindrical radius on time
for E = 0.3, q = 0.5, λ = 0.25, µ = 1 for various starting radii.
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For a neutral particle, i.e., q = 0, we get A = µ and circular motion is possible
if µ > 0. The situation A = 0 corresponds to a static position in (1.12). We see
from (1.19) that circular motion is not possible for µ < qλ, i.e. A < 0.

1.4 Axial motion
For pure motion along the z-axis (ρ and φ are constant), we obtain equations

A = 0, Lz = 0, pz = ż. (1.24)

The solution is
z(t) = pzt+ z0, Lz = 0,A = 0, E = p2

z

2 , (1.25)

and does not depend on ρ or φ. We see that only a particle, which is extremally
charged, can move along the z-axis, and it moves as a free particle.
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2. Geometry of ECS
In the previous section we constructed a massive charged infinite string in classical
physics. If we put λ = µ, we can translate this classical solution to general
relativity, resulting in the Majumdar-Papapetrou solution interpreted by Hartle
and Hawking in [3]. The electrostatic potential, denoted U , will enter the metric
and four-potential in the following way

ds2 = −U−2dt2 + U2dx⃗ · dx⃗, U = U (x, y) , (2.1)

and we assume cylindrical symmetry of function U . The electromagnetic four-
potential is defined as

A = dt
U
. (2.2)

Given these tensors, we can proceed to compute Maxwell and Einstein equations.
We get only one independent equation

U,xx + U,yy = 0 ⇒ U(x, y) = 1 + K

2 ln x
2 + y2

P 2 , (2.3)

where K,P are constants. Constant P determines where U is zero and plays only
the role of a dimensional factor, and K is the parameter we wish to interpret
and which will play the main role in our interpretation of charge and mass of
the field source. The constant 1 is chosen in such a way that the limit K → 0
represents a formal limit to Minkowski space. As in the previous section, we
will work in dimensionless coordinates xµ → xµ/P and use dimensionless metric
element ds2/P 2 → ds2. So the function U can be written

U(x, y) = 1 + K

2 ln
(
x2 + y2

)
, (2.4)

and we got rid of the parameter P . In Cartesian coordinates we have a coordinate
basis

E(t) = ∂t, E(x) = ∂x, E(y) = ∂y, E(z) = ∂z, (2.5)
and choose a normalized tetrad

e(t) =
√
U2E(t), e(x) = E(x)√

U2
, e(y) = E(y)√

U2
, e(z) = E(z)√

U2
, (2.6)

where U is expressed in x, y. Since the metric is cylindrically symmetric, it is
useful to transform to cylindrical coordinates

ρ =
√
x2 + y2, φ = arctgy

x
. (2.7)

After the transformation we find

U(ρ) = 1 +K ln ρ, (2.8)

ds2 = −dt2
U2 + U2

(
dρ2 + ρ2dφ2 + dz2

)
, (2.9)

F = U,ρ
U2 dt ∧ dρ,F = FµνF

µν = −2
U2
,ρ

U4 , (2.10)

Tµν =
U2
,ρ

8πU6 diag
(
1,−U4, ρ2U4, U4

)
, T µµ = 0. (2.11)
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In the cylindrical coordinate system we have a coordinate basis

E(t) = ∂t, E(ρ) = ∂ρ, E(φ) = ∂φ, E(z) = ∂z, (2.12)

and choose a tetrad

e(t) =
√
U2E(t), e(ρ) = E(ρ)√

U2
, e(φ) = E(φ)

ρ
√
U2
, e(z) = E(z)√

U2
, (2.13)

where U is expressed in terms of ρ. The non-trivial independent components of
Riemann tensor are

Rρtρt = K (1 + 3K +K ln ρ)
ρ2 (1 +K ln ρ)4 , Rφtφt = −K (1 +K +K ln ρ)

(1 +K ln ρ)4 , (2.14)

Rφρφρ = K2, Rztzt = − K2

ρ2 (1 +K ln ρ)4 ,

Rzρzρ = K (1 +K +K ln ρ)
ρ2 , Rzφzφ = −K (1 +K +K ln ρ) ,

and the tetrad components are

R(ρ)(t)(ρ)(t) = K (1 + 3K +K ln ρ)
ρ2 (1 +K ln ρ)4 , (2.15)

R(φ)(ρ)(φ)(ρ) = −R(z)(t)(z)(t) = K2

ρ2 (1 +K ln ρ)4 ,

R(z)(ρ)(z)(ρ) = −R(φ)(t)(φ)(t) = −R(z)(φ)(z)(φ) = K (1 +K +K ln ρ)
ρ2 (1 +K ln ρ)4 .

We notice that all tetrad components of Riemann vanish for large ρ:

lim
ρ→∞

R(α)(β)(µ)(ν) = 0. (2.16)

If we compute Kretschmann invariant K = RµνκλR
µνκλ from Riemann tensor R,

we obtain

K =
8K2

[
2K2 ln2 ρ+ 7K2 + 2(3K + 2)K ln ρ+ 6K + 2

]
ρ4 (K ln ρ+ 1)8 . (2.17)

From Kretschmann invariant K and Maxwell invariant F we can deduce two
singularities. The inner singularity is located at radius ρi and the outer one at
radius ρo, where

ρi = 0, ρo = e−1/K . (2.18)
It can be seen that the Kretschmann invariant also vanishes at large radii

lim
ρ→∞

RµνκλR
µνκλ = 0. (2.19)

We also introduce two additional significant radii, which will be explained in the
subsequent chapters

ρph = e−2−1/K , ρc = e−1−1/K . (2.20)
The Ricci tensor Ricµν and Ricci curvature are given by formulae

Ricµν = U2
,ρU

−2 diag
(
U−4,−1, ρ2, 1

)
, Ric µ

µ = 0. (2.21)

The non-trivial component of Levi-Civita pseudotensor density is

ϵtρφz =
√

− det gµν = ρU2. (2.22)
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2.1 Algebraic classification
To determine the algebraic type of the spacetime, it is useful to use the Newman-
Penrose formalism [5]. We set up a null tetrad consisting of two real null vector
fields kµ, lµ and two complex null vector fields mµ,mµ, where mµ is complex
conjugate of mµ. They are normalized as follows

kµl
µ = −1,mµmµ = 1, (2.23)

with all other scalar products vanishing. We choose a null tetrad as

kµ = 1√
2
(
eµ(t) − eµ(ρ)

)
, lµ = 1√

2
(
eµ(t) + eµ(ρ)

)
, (2.24)

mµ = 1√
2
(
ieµ(φ) − eµ(z)

)
,mµ = − 1√

2
(
ieµ(φ) + eµ(z)

)
.

Using Weyl tensor Cαβµν , we can calculate Weyl scalars [5]

ψ0 ≡ Cαβµνk
αmβkµmν = U,ρ

2ρU3 , (2.25)

ψ1 ≡ Cαβµνk
αlβkµmν = 0, (2.26)

ψ2 ≡ Cαβµνk
αmβm̄µlν =

6ρU2
,ρ + U (U,ρ − 2ρU,ρρ)

6ρU4 , (2.27)

ψ3 ≡ Cαβµνl
αkβlµm̄ν = 0, (2.28)

ψ4 ≡ Cαβµνl
αm̄βlµm̄ν = U,ρ

2ρU3 . (2.29)

Or explicitly

ψ0 = ψ4 = K

2ρ2 (1 +K ln ρ)3 , ψ2 = K (1 + 2K +K ln ρ)
2ρ2 (1 +K ln ρ)4 . (2.30)

We can see that all Weyl scalars vanish in limit ρ → ∞, thus ECS will be
conformally flat for ρ ≫ 1. Indeed, if we transform to a new time coordinate η

η (t, ρ) ≡ U2 (ρ) t ⇒ dη = U2dt+ 2UU,ρdρ, (2.31)

the metric transforms as

ds2 = U2
[
−dη2 − 2ηU,ρ

U5 dρ dη +
(

1 −
η2U2

,ρ

U8

)
dρ2 + ρ2dφ2 + dz2

]
. (2.32)

The non-diagonal term vanishes for large ρ and the metric becomes

ds2 ≈ U2
[
−dη2 + dρ2 + ρ2dφ2 + dz2

]
, ρ ≫ 1, (2.33)

which is a conformally flat metric. The metric cannot be asymptotically flat,
as along the z-direction the metric does not change. We can easily see that the
hypersurface where ρ is constant (but ρ ̸= 0, ρo) is flat.

To find out the algebraic type we search for principal null directions of the
gravitational field. If kµ is a principal null direction, then it satisfies the equation
[5]

k[αCβ]µν[δ kκ]k
µkν = 0. (2.34)
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It is known that this the requirement is equivalent to condition ψ0 = 0. However,
our chosen kµ does not satisfy this equation. By applying a transformation to
the tetrad [5], which does not change the normalization conditions (2.23),

k′µ = kµ + Zmµ + Zmµ + ZZlµ, (2.35)
l′µ = lµ,m′µ = mµ + Zlµ,m′µ = (m′µ), Z ∈ C, (2.36)

we can find such Z that the new vector k′µ will be the principal null direction.
The last ingredient is a transformation of ψ0:

ψ′
0 = ψ0 − 4Zψ1 + 6Z2ψ2 − 4Z3ψ3 + Z4ψ4. (2.37)

Thus solving equation ψ′
0 = 0 for Z will yield up to four different principal null

directions. In our case the equation reads

1 + 2αZ2 + Z4 = 0, α ≡ ψ2

3ψ0
, (2.38)

where we divided by ψ0 = ψ4, which is always non-zero for finite ρ > 0. General
solution is

Z1,2 = ±
√

−α−
√
α2 − 1, Z3,4 = ±

√
−α +

√
α2 − 1. (2.39)

In general there are four complex roots, so there are four principal null directions
and thus the ECS spacetime is type I. The roots can be degenerate, if one of
following condition is satisfied:

α2 − 1 = 0 ∨ −α±
√
α2 − 1 = 0. (2.40)

The second one has no solution, the first one yields two different radii

ρD1,2 = exp
(

−3 ∓ 1 ∓ 2K
K (3 ∓ 1)

)
, (2.41)

where the spacetime is type D. As we have shown above, the spacetime is type O
in cylindrical radial infinity, which can also be seen from Weyl scalars, which
vanish in the limit ρ → ∞. However, these three-surfaces have zero measure in
the spacetime. The summary is in table (2.1).

Set Type
ρ = ρD1 D
ρ = ρD2 D
ρ = ∞ O
almost everywhere I

Table 2.1: Algebraic classification of the spacetime.
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2.2 Symmetries
In cylindrical coordinates the metric is static and it is translationally invariant in
t, z and φ. These symmetries are given by Killing vectors ξ(t), ξ(φ), ξ(z),

ξµ(t) = Eµ(t), ξ
µ
(φ) = Eµ(φ), ξ

µ
(z) = Eµ(z), (2.42)

which satisfy Killing equation

ξµ;ν + ξν;µ = 0. (2.43)

If we prescribe the most general form of ξ, where all components are general
functions of all coordinates, we find that there are no more independent non-
trivial Killing vectors for K ̸= 0.

2.3 Proper length, surface and volume

2.3.1 Proper lengths
Let us investigate, how proper length of some curves changes with ρ. Since the
metric coefficients depend only on ρ, some expressions are straightforward. The
proper lengths are obtained by integrating the differential spacetime interval. Let
us begin with the proper circumference of circle with constant ρ, which is

dlφ2 = ρ2U2 (ρ) dφ2 ⇒ lφ(ρ) = 2πρ |1 +K ln ρ| . (2.44)

Similarly, proper length of coordinate segment (0, h) parallel to the z-axis is

dlz2 = U2 (ρ) dz2 ⇒ lz(ρ) = h |1 +K ln ρ| . (2.45)

Length of a radial cylindrical coordinate segment specified by the coordinate
interval (0, ρ), can be integrated from

dlρ2 = U2 (ρ) dρ2 ⇒ lρ(ρ) =
∫ ρ

0
|1 +K ln ρ′| dρ′. (2.46)

To compute the integral, we need to split the integration into cases when ρ < ρo
and ρ ≥ ρo. The integration is also affected by the sign of K. As a result we
obtain

lρ(ρ) =
{

−ρ (1 −K +K ln ρ) sgnK, 0 < ρ < ρo,
[ρ (1 −K +K ln ρ) + 2ρo] sgnK, ρ ≥ ρo.

The plot (2.1) summarises results for lengths. We can see that radial proper
length lρ increases monotonically and has a saddle point at the outer singularity.
The proper circumference lφ of circle increases for 0 < ρ < ρc, at ρ = ρc ≡ e−1−1/K

it has a maximum and then it drops to zero at outer singularity and finally rises
above outer singularity. We can calculate the external curvature of a circle with
ρ, z, and t constant, and located between singularities:

k ≡ lαµs
µ
;νl

ν
α = sµs

µ
;νs

ν , (2.47)
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where lµν = sµsν is metric on the line and sµ = eµ(ρ) is a unit vector normal to
the curve in S. We get

k = ρ (1 +K +K ln ρ)
(1 +K ln ρ)

√
(1 +K ln ρ)2

, (2.48)

which becomes zero for ρ = ρc. Thus we can interpret the circumference of circle
ρ = ρc as the straightest circular line. Circles with of a smaller coordinate radius
bend towards the inner singularity, whereas circles with radius ρo > ρ > ρc or
ρ > ρo bend towards the outer singularity.

We see that lz diverges at inner singularity, whereas lφ and lρ go to zero there.
This suggest that the inner singularity is a spatially one-dimensional axis, as
expected from construction from classical physics. One would expect the same
behaviour for outer singularity, but we see that the proper length lz goes to zero
there. This suggests that the singularity is spatially point-like, which is also seen
the from metric, if we fix time and put ρ = ρo.

At the end of the current subsection we summarise results in Figure 2.1, where
we plot results in terms of ρ/ρo. The shape of curves is the same for any K ̸= 0.

Figure 2.1: Proper length of various curves for K = −2, h = 1.

2.3.2 Proper surface
Another insight into geometry of ECS can be gained by investigating the geomet-
rically privileged surfaces. ECS offers us two such surfaces.

Proper surface of cylinder base, where 0 ≤ ρ′ ≤ ρ, 0 ≤ φ′ ≤ 2π and t, z are
constant, is

SB =
∫ 2π

0

∫ ρ

0

√
gρρgφφdρ′dφ′ =

∫ ρ

0
lρ (ρ′) lφ (ρ′) dρ′. (2.49)

After substitution for lρ, lφ and integrating over φ we get

SB = 2π
∫ ρ

0
ρ′
√

(1 +K ln ρ′)4dρ′ = 2π
∫ ρ

0
ρ′ (1 +K ln ρ′)2 dρ′. (2.50)

After some algebra we obtain

SB = π

2ρ
2
[
2 − 2K +K2 − 2K (K − 2) ln ρ+ 2K2 ln2 ρ

]
. (2.51)
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Proper surface of a cylindrical shell 0 ≤ z ≤ h, 0 ≤ φ ≤ 2π and t, ρ constant is

SS =
∫ 2π

0

∫ h

0

√
gzzgφφdz′dφ′ = lz (ρ) lφ (ρ) . (2.52)

The computation is simple, as integration reduces to multiplication and we get

SS = 2πhρ (1 +K ln ρ)2 . (2.53)

We see that the proper surface of shell SS goes to zero at both singularities, which
indicates that the surface is no longer two-dimensional here. The same holds for
cylinder base SB, as it drops to zero at inner singularity and has a saddle point
at outer singularity. The plot of functions is in Figure 2.2.

2.3.3 Proper volume
Finally we compute proper volume of static cylinder of coordinate height h

VC =
∫ h

0

∫ 2π

0

∫ ρ

0

√
gρρgφφgzzdρ′dφ′dz′ =

∫ ρ

0
lρ (ρ′) lφ (ρ′) lz (ρ′) dρ′. (2.54)

After substituting proper lengths, we get

VC = 2πh
∫ ρ

0
ρ′
√

(1 +K ln ρ′)6dρ′. (2.55)

Again we need to distinguish, if ρ is under outer singularity. Then we obtain

4VC
πh

=

⎧⎨⎩ −ρ2
(
4U3 − 6ρU2U,ρ + 6ρ2UU2

,ρ − 3ρ3U3
,ρ

)
sgnK, 0 < ρ < ρo,[

3K3ρ2
o + ρ2

(
4U3 − 6ρU2U,ρ + 6ρ2UU2

,ρ − 3ρ3U3
,ρ

)]
sgnK, ρ ≥ ρo.

Since the formula is quite large, we do not write it using explicit form of func-
tion U . The plot of proper volume is in (2.2).

Figure 2.2: Proper surface of cylinder base and shell and proper volume of cylinder
for K = −2, h = 1.
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3. Mass, energy and charge of
ECS

3.1 Introduction
In this section we focus on mass (energy) and charge enclosed in static cylinder.
However, there is generally no way of determining locally the energy of the grav-
itational field in general relativity and we thus use several different definitions
and compare them. The advantage of ECS is that it is static and is expressed
in coordinates, where metric is diagonal and depends only on one coordinate.
However, the main disadvantage is that ECS is not asymptomatically flat, so for
example we cannot use definition of ADM mass. We thus use several different
formulae and compare mass (energy) enclosed in coordinate cylinder. Since ECS
was constructed from classic string, the linear charge and mass density of which
are equal, we expect this behaviour if the formal limit K → 0 is applied. At the
end of this section we also compute charge enclosed in cylinder, which is defined
in straightforward way, based on the flux of the field through the surface of the
cylinder.

In the integral definitions Σ means three-volume with two-boundary S = ∂Σ,
which encloses Σ. The vector nµ is future oriented timelike normal to Σ, vector
rµ is spatial vector from Σ and it is normal to S, both normals are of unit length.
In the following sections we choose Σ in terms of integration variables ρ′, z′, φ′ as

Σ(ρ) = {t = 0, z′ ∈ [0, h] , ρ′ ∈ [0, ρ] , φ′ ∈ [0, 2π]} , (3.1)
and thus S is

S(ρ) = SB(ρ, 0) ∪ SB(ρ, h) ∪ SS(ρ), (3.2)
SB(ρ, z) = {t = 0, ρ′ ∈ [0, ρ] , z′ = z, φ′ ∈ [0, 2π]} , (3.3)
SS(ρ) = {t = 0, ρ′ = ρ, z′ ∈ [0, h] , φ′ ∈ [0, 2π]} . (3.4)

Since the spacetime is static and cylindrically symmetric, tensors depend only on
ρ. Integral over the two bases of the cylinder either vanishes identically or the
two contributions cancel each other. Thus integration over S is reduced only to
integration on cylinder shell SS. Corresponding volume and surface elements are

dΣ = ρ
√
U6dρ′dφ′dz′, dSS = ρU2dφ′dz′. (3.5)

Future-oriented normal nµ to Σ and spatial outer normal rµ to SS read

nµ = eµ(t), r
µ = eµ(ρ) = 1√

x2 + y2

(
x eµ(x) + y eµ(y)

)
. (3.6)

The induced metric on Σ denoted hµν and metric on SS denoted σµν are defined
as

hµν ≡ gµν + nµnν , σµν ≡ hµν − rµrν . (3.7)
It can be seen that the metric hµν on Σ is obtained by putting dt = 0 and the
metric σµν on surface SS is obtained by putting dρ = dt = 0.
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3.2 C-energy
By an appropriate coordinate transformation in t, ρ the cylindrically symmetric
metric can always be transformed to have the form

ds2 = e2γ−2ψ
(
−dt2 + dR2

)
+ e2ψdz2 + α2e−2ψdφ2, (3.8)

where R is radial coordinate, ψ, γ, α are functions of t, R. The coordinates t, φ, z
are denoted the same way as in our metric since they are of the desired form
with the same meaning and we only need to find a transformation for the radial
coordinate. In such new coordinates then the C-energy enclosed in cylinder of
coordinate radius R and coordinate height h, is defined as [8]

4EC (t, R) ≡ h
[
γ (t, R) − ln

√
(α,R)2 − (α,t)2

]
. (3.9)

The C-energy is a potential for flux vector P µ, which has in coordinates t, R
components

P 0 = e2ψ−2γ

2πhα
∂EC
∂R

, PR = −e2ψ−2γ

2πhα
∂EC
∂t

, P φ = P z = 0. (3.10)

and obeys covariant conservation law

P µ
;µ = 0 ⇒

∫
Σ
P µnµdΣ = 0. (3.11)

To compute C-energy for ECS spacetime, we need to find new coordinate R,
giving the metric the desired form. We apply transformation

dR
dρ ≡ U2 (ρ) ⇒ R (ρ) =

[
ρU2 (ρ) − 2U,ρ (ρ) ρ2 [U (ρ) − ρU,ρ (ρ)]

]
. (3.12)

From the derivative of R we see that it is always non-negative and becomes zero
for ρ = ρo. Thus it is possible to construct a continuous inverse, i.e. function
ρ(R) and which will be monotonic. The metric then takes form

ds2 = U−2 (ρ (R))
(
−dt2 + dR2

)
+ U2 (ρ (R)) dz2 + ρ2 (R)U2 (ρ (R)) dφ2, (3.13)

where ρ (R) is the inverse of R (ρ), which we are not able to express in a closed
form. Now the metric has desired form, we can compare it to (3.8) and determine
coefficients γ, ψ, α.

e2γ−2ψ = U−2, U2ρ2 = α2e−2ψ, U2 = e2ψ ⇒ γ = 0, α2 = ρ2U4, ψ = lnU2

2 . (3.14)

Once we know the required functions, we can evaluate the expression for C-energy:

EC (R) = −h

8 ln
[[
U2 (ρ (R)) + 2ρ (R)U (ρ (R))U,ρ (ρ (R))

] dρ
dR

]2

. (3.15)

Instead of expressing the result in terms of R, we can go back to ρ to obtain

EC (ρ) = −h

8 ln
[
U + 2ρU,ρ

U

]2
= −h

8 ln
[

1 + 2K +K ln ρ
1 +K ln ρ

]2

. (3.16)
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For small K we get

EC (ρ) ≈ h
[
−K

2 + 1
2 (1 + ln ρ)K2 +O

(
K3
)]
. (3.17)

The function is plotted in Figure 3.1. There are two singularities: one is at outer
singularity and the second is on photon orbit. Limit behaviour:

lim
ρ→0

EC (ρ) = 0, lim
ρ→ρph

EC (ρ) = ∞, lim
ρ→ρo

EC (ρ) = −∞, lim
ρ→∞

EC (ρ) = 0. (3.18)

The C-energy diverges on photon radius. However, we know that there is no
singularity on photon radius and thus the C-energy diverges there because of
coordinate singularity. Therefore it is useful to redefine C-energy so as to make
the new C-energy EC finite there [8]:

EC ≡ h

8

[
1 − exp

(
−8EC

h

)]
= −K (1 +K +K ln ρ)

2 (1 +K ln ρ)2 . (3.19)

The regularized C-energy EC has same signs as EC , but it has different shape. It
is positive for 0 < ρ < ρc and diverges at outer singularity. As we approach the
two singularities or radial infinity the C-energy behaves as follows:

lim
ρ→0

EC (ρ) = 0, lim
ρ→ρo

EC (ρ) = −∞, lim
ρ→∞

EC (ρ) = 0. (3.20)

Figure 3.1: C-energy for |K| = 2.
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3.3 Landau-Lifshitz
Landau and Lifshitz derived the conservation law [9]

[16π (−g) (T µν + tµνLL)],ν = 0, (3.21)

leading to a globally conserved quantity; g is metric determinant, tµνLL is stress-
energy-momentum pseudotensor of gravitational field, which is defined as

16πtµνLL ≡ g−1
[
g
(
gµνgαβ − gµαgνβ

)]
,αβ

− [2Rµν + (2Λ −R) gµν ] . (3.22)

It is possible to find a super-potential hµνλ, which can be expressed via another
potential Hµνλκ to yield a compact form:

16π (−g) (T µν + tµνLL) = hµνλ,λ, h
µνλ ≡ Hµνλκ

,κ, (3.23)
Hµνλκ ≡ (−g)

(
gµνgλκ − gµλgνκ

)
. (3.24)

It is thus not necessary to compute tµνLL, because the calculation only requires
knowledge of Hµνλκ. Then the total four-momentum of gravitational field and
matter can be expressed as

P µ ≡
∫

Σ
(−g)

(
T µ0 + tµ0

)
dΣ = 1

16π

∮
S
Hµ0λκ

,κrλdS. (3.25)

Since tµνLL is not a tensor but a pseudotensor (or sometimes called ‘complex’), the
equation (3.21) requires some gauge, and we thus compute Hµνλκ in Cartesian
coordinates. From the definition of total four-momentum we can see that for ECS
only P 0 will be non-trivial since

H i0λκ = g giλg0κ ⇒ H i0λκ
,κ =

(
g giλg00

)
,0

= 0. (3.26)

To compute the total energy of system we calculate the integrand in Cartesian
coordinates (2.1), at the end we transform back to cylindrical coordinates. Since
we integrate over φ and z, but integral depends only on ρ, the integration reduces
only to multiplication. The result for our choice1 of S (3.2) is

MLL = P 0 = h

2 |K| sgn (ρo − ρ) (1 +K ln ρ)6 . (3.27)

We see that MLL diverges at inner singularity and at infinity, and it changes sign
at outer singularity and the behaviour is the same independently of the sign of
K. As we approach the two singularities or radial infinity the MLL behaves as
follows

lim
ρ→0+

MLL = ∞, lim
ρ→ρo

MLL = 0, lim
ρ→∞

MLL = −∞. (3.28)
1For rα = eα

(z) we get

Hµ03κ
,κ = (−g)

(
gµ0g3κ − gµ3g0κ

)
,κ

= (−g)
[(
gµ0g33)

,3 −
(
gµzg00)

,0

]
= 0.
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3.4 Brown-York mass
Definition of energy in volume Σ, which has boundary S = ∂Σ, reads [10]

MT =
∮
S
gµν (Enµ + jµ) ξν(t)dS, (3.29)

where the quantities used in the calculation are defined as follows

kµν ≡ σαµσ
β
ν rα;β, k ≡ kαβσ

αβ, 8πE ≡ k, (3.30)
16π

√
hjµ ≡ σµνnαpνα, 16πpαβ ≡

√
h (kαβ − k hαβ) . (3.31)

Here hµν and σµν are metric tensors of (3.7). Tensor field kµν is extrinsic cur-
vature, pµν is conjugate momentum to hµν , k is extrinsic curvature scalar. The
definition of M relies on E , which is surface density of energy, and jµ which is
surface density of momentum on S. It is clear that jµξµ(t) = 0, since ξν(t) has
only the zero-th component non-vanishing and j0 = 0 by definition. Thus we
do not need to compute conjugate momentum, as it will not contribute in the
calculation. Therefore we integrate only

MT =
∮
S

Enνξν(t)dS = 1
8π

∮
S
σαβrα;βnνξ

ν
(t)dS. (3.32)

Result of computation for cylinder surface (3.2) is2

MT (ρ) = −hU + 2ρU,ρ
4U = −h1 + 2K +K ln ρ

4 (1 +K ln ρ) . (3.33)

The series for K → 0 is

MT (ρ) ≈ −h

4 − hK

2 + hK2

2 ln ρ+O
(
K3
)
. (3.34)

This result agrees with the other definitions, however it has an extra term of
zero-th order. To understand this term, we need to look back to computation
in article [10], where the background spacetime contribution was subtracted (in
that article it was anti-de Sitter). Since in the limit K → 0 we ‘formally’ get
Minkowski space, we need to subtract contribution measured on two-surface S.
So the correct definition is [11]

MBY ≡ MT −M0, (3.35)

where M0 is computed as in (3.29) with Minkowski metric

ds0
2 = −dt2 + dρ2 + ρ2dφ2 + dz2, (3.36)

in cylindrical coordinates. The only non-trivial component of covariant derivative
of rα in Minkowski (due to curvilinear coordinate system) is

rφ;φ = ρ ⇒ k0 = 1
ρ
. (3.37)

2Integration over the cylinder base vanishes, as for choice rα = eα
(z) the corresponding

covariant derivative rα;β has only non-zero component rz;ρ, and the summation in definition of
kαβ vanishes.
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Finally we find the contribution from the background and thus the total mass is

M0 = −h

4 ⇒ MBY (ρ) = h

[
1
4 − 1 + 2K +K ln ρ

4 (1 +K ln ρ)

]
= −hK

2 (1 +K ln ρ) . (3.38)

Series expansion for K now gives

MBY ≈ −hK

2 + hK2

2 ln ρ+O
(
K3
)
. (3.39)

The MBY mass function vanishes on the central axis and at radial infinity:

lim
ρ→0+

MBY = 0, lim
ρ→∞

MBY = 0, (3.40)

while at outer singularity and photon radius we find

lim
ρ→ρph

MBY = h

4 , lim
ρ→ρ−

o

MBY = ∞, lim
ρ→ρ+

o

MBY = −∞. (3.41)

3.5 Komar mass
For stationary spacetime the definition of mass enclosed in three-dimensional
spacelike surface Σ, which is known as Komar mass [12], is defined as

MK = 1
4π

∮
S
ξα;β

(t) rαnβdS, (3.42)

where ξβ(t) is Killing vector corresponding to time symmetry. Now we plug our
choice of S from (3.2) and the result is

MK (ρ) = 1
4π

∫ h

0

∫ 2π

0
= −hρU,ρ

2U . (3.43)

We see that this expression is same as in result from Lemos definition (3.38).

3.6 Charge of cylinder
Let us begin with charge, which is defined uniquely. Charge enclosed in area S
is defined as

Q ≡ 1
4π

∮
S

∗F = 1
4π

∮
S
Fαβr

αnβdS, (3.44)

By integrating over surface of cylinder (3.2) we get

Q = −hK
2 . (3.45)

3.7 Summary of results for mass and charge
Summary can be seen in Table 3.1, comparison of functions is in Figure 3.2. We
notice that the signs and shape of curves are independent of K. Furthermore, the
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integral definitions (MK ,MBY ,MLL) yield the same signs both below and above
the outer singularity.

The integral definitions (3.25), (3.42), (3.29) and (3.35), (3.44) are a useful
tool for description of mass and charge of both singularities. These definitions
change sign when we change direction of rµ. Since the outer singularity is one-
dimensional Figure 2.1, by replacement

Σ(ρ) → Σ(ρo) \ Σ(ρ) ⇒ rµ → −rµ, (3.46)

the integrals yield mass and charge inside cylinder, which surrounds outer sin-
gularity in the region between both singularities. Thus the outer singularity will
have opposite sign of mass and charge than the inner singularity for observer
between both singularities. If we want to compute properties of outer singularity
for outer observer, we integrate over Σ(ρ) where ρ > ρo and the cylinder encloses
only outer singularity.

Formula M 0 (0, ρc) ρc (ρc, ρo) ρo (ρo,∞) ∞
C-energy EC 0 + 0 − −∞ − 0
Landau-Lifschitz MLL ∞ + + + 0 − −∞
Komar, Brown-York MK 0 + + + ±∞ − 0

Table 3.1: Summary of signs for different definitions of mass.

For K < 0, we see that the charge (3.45) and mass density are positive, and
these properties describe the inner singularity. From (3.45) we know that the
charge of cylinder with spacelike normal rµ = eµ(ρ) is positive. Thus the observer
between singularities will measure a positive charge of the inner singularity. If
we change direction (3.46), we obtain an outer singularity with a negative charge
as observed by an inner observer. Finally, the charge of the outer singularity for
an external observer is positive as follows from (3.45).

For K > 0 we use the same arguments and the results yield opposite signs.
Thus the inner singularity has a positive mass density and negative charge den-
sity, the outer singularity has opposite mass and charge densities than the inner
singularity for an inner observer. Finally, the outer singularity has a negative
mass and charge density for an outer observer.

For comparison, we give here analogous results for a charged black string on
a de Sitter background as found in [10]. The metric and four-potential read

ds2 = −f (ρ) dt2 + f−1 (ρ) dρ2 + ρ2dφ2 + α2dz2, A = −g (ρ) dt. (3.47)

where functions f, g are defined as

f (ρ) = α2ρ2 − b

αρ
+ c2

α2ρ2 , g (ρ) = 2λ
αρ
. (3.48)

The constants α, b, c are defined as

b = 4µ, c2 = 4λ2, α2 = −1
3Λ,Λ < 0. (3.49)

The paper [10] shows that µ and λ correspond to the mass and charge per unit
length of the source, respectively. These quantities are constant throughout the
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spacetime. In ECS only the charge enclosed in any cylinder is constant, but the
mass depends on the radial coordinate and varies. We must emphasize however,
that the black-string solution involves a negative cosmological constant and thus
its radial asymptotics is different from ECS.

Figure 3.2: Comparison of different definitions of mass for |K| = 2.
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4. Equations of motion
The Lagrangian for a charged particle moving on an electrogeodesics is

L = 1
2gµν ẋ

µẋν + qẋκAκ = (4.1)

= 1
2

[(
ρ2φ̇2 + ρ̇2 + ż2

)
U2 − ṫ2

U2

]
+ q

ṫ

U
.

The Lagrangian gives equations of motion

ẍµ + Γµαβẋαẋβ = qF µ
ν ẋ

ν , (4.2)

where the right hand-side term is the Lorentz force. The Lagrangian does not
explicitly depend on t, φ and z yielding the following integrals of motion

E ≡ qU − ṫ

U2 , Lz ≡ ρ2φ̇U2, N ≡ żU2. (4.3)

Thus there remains only one equation, which is not explicitly integrated:

ρ̈− ρφ̇2 − U,ρ
U

[
ρ2φ̇2 − ρ̇2 + ż2

]
+ ṫU,ρ

qU − ṫ

U5 = 0, (4.4)

and finally the normalization

(
ρ2φ̇2 + ρ̇2 + ż2

)
U2 − ṫ2

U2 = U , (4.5)

where U is a normalization constant: U = 0 for photon motion and U = −1 for
timelike motion. The equations of motion are singular, when U or U,ρ is singular,
diverging thus on the radii ρ = 0 or ρ = ρo.
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4.1 Static electrogeodesics
For simplicity we begin with static solutions. The equations of motion reduce to

− ṫ2

U2 = −1, ẗ = 0,
(
qU − ṫ

)
ṫ = 0. (4.6)

The procedure is simple: the last equation yields t = qUτ and from the first one
we get a restriction on the specific charge. From the condition ṫ > 0 we obtain
four solutions, which are summarized in Table 4.1 and Figure 4.1.

K q ρ Description of ρ region

K < 0 q = 1 0 < ρ < ρo Between singularities
q = −1 ρo < ρ Above outer singularity

K > 0 q = −1 0 < ρ < ρo Between singularities
q = 1 ρo < ρ Above outer singularity

Table 4.1: Regions, where static electrogeodesics exist.

The auxiliary tensors describing the properties of the geodesic are as follows

σµν = Ωµν = 0, aµ = −U,ρ
U3 Eµ(ρ) = −K

ρ (1 +K ln ρ)3 Eµ(ρ), (4.7)

and the optical scalars read

Θ = 0, σ2 = Ω2 = 0. (4.8)

From here we see that the congruence is expansion-free, rotation-free and shear-
free. The direction of acceleration, which does not depend on sign of K, is towards
the inner singularity for ρ < ρo and away from outer singularity for ρ > ρo.

Let us discuss the results for static electrogeodesics for K < 0. Between
singularities the condition was q = 1, which is also an exact solution of Einstein’s
equations. This suggests the sources may have a charge-to-mass ratio equal to one
for the inner observer. Above outer singularity the condition is q = −1, thus the
outer singularity may have a charge-to-mass ratio equal to minus one, so that the
particle could be static. The result is summarized in Figure 4.2. Let us continue
with case K > 0, for which the signs of q change to opposite as compared to
K < 0. Thus the inner and outer singularities have a charge-to-mass ratio equal
to minus one for inner observer, and for the outer observer, the charge-to-mass
ratio of the outer singularity is equal to one. The signs of the masses and charges
is shown in Figure 4.3.

27



Figure 4.1: Regions, where static electrogeodesics exist for K ̸= 0. Axes are
not to scale. The vertical curly lines represent singularities, the horizontal lines
represent radial intervals (except singularities), where the static electrogeodesics
exist. We also list the required specific charge for a given radial interval and sign
of K.

Figure 4.2: Properties of the singularities as indicated by static electrogeodesics
for K < 0. We give the sign of both mass and charge of the singularities and also
of the static test particle.

Figure 4.3: Properties of the singularities as indicated by static electrogeodesics
for K > 0.
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4.2 Radial electrogeodesics
A radial cylindrical electrogeodesics is defined as a world-line, where φ and z are
independent of proper time. Then the equations are

ρ̇2U2 − ṫ2

U2 = U , (4.9)

qU − ṫ

U2 = E, (4.10)

where the first equation is a normalization condition and the second one comes
from conservation of E.

4.2.1 Photon motion
Null geodesics play an important role, as they reveal whether the singularites
are covered by horizons. By taking q = U = 0 the equations (4.9) - (4.10)
become equations of motion for photon. We proceed by expressing ṫ from second
equation (4.10). From normalization then we obtain equation for ρ. We thus
solve equations

ṫ = −E (1 +K ln ρ)2 , ρ̇2 = E2. (4.11)
From (4.11) we immediately see that E < 0, so ṫ is positive. For E = 0 the
photon would be static. This solution reads

ρ±(τ) = r0 ± |E| τ, (4.12)
t±(τ) = ti ∓ ρ±

{
2K2 − 2KU (ρ±(τ)) + U2 (ρ±(τ))

}
, (4.13)

where r0 is the initial radius, ti is an integration constant and τ is affine parameter.
If the photon is emitted in the direction away from the charged line, then the
radial dependence is described by ρ+ and it linearly increases. If the photon
is emitted in the opposite direction, then the solution is described by ρ−. In
both cases, when the photon starts towards one of the singularities, it will hit it,
only photons emitted above outer singularity can avoid both singularities. There
are also two interesting positions. The first one is where ṫ becomes zero, which
happens at coordinate radius ρ = ρo, and the geodesic ends here and cannot be
extended. The affine parameter and coordinate time on this radius are

τo = τ(ρ± = ρo) = ±ρo − r0

|E|
, t(τo) = ti ∓ 2ρoK2, ṫ(τo) = 0. (4.14)

This means that if a static observer would watch an object falling into the outer
singularity, the object would appear to fall faster with decreasing distance from
the outer singularity. The second interesting location is when ρ becomes zero and ṫ
becomes infinite, which happens when the photon is emitted between singularities
towards the inner singularity. When it reaches radius ρ = 0, the affine parameter
behaves as

τ(ρ− = 0) = τi = ρ0

E2 , lim
τ→τi

t(τ) = ti, lim
τ→τi

ṫ(τ) = ∞, (4.15)

which also states that the geodesics ends at ρ = 0 with a finite parameter τ
and cannot be extended. This also means that a static observer between both
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singularities will not see the end of the fall of any object into inner singularity, and
the falling object will appear to fall slower with decreasing radius. Therefore we
have two regions of spacetime which are causally separated, and both singularities
have no horizons and are thus naked. For congruence properties we choose a null
field

lµ± = − 1
2EU2

(
U2Eµ(t) ± Eµ(ρ)

)
, (4.16)

where ‘±’ corresponds to ρ±. The congruence tensors read

aµ± = 0,Ω±µν = 0, σ±φφ = ±1
2EρU

2, σ±zz = − 1
ρ2σ±φφ, (4.17)

and optical scalars read

σ2
± = E2

4ρ2 ,Ω
2
± = 0,Θ± = ±EU + 2ρU,ρ

ρU
. (4.18)

The congruence is thus rotation-free but it is shearing and expanding.

4.2.2 Electrogeodesic
The equations for electrogeodesic with U = −1 can be integrated to

ṫ = − (1 +K ln ρ) (E − q + EK ln ρ) , (4.19)

ρ̇2 = (E − q + EK ln ρ)2 − 1
(1 +K ln ρ)2 . (4.20)

The motion is possible when ṫ > 0 and ρ̇2 ≥ 0, which will give restriction on
parameters q, E,K. By solving ρ̇ = 0 for ρ we obtain two turning points:

ρt± = exp q − E ± 1
EK

,E ̸= 0, q ̸= ∓1. (4.21)

If q = −1 then ρt+ becomes outer singularity and ρt+ is then not turning point,
the same holds for q = +1 ↔ ρt−. It is not possible to be static on turnover
radii for particles, which do not carry extremal charge, since the acceleration is
non-zero here:

ρ̈ (τ : ρ = ρt±) = ± KE3

ρt± (q ± 1)2 ̸= 0 for q ̸= ∓1. (4.22)

As in classical case we can see that acceleration does not change sign thus the
particle will reflect at the turning point. If we use ‘trick’ as in (1.17) and prescribe
ρ(τ) = ρo exp R(τ), the equation for ρ transform to

R2 exp (2R) ρ2
oṘ2 = (EKR − q)2 − 1. (4.23)

However, the equation is more complicated than in classical case and it is hard
to find analytical solution. The equations become simpler for E = 0 and read

R2 exp (2R) ρ2
oṘ2 = q2 − 1, ṫ = qKR. (4.24)
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so for E = 0 there are only two possibilities for charge. The solution reads

RE=0,± (τ) =

⎧⎨⎩ 1 +W−1
[
e1/K−1√q2 − 1 (τ0 ± τ)

]
, 0 < ρ < ρo,

1 +W0
[
e1/K−1√q2 − 1 (τ0 ± τ)

]
, ρ > ρo,

where τ0 is integration constant, ‘±’ describes whether the radius is increasing or
decreasing and W is Lambert W function (A.4). When the argument of Lambert
W function tends to −∞, then the radius ρ tends to zero, when the argument
tends to e−1, it corresponds to ρo and finally, when the argument tends to +∞,
the radius ρ tends to +∞ as well.

Analysing velocity in the radial directions, we can proceed without knowing
an explicit analytical solution for the general case. Regions, where the motion is
possible for K < 0 are in Table 4.2 and for K > 0 in Table 4.3. The regions are
also summarized in Figure 4.4 and Figure 4.5.

We can see the particle’s behaviour as it approaches the inner/outer singular-
ity

lim
ρ→ρo

ṫ = 0, lim
ρ→ρo

ρ̇2 = ∞, lim
ρ→0

ṫ2 = ∞, lim
ρ→0

ρ̇2 = E2. (4.25)

For particles going to the radial infinity, we find

lim
ρ→∞

ρ̇2 = E2, lim
ρ→∞

ṫ = ∞. (4.26)

In case of uncharged particles following geodesics, we can see from Table 4.2 and
Table 4.3 that there are only two admissible regions, which are summarized in
Table 4.4.

Congruence properties:

aµ± = −qU,ρρ̇ Eµ(t) ± qU,ρ
U4 ṫ Eµ(ρ),Ω±µν = 0, (4.27)

Ω2
± = 0,Θ± = ∓

[EU (U + ρU,ρ) − q]2 + (U + ρU,ρ)
(
Eṫ+ 1

)
ρρ̇U3 . (4.28)

The shear tensor σ±µν has non-zero components σ±tρ, σ±ρρ, σ±zz and scalar σ2
±

is non-zero, but they involve a complicated and lengthy expression and are not
presented here. The congruence is thus rotation-free, but shearing.

Let us summarize our results on radial electrogeodesics. Assume a particle
with E ̸= 0 between singularities for K < 0 on the turning radius ρt−. If the
particle has a specific charge q > 1, it is attracted to the outer singularity, for
q < 1 it is attracted to the inner singularity. If we put the charged particle above
the outer singularity at radius ρt+, then it falls into outer singularity if the specific
charge q < −1 and it is repulsed for q > −1. From the classical point of view we
can compare electrostatic and gravitational forces. If the sign of both masses in
the gravitational force is negative, we get repulsion instead of attraction. We see
that the change K → −K leads to q → −q and ρt+ ↔ ρt−. Thus for K > 0 we
get the opposite sign of charge to mass ratio for both singularities.
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E q ρ Description of ρ region End of motion

E = 0

q < −1 ρo < ρ Above outer singularity ρo or ∞
q = −1 ρo < ρ Above outer singularity Initial radius
q > 1 0 < ρ < ρo Between singularities 0 or ρo
q = 1 0 < ρ < ρo Between singularities Initial radius

E < 0

q ≤ −1 ρo < ρ Above outer singularity ρo or ∞
q < 1 0 < ρ ≤ ρt− Above inner singularity 0
−1 < q ρt+ ≤ ρ Above outer singularity ∞
q ≥ 1 0 < ρ < ρo Between singularities 0 or ρo

E > 0 q > 1 ρt− ≤ ρ < ρo Under outer singularity ρo
q < −1 ρo < ρ ≤ ρt+ Above outer singularity ρo

Table 4.2: Regions, where radial electrogeodetic motion is possible for K < 0.

E q ρ Description of ρ region End of motion

E = 0

q > 1 ρo < ρ Above outer singularity ρo or ∞
q = 1 ρo < ρ Above outer singularity Initial radius
q < −1 0 < ρ < ρo Between singularities 0 or ρo
q = −1 0 < ρ < ρo Between singularities Initial radius

E < 0

1 ≤ q ρo < ρ Above outer singularity ρo or ∞
−1 < q 0 < ρ ≤ ρt+ Above inner singularity 0
q < 1 ρt− ≤ ρ Above outer singularity ∞
−1 ≥ q 0 < ρ < ρo Between singularities 0 or ρo

E > 0 q < −1 ρt+ ≤ ρ < ρo Under outer singularity ρo
1 < q ρo < ρ ≤ ρt− Above outer singularity ρo

Table 4.3: Regions, where radial electrogeodesic motion is possible for K > 0.

E K ρ End of motion

E < 0
K < 0 0 < ρ ≤ ρt− 0

ρt+ ≤ ρ ∞

K > 0 0 < ρ ≤ ρt+ 0
ρt− ≤ ρ ∞

Table 4.4: Regions, where radial geodesic (i.e. q = 0) motion is possible.
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Figure 4.4: Regions, where radial electrogeodesic motion is possible for K < 0.
A black circle indicates the end point is included in the given interval.

Figure 4.5: Regions, where radial electrogeodesic motion is possible for K > 0.
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4.3 Circular electrogeodesics
We investigate circular electrogeodesics, which require ρ and z constant. We
obtain the following equations:

− ṫ2

U2 + U2ρ2φ̇2 = U , (4.29)

ẗ = φ̈ = 0, (4.30)
qṫU,ρ
U4 − ṫ2U,ρ

U5 − ρφ̇2 − ρ2φ̇2U,ρ
U

= 0. (4.31)

We can immediately write t = γτ, φ = ωτ . Then we have to find γ and ω, which
do not depend on proper time. However, they depend on radius ρ and specific
charge q. If we rewrite the equations explicitly, they read

− γ2

(1 +K ln ρ)2 + (1 +K ln ρ)2 ρ2ω2 = U , (4.32)

Kγ2

1 +K ln ρ + ρ2ω2 (1 +K ln ρ)3 (1 +K +K ln ρ) = qKγ. (4.33)

4.3.1 Photon motion
By putting q = U = 0 in the previous equations, we obtain the following equation
for ω and γ for a photon:

ρ2ω2U4 − γ2 = 0, (4.34)
U,ργ

2 + U4ρω2 (U + ρU,ρ) = 0, (4.35)

which is a linear homogeneous equation in γ2, ω2. A non-trivial solution is ob-
tained, if the determinant of the system is zero. The solution to this condition is

U + 2K = 0 ⇒ ρ = ρph ≡ e−2−1/K , γ2 = 16ρ2
phω

2K4, ω ̸= 0, (4.36)

where ω is a free non-zero parameter. The auxiliary tensors describing the prop-
erties of the null geodesic are as follows

lµ =
Eµ(t)

2ωρph
−

Eµ(φ)

8ωK2ρ2
ph

, aµ = 0, σµν = Ωµν = 0, (4.37)

and the optical scalars read

Θ = Ω2 = σ2 = 0. (4.38)

ECS is thus a Kundt spacetime. It is not Ricci-flat (2.21), and it is Type I
almost everywhere. It is not a VSI1 (CSI2) spacetime due to its non-vanishing
(non-constant) Kretschmann scalar (2.17).

1Vanishing scalar invariant spacetime
2Constant scalar invariant spacetime
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4.3.2 Charged mass particle
Let us investigate circular motion of a charged massive particle by putting U =
−1. The equations are quadratic, so we expect two different absolute values of ω
at most (the change of sign corresponds to a change of trajectory direction). If
we look closely at the equations, we find out that the equation for γ can become
linear, if ρ = ρph. Then the solution is

ρ = ρph, γρph
= −2K

q
, ω2

ρph
= 1 − q2

4K2ρ2
ph

, (4.39)

if 1 ≥ q > 0 ∧ K < 0 is satisfied or −1 ≤ q < 0 ∧ K > 0. In general case, the
solution for γ and ω comes from coupled quadratic equations. First we express
ω from the normalization condition

ω2 = γ2 − U2

ρ2U4 , (4.40)

and substitute in the second equation. The general solution (for ρ ̸= ρph) is

γ± = U
qρU,ρ ±

√
(q2 + 8) ρ2U2

,ρ + 12ρUU,ρ + 4U2

2 (2ρU,ρ + U) , (4.41)

ω2
± = U,ρ

ρU,ρ (q2 − 4) − 2U ± q
√

(q2 + 8) ρ2U2
,ρ + 12ρUU,ρ + 4U2

2ρU2 (2ρU,ρ + U)2 . (4.42)

The series expansions for K → 0 are

ω2
± ≈ K

−1 ± q

ρ2 +O
(
K2
)
, γ± ≈ ±1 + K

2 (q ∓ 1 ± 2 ln ρ) +O
(
K2
)
. (4.43)

From these circular orbits we can infer an interpretation corresponding to the
Newtonian case. If we put µ = λ in (1.23) and express it using the charge-to-
mass ratio, we obtain the Newtonian angular frequency ωN . Comparing this to
(4.43) we obtain

ω2
N = 2λ1 − q

ρ2 ↔ ω2
+ ≈ K

q − 1
ρ2 ⇒ λ = −K

2 +O
(
K2
)
. (4.44)

From this we conclude that to the first order in K, the linear mass and charge
density of the singularity is

M

h
= Q

h
= −K

2 +O
(
K2
)
. (4.45)

Let us investigate existence of solutions. To find out, when solution exists, we
have to solve the conditions γ± > 0 and ω2

± > 0. First we investigate solution for
K < 0. We proceed in the same way for K > 0 and we find that a change in the
sign of K effectively corresponds to the change q → −q. Plots of γ and ω are in
Figure 4.8. Summary of results is in Table 4.5, Figure 4.6 and Figure 4.7. The
first column is just notation of the region; the second column describes, which
variant of solution is valid (‘+’,‘−’ or ‘ρph’ for photon radius); the third and the
fourth ones contain condition for specific charge of particle, depending on the
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sign of K; the last one describes radial boundaries of the region. The definition
of the boundary radius ρq used in the table is

ρq = exp
(

−2 + 3K +K
√

1 − q2

2K

)
. (4.46)

We see that there exists a region where both solutions ω± exist. This is a behavior
we have already observed in a previous paper on another MP solution involving
two charged black holes [13] and is a result of the quadratic nature of the algebraic
form of the equations of motion. The geodesics exist only in the region 0 < ρ <
ρph with angular velocity ω+ for both sings of K.

# ω
K < 0
q

K > 0
q ρ

P1s ω+ = 0 q = 1 q = −1 0 < ρ < ρph
Fs ωρph

= 0 q = 1 q = −1 ρ = ρph
P2s ω+ = 0 q = 1 q = −1 ρph < ρ ≤ ρq
M2s ω− = 0 q = 1 q = −1 ρq ≤ ρ < ρo
P3s ω+ = 0 q = −1 q = 1 ρo < ρ

P1 ω+ q < 1 −1 < q 0 < ρ < ρph
F ωρph

0 < q < 1 −1 < q < 0 ρ = ρph
P2 ω+ 0 < q < 1 −1 < q < 0 ρph < ρ ≤ ρq
M1 ω− 0 < q < 1 −1 < q < 0 ρph < ρ ≤ ρq
M2 ω− 1 < q q < −1 ρph < ρ < ρo
P3 ω+ q < −1 1 < q ρo < ρ

Table 4.5: Regions, where circular electrogeodesic motion is possible for K ̸= 0.

For a particle located in region P1 and approaching the inner singularity:

lim
ρ→0

ω2
+ = ∞, lim

ρ→0
γ+ = ∞. (4.47)

In region P1 a particle approaching photon orbit has

0 < q2 < 1 : lim
ρ→ρ−

ph

ω2
+ = ω2

f , lim
ρ→ρ−

ph

γ+ = γf , (4.48)

−q sgnK ≤ 0 : lim
ρ→ρ−

ph

ω2
+ = ∞, lim

ρ→ρ−
ph

γ+ = ∞. (4.49)

In region P2, it is not possible to overcome ρq for plus variant. If we take
ρϵ = ρq exp ϵ, then for small positive ϵ the square root in γ+ and ω+ becomes
complex, since interior becomes negative:

4U2 + 12ρUU,ρ +
(
8 + q2

)
ρ2U2

,ρ ≈ −K2ϵ
√

1 − q2 +O
(
ϵ2
)
. (4.50)

At ρq, we obtain

lim
ρ→ρ−

q

γ+ = Kq

2

√
1 − q2 + 3√
1 − q2 − 1

, lim
ρ→ρ−

q

ω2
+ =

8
(
q2 − 1 +

√
1 − q2

)
[
Kρq

(
2 + q2 − 2

√
1 − q2

)]2 . (4.51)
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Figure 4.6: Schematic illustration of regions for K < 0, where circular electro-
geodesic motion is possible. Static solutions are excluded. A white circle indicates
the end point is not included in the given interval.

Figure 4.7: Schematic illustration of regions for K > 0 as in the previous case.
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In region P3 approaching outer singularity

lim
ρ→ρ+

o

ω2
+ = ∞, lim

ρ→ρ+
o

γ+ = 0. (4.52)

In region P3, a series expansion for ρ → ∞ yields

ω2
+ ≈ q sgnK − 1

K2ρ2 ln3 ρ
+O

(
1

ρ2 ln4 ρ

)
, (4.53)

γ+ ≈ qK − |K|
2 + sgnK + |K| ln ρ+O

(
ln2 ρ

)
. (4.54)

So the limiting values
lim
ρ→∞

ω2
+ = 0, lim

ρ→∞
γ+ = ∞. (4.55)

In region M1 approaching photon radius

lim
ρ→ρ+

ph

ω2
− = ∞, lim

ρ→ρ+
ph

γ− = ∞. (4.56)

In region M1 it is not possible to have circular orbits beyond ρq with 0 < q2 < 1
due to the same argument as in case of P2. The limits at ρq are the same as in
case of region P2:

lim
ρ→ρ−

q

γ− = lim
ρ→ρ−

q

γ+, lim
ρ→ρ−

q

ω2
− = lim

ρ→ρ−
q

ω2
+. (4.57)

In region M2 near the outer singularity we find

lim
ρ→ρ−

o

ω2
− = ∞, lim

ρ→ρ−
o

γ− = 0. (4.58)

Congruence tensors read

aµ = −ρU3ω2 + U,ρ + 2ρ2U2ω2U,ρ
U3 Eµ(ρ). (4.59)

The rotation and shear tensors have only t, ρ and φ, ρ non-zero components, which
are quite lengthy. The optical scalars read

σ2 = ρ2 (ρU3ω3 + ωU,ρ − ω,ρU + 2ρ2U2ω3U,ρ)2

4γ2 ,Θ = 0, (4.60)

Ω2 = [ρ2U3ω3 + 3ρωU,ρ + 2ρ3U2ω3U,ρ + U (2ω + ρω,ρ)]2

4γ2 . (4.61)

From the behaviour of the circular electrogeodesics listed in Table 4.5 we can
see that for K < 0, a particle with q < 1 can orbit in the vicinity of the inner
singularity. This corresponds to the classical case when the particle is attracted
to the rod, due to its charge and mass, and repelled by the centrifugal force.
The particle between singularities with q > 1 can orbit in the vicinity of the
outer singularity, which agrees with a centrifugal force neutralizing the attraction
from the outer singularity. Particle with q < −1 above the outer singularity can
compensate the electrostatic attraction from the outer singularity in the same
way. The change K → −K corresponds to q → −q. Again we see that the
opposite K changes the sign of the charge to mass ratio of both singularities.
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(a) Between singularities. (b) Outside.

(c) Between singularities. (d) Between photon orbit and ρq.

(e) Between singularities. (f) Outside.

(g) Between singularities. (h) Between photon orbit and ρq.

Figure 4.8: Plots of angular velocity ω and gamma factor γ for circular motion
of test particles of varying specific charge as a function of the radial coordinate,
K = −2.
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4.4 Electrogeodesics parallel to z-axis
For motion, where ρ and φ are constant, there are following equations

− ṫ2

U2 + ż2U2 = U , (4.62)

ẗ = z̈ = 0 ⇒ t = γτ, z = vτ, (4.63)
U,ρ

(
−qṫU + ṫ2 + ż2U4ρ

)
= 0. (4.64)

If we prescribe U = q = 0 to search for photon motion, we find that such motion
is not possible. We thus search for timelike electrogeodesics only. We follow up
the same procedure as in circular electrogeodesics: we find solutions for factors γ
and v:

γ± = U

4

(
q ±

√
q2 + 8

)
, v± =

√
q2 ± q

√
q2 + 8 − 4

8U2 . (4.65)

Again, the task is to determine where these factors are well defined and real.
They do not depend on proper time, but depend on ρ and K. In this case the
inequalities are straightforward. The condition for v is found by solving where
the argument of the square root is positive, the denominator excludes the outer
singularity from solution. In case of γ we check where the product of U and the
bracket is positive. We obtain one region for each solution. The case v± = 0
corresponds to static solutions. The results are summarized in Table 4.6 and
Figure 4.9. Plot of factors v and γ is shown in Figure 4.10.

K v q ρ Description of ρ region

K < 0

v+ q > 1 0 < ρ < ρo Between singularities
v+ = 0 q = 1 0 < ρ < ρo Between singularities
v− q < −1 ρo < ρ Above outer singularity
v− = 0 q = −1 ρo < ρ Above outer singularity

K > 0

v− q < −1 0 < ρ < ρo Between singularities
v− = 0 q = −1 0 < ρ < ρo Between singularities
v+ q > 1 ρo < ρ Above outer singularity
v+ = 0 q = 1 ρo < ρ Above outer singularity

Table 4.6: Regions, where z-electrogeodesic motion is possible for K ̸= 0.

For a particle located between singularities and approaching the inner singu-
larity:

lim
ρ→0+

γ+ = ∞, lim
ρ→0+

v+ = 0, lim
ρ→0+

γ− = ∞, lim
ρ→0+

v− = 0, (4.66)

where the first two limits assume K < 0 and the last two K > 0 according to
Table 4.6. For the same particle approaching the outer singularity we find

lim
ρ→ρ−

o

γ+ = 0, lim
ρ→ρ−

o

v+ = ∞, lim
ρ→ρ−

o

γ− = 0, lim
ρ→ρ−

o

v− = ∞. (4.67)

For a particle located above the outer singularity and approaching the outer
singularity:

lim
ρ→ρ+

o

γ− = 0, lim
ρ→ρ+

o

v− = ∞, lim
ρ→ρ+

o

γ+ = 0, lim
ρ→ρ+

o

v+ = ∞, (4.68)
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and approaching radial infinity

lim
ρ→∞

γ− = ∞, lim
ρ→∞

v− = 0, lim
ρ→∞

γ+ = ∞, lim
ρ→∞

v+ = 0. (4.69)

Series expansion for K → 0 for γ is trivial, since γ depends linearly on K. For v
we obtain

v± ≈

√
q2 − 4 ±

√
q2 + 8

2
√

2
(1 −K ln ρ) +O

(
K2
)
. (4.70)

Congruence tensors read

aµ± = −qU,ργ±

U4 Eµ(ρ),Ω±ρt = σ±ρt = U,ργ±v
2
±

U
,Ω±ρz = σ±ρz = γ2

±v±

U
, (4.71)

from the optical scalars we obtain that the congruence is expansion-free:

Θ± = 0, σ2
± = Ω2

± = U2
,ρ

[
q2
(
q ±

√
q2 + 8

)2
− 16

]
64U4 . (4.72)

Let us look at the results for electrogeodesics along z-axis in Table 4.6 for K < 0.
If the particle moves between singularities in z-direction, it has to have a specific
charge q > 1. The particle is attracted to the outer singularity, as its charge is
higher than the equilibrium charge. This attraction is compensated by movement,
as the mass of the particle increases (from the point of view of a static observer).
The same arguments hold for a particle above the outer singularity: motion
along the z-axis is possible for q < −1 and the particle is attracted to the outer
singularity, which is compensated by the motion. For K > 0 the charge to mass
ratio of electrogeodesic particles changes, as well as the charge to mass ratio of
both singularities.

Figure 4.9: Regions, where axial electrogeodesics exist for K ̸= 0.
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(a) Between singularities. (b) Between singularities.

(c) Outside. (d) Outside.

Figure 4.10: Dependence of velocity v and gamma factor γ for K = −2.
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5. The Newtonian limit
In this chapter we discuss the formal limit K → 0. The question is how to do
this limit? This is not a physical process but rather a mathematical procedure
enabling us to compare various results from GR with their Newtonian analogues.
In the previous chapters we often calculated some quantities and expanded them
as a series in K which we then let tend to zero. The lowest term was then com-
pared to the Newtonian expression. This makes sense if the region of spacetime
in question approaches flat spacetime for K → 0. Then the Newtonian gravity
represents the lowest-order perturbation of the flat spacetime and should corre-
spond to the lowest term in the expansion. One needs to be careful about whether
the investigated radius is above or below the outer singularity, which shifts with
changing K. While it is obvious from the metric that ECS becomes Minkowski,
however, there is problem with the outer singularity, which has only one-sided
limits, and thus only one part of the ECS can become Minkowski. There also
arises the question of mass - we computed several formulae for mass and made
series expansions for small K, but what do we get?

5.1 K < 0
For K < 0 the outer singularity approaches radial cylindrical infinity in the
limiting process K → 0−:

lim
K→0−

ρo = ∞, lim
K→0−

lρ (ρo) = ∞, (5.1)

where lρ is proper radial cylindrical length from (2.3.1). Thus from the ECS there
remains only the inner part, which becomes Minkowski. Therefore, the observer
could see only inner singularity and measure its mass and charge. If we look at
the Brown-York (3.38) expression and (3.27) we see that for a cylinder enclosing
the inner singularity mass is positive. If we enclose outer singularity from inside
we get that the mass is negative.

5.2 K > 0
For K < 0 the outer singularity approaches the inner singularity in the limit
process K → 0+:

lim
K→0+

ρo = 0, lim
K→0−

lρ (ρo) = 0. (5.2)

Thus from the ECS there remains only the outer part, which becomes Minkowski.
Thus the observer can only be outside and see only the outer singularity. Using
the same argument as in the previous section, we see that the charge (3.45) and
mass densities of the outer singularity are negative.
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6. Summary of ECS
Let us state our results for ECS. We interpret the ECS spacetime as actually
consisting of two independent spacetimes separated by the outer singularity. From
the radial electrogeodesics it follows that both singularities are naked and nothing
can go through the outer singularity to the other part of the spacetime. Inside, the
situation is complicated by the presence of two singularities pulling or pushing test
particles in opposite directions, while outside there is only one singularity present
in the spacetime. The outer singularity at ρ = e−1/K always has a negative mass
per unit length as observed from both outside and inside. From calculations
of proper lengths we see that the outer singularity is spatially point-like. The
inner singularity at ρ = 0, which is spatially one-dimensional, then always has a
positive mass. The parameter K appearing in the metric determines the sign of
the charge per unit length of the singularities. For K > 0 the inner singularity
has a negative charge. The outer singularity has a negative charge when observed
from the outside and a positive charge from the inside. For K < 0 the signs are
reversed. For weak fields, i.e., when the limit K → 0 is applied, the magnitude
of both the mass and charge densities is given by K/2. The summary of signs of
mass and charge is shown in Figure 6.1.

(a) K < 0 (b) K > 0

Figure 6.1: Schematic illustration of the sign of linear mass and charge densities
of the singularities.
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7. Geometry of ECS with a
cosmological constant
Kastor and Traschen found an extension of the static Majumdar-Papapetrou
spacetime, consisting of a finite number of extremal black holes, yielding a dy-
namical case [4] with a positive cosmological constant Λ, with the limit Λ → 0
reducing the spacetime to the static case. Static ECS can be extended in the
same way, producing a spacetime we call ECSΛ. We prescribe the metric and
electromagnetic four-potential in the following way:

ds2 = −dt2
Ω2 + b2Ω2

(
dρ2 + ρ2dφ2 + dz2

)
, (7.1)

A = dt
Ω ,Ω = Ω (t, ρ) , b = b(t). (7.2)

(7.3)

Then the electromagnetic tensor and Maxwell invariant read

F = Ω,ρ

Ω2 dt ∧ dρ,F = −2
Ω2
,ρ

b2Ω4 . (7.4)

First we plug the metric tensor and electromagnetic four-potential in Maxwell
equations. From the first one we get

ρΩ,ρρ + Ω,ρ = 0 ⇒ Ω(t, ρ) = 1 + c(t) ln ρ, (7.5)

and from the second one we obtain

(bΩ,ρ),t = 0 ⇒ Ω(t, ρ) = 1 + K

b(t) ln ρ, (7.6)

and the Maxwell equations are thus satisfied. The constant 1 is chosen so1 that
ECSΛ be consistent with ECS spacetime. The Einstein equations are more com-
plicated. We solve the simplest one:

3b′2 = Λb2 ⇒ b(t) = eHt, H = ±
√

Λ
3 ,Λ > 0, (7.7)

where the function b(t) is the same as in [4]. If we plug this function in the
remaining equations we find that they are all satisfied. We choose an orthonormal
tetrad

eµ(t) =
√

Ω2Eµ(t), e
µ
(ρ) = 1

b
√

Ω2
Eµ(ρ), e

µ
(φ) = 1

ρb
√

Ω2
Eµ(φ), e

µ
(z) = 1

b
√

Ω2
Eµ(z). (7.8)

Riemann tensor has more complex components than in ECS. The non-zero coor-
dinate and tetrad components vanish neither in the limit ρ → ∞, nor Ht → ±∞,
so ECSΛ is not flat in these limits. Ricci curvature is R = 12H2, which agrees
from the trace of the Einstein equations, thus ECSΛ is spacetime with constant

1Einstein equations permit this choice and it simplifies the calculation.
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K H lim
t→−∞

ρo lim
t→+∞

ρo

K < 0 H < 0 ∞ 1
H > 0 1 ∞

K > 0 H < 0 0 1
H > 0 1 0

Table 7.1: Movement of the outer singularity in ECSΛ.

positive curvature. There are only two Killing vecotrs: Eµ(φ) and Eµ(z). ECSΛ is
thus not a subcase of black string (3.47) in [10], as their solution is stationary,
featuring a Killing vector field corresponding to time symmetry.

From F we see that there are two singularities located at radii

ρi = 0, ρo(t) = exp
[
−exp (Ht)

K

]
. (7.9)

We found these singularities in ECS, however here the behaviour is more compli-
cated and depends on both H and K. The summary of movement of the outer
singularity is shown in Table 7.1.

7.1 Algebraic classification
We wish to determine the algebraic class of the spacetime. We proceed in the
same way as in ECS. We choose a normalized null tetrad

kµ = 1√
2
(
eµ(t) − eµ(ρ)

)
, lµ = 1√

2
(
eµ(t) + eµ(ρ)

)
, (7.10)

mµ = 1√
2
(
ieµ(φ) − eµ(z)

)
,mµ = − 1√

2
(
ieµ(φ) + eµ(z)

)
.

We compute Weyl scalars as in (2.25) and the non-zero Weyl scalars read

ψ0 = ψ4 = Ω,ρ

2ρΩ3b2 , ψ2 =
6ρΩ2

,ρ + Ω (Ω,ρ − 2ρΩ,ρρ)
6ρΩ4b2 . (7.11)

We can see that all Weyl scalars vanish in the limit ρ → ∞ or Ht → ∞:

lim
ρ→∞

ψ0 = lim
ρ→∞

ψ2 = 0, lim
Ht→∞

ψ0 = lim
Ht→∞

ψ2 = 0. (7.12)

This means that ECSΛ is conformally flat in these limits. For example, for
Ht ≫ 1 the metric becomes

ds2 ≈ −dt2 + e2Ht
(
dρ2 + ρ2dφ2 + dz2

)
, (7.13)

which is de Sitter spacetime, which is conformally flat (but not flat) spacetime.
We notice that for Ht ≈ 0 the metric is close to the static ECS.

To determine the algebraic type of the spacetime we perform the same trans-
formation as in (2.35) and obtain the equation

1 + 2αZ2 + Z4 = 0, α ≡ ψ2

3ψ0
, (7.14)
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which is of the same form as (2.38), but here it also depends on t. Therefore
there are four complex roots in general thus the ECSΛ spacetime is type I. We
find that there exist two radii where the spacetime is type D. The radii are

ρD1,2(t) = exp
(

−(3 ∓ 1) b(t) ∓ 2K
K (3 ∓ 1)

)
. (7.15)

7.2 Mass
From the static ECS spacetime we already know the role of the parameter K. In
ECSΛ we expect that the formulae will be time dependent. Therefore, in the first
order we should get an exponential suppression or growth of mass and charge.
The ECSΛ spacetime is not static and has no timelike Killing vectors, so we can
not use all definitions as in the static ECS - we can not use Brown-York and
Komar formulae. We can thus compute charge and Landau-Lifschitz formulae.
One would also want to compute C-energy. However, it requires complicated
transformation of the metric and since we are not able to find an analytical
expression for such a transformation, we can not calculate the C-energy.

To compute the integral definitions of MLL and Q we use slightly modified
cylinders:

Σ(ρ) → Σ(t, ρ), S(ρ) → S(t, ρ), (7.16)
where t is general, but constant in the integration. The future-oriented normal
nµ to Σ and spatial outer normal rµ to SS read

nµ = eµ(t), r
µ = eµ(ρ) = 1√

x2 + y2

(
x eµ(x) + y eµ(y)

)
, (7.17)

where the components also depend on time.

7.2.1 Landau-Lifschitz
We proceed in the same way as in ECS and use the formula

P µ = 1
16π

∮
S
Hµ0λκ

,κrλdS. (7.18)

However, it seems that the components P x and P y are non-zero, because the
integrand for µ = i reads

H i0λκ = g giλg0κ ⇒ H i0λκ
,κ =

(
g giλg00

)
,0
, (7.19)

and this expression vanishes in the summation in the integrand only for i = z.
After some algebra we get

Hxtλκ
,κ =

(
g gxλgtt

)
,t
, Hytλκ

,κ =
(
g gyλgtt

)
,t
. (7.20)

After expressing the integrand in cylindrical coordinates we see that the integrand
in P x depends linearly on cosφ. Since we integrate φ over the cylinder, the
integrand vanishes. P y depends linearly on sinφ and the same argument applies.
We can thus calmly compute the only non-vanishing component and we obtain

MLL = −hK
2 b7Ω5

√
Ω2 ≈ −hK

2 e6Ht − 3hK2e5Ht ln ρ+O
(
K3
)
. (7.21)

From this we get that mass changes in time with factor e6Ht to the first order.
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7.2.2 Charge
We proceed in the same way as in ECS. We obtain

Q = 1
4π

∫ 2π

0

∫ h

0
Fρtr

ρntb2Ω2ρ dz′dφ′ = −hK

2 e2Ht. (7.22)

We observe that the charge changes in time with factor e2Ht. We see that mass
changes faster in time than charge. This means that there is a flow of matter and
charge in the spacetime along the singularities.
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8. Grid spacetime
In the previous chapters we constructed a solution describing an extremally
charged string. One of interesting questions is whether this solution can be ob-
tained as a limiting case of spacetime, which would consist of an infinite number
of extremal black holes. The extremally charged string should be obtained in
the limit when the distance from the z-axis is large compared to the distance
between two neighboring point sources. However, there is a problem: we first
need to find the corresponding electrostatic potential of such a configuration in
classical physics. Thus our goal is to find an electrostatic potential, which would
describe an infinite number of point charges situated on the z-axis, so it can be
extended to GR similarly to the ECS spacetime. We investigate two constructions
and analyse them.

8.1 Superposition of point charges
We prescribe the potential in such a way that it behaves as single point charge if
we approach closely to it. We thus sum the potentials of individual point charges.
So we prescribe the potential as

ϕ =
∞∑
n=1

ϕ+
n +

∞∑
n=1

ϕ−
n + ϕ0, (8.1)

where
ϕ±
n (ρ, z) = 1√

ρ2 + (z ± n)2
− 1
n
, ϕ0(ρ, z) = 1√

ρ2 + z2 . (8.2)

The meaning of ϕ±
n is the following: it is the potential of a point charge located at

z = ±n on the z-axis, the term −1/n makes the potential ϕ±
n vanish at the origin.

It is clear from construction that every ϕ±
n satisfies the Laplace’s equation, but

it is not clear whether the sums converge uniformly and what the total potential
looks like.

We see that ϕ has mirror symmetry, since ϕ+
n (ρ, z) = ϕ−

n (ρ,−z). The potential
has another important symmetry - it is periodic in z:

ϕ(ρ, z + 1) = (8.3)
= ∑∞

n=1

[
1√

ρ2+(z+1−n)2 − 1
n

]
+∑∞

n=1

[
1√

ρ2+(z+1+n)2 − 1
n

]
+ 1√

ρ2+(z+1)2 =

= 1√
ρ2+z2

− 1
1 +∑∞

n=2

[
1√

ρ2+[z−(n−1)]2
− 1

n

]
+∑∞

n=1

[
1√

ρ2+(z+1+n)2 − 1
n

]
+ ϕ+

1 =

= ϕ0 − 1 +∑∞
l=1

[
1√

ρ2+(z−l)2 − 1
l+1

]
+∑∞

m=2

[
1√

ρ2+(z+m)2 − 1
m−1

]
+ ϕ+

1 =

= ϕ0 − 1 +∑∞
l=1

[
ϕ−
l + 1

l
− 1

l+1

]
+∑∞

m=2

[
ϕ+
m + 1

m
− 1

m−1

]
+ ϕ+

1 .

On the third line we separated the first term from the first sum, which gives
ϕ0 − 1, on the fourth line we substituted l = n− 1 in the first sum and m = n+ 1
in the second sum, and on the last line we rewrote zero as 0 = 1

l
− 1

l
to restore

the terms ϕ±
l . Since the extra terms in both sums go for large argument as

1
l

− 1
l + 1 ∼ 1

l2
,

1
m

− 1
m− 1 ∼ 1

m2 (8.4)
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we see that they converge and can be separated. We thus get

ϕ(ρ, z + 1) = ϕ0 +
∞∑
l=1

ϕ−
l +

∞∑
l=1

[1
l

− 1
l + 1

]
+

∞∑
l=1

ϕ+
l +

∞∑
m=2

[ 1
m

− 1
m− 1

]
. (8.5)

The separated sums are well-known telescopic sums and they read
∞∑
l=1

[1
l

− 1
l + 1

]
= 1,

∞∑
m=2

[ 1
m

− 1
m− 1

]
= −1, (8.6)

thus they cancel and we get ϕ(ρ, z+1) = ϕ(ρ, z). From the definition we see that
ϕ(ρ, z) diverges in points where the charges are located:

lim
z→±n

ϕ(0, z) = ∞, n ∈ N0. (8.7)

The periodicity has many advantages. Combining it with mirror symmetry we
get

ϕ(ρ, 1 − z) = ϕ(ρ, z − 1) = ϕ(ρ, z), (8.8)
which means we can restrict to 0 ≤ z ≤ 1/2, as the potential has mirror symmetry
in every z = m/2,m ∈ Z. From (8.8) it also follows

∂ϕ(ρ, z)
∂z

⏐⏐⏐⏐⏐
z=1/2

= 0, ρ ̸= 0 ⇒ ∂ϕ(ρ, z)
∂z

⏐⏐⏐⏐⏐
z=n

= 0. (8.9)

8.1.1 Convergence
Let us first look where the terms change sign:

ϕ±
n > 0 ⇒ ∓2zn ≥ ρ2 + z2. (8.10)

If we assume on z > 0, we see that ϕ+
n is never positive, as the condition below has

no solution for n. The terms ϕ−
n are negative for n < nmax, defined as the highest

natural number satisfying the inequality, and then they are always positive. Since
ϕ+
n (ρ, z) = ϕ−

n (ρ,−z), the same holds for z < 0. Let us inspect the convergence
of both sums. Thanks to symmetries we can restrict on z ∈ [0, 1/2]. From the
definition of ϕ±

n we can see that the terms will behave for large n as

ϕ±
n ∼ n−2, lim

n→∞
n2ϕ±

n = ∓z, (8.11)

and in the plane z = 0 the convergence is even faster and the terms go as n−3.
Thus both sums converge pointwise for every ρ and for z ∈ [0, 1/2]. Plots of ϕ
for fixed z or ρ are in Figure 8.1. Figure 8.2 shows where the potential is zero.
However, it is not obvious, whether the sums converge uniformly. The terms can
be estimated as ⏐⏐⏐ϕ±

n

⏐⏐⏐ ≤ 1
n
,∀ρ ≥ 0, z ∈

[
0, 1

2

]
, (8.12)

which is enough to prove ϕ±
n ⇒ 0, but it is not sufficient for uniform convergence

of both sums. If we restrict on ρ = 0 we are able to express ϕ analytically. For
0 < z ≤ 1/2 the sums can be rewritten as

ϕ(0, z) =
∞∑
n=1

( 1
z + n

− 1
n

)
+

∞∑
n=1

( 1
n− z

− 1
n

)
+ 1
z
. (8.13)
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We can estimate individual terms as⏐⏐⏐⏐ 1
z ± n

− 1
n

⏐⏐⏐⏐ =
⏐⏐⏐⏐ z

nz ± n2

⏐⏐⏐⏐ ≤ 1
n2 , (8.14)

so the sums converge absolutely uniformly. Using mathematical software we find
that

ϕ(0, z) = 1
z

−H(z) −H(−z), 0 < z ≤ 1/2, (8.15)

where H(z) is harmonic number (A.23). The derivatives of ϕ±
n on the z-axis can

be estimated as

ρ = 0 : ∂ϕ
±
n

∂z
= ∓1

(n± z)2 ,

⏐⏐⏐⏐⏐∂ϕ+
n

∂z

⏐⏐⏐⏐⏐ ≤ 1
n2 ,

⏐⏐⏐⏐⏐∂ϕ−
n

∂z

⏐⏐⏐⏐⏐ ≤ 4
(2n− 1)2 (8.16)

so the sums of derivatives of ϕ±
n converge absolutely uniformly. The second

derivatives can be estimated as

ρ = 0 : ∂
2ϕ±

n

∂z2 = 1
(z ± n)3 ,

⏐⏐⏐⏐⏐∂2ϕ+
n

∂z2

⏐⏐⏐⏐⏐ ≤ 2
n3 ,

⏐⏐⏐⏐⏐∂2ϕ−
n

∂z2

⏐⏐⏐⏐⏐ ≤ 16
(2n− 1)3 , (8.17)

thus again the sums converge absolutely uniformly, and we can interchange the
order of derivatives and sums at the axis. Plots of the potential an its derivatives
at the z-axis is shown in Figure 8.1. However, the rate of convergence of the
potential sum is quite low and we thus now proceed to use a different approach
based on expanding the solution in terms of fundamental solutions to Laplace’s
equation.

8.2 Separated potential
In this section we assume that the potential is separable:

ψ(ρ, z) = R(ρ)Z(z). (8.18)

Substituting in Laplace’s equation we obtain:

ρR,ρρ +R,ρ

ρR
= −Z,zz

Z
. (8.19)

Since the left side only depends on ρ and the right side only on z, the sides equal a
constant. Since we require periodicity in z, it implies the right side to be positive
(otherwise the solution for Z cannot be periodic) and

Z,zz + α2
nZ = 0 ⇒ Zn = an sin(αnz) + bn cos(αnz), (8.20)

where αn is a real number. The periodicity requires

Zn(z + k) = Zn(z) ⇒ αn = 2π
k
n, n ∈ N, (8.21)

where we restricted to positive frequencies. Let us move to the equation for R(ρ).
In the special case when αn = 0 the solution of the equation for R(ρ) is c1+c2 ln ρ.
From (8.19) we obtain solution for αn ̸= 0:

Rn(ρ) = AI0(αnρ) +BK0(αnρ), (8.22)
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(a) Near z-axis. (b) Zero of potential, from which could a singular-
ity arise in GR.

(c) Near z-axis. (d) At the z-axis.

Figure 8.1: Dependence of ϕ(ρ, z) on ρ for fixed values of z (a-b) and ρ (c-d).

Figure 8.2: Detail of potential ϕ crossing zero.
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where A,B are constant, I0 (A.6) and K0 (A.7) are modified Bessel functions.
We construct a general solution in terms of a sum of the fundamental solutions.
In view of the desired form of the sources, we choose our potential as

ψ(ρ, z) = ψ0(ρ) +
∞∑
n=1

ψn(ρ, z), (8.23)

where
ψ0(ρ) = − ln ρ

4π2 , ψn = cos (nz)
2π2 K0 (nρ) . (8.24)

As will be seen below, this corresponds to the correct form of the sources along
the axis, with the choice1 k = 2π; the factors before logarithm/cosines determine
the charge of individual points. The cosines in ψn produce mirror symmetry with
respect to the plane z = 0, the term ψ0 corresponds to the solution with αn = 0.
Plots of approximation of ψ (the first 26 terms) and its derivatives for chosen
values of ρ or z are shown in Figure 8.3.

8.2.1 Convergence
It is obvious that ψ0 and ψn diverge for ρ → 0. When we restrict on ρ ≥ δ > 0,
using (A.14) we can write⏐⏐⏐2π2ψn(ρ, z)

⏐⏐⏐ ≤ |K0(nρ)| ≤ K0(δ) exp [δ (1 − n)] ≡ cn, (8.25)

from which we get that ψn ⇒ 0, as cn → 0 in the limit n → ∞. Because the
sum ∑

n cn is convergent, we also get that the sum ∑
n ψn converges absolutely

uniformly. We also notice that derivative with respect to z keeps the sum con-
vergent because of the exponential suppression. We can also estimate the first
derivatives with respect to ρ as⏐⏐⏐⏐⏐2π2∂ψn

∂ρ

⏐⏐⏐⏐⏐ ≤ |nK1(nρ)| ≤ K1(δ)n exp [δ (1 − n)] , (8.26)

as well as the second derivative⏐⏐⏐⏐⏐2π2∂ψn
∂ρ

⏐⏐⏐⏐⏐ ≤
⏐⏐⏐n2K0(nρ) + n2K2(nρ)

⏐⏐⏐ ≤ n2cn +K2(δ)n2 exp [δ (1 − n)] , (8.27)

so the sums with first and second derivatives of ψn converge absolutely uniformly
for every z and every ρ ≤ δ, and we can interchange the order of sums and
derivatives/limits/integrals. For ρ ≫ 1 we can approximate the sum as

2
√

2π3/2∑
n

ψn ≈
∑
n

cos (nz) e
−nρ

√
nρ

= Li1/2 (eiz−ρ) + Li1/2 (e−iz−ρ)
√
ρ

, (8.28)

where Li is the polylogarithm function (A.25). We see that terms ψn are expo-
nentially decreasing for large ρ, and the main contribution in ψ is ψ0. This means
that the dependence of z will disappear. Thus the potential behaves as ECS in
the radial cylindrical infinity, with a constant linear density λ = (8π2)−1, where
the constant depends on the distance between neighbouring charges.

1For general k one obtains ψ0 = − 1
4π2 ln ρ, ψn = 1

2π2 cos (αnz)K0 (αnρ) .
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Let us move now close to the z-axis. We want to compute charge distribution
along the axis. We thus use the integral definition of charge within a cylinder
centred at the z-axis to obtain the linear density:

lim
ρ→0

4πQ =
∫
λ(z)dz = − lim

ρ→0

∮
S
ψ,in

idS. (8.29)

We rewrite the right-hand side (without the limit) and get

4πQ = −
∫∫

ψ,zρ
′ dφ′dρ′ −

∫∫
ψ,ρρ

′ dφ′dz′ = q1 + q2, (8.30)

where q1 is the first term and q2 the second one. The term q1 gives

q1 = 1
π

∞∑
n=1

∫ ρ

0
nρ′K0(nρ′) sin(nz)dρ′. (8.31)

The function K0 diverges as logarithm (A.11) for zero argument, but ρK0(nρ)
goes to zero for ρ → 0, so the integrand does not diverge near the axis. We see
that the first term in (8.30) vanishes in the limit ρ → 0. The second one gives

q2 =
∫ [

1
2π + 1

π

∞∑
n=1

nρK1(nρ) cos(nz)
]

dz. (8.32)

Since K1(x) diverges as 1/x (A.19) for x → 0, we finally get

lim
ρ→0

4πQ =
∫ [

1
2π + 1

π

∞∑
n=1

cos(nz)
]

dz. (8.33)

Using the relation (A.26) we get λ(z) = X2π(z). For general k we obtain

λ(z) = k

2πXk(z). (8.34)

So the charge of the individual sources is k(8π2)−1. Therefore, for the general
case of charges of magnitude Q located at a distance k apart, we conclude that
the solution must be multiplied by 8π2Q/k and the asymptotic linear density of
the source is then Q/k. We thus obtained a sum of distributional charge densities
of individual sources along the axis. The total charge density is thus

ϱ = k

2πXk(z)δ(x)δ(y) = k

4π2ρ
Xk(z)δ(ρ), (8.35)

where δ is the Dirac delta function. The advantage of the Bessel function expan-
sion consists in the fact that it is easy to see the vanishing of periodicity far away
from the axis and approach to the ECS solution. From the behaviour of ψ we can
see that the spacetime is O at radial cylindrical infinity, type D close to the axis
and type I far from the axis. It is simple now to construct the corresponding
solution of Einstein-Maxwell equations by simply plugging the resulting potential
into the general form of the Majumdar-Papapetrou metric. To our knowledge this
is the first example of a spacetime with a discrete translational symmetry and in
our future work we intend to study its properties further.

54



(a) Near z-axis. (b) Various fixed ρ.

(c) Derivative with respect to ρ near z-axis. (d) Derivative with respect to z for various fixed
ρ.

Figure 8.3: Approximation of ψ - the first 26 terms. One can nicely see that as
we move away from the axis the periodicity of the solution fades.
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Conclusion
We investigated the physical properties of a cylindrically symmetric Majumdar-
Papapetrou solution of Einstein-Maxwell equations (ECS) sourced by a non-
compact, extremally charged linear singularity forming the axis of the spacetime.
Based on the form of the metric, we studied geometry of the spacetime and its
algebraic classification. From singularities of metric and scalar invariants we dis-
covered that in addition to the axis singularity, the spacetime includes another
singularity of different physical properties, which divides the spacetime into two
causally separated regions. Since ECS is a solution of electro-vacuum equations
both singularities are the only source of the resulting electromagnetic field, which,
in turn, produces the gravitational field together with the two singularities. Our
goal was to establish their physical parameters — i.e., mass and charge densities
per unit length — and geometric characteristics.

We calculated motion of charged test particles moving in preferred directions
and compared it to the solution within the framework of classical mechanics.
Based on the behavior of radial electrogeodesics, we found that the singularities
are not covered by horizons and are thus naked in accordance with [3]. Next,
we dealt with static trajectories and gained insight into the specific charge of the
singularities. We then determined circular paths and regions where such motion
is possible. One interesting result is a range of circular orbit radii and conditions
on the spacetime parameters allowing the existence of two electrogeodesics of
the same radius but differing angular velocities in the same direction. We then
determined the classical limit of the circular velocities to again obtain information
about the specific charge of the singularities. We also calculated electrogeodesics
parallel to the z-axis. All solutions of electrogeodesics were summarized in tables
and schematic diagrams.

When determining the mass of the sources of ECS, we also proceeded from
the total energy of a region of spacetime containing the singularity. However,
there is generally no way of determining locally the energy of the gravitational
field in GR and we thus used several different definitions — Komar, Brown-York,
Landau-Lifschitz and C-energy formulae — and compared them including the
limit to the Newtonian case. Using several independent methods, we thus clarified
the meaning of the spacetime’s structure and parameters and gained intuition
about its physical interpretation. The results will broaden the knowledge of MP
spacetimes with non-compact sources, which have not been paid much attention
so far.

In Chapter 7 we constructed a solution involving an extremally charged line
and a positive cosmological constant (ECSΛ). We determined its algebraic class
and calculated its mass and charge. At the end we compared this solution to the
static ECS.

In the last chapter we investigated a classical system consisting of one-dimen-
sional grid of charges. We found the corresponding electrostatic potential and
summarized its properties. The solution can be used to construct an analogous
system in general relativity.
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Appendix
Error functions
Error function is defined as

erf(x) ≡ 2√
π

∫ x

0
exp

(
−t2

)
dt. (A.1)

The imaginary error function is defined as

erfi(x) ≡ −i erf (ix) = 2√
π

∫ x

0
exp

(
t2
)

dt. (A.2)

The function erf -1, resp. erfi -1, is the inverse function to erf, resp. erfi. Function
erf -1(x) is defined for x ∈ (−1, 1) and diverges for x → ±1. The function erfi -1(x)
is defined for x ∈ R and has limit

lim
x→±∞

erfi -1(x) = ±∞. (A.3)

Plots of the error functions and their inverses are shown in Figure A.1.

Lambert W function
Lambert W function (or product log) is defined via relation

x = W (x)eW (x). (A.4)

This equation defines W (x) uniquely only for x ≥ 0, for −e−1 < x < 0 there
always exist two real solutions: W0(x) and W−1(x), where W0(x) ≥ −1 and
W−1(x) ≤ −1. Function W0(x) is defined for x ∈ [−e−1,∞) and function W−1(x)
for x ∈ [−e−1, 0). Plot of both functions is shown in Figure A.2. The series of
expansion of W0(x) in infinity is

W0(x) ≈ ln x− ln ln x+O (1) , x ≫ 1. (A.5)

Modified Bessel functions
I0 is the modified Bessel function of the first kind, which is defined for x ∈ R as

I0 (x) ≡ 1
π

∫ π

0
exp (x cos θ) dθ. (A.6)

K0 is the modified Bessel function of the second kind, which reads

K0 (x) ≡
∫ ∞

0
exp (−x cosh t) dt, (A.7)

and is defined for x > 0. Plot of these functions is shown in Figure A.2. Both
functions are non-negative in their domains. Important limits of these functions
read

lim
x→∞

I0 (x) = ∞, lim
x→∞

K0 (x) = 0, (A.8)
lim
x→0

I0 (x) = 1, lim
x→0+

K0 (x) = ∞, (A.9)
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The series expansion for x ≪ 1 are

I0 (x) ≈ 1 + x2

4 +O
(
x4
)
, (A.10)

and for K0

K0 (x) ≈ ln 2 − ln x− γe + x2

4 (1 − γe + ln 2 − ln x) +O
(
x3
)
, (A.11)

where γe ≈ 0.5772 is the Euler-Mascheroni constant, ln 2 > γe. For x ≫ 1 we get
the following series expansion:

I0 (x) ≈
√

2
π
ex
(

1
2
√
x

+ 1
16

√
x3

)
+O

( 1
x5/2

)
, (A.12)

K0 (x) ≈
√

2πe−x
(

1
2
√
x

− 1
16

√
x3

)
+O

( 1
x5/2

)
. (A.13)

Following bound [14] holds for Kν :

Kν(x)
Kν(y) > ey−x, 0 < x < y, (A.14)

where Kν is defined as

Kν (x) ≡
∫ ∞

0
exp (−x cosh t) cosh (νt) dt. (A.15)

The Bessel functions I1, K1 can be expressed in terms of derivatives of I0 and K0:

dI0

dx = I1 (x) , dK0

dx = −K1 (x) . (A.16)

Their limit behaviour is

lim
x→∞

I1 (x) = ∞, lim
x→∞

K1 (x) = 0, (A.17)
lim
x→0

I1 (x) = 0, lim
x→0+

K1 (x) = ∞. (A.18)

The series expansion for x ≪ 1 are

I1 (x) ≈ x

2 + x3

16 +O
(
x5
)
, K1 (x) ≈ 1

x
+ x

4

(
2γe − 1 + 2 ln x2

)
+O

(
x3
)
. (A.19)

For x ≫ 1 we get the series expansion

I1 (x) ≈ e2x
√

2π

(
1√
x

+ 3
8
√
x3

)
+O

( 1
x5/2

)
, (A.20)

K1 (x) ≈
√
πe−x

(
1

2
√
x

+ 3
8
√

2x3

)
+O

( 1
x5/2

)
. (A.21)
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(a) (b)

(c) (d)

Figure A.1: Plots of the (a) error function, (b) imaginary error function, (c)
inverse error function, (d) inverse imaginary error function.

(a) (b)

(c) (d)

Figure A.2: Plots of the (a) product log functions, (b) Bessel functions, (c) gamma
function, (d) harmonic number.
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Other special functions
The well-known Euler gamma function Γ is defined as

Γ(z) =
∫ ∞

0
xz−1e−xdx, (A.22)

where the definition for positive integers reduce to Γ(z) = (z−1)!. The harmonic
number is defined as

H(z) = γe + ψ(z + 1), ψ(z) = 1
Γ(z)

dΓ(z)
dz , (A.23)

where ψ(z) is the digamma function. For positive integers the harmonic number
can be expressed as

H(n) =
n∑
k=1

1
k
, n ∈ N. (A.24)

Plot of harmonic number and gamma function is shown in Figure A.2. The
polylogarithm function Lin is defined as

Lin(z) ≡
∞∑
k=1

zk

kn
, (A.25)

and has a branch cut discontinuity in the complex z plane running from 1 to ∞.

Dirac comb
Dirac comb is a periodic tempered distribution defined as

XT (t) ≡
∑
n∈Z

δ(t− nT ) = 1
T

∑
n∈Z

e2πint/T = 1
T

+ 2
T

∞∑
n=1

cos
(2πnt

T

)
. (A.26)

In the second step we used that X is periodic and wrote it as Fourier series and
in the last step we rewrote it in terms of real functions. The distribution XT (t)
behaves as the Dirac delta function δ at every t = nT, n ∈ Z.
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