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Abstract: In Newtonian physics, it is possible to establish static equilibrium in a
system, which consists of extremal sources of gravitational and electromagnetic
field. Surprisingly, this situation can occur in general relativity for black holes,
too. This work examines a special case involving an infinitely long, straight,
extremally charged string, studies its geometry, electrogeodesics, properties of
the source and compares the solution to Newtonian physics. We also investigate
an analogous situation in a dynamic spacetime with cosmological constant, and
we compare it to the static version. Finally, we investigate a periodical solution
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Introduction

One of important analytical solutions of Einstein-Maxwell equations is the Ma-
jumdar-Papapetrou solution [I], [2], which represents an arbitrary finite set of
stationary, extremally charged black holes in equilibrium. The spacetime is de-
scribed by a single function, which is a solution of Laplace’s equation. Hartle
and Hawking [3] assumed a flat spatial infinity and showed that any solution to
the Laplace equation with non point-like sources must contain a naked singular-
ity. There are, however, interesting classes of solutions of different asymptotics.
In this thesis we assume a line source that extends to infinity along a straight
line and we thus do not have a flat spatial infinity. Our goal is to interpret this
spacetime and its parameters.

We first investigate an analogous solution in classical physics. Then we calcu-
late electrogeodesic motion of charged test particles and trajectories of photons
and look for horizons. We also find the properties of the singularities and at the
end we investigate the Newtonian limit.

Kastor and Traschen [4] found that the static Majumdar-Papapetrou solution
with a discrete number of black holes can be extended to a non-static case with
a positive cosmological constant. We generalize the extremal charged line, too,
investigate its geometry and compare it to the static case. Finally, we study a
spacetime constructed of an infinite number of extremal point sources. We look
at its geometry and compare it to the line source.

Conventions

We use formalism of general relativity, Einstein summation convention is used.
Greek indices have values from 0 to 3 and can be also labelled by coordinates.
The spacetime metric tensor is denoted as g,, and has signature (—,+,+, +).
Tetrad components are written using round brackets, e.g. A(). Symmetrization
of two or more indices is denoted with round brackets and antisymmetrization
with square brackets:

1 1
B(W) = ) (B/W + Bw) ) B[W] = ) (B;w - Bvu) . (1)
Partial derivatives are denoted by 0 or a comma,
of
— =0.f= fa 2
L o=y 2)

In classical physics the dot denotes derivative with respect to time ¢, in GR it
denotes derivative with respect to affine parameter 7. Covariant derivative is
denoted with semicolon and is chosen so that it annihilates the metric and is
torsion-free. Christoffel symbols I' are defined as

1
F/ﬂ/)\ - 5 (g/ﬂ/,)\ + Iy — gVA,/L) . (3>

The Riemann tensor is defined as the commutator of the second covariant deriva-

tives of a vector field:
Uunz)\ - Uu;/\u = Rﬂa)\yva7 (4)
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or, explicitly

1 « o « o
R;wn)\ =3 (g,u)\,w«c + gun,u)\ - g;m,zz/\ - gu)\,;m) + Gao (F M/\F ve I ,mF u)\) : (5)

2
Ricci tensor and Ricei scalar are defined
Ric,p = R“auﬁ, R = Ric. (6)

The Weyl tensor is defined as

. : . :
CH)\;U/ = Rn)\;u/ + 5 (chkugtw + Rlcnug)\u - RZC)\Vgnu - chﬁug)\u) + (7)

R
+ E (g/wgku - gnugk#) .

Einstein equations with a cosmological constant A are of the form
, R
Ric,,, — Egu,, + Ag = 87T, (8)

We use stress energy T' tensor of electromagnetic field F' constructed from four-
potential A

F=dA& F,, =A,,— A, 9)
Maxwell equations with source current J* for electromagnetic tensor read
F‘ul;/y:47TJ“,FHV;)\+F)\#;,,+FV)\;H:0. (10)
Finally, stress energy tensor of electromagnetic field is defined as
17 1 14 f v
™= (F“ﬁF b 4gw,> F = F,F*™. (11)

Hodge dual is denoted with * and, for a totally antisymmetric form o of order p,
it is defined as

(* 0-)61---ﬂd—p = 70_0[1."apeal---apﬂl---ﬁd—p‘ (12>

Congruences

To investigate (electro-)geodesics, we calculate the properties of congruences. For
a timelike congruence with a tangent unit vector field u* (it does not need to be
geodesic) we define

@/“, = Uup) T autyy, Quy = U] + AUy, h;u/ = G + UpUy, (13)
1 1 1
O-'u,l/ = GUV - gghuua @ = 657 QQ = §QMVQMV7 0-2 = 50-,‘“’0-“”’ (14>

where © is expansion scalar, o, is shear tensor, ©,, is expansion tensor, €2, is
vorticity tensor and h,, is metric on three-surfaces perpendicular to v* and with
a the acceleration a*. For null geodesic congruence of velocity £, using arbitrary
null field {# such as k*k, = "], = 0, k"], = —1, we can define these quantities in
similar way:

1
har = G+ by + Lk, 0, = Oy = 5Ol (15)
Ou = he 0 ks, Quy = B 1 o, (16)

Here hy,,, is metric on two-surfaces perpendicular to k* and I*. Quantities Q?, 0%, ©
are defined in the same way as in timelike case.
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1. Charged string in classical
mechanics

Our classical system consists of static infinite rod, which has constant linear
mass and charge densities. It is located along the z-axis. To find the electric and
gravitational potentials of the rod, we have to solve Poisson’s equation (outside
of the source)

Par+ oy + P22 =0, (1.1)

for both potentials. Assuming cylindrical symmetry, we obtain solutions
=pl = -l 1.2
Ya M 1n P12 , OFE n P22 , ( )

where constant p is mass per unit length, A is charge per unit length, ¢g is
gravitational potential and g is electrostatic potential. The constants P, P
determine the surfaces of vanishing potentials. However, we can rewrite P, using
Py, so a new constant term appears in one of the potentials, which will not affect
Euler-Lagrange equations governing test-particle motion. Thus we take without
loss of generality P, = P, = P. From this point, we will use dimensionless
coordinates, with z;/P — x;, and we will work in the CGS unit system. Before
writing the Lagrangian, we introduce cylindrical coordinates

p= \/x2+y2,¢zarctan% (1.3)

Then the gravitational potential ¢ and electrostatic potential ¢ read

e =2ulnp, op = —2XInp. (1.4)

Now it can be easily seen that A is indeed the linear charge density:
Q . . 2w rh
Y- j{ EindS = — ]f ppnidS = / / o\dgdz = dnhh.  (1.5)
€0 S S 0 0

The classical Lagrangian per unit mass and divided by P? for test massive charged
particle with charge-to-mass ratio ¢ is

L= ; (8 +P°0” + 2%) = (apE + v0). (1.6)

The Lagrangian does not depend on ¢, z and does not explicitly depend on ¢, so
we have the following integrals of motion:

_ OL 1 oy 939 .9 _
E = zi:aqi%—2(ﬂ + 070 +Z)+SOG+QS0E— (L.7)
1 :
= 3 (,02 +p?? + 22) +2A1In p,
oL -
L, = % = p’9, (1.8)
oc .
P = 5 Z, (1.9)



where we defined

A=p— g (1.10)
Thanks to the integrals of motion, the equation for p reads
P9t — pp — 2A =0, (1.11)

and it is time derivative of (|1.7]) if we put in definitions of integrals of motion.

1.1 Static solution

For simplicity we search for static solutions first. By setting coordinate derivatives
to zero, we obtain the condition

which can be seen from eq. - . The first condition is derived from
and is restriction for charge-to-mass ratio ¢ of the test particle. We see
that if the rod is charged extremally, i.e., u = A, the test particle has to be
charged extremally, too. We use the term ‘extremal’ due to the fact that a
Reissner-Nordstrom black hole with () = M has a degenerate, extremal horizon
and adding any further charge will produce a naked singularity.

1.2 Cylindrical radial motion

In case of cylindrical radial motion, where z and ¢ are constant, we obtain
1.,
E:i[p +4Anp|, L. = p. =0, (1.13)
where the equation for p can be rewritten as
PP =2[E—2AInp|, (1.14)

where the right-hand side can be understood as effective potential. The motion
then is possible if and only if the right side is non-negative. If the motion is not
free, i.e., A does not vanish, there exists a turning point, which can be found by
solving p = O:
E

Pip = €XP o (1.15)
It is not possible to be static there, since radial acceleration for non-free solution
reads

A;Ao;»p':—Q:l#o. (1.16)

Thus if A < 0, the radial acceleration is greater than zero and forces the particle
to escape to infinity. Rewriting the radius as p(t) = py, exp [R(t)], we have

pr,exp [R(t)] R*(t) = —4AR(t) = AR(t) < 0, (1.17)

so the motion for A < 0 is possible only above the turning radius, as R > 0 and
thus p > py. The same argument is used for A > 0, where the acceleration is
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negative and forces the particle to fall upon the charged string, and from previous
equation we see that motion is possible only for R < 0. From the expressions
of radial velocity and acceleration we see that velocity increases when particle
moves from charged string, but the acceleration decreases. So there exist three

solutions, which are summarized in [Table 1.1

E A p Description of motion | End of motion (p)
EecR|A<O0|p>py | Away from rod 00
E>0]A=0]|p>0 | Free motion 0 or oo

EeR| A>0 /| p<py | Vicinity of rod 0

Table 1.1: Regions, where classical cylindrical radial motion is possible.

At the end we present analytical solutions in each region, using parametriza-
tion p(t) = py, exp R(t) for non-free solutions:

(T, o
— {erf_l (1 — \/52(::?”)]2, A >0,

where erf(x) is the error function (A.1)) and erfi(x) is the imaginary error function
(A.2]). We can check the consistency of non-free solutions.
First let us check region p < py,. Argument of erf ;(z) is equal to minus one

for
ti=1r — 1\ —pw, lim p(t) =0 1.18
i f tpvtl i ( ) ) ( . )

which would correspond to particle emitted by charged string. Argument of
erf_y () is one for ¢t = t;, for which lim;_;, p(t) = 0 and corresponds to final time,
at which particle ends in charged string. In the region p > py, the time ¢ — o0
corresponds to p — 0o and t = ty corresponds to p = py,.

R(t) =

1.3 Circular orbit

For a circular orbit, where p and z are constant, we obtain the following equations
of motion

24 = p*¢? (1.19)
L. = p’¢,p.=0, (1.20)
E = ;[p2¢32+4,41np}. (1.21)

Since L, is constant, it is clear that é has to be time-independent, too. We
denote w = ¢. Then we express w and substitute in the first equation, from
which we obtain dependence of radius on particle parameters. The solution can

be summarized as )

L

where the angular velocity reads

L2 .A2 A
2 z
W™= —r —472 =2 2,A>O. (123)
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Figure 1.1: Cylindrical radial motion - dependence of cylindrical radius on time
for E=0.3,q = 0.5, u = 0.25, X =1 for various starting radii.



Figure 1.2: Cylindrical radial motion - dependence of cylindrical radius on time
for E=0.3,9q = 0.5, A = 0.25, 4 = 1 for various starting radii.



For a neutral particle, i.e., ¢ = 0, we get A = p and circular motion is possible
if 1 > 0. The situation A = 0 corresponds to a static position in (1.12]). We see
from ([1.19)) that circular motion is not possible for p < ¢}, i.e. A < 0.

1.4 Axial motion
For pure motion along the z-axis (p and ¢ are constant), we obtain equations
A=0,L,=0,p, = 2. (1.24)

The solution is )

z2(t) =pt+ 20, L, =0, A=0,FE = %, (1.25)
and does not depend on p or ¢. We see that only a particle, which is extremally
charged, can move along the z-axis, and it moves as a free particle.
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2. Geometry of ECS

In the previous section we constructed a massive charged infinite string in classical
physics. If we put A = u, we can translate this classical solution to general
relativity, resulting in the Majumdar-Papapetrou solution interpreted by Hartle
and Hawking in [3]. The electrostatic potential, denoted U, will enter the metric
and four-potential in the following way

ds* = —U2dt* + U?d7 - dZ, U = U (z,9), (2.1)

and we assume cylindrical symmetry of function U. The electromagnetic four-

potential is defined as

dt
A=—. 2.2
- (22)
Given these tensors, we can proceed to compute Maxwell and Einstein equations.

We get only one independent equation

K 2 2
Upe +Upy=0= Ulryy) =14 T 1Y (2.3)

2 pz
where K, P are constants. Constant P determines where U is zero and plays only
the role of a dimensional factor, and K is the parameter we wish to interpret
and which will play the main role in our interpretation of charge and mass of
the field source. The constant 1 is chosen in such a way that the limit K — 0
represents a formal limit to Minkowski space. As in the previous section, we
will work in dimensionless coordinates z# — z#/P and use dimensionless metric
element ds?/P? — ds®. So the function U can be written

K
Ulx,y) =1+ b In (xZ + y2) ) (2.4)

and we got rid of the parameter P. In Cartesian coordinates we have a coordinate
basis
Ew) = O, Ex) = Oz, Ey = 8y, Ew) = 0., (25)

and choose a normalized tetrad
Ew &) = Ey) = E)

/U2 ) y /U2 ) /U2 9
where U is expressed in x,y. Since the metric is cylindrically symmetric, it is
useful to transform to cylindrical coordinates

p=/x2+y? o= arctg% (2.7)

After the transformation we find

e) = VUEw), ) = (2.6)

U(p) =1+ Klnp, (2.8)
dt?
ds” = =5 +U? (dp? + 046 + d2?) (2.9)
U , U;
F=S5dt Adp, F = F " = =222, (2.10)
U2
T — 87.(.5‘6 diag (17 _Ut, PU, U4) TV =0, (2.11)
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In the cylindrical coordinate system we have a coordinate basis
Ew) = Oy, Ep = Gp, Eg) = 8¢, Ep) = 0, (2.12)
and choose a tetrad

V2 Ep) E) E()
o) = UQE(t)ae(p)Z\/%ﬁw):p\/mae(z):ﬁ? (2.13)

where U is expressed in terms of p. The non-trivial independent components of
Riemann tensor are

R K (143K + Klnp) Rtt:_K(l—i—K—i-Klnp) (2.14)
e P2(1+Knp)* o0 (1+Klnp)*
2 K?
R — KszZ - — 3
dpPp tzt p2(1+Klnp)4
K(1+K+KI
R.p.p = ( np),Rz¢z¢:—K(1+K+KlnP)a

2
and the tetrad components are

K (143K + Klnp)

Bpyopw = At Klnp) (2.15)

K2
Ry = —Rowee = 21 Klnp)"
K(1+ K+ Klnp)
Ry = —Rewen = —Ree) e =

P2 (14 Klnp)'
We notice that all tetrad components of Riemann vanish for large p:

lim. Ray(s) () = 0. (2.16)

p—00

If we compute Kretschmann invariant K = RM,,,.Q\R“”””A from Riemann tensor R,
we obtain

8K2[2K2In” p+ TK? + 2(3K + 2)K Inp + 6K + 2|
B pH(Knp+1)° '
From Kretschmann invariant £ and Maxwell invariant F we can deduce two

singularities. The inner singularity is located at radius p; and the outer one at
radius p,, where

(2.17)

pi =0, p, = e VK, (2.18)
It can be seen that the Kretschmann invariant also vanishes at large radii
lim, R R = 0. (2.19)

We also introduce two additional significant radii, which will be explained in the
subsequent chapters

Pph = 6_2_1/K7 Pec = 6_1_1/K' (220)
The Ricci tensor Ric,, and Ricci curvature are given by formulae
Ric,, = UU > diag (U™, -1,% 1), Ric,} = 0. (2.21)

The non-trivial component of Levi-Civita pseudotensor density is

€tpp> =/ — det g, = pU?. (2.22)
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2.1 Algebraic classification

To determine the algebraic type of the spacetime, it is useful to use the Newman-
Penrose formalism [5]. We set up a null tetrad consisting of two real null vector
fields k*,l* and two complex null vector fields m*,m*, where m* is complex
conjugate of m*. They are normalized as follows

kM = -1, m"m, =1, (2.23)
with all other scalar products vanishing. We choose a null tetrad as
1 1
— K H — Y 1
NG (efy —ef) " = 7 (et ) (2.24)

1 . _ L.
m' = ﬁ(leﬁw‘e?z>)’m“:‘ﬁ(le7¢>+ )

Using Weyl tensor Cyp,,, we can calculate Weyl scalars [5]

U
1/}0 = Caguykamﬁk“ml’: 2p537 (225)
Y1 = Coapuk®lPk'm” =0, (2.26)
. 6pU% + U (U, —2pU ,,)
— a, v o__ s P PP
Yy = Copuk®m’mtl” = £ TE , (2.27)
V3 = Copul®k’1"m” =0, (2.28)
U
Yy = Copul®mPlFm’ = ng. (2.29)
Or explicitly
K K1+2K+ K1
o =1y = gy = BUF2K+ Kinp) (2.30)

202 (14 K Inp)*’ 202 (1 + K Inp)*

We can see that all Weyl scalars vanish in limit p — oo, thus ECS will be
conformally flat for p > 1. Indeed, if we transform to a new time coordinate n

n(t,p)=U?(p)t = dn=U>dt+ 20U ,dp, (2.31)
the metric transforms as
2 2 2 U7p 772U3> 2 21,2 2
ds* =U* |—dn* — 277ﬁdpd77 +(1-— e dp® + p*de” + dz7| . (2.32)

The non-diagonal term vanishes for large p and the metric becomes
ds® = U? [=dp® + dp® + p*de® + d2*| , p > 1, (2.33)

which is a conformally flat metric. The metric cannot be asymptotically flat,
as along the z-direction the metric does not change. We can easily see that the
hypersurface where p is constant (but p # 0, p,) is flat.

To find out the algebraic type we search for principal null directions of the
gravitational field. If £ is a principal null direction, then it satisfies the equation
[5]

ko Capwiskgktk” = 0. (2.34)

13



It is known that this the requirement is equivalent to condition 1)y = 0. However,
our chosen k* does not satisfy this equation. By applying a transformation to
the tetrad [5], which does not change the normalization conditions ([2.23)),

K = K+ Zmt + Zm* + ZZ1, (2.35)
o= " =mt 4 ZIP = (m), Z € C, (2.36)

we can find such Z that the new vector k" will be the principal null direction.
The last ingredient is a transformation of vy:

Y = by — 421 + 6220y — 473y + ZM)y. (2.37)

Thus solving equation ¢ = 0 for Z will yield up to four different principal null
directions. In our case the equation reads

142072+ 74— 0,a= 22 (2.38)

by’

where we divided by ¥y = 14, which is always non-zero for finite p > 0. General
solution is

Lo = i\/—Oé —Vat—1,Z34= j:\/—oz +Vva?—1. (2.39)

In general there are four complex roots, so there are four principal null directions
and thus the ECS spacetime is type I. The roots can be degenerate, if one of
following condition is satisfied:

> —=1=0V-a+vaz-1=0. (2.40)
The second one has no solution, the first one yields two different radii

3:F1:F2K>

LEESY (2.41)

PD1,2 = €XP <—

where the spacetime is type D. As we have shown above, the spacetime is type 0
in cylindrical radial infinity, which can also be seen from Weyl scalars, which
vanish in the limit p — co. However, these three-surfaces have zero measure in
the spacetime. The summary is in table (2.1)).

Set Type
p = pp1 D
P = Pp2 D
p = 00 0
almost everywhere | I

Table 2.1: Algebraic classification of the spacetime.
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2.2 Symmetries

In cylindrical coordinates the metric is static and it is translationally invariant in
t, z and ¢. These symmetries are given by Killing vectors £, ), &(2),

5( = E?) 5( = Eu 5 = Eu (2.42)
which satisfy Killing equation
g,u;u + gu;u = 0. (243)

If we prescribe the most general form of &, where all components are general
functions of all coordinates, we find that there are no more independent non-
trivial Killing vectors for K # 0.

2.3 Proper length, surface and volume

2.3.1 Proper lengths

Let us investigate, how proper length of some curves changes with p. Since the
metric coefficients depend only on p, some expressions are straightforward. The
proper lengths are obtained by integrating the differential spacetime interval. Let
us begin with the proper circumference of circle with constant p, which is

dly? = p*U? (p) d¢* = l4(p) = 27p |1 + KInp]|. (2.44)
Similarly, proper length of coordinate segment (0, h) parallel to the z-axis is
dl,> = U? (p)dz* = I.(p) = h|1+ Klnp)|. (2.45)

Length of a radial cylindrical coordinate segment specified by the coordinate
interval (0, p), can be integrated from

p
dl,> = U? (p)dp* = L,(p) = /0 11+ Klnp'|dp. (2.46)

To compute the integral, we need to split the integration into cases when p < p,
and p > p,. The integration is also affected by the sign of K. As a result we

obtain
L(p) = —p(1— K+ Klnp)sgn K, 0<p< po,
T (1= K + Klnp) + 2p,) sen K, P> Po-

The plot summarises results for lengths. We can see that radial proper
length [, increases monotonically and has a saddle point at the outer singularity.
The proper circumference I of circle increases for 0 < p < p,, at p = p. = e 17VK
it has a maximum and then it drops to zero at outer singularity and finally rises
above outer singularity. We can calculate the external curvature of a circle with
p, z, and t constant, and located between singularities:

k=1s", 1 = sush,s”, (2.47)
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where [, = 5,5, is metric on the line and s* = eé‘ ») is a unit vector normal to
the curve in S. We get

p(l1+ K+ Klnp)

(1+Klnp)\/(1+Klnp)27

which becomes zero for p = p.. Thus we can interpret the circumference of circle
p = p. as the straightest circular line. Circles with of a smaller coordinate radius
bend towards the inner singularity, whereas circles with radius p, > p > p. or
p > p, bend towards the outer singularity.

We see that [, diverges at inner singularity, whereas [4 and [, go to zero there.
This suggest that the inner singularity is a spatially one-dimensional axis, as
expected from construction from classical physics. One would expect the same
behaviour for outer singularity, but we see that the proper length [, goes to zero
there. This suggests that the singularity is spatially point-like, which is also seen
the from metric, if we fix time and put p = p,.

At the end of the current subsection we summarise results in [Figure 2.1}, where
we plot results in terms of p/p,. The shape of curves is the same for any K # 0.

k=

(2.48)

Figure 2.1: Proper length of various curves for K = =2, h = 1.

2.3.2 Proper surface

Another insight into geometry of ECS can be gained by investigating the geomet-
rically privileged surfaces. ECS offers us two such surfaces.

Proper surface of cylinder base, where 0 < p/ < p,0 < ¢/ < 27 and t, z are
constant, is

2 rp p
o :/0 /0 VIpeGesdp' e’ = /0 L () Lo (p) dp. (2.49)

After substitution for [,, [, and integrating over ¢ we get

Py 417 Py \2 /
SB:27T/ P (1 + Knp)tdp :27r/ P 1+ Knp)dy. (2.50)
0 0

After some algebra we obtain

SB:gpQ 22K + K? — 2K (K — 2)In p+ 2K*1In’ p] . (2.51)
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Proper surface of a cylindrical shell 0 < 2z < h,0 < ¢ < 27 and ¢, p constant is

27 rh
Ss= [ [ VEgeadzdd = L. (p) Lo (o). (2.52)
The computation is simple, as integration reduces to multiplication and we get
Sg = 2rhp (14 K1np)>. (2.53)

We see that the proper surface of shell Sg goes to zero at both singularities, which
indicates that the surface is no longer two-dimensional here. The same holds for
cylinder base Sp, as it drops to zero at inner singularity and has a saddle point

at outer singularity. The plot of functions is in [Figure 2.2

2.3.3 Proper volume

Finally we compute proper volume of static cylinder of coordinate height h

T AN d r / / / /
VCZ/O /o /0 VIp9so9:2dp o dz :/0 b () 1o (0) L (p) dp'. (2.54)

After substituting proper lengths, we get

Ve = 21h /p (1 + Knp)ody. (2.55)
0

Again we need to distinguish, if p is under outer singularity. Then we obtain

Vo —p? <4U3 — 6pU%U , + 6p°UU? — 3p3U§’)) sgn K, 0<p < po,
Th [BK3p2 + p? (4U° — 6pUU , + 6p°UU? — 3p°U3 )| sen K, P> po

Since the formula is quite large, we do not write it using explicit form of func-
tion U. The plot of proper volume is in (2.2)).

SV
60
50}
40f
Sg
30} s
20f11° 4
| \
_____ Po
\
10y N
N
1 > 1 1 /
0.0 0.5 25 30 PP

Figure 2.2: Proper surface of cylinder base and shell and proper volume of cylinder
for K =—-2,h =1.
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3. Mass, energy and charge of
ECS

3.1 Introduction

In this section we focus on mass (energy) and charge enclosed in static cylinder.
However, there is generally no way of determining locally the energy of the grav-
itational field in general relativity and we thus use several different definitions
and compare them. The advantage of ECS is that it is static and is expressed
in coordinates, where metric is diagonal and depends only on one coordinate.
However, the main disadvantage is that ECS is not asymptomatically flat, so for
example we cannot use definition of ADM mass. We thus use several different
formulae and compare mass (energy) enclosed in coordinate cylinder. Since ECS
was constructed from classic string, the linear charge and mass density of which
are equal, we expect this behaviour if the formal limit K — 0 is applied. At the
end of this section we also compute charge enclosed in cylinder, which is defined
in straightforward way, based on the flux of the field through the surface of the
cylinder.

In the integral definitions ¥ means three-volume with two-boundary S = 9%,
which encloses Y. The vector n* is future oriented timelike normal to X, vector
r# is spatial vector from ¥ and it is normal to S, both normals are of unit length.
In the following sections we choose ¥ in terms of integration variables p/, 2/, ¢’ as

S(p) ={t=0,2"€[0,h],p €[0,0],¢ €0, 2n]}, (3.1)
and thus S is
S(p) = Selp,0)USp(p, h)USs(p), (3.2)
Se(p,z) = {t=0,p€[0,p],2" =2,¢ €[0,27]}, (3.3)
Ss(p) = {t=0,p'=p,2 €[0,h],¢ €]0,2n]}. (3.4)

Since the spacetime is static and cylindrically symmetric, tensors depend only on
p. Integral over the two bases of the cylinder either vanishes identically or the
two contributions cancel each other. Thus integration over S is reduced only to
integration on cylinder shell Sg. Corresponding volume and surface elements are

dY = pVUSdp'd¢’ds’, dSs = pUd¢'d7’. (3.5)
Future-oriented normal n* to ¥ and spatial outer normal r# to Sg read
nt =el'\ r* =el *#(:ﬁe“ + e”) (3.6)
" T T g P T W) ‘

The induced metric on ¥ denoted h,, and metric on Sg denoted o0, are defined
as
hyw = G + My, O = iy — T (3.7)

It can be seen that the metric h,, on X is obtained by putting d¢ = 0 and the
metric 0, on surface Sg is obtained by putting dp = dt = 0.
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3.2 C-energy

By an appropriate coordinate transformation in ¢, p the cylindrically symmetric
metric can always be transformed to have the form

ds® = 7 (=df* + dR?) + e*'d2” + o’e ' dg?, (3.8)

where R is radial coordinate, 1, v, a are functions of ¢, R. The coordinates t, ¢, z
are denoted the same way as in our metric since they are of the desired form
with the same meaning and we only need to find a transformation for the radial
coordinate. In such new coordinates then the C-energy enclosed in cylinder of
coordinate radius R and coordinate height h, is defined as [§]

4B (1, R)_h{ )~ Iny/(ar)? — (an)?] . (3.9)

The C-energy is a potential for flux vector P*, which has in coordinates t, R
components

292y 20=27 O
0o_¢ 0Fc ¢ pR_ _ acp¢ P* =0. (3.10)
2rha OR 2rha Ot '

and obeys covariant conservation law

Pro=0= /EP“n#dE —0. (3.11)

To compute C-energy for ECS spacetime, we need to find new coordinate R,
giving the metric the desired form. We apply transformation

— =U(p) = R(p) = [pU* (p) =2U, (p) * (U (p) = pU, (p)] . (3.12)

From the derivative of R we see that it is always non-negative and becomes zero
for p = p,. Thus it is possible to construct a continuous inverse, i.e. function
p(R) and which will be monotonic. The metric then takes form

ds> =U"?(p(R)) (—dt2 + dRQ) +U? (p(R))dz*+ p* (R)U? (p(R)) d¢?, (3.13)

where p (R) is the inverse of R (p), which we are not able to express in a closed
form. Now the metric has desired form, we can compare it to (3.8) and determine
coefficients 7, 1, a

In U?
5

T U U =t U= =y =0,0% = pU ) = (3.14)

Once we know the required functions, we can evaluate the expression for C-energy:

h apl’
e (1) = g [ (R) + 20 (B U G (R) T, ()] 5] 35)
Instead of expressing the result in terms of R, we can go back to p to obtain
h. [U+2pU, ho [14+2K+ Klnp]®
E =—In|——=* ——1In 3.16
clp)=—3 [ U } 8 l 1+ Klnp ] (3.16)
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For small K we get

K 1
Eo(p) ~h —2+2(1+lnp)K2+O(K3>]. (3.17)
The function is plotted in There are two singularities: one is at outer
singularity and the second is on photon orbit. Limit behaviour:

lim £ =0, lim F, = lim E = —o00, lim F, =0. 1
lim Ec (p) =0, lim Ec (p) = oo, lim Ec (p) = —o0, lim B¢ (p) =0. (3.18)
The C-energy diverges on photon radius. However, we know that there is no
singularity on photon radius and thus the C-energy diverges there because of

coordinate singularity. Therefore it is useful to redefine C-energy so as to make
the new C-energy &¢ finite there [§]:

E K(1+K+Kl
so=" {1 — exp <—80)] _ KU+ K+ I;p). (3.19)
8 h 2(1+ Klnp)

The regularized C-energy &¢ has same signs as E¢, but it has different shape. It
is positive for 0 < p < p. and diverges at outer singularity. As we approach the
two singularities or radial infinity the C-energy behaves as follows:

lim ¢ (p) =0, lim &¢ (p) = —o0, lim &x (p) = 0. (3.20)
p—0 pP—Po p—00
&h
3¢ -
2r &¢ T====s Pph
1:- ——= Ec = = po
A
T o PN P —
- \\1.0/.___._-1-. —20——25 3.0
-1 - : Y
Eo
Fo
-2F i
[
[ 1
~3f i
F
Fo
—4L

Figure 3.1: C-energy for |K| = 2.
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3.3 Landau-Lifshitz

Landau and Lifshitz derived the conservation law [9]

[16m (—g) (T" + tL1)], = 0, (3.21)
leading to a globally conserved quantity; ¢ is metric determinant, ¢/ is stress-
energy-momentum pseudotensor of gravitational field, which is defined as

167ty =g * [g (g“”gaﬂ — g“o‘g”ﬂ)} s 2R*™ + (2A — R) g""] . (3.22)

It is possible to find a super-potential A***, which can be expressed via another
potential H*** to yield a compact form:

167 (_g) (T;u/ + tl[AE,) — hMV)\7)\’ hMV/\ = HMV/\/-;,R’ (323)
HM™ = (—g) (gwg/\n _ gu/\gw) . (3.24)

It is thus not necessary to compute t7, because the calculation only requires
knowledge of H****. Then the total four-momentum of gravitational field and
matter can be expressed as

1
b= _ 10 oy - HOAR
P _/E( g) (T + ) d3. 16”{5}1 LadS. (3.25)

Since t}'; is not a tensor but a pseudotensor (or sometimes called ‘complex’), the
equation (3.21)) requires some gauge, and we thus compute H**** in Cartesian
coordinates. From the definition of total four-momentum we can see that for ECS
only P° will be non-trivial since

0N g gz‘,\goli - Hiomﬁ _ (g giAgOO) = 0. (3.26)
To compute the total energy of system we calculate the integrand in Cartesian
coordinates ([2.1)), at the end we transform back to cylindrical coordinates. Since

we integrate over ¢ and z, but integral depends only on p, the integration reduces
only to multiplication. The result for our choicdl|of S (3.2) is

h
My, = P* = 2 |K]san (p, — p) (1+ Knp)* (3.27)

We see that My diverges at inner singularity and at infinity, and it changes sign
at outer singularity and the behaviour is the same independently of the sign of
K. As we approach the two singularities or radial infinity the M, behaves as
follows

lim MLL = 00, lim MLL = 0, lim MLL = —OQ. (328)
p—0t P—*Po p—ro0

1 —
For r& = e?z) we get

H0%% = (=g) (9"°9™ — g"%¢") . = (—9) {(9#0933)73 B (9#2900)’0} -
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3.4 Brown-York mass

Definition of energy in volume X, which has boundary S = 0%, reads [10]

My = 72 Gy (EN + ) €1,dS, (3.29)

where the quantities used in the calculation are defined as follows

kb = 0000Tap, k= kopo®” 87E =k, (3.30)
167Vhj* = o"npya, 167pas = \/E(kag —k hap) - (3.31)

Here h,, and o,, are metric tensors of . Tensor field k,, is extrinsic cur-
vature, p,, is conjugate momentum to hy,, k is extrinsic curvature scalar. The
definition of M relies on £, which is surface density of energy, and j* which is
surface density of momentum on S. It is clear that jﬂg(ﬁ) = 0, since &3y has
only the zero-th component non-vanishing and j° = 0 by definition. Thus we
do not need to compute conjugate momentum, as it will not contribute in the
calculation. Therefore we integrate only

1
_ v _ af v
My = ]gé’nl,ﬁ(t)ds =% fsa TagMw&(1dS. (3.32)

Result of computation for cylinder surface (3.2)) i

U+ 2pU 142K+ Klnp
M = —h—> P = .
r(7) U 11+ Klnp) (3.33)
The series for K — 0 is
h hK hK? 3
Mr(p)~ —7 = 5+ =3 np+0(K*). (3.34)

This result agrees with the other definitions, however it has an extra term of
zero-th order. To understand this term, we need to look back to computation
in article [10], where the background spacetime contribution was subtracted (in
that article it was anti-de Sitter). Since in the limit K — 0 we ‘formally’ get
Minkowski space, we need to subtract contribution measured on two-surface S.
So the correct definition is [11]

MBY = MT — M(), (335)
where M is computed as in (3.29)) with Minkowski metric
dsg? = —dt? + dp? + p?d¢?* + d22, (3.36)

in cylindrical coordinates. The only non-trivial component of covariant derivative
of r, in Minkowski (due to curvilinear coordinate system) is

1
Tgip = P = ko = > (3.37)

?Integration over the cylinder base vanishes, as for choice r® = e(,y the corresponding
covariant derivative r,;s has only non-zero component r.,, and the summation in definition of
kap vanishes.
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Finally we find the contribution from the background and thus the total mass is

h 1 142K+ Klnp —hK
My=—==M =h|-— = - :
0= =3 = My ) =M - T R y) 1 Y0+ Ky %)
Series expansion for K now gives
hK hK2
Mpy » ==+ np+0(K*). (3.39)

The Mpgy mass function vanishes on the central axis and at radial infinity:

lim MBy - O hm MBY == 0 (340)

p—0+t

while at outer singularity and photon radius we find

h
lim MBY = Z’ lim MBY = 0o, lim MBY = —0OQ. (341)

P~ Pph pP—rpo p—pd

3.5 Komar mass

For stationary spacetime the definition of mass enclosed in three-dimensional
spacelike surface ¥, which is known as Komar mass [12], is defined as

1 a;B
Mic= ]g ¢4 Prangds, (3.42)

where 58) is Killing vector corresponding to time symmetry. Now we plug our

choice of S from (3.2]) and the result is

L e 849

We see that this expression is same as in result from Lemos definition (3.38]).

3.6 Charge of cylinder

Let us begin with charge, which is defined uniquely. Charge enclosed in area S
is defined as

1
= 7{ F = 7{ Flgron®ds, (3.44)
By integrating over surface of cylinder (3.2)) we get
—hK
Q= —5 (3.45)

3.7 Summary of results for mass and charge

Summary can be seen in (lable 3.1, comparison of functions is in [Figure 3.2l We

notice that the signs and shape of curves are independent of K. Furthermore, the
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integral definitions (Mg, Mpy, M) yield the same signs both below and above
the outer singularity.

The integral definitions (3.25)), (3.42), (3.29)) and (3.35)), (3.44) are a useful
tool for description of mass and charge of both singularities. These definitions

change sign when we change direction of r#. Since the outer singularity is one-

dimensional [Figure 2.1} by replacement
X(p) = X(po) \ B(p) = " — —r", (3.46)

the integrals yield mass and charge inside cylinder, which surrounds outer sin-
gularity in the region between both singularities. Thus the outer singularity will
have opposite sign of mass and charge than the inner singularity for observer
between both singularities. If we want to compute properties of outer singularity
for outer observer, we integrate over ¥(p) where p > p, and the cylinder encloses
only outer singularity.

Formula M 10 | (0,pc) | pe| (Pespo) | Po__ | (po;00) | 00
C-energy éc 0 |+ 0| — -0 | — 0
Landau-Lifschitz Mpy, | oo | + + | + 0 — —0
Komar, Brown-York | Mg |0 | + + | + Foo | — 0

Table 3.1: Summary of signs for different definitions of mass.

For K < 0, we see that the charge and mass density are positive, and
these properties describe the inner singularity. From (3.45) we know that the
charge of cylinder with spacelike normal r#* = e‘(‘ p) 1s positive. Thus the observer
between singularities will measure a positive charge of the inner singularity. If
we change direction (3.46), we obtain an outer singularity with a negative charge
as observed by an inner observer. Finally, the charge of the outer singularity for
an external observer is positive as follows from (3.45).

For K > 0 we use the same arguments and the results yield opposite signs.
Thus the inner singularity has a positive mass density and negative charge den-
sity, the outer singularity has opposite mass and charge densities than the inner
singularity for an inner observer. Finally, the outer singularity has a negative
mass and charge density for an outer observer.

For comparison, we give here analogous results for a charged black string on
a de Sitter background as found in [I0]. The metric and four-potential read

ds* = —f (p)dt* + £~ (p) dp* + p*de® + adz?, A = —g(p) dt. (3.47)

where functions f, g are defined as

flp)=ap® = —+ - g(p) =2 (3.48)
ap  a2p?’ ap’ '
The constants «, b, ¢ are defined as
1
b=4p,c®=4)% a* = —gA,A < 0. (3.49)

The paper [10] shows that p and A correspond to the mass and charge per unit
length of the source, respectively. These quantities are constant throughout the
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spacetime. In ECS only the charge enclosed in any cylinder is constant, but the
mass depends on the radial coordinate and varies. We must emphasize however,
that the black-string solution involves a negative cosmological constant and thus
its radial asymptotics is different from ECS.

E/

3r !
/ i M,
2' / E o ‘:’/IC
1} i ¢
/ E """ Po
= .\ : . , . L o)
05 10 20 25 307"
[ \ E /‘"—-—- _ -
-1f \ : _--"
I \ 1 P
_2'_ ‘ i / //

Figure 3.2: Comparison of different definitions of mass for |K| = 2.
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4. Equations of motion

The Lagrangian for a charged particle moving on an electrogeodesics is

1
L = igw,x'“x'”—i—qx'”A,{: (4.1)
_ 1 272 -2 -2 2 t.Q t
_ 2[(p¢ +p+ U ~ | T

The Lagrangian gives equations of motion
Pt Thyadl = qF* i, (4.2)

where the right hand-side term is the Lorentz force. The Lagrangian does not
explicitly depend on t, ¢ and z yielding the following integrals of motion

qU —i ~ .
=" L. = p*¢oU? N = U (4.3)

Thus there remains only one equation, which is not explicitly integrated:

p—po* — UU” P°8* =+ 2| + fU,quU;t =0, (4.4)
and finally the normalization
: 12
(P°0% + > + ) U” = 7 =U (4.5)
where U is a normalization constant: & = 0 for photon motion and U = —1 for

timelike motion. The equations of motion are singular, when U or U , is singular,
diverging thus on the radii p = 0 or p = p,.
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4.1 Static electrogeodesics
For simplicity we begin with static solutions. The equations of motion reduce to

t'2

_ﬁ:_Lf:O’ (qU—f)f:O. (4.6)

The procedure is simple: the last equation yields ¢ = qUT and from the first one
we get a restriction on the specific charge. From the condition ¢ > 0 we obtain
four solutions, which are summarized in [Table 4.1} and [Figure 4.1]

K q p Description of p region
g=1 0 < p < p, | Between singularities

K <0 : -
qg=—1|p,<p Above outer singularity
qg=—1]0<p<p, | Between singularities

K >0 . -
qg=1 Po < P Above outer singularity

Table 4.1: Regions, where static electrogeodesics exist.

The auxiliary tensors describing the properties of the geodesic are as follows

-K
O =0 =0,a" = ——LE! = EX 4.7
B H {3 () ,0(1 + Kln p)3 (p) ( )
and the optical scalars read
0=0,0"=0%=0. (4.8)

From here we see that the congruence is expansion-free, rotation-free and shear-
free. The direction of acceleration, which does not depend on sign of K, is towards
the inner singularity for p < p, and away from outer singularity for p > p,.

Let us discuss the results for static electrogeodesics for K < 0. Between
singularities the condition was ¢ = 1, which is also an exact solution of Einstein’s
equations. This suggests the sources may have a charge-to-mass ratio equal to one
for the inner observer. Above outer singularity the condition is ¢ = —1, thus the
outer singularity may have a charge-to-mass ratio equal to minus one, so that the
particle could be static. The result is summarized in [Figure 4.2] Let us continue
with case K > 0, for which the signs of ¢ change to opposite as compared to
K < 0. Thus the inner and outer singularities have a charge-to-mass ratio equal
to minus one for inner observer, and for the outer observer, the charge-to-mass
ratio of the outer singularity is equal to one. The signs of the masses and charges

is shown in |[Figure 4.3
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q=1

K<0 2
-
P(>0 2
0

N A AYAYAYA
o)
[N

) P

Figure 4.1: Regions, where static electrogeodesics exist for K # 0. Axes are
not to scale. The vertical curly lines represent singularities, the horizontal lines
represent radial intervals (except singularities), where the static electrogeodesics
exist. We also list the required specific charge for a given radial interval and sign
of K.

static particle static particle
q=1 q=—1
M + + - - +
Q + - - + -
-
0 Po P

Figure 4.2: Properties of the singularities as indicated by static electrogeodesics
for K < 0. We give the sign of both mass and charge of the singularities and also
of the static test particle.

static particle static particle
q:—1 q:1
M + + - - +
Q - - + - +
»
0 Po P

Figure 4.3: Properties of the singularities as indicated by static electrogeodesics
for K > 0.
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4.2 Radial electrogeodesics

A radial cylindrical electrogeodesics is defined as a world-line, where ¢ and z are
independent of proper time. Then the equations are

. £
p2U2 — ﬁ = U, (49)
qU — i

where the first equation is a normalization condition and the second one comes
from conservation of E.

4.2.1 Photon motion

Null geodesics play an important role, as they reveal whether the singularites
are covered by horizons. By taking ¢ = U = 0 the equations - (4.10)
become equations of motion for photon. We proceed by expressing ¢ from second
equation (4.10). From normalization then we obtain equation for p. We thus
solve equations

i=—E(+Klnp)*, p*=FE (4.11)

From (4.11)) we immediately see that E < 0, so ¢ is positive. For E = 0 the
photon would be static. This solution reads

pi(T) = 7“0:|:|E|7', (412)
te(r) = t:Fpe{2K7 = 2KU (pu(0) + U (ps(7)) ), (413)

where 7y is the initial radius, ¢; is an integration constant and 7 is affine parameter.
If the photon is emitted in the direction away from the charged line, then the
radial dependence is described by p. and it linearly increases. If the photon
is emitted in the opposite direction, then the solution is described by p_. In
both cases, when the photon starts towards one of the singularities, it will hit it,
only photons emitted above outer singularity can avoid both singularities. There
are also two interesting positions. The first one is where ¢ becomes zero, which
happens at coordinate radius p = p,, and the geodesic ends here and cannot be
extended. The affine parameter and coordinate time on this radius are

Po —To
|E|

T, =T(pr = po) = = (1) =t F 2p. K2, t(1,) = 0. (4.14)
This means that if a static observer would watch an object falling into the outer
singularity, the object would appear to fall faster with decreasing distance from
the outer singularity. The second interesting location is when p becomes zero and ¢
becomes infinite, which happens when the photon is emitted between singularities
towards the inner singularity. When it reaches radius p = 0, the affine parameter
behaves as

—0) =7 = 20 — . lim () =
T(p-=0)=1,= E2’Tlgl}lit(7—) —tl,Th_r%t(T) = 00, (4.15)

which also states that the geodesics ends at p = 0 with a finite parameter 7
and cannot be extended. This also means that a static observer between both
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singularities will not see the end of the fall of any object into inner singularity, and
the falling object will appear to fall slower with decreasing radius. Therefore we
have two regions of spacetime which are causally separated, and both singularities
have no horizons and are thus naked. For congruence properties we choose a null
field

1 2

where ‘£’ corresponds to p+. The congruence tensors read

1 1
ai = 0, Q:I:/w = 0, U:i:(f)d) = :t§E,0U2, O4,y — —70':|:¢¢, (417)
p
and optical scalars read
E? U+ 2pU
2 _ 2 _ _ i
Ui—fpz’Qi_Q@i—iET' (4.18)
The congruence is thus rotation-free but it is shearing and expanding.
4.2.2 Electrogeodesic
The equations for electrogeodesic with &/ = —1 can be integrated to
t=—(1+Klnp)(E—q+ EKInp), (4.19)
E—q+EKInp)®—1
(1+ Klnp)

The motion is possible when ¢ > 0 and p? > 0, which will give restriction on
parameters ¢, F/, K. By solving p = 0 for p we obtain two turning points:

qg—E+1
= — E#0 1. 4.21
Pt+ €xp EK ) ?é »q 7é + ( )
If ¢ = —1 then p;; becomes outer singularity and p;; is then not turning point,

the same holds for ¢ = +1 < p,_. It is not possible to be static on turnover
radii for particles, which do not carry extremal charge, since the acceleration is
non-zero here:

KE3

Brp= o) = 2T 0torg 7L (422)
pex (@£ 1)

As in classical case we can see that acceleration does not change sign thus the
particle will reflect at the turning point. If we use ‘trick’ as in ((1.17)) and prescribe
p(7) = poexp R(7), the equation for p transform to

R2exp (2R) p*R?* = (EKR — q)° — 1. (4.23)

However, the equation is more complicated than in classical case and it is hard
to find analytical solution. The equations become simpler for £ = 0 and read

R2exp (2R) p?R* = ¢* — 1, = ¢KR. (4.24)
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so for ' = 0 there are only two possibilities for charge. The solution reads

L+ Woy [eVE L@ =T (o £7)], 0<p<po,
1+ W, [el/K’lx/qg—l(Toi—T)} , 0> Pos

where 7 is integration constant, ‘+’ describes whether the radius is increasing or
decreasing and W is Lambert W function . When the argument of Lambert
W function tends to —oo, then the radius p tends to zero, when the argument
tends to e~!, it corresponds to p, and finally, when the argument tends to +oo,
the radius p tends to +o00 as well.

Analysing velocity in the radial directions, we can proceed without knowing
an explicit analytical solution for the general case. Regions, where the motion is
possible for K < 0 are in and for K > 0 in The regions are
also summarized in [Figure 4.4 and |Figure 4.5|

We can see the particle’s behaviour as it approaches the inner/outer singular-

ity

Re—ox (T) = {

lim £ = 0, lim p* = oo, lim £* = oo, lim p? = E% (4.25)
P—Po P—Po p—>0 p—>0

For particles going to the radial infinity, we find

lim p® = E?, lim f = oo, (4.26)
p—00 p—00
In case of uncharged particles following geodesics, we can see from and
that there are only two admissible regions, which are summarized in
Table 4.4l

Congruence properties:

qU, .
U4ptE’(‘p), Qi =0, (4.27)

ai = —qU7ppE’(‘t):|:

[EU (U + pU,) - q* + (U + pU,,) (Ef +1)

02 = 0,0, =
+ ) Y+ + ppU3

(4.28)
The shear tensor o4, has non-zero components o.44,,04,,,04+.. and scalar o
is non-zero, but they involve a complicated and lengthy expression and are not
presented here. The congruence is thus rotation-free, but shearing.

Let us summarize our results on radial electrogeodesics. Assume a particle
with F # 0 between singularities for K < 0 on the turning radius p,_. If the
particle has a specific charge ¢ > 1, it is attracted to the outer singularity, for
g < 1 it is attracted to the inner singularity. If we put the charged particle above
the outer singularity at radius p,, then it falls into outer singularity if the specific
charge ¢ < —1 and it is repulsed for ¢ > —1. From the classical point of view we
can compare electrostatic and gravitational forces. If the sign of both masses in
the gravitational force is negative, we get repulsion instead of attraction. We see
that the change K — —K leads to ¢ =& —q and p;y <> p;—. Thus for K > 0 we
get the opposite sign of charge to mass ratio for both singularities.
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E q p Description of p region | End of motion
g<—11|po<p Above outer singularity | p, or oo
p_gld= -1 p,<p Above outer singularity | Initial radius
N qg>1 0<p<po Between singularities 0 or p,
qg=1 0<p<po Between singularities Initial radius
g —1]|po<p Above outer singularity | p, or oo
qg<1 0 < p<p | Above inner singularity | 0
E <0 - -
—“1<q|p+=<p Above outer singularity | oo
qg>1 0<p<po Between singularities 0 or p,
qg>1 pi— < p < p, | Under outer singularity | p,
E>0 - -
qg<—11po<p<pe | Above outer singularity | p,
Table 4.2: Regions, where radial electrogeodetic motion is possible for K < 0.
E q p Description of p region | End of motion
qg>1 Po < p Above outer singularity | p, or co
p_qld= 1 Po < p Above outer singularity | Initial radius
N g<—-1]0<p<p, Between singularities 0 or p,
g=—-110<p<p, Between singularities Initial radius
1<q Po < P Above outer singularity | p, or oo
—1<q|0<p<p | Above inner singularity | 0
E <0 2 -
g<l1 pi— < p Above outer singularity | oo
—-1>2q 1 0<p<p, Between singularities 0 or p,
qg<-—11| pr <p<p, | Under outer singularity | p,
E>0 - -
1<gq Po < p < pi— | Above outer singularity | p,

Table 4.3: Regions, where radial electrogeodesic motion is possible for K > 0.

E K P End of motion
<
K <0 O<§—pt— 0
E<0 i =
K>0 P = Pt
pr— < p 00

Table 4.4: Regions, where radial geodesic (i.e. ¢ = 0) motion is possible.
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: qg>1 % g<-1 |
E>0 ¢ ®
i qg>1 é i g<-1
E=0 : :
é i g1 2 i gs-1
E<O{ g<1 i i -1<q
| |
! I >
0 Pt- Po Pt+ P

Figure 4.4: Regions, where radial electrogeodesic motion is possible for K < 0.
A black circle indicates the end point is included in the given interval.

: q<12 g>1 |
E>0 ¢ ®

E=0 2
-1<q

E< O{ g<1
I |
: | -
0 P+ Po P P

Figure 4.5: Regions, where radial electrogeodesic motion is possible for K > 0.
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4.3 Circular electrogeodesics

We investigate circular electrogeodesics, which require p and z constant. We
obtain the following equations:

(2

—W+U2p2¢'>2 = U, (4.29)
t=¢ = 0, (4.30)
qtU, iU, o PPOPU

We can immediately write t = y7, ¢ = wr. Then we have to find v and w, which
do not depend on proper time. However, they depend on radius p and specific
charge ¢q. If we rewrite the equations explicitly, they read

2

g 2 2 2
L4 Kp?p?t = U, 4.32
Kifﬁ+p2w2(1+K1np)3(1+K+Klnp) = qK~. (4.33)
1+ Klnp

4.3.1 Photon motion

By putting ¢ = U = 0 in the previous equations, we obtain the following equation
for w and v for a photon:

PPWUr — 4% =0, (4.34)
U+ Ulpw? (U +pU,) = 0, (4.35)

)

which is a linear homogeneous equation in v2 w?. A non-trivial solution is ob-
tained, if the determinant of the system is zero. The solution to this condition is

U+2K=0=p=pp=c 27VE 12 = 16p2,w” K*, w # 0, (4.36)

where w is a free non-zero parameter. The auxiliary tensors describing the prop-
erties of the null geodesic are as follows

Efy) Efy)
=Y _ P =004 = =0, 4.37
Dop  BwK2gh, T O T 437)

and the optical scalars read
0=0*=0"=0. (4.38)

ECS is thus a Kundt spacetime. It is not Ricci-flat (2.21]), and it is Type I
almost everywhere. It is not a VSIE (CSIED spacetime due to its non-vanishing
(non-constant) Kretschmann scalar (2.17)).

Vanishing scalar invariant spacetime
2Constant scalar invariant spacetime
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4.3.2 Charged mass particle

Let us investigate circular motion of a charged massive particle by putting U =
—1. The equations are quadratic, so we expect two different absolute values of w
at most (the change of sign corresponds to a change of trajectory direction). If
we look closely at the equations, we find out that the equation for v can become
linear, if p = p,,. Then the solution is

2K 1—¢q*
= Doh, e — = 4.39
P ook Do = 77 o T 4122, (4:39)
if1>qg>0AK <0 issatisfied or =1 < ¢ < 0A K > 0. In general case, the
solution for v and w comes from coupled quadratic equations. First we express

w from the normalization condition

2_72—U2

W= ,02U4 ’

(4.40)

and substitute in the second equation. The general solution (for p # ppp) is

L quU,p + \/(q2 +8) p2U2 + 12pUU , + 4U? @a)
* 2(2pU , + U) ’ '
pU, (% —4) = 2U £ q/(¢* + 8) pPU2 + 12pUU , + 4U?

2pU2 (2pU, + U)*

wi = U, (4.42)

The series expansions for K — 0 are

=
2

K
Wi~ K +O<K2>,viz:l:l—l—;(q:Fl:I:anp)—l—O(KQ). (4.43)
From these circular orbits we can infer an interpretation corresponding to the
Newtonian case. If we put 4 = A in (1.23]) and express it using the charge-to-
mass ratio, we obtain the Newtonian angular frequency wy. Comparing this to
(4.43) we obtain

l—q

-1
w3 =2\ 2 Hwi%KL

02

= A= —[2( +0 (K?). (4.44)

From this we conclude that to the first order in K, the linear mass and charge
density of the singularity is

M Q K 9

%:7:_7+O(K). (4.45)
Let us investigate existence of solutions. To find out, when solution exists, we
have to solve the conditions v+ > 0 and w? > 0. First we investigate solution for
K < 0. We proceed in the same way for K > 0 and we find that a change in the
sign of K effectively corresponds to the change ¢ — —¢q. Plots of v and w are in
Figure 4.8, Summary of results is in [Table 4.5 [Figure 4.6 and |[Figure 4.7, The
first column is just notation of the region; the second column describes, which

variant of solution is valid (‘4’,'— or ‘p,’ for photon radius); the third and the
fourth ones contain condition for specific charge of particle, depending on the
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sign of K’; the last one describes radial boundaries of the region. The definition
of the boundary radius p, used in the table is

243K + K+/1 — ¢?
pg=exp | — :

57 (4.46)

We see that there exists a region where both solutions w4 exist. This is a behavior
we have already observed in a previous paper on another MP solution involving
two charged black holes [I3] and is a result of the quadratic nature of the algebraic
form of the equations of motion. The geodesics exist only in the region 0 < p <
ppr, With angular velocity wy for both sings of K.

K <0 K >0

# |w q q P

Ps Jwp=0 |¢g=1 g=-—1 0 <p<ppn
Fs |wy,,=0]qg=1 q=-1 P = Pph

Py |wy=0 Jg=1 g=-1 Pph < P < Pg
My, | w_ = qg=1 g=-1 Pq S P < po
Py |wpy =0 |g=—1 qg=1 Po < p

Py n qg<1 —-1<yq 0<p<ppn
F Wopn, 0<g<1l|—-1<qg<0]p=pp

P | wy 0<g<1l|=1<qg<O0]pn<p=<pq
M, | w_ 0<g<1l|=1<qg<O0]pn<p=<pq
My | w- 1 <q g<-1 Prh <P < Po
P3| wy g<-1 1 <q Po < p

Table 4.5: Regions, where circular electrogeodesic motion is possible for K # 0.
For a particle located in region P, and approaching the inner singularity:
. 2 _ . _
ilir(l)w_i_ = OO,})%V+ = 00. (4.47)

In region P, a particle approaching photon orbit has

0<¢g*<1 : lim w? = w;, lim v4 =y, (4.48)
PPy, P=Ppn

—gsgn K <0 : lim w? =00, lim v, = 0. (4.49)
P_>P;h P—>P;h

In region P,, it is not possible to overcome p, for plus variant. If we take
pe = pgexpe, then for small positive € the square root in v and wy becomes
complex, since interior becomes negative:

AU? +12pU0, + (8 + %) p*U% = —K?6\/1 — ¢ + O (¢*) . (4.50)

At p,, we obtain

KqvT—¢+3 8(#—1+V1-¢
lim v, = a ¢+ lim w? = ( ) . (4.51)

pP—rPq 7\/1—q2_17p—>p; [qu<2+q2_2w>}2
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Figure 4.6: Schematic illustration of regions for K < 0, where circular electro-
geodesic motion is possible. Static solutions are excluded. A white circle indicates
the end point is not included in the given interval.

VAV
I
A
Q
ceep----
I
A
Q
A
o
__.____
VAV

W,
-1<q<0 ,
o——@
w- { Pog<=1 1
® E
:—1<q<OE
Wopn . |
0 pph

Figure 4.7: Schematic illustration of regions for K > 0 as in the previous case.



In region P3 approaching outer singularity

l_i)rn+ w? = o0, l_i)er v+ = 0. (4.52)
P—Po P—*Po

In region Pj, a series expansion for p — oo yields

9 gsgn K —1 1
N ———+ 0| ——1, 4.53
“ & Kpnd, T (p? 1n4p> (453)
K —|K
vy = q2||+sgnK+\K\lnp+O(ln2p). (4.54)
So the limiting values
Jlim w? =0, Jlim 7y = oo. (4.55)

In region M; approaching photon radius

lim w? = oo, lim 7. = oo. (4.56)
p=p7, p=p7,

In region M; it is not possible to have circular orbits beyond p, with 0 < ¢* < 1
due to the same argument as in case of P. The limits at p, are the same as in
case of region Ps:

lim y- = lim vy, lim w? = lim w?. (4.57)
pP—Pq pP—Pq pP—pq pP—Pq

In region M, near the outer singularity we find

lim w? = oo, lim 7_ = 0. (4.58)

P—Po P—Po

Congruence tensors read

pUw? + U , + 2p°Uw?U,
— ”U3 PE(,).- (4.59)

The rotation and shear tensors have only ¢, p and ¢, p non-zero components, which
are quite lengthy. The optical scalars read

at =

2
2 p? (pUPw? + wU, — w U + 2p*Uw3U ) 6= (4.60)
4~2
[P2U3W3 + 3pwl , + 2p3U230 , + U (2w + pw,,)]?

0 = e . (461

From the behaviour of the circular electrogeodesics listed in [Table 4.5 we can
see that for K < 0, a particle with ¢ < 1 can orbit in the vicinity of the inner
singularity. This corresponds to the classical case when the particle is attracted
to the rod, due to its charge and mass, and repelled by the centrifugal force.
The particle between singularities with ¢ > 1 can orbit in the vicinity of the
outer singularity, which agrees with a centrifugal force neutralizing the attraction
from the outer singularity. Particle with ¢ < —1 above the outer singularity can
compensate the electrostatic attraction from the outer singularity in the same
way. The change K — —K corresponds to ¢ — —q. Again we see that the
opposite K changes the sign of the charge to mass ratio of both singularities.
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Figure 4.8: Plots of angular velocity w and gamma factor « for circular motion

of test particles of varying specific charge as a function of the radial coordinate,
K= -2.
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4.4 Electrogeodesics parallel to z-axis

For motion, where p and ¢ are constant, there are following equations

t'2

=t 2U* = U, (4.62)
t=2=0=t=~v71,2 = vT, (4.63)
U, (—qiU + 1+ 22U"p) = 0. (4.64)

If we prescribe U = ¢ = 0 to search for photon motion, we find that such motion
is not possible. We thus search for timelike electrogeodesics only. We follow up
the same procedure as in circular electrogeodesics: we find solutions for factors

and v:
U o PtV +8—4

Again, the task is to determine where these factors are well defined and real.
They do not depend on proper time, but depend on p and K. In this case the
inequalities are straightforward. The condition for v is found by solving where
the argument of the square root is positive, the denominator excludes the outer
singularity from solution. In case of 7 we check where the product of U and the

bracket is positive. We obtain one region for each solution. The case v+ = 0
corresponds to static solutions. The results are summarized in and

Figure 4.9] Plot of factors v and 7 is shown in [Figure 4.10}

K v q p Description of p region
vy q>1 0 < p < p, | Between singularities
vy =0]qg=1 0 < p < p, | Between singularities

K <0 : -
v_ g<—1|po<p Above outer singularity
vo=0|q=—-1|p,<p Above outer singularity
v_ qg<—-1|0<p<p, | Between singularities
vo=0|g=—-1]0<p<p, | Between singularities

K >0 . -
[ qg>1 Po < P Above outer singularity
vy =0|¢q¢g=1 Po < p Above outer singularity

Table 4.6: Regions, where z-electrogeodesic motion is possible for K # 0.

For a particle located between singularities and approaching the inner singu-
larity:

li = li =0, lim v = lim v_ =0 4.66
PO 00 e =0 i - o e =0 (469

where the first two limits assume K < 0 and the last two K > 0 according to
Table 4.6l For the same particle approaching the outer singularity we find

lim v, =0, lim v, =00, lim v~ =0, lim v_ = co. (4.67)
pP—Po pP—Po pP—Po pP—Po

For a particle located above the outer singularity and approaching the outer
singularity:

lim v- =0, lim v_ = o0, lim v, =0, lim v; = oo, (4.68)
p—pd p—pd p—ps p—pd
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and approaching radial infinity

plggo v_ = oo,pliﬁrgO v_ = O,plLrglo Yy = OO?)LIEO vy = 0. (4.69)

Series expansion for K — 0 for v is trivial, since v depends linearly on K. For v

we obtain \/
P-4+ +38 )
vy A 75 (1-Knp)+0(K?). (4.70)
Congruence tensors read
qU U v 2v
CLi = - U/?]iEéLp), Qipt = O4pt = %7 Qipz = O4pz — %Tiu (471>

from the optical scalars we obtain that the congruence is expansion-free:

e \2
2 2 2{q2(qj: q2—i—8) _16}
@i:O,Ui:Q :U7p 64U4 .
Let us look at the results for electrogeodesics along z-axis in [Table 4.6/ for K < 0.

If the particle moves between singularities in z-direction, it has to have a specific
charge ¢ > 1. The particle is attracted to the outer singularity, as its charge is
higher than the equilibrium charge. This attraction is compensated by movement,
as the mass of the particle increases (from the point of view of a static observer).
The same arguments hold for a particle above the outer singularity: motion
along the z-axis is possible for ¢ < —1 and the particle is attracted to the outer
singularity, which is compensated by the motion. For K > 0 the charge to mass
ratio of electrogeodesic particles changes, as well as the charge to mass ratio of
both singularities.

S w3
K<0

2 g<-1 2 qg>1
K>0 2 2

0 Po

Figure 4.9: Regions, where axial electrogeodesics exist for K # 0.

(4.72)

g<-1

0
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Figure 4.10: Dependence of velocity v and gamma factor v for K = —2.
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5. The Newtonian limit

In this chapter we discuss the formal limit K — 0. The question is how to do
this limit? This is not a physical process but rather a mathematical procedure
enabling us to compare various results from GR with their Newtonian analogues.
In the previous chapters we often calculated some quantities and expanded them
as a series in K which we then let tend to zero. The lowest term was then com-
pared to the Newtonian expression. This makes sense if the region of spacetime
in question approaches flat spacetime for K — 0. Then the Newtonian gravity
represents the lowest-order perturbation of the flat spacetime and should corre-
spond to the lowest term in the expansion. One needs to be careful about whether
the investigated radius is above or below the outer singularity, which shifts with
changing K. While it is obvious from the metric that ECS becomes Minkowski,
however, there is problem with the outer singularity, which has only one-sided
limits, and thus only one part of the ECS can become Minkowski. There also
arises the question of mass - we computed several formulae for mass and made
series expansions for small K, but what do we get?

5.1 K <0

For K < 0 the outer singularity approaches radial cylindrical infinity in the
limiting process K — 07:

Klg{)t Po = 0, Klgf)lf lp (po> = 0%, (51>
where [, is proper radial cylindrical length from (2.3.1]). Thus from the ECS there
remains only the inner part, which becomes Minkowski. Therefore, the observer
could see only inner singularity and measure its mass and charge. If we look at
the Brown-York expression and we see that for a cylinder enclosing
the inner singularity mass is positive. If we enclose outer singularity from inside
we get that the mass is negative.

5.2 K >0

For K < 0 the outer singularity approaches the inner singularity in the limit
process K — 0%:

Kh_lr)%+ po =0, KIEIOL L, (po) = 0. (5.2)

Thus from the ECS there remains only the outer part, which becomes Minkowski.
Thus the observer can only be outside and see only the outer singularity. Using
the same argument as in the previous section, we see that the charge and
mass densities of the outer singularity are negative.
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6. Summary of ECS

Let us state our results for ECS. We interpret the ECS spacetime as actually
consisting of two independent spacetimes separated by the outer singularity. From
the radial electrogeodesics it follows that both singularities are naked and nothing
can go through the outer singularity to the other part of the spacetime. Inside, the
situation is complicated by the presence of two singularities pulling or pushing test
particles in opposite directions, while outside there is only one singularity present
in the spacetime. The outer singularity at p = e~/% always has a negative mass
per unit length as observed from both outside and inside. From calculations
of proper lengths we see that the outer singularity is spatially point-like. The
inner singularity at p = 0, which is spatially one-dimensional, then always has a
positive mass. The parameter K appearing in the metric determines the sign of
the charge per unit length of the singularities. For K > 0 the inner singularity
has a negative charge. The outer singularity has a negative charge when observed
from the outside and a positive charge from the inside. For K < 0 the signs are
reversed. For weak fields, i.e., when the limit K — 0 is applied, the magnitude
of both the mass and charge densities is given by K/2. The summary of signs of

mass and charge is shown in [Figure 6.1}

(a) K <0 (b) K >0

Figure 6.1: Schematic illustration of the sign of linear mass and charge densities
of the singularities.
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7. Geometry of ECS with a
cosmological constant

Kastor and Traschen found an extension of the static Majumdar-Papapetrou
spacetime, consisting of a finite number of extremal black holes, yielding a dy-
namical case [4] with a positive cosmological constant A, with the limit A — 0
reducing the spacetime to the static case. Static ECS can be extended in the
same way, producing a spacetime we call ECSA. We prescribe the metric and
electromagnetic four-potential in the following way:

dt?

ds? :_ﬁywmﬂwﬂw%&+mﬂ, (7.1)
A = ?;,Q:Q(t,p),b:b(t). (7.2)
(7.3)
Then the electromagnetic tensor and Maxwell invariant read
Q 02
F="LdtNdp, F = 22 (7.4)

02 b2O4
First we plug the metric tensor and electromagnetic four-potential in Maxwell
equations. From the first one we get

P, +Q,=0=Q(t,p) =1+c(t)Inp, (7.5)
and from the second one we obtain

(0,), =0=Q(t,p) =1+ bi(t) In p, (7.6)

and the Maxwell equations are thus satisfied. The constant 1 is chosen sdl| that
ECSA be consistent with ECS spacetime. The Einstein equations are more com-
plicated. We solve the simplest one:

A
3szw¢M@:J%H=i¢yA>Q (7.7)

where the function b(¢) is the same as in [4]. If we plug this function in the
remaining equations we find that they are all satisfied. We choose an orthonormal
tetrad

1

1 1
el'y = VO e\ = ——F' el = ——F' el = ——EF".
® © %) = p/p e S0 = eaten 86 = et

Riemann tensor has more complex components than in ECS. The non-zero coor-
dinate and tetrad components vanish neither in the limit p — oo, nor Ht — 400,
so ECSA is not flat in these limits. Ricci curvature is R = 12H?, which agrees
from the trace of the Einstein equations, thus ECSA is spacetime with constant

(7.8)

!Einstein equations permit this choice and it simplifies the calculation.
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KA o] i
H<0 00 1

K<0rg—y 1 i~
H <0 0 1

K>0 =5 1 0

Table 7.1: Movement of the outer singularity in ECSA.

positive curvature. There are only two Killing vecotrs: E{y and Ef,). ECSA is
thus not a subcase of black string (3.47) in [10], as their solution is stationary,
featuring a Killing vector field corresponding to time symmetry.

From F we see that there are two singularities located at radii
exp (H t)]

(7.9)

i:70t: -
pi =0, po(t) eXp[ I

We found these singularities in ECS, however here the behaviour is more compli-
cated and depends on both H and K. The summary of movement of the outer

singularity is shown in

7.1 Algebraic classification

We wish to determine the algebraic class of the spacetime. We proceed in the
same way as in ECS. We choose a normalized null tetrad

1 1

M= 5 (el =) 1" = 7 (efey +el) - (7.10)
1 /. o 1 /.

mt = ﬁ (1e’{¢) — e’(LZ)) Mt = _E (1e’(¢) + e?z)> )

We compute Weyl scalars as in (2.25)) and the non-zero Weyl scalars read

Q, 6pQ2p +Q (2, —2p82,,)
=Yy = —2=, Uy = ’ ’ . 7.11
We can see that all Weyl scalars vanish in the limit p — oo or Ht — oo:
PRV = v =0, i Yo = i v =0 (712)

This means that ECSA is conformally flat in these limits. For example, for
Ht > 1 the metric becomes

ds® ~ —dt? + At (dp2 + pide? + sz) , (7.13)

which is de Sitter spacetime, which is conformally flat (but not flat) spacetime.
We notice that for Ht &~ 0 the metric is close to the static ECS.

To determine the algebraic type of the spacetime we perform the same trans-
formation as in and obtain the equation

420724 24 =00 = 22 (7.14)

by’
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which is of the same form as (2.38), but here it also depends on ¢. Therefore
there are four complex roots in general thus the ECSA spacetime is type I. We
find that there exist two radii where the spacetime is type D. The radii are

(BF 1) T 2K>
K(3F1) '

pp12(t) = exp (— (7.15)

7.2 Mass

From the static ECS spacetime we already know the role of the parameter K. In
ECSA we expect that the formulae will be time dependent. Therefore, in the first
order we should get an exponential suppression or growth of mass and charge.
The ECSA spacetime is not static and has no timelike Killing vectors, so we can
not use all definitions as in the static ECS - we can not use Brown-York and
Komar formulae. We can thus compute charge and Landau-Lifschitz formulae.
One would also want to compute C-energy. However, it requires complicated
transformation of the metric and since we are not able to find an analytical
expression for such a transformation, we can not calculate the C-energy.
To compute the integral definitions of My, and () we use slightly modified
cylinders:
X(p) = B(t,p), S(p) — S(t, p), (7.16)

where t is general, but constant in the integration. The future-oriented normal
n* to ¥ and spatial outer normal r* to S read

1
n = el 1 = ofy =~ (vefy +yely) (7.17)

where the components also depend on time.

7.2.1 Landau-Lifschitz

We proceed in the same way as in ECS and use the formula

Pr=— f HYO 1, dS. (7.18)

However, it seems that the components P* and PY are non-zero, because the
integrand for p = i reads

HiO)\n =g gz)\g(]/{ = HZ'O)\H’ _ (g gl)\goo) (719)

and this expression vanishes in the summation in the integrand only for i = z.
After some algebra we get

HoM = (Q gmgtt> HY = (g gyAgtt) (7.20)

After expressing the integrand in cylindrical coordinates we see that the integrand
in P* depends linearly on cos¢. Since we integrate ¢ over the cylinder, the
integrand vanishes. PY depends linearly on sin ¢ and the same argument applies.
We can thus calmly compute the only non-vanishing component and we obtain

My = 719795\/ M — BhK? e Inp + O (K*) . (7.21)

From this we get that mass Changes in time with factor €52t to the first order.
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7.2.2 Charge

We proceed in the same way as in ECS. We obtain
1 2 rh LK
Q= E/o /0 Eurn'v*0?pdz'de’ = —7621“. (7.22)

We observe that the charge changes in time with factor e*t. We see that mass
changes faster in time than charge. This means that there is a flow of matter and
charge in the spacetime along the singularities.
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8. Grid spacetime

In the previous chapters we constructed a solution describing an extremally
charged string. One of interesting questions is whether this solution can be ob-
tained as a limiting case of spacetime, which would consist of an infinite number
of extremal black holes. The extremally charged string should be obtained in
the limit when the distance from the z-axis is large compared to the distance
between two neighboring point sources. However, there is a problem: we first
need to find the corresponding electrostatic potential of such a configuration in
classical physics. Thus our goal is to find an electrostatic potential, which would
describe an infinite number of point charges situated on the z-axis, so it can be
extended to GR similarly to the ECS spacetime. We investigate two constructions
and analyse them.

8.1 Superposition of point charges

We prescribe the potential in such a way that it behaves as single point charge if
we approach closely to it. We thus sum the potentials of individual point charges.
So we prescribe the potential as

=0+ o, + o, (8.1)

n=1 n=1

where
1 1 1

+
©n(p,2) = — = 00(p, 2) = —=—=.
P2+ (zkn)? 7 N

The meaning of ¢ is the following: it is the potential of a point charge located at
z = 4n on the z-axis, the term —1/n makes the potential ¢ vanish at the origin.
It is clear from construction that every ¢= satisfies the Laplace’s equation, but
it is not clear whether the sums converge uniformly and what the total potential
looks like.

We see that ¢ has mirror symmetry, since ¢, (p, z) = ¢, (p, —z). The potential
has another important symmetry - it is periodic in z:

plpz+1) = (8.3)

_ oo 1 1 oo 1 1 1 —
”:1[ PP+ (z41—n)? "} +Z"21{ PP+ (z+1+n)? "} T ey

(8.2)

1 1
+ SO [ S
Zn_l P2 +(z+1+n)? n

— 1 -1 o 1 1
= Va1t { Ptle—(n-DP "

_ 1 1 1 1 +
BRI i R b e

=po—1+32% [‘Pf+%*l+%]+2$:2 {%ﬁ*%*ﬁ]JﬂPf-

On the third line we separated the first term from the first sum, which gives
o — 1, on the fourth line we substituted [ = n — 1 in the first sum and m =n+1

in the second sum, and on the last line we rewrote zero as 0 = % — % to restore
the terms ;. Since the extra terms in both sums go for large argument as

1 1 11 1 1

——_— e~ — — —— ~ — (8.4)



we see that they converge and can be separated. We thus get

o oo 1
2+ 1) =g+ Y 0 + [ ]+ + {—} 8.5
p(p,z+1) =@ l;sol l; 1 Z% Z — | (85)
The separated sums are well-known telescopic sums and they read
> 11 1 > 11 1
- — 1 —— | =-1 .
lg:l[l l—i—l] 7n;2[m m—l} ’ (8.6)

thus they cancel and we get ¢(p, 2+ 1) = ¢(p, z). From the definition we see that
©(p, z) diverges in points where the charges are located:

lim ¢(0,2) = oo,n € Nj. (8.7)

z—+n

The periodicity has many advantages. Combining it with mirror symmetry we
get

90(,07 1 - z) = go(p, = 1) = gp(p, 2)7 (88>
which means we can restrict to 0 < z < 1/2, as the potential has mirror symmetry
in every z =m/2,m € Z. From it also follows

0 0
9e(p, 2) :07[,7&0;5M —0 (8.9)
9z z2=1/2 dz z=n
8.1.1 Convergence
Let us first look where the terms change sign:
©F > 0= F2zn > p? + 2% (8.10)

If we assume on z > 0, we see that o is never positive, as the condition below has
no solution for n. The terms ¢,, are negative for n < n,,,,, defined as the highest
natural number satisfying the inequality, and then they are always positive. Since
o (p,z) = ¢, (p, —z), the same holds for z < 0. Let us inspect the convergence
of both sums. Thanks to symmetries we can restrict on z € [0,1/2]. From the
definition of = we can see that the terms will behave for large n as

o ~ n’z,nli_{{.lochp,f = Fz, (8.11)
and in the plane z = 0 the convergence is even faster and the terms go as n=3.
Thus both sums converge pointwise for every p and for z € [0,1/2]. Plots of ¢
for fixed 2z or p are in |[Figure 8.1} [Figure 8.2 shows where the potential is zero.

However, it is not obvious, whether the sums converge uniformly. The terms can
be estimated as

1 1
‘go,ﬂ < —Vp>0,z€ [0, } , (8.12)
n 2

which is enough to prove ¢ = 0, but it is not sufficient for uniform convergence
of both sums. If we restrict on p = 0 we are able to express ¢ analytically. For
0 < z < 1/2 the sums can be rewritten as

90(072):§:1<Zin n) Z( 1>+1

n—=z n z

(8.13)
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We can estimate individual terms as
1 1‘ B ‘ z
2+n nl

1

= 5>
n2

(8.14)

nz + n?
so the sums converge absolutely uniformly. Using mathematical software we find
that )
0(0,2)=—-—H(z) —H(—2),0 < 2 <1/2, (8.15)
z

where H(z) is harmonic number (A.23)). The derivatives of p on the z-axis can
be estimated as

Opr
0z

1
_ﬁ7

4
T (2n—1)°

Oy,
0z

O ¥l
p=0: = 29
0z (n =+ 2)

(8.16)

so the sums of derivatives of pF converge absolutely uniformly. The second
derivatives can be estimated as

CO*E 1

_0 0*on
p=U: 022 = (Z:l:n)?’,

022

2
n®’

%,
022

16
T 2n—1)%

(8.17)

thus again the sums converge absolutely uniformly, and we can interchange the
order of derivatives and sums at the axis. Plots of the potential an its derivatives
at the z-axis is shown in [Figure 8.1 However, the rate of convergence of the
potential sum is quite low and we thus now proceed to use a different approach
based on expanding the solution in terms of fundamental solutions to Laplace’s
equation.

8.2 Separated potential

In this section we assume that the potential is separable:

W(p,2) = R(p)Z(2). (8.18)
Substituting in Laplace’s equation we obtain:

PR, + R, Z .
’);R p:—Z. (8.19)

Since the left side only depends on p and the right side only on z, the sides equal a
constant. Since we require periodicity in z, it implies the right side to be positive
(otherwise the solution for Z cannot be periodic) and

Z..+a2Z =0= Z, = a,sin(a,z) + by, cos(a,2), (8.20)

where «, is a real number. The periodicity requires

2
Zn(z+k)=2Z,(2) = a, = %n,n eN, (8.21)

where we restricted to positive frequencies. Let us move to the equation for R(p).
In the special case when «,, = 0 the solution of the equation for R(p) is ¢; +co In p.
From (8.19)) we obtain solution for a,, # 0:

Ru(p) = Alo(anp) + BKo(anp), (8.22)
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Figure 8.1: Dependence of ¢(p, z) on p for fixed values of z (a-b) and p (c-d).

Figure 8.2: Detail of potential ¢ crossing zero.
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where A, B are constant, [y (A.6) and K, (A.7) are modified Bessel functions.
We construct a general solution in terms of a sum of the fundamental solutions.
In view of the desired form of the sources, we choose our potential as

n=1
where | (n2)
Yo(p) = —%,% = %Ko (np) . (8.24)

As will be seen below, this corresponds to the correct form of the sources along
the axis, with the ChoiceE| k = 2m; the factors before logarithm /cosines determine
the charge of individual points. The cosines in 1, produce mirror symmetry with
respect to the plane z = 0, the term vy corresponds to the solution with «,, = 0.
Plots of approximation of ¢ (the first 26 terms) and its derivatives for chosen

values of p or z are shown in |[Figure 8.3,

8.2.1 Convergence

It is obvious that iy and 1), diverge for p — 0. When we restrict on p > § > 0,

using (|A.14]) we can write
|27 (p, 2)| < |Ko(np)| < Ko(0) exp [0 (1 = n)] = e, (8.25)

from which we get that ¢, = 0, as ¢, — 0 in the limit n — oco. Because the
sum )., ¢, is convergent, we also get that the sum Y, v, converges absolutely
uniformly. We also notice that derivative with respect to z keeps the sum con-
vergent because of the exponential suppression. We can also estimate the first
derivatives with respect to p as

‘27?28(;%

< nk(np)| < Ka(@nexp [5 (1 — )], (8.26)
as well as the second derivative

’2#881?: < ’nQKO(np) + nQKz(np)‘ <nc, + Ky(d)n*exp[6 (1 —n)], (8.27)

so the sums with first and second derivatives of ¢, converge absolutely uniformly
for every z and every p < 4, and we can interchange the order of sums and
derivatives/limits/integrals. For p > 1 we can approximate the sum as

T Ly (€%7P) + Lipjg (e7577
2v271%2 3 " ah, = Y cos (nz) e Ll (e70) + Llys (7777 (8.28)

NG VP |
where Li is the polylogarithm function . We see that terms 1, are expo-
nentially decreasing for large p, and the main contribution in ) is 9. This means
that the dependence of z will disappear. Thus the potential behaves as ECS in
the radial cylindrical infinity, with a constant linear density A = (872)~!, where
the constant depends on the distance between neighbouring charges.

'For general k one obtains vy = —ﬁ Inp, 1, = # cos (anz) Ko (app) .
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Let us move now close to the z-axis. We want to compute charge distribution
along the axis. We thus use the integral definition of charge within a cylinder
centred at the z-axis to obtain the linear density:

,1013%) 4@ = | Mz)dz = — ,10136 2 P n'dS. (8.29)
We rewrite the right-hand side (without the limit) and get

17Q =~ [[ v A6 — [[ 00 A6 = a1 + g, (8.30)

where ¢, is the first term and ¢s the second one. The term ¢ gives
L e
a1 =3 | npl Ko(ngl) sin(nz)dp’ (8.31)
=1

The function K, diverges as logarithm (A.11)) for zero argument, but pKy(np)
goes to zero for p — 0, so the integrand does not diverge near the axis. We see
that the first term in (8.30]) vanishes in the limit p — 0. The second one gives

g = / [;ﬂ + 71r i npKi(np) COS(RZ)] dz. (8.32)

n=1
Since K;(z) diverges as 1/x (A.19)) for x — 0, we finally get

1

1 o0
Fl)i_r)r(l) AQ = [QW + - n;lcos(nz)] dz. (8.33)

Using the relation (A.26]) we get A(z) = Iy, (2). For general k we obtain
Az) = —k(2). (8.34)

So the charge of the individual sources is k(87%)~!. Therefore, for the general
case of charges of magnitude () located at a distance k apart, we conclude that
the solution must be multiplied by 87?Q/k and the asymptotic linear density of
the source is then @) /k. We thus obtained a sum of distributional charge densities
of individual sources along the axis. The total charge density is thus

k k

0= 5 T(2)3(2)3()

— o IL(000). (3.35)
where ¢ is the Dirac delta function. The advantage of the Bessel function expan-
sion consists in the fact that it is easy to see the vanishing of periodicity far away
from the axis and approach to the ECS solution. From the behaviour of 1) we can
see that the spacetime is 0 at radial cylindrical infinity, type D close to the axis
and type I far from the axis. It is simple now to construct the corresponding
solution of Einstein-Maxwell equations by simply plugging the resulting potential
into the general form of the Majumdar-Papapetrou metric. To our knowledge this
is the first example of a spacetime with a discrete translational symmetry and in
our future work we intend to study its properties further.
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Conclusion

We investigated the physical properties of a cylindrically symmetric Majumdar-
Papapetrou solution of Einstein-Maxwell equations (ECS) sourced by a non-
compact, extremally charged linear singularity forming the axis of the spacetime.
Based on the form of the metric, we studied geometry of the spacetime and its
algebraic classification. From singularities of metric and scalar invariants we dis-
covered that in addition to the axis singularity, the spacetime includes another
singularity of different physical properties, which divides the spacetime into two
causally separated regions. Since ECS is a solution of electro-vacuum equations
both singularities are the only source of the resulting electromagnetic field, which,
in turn, produces the gravitational field together with the two singularities. Our
goal was to establish their physical parameters — i.e., mass and charge densities
per unit length — and geometric characteristics.

We calculated motion of charged test particles moving in preferred directions
and compared it to the solution within the framework of classical mechanics.
Based on the behavior of radial electrogeodesics, we found that the singularities
are not covered by horizons and are thus naked in accordance with [3]. Next,
we dealt with static trajectories and gained insight into the specific charge of the
singularities. We then determined circular paths and regions where such motion
is possible. One interesting result is a range of circular orbit radii and conditions
on the spacetime parameters allowing the existence of two electrogeodesics of
the same radius but differing angular velocities in the same direction. We then
determined the classical limit of the circular velocities to again obtain information
about the specific charge of the singularities. We also calculated electrogeodesics
parallel to the z-axis. All solutions of electrogeodesics were summarized in tables
and schematic diagrams.

When determining the mass of the sources of ECS, we also proceeded from
the total energy of a region of spacetime containing the singularity. However,
there is generally no way of determining locally the energy of the gravitational
field in GR and we thus used several different definitions — Komar, Brown-York,
Landau-Lifschitz and C-energy formulae — and compared them including the
limit to the Newtonian case. Using several independent methods, we thus clarified
the meaning of the spacetime’s structure and parameters and gained intuition
about its physical interpretation. The results will broaden the knowledge of MP
spacetimes with non-compact sources, which have not been paid much attention
so far.

In we constructed a solution involving an extremally charged line
and a positive cosmological constant (ECSA). We determined its algebraic class
and calculated its mass and charge. At the end we compared this solution to the
static ECS.

In the last chapter we investigated a classical system consisting of one-dimen-
sional grid of charges. We found the corresponding electrostatic potential and
summarized its properties. The solution can be used to construct an analogous
system in general relativity.
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Appendix

Error functions

Error function is defined as

erf(z exp dt. (A.1)

=l

The imaginary error function is defined as

erfi(z) = —ierf (iz) = \/QE /: exp (t2) dt. (A.2)

The function erf_;, resp. erfi_j, is the inverse function to erf, resp. erfi. Function
erf 1 (z) is defined for € (—1, 1) and diverges for x — 1. The function erfi_;(z)
is defined for z € R and has limit

lim erfi i(z) = +o0. (A.3)

r—+oo

Plots of the error functions and their inverses are shown in [Figure A.1{

Lambert W function

Lambert W function (or product log) is defined via relation
z=W(z)eV®. (A.4)

This equation defines W (zx) uniquely only for > 0, for —e™* < x < 0 there
always exist two real solutions: Wy(x) and W_;(x), where Wy(z) > —1 and
W_i(z) < —1. Function Wy(z) is defined for z € [—e™!, 00) and function W_;(z)
for z € [—e~1,0). Plot of both functions is shown in [Figure A.2l The series of

expansion of Wy(z) in infinity is

Wo(z) xInz —Inlnz+ 0O (1), > 1. (A.5)

Modified Bessel functions

Iy is the modified Bessel function of the first kind, which is defined for z € R as
1 ™
Iy(x) = —/ exp (z cos 0) db. (A.6)
0

™

K is the modified Bessel function of the second kind, which reads
Ky (x) = / exp (—x cosh t) dt, (A.7)
0

and is defined for > 0. Plot of these functions is shown in Both
functions are non-negative in their domains. Important limits of these functions
read

lim I (x) = oo, lim K (x) =0, (A.8)
lng o () = 1, lim, Ko (a) = o0, (A9)
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The series expansion for z < 1 are
2

I(z) ~ 1+ % +0 (a), (A.10)

and for K

2
Ky () %1n2—lnx—%+%(1 — % +In2—1Inx) —1—0(333), (A.11)

where 7, ~ 0.5772 is the Euler-Mascheroni constant, In2 > ~,.. For z > 1 we get
the following series expansion:

ﬁem (2\1/5 N 16\1@) o (5/2) ’ A2

Ko(z) ~ Vare™ (2\1/5 - 16\1/F> 10 (;ﬂ) . (A.13)

S

—

=
{

Following bound [14] holds for K,:

K, (x) _
>0 <z <y, A.14
K, (y) (A-14)
where K, is defined as
K, (x)= /OO exp (—z cosh t) cosh (vt) dt. (A.15)
0

The Bessel functions I, K7 can be expressed in terms of derivatives of Iy and Kjy:

dl dK,
— =1 —=-K . Al
@), = K @) (A1)
Their limit behaviour is
i 1, () = o0, Jim K () =0, (A7)
}sli% I (z) = 0,3:1251+ K, (z) = 0. (A.18)

The series expansion for z < 1 are
3
_r 5 ol T 3
Il(l')w2+16+O<l’),Kl(x)~x+4(2’)/8—1+21H2)+O(ZL’)(A19>

For z > 1 we get the series expansion

L) ~ 5227 (;5 4 8\%) +0 (xi/z) , (A.20)
Vme ™ (2\1/5 + 8\/32?> + 0 (x51/2> . (A.21)

=
=
.
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Other special functions

The well-known Euler gamma function I' is defined as
['(z) = / r* e "dx, (A.22)
0

where the definition for positive integers reduce to I'(z) = (z —1)!. The harmonic
number is defined as

H(2) =%+ 0z + D,6(2) = == (4.23)

where 1(2) is the digamma function. For positive integers the harmonic number
can be expressed as

H(n)=>) —,neN. (A.24)

Plot of harmonic number and gamma function is shown in [Figure A2l The
polylogarithm function Li, is defined as

Li,(2) = Z

(A.25)

S T %

and has a branch cut discontinuity in the complex z plane running from 1 to co.

Dirac comb
Dirac comb is a periodic tempered distribution defined as
2rint /T _ 27T7’Lt
=> 6(t—nT) Z Z . (A.26)
neZ nGZ

In the second step we used that III is periodic and wrote it as Fourier series and
in the last step we rewrote it in terms of real functions. The distribution Iy (t)
behaves as the Dirac delta function ¢ at every t = nT,n € Z.
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