
Extremally charged line
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Institute of Theoretical Physics, Charles University in Prague

E-mail: j8.ryzner@gmail.com, zofka@mbox.troja.mff.cuni.cz

Abstract. We investigate the properties of a static, cylindrically symmetric

Majumdar-Papapetrou-type solution of Einstein-Maxwell equations. We locate its

singularities, establish its algebraic type, find its asymptotic properties and weak-field

limit, study the structure of electrogeodesics, and determine the mass and charge of

its sources. We provide an interpretation of the spacetime and discuss the parameter

appearing in the metric.

PACS numbers: 04.40.Nr, 04.20.Jb

Keywords: Majumdar-Papapetrou spacetime, line singularities, electrogeodesics

Submitted to: Class. Quantum Grav.



Extremally charged line 2

1. Introduction

The Majumdar-Papapetrou solution [1, 2] representing an arbitrary set of stationary,

extremally charged black holes in equilibrium is well known. The spacetime arises as a

solution of Laplace equation. Hartle and Hawking [3] assumed a flat spatial infinity and

showed that any solution to the Laplace equation with non point-like sources must

contain a naked singularity. There are, however, interesting classes of solutions of

different asymptotics. In this paper, we assume a line source that extends to infinity

along a straight line and we thus do not have a flat spatial infinity. Although it does

contain a naked singularity it is of interest in itself and, generally, non-asymptotically

flat MP solutions may involve horizons. The importance of the solution consists in

the fact that it has an obvious classical analog we can compare it to. We investigate

the properties of the spacetime and also compare it to the charged black string [4],

which however requires a non-zero cosmological constant. We interpret the parameter

of the metric using electrogeodesics, integral definitions of mass and charge, and Israel

formalism for various shell sources replacing the singularities of the solution. We first

derive the physical properties of the non-relativistic counterpart of the solution to be

later able to compare it to the full solution. In Chapter 3, we present the studied

spacetime and its basic geometrical characteristics. In Chapters 4 and 5, we determine

the mass and charge of the singular line sources using integral definitions of energy

and the Israel formalism, respectively. In Chapter 6, we finally investigate motion of

both charged and uncharged massive particles and photons and compare them to the

Newtonian case.

2. Newtonian analog

We review the classical analog of the infinite charged string. We first write the

gravitational and electrostatic potentials, ϕG and ϕE, in the standard cylindrical

coordinates ρ, φ, z as follows

ϕG = 2µ ln
ρ

P
, ϕE = −2λ ln

ρ

P
, (1)

with µ the mass and λ charge per unit length of the string. P is a normalization constant

defining the cylindrical surface of vanishing potential‡. We now rescale the radial and

azimuthal coordinates so that ρ/P → ρ, z/P → z. The classical Lagrangian per unit

mass of a massive and charged test particle of specific charge q = Q/M then reads

L =
1

2

(
ρ̇2 + ρ2φ̇2 + ż2

)
− (qϕE + ϕG) . (2)

The Lagrangian does not depend on φ and z and does not explicitly depend on t, so we

have the following integrals of motion

E ≡
∑
i

∂L
∂q̇i

qi − L =
1

2

(
ρ̇2 + ρ2φ̇2 + ż2

)
+ ϕG + qϕE, (3)

‡ We chose both potentials to vanish at the same radius so that they are proportional to each other;

we may always do so as the two constants only appear as a constant in the Lagrangian (2).
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Lz ≡
∂L
∂φ̇

= φ̇ρ2, (4)

pz ≡
∂L
∂ż

= ż. (5)

The only remaining equation of motion is

2 (qλ− µ) + ρ2φ̇2 − ρρ̈ = 0. (6)

2.1. Static solution

If the test particle is to be in equilibrium at a given point we must have

µ− qλ ≡ A = 0, E = pz = Lz = 0. (7)

Thus, the particle can only remain at rest if it is made of the same material as the

source as regards its specific charge and in such a case it can stay still at any point.

In fact, the potential part of the Lagrangian then cancels out and we have a particle

moving along straight lines at a constant velocity. Also, free-particle motion is the only

case admitting purely axial motion (with E, pz 6= 0).

2.2. Radial motion

For radial motion, with z and φ constant, we obtain a single equation

E =
1

2

[
ρ̇2 + 4A ln ρ

]
, (8)

which can be rewritten as

ρ̇2 = 2 [E − 2A ln ρ] . (9)

Motion is only possible if the right-hand side is non-negative. Omitting the above case

of a freely moving particle with A = 0, we then have two cases depending on the sign of

A: unbound orbits reaching the radial infinity with A < 0 and bound orbits intersecting

the source otherwise. Motion can be expressed explicitly in terms of the error function.

2.3. Circular motion

For circular orbits with ρ and z constant, we find the following equations

0 = ρ2φ̇2 − 2A (10)

Lz = ρ2φ̇, pz = 0 (11)

E =
1

2

[
ρ2φ̇2 + 4A ln ρ

]
(12)

This yields a constant angular velocity

ω =

√
2A
ρ

. (13)

Circular motion can occur at any radius but only for A > 0, which means that gravity

is stronger than the electromagnetic force.
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3. Geometry of the spacetime

The investigated general relativistic solution stems from the same Laplace equation

as the classical field of Chapter 2. Based on this analogy, we shall refer to it as

the extremally charged string or ECS, for short. However, the gravitational and

electromagnetic fields are not independent here and are given by the same function.

One integration constant, P > 0, can be scaled away by introducing dimensionless

cylindrical coordinates, ρ/P → ρ, z/P → z, t/P → t. The investigated spacetime is

then described by the rescaled metric

ds̃2 =
ds2

P 2
= −dt2

U2
+ U2

(
dρ2 + ρ2dφ2 + dz2

)
, (14)

with

U(ρ) = 1 +K ln ρ, (15)

where K is the other integration constant the meaning of which is one of our goals. The

form of the potential U is chosen in such a way that the limit K → 0 corresponds to

the Minkowski space as discussed below. The electromagnetic four-potential is

A =
dt

U
, (16)

yielding the following Maxwell tensor

F =
U,ρ
U2

dt ∧ dρ, (17)

describing a purely radial electric field Eρ = −K/ρ(1+K ln ρ)2, which vanishes at radial

infinity. The spacetime is static and cylindrically symmetric, admitting only these three

Killing vectors.

The Kretschmann scalar reads

RµνκλR
µνκλ =

8K2
[
2K2 ln2 ρ+ 7K2 + 2(3K + 2)K ln ρ+ 6K + 2

]
ρ4 (K ln ρ+ 1)8

, (18)

and vanishes far away from the axis, ρ → ∞, as do also all tetrad components of the

Riemann tensor. The spacetime thus has two singularities: one located at ρ = 0 while

the outer one has ρ ≡ ρo = exp(−1/K). The spacetime thus splits in two independent

regions separated by the outer singularity.

The spacetime is generally of type I apart from two special cylindrical surfaces

where it is type D. Additionally, at radial infinity, it approaches type O as all Weyl

scalars vanish in the limit ρ→∞.

Lemos and Zanchin [4] found a spacetime also describing the field of a charged

and massive infinite straight string. Their solution, however, requires the presence of

a negative cosmological constant balancing the field. Therefore, the asymptotics of

the solution far away from the axis approach that of anti-de Sitter. The string itself

is singular but it always has a horizon making sure the cosmic censorship conjecture

holds. The mass and charge densities are independent. These are all points of difference

between the two solutions. If there are any closer similarities they might be revealed due
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to the fact that our solution can also be generalized to contain a positive cosmological

constant, which will change its asymptotics and cancel the static nature of the spacetime.

In our future work we will study the cosmological solution in more detail.

3.1. Proper lengths

Let us now investigate the proper length of some special curves. Let us begin with the

proper circumference of a circle of constant ρ

dlφ
2 = ρ2U2 (ρ) dφ2 ⇒ lφ(ρ) = 2πρ|1 +K ln ρ|. (19)

The circumference of the hoops vanishes at ρ = 0 then grows to its maximum value at

ρc = exp(−1 − 1/K) = ρ0/e < ρ0 and vanishes again at ρ = ρ0. The outer singularity

thus behaves as another axis of the spacetime, see Figure 1. The proper length of the

coordinate segment (0, h) along the z-axis is

dlz
2 = U2 (ρ) dz2 ⇒ lz(ρ) = h|1 +K ln ρ|. (20)

The outer singularity thus contracts along its length as well and appears to be a point

rather than a cylindrical surface. The proper distance from ρ = 0 is given by

dlρ
2 = U2 (ρ) dρ2 ⇒ lρ(ρ) =

∫ ρ

0

|1 +K ln ρ′|dρ′. (21)

To compute the integral, we need to split the integration into cases when 0 < ρ < ρo
and ρ ≥ ρo. We obtain

lρ(ρ) =

{
−ρ (1−K +K ln ρ) sgnK, 0 < ρ < ρo,

[ρ (1−K +K ln ρ) + 2Kρo] sgnK, ρ ≥ ρo.
(22)

lϕ

lz

lρ

ρo

0.0 0.5 1.0 1.5 2.0 2.5 3.0
ρ/ρo

2

4

6

8

10
ℓ

Figure 1. Proper length of various curves for K = −2. The form of the curves is the

same also for K > 0.

For K > 0 and in the limit K → 0+, the spacetime yields the Minkowski spacetime

above ρo while the inner region shrinks with the proper distance from the axis to ρo
vanishing and from ρo to infinity diverging as ρ. For K < 0 and in the limit K → 0−,

we find Minkowski below ρo with the proper distance from the axis to ρo infinite.
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4. Mass and charge of ECS

In this section we focus on the total energy enclosed within a static cylinder of constant

radius, ρ. The advantage of ECS is that it is static and expressed in coordinates where

the metric is diagonal. However, ECS is not asymptotically flat so we cannot use, for

example, the ADM mass. We thus apply several other definitions of mass (energy)

enclosed within a coordinate cylinder and compare them. Finally, we also calculate the

charge enclosed in the respective cylinders. Since ECS is a special case of Majumdar-

Papapetrou spacetimes with equal linear charge and mass densities we expect a similar

behavior at least in the weak-field limit of K → 0.

4.1. C-energy

We cast the metric as

ds2 = U−2
(
−dt2 + dR2

)
+ U2dz2 + ρ2U2dφ2, (23)

corresponding to the canonical form required to determine the C-energy [5]. After

regularization, we obtain

EC (ρ) =
h

8

[
1−

(
U + 2ρU,ρ

U

)2
]

= −h
2
K

1 +K +K ln ρ

(1 +K ln ρ)2
. (24)

In the limit K → 0, we get

EC (ρ) ≈ −hK
2

+
h

2
(−1 + ln ρ)K2 +O

(
K3
)
. (25)

For a plot of the resulting function, refer to Figure 2. It diverges at the outer singularity

and vanishes both at ρ = 0 and at the radial infinity.

4.2. Landau-Lifshitz

Landau and Lifshitz derived a conservation law [6]

[16π (−g) (T µν + tµνLL)],ν = 0, (26)

with g the determinant of the metric and based on the stress-energy pseudotensor of

the gravitational field, tµνLL, defined as follows

16πtµνLL ≡ g−1
[
g
(
gµνgαβ − gµαgνβ

)]
,αβ
− [2Rµν + (2Λ−R) gµν ] . (27)

In our calculation we determined the corresponding super-potential (see [6]) and

obtained a relation for the mass

MLL(ρ) = P 0 =
h

2
|K|sgn (ρo − ρ) (1 +K ln ρ)6 . (28)

For K → 0, we find

MLL(ρ) ≈ −hK
2
− 3K2h ln ρ+O

(
K3
)
. (29)

For a plot of the resulting function, refer to Figure 2 where we can see that MLL(ρ)

diverges at ρ = 0 and radial infinity and vanishes at ρ = ρo. It changes sign at the outer

singularity and its behavior is independent of the sign of K.
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4.3. Brown-York

Energy is defined as an integral over the boundary S of a volume Σ and one needs to

subtract the contribution of a selected background spacetime [7]. Since in the limit

K → 0 we obtain Minkowski, we subtract the contribution of flat spacetime [4]. From

the relation

MBY =

∫
S

gµν (Enµ + jµ) ξν(t)dS, (30)

with appropriate definition of the terms appearing in the integral (see [4]). After some

algebra, we conclude

MBY (ρ) =
−hK

2 (1 +K ln ρ)
. (31)

For K → 0, we find

MBY (ρ) ≈ −hK
2

+
hK2

2
ln ρ+O

(
K3
)
. (32)

For a plot of the resulting function, refer to Figure 2 where we can see that for K < 0

MBY is always non-negative, whereas for K > 0 it is positive up to ρ = e−1−1/K and

then it is only negative. Brown-York mass is always finite at ρ = 0 and at infinity while

diverging at ρ = ρo.

4.4. Komar mass

For a stationary spacetime, Komar defines the mass enclosed in a three-dimensional

spacelike surface Σ [8] as

MK =
1

4π

∮
S

ξα;β(t) rαnβdS (33)

where ξβ(t) is the Killing vector corresponding to the time symmetry. Now we plug in

our choice of integration surface to yield

MK (ρ) = −hρU,ρ
2U

. (34)

We see that this expression is identical to the Brown-York definition (31).

4.5. Overview of results for mass

We summarize our results for various definitions of mass in Figure 2. Generally, they

are consistent with the singularity at ρ = 0 having a positive linear mass density equal

to −K/2 at least for small negative values of K, while the outer singularity at ρ = ρo
has a negative linear mass density equal to −K/2 at least for small positive values of K.

This is due to the fact that the Minkowski limit can only be applied in these regions and

the corresponding signs of K, see the last paragraph of Chapter 3. If we shift the origin

of coordinate ρ to ρo and calculate the energy within a cylinder centered at ρ = ρo, we

find that the total mass switches sign.
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MLL
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MK

ρo
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ρ/ρo
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E/h

Figure 2. Comparison of different definitions of mass for K = ±2.

4.6. Charge

We now calculate the charge within a closed area S

Q ≡ 1

4π

∮
S

∗F =
1

4π

∮
S

Fαβr
αnβdS =

−hK
2

, (35)

where F is the Maxwell tensor and ∗ denotes the Hodge dual. Similarly to the previous

subsections on energy, if we calculate the charge enclosed by a cylindrical surface around

the outer axis, the expression switches its sign. We thus conclude that the singularity

at ρ = 0 has a linear charge equal to −K/2 just like the outer singularity when observed

from the outside. However, when we consider the outer singularity from below, its linear

charge density is K/2. Overall, the linear charge and mass densities of the singularities

are of the same magnitude as expected.

5. Shell sources

We now apply the Israel formalism [9] generalized to non-vacuum spacetimes involving

electromagnetic fields by Kuchař [10]. Instead of relying on non-unique definitions of

local energy density, we replace the singular regions of the spacetime by flat space

and study the mass and charge of matter induced on the interface between the newly

introduced Minkowski sections and the original ECS outside. For the sake of brevity,

we just give the results here.

We first replace the singularity at ρ = ρo and thus take ρ > ρo. We have a

Minkowskian cylinder of finite radius restricted by an infinitely thin cylindrical surface

of induced matter, beyond which ECS stretches on to radial infinity. For K > 0 we

must have U > 0 and for the mass and charge induced per unit length of the cylindrical

interface we find M1 = Q1 = −1
2
K
U
< 0. There is zero induced pressure along the z and

φ directions. The lowest-order expansion yields M1 = Q1 = −K/2 as expected. Taking

K < 0 now, we have U < 0 and the induced mass is of the form M1 = 1
2
(1 + K

U
) > 0

and the induced charge is Q1 = 1
2
K
U
> 0. We cannot apply the limit K → 0 here, since
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we could not keep the cylinder radius constant in the limiting process to stay above the

outer singularity. Additionally, there is also induced tension along the z-direction.

Let us look now at the singularity located at ρ = 0. For K > 0 we need U < 0

and find M1 = 1
2
(1 + K

U
) and Q1 = 1

2
K
U
< 0. There is again tension induced along the

z direction. The induced mass is positive below the radius of largest circumference, ρc
(see text below (19) and Figure 1), and negative above it. There is no Minkowski

limit. Taking K < 0 now, we need U > 0 and the induced mass is of the form

M1 = Q1 = −1
2
K
U
> 0. The lowest-order expansion yields M1 = Q1 = −K/2 in

the Minkowski limit as expected. The induced cylinder has no pressure or tension in

any direction.

Finally, we now replace the outer singularity—located at ρo and forming the other

spacetime axis with a vanishing circumference (see Figure 1)—by a cylindrical region

of Minkowski and continue across a cylindrical surface inside, towards ρ = 0. Let us

first take K > 0 and thus U < 0. We have M1 = Q1 = −1
2
K
U
> 0, with no pressure

or tension. We cannot do the Minkowski limit here. For K < 0 and U > 0 we obtain

Q1 = 1
2
K
U
< 0 and M1 = 1

2
(1 + K

U
), which is negative if we are above ρc. There is again

tension along the z-direction. We cannot do the Minkowski limit since the cylinder

radius would fall below ρc and we would end up with two sections of Minkowski pasted

together inside out with two axes present in the resulting spacetime.

The cases admitting a Minkowski limit are consistent with the findings of Chapter 4,

for an overview, see Conclusions and summary.

6. Equations of motion

Finally, we will study motion of test particles in the spacetime to compare to the results

from the previous sections. The Lagrangian for a charged particle of specific charge q

and moving in an electromagnetic field is

L =
1

2
gµν ẋ

µẋν + qẋκAκ = (36)

=
1

2

[(
ρ2φ̇2 + ρ̇2 + ż2

)
U2 − ṫ2

U2

]
+ q

ṫ

U
.

The Lagrangian does not explicitly depend on t, φ and z, so the integrals of motion read

E ≡ qU − ṫ
U2

, Lz ≡ ρ2φ̇U2, N ≡ żU2. (37)

There is thus a single equation remaining, which is not explicitly integrated:

ρ̈− ρφ̇2 − U,ρ
U

[
ρ2φ̇2 − ρ̇2 + ż2

]
+ ṫU,ρ

qU − ṫ
U5

= 0. (38)

And finally the normalization(
ρ2φ̇2 + ρ̇2 + ż2

)
U2 − ṫ2

U2
= U , (39)

where U is a normalization constant, U = 0 for photon motion and U = −1 for timelike

motion. The equations of motion are singular if U or U,ρ are singular and they diverge

at ρ = 0 or ρ = ρo.
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6.1. Static electrogeodesics

First we will investigate static solutions. The equations reduce to

− ṫ2

U2
= −1, ẗ = 0,

(
qU − ṫ

)
ṫ = 0. (40)

The solution only exists between the singularities for q = −sgnK and outside for

q = sgnK. Accepting our previous results on the charge of the singularities, we see

that for K > 0 a test particle located between the singularities with q = −1 is repelled

outward so the linear mass density of the two singularities must be positive at ρ = 0 and

negative at ρ = ρo at least in the weak-field limit. Moreover, their magnitude must be

the same as this is the case for the particle. If we are outside where q = 1, the particle

is attracted inwards by the charge so it must be repelled by a negative mass density.

Following the same line of reasoning for K < 0, we find that the signs of mass densities

of the singularities are in fact the same as for K > 0 and their magnitude is again equal

to the charge density.

6.2. Radial motion

Radial cylindrical electrogeodesics are defined as world-lines where φ and z are

independent of proper time. They are governed by the equations

ρ̇2U2 − ṫ2

U2
= U , (41)

qU − ṫ
U2

= E, (42)

where the first equation is the normalization condition and the second one comes from

conservation of E.

6.2.1. Photon motion Taking q = U = 0, (41)–(42) become equations of motion for

photon. We proceed by expressing ṫ from (42). From normalization we then obtain an

equation for ρ. We thus need to solve

ṫ = −E (1 +K ln ρ)2 , ρ̇2 = E2. (43)

From (43) we immediately see that E < 0 for ṫ to be positive. For E = 0 the photon

would be static. This solution reads

ρ(τ) = r0 ± |E|τ, (44)

where r0 is the initial radius and τ is the affine parameter. If the photon starts towards

one of the singularities, it will hit it, only photons emitted above outer singularity can

avoid both singularities. The geodesic cannot be continued across the singularities and,

therefore, we have two regions of spacetime which are causally separated.
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6.2.2. Electrogeodesic The equations for electrogeodesic can be integrated to yield

ṫ = − (1 +K ln ρ) (E − q + EK ln ρ) , (45)

ρ̇2 =
(E − q + EK ln ρ)2 − 1

(1 +K ln ρ)2
. (46)

We find two turning points

ρt± = exp
q − E ± 1

EK
,E 6= 0, q 6= ∓1. (47)

Radial acceleration at these radii reads

ρ̈ (τ : ρ = ρt±) = ± KE3

ρt± (q ± 1)2
6= 0 for q 6= ∓1. (48)

We summarize our results for radial electrogeodesics in Figure 3.

E > 0

E = 0

E < 0

q > 1 q < -1

q > 1 q < -1

q ≤ -1q ≥ 1

q < 1 -1 < q

0 ρt- ρo ρt+ ρ

(a) K < 0

E > 0

E = 0

E < 0

q < -1 q > 1

q < -1 q > 1

q ≥ 1q ≤ -1

-1 < q q < 1

0 ρt+ ρo ρt- ρ

(b) K > 0

Figure 3. Regions, where radial electrogeodetic motion is possible.

6.3. Circular electrogeodesics

We investigate circular electrogeodesics with ρ and z constant and governed by

− ṫ2

U2
+ U2ρ2φ̇2 = U , (49)

ẗ = φ̈ = 0, (50)

qṫU,ρ
U4
− ṫ2U,ρ

U5
− ρφ̇2 − ρ2φ̇2U,ρ

U
= 0. (51)

We can immediately write t = γτ, φ = ωτ and insert this into the above equations to

give

− γ2

(1 +K ln ρ)2
+ (1 +K ln ρ)2 ρ2ω2 = U , (52)

Kγ2

1 +K ln ρ
+ ρ2ω2 (1 +K ln ρ)3 (1 +K +K ln ρ) = qKγ. (53)
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6.3.1. Photon motion Setting q = U = 0 in the previous equations, we obtain

ρ2ω2U4 − γ2 = 0, (54)

U,ργ
2 + U4ρω2 (U + ρU,ρ) = 0, (55)

which yields the radius, ρph, of the photon orbit

U + 2K = 0⇒ ρ = ρph ≡ e−2−1/K , γ2 = ρ2ω2K2, (56)

where ω is a free parameter.

6.3.2. Charged massive particle We now investigate charged massive particles with

U = −1. The equations are quadratic, so we expect two different absolute values of ω

at most (the opposite sign corresponds to the opposite direction). First we express ω

from the normalization condition

ω2 =
γ2 − U2

ρ2U4
(57)

and substitute back into the second equation. The general solution (for ρ 6= ρf ) is

γ± = U
qρU,ρ ±

√
(q2 + 8) ρ2U2

,ρ + 12ρUU,ρ + 4U2

2 (2ρU,ρ + U)
, (58)

ω2
± = U,ρ

ρU,ρ (q2 − 4)− 2U ± q
√

(q2 + 8) ρ2U2
,ρ + 12ρUU,ρ + 4U2

2ρU2 (2ρU,ρ + U)2
. (59)

Plots of the angular velocities for a range of specific charges are given in Figure 5.

To compare these trajectories to the Newtonian case, we calculate a series expansion

of the angular velocity for K → 0

ω2
± ≈ K

−1± q
ρ2

+O
(
K2
)
. (60)

We need to set µ = λ in (7) to have an extremally charged source of the field and express

the angular velocity, ωN , using the charge-to-mass ratio

ω2
N = 2λ

1− q
ρ2

. (61)

Therefore, ω+ approaches the Newtonian velocity if we identify the parameters of the

field as follows
M

h
=
Q

h
= −K

2
. (62)

The regions where circular motion is possible are summarized in Figure 4. There are

regions admitting both ω± unlike the Newtonian case which only allows a single angular

velocity at any given radius. This is a behavior we have already observed in a previous

paper on another MP solution involving two charged black holes [11] and is a result of

the quadratic nature of the algebraic form of the equations of motion. The value ρq
used in the figures is

ρq = exp

(
−2 + 3K +K

√
1− q2

2K

)
. (63)
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ω+

ω-

ωρph

q < 1 q < -10 < q < 1

0 < q < 1

1 < q

0 < q < 1

0 ρph ρq ρo ρ

(a) K < 0

ω+
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ωρph

-1 < q 1 < q-1 < q < 0

-1 < q < 0

q < -1

-1 < q < 0

0 ρph ρq ρo ρ

(b) K > 0

Figure 4. Schematic illustration of regions where circular electrogeodesic motion is

possible. The diagrams are not to scale, static solutions are excluded. The photon

orbit radius ρph admits a special frequency ω2
ρph

= (1− q2)/4K2ρ2ph.
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Figure 5. Plots of angular velocity for circular motion of test particles of varying

specific charge as a function of the radial coordinate, K = −2.

6.4. Electrogeodesics parallel to the axis

Unlike in the Newtonian case, motion parallel to the axis is possible in GR. It is governed

by the following equations

− ṫ2

U2
+ ż2U2 = U , (64)
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ẗ = z̈ = 0⇒ t = γτ, z = vτ, (65)

U,ρ
(
−qṫU + ṫ2 + ż2U4ρ

)
= 0. (66)

Null geodesics parallel to the z-axis are not possible. For charged massive particles we

determine their Lorentzian factor, γ, and their velocity parallel to the axis, v. We again

find two distinct solutions

γ± =
U

4

(
q ±

√
q2 + 8

)
, v± =

√
q2 ± q

√
q2 + 8− 4

8U2
. (67)

The regions admitting solutions are summarized in Figure 6.

K < 0

K > 0

q > 1 q < -1

q < -1 q > 1

0 ρo ρ

Figure 6. Regions, where z-electrogeodetic motion is possible for K 6= 0

7. Conclusions and summary

Let us first state our results. We interpret the spacetime as actually consisting of

two independent spacetimes separated by the outer singularity. Inside, the situation

is complicated by the presence of two singularities pulling or pushing test particles in

opposite directions, while outside there is only one singularity present in the spacetime.

The outer singularity always has a negative mass per unit length as observed from both

the outside and the inside. The inner singularity at ρ = 0 then always has a positive

mass. The parameter K appearing in the metric determines the sign of the charge

per unit length of the singularities. For K > 0 the inner singularity has a negative

charge. The outer singularity has a negative charge when observed from the outside

and a positive charge from the inside. For K < 0 the signs are reversed. For weak

fields, K → 0, the magnitude of both the mass and charge densities is given by K/2,

see Figure 7.

We investigated the physical properties of a cylindrically symmetric Majumdar-

Papapetrou solution of Einstein-Maxwell equations (ECS) sourced by a non-compact,

extremally charged linear singularity forming the axis of the spacetime.

Based on the form of the metric, we discovered that in addition to the axis

singularity, the spacetime includes another singularity of different physical properties,

which divides the spacetime into two causally separated regions. Since ECS is a

solution of electro-vacuum equations both singularities are the only source of the

resulting gravitational and electromagnetic fields. Our goal was to establish their

physical parameters—i.e., mass and charge densities per unit length—and geometric

characteristics.
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(b) K > 0

Figure 7. Schematic illustration of the sign of linear mass and charge densities of the

singularities.

We calculated motion of charged test particles moving in preferred directions and

compared it to the solution within the framework of classical mechanics. Based on

the behavior of radial electrogeodesics, we found that the singularities are not covered

by horizons and are thus naked in accordance with [3]. Next, we dealt with static

trajectories and gained insight into the specific charge of the singularities. We then

determined circular paths and regions where such motion is possible. One interesting

result is a range of circular orbit radii and conditions on the spacetime parameters

allowing the existence of two electrogeodesics of the same radius but differing angular

velocities in the same direction. We then determined the classical limit of the circular

velocities to again obtain information about the specific charge of the singularities.

When determining the mass of the sources of ECS, we also proceeded from the total

energy of a region of spacetime containing the singularity. However, there is generally

no way of determining locally the energy of the gravitational field in GR and we thus

used several different definitions and compared them.

Using Israel formalism, we then regularized the spacetime by replacing the regions

containing the singularities with flat space and continuing with ECS outside the

respective cylindrical hypersurfaces, which then become the source of the gravitational

and electromagnetic fields. We determined their charge and mass and compared them

again for various spacetime parameters and also with the classical solution.

Using several independent methods, we thus clarified the meaning of the spacetime’s

structure and parameters and gained intuition about its physical interpretation. The

results will broaden the knowledge of MP spacetimes with non-compact sources, which

have not been paid much attention so far.
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