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1. Introduction
In harmonic analysis and partial differential equations we often measure qual-
ity or size of a function f living on some domain Ω ⊂ Rn by its affiliation to
some function space. The notion of size differs from task to task resulting in
a whole zoo of various function spaces. A basic example goes to Lebesgue spaces
as a measurement for the integrability of an absolute value of a function raised to
a power. The importance of Lebesgue spaces in functional analysis is unquestion-
able and they stand for one of the main items in the toolbox of functional analysis.
Countless of properties of functions and operators have been obtained by the use
of such simple-to-understand spaces, however the fine attributes cannot be often
captured. For all, let us mention several, probably folklore, examples.

It is very well known that the Hardy-Littlewood maximal operator M , given
for locally integrable f by

Mf(x) = sup
Q∋x

1
|Q|

∫
Q

|f(y)| dy for x ∈ Ω,

where the supremum is taken over all cubes Q ⊆ Ω containing x, acts boundedly
from Lp(Ω) to Lp(Ω) if and only if p > 1. If the measure of Ω is infinite, Mf
is never integrable unless f vanishes almost everywhere. However, for the finite
measure sets Ω, the integrability of Mf on Ω is achievable and it cannot be
governed by Lebesgue spaces. Turning just several pages in a function spaces
cookbook may help us to remedy this issue by the use of Orlicz spaces. They
refine the scale of Lebesgue spaces by considering wider class of operations applied
to f before the integrability is tested. Thus, by the result of [64], Mf ∈ L1(Ω) if
and only if ∫

Ω
|f | log+ |f | < ∞,

which we rather write in the form of an embedding

M : L log L(Ω) → L1(Ω).

Our second example concerns a famous phenomenon – the gain of integrability.
Let Ω be a subset of Rn having finite measure and let u be a function defined
on Ω and vanishing on the boundary ∂Ω. Suppose that u is weakly differentiable
and u, |∇u| ∈ Lp(Ω). The famous Sobolev inequality tells us that if 1 ≤ p < n,
then

u ∈ L
np

n−p (Ω),
revealing the improvement of integrability, since np

n−p
enlarges p. We usually write

W 1
0 Lp(Ω) → L

np
n−p (Ω)

instead. If p > n then even u ∈ C(Ω) and we are above the integrability scale.
What remains is the most interesting case p = n. Working with Lebesgue spaces
only, Sobolev inequality gives that u ∈ Lq(Ω) for every q < ∞, however u might
be unbounded, leaving us with an open set of Lebesgue spaces with no best
possible choice. Nevertheless, Orlicz spaces save the day. With the help of an
exponential space, one has

W 1
0 Ln(Ω) → exp L

n
n−1 (Ω)
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and it turns out that the target space cannot be improved to any other Orlicz
space.

These examples indicate that Orlicz and Orlicz-Sobolev spaces provide eligible
framework for fine description of operators and embeddings. When we add that
the Orlicz spaces are fairly easy to understand, it is no surprise that they had
found its immediate applications in PDEs and variational tasks.

In this thesis we deal with some classical operators of harmonic analysis in
Orlicz spaces. Apart from the maximal operator we investigate the Hardy-type in-
tegral operators, Sobolev-type embeddings, maximal operator of fractional order,
Riesz potential and Laplace transform. Each operator is treated in its separate
chapter. For each operator T from our list we ask the same basic questions:

• For which pairs of Orlicz spaces LA(Ω) and LB(Ω) the embedding

T : LA(Ω) → LB(Ω) (1)

holds?

• Given an Orlicz space LA(Ω), is there a best possible LB(Ω) that renders
(1) true? How does it look like?

• Given an Orlicz space LB(Ω), is there an optimal LA(Ω) such that (1) holds?
What is LA(Ω) eventually?

Some answers were given earlier in the literature and became part of a folklore
knowledge, while others remain without satisfactory solution. We would like to
collect as much material as possible to present a comprehensive exposition about
these classical operators in Orlicz spaces. We explain all the methods used, we
uncover weak spots in this theory and we suggest several directions in which the
research might continue.

It should be mentioned that many results in this work are not due to the
author. We compile known results available in the literature together with either
published or unpublished results of the author. The details about the origins
are mentioned at the relevant places and the brief history of the objectives in
question is appended.
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2. Background and preliminaries

2.1 Young functions
We call A : [0, ∞) → [0, ∞] a Young function if it is convex, left-continuous, and
A(0) = 0. Any function of this kind can be expressed in the form

A(t) =
∫ t

0
a(s) ds for t ≥ 0 (2.1.1)

in which a : [0, ∞) → [0, ∞] is a non-decreasing function obeying

A(t) ≤ t a(t) ≤ A(2t) for t ≥ 0. (2.1.2)

Every Young function satisfies, in particular,

kA(t) ≤ A(kt) if k ≥ 1 and t ≥ 0. (2.1.3)

The Young conjugate Ã of A is given by

Ã(t) = sup{st − A(s) : s ≥ 0} for t ≥ 0

and satisfies
Ã(t) =

∫ t

0
a−1(s) ds for t ≥ 0, (2.1.4)

where a−1 is the generalised left-continuous inverse of a. The function Ã is a
Young function as well, and its Young conjugate is again A. One has that

t ≤ A−1(t) Ã−1(t) ≤ 2t for t ≥ 0, (2.1.5)

where A−1 denotes the generalized right-continuous inverse of A. The function
B, defined as B(t) = cA(bt), where b, c are positive constants, is also a Young
function and

B̃(t) = cÃ
(

t
bc

)
for t ≥ 0. (2.1.6)

A Young function A is said to satisfy the ∆2-condition near infinity [resp. near
zero] [resp. globally] if it is finite-valued and there exist constants c > 0 and t0 > 0
such that

A(2t) ≤ cA(t) for t ≥ t0 [0 ≤ t ≤ t0] [t ≥ 0].

A Young function A is said to dominate another Young function B near infinity
[near zero] [globally] if there exist constants c > 0 and t0 > 0 such that

B(t) ≤ A(ct) for t ≥ t0 [0 ≤ t ≤ t0] [t ≥ 0].

The functions A and B are called equivalent near infinity [near zero] [globally] if
they dominate each other near infinity [near zero] [globally]. We write A ≈ B.

More generally, the terminology “near infinity”, “near zero”, “globally” will
be adopted to indicate that some property of a function of t holds for t ≥ t0, for
0 ≤ t ≤ t0 or for t ≥ 0, respectively.
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2.2 Boyd indices
Given a Young function A, we define the function h∞

A : (0, ∞) → [0, ∞) as

h∞
A (t) = sup

s>0

A−1(st)
A−1(s) for t > 0.

The global lower and upper Boyd indices of A are then defined as

i∞
A = sup

1<t<∞

log t

log h∞
A (t) and I∞

A = inf
0<t<1

log t

log h∞
A (t) , (2.2.1)

respectively. One has that

1 ≤ i∞
A ≤ I∞

A ≤ ∞. (2.2.2)

It can also be shown that

i∞
A = lim

t→∞

log t

log h∞
A (t) and I∞

A = lim
t→0+

log t

log h∞
A (t) . (2.2.3)

The Boyd indices of A admit an alternate expression, that does not call into
play A−1, provided that A is finite-valued. Define ĥ∞

A : (0, ∞) → [0, ∞) as

ĥ∞
A (t) = sup

s>0

A(st)
A(s) for t > 0.

Then,

i∞
A = sup

0<t<1

log ĥ∞
A (t)

log t
and I∞

A = inf
1<t<∞

log ĥ∞
A (t)

log t
. (2.2.4)

Furthermore, the supremum and infimum in (2.2.4) can be replaced with the
limits as t → 0+ and t → ∞, respectively.

The local lower and upper Boyd indices iA and IA of A are defined as in
(2.2.1), with h∞

A replaced by the function hA : (0, ∞) → [0, ∞] given by

hA(t) = lim sup
s→∞

A−1(st)
A−1(s) for t > 0.

Properties parallel to (2.2.2) and (2.2.3) hold, with i∞
A and I∞

A replaced by iA and
IA. Moreover, on defining ĥA : (0, ∞) → [0, ∞) as

ĥA(t) = lim sup
s→∞

A(st)
A(s) for t > 0,

a version of equation (2.2.4) holds for iA and IA, with proper replacements, namely

iA = sup
0<t<1

log ĥA(t)
log t

and IA = inf
1<t<∞

log ĥA(t)
log t

. (2.2.5)

Observe that if the function A−1(t) t−σ is equivalent globally [near infinity], up to
multiplicative positive constants, to a non-decreasing function, for some σ ∈
(0, 1), then I∞

A ≤ 1/σ [IA ≤ 1/σ]. Similarly, if the function A−1(t) t−σ is
equivalent globally [near infinity] to a non-increasing function, then i∞

A ≥ 1/σ
[iA ≥ 1/σ].

In the special case when A(t) = tp for some p ≥ 1, one has that i∞
A = I∞

A = p;
furthermore, if A(t) = ∞ for large t, then iA = IA = ∞.

We refer the reader to [10] for more details on the material of this section.
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2.3 Orlicz spaces
Let R be a sigma-finite, non-atomic, measure space endowed with a measure ν.
Denote by M(R) the space of real-valued ν-measurable functions in R, and by
M+(R) the set of non-negative functions in M(R). Given a Young function A,
the Orlicz space LA(R) is the collection of all functions f ∈ M(R) such that

∫
R

A

(
|f(x)|

λ

)
dν(x) < ∞

for some λ > 0. The Orlicz space LA(R) is a Banach space endowed with the
Luxemburg norm defined as

∥f∥LA(R) = inf
{

λ > 0 :
∫
R

A

(
|f(x)|

λ

)
dν(x) ≤ 1

}

for f ∈ M(R). The choice A(t) = tp, with 1 ≤ p < ∞, yields LA(R) = Lp(R),
the customary Lebesgue space. When A(t) = 0 for t ∈ [0, 1] and A(t) = ∞ for
t ∈ (1, ∞), one has that LA(R) = L∞(R).

Let E be a non-negligible measurable subset of R, and let χE denote its
characteristic function. Then

∥χE∥LA(R) = 1
A−1

(
1

ν(E)

) . (2.3.1)

The fundamental function φA of LA(R) is defined as

φA(s) = 1
A−1

(
1
s

) for 0 < s < ν(R), (2.3.2)

and φA(0) = 0. Owing to (2.3.1),

φA(s) = ∥χE∥LA(R)

for every set E ⊂ R such that ν(E) = s. A Hölder type inequality in Orlicz
spaces asserts that

∥g∥
LÃ(R) ≤ sup

f∈LA(R)

∫
R f(x)g(x) dν(x)

∥f∥LA(R)
≤ 2∥g∥

LÃ(R) (2.3.3)

for every g ∈ LÃ(R).
The inclusion relations between Orlicz spaces can be characterized in terms

of the notion of domination between Young functions. Assume that ν(R) < ∞
[ν(R) = ∞], and let A and B be Young functions. Then

LA(R) → LB(R) if and only if A dominates B near infinity [globally]. (2.3.4)

The alternate notation A(L)(R) for the Orlicz space LA(R) will be adopted
when convenient. In particular, if ν(R) < ∞, and A(t) is equivalent to tp(log(1 +
t))α near infinity, where either p > 1 and α ∈ R, or p = 1 and α ≥ 0, then the
Orlicz space LA(R) is the so-called Zygmund space denoted by Lp(log L)α(R).
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It holds that iA = IA = p. Orlicz spaces of exponential type are denoted by
exp Lβ(R), and are built upon the Young function A(t) = etβ − 1, with β > 0.
We have iA = IA = ∞.

If ν(R) = ∞, and A(t) is equivalent to tp ℓ(t)α0 near zero and to tp ℓ(t)α∞

near infinity where ℓ(t) = 1 + | log t|, t > 0, and either p > 1 and α0, α∞ ∈ R
or p = 1 and α0 ≤ 0 and α∞ ≥ 0, then the Orlicz space LA(Rn), also called
Zygmund space, is denoted by Lp(log L)A(Rn), where A = [α0, α∞]. Observe that
i∞
A = I∞

A = p. If

A(t) is equivalent to

⎧⎨⎩exp(−tβ0) near zero,

exp(tβ∞) near infinity,

with β0 < 0 < β∞, then Orlicz space LA(Rn) of exponential type is now denoted
by exp LB(Rn) where B = [β0, β∞]. We have i∞

A = I∞
A = ∞ in this case.

2.4 Endpoint spaces
Let f ∈ M(R). The distribution function of f is denoted by µf and is defined by

µf (t) = ν({x ∈ R : |f(x)| > t}) for t > 0.

Then f ∗ : [0, ∞) → [0, ∞] denotes the decreasing rearrangement of f given by

f ∗(s) = inf{t > 0 : µf (t) ≤ s} for s ≥ 0.

An important property of rearrangements is the Hardy-Littlewood inequality [9,
Chapter 2, Theorem 2.2], which asserts that, if f, g ∈ M(R), then∫

R
fg dν ≤

∫ ∞

0
f ∗(t)g∗(t) dt. (2.4.1)

We denote by MA(R) the weak Orlicz space associated with A, namely the
Marcinkiewicz type space endowed with the norm obeying

∥f∥MA(R) = sup
0<t<ν(R)

f ∗∗(t)
A−1(1

t
)

for f ∈ M(R). Here, f ∗∗ : (0, ∞) → [0, ∞] is the function defined as

f ∗∗(t) = 1
t

∫ t

0
f ∗(s) ds for t > 0.

Since f ∗(t) ≤ f ∗∗(t) for t > 0,

sup
0<t<ν(R)

f ∗(t)
A−1(1

t
) ≤ ∥f∥MA(R) (2.4.2)

for every f ∈ R.
We denote by ΛA(R) the Lorentz endpoint space associated to A, i.e., the

space endowed with the norm

∥f∥ΛA(R) =
∫ ν(R)

0
f ∗(t) dφA(t). (2.4.3)
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Here, the integral stands for a Lebesgue-Stieltjes integral associated with the
fundamental function φA given by (2.3.2).

The Orlicz space built upon a Young function A obeys

ΛA → LA(R) → MA(R) (2.4.4)

for whatever A is. Moreover,

∥χE∥ΛA(R) = ∥χE∥MA(R) = φA(ν(E)) (2.4.5)

for every measurable set E ⊂ R.
The associate space to Marcinkiewicz space MA(R) corresponds to the Lorentz

space ΛÃ in which Ã is the Young conjugate function to A from (2.1.6). More
specifically,

∥f∥ΛÃ(R) ≃ sup
g∈MA(R)

∫
R f(x)g(x) dν(x)

∥g∥MA(R)
(2.4.6)

for f ∈ M(R). Here, and in what follows, the relation ≃ between two expres-
sions means that they are bounded by each other, up to multiplicative positive
constants independent of the involved relevant variables.

Analogously, M Ã(R) represents the associate space to ΛA(R) and

∥f∥
M Ã(R) ≃ sup

g∈ΛA(R)

∫
R f(x)g(x) dν(x)

∥g∥ΛA(R)
. (2.4.7)

2.5 Lorentz spaces
Let 1 ≤ p, q ≤ ∞. The Lorentz Lp,q(R) space is the set of all functions f ∈ M(R)
such that the functional

∥f∥Lp,q(R) =
s 1

p
− 1

q f ∗(s)


Lq(0,∞)

is finite. If either 1 < p < ∞ and 1 ≤ q ≤ ∞ or p = q = 1 or p = q = ∞, then
∥ · ∥Lp,q(R) is equivalent to a norm. If p = ∞ and q < ∞, then Lp,q(R) = {0} and
if p = 1 and q > 1, Lp,q(R) is a quasi-normed space.

The Lorentz spaces generalize the Lebesgue spaces in a sense that Lp,p(R) =
Lp(R) For every p ∈ [1, ∞]. A simple nesting property holds in Lorentz spaces.
If p, q, r ∈ [1, ∞] and q ≤ r, then

Lp,q(R) → Lp,r(R) (2.5.1)

and all spaces on this scale share the one fundamental function, namely we have

∥χE∥Lp,q(R) ≃ ν(E)
1
p for all 1 ≤ q ≤ ∞ (2.5.2)

and every measurable E ⊆ R. The spaces Lp,1(R) and Lp,∞(R) coincide with the
endpoint spaces ΛA(R) and MA(R), respectively, in which A(t) = tp.
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2.6 Rearrangement-invariant spaces
Let R and S be two σ-finite non-atomic measure spaces equipped with norms
ν and µ, respectively. We say that functions f ∈ M(R) and g ∈ M(S) are
equimeasurable, and write f ∼ g, if f ∗ = g∗ on (0, ∞).

A functional ϱ : M+(R) → [0, ∞] is called a Banach function norm if, for all
f , g and {fj}j∈N in M+(R), and every λ ≥ 0, the following properties hold:
(P1) ϱ(f) = 0 if and only if f = 0; ϱ(λf) = λϱ(f); ϱ(f + g) ≤ ϱ(f) + ϱ(g);
(P2) f ≤ g a.e. implies ϱ(f) ≤ ϱ(g);
(P3) fj ↗ f a.e. implies ϱ(fj) ↗ ϱ(f);
(P4) ϱ(χE) < ∞ for every E ⊆ R of finite measure;
(P5) If E is a subset of R of finite measure, then

∫
E f dµ ≤ CEϱ(f) for some

constant CE, 0 < CE < ∞, depending on E and ϱ but independent of f .
If, in addition, ϱ satisfies
(P6) ϱ(f) = ϱ(g) whenever f ∗ = g∗,
then we say that ϱ is a rearrangement-invariant (or r.i., for short) norm.

If ϱ is a rearrangement-invariant function norm, then the collection
X(R) = Xϱ(R) = {f ∈ M(R) : ϱ(|f |) < ∞}

is called a rearrangement-invariant space corresponding to the norm ϱ. We shall
write ∥f∥X instead of ϱ(|f |).

With any rearrangement-invariant function norm ϱ is associated another func-
tional, ϱ′, defined for g ∈ M+(R) as

ϱ′(g) = sup
{∫

R
fg dν : f ∈ M+(R), ϱ(f) ≤ 1

}
.

It turns out that ϱ′ is also a rearrangement-invariant norm, which is called the
associate norm of ϱ. The function space X ′(R) = Xϱ′(R) determined by ϱ′ is
called the associate space of X Note that (X ′)′ = X always holds.

The Hölder inequality in r.i. spaces takes the form∫
R

fg dν ≤ ∥f∥X(R)∥g∥X′(R)

for every f, g ∈ M(R). Such inequality is sharp in a sense that

∥f∥X(R) = sup
{∫

R
fg dν : ∥f∥X′(R) ≤ 1

}
. (2.6.1)

as follows from [9, Chapter 1, Theorem 2.9].
For every r.i. space X(R) there exists a unique r.i. space X(0, ν(R)) over the

interval (0, ν(R)) endowed with the one-dimensional Lebesgue measure such that

∥f∥X(R) = ∥f ∗∥X(0,ν(R)). (2.6.2)
This space is called the representation space of X. This follows from the Luxem-
burg representation theorem [9, Chapter 2, Theorem 4.10]. If X and Y are two
r.i. spaces over R, then, by [9, Theorem 1.8, Chapter 1],

X(R) ⊆ Y (R) implies X(R) → Y (R). (2.6.3)
It is easy to observe that Orlicz, Marcinkiewicz and Lorentz spaces are r.i.

spaces.
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2.7 Orlicz-Sobolev spaces
Let n ∈ N, n ≥ 2, and let Ω be an open subset of Rn. Given m ∈ N and a Young
function A, the m-th order Orlicz-Sobolev space built upon A is defined by

W m,A(Ω) =
{

u ∈ M(Ω) : u is m-times weakly differentiable in Ω, and

|∇ku| ∈ LA(Ω), k = 0, 1, . . . , m
}

.

Here, ∇ku denotes the vector of all k-th order weak derivatives of u and ∇0u = u.
One has that W m,A(Ω) is a Banach space equipped with the norm defined as

∥u∥W m,A(Ω) =
m∑

k=0
∥∇ku∥LA(Ω)

for u ∈ W m,A(Ω). By W m,A
0 (Ω) we denote the subspace of W m,A(Ω) of those

functions u in Ω whose continuation by 0 outside Ω belongs to W m,A(Rn). The
notations W mLA(Ω) and W mA(L)(Ω) will also be occasionally adopted instead
of W m,A(Ω); analogous alternate notations will be used for W m,A

0 (Ω).
If |Ω| < ∞, an iterated use of a Poincaré type inequality in Orlicz spaces [69,

Lemma 3] ensures that the functional

∥∇mu∥LA(Ω)

defines a norm on W m,A
0 (Ω) equivalent to ∥u∥W m,A(Ω).

As in the case of Orlicz spaces, inclusion relations between Orlicz-Sobolev
spaces can be described in terms of domination between the defining Young func-
tions A and B. If |Ω| < ∞, then

W m,A(Ω) → W m,B(Ω)
[
W m,A

0 (Ω) → W m,B
0 (Ω)

]
if and only if A dominates B near infinity. (2.7.1)

On the other hand,

W m,A(Rn) → W m,B(Rn) if and only if A dominates B globally. (2.7.2)

A proof of assertions (2.7.1) and (2.7.2) seems not to be available in the literature.
We sketch a proof in Proposition 2.7.1 at the end of this section

Sobolev and trace embeddings for functions with unrestricted boundary values
require some regularity on the ground domain. The class of John domains is
known to be essentially the largest where Sobolev type embeddings hold in their
strongest form. A bounded open set Ω ⊂ Rn is called a John domain if there
exist a constant c ∈ (0, 1) and a point x0 ∈ Ω such that for every x ∈ Ω there
exists a rectifiable curve ϖ : [0, l] → Ω, with l > 0, parametrized by arclength,
such that ϖ(0) = x, ϖ(l) = x0, and

dist
(
ϖ(r), ∂Ω

)
≥ cr for r ∈ [0, l].

The class of John domains includes classical families of open sets, such as that of
bounded Lipschitz domains, and that of domains with the cone property. Recall
that a bounded open set Ω is said to have the cone property if there exists a finite
circular cone Λ such that each point in Ω is the vertex of a finite cone contained
in Ω and congruent to Λ.
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Proposition 2.7.1. Assume that m, n ∈ N. Let A and B be Young functions.
(i) If Ω is an open set in Rn such that |Ω| < ∞, then

W m,A(Ω) → W m,B(Ω) if and only if A dominates B near infinity, (2.7.3)

and

W m,A
0 (Ω) → W m,B

0 (Ω) if and only if A dominates B near infinity. (2.7.4)

(ii)

W m,A(Rn) → W m,B(Rn) if and only if A dominates B globally. (2.7.5)

Proof. The “if” parts of assertions (2.7.3)–(2.7.5) are straightforward conse-
quences of (2.3.4). The reverse implications in (2.7.3) and (2.7.4) can be verified
as follows. Assume that |Ω| < ∞, and

W m,A(Ω) → W m,B(Ω) or W m,A
0 (Ω) → W m,B

0 (Ω). (2.7.6)

Suppose, without loss of generality, that 0 ∈ Ω. Let δ > 0 be so small that
the cube Q centered at 0, whose sides are parallel to the coordinates axes and
have length 2δ, is contained in Ω. Given any function f ∈ LA(−δ, δ), define the
function v : Q → R as

v(x) =
∫ x1

0

∫ s1

0
· · ·

∫ sm−1

0
f(sm) dsm dsm−1 . . . ds1 for x ∈ Q,

where we have adopted the notation x = (x1, x2, . . . , xn). The function v is m-
times weakly differentiable in Q. Moreover, ∂kv

∂xk
1

∈ L∞(Q) if 1 ≤ k ≤ m − 1,
∂mv
∂xm

1
(x) = f(x1) for x ∈ Q, and any other derivative vanishes identically. Hence,

v ∈ W m,A(Q). By [33, Theorem 4.1], there exists a bounded linear extension
operator E : W m,A(Q) → W m,A(Rn). Fix any function η ∈ C∞

0 (Ω) such that
η = 1 in Q. Define u : Ω → R as

u = η E(v). (2.7.7)

Then u ∈ W m,A(Ω), and, in fact, u ∈ W m,A
0 (Ω). By either of embeddings (2.7.6),

u ∈ W m,B(Ω) as well, and hence f ∈ LB(−δ, δ). Owing to the arbitrariness of f ,
this implies that LA(−δ, δ) ⊂ LB(−δ, δ), and by [9, Theorem 1.8, Chapter 1], in
fact LA(−δ, δ) → LB(−δ, δ). Hence, by (2.3.4), A dominates B near infinity.

As far as the “only if” part of assertion (2.7.5) is concerned, the choice of
trial functions u as in (2.7.7) implies that A dominates B near infinity also when
Ω = Rn. On the other hand, if embedding (2.7.5) is in force, then, in particular,

W m,A(Rn) → LB(Rn),

whence A dominates B also near zero, by (4.2.6). Therefore, A dominates B
globally.
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2.8 Operator properties
Let X(R) and Y (S) be Banach function spaces over measure spaces R and S

endowed with measures ν and µ, respectively. Given a linear operator T : X(R) →
Y (S), its adjoint operator T ′ : Y ′(S) → X ′(R) is defined by the identity∫

S
(Tf)g dµ =

∫
R
(T ′g)f dν (2.8.1)

for every f ∈ X(R) and g ∈ Y ′(S), whenever the integrals converge. Moreover,
by (2.6.1),

∥T ′∥ = sup
∥g∥Y ′(S)≤1

∥T ′g∥X′(R) = sup
∥g∥Y ′(S)≤1

sup
∥f∥X(R)≤1

∫
R
(T ′g)f dν

= sup
∥f∥X(R)≤1

sup
∥g∥Y ′(S)≤1

∫
S
(Tf)g dµ = sup

∥f∥X(R)≤1
∥Tf∥Y (S) = ∥T∥.

(2.8.2)

Let Es denote the dilation operator defined for each s ∈ (0, ∞) and every
non-negative measurable function f on (0, ∞) by

Esf(t) = f(st) for t ≥ 0.

Then the operator Es is bounded on every r.i. space over (0, ∞), and

∥Esf∥X(0,∞) ≤ max{1, 1
s
} ∥f∥X(0,∞) for s > 0 (2.8.3)

and for every f ∈ X(0, ∞). See [9, Chapter 3, Proposition 5.11].
The following proposition enables us to reduce an embedding to a Lorentz

endpoint spaces only to testing on characteristic functions. The idea of this
statement is based on [17, Theorem 7], where the Lorentz space Lp,1 occurs as
a target space, nonetheless the proof also works for any Lorentz endpoint space.
For the sake of completeness, we show also the proof here.

Proposition 2.8.1. Let Y (R) be a Banach function space and Λ(R) be a Lorentz
endpoint space over R and let T be a sublinear operator mapping Λ(R) to Y (R).
Suppose that there is a C > 0 such that

∥TχE∥Y (R) ≤ C∥χE∥Λ(R) (2.8.4)

for every measurable set E ⊆ R. Then

∥Tf∥Y (R) ≤ C∥f∥Λ(R)

for every f ∈ Λ(R).

Proof. Let f be a simple non-negative function on R. Thus f can be written as
a finite sum f = ∑

j λjχEj
, where λj are positive real numbers and the sets Ej

are measurable subsets of R satisfying E1 ⊆ E2 ⊆ · · · . Then, as readily seen, we
have f ∗ = ∑

j λjχ
∗
Ej

. Let φ be a fundamental function of Λ(R). By the definition
of the Lorentz norm we have

∥f∥Λ(R) =
∫ ∞

0
f ∗ dφ =

∫ ∞

0

∑
j

λjχ
∗
Ej

dφ =
∑

j

λj

∫ ∞

0
χ∗

Ej
dφ =

∑
j

λj∥χEj
∥Λ(R).
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On account of the sublinearity of T we have |Tf | ≤ ∑
j λj|TχEj

|, and consequently
by (2.8.4) and by axioms (P1) and (P2) we obtain

∥Tf∥Y (R) ≤
∑

j

λj∥TχEj
∥Y (R) ≤ C

∑
j

λj∥χEj
∥Λ(R) = ∥f∥Λ(R).

Now if f is simple but no longer nonnegative, we use the same for the positive
part of f and for the negative part of f .

Suppose that f is an arbitrary function in Λ(R) and let fn be a sequence of
simple integrable functions converging to f in Λ(R). Then

∥T (fn) − T (fm)∥Y (R) ≤ ∥T (fn − fm)∥Y (R) ≤ C∥fn − fm∥Λ(R),

and Tfn is Cauchy, hence convergent in Y (R). Since limits are unique in Y (R),
it follows that lim Tfn = Tf and

∥Tf∥Y (R) = lim ∥Tfn∥Y (R) ≤ C lim ∥fn∥Λ(R) = ∥f∥Λ(R)

as we wished to show.
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3. Hardy operator

3.1 Introduction
This entire chapter is devoted to the study of the one-dimensional Hardy-type
operator defined by

f ↦→
∫ R

tβ
f(s) sα−1 ds, (0 < t < R1/β), (3.1.1)

for any function f ∈ M(0, R) whenever the integral in (3.1.1) converges. Here
0 < α < 1, β > 0 and α + 1/β ≥ 1 and R ∈ (0, ∞] is arbitrary.

Our aim is to study the action of the operator (3.1.1) between Orlicz spaces
with the special attention to the sharpness of the results. More specifically, we
first give a necessary and sufficient condition to Orlicz spaces LA and LB for
which ∫ R

tβ
f(s) sα−1 ds


LB(0,R1/β)

≤ C∥f∥LA(0,R) (3.1.2)

holds true with a constant C independent of f ∈ LA(0, R). Secondly, we are
concerned with the optimal form of (3.1.2) This task consists of two separate
subtasks.

Suppose that LA is given. One may to ask what is the smallest Orlicz target
space LB for which (3.1.2) holds. By “smallest” we mean such an Orlicz space
LB that if (3.1.2) holds with LB replaced by LB̂, then LB → LB̂. On the other
hand, assume that LB is given and we are asked to find the largest Orlicz domain
space LA so that (3.1.2) is satisfied. Here, “largest” means that if (3.1.2) is true
with LÂ in place of LA, then LÂ → LA. To simplify the notation, we often use a
word “optimal” for both the above-mentioned notions.

The techniques for handling such operator may differ at some stage if R is ether
finite or equal to infinity. Also, in the former, case the value of R is immaterial
due to the use of the dilation operator. The details will be discussed later. For
the sake of comprehensive notation, let us denote by Hα,β the operator (3.1.1)
for R = 1 and by H∞

α,β the same operator with R = ∞. We then refer to

H∞
α,β : LA(0, ∞) → LB(0, ∞) (3.1.3)

and
Hα,β : LA(0, 1) → LB(0, 1) (3.1.4)

instead of (3.1.2).
The chapter is structured as follows. The preliminary section is devoted to the

analysis of certain properties of Young functions and their connection with Boyd
indices. We then introduce a characterization of the inequality (3.1.2) and we
describe the optimal Orlicz target spaces. After that, we prove another variant
of necessary and sufficient conditions to A and B to fulfill (3.1.2) and then we
investigate the optimal Orlicz domain spaces.
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3.2 Preliminaries
Let us slightly start with an easy calculation of Luxemburg norms of various
truncated power functions.

Lemma 3.2.1. Let E be a Young function and let ξ be a non-zero real number.
Assuming ∫

0
E(s) s

1
ξ

−1 ds < ∞, (3.2.1)

we define
Fξ(t) = t− 1

ξ

∫ t

0
E(s) s

1
ξ

−1 ds for t > 0.

Such Fξ is a non-decreasing mapping of (0, ∞) onto itself. Moreover, if R ∈
(0, ∞], then the following relations hold.

∥tξχ(0,r)(t)∥LE(0,R) = rξ

F −1
ξ

(
|ξ|
r

) , r ∈ (0, R), ξ > 0, (3.2.2)

∥tξχ(r,∞)(t)∥LE(0,∞) = rξ

F −1
ξ

(
|ξ|
r

) , r ∈ (0, ∞), ξ < 0. (3.2.3)

Here F −1
ξ denotes the generalised right-continuous inverse of Fξ. If, in addition,

ε ∈ (0, R) and if ξ < 0 then

∥tξχ(r,R)(t)∥LE(0,R) ≃ ∥tξχ(r,∞)(t)∥LE(0,∞), r ∈ (0, R − ε), (3.2.4)

where the equivalence constant depends on E, ξ and ε.

Proof. Assume (3.2.1). By the change of variables s ↦→ ts we have

Fξ(t) =
∫ 1

0
E(ts) s

1
ξ

−1 ds for t > 0,

hence Fξ is non-decreasing. By definition of the Luxemburg norm, we have

∥tξχ(0,r)(t)∥LE(0,R) = inf
{

λ > 0 :
∫ r

0
E
(

tξ

λ

)
dt ≤ 1

}
.

If ξ > 0, we get, by the change of variables,

∥tξχ(0,r)(t)∥LE(0,R) = inf
{

λ > 0 : λ
1
ξ

ξ

∫ rξ

λ

0
E(s) s

1
ξ

−1 ds ≤ 1
}

= inf
{

λ > 0 : r

ξ
Fξ

(
rξ

λ

)
≤ 1

}
= rξ

F −1
ξ

(
ξ
r

)
which proves (3.2.2). The proof of the relation (3.2.3) can be done in an analogous
way and we omit it.

It remains to prove the (3.2.4). The inequality “≤” is obvious by the mono-
tonicity of the norm. On the other hand, we have, by the triangle inequality,

∥tξχ(r,∞)(t)∥LE(0,∞) ≤ ∥tξχ(r,R)(t)∥LE(0,R) + ∥tξχ(R,∞)(t)∥LE(0,∞).
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Using (3.2.3), the latter term ∥tξχ(R,∞)(t)∥LE(0,∞) equals Rξ/E−1
ξ (|ξ|/R) since

ξ < 0. Thanks to the assumptions, this quantity is finite, say K. The former
term ∥tξχ(r,R)(t)∥LE(0,R) is a decreasing function of the variable r, positive on
(0, R) and vanishing at R. Hence for every ε ∈ (0, R) there exists a constant C
such that

K ≤ C ∥tξχ(r,R)(t)∥LE(0,R), r ∈ (0, R − ε).

and (3.2.4) follows.

We continue with the following proposition, that collects various characteri-
zations of pointwise and integral growth conditions of a Young function, and of
its conjugate, in terms of their Boyd indices.

Proposition 3.2.2. Let E be a finite-valued Young function, and let 0 < α < 1.
The following conditions are equivalent.

(i) There exists a constant k > 1 such that
∫ ∞

t

E(s)
s1/α+1 ds ≤ E(kt)

t1/α
globally [near infinity].

(ii) There exists a constant k > 1 such that

∫ t

0

Ẽ(s)
s1/(1−α)+1 ds ≤ Ẽ(kt)

t1/(1−α) globally

[∫ t

1

Ẽ(s)
s1/(1−α)+1 ds ≤ Ẽ(kt)

t1/(1−α) near infinity
]
.

(iii) There exist constants σ > 1 and c ∈ (0, 1) such that

E(σt) ≤ cσ
1
α E(t) globally [near infinity].

(iv) There exist constants σ > 1 and c > 1 such that

Ẽ(σt) ≥ cσ
1

1−α Ẽ(t) globally [near infinity].

(v) The global [local] upper Boyd index of E satisfies

I∞
E < 1/α

[
IE < 1/α

]
.

(vi) The global [local] lower Boyd index of Ẽ satisfies

i∞
Ẽ

> 1/(1 − α)
[
i
Ẽ

> 1/(1 − α)
]
.

Proof. We shall prove the statement in the form “near infinity”. The proof of
the global version is analogous - even simpler in fact - and will be omitted.

(i) is equivalent to (iii) This equivalence is stated in [67, Lemma 2.3. (ii)],
without proof. We provide a proof here, for completeness. Assume that there
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exist k > 1 and t0 > 0 such that inequality (i) is fulfilled for every t > t0. Fix
σ > 1 and t > t0k, and let ρ ∈ [1, σ] be such that

E(ρt) (ρt)− 1
α = inf

t≤r≤σt
E(r) r− 1

α . (3.2.5)

We claim that
σ ≥ ρ ≥ e−k

1
α σ. (3.2.6)

The former inequality is part of the definition of ρ. As for the latter, we have
that

E(ρt) (ρt)− 1
α k

1
α ≥

∫ ∞

ρt/k

E(s)
s1/α+1 ds ≥

∫ σt

ρt

E(s)
s1/α+1 ds ≥ E(ρt) (ρt)− 1

α log
(

σ

ρ

)
,

whence the claim follows.
Next, we show that E satisfies the ∆2-condition near infinity. Suppose, by

contradiction, that for every j ∈ N there exists t > t0k such that E(2t) > jE(t).
Choosing σ = 2ek

1
α , and ρ defined by (3.2.5), ensures that

E(t)t− 1
α k

1
α ≥

∫ ∞

t/k

E(s)
s1/α+1 ds ≥

∫ σt

t

E(s)
s1/α+1 ds ≥ E(ρt) (ρt)− 1

α log σ . (3.2.7)

Hence,
E(2t) k

1
α ≥ jE(ρt) ρ− 1

α log σ ≥ jE(2t) σ− 1
α log σ,

since σ ≥ ρ ≥ 2, by (3.2.6). Therefore,

k
1
α ≥ jσ− 1

α log σ

for all j ∈ N, which is impossible.
Now suppose that (iii) does not hold. Thus, for every σ > 1 and c ∈ (0, 1)

there exists a sequence {tj} such that tj → ∞, and

E(σtj) > cσ
1
α E(tj) (3.2.8)

for j ∈ N. Let ρ be as in (3.2.5). By (3.2.8) and (3.2.7),

E(σtj) (σtj)− 1
α k

1
α > cE(tj) t

− 1
α

j k
1
α > cE(ρtj) (ρtj)− 1

α log σ. (3.2.9)

From (3.2.9), (3.2.6) and the ∆2-condition near infinity for E, we conclude that
there exists a positive constant c1 such that

E(σtj) k
1
α > cE

(
e−k

1
α σtj

)
log σ > c1E(σtj) log σ

for sufficiently large j. Hence,

k
1
α > c1 log σ

for arbitrarily large σ, a contradiction.
(iii) implies (i). Let t0 > 0 be such that inequality (iii) holds for t ≥ t0. Let

j ∈ N. An iterative use of assumption (iii) ensures that

E(s) ≤ cjσ
j
α E(sσ−j) for s ≥ σjt0. (3.2.10)
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By (3.2.10), if t ≥ t0, then
∫ ∞

t

E(s)
s1/α+1 ds =

∞∑
j=0

∫ tσj+1

tσj

E(s)
s1/α+1 ds ≤

∞∑
j=0

cj
∫ tσj+1

tσj
σj/α E(sσ−j)

s1/α+1 ds

=
∞∑

j=0
cj
∫ σt

t

E(r)
r1/α+1 dr ≤ 1

1 − c
E(σt)

∫ σt

t

dr

r1/α+1

= α
1 − σ1/α

1 − c

E(σt)
t1/α

.

Hence, (i) follows via property (2.1.3).
(iii) implies (v). Assume that (v) does not hold, i.e. IE ≥ 1/α. By equation

(2.2.5),
1
α

≤ inf
1<σ<∞

log ĥE(σ)
log σ

,

and hence σ1/α ≤ ĥE(σ) for every σ ≥ 1. Owing to the very definition of ĥE,

σ
1
α ≤ lim sup

t→∞

E(σt)
E(t) .

Hence, for every c ∈ (0, 1) and t0 > 0, there exists t > t0 such that

cσ
1
α <

E(σt)
E(t) ,

and this contradicts (iii).
(v) implies (iii). Assume, by contradiction, that (iii) fails. Thereby, for every

σ > 1 and c ∈ (0, 1) there exists a sequence tj → ∞ satisfying

cσ
1
α E(tj) < E(σtj) for j ∈ N.

Thus
cσ

1
α ≤ lim sup

j→∞

E(σtj)
E(tj)

≤ lim sup
t→∞

E(σt)
E(t) = ĥE(σ) ,

whence
log
(
cσ1/α

)
log σ

≤ log ĥE(σ)
log σ

.

Thanks to (2.2.5), passing to the limit as σ → ∞ yields 1/α ≤ IE, thus contra-
dicting (v).

(iii) is equivalent to (iv). Condition (iii) is equivalent to

E(σt) ≤ (cσ) 1
α E(t) (3.2.11)

for some constants c ∈ (0, 1) and σ > 1, and for sufficiently large t. Taking the
Young conjugate of both sides, and making use of (2.1.6) tell us that (3.2.11) is
in turn equivalent to

Ẽ
(
tσ−1

)
≥ (cσ) 1

α Ẽ
(
t(cσ)− 1

α

)
(3.2.12)
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for large t. Setting ϱ = c
1
α σ

1
α

−1, and changing variables, equation (3.2.12) reads

Ẽ(ϱt) ≥ c
1

α−1 ϱ
1

1−α Ẽ(t)

for large t. Thus, it suffices to show that ϱ > 1. Combining (2.1.3) and (3.2.11)
yields

σE(t) ≤ E(σt) ≤ (cσ) 1
α E(t)

for large t, whence ϱ ≥ 1. If ϱ > 1 we are done. On the other hand, ϱ = 1 if and
only if E(t) = t for large t, and the latter condition implies that Ẽ = ∞ near
infinity, so that (iv) is trivially satisfied.

The proof of the reverse implication is similar.
(ii) is equivalent to (iv). This is established in [67, Lemma 2.3 (i)].
(iv) is equivalent to (vi). The proof of this fact follows along the same lines as
that of the equivalence of (iii) and (v), and will be omitted, for brevity.

We finis this section by analysis of convergence of the integral of type (3.2.1).
Our proof is based on [22, Lemma 2.3].

Proposition 3.2.3. Let E be a Young function and let 0 < α < 1. Then

∫ ∞ Ẽ(s)
s1/(1−α)+1 ds < ∞ if and only if

∫ ∞( s

E(s)

) α
1−α

ds < ∞ (3.2.13)

and

∫
0

Ẽ(s)
s1/(1−α)+1 ds < ∞ if and only if

∫
0

(
s

E(s)

) α
1−α

ds < ∞ (3.2.14)

Proof. Let E and α be given and assume that E(t) =
∫ t

0 e(s) ds for t ≥ 0. Then,
by Fubini’s theorem,

∫ ∞

1

e−1(s)
s1/(1−α) ds =

∫ e−1(1)

0

∫ ∞

1

ds

s1/(1−α) dr +
∫ ∞

e−1(1)

∫ ∞

e(r)

ds

s1/(1−α) dr

= e−1(1)1 − α

α
+ 1 − α

α

∫ ∞

e−1(1)

( 1
e(r)

) α
1−α

dr.

Now, by (2.1.1) and (2.1.4) with (2.1.2),

∫ ∞ e−1(s)
s1/(1−α) ds ≃

∫ ∞

1

Ẽ(s)
s1/(1−α)+1 ds

while ∫ ∞

e−1(1)

( 1
e(r)

) α
1−α

dr ≃
∫ ∞( s

E(s)

) α
1−α

ds,

whence (3.2.13) follows. The proof of (3.2.14) is analogous.

20



3.3 First reduction principle in Orlicz spaces
Suppose that 0 < α < 1, β > 0 and α + 1/β ≥ 1 and let A be a given Young
function. Denote by t0 ∈ [0, ∞) a point such that the integral

∫
t0

(
t

A(t)

) α
1−α

dt

converges. Note that such t0 has to always exist since A is a Young function. Let
then Hα : [t0, ∞) → [0, ∞) be defined by

Hα(t) =
(∫ t

t0

(
s

A(s)

) α
1−α

ds

)1−α

t ≥ t0.

Suppose that ∫ ∞( t

A(t)

) α
1−α

dt = ∞. (3.3.1)

then Hα is increasing, absolutely continuous and onto [0, ∞) and hence H−1
α is

well defined on [0, ∞).
Let us now define Aα,β : [0, ∞) → [0, ∞) by

Aα,β(t) =
∫ t

0

Dα,β(s)
s

ds for t ≥ 0, (3.3.2)

where Dα,β : [0, ∞) → [0, ∞] is given by

Dα,β(s) =

⎧⎪⎪⎨⎪⎪⎩
(

s
A(H−1

α (s))
H−1

α (s)

) 1
β(1−α)

if (3.3.1) holds,

∞ otherwise

for s > 1 and Dα,β(s) = 0 for s ∈ [0, 1].

Remark 3.3.1. Observe that Dα,β(s)/s is a non-decreasing function since A(s)/s
is nondecreasing, Hα and hence H−1

α is increasing and 1
β(1−α) ≥ 1. Therefore Aα,β

is a well-defined Young function equivalent to Dα,β, thanks to (2.1.2).

Under the additional assumption∫
0

(
t

A(t)

) α
1−α

dt < ∞ (3.3.3)

we may also define a variant of the function Aα,β which takes the values of A near
zero into account. So, assume (3.3.3) and define H∞

α : [0, ∞) → [0, ∞) by

H∞
α (t) =

(∫ t

0

(
s

A(s)

) α
1−α

ds

)1−α

for t ≥ 0. (3.3.4)

Suppose that (3.3.1) holds. Then H∞
α is increasing, absolutely continuous and

onto [0, ∞) and hence H∞
α

−1 is well defined on [0, ∞). Observe that the condition
(3.3.1) may fail only if A jumps to +∞ at a finite point t∞ or A is finite-valued
and the relevant integral is convergent. In the former case, H∞

α is constant (H∞,
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say) on [t∞, ∞) and, in the latter one, Hα increases to H∞ = limt→∞ H∞
α (t) < ∞.

If (3.3.1) holds, set also H∞ = ∞.
Let us now define A∞

α,β : [0, ∞) → [0, ∞) by

A∞
α,β(t) =

∫ t

0

D∞
α,β(s)
s

ds for t ≥ 0, (3.3.5)

where D∞
α,β : [0, ∞) → [0, ∞] is given by

D∞
α,β(s) =

⎧⎪⎪⎨⎪⎪⎩
(

s
A(H∞

α
−1(s))

H∞
α

−1(s)

) 1
β(1−α)

, 0 ≤ s < H∞,

∞, H∞ ≤ s < ∞.

By the same argument as in Remark 3.3.1, one can observe that A∞
α,β is a Young

function and
A∞

α,β(t) ≈ D∞
α,β(t) for t ≥ 0. (3.3.6)

We also clearly have that

A∞
α,β(t) ≈ Aα,β(t) near infinity. (3.3.7)

To simplify the notation, denote also t∞ = ∞, in the cases when H∞
α is

increasing on [0, ∞). Consequently, H∞
α is increasing onto [0, H∞), absolutely

continuous and concave on [0, t∞) as follows by the calculation

H∞
α

′(t) = (1 − α)H∞
α (t)− α

1−α

(
A(t)

t

)− α
1−α

for t > 0. (3.3.8)

We have

A∞
α,β(t) =

∫ t

0

D∞
α,β(s)
s

ds

=
∫ t

0

(
A(H∞

α
−1(s))

H∞
α

−1(s)

) 1
β(1−α)

s
1+β(α−1)

β(1−α) ds

=
∫ H∞

α
−1(t)

0

(
A(y)

y

) 1
β(1−α)

H∞
α (y)

1+β(α−1)
β(1−α) H∞

α
′(y) dy

= (1 − α)
∫ H∞

α
−1(t)

0

(
A(y)

y

) 1−αβ
β(1−α)

H∞
α (y)

1−β
β(1−α) dy, 0 ≤ t ≤ H∞,

(3.3.9)

where we used the change of variables s ↦→ Hα(y) with the equation (3.3.8).
In the special case when β = 1, we obtain from (3.3.9) that

A∞
α,β(t) = (1 − α)

∫ H∞
α

−1(t)

0

A(s)
s

ds, 0 ≤ t ≤ H∞.

Next,

A(H∞
α

−1(t)) ≤
∫ H∞

α
−1(t)

0

A(s)
s

ds ≤ A(2H∞
α

−1(t)) ≤ A(H∞
α

−1(2t)),

where the last inequality follows by the convexity of H∞
α

−1. Consequently, we
infer that

A∞
α,β(t) ≈ A(H∞

α
−1(t)) (3.3.10)

globally provided that (3.3.1) holds and, conversely, (3.3.10) holds near zero and
A∞

α,β = ∞ near infinity if (3.3.1) fails.
The Reduction principle for Hardy operator in Orlicz spaces reads as follows.
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Theorem 3.3.2. Let 0 < α < 1, β > 0 and α + 1/β ≥ 1, and let A and B be
Young functions. Then there exists a constant C1 > 0 such that∫ R

tβ
f(s) sα−1 ds


LB(0,R1/β)

≤ C1∥f∥LA(0,R) (3.3.11)

for every f ∈ LA(0, R) if and only if either R < ∞ and there is a constant C2 > 0
such that

B(t) ≤ A∞
α,β(C2t) near infinity,

where Aα,β is the Young function defined by (3.3.2), or R = ∞, the condition
(3.3.3) holds and there is a C3 such that

B(t) ≤ Aα,β(C3t) for t ≥ 0.

Here the Young function A∞
α,β is given by (3.3.5). Moreover, if R < 0, then C2

depends on C1, A, α, β and R and, if R = ∞, then the constants C1 and C3 only
depend on each other and on α and β.

Corollary 3.3.3. Let 0 < α < 1, β > 0 and α + 1/β ≥ 1 and let A be a Young
function. Then ∫ R

tβ
f(s) sα−1 ds


L∞(0,R1/β)

≤ C∥f∥LA(0,R)

if and only if either R < ∞ and∫ ∞( t

A(t)

) α
1−α

dt < ∞.

or R = ∞ and ∫ ∞

0

(
t

A(t)

) α
1−α

dt < ∞.

Proposition 3.3.4. Let α, β be as in Theorem 3.5.2 and let A and B be Young
functions. Then there exists a constant C1 > 0 such that∫ ∞

sβ
f(r) rα−1 dr


LB(0,∞)

≤ C1∥f∥LA(0,∞) (3.3.12)

for every f ∈ LA(0, ∞) if and only if there is a constant C2 > 0 such that

∫ ∞

0
B

⎛⎝ H∞
α,βf(t)

C2
(∫∞

0 A(|f(s)|) ds
)α

⎞⎠ dt ≤
(∫ ∞

0
A(|f(t)|) dt

) 1
β

(3.3.13)

for each f ∈ LA(0, ∞).

In order to prove the sufficiency in Theorem 3.3.2 there is no need to have full
information about our operator; it is enough to know the endpoint estimates only.
This enables us to introduce a more general result, an example of interpolation
theorem in Orlicz spaces. Several such results appear in literature, mostly in the
work of Andrea Cianchi. Let us mention for instance [18, 19, 23]. Our proof is
based on [24, Theorem 3.6]
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Theorem 3.3.5. Let α and β be as in Theorem 3.3.2, let A be a Young function
such that (3.3.3) and (3.3.1) holds and let A∞

α,β be as in (3.3.2). Suppose that
(R, µ) and (S, ν) are σ-finite non-atomic measure spaces and Assume that T is a
linear operator satisfying

T : L1(R, µ) → L
1

β(1−α) (S, ν) (3.3.14)
T : L

1
α

,1(R, µ) → L∞(S, ν) (3.3.15)

with operator norms C1 and C2, respectively. Then
∫
S

A∞
α,β

⎛⎝ Tf(t)
C
(∫

R A(|f |) dµ
)α

⎞⎠ dν(t) ≤
(∫

R
A(|f |) dµ

) 1
β

(3.3.16)

for every f ∈ LA(R), where C is a constant depending on C1, C2 and α, β.

Proof. Our first task is to prove that the operator T is well defined for every
f such that

∫
R A(|f |) dν < ∞. Recall that we will use the numbers t∞ and H∞

associated to A as in the definition of A∞
α,β.

Given any such f and any 0 < t < t∞, decompose f as f = f t + ft, where

f t = max{|f | − t, 0} sign f and ft = min{|f |, t} sign f.

It suffices to show that f t ∈ L1(R) and ft ∈ L
1
α

,1(R). Since A is a Young function,
A(t)/t is non-decreasing and also A(t)/t ≤ a(t), by (2.1.2). Thus

∥f t∥L1(R) =
∫ t∞

t
µ({|f | > s}) ds ≤ t

A(t)

∫ t∞

t
a(s)µ({|f | > s}) ds

≤ t

A(t)

∫
R

A(|f |) dµ

and hence f t ∈ L1(R). As for the ft, we have, by Hölder inequality,

∥ft∥L
1
α ,1(R)

= 1
α

∫ t

0
µ({|f | > s})α ds

≤ 1
α

(∫ t

0

(
s

A(s)

) α
1−α

ds

)1−α(∫ t

0

A(s)
s

µ({|f | > s}) ds
)α

≤ 1
α

H∞
α (t)

(∫
R

A(|f |) dµ
)α

,

(3.3.17)

where H∞
α is given by (3.3.4). Thus, ft ∈ L

1
α

,1(R).
In order to establish the inequality (3.3.16), recall that

A∞
α,β(t) =

∫ t

0

D∞
α,β(s)
s

ds, 0 ≤ t < H∞. (3.3.18)

To make the notation lighter, let us write just D in place of D∞
α,β. Further, denote

K = C2

α

(∫
R

A(|f |) dµ
)α

. (3.3.19)

Our first step is to show that if H∞ < ∞, then

ν({|Tf | > 2Ks}) = 0 for s ≥ H∞. (3.3.20)
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Indeed, taking the limit t → ∞ in (3.3.17), we obtain

∥f∥
L

1
α ,1(R)

≤ 1
α

H∞

(∫
R

A(|f |) dµ
)α

,

which, in combination with (3.3.15) and (3.3.19), gives

∥Tf∥L∞(S) ≤ H∞K

and (3.3.20) follows. Next, by (3.3.18) and (3.3.20),

∫
S

A∞
α,β

(
Tf

2K

)
dν =

∫ H∞

0

D(s)
s

ν({|Tf | > 2Ks}) ds (3.3.21)

Let us now work with the latter integral in (3.3.21). In what follows, we will use
the abbreviated notation q = 1

β(1−α) . Choose any ε > 0 and, by integration by
parts, we get

∫ H∞

ε

D(s)
s

ν({|Tf | > 2Ks}) ds =
∫ H∞

ε

d
dt

(
D(t)

tq

) ∫ H∞

t
ν({|Tf | > 2Ks})sq−1 ds

+ D(ε)
εq

∫ H∞

ε
ν({|Tf | > 2Ks})sq−1 ds.

(3.3.22)

Now, denote σ(t) = H∞
α

−1(t) for 0 ≤ t < H∞ and observe that

ν({|Tf | > 2Ks}) ≤ ν({|Tfσ(t)| > Ks}) + ν({|Tfσ(t)| > Ks}). (3.3.23)

Also, thanks to the assumption (3.3.15) and by (3.3.17), we have

∥Tfσ(t)∥L∞(S) ≤ C2∥fσ(t)∥L
1
α ,1(R)

≤ C2

α
Hα(σ(t))

(∫
R

A(|f |) dµ
)α

≤ Kt,

which implies that ν({|Tfσ(t)| > Ks}) = 0 for every t ≤ s < H∞, whence the
first term on the right hand side of (3.3.23) vanishes. The equation (3.3.22) now
continues by

∫ H∞

ε

D(s)
s

ν({|Tf | > 2Ks}) ds =
∫ H∞

ε

d
dt

(
D(t)

tq

)∫ H∞

t
ν({|Tfσ(t)| > Ks})sq−1 ds

+ D(ε)
εq

∫ H∞

ε
ν({|Tfσ(ε)| > Ks})sq−1 ds.

(3.3.24)

It also follows from (3.3.14) that

∫ H∞

t
ν({|Tfσ(t)| > Ks}) sq−1 ds ≤ 1

q

(
C1

K

)q(∫ t∞

σ(t)
µ({|f | > s}) ds

)q

(3.3.25)

for 0 ≤ t < H∞. Denote the right hand side of (3.3.25) by J(t) and let us plug
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the estimate (3.3.25) into (3.3.24). We obtain∫ H∞

ε

D(s)
s

ν({|Tf | > 2Ks}) ds

= −
∫ H∞

ε

d
dt

(
D(t)

tq

) ∫ ∞

t
J ′(y) dy + D(ε)

εq
J(ε)

= −
∫ H∞

ε
J ′(y)

∫ y

ε

d
dt

(
D(t)

t

)
dt dy + D(ε)

εq
J(ε)

= −
∫ H∞

ε
J ′(y)

(
D(y)

yq
− D(ε)

εq

)
+ D(ε)

εq
J(ε)

= −
∫ H∞

ε
J ′(y)D(y)

yq
dy,

hence, letting ε → 0+, we have∫ H∞

0

D(s)
s

ν({|Tf | > 2Ks}) ds = −
∫ H∞

0

D(y)
yq

J ′(y) dy.

Owing to the definition of J and thanks to the relation
D(H∞

α (t))
H∞

α (t)q
=
(

A(t)
t

)q

, 0 < t < t∞,

we may continue by∫ H∞

0

D(s)
s

ν({|Tf | > 2Ks}) ds

=
(

C1

K

)q ∫ H∞

0

D(y)
yq

(∫ t∞

σ(y)
ν({|f | > s}) ds

)q−1
µ({|f | > σ(y)})σ′(y) dy

=
(

C1

K

)q ∫ t∞

0

D(H∞
α (t))

H∞
α (t)q

(∫ t∞

t
ν({|f | > s}) ds

)q−1
µ({|f | > t}) dt

≤
(

C1

K

)q ∫ t∞

0

D(H∞
α (t))

H∞
α (t)q

(
t

A(t)

)q−1

(∫ t∞

t

A(s)
s

µ({|f | > s}) ds
)q−1

µ({|f | > t}) dt

≤
(

C1

K

)q ∫ t∞

0

A(t)
t

(∫ t∞

t

A(s)
s

µ({|f | > s}) ds
)q−1

µ({|f | > t}) dt

= 1
q

(
C1

K

)q(∫ t∞

0

A(s)
s

µ({|f | > s}) ds
)q

= 1
q

(
C1

K

)q(∫
R

A(|f |) dµ
)q

.

Altogether, by the last inequality with (3.3.21), we conclude that∫
S

A∞
α,β

(
Tf

2K

)
dν ≤ 1

q

(
C1

K

)q(∫
R

A(|f |) dµ
)q

which, thanks to the choice of K in (3.3.19) and by the meaning of q, rewrites as
∫
S

A∞
α,β

⎛⎝ Tf(t)
2C2

α

(∫
R A(|f |) dµ

)α

⎞⎠ ≤ β(1 − α)
(

αC1

C2

) 1
β(1−α)

(∫
R

A(|f |) dµ
) 1

β

whence (3.3.16) follows.
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Note that the definition of the Young function Aα,β, (3.3.2), uses the Young
function A itself. In what follows we will work with the associate Young function
Ã instead. First observe that, by Proposition 3.2.3, (3.3.1) is equivalent to∫ ∞ Ã(s)

s1/(1−α)+1 ds = ∞. (3.3.26)

We now define Φα : [0, ∞) → [0, ∞] by

Φα(t) =
∫ t

1

Ã(s)
s1/(1−α)+1 ds for t > 1, (3.3.27)

and also Fα : [0, ∞) → [0, ∞) by

Fα(t) = t1/(1−α)
∫ t

1

Ã(s)
s1/(1−α)+1 ds for t > 1, (3.3.28)

or, shortly, Fα(t) = t1/(1−α)Φα(t), t ≥ 0. Clearly, Φα and Fα are non-decreasing,
whence we may denote by Φ−1

α the generalised left-continuous inverse of Φα and by
F −1

α the generalised right-continuous inverse function to Fα. Further, if (3.3.26),
then both Φ−1

α and F −1
α are finite valued. The next proposition summarises the

relation between Φα, Fα and Aα,β and hence gives another equivalent expressions
of the Young function Aα,β.

Proposition 3.3.6. Let A be a Young function. Then

Aα,β(t) ≈
(
t Φ−1

α (t
1

1−α )
) 1

β(1−α) near infinity (3.3.29)

and
A−1

α,β(t) ≃ tβ(1−α)

F −1
α (tβ) near infinity, (3.3.30)

where Φα and Fα are the functions given by (3.3.27) and (3.3.28), respectively.
Furthermore, if IA < 1/α, then

A−1
α,β(t) ≃ A−1(tβ) t−αβ near infinity. (3.3.31)

Similar formulas also hold for the global variant, A∞
α,β, provided that the

relevant integrals converge at zero. Observe that, by Proposition 3.2.3, (3.3.3) is
equivalent to ∫

0

Ã(s)
s1/(1−α)+1 ds < ∞. (3.3.32)

Now, if (3.3.32) holds, we may define Φ∞
α : [0, ∞) → [0, ∞] by

Φ∞
α (t) =

∫ t

0

Ã(s)
s1/(1−α)+1 ds for t ≥ 0 (3.3.33)

and also F ∞
α : [0, ∞) → [0, ∞) by

F ∞
α (t) = t1/(1−α)

∫ t

0

Ã(s)
s1/(1−α)+1 ds for t ≥ 0. (3.3.34)

Similarly as above, Φ∞
α and F ∞

α are non-decreasing and hence the generalised left-
continuous inverse functions Φ∞

α
−1 and F ∞

α
−1 are well-defined. The alternative

expressions of A∞
α,β then read as follows.
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Proposition 3.3.7. Let A be a Young function satisfying (3.3.32) and (3.3.26).
Then

A∞
α,β(t) ≈

(
t (Φ∞

α )−1(t
1

1−α )
) 1

β(1−α) for t ≥ 0 (3.3.35)
and

(A∞
α,β)−1(t) ≃ tβ(1−α)

(F ∞
α )−1(tβ) for t ≥ 0, (3.3.36)

where Φ∞
α and F ∞

α are the functions given by (3.3.33) and (3.3.34), respectively.
Furthermore, if I∞

A < 1/α, then

(A∞
α,β)−1(t) ≃ A−1(tβ) t−αβ for t ≥ 0. (3.3.37)

Part of this result appeared in [21, Lemma 2], although we shall introduce
more comprehensive approach. Also, we will prove only the global variant; the
near infinity one needs only trivial modifications.

Proof of Proposition 3.3.7. First observe that Φ∞
α and F ∞

α are well defined
if and only if A∞

α,β is well defined thanks to Proposition 3.2.3. Throughout the
proof, we will denote the functions Φ∞

α and F ∞
α by Φ and F , for brevity. Also,

write E in the place of H∞
α .

Let us show (3.3.29). Assume first that (3.3.1), or, equivalently (3.3.26), holds,
whence A∞

α,β and Φ−1 are finite-valued and H∞ = ∞. Owing to (3.3.6), it suffices
to show that

(
t Φ−1(t

1
1−α )

) 1
β(1−α) ≈

(
t

A(E−1(t))
E−1(t)

) 1
β(1−α)

for t > 0,

or, equivalently,
Φ−1(t

1
1−α ) ≈ A(E−1(t))

E−1(t) for t > 0. (3.3.38)

Let us temporarily denote ϱ(t) = A(t)/t. Since A is a Young function ϱ is non-
decreasing, its generalised left-continuous inverse ϱ−1 is well defined and, due to
2.1.2, possess

Ã(t) ≤ tϱ−1(t) ≤ Ã(4t). (3.3.39)
We have

Φ(ϱ(t)) =
∫ ϱ(t)

0

Ã(s)
s1/(1−α)+1 ds ≤

∫ ϱ(t)

0

ϱ−1(s)
s1/(1−α) ds

=
∫ ϱ(t)

0

1
s1/(1−α)

∫ ϱ−1(s)

0
dy ds =

∫ t

0

∫ ϱ(t)

ϱ(y)

ds

s1/(1−α) dy

≤
∫ t

0

∫ ∞

ϱ(y)

ds

s1/(1−α) dy = c
∫ t

0
ϱ(y)− α

1−α dy

= c
∫ t

0

(
y

A(y)

) α
1−α

dy = cE(t)
1

1−α for t > 0,

(3.3.40)

where we used first inequality in (3.3.39), Fubini’s theorem with trivial estimates.
Here, c represents a constant depending on α. Therefore, passing to inverses,
(3.3.40) implies that

ϱ(E−1(t)) ≤ Φ−1(Ct
1

1−α ) for t > 0
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with some constant C. This proves one of the inequalities in (3.3.38). Conversely,
using similar computation as in (3.3.40),

Φ(4ϱ(t)) =
∫ 4ϱ(t)

0

Ã(s)
s1/(1−α)+1 ds = c

∫ ϱ(t)

0

Ã(4s)
s1/(1−α)+1 ds

≥ c
∫ ϱ(t)

0

ϱ−1(s)
s1/(1−α) ds =

∫ t

0

∫ ϱ(t)

ϱ(y)

ds

s1/(1−α) dy

= c
∫ t

0
ϱ(y)− α

1−α dy − ctϱ(t)− α
1−α

= cE(t)
1

1−α − ctϱ(t)− α
1−α for t > 0.

(3.3.41)

Also here and in what follows, c denotes some constant depending on α, which
may differ in each step. Next, we show that

tϱ(t)− α
1−α ≤ cΦ(4ϱ(t)). (3.3.42)

Let us denote J = Ã and J−1 its left-continuous inverse. Then

Φ(2y) =
∫ 2y

0

J(s)
s1/(1−α)+1 ds ≥

∫ 2y

y

J(s)
s1/(1−α)+1 ds

≥ J(y)
∫ 2y

y

ds

s1/(1−α)+1 = cJ(y)y− 1
1−α for y > 0.

(3.3.43)

Further, we have that
J(2ϱ(t)) ≥ A(t). (3.3.44)

Indeed, by (2.1.5),

2ϱ(t) = 2A(t)
t

≥ 2A(t)
A−1(A(t) ≥ Ã−1(A(t))

whence
J(2ϱ(t)) ≥ J

(
Ã−1(A(t))

)
≥ A(t).

Plugging ϱ(t) into (3.3.43) and using (3.3.44), we obtain

Φ(4ϱ(t)) ≥ cJ(2ϱ(t)) ϱ(t)− 1
1−α ≥ cA(t) t

A(t) ϱ1− 1
1−α = ctϱ(t)− α

1−α

which is (3.3.42). Coupling (3.3.41) with (3.3.42), we get

cΦ(cϱ(t)) ≥ E(t)
1

α−1 for t > 0,

which, passing to inverses, gives

ϱ(E−1(t)) ≥ cΦ−1(ct
1

α−1 ) for t > 0,

the remaining inequality in (3.3.38). Conversely, if (3.3.1) fails, than (3.3.29)
holds near zero as above and A∞

α,β = ∞ near infinity. Also, Φ is bounded in this
case and hence Φ−1 = ∞ near infinity.

Let us now focus on (3.3.36). If we denote

J(t) =
(
t Φ−1(t

1
1−α )

) 1
β(1−α) for t ≥ 0,
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then (3.3.35) implies that J ≈ A∞
α,β globally and thus J−1 ≃ A∞

α,β
−1(t) for t > 0.

If (3.3.1) holds, then J−1 and F −1 are finite valued and one can verify that

J−1(t)F −1(tβ) = tβ(1−α) for t ≥ 0 (3.3.45)

Therefore

(A∞
α,β)−1(t) ≃ J−1(t) = tβ(1−α)

F −1(tβ) for t > 0. (3.3.46)

which gives (3.3.36). On the other hand, if (3.3.1) fails, then (3.3.45) and hence
(3.3.46) holds only near zero. Further F (t) ≃ t1/(1−α) near infinity and A∞

α,β
−1 is

constant near infinity whence (3.3.36) holds also in this case.
As for the “furthermore” part, the assumption I∞

A < 1/α implies that F ∞
α ≈ Ã

globally and thus

(A∞
α,β)−1(t) ≃ tβ(1−α)

Ã−1(tβ)
≃ A−1(tβ) t−αβ for t > 0

thanks to (3.3.36) and (2.1.5).

Proof of Theorem 3.3.2. Let us denote the operator (3.1.1) by H, i.e.

Hf(t) =
∫ R

tβ
f(s) sα−1 ds for 0 < t < R

1
β

whenever the integral converges. We have,

∥Hf∥
L

1
β(1−α) (0,R

1
β )

≤ ∥Hf∥
L

1
β(1−α) ,1

(0,R
1
β )

≤
∫ R

1
β

0

∫ R

tβ
t

1
β(1−α) −1|f(s)| sα−1 ds

=
∫ R

0
|f(s)| sα−1

∫ s
1
β

0
t

1
β(1−α) −1 dt ds

= 1
β(1−α)

∫ R

0
|f(s)| ds = 1

β(1−α)∥f∥L1(0,R)

whence (3.3.14) is satisfied with C1 = 1
β(1−α) and, by Hardy-Littlewood inequality,

cf. [9, Theorem 2.2, Chapter 2]

∥Hf∥
L∞(0,R

1
β )

≤
∫ R

0
|f(s)| sα−1 ds ≤

∫ R

0
f ∗(s) sα−1 ds = ∥f∥

L
1
α ,1(0,R)

and (3.3.15) follows with C2 = 1. Now, assume that (3.3.3) holds. If R < ∞,
(3.3.3) may be considered as satisfied without loss of generality, since the change
of the behaviour of a Young function near zero does not affect the space. By
Theorem 3.3.5, the modular inequality (3.3.16) holds with C depending only on
α and β. Now, (3.3.11) holds with B replaced by A∞

α,β. This proves the necessity
for R = ∞ and the necessity for R < ∞ follows once we use (3.3.7).

Conversely, assume that (3.3.11) holds for some Young functions A and B
with some constant C. By the double use of Hölder inequality in Orlicz spaces
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(2.3.3) together with Fubini’s theorem, we get

2C ≥ 2 sup
f∈LA(0,R)

∫ R

tβ
f(s) sα−1 ds


LB(0,R

1
β )

∥f∥LA(0,R)

≥ sup
f∈LA(0,R)

sup
g∈LB̃(0,R1/β)

∫ R
1
β

0
g(t)

∫ R

tβ
f(s) sα−1 ds dt

∥f∥LA(0,R)∥g∥
LB̃(0,R1/β)

≥ sup
g∈LB̃(0,R1/β)

sup
f∈LA(0,R)

∫ R

0
f(s) sα−1

∫ s
1
β

0
g(t) dt dt

∥f∥LA(0,R)∥g∥
LB̃(0,R1/β)

≥ sup
g∈LB̃(0,R1/β)

sα−1
∫ s

1
β

0
g(t) dt


LÃ(0,R)

∥g∥
LB̃(0,R1/β)

.

(3.3.47)

Let 0 < r < R
1
β be fixed and suppose that g has support in the interval [0, r].

Then
sα−1

∫ s
1
β

0
g(t) dt


LÃ(0,R)

≥
sα−1

∫ s
1
β

0
g(t) dt


LÃ(rβ ,R)

≥
∫ r

0
g(t) dt ∥sα−1∥

LÃ(rβ ,R)

and (3.3.47) continues as

2C ≥ sup
g∈LB̃(0,r)

sα−1
∫ s

1
β

0
g(t) dt


LÃ(0,R)

∥g∥
LB̃(0,r)

≥ sup
g∈LB̃(0,r)

∫ r

0
g(t) dt ∥sα−1∥

LÃ(rβ ,R)

∥g∥
LB̃(0,r)

≥ ∥1∥LB(0,r) ∥sα−1∥
LÃ(rβ ,R).

(3.3.48)

By (2.3.1),
∥1∥LB(0,r) = 1

B−1(1
r
) (3.3.49)

and, thanks to Lemma 3.2.1, for R < ∞ [R = ∞]

∥sα−1∥
LÃ(rβ ,R) = rβ(1−α)

(F ∞
α )−1(α−1

rβ ) near infinity [for t > 0]. (3.3.50)

Here F ∞
α is given by (3.3.34). Observe that (3.3.48) in particular implies that

∥sα−1∥
LÃ(rβ ,R) is finite. Therefore, by Lemma 3.2.1, the condition

∫
0

Ã(s)
s1/(1−α)+1 ds < ∞

holds. This implies (3.3.3), thanks to Lemma 3.2.3.
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Combining (3.3.48), (3.3.49) and (3.3.50) and using the change of variables,
we obtain that there is a constant C1, depending on C, α and β, such that

C1B
−1(t) ≥ tβ(α−1)

(F ∞
α )−1(tβ) near infinity [for t > 0]. (3.3.51)

Using (3.3.30) together with (2.1.5), the inequality (3.3.51) rewrites as

B−1(t) ≳ (A∞
α,β)−1(t) near infinity [for t > 0].

The claim now follows by taking the inverses and eventually by (3.3.7).

Proof of Proposition 3.3.4. Let A and B be Young functions and assume
(3.3.12). We will make use of the following scaling argument. Suppose that
N > 0 is given and let us define AN and BN by

AN(t) = A(t)
N

and BN(t) = 1
N1/β

B(tN−α) for t ≥ 0.

We claim that
H∞

α,β : LAN (0, ∞) → LBN (0, ∞) (3.3.52)
in which the operator norm does not depend on N . Indeed, thanks to the char-
acterisation in Theorem 3.3.2, the inequality (3.3.12) is equivalent to

B(t) ≤ A∞
α,β(Ct)

where C is some positive constant. It is easy to observe that (AN)∞
α,β, the Young

function associated to AN as in (3.3.5), satisfies

(AN)∞
α,β = 1

N1/β
A∞

α,β(tN−α) for t ≥ 0,

hence, we infer, by the change of variables, that

BN(t) ≤ (AN)∞
α,β(Ct) for t ≥ 0 (3.3.53)

with the same constant C. Owing to Theorem 3.3.2 again, (3.3.53) implies
(3.3.52).

Next, let f ∈ LA(0, ∞). Assume that
∫∞

0 A(|f |) < ∞ otherwise there is
nothing to prove, and set N =

∫∞
0 A(|f |). By the definition of the Luxemburg

norm, ∥f∥LAN (0,∞) ≤ 1 and thus, by (3.3.12), ∥H∞
α,βf∥LBN (0,∞) ≤ C1. Therefore

∫ ∞

0
BN

(H∞
α,βf(t)
C1

)
dt ≤ 1

and (3.3.13) follows by the definition of BN .

3.4 Optimal Orlicz target spaces
Let us turn our attention back to Theorem 3.3.2. Let LA be a given Orlicz
space. The description of the optimal Orlicz space LB for which (3.1.2) holds is
straightforward.

32



Theorem 3.4.1. Let 0 < α < 1, β > 0, and α + 1/β ≥ 1. Suppose that A is a
Young function satisfying (3.3.3) and let A∞

α,β be the Young function defined by
(3.3.5). Then

H∞
α,β : LA(0, ∞) → LA∞

α,β (0, ∞), (3.4.1)

and LA∞
α,β (0, ∞) is the optimal (i.e. smallest) Orlicz target space that renders

(3.4.1) true. Moreover, the embedding norm depends only on α and β
In particular, if I∞

A < 1/α, then

A∞
α,β

−1(t) ≃ A−1(tβ) t−αβ for t > 0. (3.4.2)

Conversely, if (3.3.3) is not satisfied, then there does not exist an Orlicz target
space LB(0, ∞) for which (3.1.3) holds.

Proof. Let A an A∞
α,β be the Young functions from the assumptions. The bound-

edness of H∞
α,β follows directly by Theorem 3.3.2. Next, assume that

H∞
α,β : LA(0, ∞) → LB(0, ∞). (3.4.3)

Then, again, by Theorem 3.3.2, A satisfies (3.3.3), A∞
α,β is well defined and B is

dominated by A∞
α,β globally, which ensures that LA∞

α,β (0, ∞) → LB(0, ∞). That
proves the optimality. By the same argument, we infer that (3.3.3) is a necessary
condition for existence of any Young function B in (3.4.3).

The relation (3.4.2) follows by Proposition 3.3.7, namely by (3.3.37).

The integral inequality in the optimal case is also available. The next corollary
is an immediate consequence of Theorem 3.4.1 and Proposition 3.3.4.

Corollary 3.4.2. Let α, β, A and A∞
α,β be as in Theorem 3.4.1. Then there exists

a constant C > 0 such that∫ ∞

0
A∞

α,β

⎛⎝ H∞
α,βf(t)

C
(∫∞

0 A(|f(s)|) ds
)α

⎞⎠ dt ≤
(∫ ∞

0
A(|f(t)|) dt

) 1
β

for every f ∈ LA(0, ∞). Moreover, the Young function A∞
α,β is optimal.

A parallel result to that of Theorem 3.4.1 on bounded sets reads similarly. Let
us stress that the behaviour near zero of Young functions involved is now imma-
terial. Observe also that the existence of the optimal target space is guaranteed
without any constrains.

Theorem 3.4.3. Let 0 < α < 1, β > 0, and α + 1/β ≥ 1. Suppose that A is a
Young function and let Aα,β be the Young function defined by (3.3.2). Then

Hα,β : LA(0, 1) → LAα,β (0, 1), (3.4.4)

and LAα,β (0, 1) is the optimal (i.e. smallest) Orlicz target space that renders
(3.4.4) true.

In particular, if IA < 1/α, then

A−1
α,β(t) ≃ A−1(tβ) t−αβ near infinity. (3.4.5)

Proof. The validity of (3.4.4) and the optimality is a consequence of Theo-
rem 3.3.2; the simplified equation (3.4.5) holds by (3.3.31) of Proposition 3.3.6.
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3.5 Second reduction principle in Orlicz spaces
We shall first introduce an auxiliary Young function which importance will reveal
in the subsequent section. Let B be a given Young function and let 0 < α < 1,
β > 0 and α + 1/β ≥ 1. Define Bα,β : [0, ∞) → [0, ∞] by

Bα,β(t) =
∫ t

0

G−1
α,β(s)
s

ds for t ≥ 0, (3.5.1)

where Gα,β : [0, ∞) → [0, ∞) is given by

Gα,β(t) =

⎧⎨⎩tB−1(1) if 0 ≤ t ≤ 1,
t inf

1≤s≤t
B−1(s1/β)sα−1 if t > 1. (3.5.2)

Remark 3.5.1. Observe that the function Gα,β is increasing, as shown via the
alternate formula

Gα,β(t) = tα inf
1≤s<∞

B−1(s1/β) max
{
1, t

s

}1−α
for t ≥ 1, (3.5.3)

and hence its inverse G−1
α,β is well-defined.

Also, Bα,β is actually a Young function. Indeed, since Gα,β is increasing, G−1
α,β

is increasing as well. Thus, since the function Gα,β(t)/t is non-increasing, the
function G−1

α,β(t)/t is non-decreasing. These facts also ensure that

B−1
α,β(t) ≃ Gα,β(t) for t > 0. (3.5.4)

Under the additional assumption that

sup
0<t<1

B(t)
t

1
β(1−α)

< ∞, (3.5.5)

we also define
B∞

α,β(t) =
∫ t

0

G∞
α,β

−1(s)
s

ds for t ≥ 0, (3.5.6)

where G∞
α,β : [0, ∞) → [0, ∞) is given by

G∞
α,β(t) = t inf

0<s≤t
B−1(s1/β)sα−1 for t > 0. (3.5.7)

Note that (3.5.5) guarantees that G∞
α,β is positive on (0, ∞). Furthermore, by an

argument similar to that of Remark 3.5.1, B∞
α,β is a Young function, and

B∞
α,β

−1(t) ≃ G∞
α,β(t) for t > 0. (3.5.8)

Our next version of Reduction principle for Hardy operator in Orlicz spaces
now reads as follows.

Theorem 3.5.2. Let 0 < α < 1, β > 0 and α + 1/β ≥ 1, and R ∈ (0, ∞].
Suppose that A and B are Young functions and let Bα,β and B∞

α,β be the Young
functions defined in (3.5.1) and (3.5.6) respectively. Then there exists a constant
C1 > 0 such that ∫ R

sβ
f(r) rα−1 dr


LB(0,R1/β)

≤ C1∥f∥LA(0,R) (3.5.9)
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for every f ∈ LA(0, R) if and only if either R < ∞ and there exists a constant
C2 > 0 such that ∫ t

1

Ã(s)
s1/(1−α)+1 ds ≤ B̃α,β(C2t)

t1/(1−α) for t > 1

or R = ∞, B obeys (3.5.5) and there exists a constant C3 > 0 such that
∫ t

0

Ã(s)
s1/(1−α)+1 ds ≤

B̃∞
α,β(C3t)
t1/(1−α) for t > 0.

Moreover, if R < 0, then C2 depends on C1, A, α, β and R and, if R = ∞,
then the constants C1 and C3 only depend on each other and on α and β.

In the case when R = ∞, there is also an integral version of the inequality
(3.5.9) on hand. Despite the statement is exactly the same as in Proposition 3.3.4
and repeated here just for the sake of self-contained nature of the whole section,
the proof is derived differently – see the end of this section.

Proposition 3.5.3. Let α, β be as in Theorem 3.5.2 and let A and B be Young
functions. Then there exists a constant C1 > 0 such that∫ ∞

sβ
f(r) rα−1 dr


LB(0,∞)

≤ C1∥f∥LA(0,∞) (3.5.10)

for every f ∈ LA(0, ∞) if and only if there is a constant C2 > 0 such that
∫ ∞

0
B

⎛⎝ H∞
α,βf(t)

C2
(∫∞

0 A(|f(s)|) ds
)α

⎞⎠ dt ≤
(∫ ∞

0
A(|f(t)|) dt

) 1
β

(3.5.11)

for each f ∈ LA(0, ∞).

The proof of Theorem 3.5.2 is significantly different from that of Theorem 3.3.2
and it consists of two steps. In the first one, we characterise the boundedness of
our operator between Orlicz and weak Orlicz space, and in the second one, we
show that any such boundedness to a weak Orlicz space can be strengthen to the
strong one. Let us first focus on those partial results; the proof of Theorem 3.5.2
will be then their straightforward consequence.

The next two propositions deals with the reduction principle to a weak Orlicz
space. The underlying idea of the proof follows the observation that the bound-
edness of the operator is fully dependent just on characteristic functions. Such
result was first published in [57, Theorem B] for bounded domains and later in
[27, Proposition 5.2] for unbounded one.

We moreover treat the cases on a bounded and on an unbounded domains
separately since their proofs are not entirely the same. Let us start with the
reduction on the whole of (0, ∞).

Proposition 3.5.4. Let 0 < α < 1, β > 0 and α + 1/β ≥ 1, and let A and B be
Young functions. Then the following two assertions are equivalent.

(i) There exists a constant C1 > 0 such that

∥H∞
α,βf∥MB(0,∞) ≤ C1∥f∥LA(0,∞) (3.5.12)

for every f ∈ LA(0, ∞).
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(ii) B fulfills condition (3.5.5) and there exists a constant C2 > 0 such that
∫ t

0

Ã(s)
s1/(1−α)+1 ds ≤

B̃∞
α,β(C2t)
t1/(1−α) for t > 0, (3.5.13)

where B∞
α,β is the Young function defined in (3.5.6).

Moreover the constants C1 and C2 only depend on each other and on α and β.

Proof. A duality argument (2.8.2) combined with equation (2.3.3), tells us that
inequality (3.5.12) is equivalent totα−1

∫ t
1
β

0
f(s) ds


LÃ(0,∞)

≤ C1∥f∥ΛÃ(0,∞) (3.5.14)

for every f ∈ ΛÃ(0, ∞), where ΛÃ(0, ∞) is defined as in (2.4.3). We claim that
inequality (3.5.14) is in turn equivalent totα−1

∫ t
1
β

0
f ∗(s) ds


LÃ(0,∞)

≤ C1∥f ∗∥ΛÃ(0,∞) (3.5.15)

for every f ∈ ΛÃ(0, ∞). The fact that (3.5.14) implies (3.5.15) is trivial. The
reverse implication follows from a basic property of rearrangements, which implies
that ∫ t

1
β

0
f(s) ds ≤

∫ t
1
β

0
f ∗(s) ds for t > 0, (3.5.16)

see [9, Lemma 2.1, Chapter 2], and from the equality

∥f∥ΛÃ(0,∞) = ∥f ∗∥ΛÃ(0,∞),

which is a consequence of (2.6.2).
Next, by Proposition 2.8.1, inequality (3.5.15) is equivalent to the same in-

equality restricted just to characteristic functions of the sets of finite measure,
namely to the inequalitytα−1

∫ t
1
β

0
χ(0,r)(s) ds


LÃ(0,∞)

≤ C1∥χ(0,r)∥ΛÃ(0,∞) for r > 0. (3.5.17)

Owing to the equality

∥χ(0,r)∥MB(0,∞) ∥χ(0,r)∥ΛÃ(0,∞) = r for r > 0

(see [9, Theorem 5.2, Chapter 2]), and to equation (2.4.5) with A replaced by B,

∥χ(0,r)∥ΛÃ(0,∞) ≃ r B−1(1/r) for r > 0, (3.5.18)

up to absolute equivalence constants. On the other hand, computations show
thattα−1

∫ t
1
β

0
χ(0,r)(s) ds


LÃ(0,∞)

≃ r ∥tα−1χ(rβ ,∞)(t)∥LÃ(0,∞) for r > 0, (3.5.19)
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up to equivalence constants depending on α and β. The right-hand side of (3.5.19)
is finite if and only if the integral on the left-hand side of (3.5.13) converges.
Moreover, if this is the case, then, by Lemma 3.2.1,

∥tα−1χ(rβ ,∞)(t)∥LÃ(0,∞) = rβ(α−1)

F −1(r−β) for r > 0, (3.5.20)

where F : (0, ∞) → [0, ∞) is the (increasing) function defined by

F (t) = 1
1 − α

t
1

1−α

∫ t

0

Ã(s)
s1/(1−α)+1 ds for t > 0. (3.5.21)

Combining (3.5.18), (3.5.20) and (3.5.17) tells us that (3.5.15), and hence (3.5.12),
is equivalent to the existence of a constant C3, depending on α and β, such that

1
F −1(s) ≤ C3B

−1(s1/β) sα−1 for s > 0. (3.5.22)

Taking the infimum, as s ∈ (0, t], of both sides of (3.5.22), and making use of the
fact that the function F is increasing, yield

1
F −1(t) ≤ C3 inf

0<s≤t
B−1(s1/β) sα−1 for t > 0.

On the other hand, the latter inequality trivially implies (3.5.22). Hence (3.5.22)
is equivalent to

1
F −1(t) ≤ C3

G∞
α,β(t)
t

for t > 0.

It follows from (3.5.22) that (3.5.5) holds if and only if F and hence Ã is not
identically zero. Finally, by equations (3.5.8) and (2.1.5), inequality (3.5.12) is
equivalent to

B̃∞
α,β

−1(t) ≤ C4F
−1(t) for t > 0, (3.5.23)

for some constant C4 depending on α and β. Hence, the conclusion follows, on
taking the inverses of both sides of (3.5.23).

The next proposition now deals with the operator on the interval (0, 1). The
case for an general bounded interval (0, R) can be obtained simply by the com-
position with the dilation operator. Note also that in the previous proposition
the constants C1 and C2 were independent of the Young functions involved. This
is no longer true for the result on a bounded domain where a dependence on a
Young function A appears.

Proposition 3.5.5. Let 0 < α < 1, β > 0 and α + 1/β ≥ 1, and let A and B be
Young functions. Then the following two assertions are equivalent.

(i) There exists a constant C1 > 0 such that

∥Hα,βf∥MB(0,1) ≤ C1∥f∥LA(0,1) (3.5.24)

for every f ∈ LA(0, 1).
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(ii) There exists a constant C2 > 0 such that
∫ t

1

Ã(s)
s1/(1−α)+1 ds ≤ B̃α,β(C2t)

t1/(1−α) near infinity, (3.5.25)

where Bα,β is the Young function defined in (3.5.1).

Moreover the constants C1 and C2 depend on each other on A and on α and β.

Proof. I order to prove this statement, we will follow the same scheme as in the
proof of Proposition 3.5.4 and we shall comment the principal differences only.
First, as above, we infer that (3.5.24) is equivalent to the existence of a constant
C2 such thattα−1

∫ t
1
β

0
χ(0,r)(s) ds


LÃ(0,1)

≤ C2 rB−1
(1

r

)
for r ∈ (0, 1). (3.5.26)

Here C2 depend only on C1. Next, we show that (3.5.26) is equivalent to the same
inequality for r restricted only to some neighbourhood of zero. Indeed, assume
that (3.5.26) hold on (0, r0] for some r0 fixed. Let r ∈ (r0, 1) and denote by c the
largest integer such that cr0 < r. Then, by (3.5.16),

∫ t
1
β

0
χ(0,r)(s) ds =

∫ t
1
β

0
χ(0,r0)(s) ds +

∫ t
1
β

0
χ(r0,2r0)(s) ds + · · · +

∫ t
1
β

0
χ(cr0,r)(s) ds

≤ c
∫ t

1
β

0
χ(0,r0)(s) ds ≤ 1

r0

∫ t
1
β

0
χ(0,r0)(s) ds

and (3.5.26) follows with C2 replaced by C2/r0.
We observe thattα−1

∫ t
1
β

0
χ(0,r)(s) ds


LÃ(0,1)

≃ r∥tα−1χ(rβ ,1)(t)∥LÃ(0,1) for r ∈ (0, 2−1/β).

(3.5.27)
where the constants depend only on α and β. Clearly, it istα−1

∫ t
1
β

0
χ(0,r)(s) ds


LÃ(0,1)

≤ ∥tα+ 1
β

−1χ(0,rβ)(t)∥LÃ(0,1) + ∥tα−1χ(rβ ,1)(t)∥LÃ(0,1)

and for r ∈ (0, 2−1/β) we have

∥tα+ 1
β

−1χ(0,rβ)(t)∥LÃ(0,1) ≤ rβ(α−1)+1∥χ(0,rβ)∥LÃ(0,1)

= rβ(α−1)+1∥χ(rβ ,2rβ)∥LÃ(0,1) ≤ 2β(1−α)r∥tα−1χ(rβ ,1)∥LÃ(0,1).

Also, by Lemma 3.2.1,

∥tα−1χ(rβ ,1)(t)∥LÃ(0,1) ≃ rβ(α−1)

F −1(r−β) near zero, (3.5.28)

where F is defined as in (3.5.21). The assumption (3.2.1) can be rendered as
satisfied since otherwise we can modify the Young function A on (0, 1) without
affecting the space LA(0, 1). The constant in (3.5.28) now also depends on A.
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Combining (3.5.26), (3.5.27) and (3.5.28) gives us that (3.5.24) is equivalent
to the existence of a constant C3, depending on C1, α, β and A, such that

1
F −1(s) ≤ C3B

−1(s1/β) sα−1 near infinity. (3.5.29)

The rest of the proof is now very similar. We take the infimum, as s ∈ (1, t], of
both sides of (3.5.29) to obtain that (3.5.29) is equivalent to the inequality

1
F −1(t) ≤ C3

Gα,β(t)
t

near infinity.

Therefore, by (3.5.4) and (2.1.5), inequality (3.5.24) is equivalent to

B̃α,β

−1(t) ≤ C4F
−1(t) near infinity (3.5.30)

for some constant C4 depending on C1, α, β and A. On taking inverses of both
sides of (3.5.30), we get

∫ t

0

Ã(s)
s1/(1−α)+1 ds ≤ B̃α,β(C4t)

t1/(1−α) near infinity, (3.5.31)

which is equivalent to (3.5.25) since the integrals on the left hand side of (3.5.31)
and (3.5.25) are comparable near infinity. The resulting inequality therefore does
not depend on the values of Ã on (0, 1).

The next key result reveals that any Orlicz the boundedness to a weak space
can actually be lifted to the strong one. This idea already appeared in similar
form in [29, Lemmas 5.3 and 5.4]; we will follow the proof from [27, Lemma 5.3].

Proposition 3.5.6. Let α, β, A and B be as in Proposition 3.5.4. If

H∞
α,β : LA(0, ∞) → MB(0, ∞), (3.5.32)

then
H∞

α,β : LA(0, ∞) → LB(0, ∞). (3.5.33)
Moreover, the norms of the operator H∞

α,β in (3.5.32) and (3.5.33) are equivalent,
up to multiplicative constants independent of A and B.

Proof. Throughout this proof, we adopt the abridged notation H for H∞
α,β. Given

N > 0, define the Young functions AN and BN as

AN(t) = A(t)
N

and BN(t) = 1
N1/β

B
(
tN−α

)
for t ≥ 0. (3.5.34)

We claim that equation (3.5.32) implies that

H : LAN (0, ∞) → MBN (0, ∞) , (3.5.35)

with operator norm independent of N . To prove this claim, we make use of
Proposition 3.5.4, which tells us that (3.5.32) is equivalent to the existence of a
positive constant C such that

∫ t

0

Ã(s)
s1/(1−α)+1 ds ≤

B̃∞
α,β(Ct)

t1/(1−α) for t > 0, (3.5.36)
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where B∞
α,β is the Young function defined by (3.5.6). One can verify that the

function (BN)∞
α,β, associated with BN as in (3.5.6), satisfies

(BN)∞
α,β =

B∞
α,β

N
,

and that inequality (3.5.36) holds with A and B∞
α,β replaced by AN and (BN)∞

α,β,
respectively, with the same constant C. Proposition 3.5.4 again tells us that
(3.5.35) holds, with operator norm independent of N .

Now, given any function f ∈ M+(0, ∞) such that

0 <
∫ ∞

0
A
(
f(r)

)
dr ≤ 1 , (3.5.37)

set
N =

∫ ∞

0
A
(
f(r)

)
dr.

Thanks to (3.5.35), we have that

∥Hf∥MBN (0,∞) ≤ C∥f∥LAN (0,∞) ≤ C , (3.5.38)

for some constant C independent of N and f , since, by the very definition of
Luxemburg norm in Orlicz spaces,

∥f∥LAN (0,∞) ≤ 1. (3.5.39)

Equations (3.5.38)–(3.5.39), inequality (2.4.2) and equation (3.5.34) tell us

C ≥ ∥Hf∥MBN (0,∞) ≥ sup
0<t<∞

t

B−1
N

(
1

|{Hf>t}|

) = sup
0<t<∞

t

NαB−1
(

N1/β

|{Hf>t}|

)
for t > 0, namely

|{Hf > t}| B

⎛⎝ t

C
(∫∞

0 A
(
f(r)

)
dr
)α

⎞⎠ ≤
(∫ ∞

0
A
(
f(r)

)
dr

) 1
β

for t > 0.

(3.5.40)
From inequality (3.5.40), via assumption (3.5.37) and property (2.1.3) applied to
B, one can deduce that

|{Hf > t}| B
(

t

C

)
≤
(∫ ∞

0
A
(
f(r)

)
dr

)α+ 1
β

for t > 0. (3.5.41)

Clearly, inequality (3.5.41) continues to hold even if the integral on the right-hand
side vanishes.

Our next task is to derive a strong type inequality from the weak type in-
equality (3.5.41). This will be accomplished via a discretization argument. If
the (non-negative) function Hf is unbounded, denote by {sk}k∈Z a sequence in
(0, ∞) such that

Hf(sk) = 2k for k ∈ Z. (3.5.42)
In the case when Hf is bounded, we define the sequence {sk} similarly, save that
now the index k ranges from −∞ to the smallest K ∈ Z such that Hf(0) ≤ 2K .
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We then set sK = 0, and define sk again by (3.5.42) for k ≤ K − 1. In what
follows, we shall treat these two cases simultaneously, and K will denote either ∞,
or an integer, according to whether Hf is unbounded or bounded, respectively.

Notice that sk is non-increasing, since Hf is non-increasing. Define

fk = fχ[sβ
k

,sβ
k−1) for k < K.

If k < K, then
Hf(s) ≤ Hf(sk) = 2k for s ∈ (sk, sk−1) .

Hence,∫ ∞

0
B

(
Hf(s)

4C

)
ds =

∑
k<K

∫ sk

sk+1
B

(
Hf(s)

4C

)
ds (3.5.43)

≤
∑

k<K

∫ sk

sk+1
B

(
2k+1

4C

)
ds =

∑
k<K

(sk − sk+1)B
(

2k−1

C

)
.

Given any k < K,

Hfk(s) ≥
∫ ∞

sβ
k

fk(r) rα−1 dr =
∫ ∞

sβ
k

f(r)χ[
sβ

k
,sβ

k−1

)(r) rα−1 dr =
∫ sβ

k−1

sβ
k

f(r) rα−1 dr

= Hf(sk) − Hf(sk−1) = 2k−1 for s ∈ [sk+1, sk).

Consequently,
[sk+1, sk) ⊂

{
Hfk ≥ 2k−1

}
for k < K. (3.5.44)

From inclusion (3.5.44) and inequality (3.5.41) we obtain that

(sk − sk+1)B
(

2k−1

C

)
≤
⏐⏐⏐{Hfk ≥ 2k−1

}⏐⏐⏐B(2k−1

C

)
≤
(∫ ∞

0
A
(
fk(r)

)
dr

)α+ 1
β

(3.5.45)

for k < K. Coupling (3.5.43) with (3.5.45), and exploiting the fact that α+1/β ≥
1 yield
∫ ∞

0
B

(
Hf(s)

4C

)
ds ≤

∑
k<K

(∫ ∞

0
A
(
fk(r)

)
dr

)α+ 1
β

(3.5.46)

≤
(∑

k<K

∫ ∞

0
A
(
fk(r)

)
dr

)α+ 1
β

≤
(∫ ∞

0
A
(
f(r)

)
dr

)α+ 1
β

,

for every function f ∈ M+(0, ∞) satisfying the second inequality in (3.5.37).
Inequality (3.5.46) implies equation (3.5.33).

Corollary 3.5.7. Let α, β, A and B be as in Proposition 3.5.4. If

Hα,β : LA(0, 1) → MB(0, 1), (3.5.47)

then
Hα,β : LA(0, 1) → LB(0, 1). (3.5.48)

In particular, the space LA(0, 1) is the optimal Orlicz domain in (3.5.47) if and
only if it is the optimal Orlicz domain in (3.5.48).
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Proof. Suppose that A and B are Young functions such that (3.5.47) holds.
Proposition 3.5.5 tells us that (3.5.47) implies that∫ t

1

Ã(s)
s1/(1−α)+1 ds ≤ B̃α,β(Ct)

t1/(1−α) for t ≥ t0,

for some constants C > 0 and t0 > 1. Let us denote by Â and B̂ two Young
functions which agree with A and B near infinity, and are modified near zero in
such a way that B̂ satisfies condition (3.5.5), and condition (3.5.13) holds with
A and B∞

α,β replaced by Â and B̂∞
α,β. Hence, by Proposition (3.5.4),

H∞
α,β : LÂ(0, ∞) → M B̂(0, ∞),

and therefore, by Proposition 3.5.6,

H∞
α,β : LÂ(0, ∞) → LB̂(0, ∞). (3.5.49)

Equation (3.5.49) implies (3.5.48) since LÂ(0, 1) = LA(0, 1), and LB̂(0, 1) =
LB(0, 1), up to equivalent norms.

Proof of Theorem 3.5.2. In the case R = ∞, the assertion is a direct conse-
quence of Propositions 3.5.4 and 3.5.6.

If R < ∞, then, thanks to (2.8.3), the dilation operator is bounded on any
Orlicz space and hence (3.5.9) holds if and only if the same inequality holds with
R replaced by 1. Thus, the result follows due to Proposition 3.5.5 together with
Corollary (3.5.7).

Proof of Proposition 3.5.3. Let A and B be Young functions and assume
(3.3.12). We use of the same scaling argument that already appeared in the
proof of Proposition 3.5.6. Let N > 0 be given and define AN and BN as in
(3.5.34). We claim that

H∞
α,β : LAN (0, ∞) → LBN (0, ∞) (3.5.50)

in which the operator norm does not depend on N . Indeed, thanks to the char-
acterisation in Theorem 3.5.2, the inequality (3.5.10) is equivalent to∫ t

0

Ã(s)
s1/(1−α)+1 ds ≤

B̃∞
α,β(Ct)

t1/(1−α) for t > 0, (3.5.51)

where C is a positive constant. One might observe that (BN)∞
α,β, the Young

function associated to BN as in (3.5.6), satisfies (BN)∞
α,β = B∞

α,β/N . Hence, by
the substitution in (3.5.51), we infer that

∫ t

0

ÃN(s)
s1/(1−α)+1 ds ≤

˜(BN)∞
α,β(Ct)

t1/(1−α) for t > 0 (3.5.52)

with the same constant C. Thanks to Theorem 3.5.2, (3.5.52) implies (3.5.50).
Next, let f ∈ LA(0, ∞). Assume that

∫∞
0 A(|f |) < ∞ otherwise there is

nothing to prove, and set N =
∫∞

0 A(|f |). By the definition of the Luxemburg
norm, ∥f∥LAN (0,∞) ≤ 1 and thus, by (3.5.10), ∥H∞

α,βf∥LBN (0,∞) ≤ C1. Therefore∫ ∞

0
BN

(H∞
α,βf(t)
C1

)
dt ≤ 1

and (3.5.11) follows by the definition of BN .
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3.6 Optimal Orlicz domain spaces
The aim of this section is to present the solution of the optimal Orlicz domain
space LA for the boundedness of the operators H∞

α,β and Hα,β in (3.1.3) and (3.1.4)
respectively for a given space LB. Let us start with the variant on (0, ∞).

Theorem 3.6.1. Let 0 < α < 1, β > 0, and α + 1/β ≥ 1. Suppose that B is a
Young function satisfying (3.5.5) and let B∞

α,β be the Young function defined by
(3.5.6). If

I∞
B∞

α,β
<

1
α

, (3.6.1)

then
H∞

α,β : LB∞
α,β (0, ∞) → LB(0, ∞), (3.6.2)

and LB∞
α,β (0, ∞) is the optimal (i.e. largest) Orlicz domain space that renders

(3.6.2) true. Moreover, the embedding norm depends only on α and β
Conversely, if (3.6.1) is not satisfied, then no optimal Orlicz domain space

exists in (3.6.2) in the sense that any Orlicz space LA(0, ∞) which makes (3.1.3)
true can be replaced with a strictly larger Orlicz space from which the operator
H∞

α,β is still bounded into LB(0, ∞).
In particular, if i∞

B > 1
β(1−α) , then (3.6.1) is equivalent to I∞

B < ∞ and

B∞
α,β

−1(t) ≃ B−1(t1/β) tα for t > 0. (3.6.3)

In addition, if (3.5.5) is not satisfied, then there does not exist an Orlicz
domain space LA(0, ∞) for which (3.1.3) holds.

The proof of Theorem 3.6.1 continues at the end of this section. The sharp em-
bedding (3.5.12) is also equivalent to the corresponding inequality in its integral
form. The next corollary is a direct consequence of Proposition 3.5.3.

Corollary 3.6.2. Let α, β, B and B∞
α,β be as in Theorem 3.6.1 and suppose that

I∞
B∞

α,β
<

1
α

. (3.6.4)

Then there exists a constant C > 0 such that
∫ ∞

0
B

⎛⎝ H∞
α,βf(t)

C
(∫∞

0 B∞
α,β(|f(s)|) ds

)α

⎞⎠ dt ≤
(∫ ∞

0
B∞

α,β(|f(t)|) dt
) 1

β

for every f ∈ LB∞
α,β (0, ∞).

In particular, if i∞
B > 1

β(1−α) , then (3.6.4) is equivalent to I∞
B < ∞ and

B∞
α,β

−1(t) ≃ B−1(t1/β) tα for t > 0.

The local version of Theorem 3.6.1 is also available. Naturally, the behaviour
of Young functions does not play any role and hence all necessary relations which
now have to be taken “near infinity” only. Note that in this case it is not possible
to have an integral integral version of the statement in general. The proof of
this result is similar (and even simpler) to that of Theorem 3.6.1 and therefore
omitted.
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Theorem 3.6.3. Let 0 < α < 1, β > 0, and α + 1/β ≥ 1. Suppose that B is a
Young function and let Bα,β be the Young function defined by (3.5.1). If

IBα,β
<

1
α

, (3.6.5)

then
Hα,β : LBα,β (0, 1) → LB(0, 1) , (3.6.6)

and LBα,β (0, 1) is the optimal (i.e. largest) Orlicz domain space that renders
(3.6.6) true.

In particular, if iB > 1
β(1−α) , then (3.6.5) is equivalent to IB < ∞ an

B∞
α,β

−1(t) ≃ B−1(t1/β) tα near infinity. (3.6.7)

Conversely, if (3.6.5) is not satisfied, then no optimal Orlicz domain space
exists in (3.6.6), in the sense that any Orlicz space LA(0, 1) which makes (3.1.4)
true can be replaced with a strictly larger Orlicz space from which the operator
Hα,β is still bounded into LB(0, 1).

In order to prove the result of this section, i.e., to prove Theorems 3.6.1 and
3.6.3, we need to introduce several auxiliary lemmas focused on a construction of
specific Young functions. They all share the same background idea. They enable
us to essentially enlarge Young functions appearing on left hand sides of some
specific integral inequalities under several conditions imposed on right hand sides.

Lemma 3.6.4. Let n ∈ N, 0 < α < 1 and let D be a Young function such that
D(t)/t1/(1−α) is non-decreasing near infinity,

lim
t→∞

D(t)
t1/(1−α) = ∞ (3.6.8)

and
sup

1<t<∞

t1/(1−α)

D(Kt)

∫ t

1

D(s)
s1/(1−α)+1 ds = ∞ (3.6.9)

for every K ≥ 1. Suppose that E is a Young function such that∫ t

1

E(s)
s1/(1−α)+1 ds ≤ D(Ct)

t1/(1−α) , t > 1, (3.6.10)

for some C ≤ 1. Then there exists a Young function E1 essentially dominating
E near infinity and satisfying∫ t

1

E1(s)
s1/(1−α)+1 ds = D(5Ct)

t1/(1−α) , t > 1. (3.6.11)

Proof. Let D and E be the Young functions from the statement. Fix t > 1 and
define the set Gt by

Gt =
{
s ∈ (1, ∞) : E(s)

s
≥ D(t)

t

}
.

We may assume that E(s)/s is a non-decreasing mapping from (1, ∞) onto some
neighbourhood of infinity, and hence the sets Gt are nonempty for every t > 0. If
not, i.e. lims→∞ E(s)/s < ∞, then E(s) ≤ cs on (1, ∞) for some c > 0 and thus∫ ∞

1

E(s)
s1/(1−α)+1 ds ≤

∫ ∞

1

ds

s1/(1−α) < ∞

44



and we may take E1(t) = tξ on (1, ∞) for some 1 < ξ < 1/(1 − α) which satisfies
the requirements trivially.

Let us define τ = τt = inf Gt. Observe that, by the continuity of Young
function E,

E(τ)
τ

= D(t)
t

, t > 1. (3.6.12)

Also,
lim sup

t→∞

E(τt)
τt

· t

E(Kt) = ∞ (3.6.13)

for every K ≥ 1. Indeed, suppose that there is some K ≥ 1 for which (3.6.13) is
violated. We then have some L > 0 such that

E(Kt)
t

≥ L
E(τ)

τ
, t > 1,

which in connection with (3.6.12) gives E(Ks) ≥ L D(s) on (1, ∞). Thus

D(CKt)
t1/(1−α) ≥

∫ Kt

1

E(s)
s1/(1−α)+1 ds ≥ K

1
α−1

∫ t

1

E(Ks)
s1/(1−α)+1 ds

≥ LK
1

α−1

∫ t

1

D(s)
s1/(1−α)+1 ds, t > 1,

which contradicts (3.6.9) and therefore (3.6.13) holds true.
Next, by(3.6.13), we can take an increasing sequence tk ∈ (1, ∞), k ∈ N, such

that
lim

k→∞

E(τk)
τk

· tk

E(ktk) = ∞, (3.6.14)

where we set τk = τtk
. Without loss of generality we may assume that 2tk < τk

for every k ∈ N. For contradiction, suppose that there exists a subsequence {kj}
such that τkj

≤ 2tkj
. Then, since E(s)/s does not increase and thanks to (2.1.3),

E(τkj
)

τkj

·
tkj

E(kjtkj
) ≤

E(2tkj
)

2tkj

·
tkj

E(kjtkj
) ≤

E(2tkj
)

E(2tkj
) · 1

kj

= 1
kj

→ 0 as k → ∞,

which is impossible due to (3.6.14). We may also require that tk+1 is chosen in
a way that 2tk ≤ τk < tk+1. Furthermore, from (3.6.8) take tk+1 big enough so
that

2 D(tk)
t
1/(1−α)
k

≤ D(tk+1)
t
1/(1−α)
k+1

. (3.6.15)

We now define a function E1 by the formula

E1(t) =

⎧⎪⎨⎪⎩E(tk) + E(τk) − E(tk)
τk − tk

(t − tk), t ∈ (tk, τk), k ∈ N,

E(t), otherwise.
(3.6.16)

Obviously, E1 is a well-defined Young function and E1 ≥ E. Moreover, for k ∈ N,
2E(tk) ≤ E(τk) by (2.1.3) and therefore

E1(2tk)
E(ktk) =

E(tk) + E(τk)−E(tk)
τk−tk

tk

E(ktk) ≥ E(τk) − E(tk)
E(ktk) · tk

τk

≥ 1
2 · E(τk)

τk

· tk

E(ktk)
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and the latter tends to infinity as k → ∞ by (3.6.14). Consequently

lim sup
t→∞

E1(t)
E(λt) = ∞

for every λ ≥ 1 and E1 essentially dominates E. It remains to show that E1
fulfills (3.6.11). Let t > 1 be fixed and let j ∈ N be such that t ∈ [tj, tj+1). Then
we have∫ t

1

E1(s)
s1/(1−α)+1 ds ≤

∫ t

1

E(s)
s1/(1−α)+1 ds +

j∑
k=1

E(τk) − E(tk)
τk − tk

∫ τk

tk

s − tk

s1/(1−α)+1 ds.

(3.6.17)
By the assumption, the former integral is dominated by the right hand side of
(3.6.10). Let us follow with estimates of the latter sum. Thanks to 2tk < τk and
(3.6.12),

E(τk) − E(tk)
τk − tk

≤ 2E(τk)
τk

= 2D(tk)
tk

(3.6.18)

and since 1/(1 − α) > 1, we have∫ τk

tk

(s − tk)
s1/(1−α)+1 ds ≤

∫ ∞

tk

1
s1/(1−α) ds ≤ 1

t
1/(1−α)−1
k

. (3.6.19)

Combination of (3.6.17) and (3.6.18) with (3.6.19) then gives
∫ t

1

E1(s)
s1/(1−α)+1 ds ≤ D(Ct)

t1/(1−α) + 2
j∑

k=1

D(tk)
t
1/(1−α)
k

. (3.6.20)

It follows from (3.6.15) that

D(tk)
t
1/(1−α)
k

≤ 2k−j D(tj)
t
1/(1−α)
j

≤ 2k−j D(t)
t1/(1−α) , j ≤ k < ∞,

whence
j∑

k=1

D(tk)
t
1/(1−α)
k

≤ D(t)
t1/(1−α)

j∑
k=1

2k−j ≤ 2D(t)
t1/(1−α) . (3.6.21)

The inequality (3.6.27) thus follows by (3.6.20) and (3.6.21).

Lemma 3.6.5. Let E be a Young function satisfying∫ ∞

1

E(s)
s1/(1−α)+1 ds < ∞. (3.6.22)

Then there is a Young function E1 such that E1 essentially dominates E near
infinity and also ∫ ∞

1

E1(s)
s1/(1−α)+1 ds < ∞. (3.6.23)

Proof. Assume (3.6.22). The procedure is almost the same as the proof of
Lemma 3.6.4 with only several modifications. Let us write D(t) = t1/(1−α)η(t)
where η is some function decreasing to zero at infinity and satisfying∫ ∞

1
η(s)ds

s
= ∞.
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Define τt exactly the same to obtain (3.6.12) with our D. We also prove (3.6.13)
for every K ≥ 1 since, by contradiction, we have E(Ks) ≥ LD(s) on (1, ∞) and
hence∫ ∞

1

E(s)
s1/(1−α)+1 ds ≥ K

1
α−1

∫ ∞

1

E(Ks)
s1/(1−α)+1 ds ≥ LK

1
α−1

∫ ∞

1
η(s)ds

s
= ∞

which is impossible by (3.6.22). The sequence tk is then chosen as in (3.6.14)
with the difference that instead of (3.6.15) we require

∞∑
k=1

η(tk) < ∞.

Now, we set the Young function E1 by the same formula as in (3.6.16). We then
get that E1 dominates essentially E near infinity and finally∫ ∞

1

E1(s)
s1/(1−α)+1 ds ≤

∫ ∞

1

E(s)
s1/(1−α)+1 ds +

∞∑
k=1

η(tk) < ∞.

by the combination of the estimates (3.6.17), (3.6.18) and (3.6.19). This proves
(3.6.23).

Lemma 3.6.6. Let n ∈ N, 0 < α < 1 and let D be a Young function such that
D(t)/t1/(1−α) is non-decreasing near zero,

lim
t→0

D(t)
t1/(1−α) = 0 (3.6.24)

and
sup

0<t<1

t1/(1−α)

D(Kt)

∫ t

0

D(s)
s1/(1−α)+1 ds = ∞ (3.6.25)

for every K ≥ 1. Suppose that E is a Young function such that∫ t

0

E(s)
s1/(1−α)+1 ds ≤ D(Ct)

t1/(1−α) , 0 < t < 1, (3.6.26)

for some C ≤ 1. Then there exists a Young function E1 essentially dominating
E near zero and satisfying∫ t

0

E1(s)
s1/(1−α)+1 ds ≤ D(5Ct)

t1/(1−α) , 0 < t < 1. (3.6.27)

Proof. Let D and E be the Young functions from the statement. Fix t ∈ (0, 1)
and define the set Gt by

Gt =
{
s ∈ (0, 1) : E(s)

s
≤ D(t)

t

}
.

We claim that E(s)/s is a non-decreasing mapping from (0, 1) onto some neigh-
bourhood of zero, and hence the sets Gt are nonempty for every t ∈ (0, 1). Indeed,
if lims→0+ E(s)/s > 0, then E(s) ≥ cs on (0, 1) for some c > 0 and thus

∫
0

E(s)
s1/(1−α)+1 ds ≥ c

∫
0

ds

s1/(1−α) = ∞
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which contradicts (3.6.26).
Let us define τ = τt = sup Gt. Observe that, by the continuity of Young

functions,
E(τ)

τ
= D(t)

t
, 0 < t < 1. (3.6.28)

Also,
lim sup

t→0+

E(τt)
τt

· t

E(Kt) = ∞ (3.6.29)

for every K ≥ 1. Indeed, suppose that there is some K ≥ 1 for which (3.6.29) is
violated. We then have some L > 0 such that

E(Kt)
t

≥ L
E(τ)

τ
, 0 < t < 1,

which in connection with (3.6.28) gives E(Ks) ≥ L D(s) on (0, 1). Thus

D(CKt)
t1/(1−α) ≥

∫ Kt

0

E(s)
s1/(1−α)+1 ds = K

1
α−1

∫ t

0

E(Ks)
s1/(1−α)+1 ds

≥ LK
1

α−1

∫ t

0

D(s)
s1/(1−α)+1 ds, 0 < t < 1,

which contradicts (3.6.25) and therefore (3.6.29) holds true.
Next, by(3.6.29), we can take a decreasing sequence tk ∈ (0, 1), k ∈ N, such

that
lim

k→∞

E(τk)
τk

· tk

E(ktk) = ∞, (3.6.30)

where we set τk = τtk
. Without loss of generality we may assume that 2tk < τk

for every k ∈ N. For contradiction, suppose that there exists a subsequence {kj}
such that τkj

≤ 2tkj
. Then, since E(s)/s does not increase and thanks to (2.1.3),

E(τkj
)

τkj

·
tkj

E(kjtkj
) ≤

E(2tkj
)

2tkj

·
tkj

E(kjtkj
) ≤

E(2tkj
)

E(2tkj
) · 1

kj

= 1
kj

→ 0 as k → ∞,

which is impossible due to (3.6.30). We may also require that tk+1 is chosen in a
way that 2tk+1 ≤ τk+1 < tk, which is ensured if τt → 0 as t → 0. To observe that,
by (3.6.28), we need to have limt→0+ D(t)/t = 0 which is however guaranteed
by the stronger condition (3.6.24). Furthermore, from (3.6.24) take tk+1 small
enough so that

D(tk+1)
t
1/(1−α)
k+1

≤ 1
2 · D(tk)

t
1/(1−α)
k

. (3.6.31)

We now define a function E1 by the formula

E1(t) =

⎧⎪⎨⎪⎩E(tk) + E(τk) − E(tk)
τk − tk

(t − tk), t ∈ (tk, τk), k ∈ N,

E(t), otherwise.

Obviously, E1 is a well-defined Young function and E1 ≥ E. Moreover, for k ∈ N,
2E(tk) ≤ E(τk) by (2.1.3) and therefore

E1(2tk)
E(ktk) =

E(tk) + E(τk)−E(tk)
τk−tk

tk

E(ktk) ≥ E(τk) − E(tk)
E(ktk) · tk

τk

≥ 1
2 · E(τk)

τk

· tk

E(ktk)
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and the latter tends to infinity as k → ∞ by (3.6.30). Consequently

lim sup
t→0+

E1(t)
E(λt) = ∞

for every λ ≥ 1 and E1 essentially dominates E. It remains to show that E1
fulfills (3.6.27). Let t ∈ (0, 1) be fixed and let j ∈ N be such that t ∈ [tj, tj+1).
Then we have∫ t

0

E1(s)
s1/(1−α)+1 ds ≤

∫ t

0

E(s)
s1/(1−α)+1 ds +

∞∑
k=j

E(τk) − E(tk)
τk − tk

∫ τk

tk

s − tk

s1/(1−α)+1 ds.

(3.6.32)
By the assumption, the former integral is dominated by the right hand side of
(3.6.26). Let us follow with estimates of the latter sum. Thanks to 2tk < τk and
(3.6.28),

E(τk) − E(tk)
τk − tk

≤ 2E(τk)
τk

= 2D(tk)
tk

(3.6.33)

and since 1/(1 − α) > 1, we have∫ τk

tk

(s − tk)
s1/(1−α)+1 ds ≤

∫ ∞

tk

1
s1/(1−α) ds ≤ 1

t
1/(1−α)−1
k

. (3.6.34)

Combination of (3.6.32) and (3.6.33) with (3.6.34) then gives
∫ t

0

E1(s)
s1/(1−α)+1 ds ≤ D(Ct)

t1/(1−α) + 2
∞∑

k=j

D(tk)
t
1/(1−α)
k

. (3.6.35)

It follows from (3.6.31) that

D(tk)
t
1/(1−α)
k

≤ 2j−k D(tj)
t
1/(1−α)
j

≤ 2j−k D(t)
t1/(1−α) , j ≤ k < ∞,

whence ∞∑
k=j

D(tk)
t
1/(1−α)
k

≤ D(t)
t1/(1−α)

∞∑
k=j

2j−k ≤ 2D(t)
t1/(1−α) . (3.6.36)

The inequality (3.6.27) thus follows by (3.6.35) and (3.6.36).

Lemma 3.6.7. Let E be a Young function satisfying∫ 1

0

E(s)
s1/(1−α)+1 ds < ∞. (3.6.37)

Then there is a Young function E1 such that E1 essentially dominates E near
zero and also ∫ 1

0

E1(s)
s1/(1−α)+1 ds < ∞. (3.6.38)

Proof. Assume that E is given and fulfills (3.6.37). Let us define dk = 1/ log(k+
1), k ∈ N, and let tk, k ∈ N, satisfy tk ≤ tk−1/k and∫ tk

0

E(s)
s1/(1−α)+1 ds ≤ dk for k ∈ N.
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Then define D1 by

D1(t) =
∞∑

k=1
dkt

1
1−α χ[tk+1,tk)(t) + Ct

1
1−α χ[t1,∞)(t), t ≥ 0,

where C is a constant which dominates the integral in (3.6.37), and set D by

D(t) =
∫ 2t

0

D1(s)
s

ds, t ≥ 0.

Since D1 is non-decreasing, D is a Young function and D1(t) ≤ D(t).
We shall show that E and D satisfy the assumptions of Lemma 3.6.6. Clearly

D(t)/t1/(1−α) is non-decreasing and limt→0+ D(t)/t1/(1−α) = limk→∞ dk = 0. Next,
let t ∈ (0, 1) be arbitrary and let j ∈ N be such that t ∈ [tj+1, tj). Then∫ t

0

D(s)
s1/(1−α)+1 ds ≥

∫ t

0

D1(s)
s1/(1−α)+1 ds ≥

∞∑
k=j+1

∫ tk

tk+1

D1(s)
s1/(1−α)+1 ds

≥
∞∑

k=j+1
dk

∫ tk

tk+1

ds

s
≥

∞∑
k=j+1

dk log(k + 1) = ∞

which gives (3.6.25) and also∫ t

0

E(s)
s1/(1−α)+1 ds ≤

∫ tj

0

E(s)
s1/(1−α)+1 ds = dj = D1(t)

t1/(1−α) ≤ D(t)
t1/(1−α)

which is (3.6.26). Lemma 3.6.6 gives us a Young function E1 essentially domi-
nating E such that ∫ t

0

E1(s)
s1/(1−α)+1 ds ≤ D(5t)

t1/(1−α) , 0 < t < 1.

Then we have (3.6.38) as a special case.

We next analyze connections between the Boyd indices of a Young function
B, and those of the Young functions Bα,β and B∞

α,β defined in (3.5.1) and (3.5.6),
respectively.

Let us preliminarily observe that

1 ≤ IBα,β
≤ 1

α

[
1 ≤ I∞

B∞
α,β

≤ 1
α

]
for every B. Indeed, as one gets from (3.5.3) and (3.5.4),

B−1
α,β(t) t−α ≃ inf

1≤s<∞
B−1(s1/β) max

{
1, t

s

}1−α
for t ≥ 1, (3.6.39)

and that the right-hand side of (3.6.39) is a non-decreasing function. As for the
global version, we get

(B∞
α,β)−1(t) t−α ≃ inf

0≤s<∞
B−1(s1/β) max

{
1, t

s

}1−α
for t > 0, (3.6.40)

and the conclusion follows as above.
The next lemma tells us that, under a suitable lower bound for the lower Boyd

index of B, the infimum on the right-hand side of equations (3.5.2) and (3.5.7)
can be disregarded.
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Lemma 3.6.8. Let 0 < α < 1, β > 0 and α + 1/β ≥ 1 and let B be a Young
function. Assume that

iB >
1

β(1 − α) . (3.6.41)

Then

inf
1≤s≤t

B−1(s1/β) sα−1 ≃ B−1(t1/β) tα−1 near infinity. (3.6.42)

Hence,
B−1

α,β(t) ≃ B−1(t1/β) tα near infinity.

Conversely if (3.6.42) holds, then iB ≥ 1
β(1−α) .

Lemma 3.6.9. Let 0 < α < 1, β > 0 and α + 1/β ≥ 1. Let B be a Young
function, and assume in addition that (3.5.5) holds. If

i∞
B >

1
β(1 − α) , (3.6.43)

then
inf

0<s≤t
B−1(s1/β) sα−1 ≃ B−1(t1/β) tα−1 for t > 0. (3.6.44)

Hence,
B∞

α,β
−1(t) ≃ B−1(t1/β) tα for t > 0. (3.6.45)

Conversely if (3.6.44) holds, then i∞
B ≥ 1

β(1−α) .

We limit ourselves to proving Lemma 3.6.9; the proof of Lemma 3.6.8 requires
minor modifications.

Proof of Lemma 3.6.9. If B is infinite for large values of its argument, then
the its generalized inverse B−1 is constant near infinity, and equation (3.6.44)
holds trivially.

In the remaining part of this proof, we may thus assume that the function B
is finite-valued. Equation (3.6.44) is equivalent to

inf
0<s≤t

B̃(s) s
1

β(1−α)−1 ≃ B̃(t) t
1

β(1−α)−1 for t > 0. (3.6.46)

Indeed, owing to (2.1.5), condition (3.6.44) is equivalent to

inf
0<s≤t

sβ(α−1)+1

B̃−1(s)
≃ tβ(α−1)+1

B̃−1(t)
for t > 0, (3.6.47)

and equation (3.6.47) is in turn equivalent to (3.6.46). On the other hand, by
Proposition 3.2.2, condition (3.6.43) is equivalent to

I∞
B̃

< η , (3.6.48)

where we have set η = 1
β(α−1)+1 . The same proposition ensures that condition

(3.6.48) is equivalent to the inequality∫ ∞

t
B̃(s) s−η−1 ds ≤ B̃(kt) t−η for t > 0, (3.6.49)

51



for some constant k > 1. Hence it suffices to show that (3.6.49) implies (3.6.46).
To this purpose, denote by ρ ∈ [0, t] a number satisfying

inf
0<s≤t

B̃(s) s−η = B̃(ρt) (ρt)−η for t > 0.

By the same argument as in the derivation (iii) from (i) in Proposition 3.2.2, one
has that

B̃(ρt) (ρt)−ηkη ≥
∫ ∞

ρt/k
B̃(s) s−η−1ds ≥

∫ t

ρt
B̃(s) s−η−1ds ≥ B̃(ρt) (ρt)−η log 1

ρ

for t > 0, whence kη ≥ log 1
ρ
, and

ρ ≥ e−kη

> 0 for t > 0.

In the proof of Proposition 3.2.2 it is also shown that B̃ satisfies the ∆2-condition.
Hence, there exists a positive constant c such that

B̃(ρt) ≥ B̃(te−kη) ≥ cB̃(t) for t > 0.

Consequently,

inf
0<s≤t

B̃(s) s−η = B̃(ρt) (ρt)−η ≥ cρ−ηB̃(t) t−η for t > 0,

whence (3.6.46) follows.
Finally, if (3.6.44) is in force, then B−1(t) tβ(α−1) is equivalent to a non-

increasing function, and therefore i∞
B ≥ 1

β(1−α) .

We conclude the preliminary result section by showing that, under assumption
(3.6.41) or (3.6.43), the upper Boyd indices of B and Bα,β, or of B and B∞

α,β are
determined by each other. In what follows, we adopt the convention that 1

∞ = 0.

Lemma 3.6.10. Let α and β be as in Lemma 3.6.8 and let B be a Young function.
Assume that condition (3.6.41) holds. Then

1
IBα,β

= α + 1
βIB

.

In particular, IBα,β
< 1/α if and only if IB < ∞.

Lemma 3.6.11. Let α and β be as in Lemma 3.6.9 and let B be a Young function
that satisfies condition (3.5.5). If (3.6.43) holds, then

1
I∞

B∞
α,β

= α + 1
βI∞

B

. (3.6.50)

In particular, I∞
B∞

α,β
< 1/α if and only if I∞

B < ∞.

As before, we only prove Lemma 3.6.11; the proof if Lemma 3.6.10 is similar.
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Proof of Lemma 3.6.11. By Lemma 3.6.9, assumption (3.6.43) implies equa-
tion (3.6.45). Thereby,

h∞
B∞

α,β
(t) ≃ sup

s>0

B∞
α,β

−1(st)
B∞

α,β
−1(s)

≃ t sup
s>0

B−1
(
(st)1/β

)
(st)α−1

B−1
(
s1/β

)
sα−1

≃ tα h∞
B

(
t1/β

)

for t > 0. Equation (3.6.50) is therefore a consequence of the definition of global
upper Boyd index.

Now, we are ready prove the Theorem 3.6.1.

Proof of Theorem 3.6.1. Let B be a Young function satisfying (3.5.5). Note
that since (3.5.8) and G∞

α,β increases to infinity, B∞
α,β

−1 is not constant near infinity
and hence B∞

α,β is finite-valued.
Let us assume (3.6.1). By Proposition 3.2.2, (3.6.1) is equivalent to the in-

equality ∫ t

0

B̃∞
α,β(s)

s1/(1−α)+1 ds ≤
B̃∞

α,β(Ct)
t1/(1−α) for t > 0 (3.6.51)

with some constant C > 0. Theorem 3.5.2 then guarantees (3.6.2).
We now prove the optimality. Suppose that LA(0, ∞) satisfies (3.1.3). Then,

by Theorem 3.5.2, there is a constant C > 0 such that

∫ t

0

Ã(s)
s1/(1−α)+1 ds ≤

B̃∞
α,β(Ct)

t1/(1−α) for t > 0. (3.6.52)

Thus,

B̃∞
α,β(2Ct) ≥ t1/(1−α)

∫ 2t

0

Ã(s)
s1/(1−α)+1 ds ≥ t1/(1−α)

∫ 2t

t

Ã(s)
s1/(1−α)+1 ds

≥ Ã(t) t1/(1−α)
∫ 2t

t

ds

s1/(1−α)+1 ≥ Ã(t)Cα

for t > 0 and hence B̃∞
α,β dominates Ã globally or, equivalently, A dominates B∞

α,β

globally, whence, by (2.3.4), LA(0, ∞) → LB∞
α,β (0, ∞) and LB∞

α,β (0, ∞) is optimal.
Conversely, suppose that (3.6.1) fails. Then, by Proposition 3.2.2, the in-

equality (3.6.51) is violated for every C > 0. The failure of (3.6.51) occurs under
one of these two conditions, namely

sup
1<t<∞

t1/(1−α)

B̃∞
α,β(Ct)

∫ t

1

B̃∞
α,β(s)

s1/(1−α)+1 ds = ∞ for every C > 0 (3.6.53)

or

sup
0<t<1

t1/(1−α)

B̃∞
α,β(Ct)

∫ t

0

B̃∞
α,β(s)

s1/(1−α)+1 ds = ∞ for every C > 0. (3.6.54)

Now, let A be a Young function such that (3.1.3), i.e., thanks to Theorem 3.5.2,
the inequality (3.6.52) holds for some C > 0. In both cases, we will show that
there is a Young function A1 such that LA(0, ∞) ⊊ LA1(0, ∞) and also

H∞
α,β : LA1(0, ∞) → LB(0, ∞). (3.6.55)
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or equivalently, by Theorem 3.5.2,

∫ t

0

Ã1(s)
s1/(1−α)+1 ds ≤

B̃∞
α,β(Ct)

t1/(1−α) for t > 0, (3.6.56)

where C is a possibly different constant. If (3.6.53) holds, we modify the Young
function A only near infinity and, similarly, if (3.6.54) holds, we do that near
zero.

Let us start with the “near infinity” case. First observe that

B̃∞
α,β(t)/t1/(1−α) is non-decreasing on (0, ∞). (3.6.57)

Indeed, by (3.6.40), B∞
α,β

−1(t)/tα is non-decreasing which, in combination with
(2.1.5), tells us that B̃∞

α,β
−1(t)/t1−α is non-increasing whence (3.6.57). Therefore,

the fraction B̃∞
α,β(t)/t1/(1−α) is either bounded near infinity or

lim
t→∞

B̃∞
α,β(t)

t1/(1−α) = ∞. (3.6.58)

In the former case, (3.6.52) reads as

∫ t

0

Ã(s)
s1/(1−α)+1 ds ≤

B̃∞
α,β(Ct)

t1/(1−α) , 0 < t < 1, (3.6.59)

and ∫ ∞

1

Ã(s)
s1/(1−α)+1 ds < ∞.

Denote E = Ã. By Lemma 3.6.5, there is a modification of E on (1, ∞), say E1,
such that E1 essentially dominates E near infinity and also

∫ ∞

1

E1(s)
s1/(1−α)+1 ds < ∞.

Let now A1 be a Young function which coincides with A near zero and A1 = Ẽ1
near infinity. Then A essentially dominates A1 near infinity and (3.6.59) holds
with A replaced by A1. We therefore have (3.6.56) which yields (3.6.55).

Now, assume (3.6.53) and (3.6.58). The condition (3.6.52) now splits into
(3.6.59) and ∫ t

1

Ã(s)
s1/(1−α)+1 ds ≤

B̃∞
α,β(Ct)

t1/(1−α) , 1 < t < ∞. (3.6.60)

By Lemma 3.6.4, there exists a modified Young function A1 such that A is essen-
tially larger than A1 near infinity and also satisfies (3.6.60) with A1 in place of
A. If we keep A1 = A near zero, then (3.6.59) remains valid for A1. That gives
us (3.6.56) also in this case.

Let us work “near zero”. We again distinguish two cases, when B̃∞
α,β(t)/t1/(1−α)

is equivalent to a constant function near zero and when

lim
t→0

B̃∞
α,β(t)

t1/(1−α) = 0. (3.6.61)
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In the constant case, (3.6.52) boils down to (3.6.60) and

∫ 1

0

Ã(s)
s1/(1−α)+1 ds < ∞.

Lemma 3.6.7 ensures that there is an essentially smaller Young function than A
near zero, A1 say, such that

∫ 1

0

Ã1(s)
s1/(1−α)+1 ds < ∞.

Let A1 = A near infinity. We thus have that (3.6.60) holds for A replaced by A1
and therefore (3.6.56) is true also in this case.

Finally, assume (3.6.54) and (3.6.61). The inequality (3.6.52) splits into
(3.6.59) and (3.6.60). On using Lemma 3.6.6, one gets a modified Young func-
tion A1 such that A essentially dominates A1 near zero and still satisfies (3.6.59).
Again, if we set A1 = A near infinity, we obtain (3.6.56).

As for the proof of the “in particular” statement, assume that the condition
i∞
B > 1

β(1−α) is satisfied. Then the simplified relation (3.6.3) holds by Lemma 3.6.9
and (3.6.1) is equivalent to I∞

B < ∞ due to Lemma 3.6.11.
The necessity of the condition (3.5.5) for the existence of any Orlicz space

LA(0, ∞) satisfying (3.1.3) follows by Theorem 3.5.2.
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4. Sobolev type embeddings

4.1 Introduction
The present chapter deals with Orlicz-Sobolev embeddings, namely embeddings
of Sobolev type, involving norms in Orlicz spaces. The family of Orlicz spaces
includes that of the usual Lebesgue spaces, and provides a flexible, well suited
framework for a unified description of Sobolev embeddings. Orlicz-Sobolev spaces
are an appropriate functional setting for the analysis of nonlinear partial dif-
ferential equations and variational problems governed by nonlinearities of non-
necessarily polynomial type. The study of these problems has received an increas-
ing attention over the years – see e.g. [1, 6, 7, 12, 13, 14, 15, 39, 50, 52, 54, 68,
69, 72] – and is motivated, among other reasons, by applications to mathematical
models for physical phenomena, such as nonlinear elasticity and non-Newtonian
fluid-mechanics.

A basic version of the Orlicz-Sobolev embeddings to be considered amounts
to

W m,A
0 (Ω) → LB(Ω) , (4.1.1)

where Ω is an open subset of Euclidean space Rn, n ≥ 2, having Lebesgue measure
|Ω|, A and B are Young functions, LB(Ω) is the Orlicz space on Ω built upon B,
and W m,A

0 (Ω) is the m-th order Orlicz-Sobolev space built upon A. The subscript
0 denotes that functions vanishing (in a suitable sense) on the boundary ∂Ω,
together with their derivatives up to the order m − 1, are taken into account.
The arrow “ → ” stands for continuous inclusion. Precise definitions on these
topics are recalled in Section 2.

We are concerned with the optimal form of the relevant embeddings. Given
A, we say that LB(Ω) is the optimal Orlicz target space in (4.1.1) if it is the
smallest Orlicz space on Ω that renders (4.1.1) true. The expression “smallest”
means that if (4.1.1) holds with LB(Ω) replaced with another Orlicz space LB̂(Ω),
then LB(Ω) → LB̂(Ω). Analogously, given B, the space W m,A

0 (Ω) is said to be the
optimal Orlicz-Sobolev domain in (4.1.1) if it is the largest Orlicz-Sobolev space
on Ω for which (4.1.1) holds. Namely, if, whenever (4.1.1) holds with W m,A

0 (Ω)
replaced by another Orlicz-Sobolev space W m,Â

0 (Ω), then W m,Â
0 (Ω) → W m,A

0 (Ω).
The question of best possible Orlicz target spaces in Sobolev type embeddings

has attracted the attention of various authors over the years. In particular, em-
beddings for the critical Sobolev space W

m, n
m

0 (Ω), and for special Orlicz-Sobolev
spaces “close” to it, have been investigated in several contributions, including
[73, 61, 66, 70, 42, 55, 68, 35]. Results for arbitrary Orlicz-Sobolev spaces, which
however need not provide the optimal Orlicz target, can be found in [34, 2].

The optimal Orlicz target problem has been solved in general in [24] for m = 1
(see also [22] for an alternate formulation of the solution), and in [23] for arbitrary
m ∈ N. We present this result in Theorem 4.3.1. As it is shown, given any
Orlicz-Sobolev space W m,A

0 (Ω), there always exists an optimal target Orlicz space
LB(Ω) in (4.1.1), and the function B admits an explicit expression in terms of
A, n and m. Thus, the class of Orlicz spaces is closed under the operation of
associating an optimal target in Sobolev embeddings. By contrast, this property
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is not enjoyed by the smaller family of Lebesgue spaces, namely in the context
of classical Sobolev embeddings. Actually, if A(t) = tp for some p ≥ 1, so that
W m,A

0 (Ω) agrees with the usual Sobolev space W m,p
0 (Ω), and |Ω| < ∞, one has

that

W m,p
0 (Ω) →

⎧⎪⎪⎨⎪⎪⎩
L

mp
n−mp (Ω) if 1 ≤ m < n and 1 ≤ p < n

m
,

exp L
n

n−m (Ω) if 1 ≤ m < n and p = n
m

,
L∞(Ω) if either 1 ≤ m < n and p > n

m
, or m ≥ n,

(4.1.2)

all targets being optimal in the class of Orlicz spaces. Here, exp L
n

n−m (Ω) denotes
the Orlicz space associated with the Young function et

n
n−m − 1. The first and

the third embedding in (4.1.2) are nothing but the classical Sobolev embedding.
The second one was independently obtained by Yudovich [73], Pokhozhaev [61],
Strichartz [66], and, for m = 1, by Trudinger [70]. Note that, in the first and third
embedding, the target is a Lebesgue space, and it is hence optimal also in this
subclass, but no optimal Lebesgue target space exists in the second embedding.

The situation is different, and subtler in a sense, when the optimal Orlicz-
Sobolev domain space W m,A

0 (Ω) in (4.1.1), for a given Young function B, is in
question. Actually, the existence of such an optimal domain is not guaranteed for
every B. Testing the problem on the spaces appearing in (4.1.2) may help have
an idea of the possibilities that may occur. Assume that

LB(Ω) = Lq(Ω)

for some q ∈ [1, ∞]. It is well known that, if m ≥ n, then W m,1
0 (Ω) → L∞(Ω),

and hence, in particular,
W m,1

0 (Ω) → Lq(Ω), (4.1.3)
for every q ∈ [1, ∞]. Embedding (4.1.3) continues to hold even if 1 ≤ m < n,
provided that q ≤ n

n−m
. On the other hand, if 1 ≤ m < n and n

n−m
< q < ∞,

then
W

m, nq
n+mq

0 (Ω) → Lq(Ω). (4.1.4)
Both domain spaces in (4.1.3) and (4.1.4) are optimal among all Orlicz-Sobolev
spaces [57, Example 5.2]. Instead, if 1 ≤ m < n,

“no optimal Orlicz-Sobolev space” → exp L
n

n−m (Ω) (4.1.5)

and
“no optimal Orlicz-Sobolev space” → L∞(Ω), (4.1.6)

see [51, Theorem 4.3] and [30, Theorem 6.4 (ii)], respectively, for the case when
m = 1, and [57, Example 5.1 (b)] for arbitrary m ∈ N. Equation (4.1.5) means
that any Orlicz-Sobolev space that is continuously embedded into the Orlicz
space exp L

n
n−m (Ω) can be replaced with a strictly larger Orlicz-Sobolev space

which is still continuously embedded into exp L
n

n−m (Ω). Equation (4.1.6), as
well as similar statements about non-existence of optimal Orlicz-Sobolev domain
spaces in what follows, has to be interpreted in an analogous sense. In particular,
interestingly enough, the space W

m, n
m

0 (Ω), appearing on the left-hand side of
(4.1.2) when p = n

m
, turns out not to be optimal for Orlicz-Sobolev embeddings

into exp L
n

n−m (Ω).
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As far as we know, these were the only instances for which the answer to
the optimal Orlicz-Sobolev domain problem is available in the literature. The
recent contribution [57] provides a solution to an analogous problem for Orlicz-
Sobolev embeddings of weak type, namely into Marcinkiewicz spaces, and the
paper [27] fills in this gap, and address this question in full generality. A necessary
and sufficient condition is established on the Young function B for an optimal
Orlicz-Sobolev domain W m,A

0 (Ω) to exist in (4.1.1). Moreover, the optimal Young
function A when such an optimal domain does exist is exhibited. This is the
content of Theorem 4.4.2.

The aim of this chapter is to collect most of the available results from the
literature and present them in a unified and comprehensive form.

As mentioned above, we are not confined just to (4.1.1), but we also include
other related embedding problems. A natural variant amounts to

W m,A(Ω) → LB(Ω), (4.1.7)

where W m,A(Ω) is an Orlicz-Sobolev space of functions that are not subject to
any boundary condition. Under suitable regularity assumptions on Ω, which
are indispensable even in the classical Sobolev embedding, we show that the
conclusions are exactly the same as for (4.1.1) – see Theorems 4.3.3 and 4.4.4.

Embeddings of the form (4.1.7), with Ω = Rn, namely

W m,A(Rn) → LB(Rn), (4.1.8)

are the subject of Theorems 4.3.7 and 4.4.9. The point here is that, unlike the
case of sets Ω of finite measure, the behavior of the Young functions A and B
near 0 plays a role as well.

Finally, in Theorems 4.3.8 and 4.4.10 the more general issue is faced of opti-
mal Orlicz-Sobolev domains for embeddings into Orlicz spaces with respect to a
Frostman measure µ on Ω. These read

W m,A(Ω) → LB(Ω, µ), (4.1.9)

where Ω is a bounded Lipschitz domain, Ω denotes the closure of Ω, and µ is a
Borel measure on Ω such that

µ
(
Br(x) ∩ Ω

)
≤ Crγ for every x ∈ Rn and r > 0, (4.1.10)

for some constants C > 0 and γ ∈ [n − m, n]. Here, Br(x) denotes the ball
centered at x, with radius r. The restriction γ ≥ n − m is imposed to guarantee
that a trace operator on Ω, endowed with the measure µ, be well defined on the
space W m,A(Ω), whatever the Young function A is.

Of course, measures µ supported in Ω, and hence embeddings into Orlicz
spaces LB(Ω, µ), are included as special cases. On the other hand, measures µ
supported in ∂Ω correspond to trace inequalities in a classical sense. In particular,
on denoting by Hγ the γ-dimensional Hausdorff measure, the choice µ = Hn−1|∂Ω
turns (4.1.9) into the boundary trace embedding

Tr: W m,A(Ω) → LB(∂Ω) (4.1.11)

enucleated in Corollaries 4.3.12 and 4.4.13. Here, we thus recover the original
result of [24]. Another customary specialization of µ amounts to the case when
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µ = Hd|Ω∩Nd
, where d ∈ N, and Nd denotes a d-dimensional compact submanifold

of Rn. Embedding (4.1.9) takes the form

Tr: W m,A(Ω) → LB(Ω ∩ Nd) (4.1.12)

in this case, with d ∈ [n−m, n], see Corollaries 4.3.13 and 4.4.14. Clearly, Ω∩Nd

can, in particular, equal the intersection of Ω with a d-dimensional affine subspace
of Rn.

4.2 Reduction principles
A key ingredient in our approach is the use of so-called reduction principles for
Sobolev type embeddings. They assert that a wide class of Sobolev and trace
inequalities, including those considered here, are in fact equivalent to consider-
ably simpler one-dimensional inequalities for suitable Hardy type operators. The
relevant operators are defined as

Hα,βf(s) =
∫ 1

sβ
f(r) rα−1 dr for s > 0 (4.2.1)

for any function f ∈ M(0, 1) making the integral in (4.2.1) converge. The expo-
nents α and β satisfy the constraints 0 < α < 1, 0 < β < ∞ and α + 1/β ≥ 1,
and depend on the Sobolev inequality in question.

Given any open set Ω ⊂ Rn with |Ω| < ∞, embedding (4.1.1) is equivalent to
the inequality

∥u∥LB(Ω) ≤ C1∥∇mu∥LA(Ω) (4.2.2)

for some constant C1 and for every u ∈ W m,A
0 (Ω). The pertinent reduction

principle asserts that inequality (4.2.2) holds if and only if

∥Hm
n

,1f∥LB(0,1) ≤ C2∥f∥LA(0,1) (4.2.3)

for some constant C2, and for every non-negative f ∈ LA(0, 1). See [24, Proof of
Theorem 1] for m = 1, and [45, Theorem A] and [31, Theorem 6.1] for arbitrary
m. Moreover, the constants C1 and C2 depend on each other, and on n, m and
|Ω|.

Embedding (4.1.7) in a John domain Ω amounts to the inequality

∥u∥LB(Ω) ≤ C1∥u∥W m,A(Ω) (4.2.4)

for every u ∈ W m,A(Ω). Inequality (4.2.4) is again equivalent to (4.2.3) ([24, Proof
of Theorem 2] for m = 1, and [31, Theorem 6.1] for any m). However, in this
case the mutual dependence of the constants C1 and C2 involves full information
on Ω, and not just on |Ω|.

A characterization of embeddings on the whole Rn requires a combination of
the Hardy inequality (4.2.3), which only depends on the behavior of the functions
A and B near infinity, with a condition on their decay near zero. Specifically, the
inequality

∥u∥LB(Rn) ≤ C∥u∥W m,A(Rn) (4.2.5)
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holds for some constant C, and for every u ∈ W m,A(Rn) if and only if inequality
(4.2.3) holds, and

A dominates B near zero, (4.2.6)
see [3].

The reduction principle for embedding (4.1.9) into Orlicz spaces, with respect
to Frostman measures, applies to bounded Lipschitz domains Ω in Rn. It provides
us with a sufficient condition for the validity of (4.1.9) in terms of an appropriate
Hardy type inequality, and it is also necessary if the decay in (4.1.10) is sharp, in
the sense that there exist x0 ∈ Ω and positive constants c and R > 0 such that

µ(Br(x0)) ∩ Ω) ≥ crγ if 0 < r < R. (4.2.7)

The relevant principle asserts that, if (4.1.10) and (4.2.7) are in force for some
γ ∈ [n − m, n], then the inequality

∥u∥LB(Ω,µ) ≤ C1∥u∥W m,A(Ω) (4.2.8)

holds for some constant C1 and for every u ∈ W m,A(Ω) if and only if

∥Hm
n

, n
γ
f∥LB(0,1) ≤ C2∥f∥LA(0,1) (4.2.9)

for some constant C2, and for every non-negative f ∈ LA(0, 1). The constants C1
and C2 depend on each other, and on n, m, γ, Ω and on the constants appearing
in (4.1.10) and (4.2.7). The equivalence of inequalities (4.2.8) and (4.2.9) is
established in [32]. Let us mention that the special case when µ is the (n − 1)-
dimensional Hausdorff measure on ∂Ω is treated in [26]. The case when γ ∈ N,
and µ is the γ-dimensional Hausdorff measure restricted to a γ-dimensional affine
subspace of Rn is dealt with in [28].

4.3 Optimal Orlicz target spaces
Let us begin by considering embedding (4.1.1). As a preliminary observation,
note that, when

m ≥ n, (4.3.1)
the optimal Orlicz target LB(Ω) in (4.1.1) corresponds to the choice

B(t) =

⎧⎨⎩0, 0 ≤ t ≤ 1,

∞, t > 1,

namely
LB(Ω) = L∞(Ω).

Indeed, under assumption (4.3.1), one classically has

W m,1
0 (Ω) → L∞(Ω),

whence the optimality of L∞ follows, since

W m,A
0 (Ω) → W m,1

0 (Ω) → L∞(Ω) → LB(Ω) (4.3.2)
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for any Young functions A and B. We may thus restrict our attention to the case
when

1 ≤ m < n.

Let us set Hn : [t0, ∞) → [0, ∞) by

Hn(t) =
(∫ t

t0

(
s

A(s)

) m
n−m

ds

)1− m
n

for t ≥ t0, (4.3.3)

where the constant t0 is chosen in a way that the integral converges in the right
neighbourhood of t0. Under the assumption

∫ ∞( t

A(t)

) m
n−m

dt = ∞, (4.3.4)

The function Hn is increasing onto [0, ∞) and hence the inverse H−1
n is well

defined on [0, ∞).
We then define An : [0, ∞) → [0, ∞) by

An(t) =
∫ t

0

Dn(s)
s

ds for t ≥ 0, (4.3.5)

where Dn : [0, ∞) → [0, ∞] is given by

Dn(s) =

⎧⎪⎪⎨⎪⎪⎩
(

s
A(H−1

n (s))
H−1

n (s)

) n
n−m

if (4.3.4) holds

∞ otherwise

for s > 1 and Dn(s) = 0 for s ∈ [0, 1]. Observe that since A(s)/s is nondecreasing,
H−1

n is increasing and sn/(n−m)−1 increases, Dn(s)/s is nondecreasing and hence
An is a Young function.

Theorem 4.3.1 [Optimal Orlicz target under vanishing boundary con-
ditions]. Let n ≥ 2 and 1 ≤ m < n and let A be a Young function. Suppose that
An is the Young function defined by (4.3.5). Then

W m,A
0 (Ω) → LAn(Ω) (4.3.6)

and the target space LAn(Ω) is the optimal Orlicz target space in (4.3.6) Moreover,
if IA < n

m
, then An possess the simplified relation

A−1
n (t) ≃ A−1(t) t− m

n near infinity. (4.3.7)

Under an additional assumption on the decay of A near 0, which reads
∫

0

(
s

A(s)

) m
n−m

ds < ∞. (4.3.8)

embedding (4.3.6) is equivalent to a Sobolev inequality in integral form. Inequal-
ities in this form are usually better suited for applications to the theory of partial
differential equations. The relevant integral inequality requires a slight variant in
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the definition near zero of the Young function in the optimal Orlicz target space.
Let us first define H∞

n : [0, ∞) → [0, ∞) by

H∞
n (t) =

(∫ t

0

(
s

A(s)

) m
n−m

ds

)1− m
n

for t > 0 (4.3.9)

and set H∞ = limt→∞ H∞
n (t). Note that it is possible to have H∞ = ∞. The

function A∞
n is then defined by

A∞
n (t) =

∫ t

0

D∞
n (s)
s

ds for t > 0, (4.3.10)

in which D∞
n is given by

D∞
n (s) =

⎧⎪⎪⎨⎪⎪⎩
(

s
A(H∞

n
−1(s))

H∞
n

−1(s)

) n
n−m

, 0 ≤ t < H∞,

∞, t ≥ H∞.

Repeating the argument as for An, we infer that An is a Young function. The
integral inequality then reads as follows. Note that the relevant condition on
upper Boyd index of An has to be now replaced by the corresponding global
variant.

Corollary 4.3.2. Let n, m and Ω be as in Theorem 4.3.1. Let A be a Young
function satisfying (4.3.8), and let A∞

n be the Young function defined by (4.3.10).
Then there exists a constant C such that

∫
Ω

A∞
n

⎛⎝ |u(x)|

C
(∫

Ω A(|∇mu|) dy
)m/n

⎞⎠ dx ≤
∫

Ω
A(|∇mu|) dx (4.3.11)

for every u ∈ W m,A
0 (Ω). In particular, if I∞

A < n
m

, then A∞
n fulfills

A∞
n

−1(t) ≃ A−1(t) t− m
n for t > 0.

Companion results to Theorem 4.3.1 and Corollary 4.3.2 hold for embedding
(4.1.7) between spaces of functions with unrestricted boundary values, provided
that Ω is a John domain. Like for embedding (4.1.1), the only non-trivial case
is when 1 ≤ m < n. Indeed, if m ≥ n, the same chain as in (4.3.2) holds with
W m,A

0 (Ω) and W m,1
0 (Ω) replaced by W m,A(Ω) and W m,1(Ω), respectively, and

hence L∞(Ω) is the optimal Orlicz target space in (4.1.7).

Theorem 4.3.3 [Optimal Orlicz target without boundary conditions].
Let n ≥ 2 and 1 ≤ m < n, and let A be a Young function. Assume that Ω is a
John domain in Rn. Let An be the Young function defined by (4.3.5). Then

W m,A(Ω) → LAn(Ω) (4.3.12)

and the space LAn(Ω) is the optimal Orlicz target space in (4.3.6). Further, if
IA < n

m
, then An obeys

A−1
n (t) ≃ A−1(t) t− m

n near infinity.

63



Remark 4.3.4. An integral inequality analogous to (4.3.11), corresponding to
embedding (4.3.12), holds under the assumption (3.3.3) and with An replaced
by A∞

n .

Example 4.3.5. Let LA(Ω) = Lp(log L)α(Ω) be the Zygmund class, where either
p > 1 and α ∈ R or p = 1 and α ≥ 0. Assume that 1 ≤ m < n. The computations
yield to

An(t) is equivalent to

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
t

np
n−mp (log t)

nα
n−mp if 1 ≤ p < n

m
,

exp t
n

n−m(1+α) if p = n
m

and α < m−n
m

,

exp exp t
n

n−m if p = n
m

and α = m−n
m

,

∞ otherwise,

near infinity, whence an application of Theorem 4.3.1 tells us that

W m
0 Lp(log L)α(Ω) →

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
L

np
n−mp (log L)

nα
n−mp (Ω) if 1 ≤ p < n

m
,

exp L
n

n−m(1+α) (Ω) if p = n
m

and α < m−n
m

,

exp exp L
n

n−m (Ω) if p = n
m

and α = m−n
m

,

L∞(Ω) otherwise,

(4.3.13)

for any open set Ω with |Ω| < ∞, and the target spaces are optimal among all
Orlicz spaces. By Theorem 4.3.3, the embeddings (4.3.13) also hold with the
optimal targets for any John domain Ω if we replace W m

0 by W m.

Example 4.3.6. Assume that LA(Ω) = Lp(log log L)α, namely the Orlicz space
built upon the Young function obeying A(t) = tp(log log t)α near infinity, in which
p and α are as in Example 4.3.5. Let also 1 ≤ m < n. The calculations show
that

An(t) is equivalent to

⎧⎪⎪⎪⎨⎪⎪⎪⎩
t

np
n−mp (log log t)

nα
n−mp if 1 ≤ p < n

m
,

et
n

n−m (log t)
αm

n−m if p = n
m

,

∞ if p > n
m

,

near infinity, and thus, owing to Theorem 4.3.1,

W m
0 Lp(log log L)α(Ω) →

⎧⎪⎪⎨⎪⎪⎩
L

np
n−mp (log log L)

nα
n−mp (Ω) if 1 ≤ p < n

m
,

exp(L
n

n−m (log L)
αm

n−m )(Ω) if p = n
m

,

L∞(Ω) if p > n
m

for any open set Ω with |Ω| < ∞, and the target spaces are the optimal in the
class of Orlicz spaces. A parallel result holds for any John domain Ω, provided
that W m

0 is replaced by W m, thanks to Theorem 4.3.3.

The next result is a counterpart of Theorem 4.3.3 in the case when Ω = Rn.
The decay near zero of the involved Young functions is also relevant now. A
Young function A obeying

A(t) =

⎧⎨⎩∞ near infinity,
A(t) near zero,

(4.3.14)
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and a Young function An obeying

An(t) =

⎧⎨⎩An(t) near infinity,
A(t) near zero

(4.3.15)

come into play in the present situation.
Let us stress that, if m ≥ n, then the answer to the optimal domain problem

is still easier than in the case when 1 ≤ m < n, but not as trivial as when Ω is a
John domain, since the optimal domain space is not just L∞(Rn) in general.

Theorem 4.3.7 [Optimal Orlicz target on Rn]. Let n ≥ 2 and m ∈ N, and
let A be a Young function.
(i) Assume that m ≥ n. Let A be a Young function satisfying (4.3.14). Then

W m,A(Rn) → LA(Rn) , (4.3.16)

and LA(Rn) is the optimal Orlicz target space in (4.3.16).
(ii) Assume that 1 ≤ m < n. Let Bn be the Young function defined by (4.4.1),
and let An be a Young function satisfying (4.3.15). Then

W m,A(Rn) → LAn(Rn) , (4.3.17)

and LAn(Rn) is the optimal Orlicz target space in (4.3.17).
In particular, if IB < n

m
, then

A−1
n (t) ≃

⎧⎨⎩A−1(t) t− m
n near infinity,

A−1(t) near zero.

The last results concern the Orlicz-Sobolev embedding (4.1.9) with a measure
µ satisfying (4.1.10) and (4.2.7). By the same reason as for (4.1.7), the optimal
Orlicz target space in these embeddings is L∞(Ω), provided that m ≥ n.

If, instead, 1 ≤ m < n, the optimal Orlicz target in (4.1.9) is built upon the
Young function Aγ defined, for γ ∈ [n − m, n], by

Aγ(t) =
∫ t

0

Dγ(s)
s

ds for t ≥ 0, (4.3.18)

where Dγ : [0, ∞) → [0, ∞] is given by

Dγ(s) =

⎧⎪⎪⎨⎪⎪⎩
(

s
A(H−1

n (s))
H−1

n (s)

) γ
n−m

if (3.3.1) holds

∞ otherwise

for s > 1 and Dn(s) = 0 for s ∈ [0, 1]. Here, Hn is as in (4.3.3).
In particular, if µ is the Lebesgue measure, then conditions (4.1.10) and (4.2.7)

hold with γ = n, and Aγ coincides with the function An given by (4.3.5).

Theorem 4.3.8 [Optimal Orlicz target for embeddings with measure].
Let n ≥ 2, and let 1 ≤ m < n. Assume that Ω is a bounded Lipschitz domain
in Rn, and let µ be a Borel measure satisfying conditions (4.1.10) and (4.2.7) for

65



some γ ∈ [n−m, n]. Let A be a Young function, and let Aγ be the Young function
defined by (4.3.18). Then

W m,A(Ω) → LAγ (Ω, µ), (4.3.19)

and LAγ (Ω) is the optimal Orlicz target space in (4.3.19).
In particular, if IA < n

m
, then

A−1
γ (t) ≃ A−1(t

n
γ ) t− m

γ near infinity.

An integral version of embedding (4.3.19) is also available under the assump-
tion (4.3.8) It involves a modified version of the function Aγ, say A∞

γ , given by

A∞
γ (t) =

∫ t

0

D∞
γ (s)
s

ds for t > 0, (4.3.20)

where D∞
γ is defined by

D∞
γ (s) =

⎧⎪⎪⎨⎪⎪⎩
(

s
A(H∞

n
−1(s))

H∞
n

−1(s)

) γ
n−m

, 0 ≤ t < H∞,

∞, t ≥ H∞.

Here H∞
n is the function from (4.3.9) and H∞ = limt→∞ H∞

n (t).

Corollary 4.3.9. Let n, m, γ, Ω and µ be as in Theorem 4.3.8. Let A be a
Young function satisfying (4.3.8), and let A∞

γ be the Young function defined by
(4.3.20). Then there exists a constant C such that
∫

Ω
A∞

n

⎛⎝ |u(x)|

C
(∑m

k=0
∫

Ω A(|∇ku|) dy
)m/n

⎞⎠ dµ(x) ≤
(

m∑
k=0

∫
Ω

A(|∇ku|) dx

) γ
n

(4.3.21)

for every u ∈ W m,A(Ω). In particular, if I∞
A < n

m
then

A∞
γ

−1(t) ≃ A−1(t
n
γ ) t− m

γ for t > 0.

Example 4.3.10. Suppose that LA(Ω) = Lp(log L)α(Ω), the same Zygmund class
as in Example 4.3.5, and suppose that n, m, γ, Ω and µ are as in Theorem 4.3.8.
An application of Theorem 4.3.8 tells us that

W mLp(log L)α(Ω) →

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
L

γp
n−mp (log L)

γα
n−mp (Ω, µ) if 1 ≤ p < n

m
,

exp L
n

n−m(1+α) (Ω, µ) if p = n
m

and α < m−n
m

,

exp exp L
n

n−m (Ω, µ) if p = n
m

and α = m−n
m

,

L∞(Ω, µ) otherwise,

in which the target spaces are optimal within the class of Orlicz spaces.

Example 4.3.11. Assume that LA(Ω) = Lp(log log L)α, the Orlicz space from
Example 4.3.6. Let further n, m, γ, Ω and µ be as in Theorem 4.3.8. The
calculations show that

Aγ(t) is equivalent to

⎧⎪⎪⎪⎨⎪⎪⎪⎩
t

γp
n−mp (log log t)

γα
n−mp if 1 ≤ p < n

m
,

et
n

n−m (log t)
αm

n−m if p = n
m

,

∞ if p > n
m

,

66



near infinity, hence, by Theorem 4.3.8,

W mLp(log log L)α(Ω) →

⎧⎪⎪⎨⎪⎪⎩
L

γp
n−mp (log log L)

γα
n−mp (Ω, µ) if 1 ≤ p < n

m
,

exp(L
n

n−m (log L)
αm

n−m )(Ω, µ) if p = n
m

,

L∞(Ω, µ) if p > n
m

,

and the target spaces are the optimal Orlicz ones.

The optimal Orlicz target space in (4.1.11) agrees with that in (4.1.9), with
γ = n−1. Namely, it is built upon the Young function An−1 defined as in (4.3.18),
with γ = n − 1. This is the content of Corollary 4.3.12 below, and follows from
Theorem 4.3.8, and from the fact that, if Ω is a bounded Lipschitz domain, then
the measure µ = Hn−1|∂Ω fulfills conditions (4.1.10) and (4.2.7) with γ = n − 1.

Corollary 4.3.12 [Optimal Orlicz target for boundary traces]. Let n ≥ 2
and 1 ≤ m < n. Assume that Ω is a bounded Lipschitz domain in Rn. Let A be
a Young function, and let An−1 be the Young function defined by (4.3.18), with
γ = n − 1. Then

Tr: W m,A(Ω) → LAn−1(∂Ω), (4.3.22)
and W m,Bn−1(Ω) is the optimal Orlicz target space in (4.3.22). In particular, if
IA < n

m
, then

A−1
n−1(t) ≃ A−1(t

n
n−1 ) t− m

n−1 near infinity.

We conclude this section by specializing Theorem 4.3.8 to embeddings of
the form (4.1.12) into Orlicz spaces defined on the intersection of Ω with d-
dimensional compact submanifolds Nd of Rn. Since the measure µ = Hd|Ω∩Nd

satisfies conditions (4.1.10) and (4.2.7), with γ = d, from Theorem 4.3.8 we infer
the following corollary.

Corollary 4.3.13 [Optimal Orlicz target for traces on submanifolds]. Let
n ≥ 2, 1 ≤ m < n, and let d ∈ N, with n − m ≤ d ≤ n. Assume that Ω
is a bounded Lipschitz domain in Rn, and let Nd be a d-dimensional compact
submanifold of Rn such that Ω ∩ Nd ̸= ∅. Let A be a Young function, and let Ad

be the Young function defined by (4.3.18), with γ = d. Then

Tr: W m,A(Ω) → LAd(Ω ∩ Nd),

and LAd(Ω) is the optimal Orlicz-Sobolev domain space in (4.4.26). In particular,
if IA < n

m
, then

A−1
n−1(t) ≃ A−1(tn

d ) t− m
d near infinity.

Proof of Theorem 4.3.1. The validity of the inequality (4.2.2) is equivalent to
the Hardy type inequality (4.2.3). The optimal Orlicz target space thus always
exists and coincides with LAn(Ω) thanks to Theorem 3.4.3. The relation (4.3.7)
follows from (3.4.2).

Proof of Corollary 4.3.2. Let us fix u ∈ W m,A
0 (Ω) and let, without loss of

generality,
∫

Ω A(|∇mu|) dy < ∞, otherwise (4.3.11) is trivially satisfied. Since A
is assumed to fulfill (4.3.8), we have, by Theorem 3.4.1 that

H∞
m
n

,1 : LA(0, ∞) → LA∞
n (0, ∞)
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with the operator norm independent of A. Let N > 0 be given and set AN = A/N .
Then AN satisfies (4.3.8) and the Young function (AN)∞

n , associated to AN as in
(4.3.10), obeys

(AN)∞
n (t) = A∞

n (tN− m
n )

N
for t ≥ 0. (4.3.23)

Thus, we infer that

H∞
m
n

,1 : LAN (0, ∞) → L(AN )∞
n (0, ∞)

with the operator norm independent of N . In particular,

Hm
n

,1 : LAN (0, 1) → L(AN )∞
n (0, 1)

and consequently, owing to the equivalence of inequalities (4.2.2) and (4.2.3),

∥u∥L(AN )∞
n (Ω) ≤ C∥∇mu∥LAN (Ω) (4.3.24)

for every u ∈ W
m,(AN )
0 (Ω), with the constant C independent of N . On choosing

N =
∫

Ω
A(|∇mu|) dy,

and observing that ∥∇mu∥LAN (Ω) ≤ 1 with such choice of N , inequality (4.3.24)
gives ∥u∥L(AN )∞

n (Ω) ≤ C. Therefore

∫
Ω
(AN)∞

n

(
|u(x)|

C

)
dx ≤ 1,

whence, by (4.3.23), ∫
Ω

A∞
n

(
|u(x)|

CNm/n

)
dx ≤ N,

which is nothing but (4.3.11).

Proof of Theorem 4.3.3. The appropriate reduction principle asserts that the
inequalities (4.2.4) and (4.2.3) are equivalent. The embedding (4.3.12) thus holds
true and the space LAn(Ω) is the optimal Orlicz target by Theorem 3.4.3.

Proof of Theorem 4.3.7. The reduction principle for the inequality (4.2.5) is
the core ingredient here. It proposes that such inequality holds if and only if the
inequality (4.2.3) and the property (4.2.6) hold simultaneously. If m ≥ n, then
inequality (4.2.3) holds with LB(0, 1) = L∞(0, 1) and (4.2.6) is trivially satisfied
for B = A. The optimality is also straightforward since L∞(0, 1) is the smallest
possible Orlicz space and the inequality (4.2.6) is saturated. On the other hand,
if 1 ≤ m < n, then, by Theorem 3.4.3, the optimal Orlicz target space in (4.2.3)
agrees with LAn(0, 1) and, (4.2.6) holds for B = An. Clearly, such choice is
sharp.

Proof of Theorem 4.3.8. Here we use the reduction principle for Sobolev em-
beddings with measure, which guarantees the equivalence of inequalities (4.2.8)
and (4.2.9). The rest is due to Theorem 3.4.3.
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Proof of Corollary 4.3.9. We use the same scaling argument as in the proof
of Corollary 4.3.2. We again set AN = A/N instead of A to obtain

(AN)∞
γ (t) = N− γ

n A∞
γ (tN− m

n ).

The inequality (4.3.21) then follows by the choice

N =
m∑

k=0

∫
Ω

A(|∇ku|) dy.

4.4 Optimal Orlicz domain spaces
Let us begin by the embedding (4.1.1). Similarly as at the beginning of the
previous section, observe that if

m ≥ n,

then the optimal Orlicz-Sobolev domain W m,A
0 (Ω) in (4.1.1) reads as

W m,A
0 (Ω) = W m,1

0 (Ω)

as one infers from (4.3.2).
In the sequel we thus assume

1 ≤ m < n.

Under this circumstance, the existence of an optimal Orlicz-Sobolev space
W m,A(Ω) in (4.1.1) is not guaranteed anymore. Our first main result asserts that
the existence of such an optimal space depends on the local upper Boyd index of
the Young function Bn given by

Bn(t) =
∫ t

0

G−1
n (s)
s

ds for t ≥ 0, (4.4.1)

where Gn : [0, ∞) → [0, ∞) is defined as

Gn(t) = t inf
1≤s≤t

B−1(s) s
m
n

−1 for t ≥ 1.

and Gn(t) = tB−1(1) for t ∈ [0, 1). Moreover, whenever it exists, the function A
in the optimal domain space in (4.1.1) equals Bn.

Remark 4.4.1. Observe that the function Gn is increasing, as shown via the
alternate formula

Gn(t) = t
m
n inf

1≤s<∞
B−1(s) max

{
1, t

s

}1− m
n for t ≥ 1,

and hence its inverse G−1
n is well-defined.

Also, the function Bn is actually a Young function. Indeed, since Gn is increas-
ing, G−1

n is increasing as well. Thus, since the function Gn(t)/t is non-increasing,
the function G−1

n (t)/t is non-decreasing. These facts also ensure that Bn is equiv-
alent to G−1

n globally.
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Theorem 4.4.2 [Optimal Orlicz-Sobolev domain under vanishing bound-
ary conditions]. Let n ≥ 2 and 1 ≤ m < n, and let B be a Young function. Let
Bn be the Young function defined by (4.4.1). Assume that Ω is an open set in Rn

with |Ω| < ∞. If
IBn <

n

m
, (4.4.2)

then
W m,Bn

0 (Ω) → LB(Ω), (4.4.3)

and W m,Bn
0 (Ω) is the optimal Orlicz-Sobolev domain space in (4.4.3).

Conversely, if (4.4.2) fails, then no optimal Orlicz-Sobolev domain space ex-
ists in (4.1.1), in the sense that any Orlicz-Sobolev space W m,A

0 (Ω) for which
embedding (4.1.1) holds can be replaced with a strictly larger Orlicz-Sobolev space
for which (4.1.1) is still true.

In particular, if iB > n
n−m

, then condition (4.4.2) is equivalent to IB < ∞,
and

B−1
n (t) ≃ B−1(t) t

m
n near infinity. (4.4.4)

Under a mild additional assumption on the decay of B near 0, which reads

sup
0<t<1

B(t)
t

n
n−m

< ∞ , (4.4.5)

embedding (4.4.3) is also equivalent to a Sobolev inequality in integral form. A
slight variant in the definition near zero of the Young function i the optimal
Orlicz-Sobolev domain. This function will be denoted by B∞

n , and is defined as

B∞
n (t) =

∫ t

0

G∞
n

−1(s)
s

ds for t ≥ 0, (4.4.6)

where
G∞

n (t) = t inf
0<s≤t

B−1(s) s
m
n

−1 for t ≥ 0.

Note that condition (4.4.2) on the local upper Boyd index of Bn has now to be
replaced with a parallel condition on the global upper Boyd index of B∞

n .

Corollary 4.4.3. Let n, m and Ω be as in Theorem 4.4.2. Let B be a Young
function satisfying (4.4.5), and let B∞

n be the Young function defined by (4.4.6).
If

I∞
B∞

n
<

n

m
, (4.4.7)

then there exists a constant C such that
∫

Ω
B

⎛⎝ |u(x)|

C
(∫

Ω B∞
n (|∇mu|) dy

)m/n

⎞⎠ dx ≤
∫

Ω
B∞

n (|∇mu|) dx (4.4.8)

for every u ∈ W
m,B∞

n
0 (Ω).

In particular, if i∞
B > n

n−m
, then condition (4.4.7) is equivalent to I∞

B < ∞,
and

B∞
n

−1(t) ≃ B−1(t) t
m
n for t ≥ 0.
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As we have seen for the Orlicz targets, there are also the corresponding vari-
ants of Theorem 4.4.2 and Corollary 4.4.3 for the embedding (4.1.7) between
spaces of functions with unrestricted boundary values, provided that Ω is a John
domain. Also here, the only non-trivial case is when 1 ≤ m < n otherwise, by
the same argument as in (4.3.2), W m,1(Ω) is the optimal Orlicz-Sobolev domain
space in (4.1.7).
Theorem 4.4.4 [Optimal Orlicz-Sobolev domain without boundary con-
ditions]. Let n ≥ 2 and 1 ≤ m < n, and let B be a Young function. Assume
that Ω is a John domain in Rn. Let Bn be the Young function defined by (4.4.1).
If (4.4.2) holds, then

W m,Bn(Ω) → LB(Ω), (4.4.9)
and W m,Bn(Ω) is the optimal Orlicz-Sobolev domain space in (4.4.9).

Conversely, if (4.4.2) fails, then no optimal Orlicz-Sobolev domain space ex-
ists in (4.1.7), in the sense that any Orlicz-Sobolev space W m,A(Ω) for which
embedding (4.1.7) holds can be replaced with a strictly larger Orlicz-Sobolev space
for which (4.1.7) is still true.

In particular, if iB > n
n−m

, then condition (4.4.2) is equivalent to IB < ∞,
and

B−1
n (t) ≃ B−1(t) t

m
n near infinity.

Remark 4.4.5. An integral inequality analogous to (4.4.8), corresponding to
embedding (4.4.9), holds under assumption (4.4.5), and with Bn replaced by B∞

n .
Example 4.4.6. Consider the case when LB(Ω) is a Zygmund space of the form
Lq(log L)α(Ω), where either q ∈ (1, ∞) and α ∈ R, or q = 1 and α ≥ 0. Assume
that 1 ≤ m < n, the only non-trivial case in view of the discussion above.
Computations show that

Bn(t) is equivalent to

⎧⎪⎪⎨⎪⎪⎩
t

nq
n+mq (log t)

nα
n+mq if q > n

n−m
, α ∈ R,

t (log t)α(1− m
n

) if q = n
n−m

, α > 0,
t otherwise,

near infinity. Moreover,

IBn =

⎧⎨⎩
nq

n+mq
if q > n

n−m
, α ∈ R,

1 otherwise,

whence IBn < n/m. Therefore, by Theorem 4.4.2,

if q > n
n−m

, α ∈ R, W m
0 L

nq
n+mq (log L)

nα
n+mq (Ω)

if q = n
n−m

, α > 0, W m
0 L(log L)α(1− m

n
)(Ω)

otherwise, W m,1
0 (Ω)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ → Lq(log L)α(Ω)

(4.4.10)
for any open set Ω with |Ω| < ∞, and the domain spaces are optimal among
all Orlicz-Sobolev spaces. By Theorem 4.4.4, the same embeddings continue to
hold, with optimal domain spaces, for any John domain Ω, provided that W m

0 is
replaced by W m.

Let us point out that, by Example 4.3.5, the space Lq(log L)α(Ω) is in turn
the optimal Orlicz target space in (4.4.10). Thus, the domain and target spaces
are mutually optimal in (4.4.10).
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Example 4.4.7. We deal here with the target space Lq exp
√

log L(Ω), with q ∈
[1, ∞), namely the Orlicz space built upon a Young function B(t) = tqe

√
log t

near infinity. Assume as above that 1 ≤ m < n. If q < n
n−m

, then B(t) t
n

m−n =
tq+ n

m−n e
√

log t near infinity, a decreasing function. Thus, B−1(s) s
m
n

−1 is increasing
near infinity, and Bn(t) is equivalent to t near infinity.

Suppose next that q ≥ n
n−m

. Then the function B(t) t
n

m−n is increasing near
infinity, so that B−1(s) s

m
n

−1 is decreasing, and

B−1
n (t) ≃ B−1(t) t

m
n

near infinity. One can verify that

B−1(s) ≃ s
1
q e−q− 3

2
√

log s

near infinity. Hence,

Bn(t) is equivalent to t
nq

n+mq e( n
n+mq )

3
2 √

log t

near infinity. In particular, IBn = nq
n+mq

< n
m

. Altogether, by Theorem 4.4.2, one
has that

if q ≥ n
n−m

, W m
0 L

nq
n+mq exp

((
n

n+mq

) 3
2 √

log L
)
(Ω)

otherwise, W m,1
0 (Ω)

⎫⎪⎬⎪⎭ → Lq exp
√

log L(Ω)

for any open set Ω with |Ω| < ∞, and the domain spaces are optimal among all
Orlicz-Sobolev spaces. A parallel result holds in any John domain Ω, with W m

0
replaced by W m, owing to Theorem 4.4.4.

Example 4.4.8. If the Young function B grows so fast near infinity that iB = ∞,
then it immediately follows from Theorems 4.4.2 and 4.4.4 that no optimal Orlicz-
Sobolev domain space exists in embeddings (4.1.1) and (4.1.7). This is the case,
for instance, when LB(Ω) agrees with one of the following spaces:

exp
(
(log L)α

)
(Ω) exp

(
Lq(log L)β

)
(Ω),

or
exp Lβ(Ω), exp

(
exp Lβ

)
(Ω), . . . , exp

(
· · · (exp Lβ)

)
(Ω),

or
L∞(Ω) ,

where α > 1, β > 0 and q ∈ [1, ∞).

The next result is a counterpart of Theorem 4.4.4 in the situation when Ω =
Rn. As we have seen in the optimal range case, the decay near zero of the involved
Young functions also plays a role here. Namely, the Young function B obeying

B(t) =

⎧⎨⎩t near infinity,

B(t) near zero,
(4.4.11)
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and a Young function Bn satisfying

Bn(t) =

⎧⎨⎩Bn(t) near infinity,

B(t) near zero
(4.4.12)

are relevant her.
Let us point out that, if m ≥ n, then the solution to the optimal domain

problem is not as trivial as when Ω is a John domain, however, it is still easier.

Theorem 4.4.9 [Optimal Orlicz-Sobolev domain on Rn]. Let n ≥ 2 and
m ∈ N, and let B be a Young function.
(i) Assume that m ≥ n. Let B be a Young function satisfying (4.4.11). Then

W m,B(Rn) → LB(Rn), (4.4.13)

and W m,B(Rn) is the optimal Orlicz-Sobolev domain space in (4.4.13).
(ii) Assume that 1 ≤ m < n. Let Bn be the Young function defined by (4.4.1),
and let Bn be a Young function satisfying (4.4.12). If (4.4.2) holds, then

W m,Bn(Rn) → LB(Rn), (4.4.14)

and W m,Bn(Rn) is the optimal Orlicz-Sobolev domain space in (4.4.14).
Conversely, if (4.4.2) fails, then no optimal Orlicz-Sobolev domain space ex-

ists in (4.1.8), in the sense that any Orlicz-Sobolev space W m,A(Rn) for which
embedding (4.1.8) holds can be replaced with a strictly larger Orlicz-Sobolev space
for which (4.1.8) is still true.

In particular, if iB > n
n−m

, then condition (4.4.2) is equivalent to IB < ∞,
and

B−1
n (t) ≃

⎧⎨⎩B−1(t) t
m
n near infinity,

B−1(t) near zero.

The last results of this section concern the Orlicz-Sobolev embedding (4.1.9)
with a measure µ obeying (4.1.10) and (4.2.7). By the same reason as for (4.1.7),
the optimal Orlicz-Sobolev domain space in these embeddings is W m,1(Ω), pro-
vided that m ≥ n.

If, instead, 1 ≤ m < n, the optimal Orlicz-Sobolev domain in (4.1.9), when it
exists, is built upon the Young function Bγ defined, for γ ∈ [n − m, n], as

Bγ(t) =
∫ t

0

G−1
γ (s)
s

ds for t ≥ 0, (4.4.15)

where Gγ : [0, ∞) → [0, ∞) is given by

Gγ(t) = t inf
1≤s≤t

B−1
(
s

γ
n

)
s

m
n

−1 for t ≥ 1,

and Gγ(t) = tB−1(1) for t ∈ [0, 1). In particular, if µ is the Lebesgue measure,
then conditions (4.1.10) and (4.2.7) hold with γ = n, and Bγ agrees with the
function Bn given by (4.4.1).
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Theorem 4.4.10 [Optimal Orlicz-Sobolev domain for embeddings with
measure]. Let n ≥ 2, and let 1 ≤ m < n. Assume that Ω is a bounded Lipschitz
domain in Rn, and let µ be a Borel measure satisfying conditions (4.1.10) and
(4.2.7) for some γ ∈ [n − m, n]. Let B be a Young function, and let Bγ be the
Young function defined by (4.4.15). If

IBγ <
n

m
, (4.4.16)

then
W m,Bγ (Ω) → LB(Ω, µ) , (4.4.17)

and W m,Bγ (Ω) is the optimal Orlicz-Sobolev domain space in (4.4.17).
Conversely, if (4.4.16) fails, then no optimal Orlicz-Sobolev domain space

exists in (4.1.9), in the sense that any Orlicz-Sobolev space W m,A(Ω) for which
embedding (4.1.9) holds can be replaced with a strictly larger Orlicz-Sobolev space
for which (4.1.9) is still true.

In particular, if iB > γ
n−m

, then condition (4.4.16) is equivalent to IB < ∞,
and

B−1
γ (t) ≃ B−1

(
t

γ
n

)
t

m
n near infinity.

An integral version of embedding (4.4.17) holds under the assumption that

sup
0<t<1

B(t)
t

γ
n−m

< ∞ . (4.4.18)

It involves a modified version of the function Bγ given by

B∞
γ (t) =

∫ t

0

G∞
γ

−1(s)
s

ds for t ≥ 0, (4.4.19)

where G∞
γ : [0, ∞) → [0, ∞) is defined by

G∞
γ (t) = t inf

0<s≤t
B−1

(
s

γ
n

)
s

m
n

−1 for t ≥ 0.

Corollary 4.4.11. Let n, m, γ, Ω and µ be as in Theorem 4.4.10. Let B be a
Young function satisfying (4.4.18), and let B∞

γ be the Young function defined by
(4.4.19). If

I∞
B∞

γ
<

n

m
, (4.4.20)

then there exists a constant C such that

∫
Ω

B

⎛⎝ |u(x)|

C
(∑m

k=0
∫

Ω B∞
γ (|∇ku|) dy

)m/n

⎞⎠ dµ(x) ≤
(

m∑
k=0

∫
Ω

B∞
γ (|∇ku|) dx

) γ
n

(4.4.21)
for every u ∈ W m,B∞

γ (Ω).
In particular, if i∞

B > γ
n−m

, then condition (4.4.20) is equivalent to I∞
B < ∞,

and
B∞

γ
−1(t) ≃ B−1

(
t

γ
n

)
t

m
n for t ≥ 0.
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Example 4.4.12. Assume that LB(Ω) = Lq(log L)α(Ω), the same Zygmund
space as in Example 4.4.6, where either q ∈ (1, ∞) and α ∈ R, or q = 1 and
α ≥ 0. Assume that 1 ≤ m < n, the case when m ≥ n being trivial. Let Ω
be a bounded Lipschitz domain in Rn, and let µ be a Borel measure fulfilling
conditions (4.1.10) and (4.2.7). Then

Bγ(t) is equivalent to

⎧⎪⎪⎪⎨⎪⎪⎪⎩
t

nq
γ+mq (log t)

nα
γ+mq if q > γ

n−m
, α ∈ R,

t (log t)
α(n−m)

γ if q = γ
n−m

, α > 0,
t otherwise,

near infinity. Hence,

IBγ =

⎧⎨⎩
nq

γ+mq
if q > γ

n−m
, α ∈ R,

1 otherwise.

Since IBγ < n/m, Theorem 4.4.10 tells us that

if q > γ
n−m

, α ∈ R, W mL
nq

γ+mq (log L)
nα

γ+mq (Ω)

if q = γ
n−m

, α > 0, W mL(log L)
α(n−m)

γ (Ω)
otherwise, W m,1(Ω)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ → Lq(log L)α(Ω, µ) ,

(4.4.22)
the domain spaces being optimal among all Orlicz-Sobolev spaces. Observe, that,
by Example 4.3.10, the space Lq(log L)α(Ω, µ) is the optimal Orlicz target space
in (4.4.22).

The optimal Orlicz-Sobolev domain space in (4.1.11) agrees with that in
(4.1.9), with γ = n − 1. Namely, it is built upon the Young function Bn−1
defined as in (4.4.15), with γ = n − 1. This is the content of Corollary 4.4.13
below, and follows from Theorem 4.4.10, and from the fact that, if Ω is a bounded
Lipschitz domain, then the measure µ = Hn−1|∂Ω fulfills conditions (4.1.10) and
(4.2.7) with γ = n − 1.

Corollary 4.4.13 [Optimal Orlicz-Sobolev domain for boundary traces].
Let n ≥ 2 and 1 ≤ m < n. Assume that Ω is a bounded Lipschitz domain in
Rn. Let B be a Young function, and let Bn−1 be the Young function defined by
(4.4.15), with γ = n − 1. If

IBn−1 <
n

m
, (4.4.23)

then
W m,Bn−1(Ω) → LB(∂Ω), (4.4.24)

and W m,Bn−1(Ω) is the optimal Orlicz-Sobolev domain space in (4.4.24).
Conversely, if (4.4.23) fails, then no optimal Orlicz-Sobolev domain space

exists in (4.1.11), in the sense that any Orlicz-Sobolev space W m,A(Ω) for which
embedding (4.1.11) holds can be replaced with a strictly larger Orlicz-Sobolev space
for which (4.1.11) is still true.

In particular, if iB > n−1
n−m

, then condition (4.4.23) is equivalent to IB < ∞,
and

B−1
n−1(t) ≃ B−1

(
t

n−1
n

)
t

m
n near infinity.

75



We conclude this section by specializing Theorem 4.4.10 to embeddings of
the form (4.1.12) into Orlicz spaces defined on the intersection of Ω with d-
dimensional compact submanifolds Nd of Rn. Since the measure µ = Hd|Ω∩Nd

satisfies conditions (4.1.10) and (4.2.7), with γ = d, from Theorem 4.4.10 we
infer the following corollary.

Corollary 4.4.14 [Optimal Orlicz-Sobolev domain for traces on subman-
ifolds]. Let n ≥ 2, 1 ≤ m < n, and let d ∈ N, with n − m ≤ d ≤ n. Assume that
Ω is a bounded Lipschitz domain in Rn, and let Nd be a d-dimensional compact
submanifold of Rn such that Ω ∩ Nd ̸= ∅. Let B be a Young function, and let Bd

be the Young function defined by (4.4.15), with γ = d. If

IBd
<

n

m
, (4.4.25)

then
W m,Bd(Ω) → LB(Ω ∩ Nd) , (4.4.26)

and W m,Bd(Ω) is the optimal Orlicz-Sobolev domain space in (4.4.26).
Conversely, if (4.4.25) fails, then no optimal Orlicz-Sobolev domain space

exists in (4.1.12), in the sense that any Orlicz-Sobolev space W m,A(Ω) for which
embedding (4.1.12) holds can be replaced with a strictly larger Orlicz-Sobolev space
for which (4.1.12) is still true.

In particular, if iB > d
n−m

, then condition (4.4.25) is equivalent to IB < ∞,
and

B−1
d (t) ≃ B−1

(
t

d
n

)
t

m
n near infinity.

Proof of Theorem 4.4.2. The fact that an optimal Orlicz domain space in
(4.2.2) exists if and only if (4.4.2) holds, and that, in the affirmative case, it
agrees with W m,Bn

0 (Ω), follows from Theorem 3.6.1, via the equivalence of the
Sobolev inequality (4.2.2) and of the Hardy type inequality (4.2.3). The property
(2.7.1) also plays a role here. The assertion about the validity of equation (4.4.4)
is a consequence of 3.6.7.

Proof of Corollary 4.4.3. Fix u ∈ W
m,B∞

n
0 (Ω), and assume, without loss of

generality, that
∫

Ω B∞
n (|∇mu|) dy < ∞, otherwise (4.4.8) is trivially satisfied. By

Proposition 3.2.2, assumption (4.4.7) is equivalent to the existence of a constant
C1 > 0, such that

∫ t

0

B̃∞
n (s)

sn/(n−m)+1 ds ≤ B̃∞
n (C1t)

tn/(n−m) for t > 0. (4.4.27)

Given N > 0, let BN be the Young function defined as

BN(t) =
B
(
tN− m

n

)
N

for t ≥ 0.

Then, the Young function (BN)∞
n associated with BN as in (4.4.6) satisfies

(BN)∞
n = B∞

n

N
.
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One can thus verify that inequality (4.4.27) continues to hold with B∞
n replaced by

(BN)∞
n , and with the same constant C1, whatever N is. Hence, by Theorem 3.5.2

∥H∞
m
n

,1f∥LBN (0,∞) ≤ C2∥f∥L(BN )∞
n (0,∞)

for every f ∈ L(BN )∞
n (0, ∞) and for some constant for some C2 independent of

N . In particular,
∥Hm

n
,1f∥LBN (0,1) ≤ C2∥f∥L(BN )∞

n (0,1)

for every f ∈ L(BN )∞
n (0, 1). Therefore, owing to the equivalence of inequalities

(4.2.2) and (4.2.3),
∥u∥LBN (Ω) ≤ C∥∇mu∥L(BN )∞

n (Ω) (4.4.28)

for every u ∈ W
m,(BN )∞

n
0 (Ω), where the constant C is independent of N . On

choosing
N =

∫
Ω

B∞
n (|∇mu|) dy ,

and observing that ∥∇mu∥L(BN )∞
n (Ω) ≤ 1 with this choice of N , inequality (4.4.28)

yields ∥u∥LBN (Ω) ≤ C. Therefore∫
Ω

BN

(
|u(x)|

C

)
dx ≤ 1 ,

whence, by the definition of BN ,∫
Ω

B

(
|u(x)|

CNm/n

)
dx ≤ N ,

namely (4.4.8).

Proof of Theorem 4.4.4. The proof follows along the same lines as that of
Theorem 4.4.2. Here, the equivalence of inequalities (4.2.4) and (4.2.3) comes
into play.

Proof of Theorem 4.4.9. The reduction principle for inequality (4.2.5) is rel-
evant in this proof. Recall that such a principle asserts that this inequality
is equivalent to the simultaneous validity of inequality (4.2.3) and of property
(4.2.6). Now, assume that condition (4.4.2) holds. Then, by Theorem 3.6.3, in-
equality (4.2.3) holds with either LA(0, 1) = L1(0, 1), or LA(0, 1) = LBn(0, 1),
according to whether m ≥ n or 1 ≤ m < n. On the other hand, (4.2.6) trivially
holds by the very definition of B and Bn. Thus, inequality (4.2.5), with A = B or
A = Bn, holds, and embedding (4.4.13) or (4.4.14), respectively, follows. More-
over, W m,B(Rn), or W m,Bn(Rn) is optimal in (4.4.13) or (4.4.14). Indeed, if
inequality (4.2.5) holds for some Young function A, then, by the reduction prin-
ciple, A has to dominate B near 0, and inequality (4.2.3) must hold. By the
optimality of the domain space L1(0, 1) or LBn(0, 1) in (4.2.3), the function A(t)
has to dominate t or Bn(t) near infinity. Thus, A dominates B or Bn globally,
whence W m,A(Rn) → W m,B(Rn), or W m,A(Rn) → W m,Bn(Rn), thus proving the
optimality of W m,B(Rn), or W m,Bn(Rn).

Conversely, suppose that condition (4.4.2) fails. Then, by Theorem 3.6.3,
there does not exist an optimal Orlicz space LA(0, 1) in (4.2.3). As a consequence
of the reduction principle, and of (2.7.1) and (2.7.2), there does not exist an
optimal domain Orlicz-Sobolev space in embedding (4.1.8).
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Proof of Theorem 4.4.10. This is a consequence of Theorem 3.6.3 and of the
reduction principle for Sobolev embeddings with measure, which asserts the equiv-
alence of inequalities (4.2.8) and (4.2.9).

Proof of Corollary 4.4.11. The proof of inequality (4.4.21) relies upon a scal-
ing argument as in the proof of Corollary 4.4.3. Here, B(t) has to be replaced by
BN(t) = N− γ

n B(tN− m
n ), where

N =
m∑

k=0

∫
Ω

B∞
γ (|∇ku|) dy .
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5. Fractional maximal operator

5.1 Introduction
Let n ∈ N and 0 < γ < n be fixed. The fractional maximal operator Mγ is
defined for any locally integrable function f in Ω by

Mγf(x) = sup
Q∋x

|Q|
γ
n

−1
∫

Q
|f(y)| dy, x ∈ Ω,

where the supremum is taken over all cubes Q ⊆ Ω containing x and having the
sides parallel to the coordinate axes.

Our first aim is to analyse the boundedness of Mγ acting between Orlicz
spaces. More specifically, given Orlicz spaces LA(Ω) and LB(Ω), we want to
decide whether

Mγ : LA(Ω) → LB(Ω). (5.1.1)
We show that (5.1.1) is equivalent to one-dimensional inequalities involving only
the Young functions A and B. Resulting inequality is then much more easier
to verify. We will follow the result from [56] which partly overlaps with [20,
Section 2]. Note that such question was also studied in [41], where (5.1.1) is
studied under some restrictive assumptions.

The principal innovation of paper [56] however lays in the description of op-
timal Orlicz spaces in (5.1.1). More specifically, given LA(Ω), we seek for the
smallest Orlicz space LB(Ω) such that (5.1.1) holds. By “smallest” we mean
that if (5.1.1) holds with LB(Ω) replaced with another Orlicz space LB̂(Ω), then
LB(Ω) → LB̂(Ω). Instead of smallest we also often say optimal.

Let us briefly look at the situation in the class of the Lebesgue spaces. It is
well known that

Mγ : Lp(Rn) →

⎧⎨⎩L
np

n−γp (Rn), 1 < p < n
γ
,

L∞(Rn), p = n
γ
,

and this result is sharp within Lebesgue spaces. However, there is no Lebesgue
space Lq(Rn) for which

Mγ : L1(Rn) → Lq(Rn).
The situation in the class of Orlicz spaces is much more subtler and not many
results are available in the literature. The authors of [37] characterised the bound-
edness of Mγ (they work with more general operator, in fact) on classical Lorentz
spaces. In the cases when such spaces coincide with Orlicz spaces, we may recover
the following result (see Section 2 for the definitions of the spaces involved).

Mγ : Lp(log L)A(Rn) →

⎧⎪⎪⎪⎨⎪⎪⎪⎩
L

n
n−γ (log L)

nA
n−γ

−1(Rn), p = 1, α0 < 0, α∞ > 0,

L
np

n−γp (log L)
nA

n−γp (Rn), 1 < p < n
γ
,

exp L− n
γA (Rn), p = n

γ
, α0 > 0, α∞ < 0,

(5.1.2)
however, it does not say anything about its sharpness. In Theorem 5.3.2, we give
the complete characterization of the existence of the optimal Orlicz target and,
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in the affirmative case, we give its full description. It turns out that the spaces
obtained in (5.1.2) are optimal in the cases when p > 1. If p = 1, then the
target space L

n
n−γ (log L)

nA
n−γ

−1(Rn) is not the best possible Orlicz space and even
more, the optimal Orlicz target does not exist in this case. This means that any
Orlicz space LB(Rn) for which Mγ : Lp(log L)A(Rn) → LB(Rn) may be replaced
by essentially smaller space, whence there is an “open” set of all the eligible Orlicz
spaces. The details on this particular case are discussed in Example 5.3.3.

One can also ask the converse problem, i.e. when the target space LB(Ω) is
given and we seek for the largest possible LA(Ω) rendering (5.1.1) true. Analo-
gously, by “largest” we mean that if (5.1.1) holds with LA(Ω) replaced by LÂ(Ω),
then LÂ(Ω) → LA(Ω). Again, we shorten this notion to the word “optimal”
since no confusion with the above situation is likely to happen. The solution of
this task is the subject of Theorem 5.3.6, where we give the complete descrip-
tion of optimal domains. If we return back to the example in (5.1.2), one gets
that the Orlicz domain LA(log L)A(Rn) is the optimal one in all three cases. See
Example 5.3.7 for further details.

5.2 Reduction principle
We start by introducing a crucial tool often named as a reduction principle.
Such a principle translates the boundedness of the operator Mγ acting between
Orlicz spaces on Rn or on open sets Ω of finite measure to a much simpler one-
dimensional inequality containing only the Young functions and the parameters
n and γ. That enables us to simplify our analysis and helps us to understand the
behaviour of the operator and the spaces involved.

At first, we need to introduce several constructions of Young functions. Their
importance will then be resembled in the following theorem. It is no doubt that
the two above-mentioned cases have to be distinguished

Clearly, when |Ω| < ∞, the behaviour of Young functions near zero is irrel-
evant, since, all Young functions which coincide near infinity result in the same
Orlicz space with equivalent norms.

Let us start with the local variant. Let A be a given Young function and
define Aγ by

Aγ(t) =
∫ t

0

G−1
γ (s)
s

ds for t ≥ 0, (5.2.1)

where Gγ : [0, ∞) → [0, ∞) is a non-decreasing function defined by

Gγ(t) =

⎧⎪⎨⎪⎩
tA−1(1) for 0 ≤ t < 1,

sup
1≤s≤t

A−1(s) s− γ
n for t ≥ 1

Here G−1
γ represents its generalized right-continuous inverse.

Remark 5.2.1. Note that Aγ is a Young function. Indeed, as might be observed
by the formula, we have

Gγ(t)
t

= 1
t

sup
1≤s<∞

A−1(s)
s

min{t, s}1− γ
n
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and hence Gγ(t)/t is nondecreasing. Therefore Aγ is a Young function and more-
over, by (2.1.2), Aγ is equivalent to G−1

γ near infinity.

Let B be a given Young function and define (with the little abuse of notation)

Bγ(t) =
∫ t

0

E−1
γ (s)
s

ds for t ≥ 0. (5.2.2)

Here, Eγ : [0, ∞) → [0, ∞) is given by

Eγ(t) =

⎧⎨⎩0, for 0 ≤ t < 1,

t
γ
n F ∞

γ
−1(t) for t ≥ 1,

where Fγ : [1, ∞) → [0, ∞) is defined by

Fγ(t) = tn/(n−γ)
∫ t

1

B(s)
sn/(n−γ)+1 ds for t ≥ 1, (5.2.3)

and where F −1
γ stands for the generalised left-continuous inverse of Fγ.

Remark 5.2.2. Observe that Bγ is a well-defined Young function. The assump-
tion (5.2.6) guarantees that Fγ is nondecreasing. Thus F −1

γ is nondecreasing and
so is Eγ. Next, since Fγ(t)/tn/(n−γ) is nondecreasing, F −1

γ (t)/t1− γ
n is nonincreas-

ing, hence Eγ(t)/t is nonincreasing and E−1
γ (s)/s is nondecreasing. Therefore,

Bγ is convex. In addition, by (2.1.2), Bγ is equivalent to E−1
γ near infinity.

The first principal result then reads as follows.

Theorem 5.2.3 [Reduction principle in Orlicz spaces on finite-measure
sets]. Let n ∈ N and 0 < γ < n. Let Ω ⊂ Rn be a open set such that |Ω| < ∞.
Suppose that A and B are Young functions and let Aγ and Bγ be the Young
functions defined by (5.2.1) and (5.2.2), respectively. The following assertions
are equivalent:

(i) There exists a constant C1 > 0 such that

∥Mγf∥LB(Ω) ≤ C1∥f∥LA(Ω)

for every f ∈ LA(Ω);

(ii) There exists a constant C2 > 0 such that∫ t

1

B(s)
sn/(n−γ)+1 ds ≤ Aγ(C2t)

tn/(n−γ) for t > 1;

(iii) There exists a constant C3 > 0 such that

Bγ(t) ≤ A(C3t) near infinity.

If Ω = Rn, then also the values of Young functions near zero come into play.
Let again A be given and assume that

inf
0<t<1

A(t) t− n
γ > 0. (5.2.4)
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We then define A∞
γ by

A∞
γ (t) =

∫ t

0

G∞
γ

−1(s)
s

ds for t ≥ 0, (5.2.5)

where G∞
γ : [0, ∞) → [0, ∞) is a non-decreasing function defined by

G∞
γ (t) = sup

0<s≤t
A−1(s) s− γ

n for t ≥ 0

and G∞
γ

−1 represents its generalized right-continuous inverse. By a similar argu-
ment as in Remark 5.2.1, we infer that A∞

γ is a Young function such that A∞
γ is

equivalent to G∞
γ

−1 globally.
Conversely, let B be a given Young function satisfying∫

0

B(s)
sn/(n−γ)+1 ds < ∞. (5.2.6)

We define
B∞

γ (t) =
∫ t

0

E∞
γ

−1(s)
s

ds for t ≥ 0, (5.2.7)

in which E∞
γ : [0, ∞) → [0, ∞) is defined by

E∞
γ (t) = t

γ
n F ∞

γ
−1(t) for t ≥ 0,

where F ∞
γ : [0, ∞) → [0, ∞) is given by

F ∞
γ (t) = tn/(n−γ)

∫ t

0

B(s)
sn/(n−γ)+1 ds for t ≥ 0. (5.2.8)

and where F ∞
γ

−1 stands for the generalised left-continuous inverse of F ∞
γ . Simi-

larly as in Remark 5.2.2, B∞
γ is a Young function such that B∞

γ is equivalent to
E∞

γ
−1 globally.
The corresponding reduction principle then reads as follows.

Theorem 5.2.4 [Reduction principle in Orlicz spaces on Rn]. Let n ∈ N
and 0 < γ < n. Suppose that A and B are Young functions and let A∞

γ and B∞
γ

be the Young functions defined by (5.2.5) and (5.2.7), respectively. The following
assertions are equivalent:

(i) There exists a constant C1 > 0 such that

∥Mγf∥LB(Rn) ≤ C1∥f∥LA(Rn)

for every f ∈ LA(Rn);

(ii) A satisfies (5.2.4) and there exists a constant C2 > 0 such that
∫ t

0

B(s)
sn/(n−γ)+1 ds ≤

A∞
γ (C2t)

tn/(n−γ) for t > 0;

(iii) B satisfies (5.2.6) and there exists a constant C3 > 0 such that

B∞
γ (t) ≤ A(C3t) for t ≥ 0;
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(iv) There is a constant C4 > such that
∫
Rn

B

(
Mγf(x)

C4
(∫

Rn A(|f(y)|) dy
)γ/n

)
dx ≤

∫
Rn

A
(
|f(x)|

)
dx

for every f ∈ LA(Rn).

Moreover, the constants C1, C2, C3 and C4 depend on each other and on n and γ.

We would like to point out the philosophy behind the criteria (ii) and (iii) in
our reduction principle. They look completely different at a first glance and they
rely on auxiliary Young functions Aγ (or A∞

γ ) and Bγ (or B∞
γ ), respectively. In

situations when both A and B are given, there is no significantly better choice
of a condition to check. However, imagine that we have one A and a bunch of
candidates B to choose from. Then the condition (ii) comes handy as we compute
Aγ once and we check the inequality against every choice of B. The condition
(iii) is then welcome in the reciprocal case.

5.3 Optimal Orlicz spaces
This section is devoted to description of optimal spaces in (5.1.1). It is no surprise
that the Young functions Aγ and Bγ (and A∞

γ with B∞
γ in the global case) play

the major role in the problem of establishing the corresponding optimal Orlicz
spaces. Let us begin with the targets.

Theorem 5.3.1 [Optimal Orlicz target on finite-measure sets]. Let n ∈ N,
0 < γ < n and let Ω ⊆ Rn be an open set of finite measure. Suppose that A is a
Young function and let Aγ as in (5.2.1). If

iAγ >
n

n − γ
, (5.3.1)

then
Mγ : LA(Ω) → LAγ (Ω) (5.3.2)

and LAγ (Ω) is the smallest among all Orlicz spaces in (5.3.2).
Conversely, if (5.3.1) fails, then there is no optimal Orlicz space in (5.1.1) in

a sense that any Orlicz space LB(Ω) for which (5.1.1) holds true can be replaced
by a strictly smaller Orlicz space for which (5.1.1) is still valid.

In particular, if IA < n
γ
, then (5.3.1) is equivalent to iA > 1 and

Aγ
−1(t) ≃ A−1(t) t− γ

n near infinity. (5.3.3)

The result for infinite-measure sets then reads as follows.

Theorem 5.3.2 [Optimal Orlicz target on Rn]. Let n ∈ N, 0 < γ < n and
suppose that A is a Young function satisfying (5.2.4) and set A∞

γ as in (5.2.1).
If

i∞
A∞

γ
>

n

n − γ
, (5.3.4)
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then
Mγ : LA(Rn) → LA∞

γ (Rn) (5.3.5)

and LA∞
γ (Rn) is the smallest among all Orlicz spaces in (5.3.5).

Conversely, if (5.3.4) fails, then there is no optimal Orlicz space in (5.1.1) in
a sense that any Orlicz space LB(Rn) for which (5.1.1) holds true can be replaced
by a strictly smaller Orlicz space for which (5.1.1) is still valid.

In particular, if I∞
A < n

γ
, then (5.3.4) is equivalent to i∞

A > 1 and

A∞
γ

−1(t) ≃ A−1(t) t− γ
n for t > 0. (5.3.6)

In addition, if (5.2.4) is not satisfied, then there does not exist an Orlicz target
space LB(Rn) for which (5.1.1) holds.

Example 5.3.3. Let Ω = Rn. Assume that 1 ≤ p0, p∞ ≤ ∞ and α0, α∞ ∈ R. If
p0 = 1 then let α0 ≤ 0 and if p∞ = 1 then let α∞ ≥ 0. Suppose that

A(t) is equivalent to

⎧⎨⎩tp0 ℓ(t)α0 near zero,

tp∞ ℓ(t)α∞ near infinity.

Let us consider the nontrivial cases only, i.e. let us assume that (5.2.4) is satisfied.
This implies that either 1 ≤ p0 < n

γ
or p0 = n

γ
and α0 ≥ 0. Computations show

that

A∞
γ (t) is equivalent to

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
t

np0
n−γp0 ℓ(t)

nα0
n−γp0 ,

1 ≤ p0 < n
γ
, α0 ∈ R or

p0 = 1, α0 ≤ 0,
exp(−t

− n
γα0 ), p0 = n

γ
, α0 > 0,

0, p0 = n
γ
, α0 = 0,

near zero and

A∞
γ (t) is equivalent to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

t
np∞

n−γp∞ ℓ(t)
nα∞

n−γp∞ ,
1 ≤ p∞ < n

γ
, α∞ ∈ R or

p∞ = 1, α∞ ≥ 0,
exp(t− n

γα∞ ), if p∞ = n
γ
, α∞ < 0,

∞, p∞ = n
γ
, α∞ ≥ 0 or

p∞ > n
γ
, α∞ ∈ R,

near infinity. Moreover,

i∞
A∞

γ
=

⎧⎨⎩min
{

np0
n−γp0

, np∞
n−γp∞

}
, 1 ≤ min{p0, p∞} < n

γ
,

∞, p0 = p∞ = n
γ
,

whence i∞
A∞

γ
> n

n−γ
if and only if both p0 > 1 and p∞ > 1. Therefore, by

Theorem 5.3.2,
Mγ : LA(Rn) → LA∞

γ (Rn)

and the range spaces are optimal among all Orlicz spaces.
If p0 = 1 or p∞ = 1, then every Young function B satisfying (5.1.1) can be

essentially enlarged near zero or near infinity, respectively.
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Example 5.3.4. Set Ω = Rn and let 1 ≤ p0, p∞ ≤ ∞. Suppose that

A(t) is equivalent to

⎧⎨⎩tp0 e−
√

log 1/t near zero,

tp∞ e
√

log t near infinity.

In order to ensure (5.2.4), assume that 1 ≤ p0 < n
γ
. We have that A(t)t− n

γ is
decreasing near zero hence A−1(s)s− γ

n is increasing near zero. Thus the supremum
in the definition of A∞

γ may be disregarded and A∞
γ obeys (5.3.3) near zero.

Calculation shows that

A−1(s) ≃ s
1

p0 e−p
− 3

2
0

√
log 1/s near zero

and then

A∞
γ (t) is equivalent to t

np0
n−γp0 e

−( n
n−γp0

)
3
2
√

log 1/t near zero

If p∞ ≥ n
γ
, then A(t)t− n

γ is increasing, A−1(s)s− γ
n is decreasing, hence G∞

γ is a
constant function and A∞

γ = ∞ near infinity. If 1 ≤ p∞ < n
γ
, then, similarly as

before, A∞
γ satisfies (5.3.3) near infinity. To sum it up,

A∞
γ (t) is equivalent to

⎧⎨⎩t
np∞

n−γp∞ e( n
n−γp∞

)
3
2

√
log t, 1 ≤ p∞ < n

γ
,

∞, p∞ ≥ n
γ
,

near infinity. In conclusion

i∞
A∞

γ
=

⎧⎨⎩min
{

np0
n−γp0

, np∞
n−γp∞

}
, 1 ≤ p∞ < n

γ
,

np0
n−γp0

, p∞ ≥ n
γ
,

and i∞
A∞

γ
> n

n−γ
if and only if both p0 > 1 and p∞ > 1. If this is the case, then,

by Theorem 5.3.2,
Mγ : LA(Rn) → LA∞

γ (Rn)

and the range space is optimal among all Orlicz spaces, otherwise any Young
function B satisfying (5.1.1) can be essentially enlarged near zero or near infinity,
respectively.

The characterization of optimal Orlicz domain spaces follows. Again, we
distinguish two cases, whether the measure of Ω is finite or infinite.

Theorem 5.3.5 [Optimal Orlicz domain on finite-measure sets]. Let n ∈
N, 0 < γ < n and let Ω ⊆ Rn be an open set satisfying |Ω| < ∞. Suppose that B
is a Young function and let Bγ be given by (5.2.2). Then

Mγ : LBγ (Ω) → LB(Ω) (5.3.7)

and LBγ (Ω) is the largest possible Orlicz space satisfying (5.3.7).
In addition, if iB > n

n−γ
, then Bγ obeys the simpler relation

Bγ
−1(t) ≃ t

γ
n B−1(t), near infinity. (5.3.8)
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Theorem 5.3.6 [Optimal Orlicz domain on Rn]. Let n ∈ N, 0 < γ < n.
Suppose that B is a Young function fulfilling (5.2.6) and let Bγ be the Young
function defined by (5.2.2). Then

Mγ : LB∞
γ (Rn) → LB(Rn) (5.3.9)

and LB∞
γ (Rn) is the largest possible Orlicz space satisfying (5.3.9).

In addition, if i∞
B > n

n−γ
, then B satisfies (5.2.6) and B∞

γ obeys the simpler
relation

B∞
γ

−1(t) ≃ t
γ
n B−1(t), for t > 0. (5.3.10)

Conversely, if (5.2.6) fails, then there is no Orlicz space LA(Rn) for which
(5.1.1) holds.

Example 5.3.7. Let Ω = Rn and let 1 < q0, q∞ ≤ ∞ and α0, α∞ ∈ R. Suppose
that B is a Young function such that

B(t) is equivalent to

⎧⎨⎩tq0 ℓ(t)α0 near zero,

tq∞ ℓ(t)α∞ near infinity.

The condition (5.2.6) requires that either q0 > n/(n − γ) or q0 = n/(n − γ) and
α0 < −1. One can compute that

B∞
γ (t) is equivalent to

⎧⎨⎩t
nq0

n+γq0 ℓ(t)
nα0

n+γq0 , q0 > n
n−γ

,

t ℓ(t)(1− γ
n

)(α0+1), q0 = n
n−γ

, α0 < −1,

near zero and

B∞
γ (t) is equivalent to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

t
nq∞

n+γq∞ ℓ(t)
nα∞

n+γq∞ , q∞ > n
n−γ

,

t ℓ(t)(1− γ
n

)(α∞+1), q∞ = n
n−γ

, α∞ > −1,

t ℓ(ℓ(t))(1− γ
n

), q∞ = n
n−γ

, α∞ = −1,

t,
q∞ = n

n−γ
, α∞ < −1 or

q∞ < n
γ
,

near infinity. By Theorem 5.3.6,

Mγ : LB∞
γ (Rn) → LB(Rn)

and LB∞
γ (Rn) is the optimal Orlicz space.

Example 5.3.8. Let Ω = Rn and 1 ≤ q0, q∞ ≤ ∞. We deal with the Young
function B such that

B(t) is equivalent to

⎧⎨⎩tq0 e−
√

log 1/t near zero,

tq∞ e
√

log t near infinity.

The condition (5.2.6) forces that q0 ≥ n/(n − γ). If q0 > n/(n − γ) then i∞
B >

n/(n − γ) and B∞
γ satisfies the simplified relation (5.3.8) near zero. In the case

when q0 = n/(n − γ) then

F ∞
γ (t) ≃ t

n
n−γ e−

√
log 1/t

√
log 1/t near zero
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and

B∞
γ

−1(s) ≃ F ∞
γ

−1(s) s
γ
n ≃ se−(1− γ

n
)

3
2
√

log 1/s(log 1/s)− n−γ
2n near zero.

Calculating the inverses, we get that

B∞
γ (t) is equivalent to

⎧⎪⎨⎪⎩t
nq0

n+γq0 e
−( n

n+γq0
)

3
2
√

log 1/t
, q0 > n

n−γ
,

te−(1− n
γ

)
3
2
√

log 1/t(log 1/t)
2n

n−γ , q0 = n
n−γ

,

near zero.
Let us also sketch the calculations near infinity. If q∞ < n/(n − γ), then

∫ ∞ B(s)
sn/(n−γ)+1 ds < ∞

whence F ∞
γ (t) ≃ t

n
n−γ and B∞

γ (t) is equivalent to t near infinity. If q∞ >
n/(n − γ) then B∞

γ obeys the relation (5.3.8) near infinity, and finally, when
q∞ = n/(n − γ), then

F ∞
γ (t) ≃ t

n
n−γ e

√
log t

√
log t near zero.

In conclusion, we have

B∞
γ (t) is equivalent to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
t

nq∞
n+γq∞ e( n

n+γq∞
)

3
2

√
log t, q∞ > n

n−γ
,

te(1− n
γ

)
3
2

√
log t(log t)

2n
n−γ , q∞ = n

n−γ
,

t, q∞ < n
n−γ

,

near infinity and by Theorem 5.3.6,

Mγ : LB∞
γ (Rn) → LB(Rn),

in which LB∞
γ (Rn) is optimal within Orlicz spaces.

Concerning optimality, one may naturally ask the question if the relation “be
optimal Orlicz space for someone” is symmetric. We will look closely what is
meant by this now.

Let us start on the target side, so let us have some Young function B fixed.
Assume for the sake of this example that Ω ⊆ Rn is open and |Ω| < ∞. By
Theorem 5.3.5, the optimal Orlicz domain always exists and is described by the
Young function Bγ. At this stage we may set A = Bγ and try to use Theorem 5.3.1
to investigate the corresponding best possible Orlicz target.

We illustrate what is happening on a basic example. Assume that B(t) = tq

near infinity and q > n
n−γ

(we will be ignoring the behaviour near zero for the sake
of this paragraph, the careful reader may adapt the Young functions also near
zero). Then Bγ(t) is equivalent to t

nq
n+γq near infinity. Set A = Bγ and observe

that Aγ(t) is equivalent to tq, whence iAγ = q > n
n−γ

. Thus Aγ is equivalent to B

and both domain LA and range LB are optimal Orlicz spaces.
Now, if B(t) = t

n
n−γ near infinity, then Bγ is equivalent to t log(t)(1− n

γ
) near in-

finity. Denoting A = Bγ, Aγ(t) is equivalent to tn/(n−γ) log(t) which exceeds B(t).
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However, iAγ = n
n−γ

thus B is not the optimal Orlicz space to LA and moreover,
no such Orlicz space exists.

From this example we may guess that the borderline lays somewhere around
the space L

n
n−γ . Indeed, the proper classification of this phenomenon relies on

the Boyd index of B as the following theorem shows.

Theorem 5.3.9 [Orlicz range reiteration on finite-measure sets]. Let B
be a Young function and let Ω ⊆ Rn be such that |Ω| < ∞. If B satisfies

iB >
n

n − γ
, (5.3.11)

then the Young function Bγ from (5.2.2) obeys (5.3.8) and

Mγ : LBγ (Ω) → LB(Ω) (5.3.12)

where both domain and target spaces are optimal within all Orlicz spaces.
Conversely, if (5.3.11) fails, then LBγ (Ω) is optimal Orlicz domain and no

optimal Orlicz target space exists in (5.3.12).

Theorem 5.3.10 [Orlicz range reiteration on Rn]. Let B be a Young function
obeying

i∞
B >

n

n − γ
. (5.3.13)

Then the Young function B∞
γ from (5.2.7) satisfies (5.3.10) and

Mγ : LB∞
γ (Rn) → LB(Rn) (5.3.14)

where both domain and target spaces are optimal among all Orlicz spaces.
Conversely, if (5.3.13) fails, then LB∞

γ (Rn) is optimal Orlicz domain and no
optimal Orlicz target space exists in (5.3.14).

In this iteration scheme, we may also assume that A is given and we try to
make one step further and then one step back, or more precisely, we can compute
Aγ, then set B = Aγ and then analyze the relation of Bγ and A. The main
difference between this case and the previous one is that even the success after
first step is not guaranteed any more. So one has to restrict his attention to the
positive cases only. Let us look at similar trivial example.

Assume that A(t) = tp0 near zero and A(t) = tp∞ near infinity, where 1 <

p0 < n
γ

< p∞ < ∞. Calculations gives that Aγ(t) is equivalent to t
np0

n−γp0 and to ∞
near infinity. Since iAγ > n

n−γ
, Mγ acts from LA to LAγ and the range is optimal

within Orlicz spaces. If we set B = Aγ, then Bγ(t) is equivalent to tp0 near zero
and to t

n
γ near infinity. We see that Bγ coincides with A near zero while there is

a significant improvement near infinity.
To state the result in its full generality, we need to introduce a way how to

define the improved Young function to A.
Let A be a Young function satisfying (5.2.4) and let Asup be given by

Asup(t) =
∫ t

0

G−1
sup(s)
s

ds, t > 0. (5.3.15)
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where Gsup is defined by

Gsup(t) =

⎧⎪⎨⎪⎩
A−1(t), 0 ≤ t < 1,

t
n
γ sup

1<s≤t
A−1(s) t− n

γ , t ≥ 1.

Using similar arguments as in Remark 5.2.1, one can easily observe that Gsup is
increasing and Asup is well-defined Young function equivalent to G−1

sup.
The spirit of this improvement lays in the observation that any domain A can

be always replaced by Asup. This is the essence of the next theorem.

Theorem 5.3.11 [Orlicz domain reiteration on finite-measure sets]. Let
n ∈ N, 0 < γ < n, Ω ⊆ Rn satisfy |Ω| < ∞. Suppose that A is a Young function
and let Asup be the Young function from (5.3.15). Then (5.1.1) holds if and only
if

Mγ : LAsup(Ω) → LB(Ω). (5.3.16)
Furthermore, if

iAsup > 1, (5.3.17)
then

Mγ : LAsup(Ω) → LAγ (Ω)
and both domain and target spaces are optimal in the class of Orlicz spaces.

Conversely, if (5.3.17) fails, then LA(Ω) can be replaced by LAsup(Ω) and no
optimal Orlicz target exists.

A parallel result continues to hold on Rn if we modify properly the definition
of Asup near zero. Let A be a Young function satisfying (5.2.4) and let A∞

sup be
given by

A∞
sup(t) =

∫ t

0

G∞
sup

−1(s)
s

ds, t > 0. (5.3.18)

where G∞
sup is defined by

G∞
sup(t) = t

n
γ sup

0<s≤t
A−1(s) t− n

γ , t > 0.

Similarly as above, G∞
sup is increasing and A∞

sup is Young function.

Theorem 5.3.12 [Orlicz domain reiteration on Rn]. Let n ∈ N and 0 <
γ < n. Assume that A and B are Young functions and suppose that A satisfies
(5.2.4). Let Asup be the Young function from (5.3.18). Then (5.1.1) holds if and
only if

Mγ : LAsup(Rn) → LB(Rn).
Moreover, if

i∞
A∞

sup
> 1, (5.3.19)

then
Mγ : LA∞

sup(Rn) → LA∞
γ (Rn)

and both domain and target spaces are optimal in the class of Orlicz spaces.
Conversely, if (5.3.19) fails, then LA(Rn) can be replaced by LA∞

sup(Rn) and
no optimal Orlicz target exists.
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At the end of this section, we present special cases of the reduction principle
for the spaces L1 and L∞.

Corollary 5.3.13 [Endpoint embeddings]. Let n ∈ N, 0 < γ < n, Ω ⊆ Rn

with |Ω| < ∞ and suppose that A and B are Young functions. Then the following
statements hold true:
(i)

Mγ : LA(Ω) → L∞(Ω)
[
Mγ : LA(Rn) → L∞(Rn)

]
if and only if there is a constant C > 0 such that

A(t) ≥ Ct
n
γ near infinity [for t ≥ 0];

(ii)
Mγ : L1(Ω) → LB(Ω)

[
Mγ : L1(Rn) → LB(Rn)

]
if and only if ∫ ∞ B(s)

sn/(n−γ)+1 ds < ∞
[∫ ∞

0

B(s)
sn/(n−γ)+1 ds < ∞

]
.

5.4 Proofs
We start with an auxiliary reduction principle for fractional maximal opera-
tor. Note that the result remains valid also if we replace Orlicz spaces by any
rearrangement-invariant function spaces. For further details on this general set-
ting we refer to [36, Section 4].

Proposition 5.4.1. Let n ∈ N, 0 < γ < n and let A and B be Young functions.
The following statements are equivalent:

(i) There is a constant C1 > 0 such that

∥Mγf∥LB(Rn) ≤ C1∥f∥LA(Rn), f ∈ LA(Rn);

(ii) There is a constant C2 > 0 such thatt γ
n

−1
∫ t

0
g(s) ds


LB(0,∞)

≤ C2∥g∥LA(0,∞), g ∈ LA(0, ∞).

Moreover, the constants C1 and C2 depend on each other, on n and γ.

Proof. Assume (ii). By [25, Theorem 1.1], there is a constant c1 > 0, depending
only on n and γ, such that

(Mγf)∗(t) ≤ c1 sup
t≤s<∞

s
γ
n f ∗∗(s) for t > 0

and for every f ∈ L1
loc(Rn). Here, f ∗∗ is the function defined by

f ∗∗(t) = 1
t

∫ t

0
f ∗(s) ds for t > 0.
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Then

∥Mγf∥LB(Rn) = ∥(Mγf)∗∥LB(0,∞) ≤ c1

 sup
t≤s<∞

s
γ
n f ∗∗(s)


LB(0,∞)

.

The supremum may be dropped paying another constant c2 = c2(n, γ), thanks to
[45, Theorem 3.9]. Hence

∥Mγf∥LB(Rn) ≤ c1c2∥t
γ
n f ∗∗(t)∥LB(0,∞) ≤ c1c2C2∥f ∗∥LA(0,∞) = C1∥f∥LA(Rn),

due to the assumption (ii) where we take g = f ∗.
Conversely, suppose (i). Let φ : (0, ∞) → [0, ∞) be a nonincreasing function.

By [25, Theorem 1.1], there is a function f on Rn such that f ∗ = φ and

(Mγf)∗(t) ≥ c3 sup
t≤s<∞

s
γ
n f ∗∗(s) for t ∈ (0, ∞)

where c3 = c3(n, γ) is a positive constant independent of f . We have

C1∥φ∥LA(0,∞) = C1∥f∥LA(Rn) ≥ ∥Mγf∥LB(Rn) = ∥(Mγf)∗∥LB(0,∞)

≥ c3

 sup
t≤s<∞

s
γ
n f ∗∗(s)


LA(0,∞)

≥ c3

t γ
n

−1
∫ t

0
φ(s) ds


LA(0,∞)

,

hence (ii) holds for every nonincreasing function φ with C2 = C1/c3. The inequal-
ity (ii) for any function then follows by Hardy-Littlewood inequality (2.4.1).

As for the local results, we have the parallel statement. Note, that the infor-
mation about the embedding norm is lost in this case. The proof of is similar to
that of Proposition 5.4.1 and is omitted.

Proposition 5.4.2. Let n ∈ N, 0 < γ < n, let Ω ⊆ Rn be an open set of finite
measure and let A and B be Young functions. Then (5.1.1) holds true if and only
if t γ

n
−1
∫ t

0
g(s) ds


LB(0,1)

≤ C2∥g∥LA(0,1), g ∈ LA(0, 1).

Proof of Theorem 5.2.4. We begin with the preliminary statement, equivalent
to (i). Recall the Hardy operator H γ

n
, defined by

H γ
n
f(t) =

∫ ∞

t
f(s)s

γ
n

−1 ds, t ∈ (0, ∞),

for f ∈ M(0, ∞) and its associate operator, H ′
γ
n

say, given by

H ′
γ
n
g(t) = t

γ
n

−1
∫ t

0
g(s) ds, t ∈ (0, ∞),

for g ∈ M(0, ∞). See (2.8.1) for details. By Proposition 5.4.1, (i) holds if and only
if H ′

γ
n

is bounded from LA(0, ∞) to LB(0, ∞) with the operator norm comparable
to C1. Hence, by the duality argument as in (3.3.47), (i) is equivalent to the
following statement.
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(i’) There exist a constant C ′
1 > 0 such that

∥H γ
n
f∥

LÃ(0,∞) ≤ C ′
1∥f∥

LB̃(0,∞).

Moreover the constants C1 and C ′
1 are comparable.

Now, we can prove the theorem with the help of results from Chapter 3. We
show (i’)⇔(ii) first. We infer from Theorem 3.5.2 that (i’) holds true if and only
if

sup
0<t<1

Ã(t) t
n

n−γ < ∞ (5.4.1)

and there is a constant C ′
2 > 0, comparable to C ′

1, such that the inequality

∫ t

0

˜̃
B (s)

sn/(n−γ)+1 ds ≤
˜(Ã)∞

γ/n,1(C ′
2t)

tn/(n−γ) for t > 0, (5.4.2)

holds true, in which (Ã)∞
γ/n,1 is a Young function associated to Ã as in (3.5.6) for

α = γ/n and β = 1. By (3.5.8), we have

(Ã)∞
γ/n,1

−1(t) ≃ t inf
0<s≤t

Ã−1(s) s
γ
n

−1 for t > 0

which, passing to conjugates due to (2.1.5), gives

˜(Ã)∞
γ/n,1

−1
(t) ≃ sup

0<s≤t
A−1(s) s− γ

n for t > 0,

whence, by the definition (5.2.5),

˜(Ã)∞
γ/n,1

−1
(t) ≃ A∞

γ
−1 for t > 0

and ˜(Ã)∞
γ/n,1 is globally equivalent to A∞

γ . Since also ˜̃B = B, (5.4.2) is equivalent
to ∫ t

0

B(s)
sn/(n−γ)+1 ds ≤

A∞
γ (C2t)

tn/(n−γ) for t > 0,

where C2 a constant comparable to C ′
2. Observe also that (5.4.1) holds if and

only if (5.2.4) holds. This proves (ii).
The equivalence of (i’) and (iii) is a consequence of Theorem 3.3.2 which

asserts that ∫
0

(
s

B̃(s)

) γ
n−γ

ds < ∞ (5.4.3)

and that (i’) is equivalent to the existence of a constant C ′
3 > 0 such that

Ã(t) ≤ (B̃)∞
γ/n,1(C ′

3t) for t > 0, (5.4.4)

where (B̃)∞
γ/n,1 is the young function associated to B̃ as in (3.3.5) in which we set

α = γ/n and β = 1. Proposition 3.2.3 gives that (5.4.3) is equivalent to (5.2.6).
From Proposition 3.3.7, we infer that

(B̃)∞
γ/n,1

−1(t) ≃ t1− n
γ

F ∞
γ

−1(t) for t > 0.
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This, together with the definition of B∞
γ in (5.2.7) and by (2.1.5) yields to

(B̃)∞
γ/n,1

−1(t) ≃ B̃∞
γ

−1(t) for t ≥ 0,

whence (B̃)∞
γ/n,1 is globally equivalent to B̃∞

γ . Using this and passing to the
conjugate functions in (5.4.4) equivalently gives that there is a constant C3 > 0
comparable to C ′

3 such that

B∞
γ (t) ≤ A(C3t) for t ≥ 0

which is (iii).
Let us establish (iv) from (i). Suppose that N > 0 is given and set AN = A/N ,

a scaled Young function. Then

(AN)γ(t) = 1
N

Aγ

(
tN− γ

n

)
, t ≥ 0,

where (AN)γ is a Young function associated to AN as in (5.2.1). Define also BN

by
BN(t) = 1

N
B
(
tN− γ

n

)
, t ≥ 0.

We claim that
∥Mγf∥LBN (Rn) ≤ C2∥f∥LAN (Rn) (5.4.5)

for all f ∈ LAN (Rn) with the constant C2 independent of N . Indeed, as one can
readily check by the change of variables, (iii) holds with A and B replaced by AN

and BN , respectively with the same constant C3. The claim follows by the already
proven equivalence of (i) and (iii). Now, let f ∈ LA(Rn). If

∫
Rn A(|f |) = ∞, then

there is nothing to prove. Otherwise, set N =
∫
Rn A(|f |). It is ∥f∥LAN (Rn) ≤ 1

and, by (5.4.5), ∥f∥LBN (Rn) ≤ C2. Therefore
∫
Rn

BN

(
Mγf(x)

C2

)
dx ≤ 1

and (ii) follows by the definition of BN . The converse implication (ii)⇒(i) is
trivial.

Proof of Theorem 5.2.3. The proof is very similar to that of Theorem 5.2.4;
one just hast to use the local results from Chapter 3 instead. The details are
omitted, for brevity.

Proof of Theorem 5.3.2. We have already observed that the boundedness of
Mγ between LA(Rn) and LB(Ω) is equivalent to the boundedness of a Hardy-type
operator Hn

γ
between associated Orlicz spaces, i.e., (5.1.1) is equivalent to

Hn
γ

: LB̃(0, ∞) → LÃ(0, ∞) (5.4.6)

and, therefore, the problem of optimal Orlicz target space in (5.1.1) reduces to the
problem of optimal Orlicz domain space in (5.4.6). At this stage, Theorem 3.6.1
comes into play. It asserts that if Ã obeys (5.4.1) and if the Young function
(Ã)∞

γ/n,1, associated to Ã as in (3.5.6), satisfies

I∞
(Ã)∞

γ/n,1
<

n

γ
(5.4.7)
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then
Hn

γ
: L

(Ã)∞
γ/n,1(0, ∞) → LÃ(0, ∞) (5.4.8)

and the domain space in (5.4.8) is optimal within Orlicz spaces. Conversely, if
(5.4.7) fails, then no optimal Orlicz domain space exists (in the sense that any
Orlicz domain might be improved). Also, if (5.4.1) is not fulfilled, then no domain
Orlicz space in (5.4.8) exists.

As we observed in the proof of Theorem 5.2.4, (Ã)∞
γ/n,1 is equivalent to Ã∞

γ

and (5.4.1) holds if and only if (5.2.4) holds. Further, (5.4.7) is equivalent to
(5.3.4) and the claim is thus recovered. The special relation (5.3.6) then also
follows from (3.6.3) by analogous duality argument.

Proof of Theorem 5.3.1. The proof is similar to that of Theorem 5.3.2. Here,
the Theorem 3.6.3 from Chapter 3 plays the major together with passing to
conjugate Young functions.

Before we continue, we look closer to the relation between the Young function
B and the auxiliary function Fγ. It is immediate that Fγ dominates B near
infinity, since

Fγ(2t) ≥ tn/(n−γ)
∫ 2t

1

B(s)
sn/(n−γ)+1 ds ≥ tn/(n−γ)

∫ 2t

t

B(s)
sn/(n−γ)+1 ds

≥ B(t) tn/(n−γ)
∫ 2t

t

ds

sn/(n−γ)+1 ≥ B(t)Cn,γ for t > 1
(5.4.9)

and, due to Proposition 3.2.2, if iB > n
n−γ

, then Fγ and B are equivalent. The
next lemma shows that if iB ≤ n

n−γ
then also iFγ has to be small.

Lemma 5.4.3. Let B be a Young function and let Fγ be defined as in (5.2.3).
Then Fγ is a Young function and

iFγ >
n

n − γ
if and only if iB >

n

n − γ
.

Furthermore, if this is the case, then Fγ is equivalent to B near infinity.

Proof. Suppose that iB > n
n−γ

. Then, by Proposition 3.2.2 and by (5.4.9) B is
equivalent t Fγ and therefore iFγ > n

n−γ
.

Conversely, suppose that iFγ > n
n−γ

. Then, thanks to Proposition 3.2.2, there
exist σ > 1 and c > 1 such that

Fγ(σt) ≥ cσ
n

n−γ Fγ(t) near infinity. (5.4.10)

Let us write c = 1 + ε for some ε > 0. Then (5.4.10) becomes
∫ t

1

B(s)
sn/(n−γ)+1 ds ≤ 1

ε

∫ σt

t

B(s)
sn/(n−γ)+1 ds ≤ B(σt)1

ε

∫ σt

t

1
sn/(n−γ)+1 ds ≤ B(kt)

tn/(n−γ)

for every t > 0 and for a suitable constant k. Another use of Proposition 3.2.2
gives that iB > n

n−γ
.

A parallel observation as in (5.4.9) holds for the global variant F ∞
γ . A variant

of Lemma 5.4.3 is also on hand. Its proof is omitted, for brevity.
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Lemma 5.4.4. Let B be a Young function satisfying (5.2.6) and let F ∞
γ be defined

as in (5.2.8). Then F ∞
γ is a Young function and

i∞
F ∞

γ
>

n

n − γ
if and only if i∞

B >
n

n − γ
.

Furthermore, if this is the case, then F ∞
γ is equivalent to B.

Proof of Theorem 5.3.6. Assume that B satisfies (5.2.6). Then B∞
γ is well-

defined and (5.3.9) holds by Theorem 5.2.4. To observe the optimality, assume
that LA(Rn) satisfies (5.1.1). Then, again, due to Theorem 5.2.4, A dominates
B∞

γ , whence LA(Rn) → LB∞
γ (Rn) and LB∞

γ (Rn) is optimal.
If (5.2.6) is violated, then no Orlicz space LA(Rn) might satisfy (5.1.1) since

otherwise it would contradict Theorem 5.2.4.
Furthermore, if i∞

B > n
n−γ

, then Proposition 3.2.2 gives that F ∞
γ is equivalent

to B and the formula (5.3.10) is immediate.

Proof of Theorem 5.3.5. Here, the argument relies on Theorem 5.2.3 which
asserts that the choice A = Bγ guarantees (5.3.7). As for the optimality, if
LA(Ω) possess (5.1.1), then, by Theorem 5.2.3, A dominates Bγ near infinity and
LA(Ω) → LBγ (Ω) proving the optimality.

Next, if iB > n
n−γ

, then Fγ is equivalent to B thanks to Proposition 3.2.2 and
(5.3.8) follows.

Proof of Theorem 5.3.9. The boundedness of Mγ in (5.3.12) and the optimal-
ity of the domain space is a consequence of Theorem 5.3.5.

As for the range, set A = Bγ and let us compute Aγ by (5.2.1). We have

A−1
γ (t) ≃ Gγ(t) = sup

1<s≤t
B−1

γ (s) s− γ
n ≃ sup

1<s≤t
F −1

γ (s) = F −1
γ (t) near infinity,

whence Aγ is equivalent to Fγ near infinity. Therefore iAγ > n
n−γ

if and only if
iFγ > n

n−γ
which is due to Lemma 5.4.3 the same as iB > n

n−γ
. The optimal-

ity of the range in (5.3.12) is then driven by the condition (5.3.11), thanks to
Theorem 5.3.1.

Proof of Theorem 5.3.10. Note, that the condition (5.3.13) ensures that B∞
γ

is well defined. Then the rest of the proof follows the same scheme as that of
Theorem 5.3.9.

Proof of Theorem 5.3.11. Let A be given and let Asup be the Young function
from (5.3.15). Then the Young function (Asup)γ associated to Asup as in (5.2.1)
satisfies

(Asup)−1
γ (t) ≃ sup

1<s≤t
s− n

γ A−1
sup(s)

≃ sup
1<s≤t

sup
1<y≤s

y− n
γ A−1(y)

= sup
1<y≤t

y− n
γ A−1(y) ≃ A−1

γ (t) for t > 1,

in other words, (Asup)γ is equivalent to Aγ. Therefore, by Theorem 5.2.4, criterion
(ii), (5.1.1) holds if and only if (5.3.16) holds. Also,

(Asup)−1
γ (t) ≃ t− n

γ A−1
sup(t) for t > 1
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and thus

h(Asup)γ (t) = lim sup
s→∞

(Asup)−1
γ (st)

(Asup)−1
γ (s) ≃ t− n

γ lim sup
s→∞

A−1
sup(st)

A−1
sup(s) = t− n

γ hAsup(t)

for t > 1, whence, by the definition of the local lower Boyd index,

1
i(Asup)γ

+ γ

n
= 1

iAsup

and therefore i(Asup)γ > n
n−γ

if and only if iAsup > 1. The claim now follows by
Theorem 5.3.1.

Proof of Theorem 5.3.12. Let A be a Young function such that (5.2.4) holds
true. Then observe that Asup satisfies (5.2.4) as well. The remaining part of the
proof is analogous to that for the local version.

Proof of Corollary 5.3.13. Assume that |Ω| < ∞. (i) Suppose that B(t) = 0
on [0, 1] and B(t) = ∞ for t > 1. Then LB(Ω) = L∞(Ω) and, by (5.2.2), Bγ is
equivalent to t

n
γ near infinity. By Theorem 5.2.3 (the equivalence of (i) and (iii)),

we have (i).
(ii) Let us set A(t) = t, t ≥ 0, so LA(Ω) = L1(Ω). Clearly, by (5.2.1), Aγ(t)

is equivalent to t
n

n−γ near infinity and thus (ii) follows by Theorem 5.2.3, the
equivalence of (i) and (ii).

The proof for Ω = Rn is similar.
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6. Hardy-Littlewood maximal
operator

6.1 Introduction
Let Ω ⊆ Rn be an open set. The Hardy–Littlewood maximal operator, M , is
defined for every locally integrable function f on Ω by

Mf(x) = sup
Q∋x

1
|Q|

∫
Q

|f(y)| dy for x ∈ Ω,

where the supremum is extended over all cubes Q contained in Ω, whose edges
are parallel to the coordinate axes of Rn, that contain x.

The operator M is merely sublinear, rather than linear, and it is clearly a
contraction on L∞(Ω). On the other hand, if |Ω| = ∞, Mf is never integrable
unless f ≡ 0. For every locally-integrable function f on Ω, one has |f | ≤ Mf
almost everywhere. The most important information (for our purpose) concerning
the operator M , now classical, states that there exist positive constants c, c′,
depending only on n, such that

c(Mf)∗(t) ≤ f ∗∗(t) ≤ c′(Mf)∗(t) for t ≥ 0, (6.1.1)

for every locally-integrable function on Ω. The first inequality in (6.1.1) was
established in works of R. M. Gabriel [40], F. Riesz [62] and N. Wiener [71],
while the second was added later through the efforts of C. Herz [43] (for one
dimension) and C. Bennett and R. Sharpley [8] (for higher dimensions). The
result is summarized and proved in [9, Chapter 3, Theorem 3.8].

6.2 Reduction principle
In this scope, we would like to give the necessary and sufficient conditions of the
boundedness

M : LA(Ω) → LB(Ω) (6.2.1)
in terms of the Young functions A and B itself. Such a result was first obtained
by H. Kita in [48].

Since properties of function spaces defined on a set Ω may significantly differ
in the cases when the measure |Ω| is finite or infinite, it is no surprise that we
will treat such cases separately. Let us start with the global variant.

Theorem 6.2.1 [Reduction principle in Orlicz spaces, case |Ω| = ∞]. Let
Ω ⊆ Rn be an open set such that |Ω| = ∞ let A and B be Young functions. The
following statements are equivalent.

(i) There is a constant C1 > 0 such that

∥Mf∥LB(Ω) ≤ C1∥f∥LA(Ω)

for every f ∈ LA(Ω);
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(ii) There is a constant C2 > 0 such that∫ t

0

B(s)
s2 ds ≤ A(C2t)

t
for t > 0;

(iii) There is a constant C3 > 0 such that∫
Ω

B

(
Mf(x)

C3

)
dx ≤

∫
Ω

A(|f(x)|) dx

for every f ∈ LA(Ω).
Moreover the constants C1, C2 and C2 are comparable.

The local version then follows. Since only the values of Young functions
near infinity are relevant in this case, it is no longer possible to have an integral
inequality in general. Let us also point out that we are able to obtain a qualitative
result only; the information about the norm of the operator is now lost.
Theorem 6.2.2 [Reduction principle in Orlicz spaces, case |Ω| < ∞]. Let
Ω ⊆ Rn be an open set of finite Lebesgue measure and suppose that A and B are
Young functions. Then (6.2.1) holds if and only if there is a constant C > 0 such
that ∫ t

1

B(s)
s2 ds ≤ A(Ct)

t
for t > 1. (6.2.2)

In the case when A and B coincide, we may simplify the condition (6.2.2).
Corollary 6.2.3. Let A be a Young function and suppose that Ω ⊆ Rn. Then

M : LA(Ω) → LA(Ω) (6.2.3)

if and only if either |Ω| < ∞ and Ã satisfies ∆2 condition near infinity or |Ω| = ∞
and Ã obeys ∆2 condition globally.

Before we prove the reduction principles, we need an auxiliary lemma.
Lemma 6.2.4. Let f be a locally integrable function on Rn. Then

1
t

∫
{f∗≥t}

f ∗(s) ds ≤ |{f ∗∗ ≥ t}| for t > 0 (6.2.4)

and
1
t

∫
{f∗≥t}

f ∗(s) ds ≥ |{f ∗∗ ≥ 2t}| for t > 0. (6.2.5)

Proof. Let t ∈ (0, ∞) be given and denote s0 = sup{s > 0 : f ∗∗(s) = t}. We
have f ∗∗(s0) = t, by the continuity of f ∗∗, thereby

|{f ∗∗ ≥ t}| = s0 = 1
t

∫ s0

0
f ∗ ≥ 1

t

∫
{f∗≥t}

f ∗,

since {f ∗ ≥ t} ⊆ (0, s0). This gives (6.2.4). To prove (6.2.5), define ft =
min{f ∗, t} and f t = f ∗ − ft. Then

{f ∗∗ ≥ 2t} ⊆ {(ft)∗∗ > t} ∪ {(f t)∗∗ ≥ t} = {(f t)∗∗ ≥ t}.

Now, for s0 = sup{s : (f t)∗∗ ≥ t}, we infer

|{f ∗∗ ≥ 2t}| ≤ |{(f t)∗∗ ≥ t}| = s0 = 1
t

∫ s0

0
f t ≤ 1

t

∫
{f∗≥t}

f ∗.
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Proof of Theorem 6.2.1. Assume (i) and suppose that E ⊆ Ω is any measur-
able set such that |E| = t for fixed t > 0. Testing the inequality in (i) on the
function f = χE, we obtain

∥MχE∥LB(Ω) ≤ C1∥χE∥LA(Ω). (6.2.6)

By (2.3.1), the right hand side of (6.2.6) equals to 1/A−1(1/t). Next, on applying
the rearrangement, we infer, thanks to (2.6.2) and the second inequality in (6.1.1),
that

∥MχE∥LB(Ω) = ∥(MχE)∗∥LB(0,∞) ≥ 1
c′ ∥(χE)∗∗∥LB(0,∞). (6.2.7)

We can now combine a trivial estimate with Lemma 3.2.1 to get

∥(χE)∗∗∥LB(0,∞) =
1

s

∫ s

0
χ(0,t)


LB(0,∞)

≥ t
1

s
χ(t,∞)


LB(0,∞)

= 1
F −1(1

t
) , (6.2.8)

in which F : [0, ∞) → [0, ∞] is given by

F (t) = t
∫ t

0

B(s)
s2 ds for t ≥ 0 (6.2.9)

and F −1 represents its generalised right-continuous inverse. Coupling (6.2.6),
(6.2.7) and (6.2.8), we infer that there is a constant C2, depending on C1 and c′

such that
1

F −1(1
t
) ≤ C2

1
A−1(1/t) for t > 0,

which rewrites as
F (t) ≤ A(C2t) for t ≥ 0

and hence (ii) is fulfilled by the definition of F .
Assume (ii) and suppose that B possesses the representation

B(t) =
∫ t

0
b(s) ds.

We have, by Fubini’s theorem, that
∫

Ω
B

(
cMf(x)

4

)
dx =

∫ ∞

0
b(s)|{cMf ≥ 4s}| ds. (6.2.10)

Next, by the basic property of rearrangement and due to the first inequality in
(6.1.1), we get

{cMf > 4s} = {c(Mf)∗ > 4s} ⊆ {f ∗∗ > 4s} for s > 0. (6.2.11)

Using (6.2.11) in (6.2.10), we continue by
∫

Ω
B

(
cMf(x)

4

)
dx ≤

∫ ∞

0
b(s)|{f ∗∗ ≥ 4s}| ds = 1

2

∫ ∞

0
b
(

s

2

)
|{f ∗∗ ≥ 2s}| ds

≤
∫ ∞

0

B(s)
s

|{f ∗∗ ≥ 2s}| ds ≤
∫ ∞

0

B(s)
s2

∫
{f∗≥s}

f ∗(t) dt ds
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where we used the property (2.1.2) of the Young function B and the inequality
(6.2.4) of Lemma 6.2.4. Next, using Fubini’s theorem and the assumed inequality
in (ii) yields∫

Ω
B

(
cMf(x)

4

)
dx ≤

∫ ∞

0

B(s)
s2

∫ ∞

s
|{f ∗ ≥ t}| dt ds

=
∫ ∞

0
|{f ∗ ≥ t}|

∫ t

0

B(s)
s2 ds dt

≤
∫ ∞

0
|{f ∗ ≥ t}|A(C3t)

t
dt ≤

∫
Ω

A
(
C3|f(x)|

)
dx.

Then (iii) follows by considering f/C3 instead of f .
Finally, it is easy to see that (iii) implies (i).

Proof of Theorem 6.2.2. Assume that (6.2.1) holds on finite-measure open set
Ω ⊆ Rn. We may test such embedding on functions f = χE, in which E is any
measurable set with |E| = t. Here only values of t near zero are relevant. We can
also modify the Young function B near zero such that the integral∫

0

B(s)
s2 ds

converges leaving the space LB(Ω) unchanged. Then, by the same calculations
as in the proof of Theorem 6.2.1, we get that

F (t) ≤ A(Ct) near infinity, (6.2.12)

where C is some positive constant and F is given by (6.2.9). Ignoring the values
of B near zero, (6.2.12) implies (6.2.2).

Assume, conversely, that (6.2.2) holds. Let Â and B̂ be Young functions such
that Â = A and B̂ = B near infinity and such that∫ t

0

B̂(s)
s2 ds ≤ Â(Ct)

t
for t > 0;

holds for some constant C > 0. Then, by Theorem 6.2.1, we obtain that

M : LÂ(Rn) → LB̂(Rn)

and, in particular,
M : LÂ(Ω) → LB̂(Ω)

and (6.2.1) follows, since LÂ(Ω) = LA(Ω) and LB̂(Ω) = LB(Ω) up to equivalent
norms.

Before we prove Corollary 6.2.3, we need an auxiliary result dealing with
several equivalent conditions on Young function. The ∆2 is one of them.

Proposition 6.2.5. Let E be a finite-valued Young function and denote t0 =
sup{t ≥ 0, E(t) = 0}. Then the following conditions are equivalent.

(i) There exists a constant K > 1 such that∫ t

0

E(s)
s2 ds ≤ E(Kt)

t
for t > 0

[∫ t

1

E(s)
s2 ds ≤ E(Kt)

t
near infinity

]
;
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(ii) There exist constants ϱ > 1 and c > 1 such that

E(ϱt) ≥ cϱE(t) for t > 0 [near infinity];

(iii) There exist constants σ and c > 1 such that

σE−1(t) ≥ cE−1(σt) for t > 0 [near infinity];

(iv) There exist constants λ > 1 and c > 1 such that

Ẽ(ct) ≤ λẼ(t) for t > 0 [near infinity];

(v) The Young function Ẽ satisfies the ∆2 condition globally [near infinity];

(vi) There exists a constant C > 1 such that
∫ t

0

ds

E−1(s) ≤ Ct

E−1(t) for t > 0
[∫ t

1

ds

E−1(s) ≤ Ct

E−1(t) near infinity
]
;

(vii) There exists a constant C > 1 such that
∫ ∞

t

E−1(s)
s2 ds ≤ C

E−1(t)
t

for t > 0 [near infinity];

(viii) There exists a constant C > 1 such that∫ ∞

t

ds

E(s) ≤ Ct

E(t) for t ∈ (t0, ∞) [near infinity];

Proof. We prove the statement in its global form only. The proof of the version
“near infinity” is analogous.

“(i) ⇒ (ii)”. Assume (i) and assume for contradiction that to fixed c > 1 and
any ϱ > K there exists a t > 0 such that E(ϱt) < cϱE(t). By the inequality (i)
with ϱt/K in place of t we get

K
E(ϱt)

ϱt
≥
∫ ϱt/K

0

E(s)
s2 ds ≥

∫ ϱt/K

t

E(s)
s2 ds ≥ E(t)

t

∫ ϱt/K

t

ds

s
>

E(ϱt)
cϱt

log ϱ

K

Hence
cK > log ϱ

K

for every ϱ > K which is impossible.
“(ii) ⇒ (iii)”. Let us replace t by E−1(t) in (ii). By the right continuity of

E−1, we have
E(ϱE−1(t)) ≥ cϱE(E−1(t)) ≥ cϱt. (6.2.13)

Now, on applying the nondecreasing function E−1 on both sides of (6.2.13) and
denoting σ = cϱ > 1, we get (iii).

“(iii) ⇒ (vi)”. By the repeated use of (iii) we have

E−1(σ−kt) ≥
(

c

σ

)k

E−1(t) for t ∈ (0, ∞). (6.2.14)
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Since E(s)/s is nondecreasing, s/E−1(s) is nondecreasing as well and
∫ t

0

ds

E−1(s) =
∞∑

k=0

∫ tσ−k

tσ−k−1

ds

E−1(s) ≤ log σ
∞∑

k=0

tσ−k

E−1(tσ−k)

≤ t

E−1(t) log σ
∞∑

k=0
σ−k

(
σ

c

)k

= t

E−1(t)
c log σ

c − 1

for any t ∈ (0, ∞). That gives (vi).
“(vi) ⇒ (i)”. If t ∈ (0, t0), then∫ t

0

E(s)
s2 ds = 0

and (i) holds trivially. Assume that t ≥ t0. Since E is finite-valued, it is strictly
increasing and hence E−1(E(t)) = t. Let us now plug E(t) in the inequality (vi)
in place of t. We have

C
E(t)

t
= C

E(t)
E−1(E(t)) ≥

∫ E(t)

0

ds

E−1(s) =
∫ E(t)

E(t0)

ds

E−1(s)

=
∫ t

t0

a(s)
E−1(E(s)) ds ≥

∫ t

t0

E(s)
s2 ds =

∫ t

0

E(s)
s2 ds.

“(iii) ⇒ (vii)”. By the iterative use of (ii), we again obtain (6.2.14). Then
∫ ∞

t

E−1(s)
s2 ds =

∞∑
k=0

∫ tσk+1

tσk

E−1(s)
s2 ds ≤ log σ

∞∑
k=0

E−1(tσk)
tσk

≤ E−1(t)
t

log σ
∞∑

k=0
σ−k

(
σ

c

)k

= E−1(t)
t

log σ
c log σ

c − 1

for any t ∈ (0, ∞), which proves (vii).
“(vii) ⇒ (viii)”. By the substitution s ↦→ 1/s and t ↦→ 1/t, (vii) is equivalent

to ∫ t

0
E−1

(
1
s

)
ds ≤ CtE−1

(
1
t

)
for t ∈ (0, ∞). (6.2.15)

Denote F (t) = 1/E(t), t ∈ (t0, ∞). Then F is strictly monotone, F ′(t) =
−a(t)/E2(t) and F −1(s) = E−1(1/s). Then, by (6.2.15),

CtE−1
(

1
t

)
≥
∫ t

0
F −1(s) ds =

∫ F −1(t)

F −1(0)
F −1(F (s))F ′(s) ds

=
∫ ∞

E−1(1/t)

sa(s)
E2(s) ds =

∫ ∞

E−1(1/t)

ds

E(s)

for any t ∈ (0, ∞) and (viii) follows by interchanging t and 1/E(t).
“(viii) ⇒ (ii)”. Assume by contradiction that to fixed c > 1 and any ϱ > 1

there is a t > 0 such that E(ϱt) < cϱE(t). Then, E is positive on (t, ∞) and, by
(viii),

Ct

E(t) ≥
∫ ∞

t

ds

E(s) ≥
∫ ϱt

t

ds

E(s) ≥ ϱt

E(ϱt) log ϱ >
t

E(t) · log ϱ

c
,

whence cC > log ϱ for any ϱ > 1. A contradiction.
Finally, “(ii) ⇔ (iv)” follows easily by (2.1.6) and “(iv) ⇔ (v)” is obvious.
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Proof of Corollary 6.2.3. If |Ω| < ∞, then Theorem 6.2.2 asserts that (6.2.3)
is equivalent to (6.2.2)with A = B. This is however equivalent to the validity of
∆2 for Ã near infinity, due to Proposition 6.2.5, provided that A is finite valued.
If this is not the case, then LA(Ω) = L∞(Ω) and the claim holds trivially. The
case |Ω| = ∞ is similar.

6.3 Optimal domain spaces
The objective of the present scope is to describe the optimal Orlicz domain space
in (6.2.1). It seems that our result is not covered by literature, although the tool,
used in the proof is well known. It relies upon the reverse integral inequality
which is available in the work of H. Kita, see [46, 47, 49] for the details. We
would like to also mention the paper [64], where the local boundedness to L1 is
characterised.

Let B be a given Young function. We define AB : [0, ∞) → [0, ∞] by

AB(t) =

⎧⎪⎨⎪⎩
0 if 0 ≤ t ≤ 1,∫ t

1

∫ y

1

B(s)
s2 ds dy if t > 1.

(6.3.1)

Then, clearly AB is a Young function, as it possesses the representation (2.1.1).
It turns out that the optimal Orlicz domain problem is quite straightforward.
Theorem 6.3.1 [Optimal Orlicz domain, case |Ω| < ∞]. Assume that Ω ⊆
Rn is open set such that |Ω| < ∞. Let B be a Young function and let AB be the
Young function from (6.3.1). Then

M : LAB (Ω) → LB(Ω) (6.3.2)

and LAB (Ω) is the optimal Orlicz domain space in (6.3.2).
Concerning the global variant, we have to take the values near zero into ac-

count. Let again B be given and assume that∫
0

B(s)
s2 ds < ∞. (6.3.3)

We define A∞
B : [0, ∞) → [0, ∞] by

A∞
B (t) =

∫ t

0

∫ y

0

B(s)
s2 ds dy, for t ≥ 0. (6.3.4)

Again, A∞
B is a Young function. The characterization of optimal Orlicz domain

space now reads as follows. Let us stress that its existence is not guaranteed any
more in general.
Theorem 6.3.2 [Optimal Orlicz domain, case |Ω| = ∞]. Let Ω ⊆ Rn be an
open set satisfying |Ω| = ∞. Let B be a Young function. If B satisfies (6.3.3),
then

M : LA∞
B (Ω) → LB(Ω). (6.3.5)

where A∞
B is the Young function given by (6.3.4). Furthermore, the Orlicz space

LA∞
B (Ω) is the optimal Orlicz domain space in (6.3.5).
Conversely, if (6.3.3) fails, then there is no Orlicz domain space with respect

to M .
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Proof of Theorem 6.3.2. Let B be a Young function obeying (6.3.3) and let
A∞

B be as in (6.3.4). We have

t
∫ t

0

B(s)
s2 ds ≤

∫ 2t

t

∫ y

0

B(s)
s2 ds dy ≤ A∞

B (2t) for t ≥ 0

and hence (6.3.5) follows by Theorem 6.2.1.
To prove the optimality, assume that A is a Young function satisfying (6.2.1).

Then, by Theorem 6.2.1 together with (2.1.2), we infer that

A∞
B (t) ≤ t

∫ t

0

B(s)
s2 ds ≤ A(Ct) for t > 0

for some C > 0 whence LA(Ω) → LA∞
B (Ω), proving the optimality. The necessity

of the condition (6.3.3) also follows by Theorem 6.2.1.

The proof of Theorem 6.3.1 is then very same and hence omitted.
Even though the problem of optimal Orlicz domain space was easy to solve,

the space LAB (Ω) (or LA∞
B (Ω)) possesses more interesting property. It can be

shown that it is also the optimal partner to LB(Ω) in a much wider class of
function spaces, namely in rearrangement-invariant ones.

Theorem 6.3.3 [Optimal r.i. domain, case |Ω| < ∞]. Let Ω, B and AB be as
in Theorem 6.3.1. Then (6.3.2) holds and the Orlicz space LAB (Ω) is the optimal
rearrangement-invariant space in (6.3.2).

Theorem 6.3.4 [Optimal r.i. domain, case |Ω| = ∞]. Let Ω, B and A∞
B be

as in Theorem 6.3.2. If B obeys (6.3.3) then (6.3.5) holds and the Orlicz space
LA∞

B (Ω) is the optimal rearrangement-invariant space in (6.3.5).
Conversely, if (6.3.3) fails, no rearrangement-invariant space with respect

to M exists.

We restrict ourselves only to the case of infinite-measure set, the local version
being similar.

Proof of Theorem 6.3.4. The boundedness of M between LA∞
B (Ω) and LB(Ω)

follows by Theorem 6.3.2. Let us focus on the optimality. We claim that

∫
Ω

A∞
B (|f(x)|) dx ≤

∫
Ω

B(c′Mf(x)) dx, f ∈ M(Ω). (6.3.6)

Indeed, thanks to the basic property of rearrangements and by the second in-
equality in (6.1.1), we have

{f ∗∗ > s} ⊆ {c′(Mf)∗ > s} = {c′Mf > s} for s > 0,
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whence, by Fubini’s theorem and due to the inequality (6.2.4) of Lemma (6.2.4),
∫

Ω
A∞

B (|f(x)|) dx =
∫ ∞

0

∫ y

0

B(s)
s2 |{f ∗ ≥ y}| ds dy

=
∫ ∞

0

B(s)
s2

∫ ∞

s
|{f ∗ ≥ y}| dy ds

=
∫ ∞

0

B(s)
s2

∫
{f∗≥s}

f ∗(t) dt ds

≤
∫ ∞

0

B(s)
s

|{f ∗∗ ≥ s}| ds

≤
∫ ∞

0

B(s)
s

|{c′Mf ≥ s}| ds

≤
∫

Ω
B(c′Mf(x)) dx.

Applying (6.3.6) to the function f/c′∥Mf∥LB(Ω), we get

∫
Ω

A∞
B

(
|f(x)|

c′∥Mf∥LB(Ω)

)
dx ≤

∫
Ω

B

(
Mf(x)

∥Mf∥LB(Ω)

)
dx ≤ 1

and therefore
∥f∥

L
A∞

B (Ω) ≤ c′∥Mf∥LB(Ω) (6.3.7)

for every measurable f on Ω.
We are now about to use the characterization of the optimal rearrangement-

invariant space available in [36, Theorem 3.2]. It proposes that the functional

ϱ(f) = ∥g∗∗∥LB(0,∞) for g ∈ M(Ω). (6.3.8)

is a well-defined rearrangement-invariant norm such that the corresponding space
Xϱ(Ω) obeys

M : Xϱ(Ω) → LB(Ω) (6.3.9)

provided that
1
t

∈ LB(1, ∞). (6.3.10)

Moreover, Xϱ(Ω) is the optimal r.i. space to LB(Ω) with respect to M . Conversely,
if (6.3.10) fails, then no r.i. domain space exists in (6.3.9).

Observe that, by Lemma 3.2.1, the condition (6.3.10) is equivalent to the
convergence condition (6.3.3). Next, by (6.3.10), the first inequality in (6.1.1)
and by the definition (6.3.8), we have

c∥Mf∥LB(Ω) ≤ ∥f ∗∗∥LB(0,∞) = ∥f∥Xϱ(Ω) (6.3.11)

Coupling (6.3.7) with (6.3.11), we infer that

c∥f∥
L

A∞
B (Ω) ≤ cc′∥Mf∥LB(Ω) ≤ c′∥f∥Xϱ(Ω)

for any measurable f on Ω. Thus Xϱ(Ω) → LA∞
B (Ω) and therefore Xϱ(Ω) =

LA∞
B (Ω), by the optimality of Xϱ(Ω).
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6.4 Optimal target spaces
Despite the fact that the problem of optimal Orlicz domain space for Maximal
operator is easily solved, the question of optimal Orlicz target space remains
open. In this section we would like to collect some ideas which might be helpful
to answer the question of existence and possible construction of optimal Orlicz
target space.

Throughout this section we assume that Ω = Rn, for simplicity. Since the
local problem is similar (and sometimes even simpler), we believe that the reader
will be able to adapt our observations to this case, if necessary.

Let us start with preliminary discussion. We have already observed in Sec-
tion 6.2 that the Maximal operator is bounded between Orlicz spaces LA(Rn) and
LB(Rn) if and only if

∫ t

0

B(s)
s2 ds ≤ A(Kt)

t
for t > 0 (6.4.1)

for some positive constant K. To find the optimal Orlicz space means to define
a Young functions which make the inequality (6.4.1) sharp. If A and B are any
Young functions fulfilling (6.4.1), then B is dominated by A, as it can be easily
observed by

A(2Kt) ≥ 2t
∫ 2t

t

B(s)
s2 ds ≥ B(t)2t

∫ 2t

t

ds

s2 = B(t) for t ≥ 0.

Therefore when such A and B are equivalent, the optimality is clearly attained.
By Corollary 5.3.13 this happens if and only if Ã (and hence B̃) enjoys the ∆2
condition. Hence, in the sequel, we sort such cases out of our attention.

A possible explanation, why finding optimal A for given B is much simpler
than the reciprocal case, is the fact that the function A in the relation (6.4.1) sits
alone on the right hand side, while B is locked “inside” the integral on the left.

The experience with such type of inequality for Hardy-type operator from
Chapter 3 may cause some concern, since we proved that there is no best pos-
sible Young function to fit in the integral unless the integration is meaningless.
However, there is still a hope, as the following example suggests.

Example 6.4.1. Let A = [α0, α∞] where α0 < −1 and α∞ ≥ 0. Then

M : L(log L)A+1(Rn) → L(log L)A(Rn)

and both domain and target spaces are optimal among all Orlicz spaces. Fur-
thermore, both domain and target spaces are even the optimal spaces in the class
of rearrangement-invariant spaces.

The proof of this example is given below. This example then strengthens
the faith that the optimal Orlicz domains may exist in general. In the sequel
we will mention several approaches which can be tried to arrive at the optimal
Young function B provided A is given. Some of them are more naive than others,
though we believe that any sort of positive thoughts might guide us to the eventual
satisfying solution.

The following simple lemma is needed in the proof of Example 6.4.1.
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Lemma 6.4.2. Let E be a Young function. Then

sup
0<t<∞

f ∗∗(t)
E−1

(
1
t

) ≃ sup
0<t<∞

f ∗(t)
E−1

(
1
t

) (6.4.2)

for any f ∈ M(0, ∞) if and only if Ẽ ∈ ∆2.

Proof. Let us assume (6.4.2) and set f = E−1(1/t). Then f is nonincreasing
and we obtain that there is a constant C > 0 such that∫ t

0
E−1

(
1
s

)
ds ≤ CtE−1

(
1
t

)
for t > 0 (6.4.3)

must be fulfilled. By the change of variables s ↦→ 1/s and t ↦→ 1/t, (6.4.3) is
equivalent to ∫ ∞

t

E−1(s)
s2 ds ≤ C

E−1(t)
t

for t > 0

which is, by Proposition 6.2.5, equivalent to Ẽ ∈ ∆2.
Conversely, assume that Ẽ ∈ ∆2 and hence that (6.4.3) holds. If we denote

the right hand side of (6.4.2) by K, we have

f ∗(s) ≤ KE−1
(

1
s

)
, for s > 0. (6.4.4)

Integrating (6.4.4) over the interval (0, t) we arrive at

f ∗∗(t) ≤ K

t

∫ t

0
E−1

(1
s

)
ds ≤ CKE−1

(1
t

)
, for t > 0,

whence
sup

0<t<∞

f ∗∗(t)
E−1

(
1
t

) ≤ CK.

That gives (6.4.2) since the opposite inequality is obvious.

Proof of Example 6.4.1. The optimality of the domain follows from Theo-
rem 6.3.2; The condition α0 < −1 comes from the constrain (6.3.3).

We shall use the characterization of the optimal r.i. target space with respect
to M from [36]. It asserts that if

log 1
t

∈ LÃ(0, 1), (6.4.5)

then the functional
σ(g) =

∫ ∞

t
g∗(s)ds

s


LÃ(0,∞)

is an r.i. norm for which the corresponding space Y ′
σ(Rn), associated to Yσ(Rn),

satisfies
M : LA(Rn) → Y ′

σ(Rn) (6.4.6)
and the space Y ′

σ(Rn) is the optimal r.i. target space in (6.4.6). Moreover, if
(6.4.5) fails, no r.i. target space exists in (6.4.6).

Let us apply this theorem to our space LA(Rn). The condition (6.4.5) has
to be satisfied, since LA(Rn) came as an optimal r.i. domain for LB(Rn). We
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compute σ now. Recall that A is a Young function equivalent to tℓ(t)A+1. The
Orlicz space LA(Rn), namely, the space L(log L)A+1(Rn), then coincides with the
Lorentz space ΛA(Rn). Thus, by (2.4.7), LÃ(Rn) = M Ã(Rn) and σ obeys

σ(g) = sup
0<t<∞

1
Ã−1(1

t
)

∫ t

0

∫ ∞

y
g∗(s)ds

s
dy.

Since A satisfies the ∆2, we have, by Lemma 6.4.2, that

σ(g) ≃ sup
0<t<∞

tA−1(1
t
)
∫ ∞

t
g∗(s)ds

s
,

where we used (2.1.5). Calculating the inverse, we have A−1(s) ≃ sℓ(s)−A−1.
Denote also A = [α∞, α0]. Then

σ(g) ≃ sup
0<t<∞

ℓ−A−1(t)
∫ ∞

t
g∗(s) ds

s

= sup
0<t<∞

ℓ−A−1(t)
∫ ∞

t
g∗(s)ℓ−A(s)ℓA(s)ds

s

≤
(

sup
0<s<∞

g∗(s)ℓ−A(s)
)(

sup
0<t<∞

ℓ−A−1(t)
∫ ∞

t
ℓA(s)ds

s

)
≃ sup

0<s<∞
g∗(s)ℓ−A(s)

≤ sup
0<s<∞

g∗∗(s)ℓ−A(s)

whence M B̃(Rn) → Yσ(Rn), where B(t) is equivalent to tℓ(t)A. On the other side,

σ(g) ≥ max
{

sup
0<t<1

ℓ−α∞(t)
∫ √

t

t
g∗(s) ds

s
, sup

1<t<∞
ℓ−α0(t)

∫ t2

t
g∗(s) ds

s

}
≥ max

{
sup

0<t<1
ℓ−α∞(t)g∗(

√
t) log(t− 1

2 ), sup
1<t<∞

ℓ−α0(t)g∗(t2) log t
}

≃ max
{

sup
0<t<1

ℓ1−α∞(
√

t)g∗(
√

t), sup
1<t<∞

ℓ1−α0(t2)g∗(t2)
}

≃ max
{

sup
0<t<1

ℓ1−α∞(t)g∗(t), sup
1<t<∞

ℓ1−α0(t)g∗(t)
}

≃ sup
0<s<∞

g∗(s)ℓ−A(s)

≃ sup
0<s<∞

g∗∗(s)ℓ−A(s).

The last equivalence is due to Lemma 6.4.2 applied to B̃. Thus Yσ(Rn) →
M B̃(Rn), whence, by (2.4.6), the space ΛB(Rn) is the optimal r.i. target space
for LB(Rn). Since ΛB(Rn) coincides with LB(Rn), it is also optimal within Orlicz
spaces.

Embedding to weak Orlicz space
First idea we would like to demonstrate relies upon the version of reduction
principle, where the target space LB(Rn) is replaced by the weak Orlicz space
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MB(Rn). There is one advantage and one disadvantage of this approach. Let us
look at the bright side first. Such principle gives us a necessary and sufficient
condition on A and B in which B is standing outside any integrals or any norms.
From this, we may guess the optimal form of B. The next step in this case, would
be to prove the statement in the following form.

Let A and B be Young functions, such that

M : LA(Rn) → MB(Rn) (6.4.7)

then
M : LA(Rn) → LB(Rn) (6.4.8)

holds as well.
Such statement seems reasonable and we have met it before in similar form

for Hardy-type operator – see Proposition 3.5.6. However, getting to the disad-
vantages, the proof cannot be reproduced and it is not clear whether such a claim
holds. Nevertheless, let us present the reduction principle for weak Orlicz spaces.

Proposition 6.4.3. Let A and B be Young functions. The following statements
are equivalent.

(i) There exists a constant C1 > 0 such that

∥Mf∥MB(Rn) ≤ C1∥f∥LA(Rn)

for every f ∈ LA(Rn);

(ii) There exists a constant C2 > 0 such that

t
log 1

st


LÃ(0,1/t)

≤ C2B
−1(t) for t > 0.

Moreover the all the constants C1 and C2 are comparable.

We begin with more general preliminary reduction in r.i. spaces.

Lemma 6.4.4. Let X and Y be rearrangement-invariant spaces with their asso-
ciate spaces X ′ and Y ′, respectively. It is equivalent:

(i) There exists a constant C1 > 0 such that

∥Mf∥Y (Rn) ≤ C1∥f∥X(Rn)

for every f ∈ X(Rn);

(ii) There exists a constant C2 > 0 such that1
t

∫ t

0
f(s) ds


Y (0,∞)

≤ C2∥f∥X(0,∞).

for every f ∈ X(0, ∞).

(iii) There exists a constant C3 > 0 such that∫ ∞

t
g(s)ds

s


X′(0,∞)

≤ C3∥g∥Y ′(0,∞)
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(iii)∗ There exists a constant C∗
3 > 0 such that∫ ∞

t
g∗(s)ds

s


X′(0,∞)

≤ C∗
3∥g∗∥Y ′(0,∞)

Moreover the all the constants C1, C2, C3 and C∗
3 are comparable.

Proof. Let us start with the observation that (i) is equivalent to

∥(Mf)∗∥Y (0,∞) ≤ C1∥f ∗∥X(0,∞)

for every f ∈ X(0, ∞) due to (2.6.2). Then, by the inequalities (6.1.1), we infer
that (i) is equivalent to the existence of a constant C2 > 0 such that1

t

∫ t

0
f ∗(s) ds


Y (0,∞)

≤ C2∥f ∗∥X(0,∞). (6.4.9)

for every f ∈ X(0, ∞). We claim that (6.4.9) is equivalent to (ii). Indeed, one
implication follows just by restriction to nonincreasing functions and the converse
one is due to Hardy-Littlewood inequality (2.4.1). Next, by duality (2.8.2), (ii)
is equivalent to (iii) for some C3 > 0 and for every g ∈ Y ′(0, ∞). The final
equivalence of (iii) and (iii)∗ is a consequence of [32, Corollary 9.8] of a more
general principle established in [32, Theorem 9.5] in connection with sharp higher-
order Sobolev-type embeddings and whose extension to unbounded intervals was
given in [60, Theorem 1.10].

Proof of Proposition 6.4.3. Let us apply Lemma 6.4.4 to X = LA and Y =
MB. By the equivalence of (i) and (iii)∗, we have∫ ∞

s
g∗(y)dy

y


LÃ(0,∞)

≤ C∗
3∥g∗∥ΛB̃(0,∞) (6.4.10)

for all g ∈ ΛB̃(0, ∞) and some C∗
3 > 0. We also used (2.4.6) here. Now, by Propo-

sition 2.8.1, (6.4.10) is equivalent to the same inequality restricted to functions
of the form χE, in which E stands for any measurable subset of (0, ∞). Thus,
using the rearrangement, (6.4.10) rewrites as∫ ∞

s
χ(0,t)(y)dy

y


LÃ(0,∞)

≤ C∗
3∥χ(0,t)∥ΛB̃(0,∞) (6.4.11)

for t > 0. Computing the left hand side of (6.4.11), we have∫ ∞

s
χ(0,t)(y)dy

y


LÃ(0,∞)

=
∫ t

s

dy

y


LÃ(0,t)

=
log t

s


LÃ(0,t)

(6.4.12)

and, using (2.4.5) and (2.1.5), the right hand side of (6.4.11) gives

∥χ(0,t)∥ΛB̃(0,∞) = 1
B̃−1(1

t
)

≃ tB−1(1
t
). (6.4.13)

Finally plugging (6.4.12) with (6.4.13) into (6.4.11), (ii) follows after the change
of variables t ↦→ 1/t.
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Now, with the help of Proposition 6.4.3, we may proceed to the definition of
optimal Young function B. So, let A be a given Young function such that

log 1
t

∈ LÃ(0, 1). (6.4.14)

We define B∞
A : [0, ∞) → [0, ∞] by

B∞
A (t) =

∫ t

0

G∞
A

−1(s)
s

ds for t ≥ 0, (6.4.15)

where G∞
A : (0, ∞) → [0, ∞) is the generalised right-continuous inverse of

G∞
A (t) = t

log 1
st


LÃ(0,1/t)

for t > 0.

Observe that B∞
A is a Young function. By (6.4.14), G∞

A is finite-valued. Next,
G∞

A (t)/t is nonincreasing, as might be seen from the alternate formula

G∞
A (t)
t

=
log 1

st


LÃ(0,1/t)

= inf
{

λ > 0 :
∫ 1/t

0
Ã
(1

λ
log 1

st

)
ds ≤ 1

}
= inf

{
λ > 0 :

∫ 1

0
Ã
(1

λ
log 1

s

)
ds ≤ t

}
.

(6.4.16)

Using this, we infer that G∞
A

−1(t)/t is nondecreasing and hence B∞
A is a Young

function.
Let us also mention, that unlike in the case of Hardy operator in Chapter 3,

it is not possible to easily simplify the expression for the function G∞
A (and hence

in the corresponding reduction principle). The reason is that we cannot make
similar change of variables in the integral in (6.4.16) to get the λ outside.

The following characterization of optimal weak Orlicz target space is a direct
consequence of Proposition 6.4.3.

Proposition 6.4.5. Let A be a Young function satisfying (6.4.14) and let B∞
A be

as in (6.4.15). Then
M : LA(Rn) → MB∞

A (Rn) (6.4.17)

and the space MB∞
A (Rn) is the optimal target space in (6.4.17) within all Marcin-

kiewicz spaces.
Conversely, if (6.4.14) fails, then no Marcinkiewicz target space exists.

Here, the inequality for Young functions is also available, in its week form.

Proposition 6.4.6. Let A be a Young function satisfying (6.4.14) and let B∞
A be

defined by (6.4.15). Then there is a constant C > 0, such that

sup
t≥0

B∞
A (t)

⏐⏐⏐{(Mf)∗∗ ≥ Ct
}⏐⏐⏐ ≤

∫
Rn

A(|f(x)|) dx for t ∈ LA(Rn). (6.4.18)
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Proof. Let A be a Young function satisfying (6.4.14). We will use the scaling
argument. For a positive constant N , define the Young function AN = A/N .
Then the Young function B∞

N connected with AN by the relation (6.4.15) satisfies

B∞
N = B∞

A

N
,

as one may observe by the change of variables in the definition of the Luxemburg
norm. We therefore infer, by Proposition 6.4.3, that

∥Mf∥
M

B∞
N (Rn) ≤ C∥f∥LAN (Rn) (6.4.19)

holds with an universal constant C > 0 independent of N . On setting

N =
∫
Rn

A(|f(x)|) dx

we infer from (6.4.19) that

∥Mf∥
M

B∞
N (Rn) ≤ C∥f∥LAN (Rn) ≤ C, (6.4.20)

provided that N is finite an positive. Here, C is independent of N and f . Equa-
tion (6.4.20) tells us that

C ≥ ∥Mf∥
M

B∞
N (Rn) = sup

0<t<∞

t

B∞
N

−1
(

1
|{(Mf)∗∗>t}|

) for t > 0,

which rewrites as

B∞
N

(
t
C

)
|{(Mf)∗∗ > t}| ≤ 1 for t > 0

and (6.4.18) follows by the choice of N .

Lifting to an Orlicz space
Let us follow up the idea presented at the beginning of this section. The natural
continuation in obtaining the optimal Orlicz target would be a lifting argument
which claims that (6.4.7) and (6.4.8) are equivalent. However, the discretization
argument, used in Proposition 3.5.6, does not work here.

On the other hand, it is possible to prove a variant of such lifting statement,
where we play on the domain side.

Lemma 6.4.7. Let A and B be Young functions. Then the following are equiv-
alent.

(i) M : LA(Rn) → LB(Rn);

(ii) M : ΛA(Rn) → LB(Rn).

Proof. The implication (i)→(ii) is trivial since, by (2.4.4), ΛA(Rn) → LA(Rn)
for every A. Conversely, assume (ii). By Lemma 6.4.4, it is equivalent to1

t

∫ t

0
f(s) ds


LB(0,∞)

≤ C∥f∥ΛA(0,∞). (6.4.21)
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for some C > 0 and every f ∈ LA(0, ∞). On testing the inequality (6.4.21) by
the functions of the form f = χ(0,t) we recover the inequality∫ t

0

B(s)
s2 ds ≤ A(C ′t)

t
for t > 0

which implies (i), thanks to Theorem 6.2.1.

If we believe that LB∞
A (Rn) is our optimal Orlicz target, it is thus sufficient

to verify that
M : ΛA(Rn) → LB∞

A (Rn),
thanks to Lemma 6.4.7.

Endpoint space embeddings
At the end of this chapter, we would like to collect few available reduction prin-
ciples on M acting between various types of endpoint spaces. The proofs are
easy and in all cases depend on Proposition 2.8.1, passing to the characteristic
functions of intervals and computation of corresponding quantities involved. The
details are skipped.

Lemma 6.4.8. Let A and B be Young functions. Then the following statements
are equivalent.

(i) There exists a constant C1 > 0 such that

∥Mf∥MB(Rn) ≤ C1∥f∥ΛA(Rn)

for every f ∈ ΛA(Rn);

(ii) There exists a constant C2 > 0 such that

t sup
t≤s<∞

A−1(s)
s

(
log s

t
+ 1

)
≤ C2B

−1(t) for t > 0.

In addition, the constants C1 and C2 are comparable.

Lemma 6.4.9. Let A and B be Young functions. Then the following statements
are equivalent.

(i) There exists a constant C1 > 0 such that

∥Mf∥ΛB(Rn) ≤ C1∥f∥ΛA(Rn)

for every f ∈ ΛA(Rn);

(ii) There exists a constant C2 > 0 such that∫ t

0

ds

B−1(s) ≤ C2
t

A−1(t) for t > 0;

(iii) There exists a constant C3 > 0 such that∫ B−1(A(t))

0

B(s)
s2 ds ≤ A(C3t)

t
for t > 0.
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Moreover, the all the constants C1, C2 and C3 are comparable.

Lemma 6.4.10. Let A and B be Young functions. Then the following statements
are equivalent.

(i) There exists a constant C1 > 0 such that

∥Mf∥MB(Rn) ≤ C1∥f∥MA(Rn)

for every f ∈ MA(Rn);

(ii) There exists a constant C2 > 0 such that

t
∫ t

0
A−1

(1
s

)
log t

s
ds ≤ C2B

−1(t) for t > 0.

Furthermore, C1 and C2 are comparable.
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7. Riesz potential

7.1 Introduction
Let n ∈ N. Consider the Riesz potential operator Iγ of order γ ∈ (0, n) given by

Iγf(x) =
∫
Rn

f(y)
|x − y|n−γ

dy for x ∈ Rn

and for any measurable function f on Rn.
We are going to make use of a special case of the O’Neil inequality. In its gen-

eral form ([58, Lemma 1.5]), it states that, for the convolution of two measurable
functions f , g on Rn, defined by

(f ∗ g)(x) =
∫
Rn

f(x − y)g(y) dy for x ∈ Rn,

we have
(f ∗ g)∗∗(t) ≤ tf ∗∗(t) +

∫ ∞

t
f ∗(s)g∗(s) ds for t > 0.

With the particular choice

g(x) = |x|γ−n, x ∈ Rn,

we obtain that

(Iγf)∗(t) ≤
∫ ∞

t
s

γ
n

−1f ∗∗(s) ds for t > 0. (7.1.1)

This inequality is known to be sharp, but merely in a broader sense than, for
example, the corresponding estimate for the Hardy–Littlewood maximal operator.
This was firstly observed by O’Neil in the final remark of the paper [58], where it
is pointed out that the inequality can be reversed when f, g are radially decreasing
positive functions. Furthermore, by an appropriately modified argument from [38,
Theorem 10.2(iii)]), we get that, for every f ∈ M(Rn) there exists a function
g ∈ M(0, ∞) equimeasurable with f such that

(Iγg)∗(t) ≥ c
∫ ∞

t
s

γ
n

−1f ∗∗(s) ds for t > 0, (7.1.2)

with some constant c, 0 < c < ∞, depending on γ and n, but independent of f
and t.

It is no surprise that we are interested in sharp results in

Iγ : LA(Rn) → LB(Rn). (7.1.3)

In the recent work [36] this task is solved in much broader class of rearrangements-
invariant spaces. However, as we are now familiar with, such results do not give
us the answers to our questions in Orlicz spaces. Concerning this, some work has
been done already; let us mention the paper [20], in which a variant of necessary
and sufficient condition on (7.1.3) is given. In this chapter, we present a modified
version of such result which relies on our new knowledge from Chapter 3. We
then turn our attention to obtaining the optimal Orlicz spaces in (7.1.3).
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7.2 Reduction principle
Let A be a Young function satisfying

inf
0<t<1

A(t) t− n
γ > 0. (7.2.1)

We define AD by

AD(t) =
∫ t

0

G−1
D (s)
s

ds for t ≥ 0, (7.2.2)

where GD : [0, ∞) → [0, ∞) is a non-decreasing function defined by

GD(t) = sup
0<s≤t

A−1(s) s− γ
n for t ≥ 0,

and G−1
D represents its generalized right-continuous inverse. By a similar argu-

ment as in Remark 5.2.1, we have that AD is a Young function. Moreover

A−1
D (t) ≃ GD(t) for t ≥ 0.

Let further A obey ∫
0

(
s

A(s)

) γ
n−γ

ds < ∞. (7.2.3)

We define H∞
R : [0, ∞) → [0, ∞) by

H∞
R (t) =

(∫ t

0

(
s

A(s)

) γ
n−γ

ds

)1− γ
n

for t > 0

and set H∞ = limt→∞ H∞
R (t). Let AR be then defined by

AR(t) =
∫ t

0

D∞
R (s)
s

ds for t > 0, (7.2.4)

in which D∞
n is given by

DR(s) =

⎧⎪⎪⎨⎪⎪⎩
(

s
A(H−1

R (s))
H−1

R (s)

) n
n−γ

, 0 ≤ t < H∞,

∞, t ≥ H∞.

Recall that AR is a Young function as might be observed by Remark 3.3.1.
Let also B be given and satisfying

sup
0<t<1

B(t) t− n
n−γ < ∞. (7.2.5)

We define
BD(t) =

∫ t

0

J−1
D (s)

s
ds for t ≥ 0, (7.2.6)

where JD : [0, ∞) → [0, ∞) is given by

JD(t) = t inf
0<s≤t

B−1(s)s
γ
n

−1 for t > 0.
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By an argument similar to that of Remark 3.5.1, we infer that BD is a Young
function, and

B−1
D (t) ≃ JD(t) for t > 0. (7.2.7)

Let also B obey the condition∫
0

B(s)
sn/(n−γ)+1 ds < ∞. (7.2.8)

We thus define
BR(t) =

∫ t

0

E−1
R (s)
s

ds for t ≥ 0, (7.2.9)

in which ER : [0, ∞) → [0, ∞) is defined by

ER(t) = t
γ
n F −1

R (t) for t ≥ 0,

where FR : [0, ∞) → [0, ∞) is given by

FR(t) = tn/(n−γ)
∫ t

0

B(s)
sn/(n−γ)+1 ds for t ≥ 0,

and where F −1
R stands for the generalised left-continuous inverse of FR. Similarly

as in Remark 5.2.2, BR is a Young function and

B−1
R (t) ≃ t

γ
n F −1

R (t) for t ≥ 0. (7.2.10)

The reduction principle now reads as follows.

Theorem 7.2.1. Let A and B be Young functions. The following assertions are
equivalent.

(i) There is a constant C1 > 0 such that

∥Iγf∥LB(Rn) ≤ C1∥f∥LA(Rn)

for all f ∈ LA(Rn);

(ii) A satisfies (7.2.1) and (7.2.3) and there is a constant C2 such that∫ t

0

B(s)
sn/(n−γ)+1 ds ≤ AD(C2t)

tn/(n−γ) for t ≥ 0 (7.2.11)

and
B(t) ≤ AR(C2t) for t ≥ 0, (7.2.12)

where AD an AR are the Young functions given by (7.2.2) and (7.2.4),
respectively;

(iii) B satisfies (7.2.5) and (7.2.8) and there is a constant C3 such that∫ t

0

Ã(s)
sn/(n−γ)+1 ds ≤ B̃D(C3t)

tn/(n−γ) for t ≥ 0 (7.2.13)

and
BR(t) ≤ A(C3t) for t ≥ 0, (7.2.14)

where BD an BR are the Young functions given by (7.2.6) and (7.2.9),
respectively.

Furthermore, the constants C1, C2 and C3 depend on each other and on n and γ.
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7.3 Optimal Orlicz spaces
Proposition 7.3.1 [Optimal Orlicz domain space – sufficiency]. Let B be
a Young function satisfying (7.2.8) and assume that

IBD
<

n

γ
. (7.3.1)

Then
Iγ : LBR(Rn) → LB(Rn) (7.3.2)

and LBR(Rn) is the optimal Orlicz domain space in (7.3.2).
In particular, if iB > n

n−γ
, then (7.3.1) is equivalent to IB < ∞ and

B−1
R (t) ≃ B−1(t) t

γ
n for t ≥ 0.

Proposition 7.3.2 [Optimal Orlicz domain space – necessity]. Let B be a
Young function satisfying (7.2.8). If

n

n − γ
< iB ≤ IB = ∞, (7.3.3)

then there is no optimal Orlicz domain space to B with respect to Iγ in a sense
that to every LA(Rn) for which (7.1.3) holds there exists an essentially larger
Orlicz space LÂ(Rn) still satisfying (7.1.3) with Â in place of A.

Furthermore, if (7.2.8) is not satisfied then no Orlicz space LA(Rn) for which
(7.1.3) holds exists.

Proposition 7.3.3 [Optimal Orlicz target space – sufficiency]. Let A be a
Young function satisfying (7.2.3) and assume that

iAD
>

n

n − γ
. (7.3.4)

Then
Iγ : LA(Rn) → LAR(Rn) (7.3.5)

and LAR(Rn) is the optimal Orlicz domain space in (7.3.5).
In particular, if IA < n

γ
, then (7.3.4) is equivalent to iA > 1 and

A−1
R (t) ≃ A−1(t) t− γ

n for t ≥ 0.

Proposition 7.3.4 [Optimal Orlicz target space – necessity]. Let A be a
Young function satisfying (7.2.3). If

1 = iA ≤ IA <
n

γ
,

then there is no optimal Orlicz domain space to A with respect to Iγ in a sense
that to every LB(Rn) for which (7.1.3) holds there exists an essentially smaller
Orlicz space LB̂(Rn) still satisfying (7.1.3) with B̂ in place of B.

Furthermore, if (7.2.3) is not satisfied then no Orlicz space LB(Rn) for which
(7.1.3) holds exists.
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7.4 Proofs
We start with an auxiliary reduction which simplifies (7.1.3) to the boundedness
of one-dimensional operator, namely the operator Hγ given by

Hγf(t) =
∫ ∞

t
f(s)s

γ
n

−1 ds for t ≥ 0. (7.4.1)

Proposition 7.4.1. Let A and B be Young functions. Then

Iγ : LA(Rn) → LB(Rn) (7.4.2)

if and only if
Hγ : LA(0, ∞) → LB(0, ∞) (7.4.3)

and
Hγ : LB̃(0, ∞) → LÃ(0, ∞) (7.4.4)

hold simultaneously. Moreover the norm of the embedding (7.4.2) is comparable
to those of (7.4.3) and (7.4.4)

Proof. Assume (7.4.2), i.e., there is a constant C > 0, such that

∥Iγg∥LB(Rn) ≤ C∥g∥LA(Rn)

for every g ∈ LA(Rn). Using the rearrangements, we infer that

∥(Iγg)∗∥LB(0,∞) ≤ C∥g∗∥LA(0,∞) (7.4.5)

owing to (2.6.2). Let now f ∈ LA(0, ∞) be given. By (7.1.2), there is a function
g equimeasurable with f such that

(Iγg)∗(t) ≥ c
∫ ∞

t
s

γ
n

−1f ∗∗(s) ds for t > 0,

whence, (7.4.5) implies that∫ ∞

t
s

γ
n

−1f ∗∗(s) ds


LB(0,∞)
≤ C∥f∥LA(0,∞) (7.4.6)

for every f ∈ LA(0, ∞) and possibly different C > 0, depending only on n and γ.
By Fubini’s theorem, we obtain∫ ∞

t
s

γ
n

−1f ∗∗(s) ds ≃ t
n
γ

−1
∫ t

0
f ∗(s) ds +

∫ ∞

t
f ∗(s)s

γ
n

−1 ds for t > 0 (7.4.7)

and (7.4.6) gives thattn
γ

−1
∫ t

0
f ∗(s) ds


LB(0,∞)

≤ C∥f∥LA(0,∞) (7.4.8)

and ∫ ∞

t
s

γ
n

−1f ∗(s) ds


LB(0,∞)
≤ C∥f∥LA(0,∞). (7.4.9)
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Now, (7.4.8) is impliestn
γ

−1
∫ t

0
f(s) ds


LB(0,∞)

≤ C∥f∥LA(0,∞).

as one infers from (2.4.1), which is, by duality, equivalent to (7.4.4). Also (7.4.9)
is equivalent to the same inequality for every function f instead of f ∗, as follows
by [60, Theorem 1.10] (See also [32, Corollary 9.8]). This gives (7.4.3).

Conversely, assume that (7.4.3) and (7.4.4) hold, i.e., there are constants C1
and C2 such that ∫ ∞

t
s

γ
n

−1f(s) ds


LB(0,∞)
≤ C1∥f∥LA(0,∞) (7.4.10)

for every f ∈ LA(0, ∞) and∫ ∞

t
s

γ
n

−1g(s) ds


LÃ(0,∞)

≤ C2∥g∥
LB̃(0,∞). (7.4.11)

for every g ∈ LB̃(0, ∞). Passing to the dual inequality in (7.4.11), we obtain thattn
γ

−1
∫ t

0
f(s) ds


LB(0,∞)

≤ C ′
2∥f∥LA(0,∞) (7.4.12)

for each f ∈ LA(0, ∞). Next, we restrict the inequalities (7.4.10) and (7.4.12) to
non-increasing functions f ∗ only. This together with (7.4.7) results in∫ ∞

t
s

γ
n

−1f ∗∗(s) ds


LB(0,∞)

≤ C3∥f ∗∥LA(0,∞)

for every f ∈ LA(0, ∞), in which C3 depends on C1, C2, n and γ. By the
rearrangement formula for Iγ, namely (7.1.1), we infer that

∥(Iγf)∗∥LB(0,∞) ≤ C3∥f ∗∥LA(0,∞),

which is equivalent to (7.1.3), thanks to (2.6.2).

Remark 7.4.2. It is immediate from Proposition 7.4.1 that the Riesz potential
is a self-adjoint operator. Namely (7.1.3) holds if and only if

Iγ : LB̃(Rn) → LÃ(Rn)

is satisfied.

Proof of Theorem 7.2.1. By Proposition 7.4.1, (i) is equivalent to (7.4.3) and
(7.4.4). Now, (ii) follows by the corresponding characterizations of the opera-
tor Hγ in Orlicz spaces, namely, (7.4.3) is equivalent to (7.2.11) and (7.2.1) by
Theorem 3.5.2 and (7.4.4) is characterised by (7.2.12) with (7.2.3), thanks to
Theorem 3.3.2 and passing to conjugate Young functions when necessary.

Similarly, (iii) may be obtained using characterisation of (7.4.3) by Theo-
rem 3.3.2 resulting in (7.2.14) and (7.2.8), while (7.4.4) is treated by Theo-
rem 3.5.2 which yields to (7.2.13) and (7.2.5) after deriving the conjugate for-
mulas.
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Lemma 7.4.3. Let B be a Young function satisfying (7.2.8). Then B obeys
(7.2.5) and BD is dominated by BR.

Furthermore, if iB > n
n−γ

, then BD and BR are equivalent.

Proof. Assume that B fulfills (7.2.8). Then FR is well defined and we have the
trivial estimate

FR(2t) ≥ tn/(n−γ)
∫ 2t

0

B(s)
sn/(n−γ)+1 ds ≥ tn/(n−γ)

∫ 2t

t

B(s)
sn/(n−γ)+1 ds

≥ B(t) tn/(n−γ)
∫ 2t

t

ds

sn/(n−γ)+1 ≥ B(t)Cn,γ for t > 0.

Using (2.1.3) and passing to inverses, we infer that

F −1
R (s) s

γ
n

−1 ≤ cB−1(s) s
γ
n

−1 for s > 0 (7.4.13)

and for some c > 0, depending on n and γ. Next, since FR(t) tn/(n−γ) is a non-
decreasing function, F −1

R (s) s
γ
n

−1 is non-increasing whence (7.4.13) is equivalent
to

F −1
R (t) t

γ
n

−1 ≤ c inf
0<s≤t

B−1(s) s
γ
n

−1 for t > 0. (7.4.14)

It follows from (7.4.14) that (7.2.5) holds. Also, (7.4.14) implies that

t
γ
n F −1

R (t) ≤ cJD(t) for t > 0.

and, by (7.2.7) and by (7.2.10), we have that

B−1
R (t) ≤ CB−1

D (t) for t > 0

and for some C > 0, which means that BR dominates BD globally.
Now, let iB > n

n−γ
. Then, by Proposition 3.2.2, FR is dominated by B globally.

This implies that the inequality in (7.4.13) may be reversed in this case and
consequently

B−1
D (t) ≤ CB−1

R (t) for t > 0,

which gives the claim.

Proof of Proposition 7.3.1. Assume (7.2.8) and (7.3.1). From Lemma 7.4.3
we infer that (7.2.5) holds and hence both BR and BD are well defined. Let us
show (7.3.2). This is equivalent to the simultaneous validity of conditions (7.2.13)
and (7.2.14), as we infer from Theorem 7.2.1. The latter is clearly satisfied for
A = BR. As for the former, we have to show that

∫ t

0

B̃R(s)
sn/(n−γ)+1 ds ≤ B̃D(Ct)

tn/(n−γ) for t ≥ 0 (7.4.15)

and for some C > 0. Observe that Proposition 3.2.2 tells us that (7.3.1) is
equivalent to the existence of C1 > 0 such that

∫ t

0

B̃D(s)
sn/(n−γ)+1 ds ≤ B̃D(C1t)

tn/(n−γ) for t ≥ 0. (7.4.16)

Next, by Lemma 7.4.3, BR dominates BD and thus

B̃R(t) ≤ B̃D(C2t) for t ≥ 0 (7.4.17)
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for some C2 > 0. At this point, (7.4.15) follows easily from (7.4.16) and (7.4.17)
by the change of variables.

Let further A be a Young function satisfying (7.1.3). Theorem 7.2.1, namely
(7.2.14) then asserts that LA(Rn) → LBR(Rn) and LBR(Rn) is optimal.

The rest of the claim, namely the simplified relation for Young function BR

follows by Proposition 3.2.2 and the indices property is due to Lemma 3.6.11.

Proof of Proposition 7.3.2. Let B satisfy (7.2.8) and (7.3.3). Lemma 7.4.3
tells us that B satisfies (7.2.5) as well, BD is correctly defined and it is equivalent
to BR, since iB > n

n−γ
. Concurrently, by Lemma 3.6.11, we have that IBD

= n
γ
,

since, by assumption IB = ∞.
Now, let A be a given Young function obeying (7.1.3). We make use of the

characterization given in Proposition 7.4.1 which says that (7.1.3) holds if and
only if

Hγ : LA(0, ∞) → LB(0, ∞) (7.4.18)
and

Hγ : LB̃(0, ∞) → LÃ(0, ∞) (7.4.19)
hold, in which Hγ is the operator given by (7.4.1). Since IBD

= n
γ
, then, by

Theorem 3.6.1, there is a Young function A1 such that LA1(0, ∞) is strictly larger
space than LA(0, ∞) and

Hγ : LA1(0, ∞) → LB(0, ∞). (7.4.20)

It follows from Theorem 3.5.2 together with Proposition 3.2.2 that (7.4.18) does
not hold with A replaced by BD. This in particular implies that LA1(0, ∞) →
LBD(0, ∞) or, by duality,

LB̃D(0, ∞) = LB̃R(0, ∞) → LÃ1(0, ∞). (7.4.21)

Further, Theorem 3.4.1 tells us that (7.4.19) holds with Ã replaced by ÃR. Com-
bining this with (7.4.21), we obtain

Hγ : LB̃(0, ∞) → LÃ1(0, ∞). (7.4.22)

Using Proposition 7.4.1 again, equations (7.4.20) with (7.4.22) gives

Iγ : LA1(Rn) → LB(Rn)

and no optimal Orlicz domain space exists for B with respect to Iγ.
Conversely, if (7.2.5) fails, then no Orlicz domain space exists by Theo-

rem 7.2.1.

Since, by Remark 7.4.2, Iγ is self-adjoint operator, the proofs of Proposi-
tions 7.3.3 and 7.3.4 can be derived using the duality and by calculation of the
conjugate Young functions. A variant of Lemma 7.4.3 is needed here. Its proof
is also analogous and we omit it.

Lemma 7.4.4. Let A be a Young function satisfying (7.2.3). Then B obeys
(7.2.1) and AD is dominated by AR.

Furthermore, if IA < n
γ
, then AD and AR are equivalent.
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8. Laplace transform

8.1 Introduction
The Laplace transform L is a classical linear integral operator defined for every
f on (0, ∞) by

Lf(t) =
∫ ∞

0
f(s)e−ts ds for t > 0

whenever the integral converges.
In our analysis, it is crucial to have the pointwise estimate of a rearrangement

of L of measurable function f . We shall use the result of the recent paper [16],
which asserts that

(Lf)∗(t) ≤
∫ 1/t

0
f ∗(s) ds for t > 0 (8.1.1)

and for any f ∈ (L1+L∞)(0, ∞). It will be also useful to notice that the inequality
can be reversed. Indeed, assume that f is a non-negative measurable function
over (0, ∞). Then

Lf(t) =
∫ ∞

0
f(s)e−st ds ≥

∫ 1/t

0
f(s)e−st ds ≥ 1

e

∫ 1/t

0
f(s) ds for t > 0. (8.1.2)

We are concerned with the analysis of

L : LA(0, ∞) → LB(0, ∞). (8.1.3)

with the special attention to the sharpness of the results. The question of bound-
edness has attracted the attention of many authors, see [5, 59, 63], for instance,
the sharpness stayed aside, cf. the late exceptional work [11]. However, none of
these papers covers the problem addressed in Orlicz spaces. We would like to ex-
pose some of the difficulties concerning the action of Laplace transform between
Orlicz spaces in this scope.

8.2 Reduction principle
Let us start with a general reduction theorem based on the rearrangement in-
equality (8.1.1).

Proposition 8.2.1. Let X(0, ∞) and Y (0, ∞) be rearrangement-invariant func-
tion spaces with their associate spaces X ′(0, ∞) and Y ′(0, ∞), respectively. The
following statements are equivalent.

(i) There is a constant C1 > 0 such that

∥Lf∥Y (0,∞) ≤ C1∥f∥X(0,∞)

for every f ∈ X(0, ∞).
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(ii) There is a constant C2 > 0 such that∫ 1/t

0
f(s) ds


Y (0,∞)

≤ C2∥f∥X(0,∞)

for each f ∈ X(0, ∞).

Moreover, the constants C1 and C2 are comparable.

Proof. Assume (i) and let f ∈ X(0, ∞) be given. By (8.1.2), we have∫ 1/t

0
f(s) ds


Y (0,∞)

≤
∫ 1/t

0
|f(s)| ds


Y (0,∞)

≤ e
L|f |


Y (0,∞)

≤ eC1∥f∥X(0,∞),

which gives (ii).
Conversely, if (ii) holds then, by (8.1.1) together with (2.6.2), we infer

∥Lf∥Y (0,∞) = ∥(Lf)∗∥Y (0,∞) ≤
∫ 1/t

0
f ∗(s) ds


Y (0,∞)

≤ ∥f ∗∥X(0,∞) = ∥f∥X(0,∞)

and (i) follows.

Remark 8.2.2. Observe that L is self-adjoint operator. Indeed, by the sharp
Hölder inequality in r.i. spaces (2.6.1),

sup
f∈X(0,∞)

∫ 1/t

0
f(s) ds


Y (0,∞)

∥f∥X(0,∞)

= sup
f∈X(0,∞)

sup
g∈Y ′(0,∞)

∫ ∞

0
g(t)

∫ 1/t

0
f(s) ds dt

∥f∥X(0,∞)∥g∥Y ′(0,∞)

= sup
g∈Y ′(0,∞)

sup
f∈X(0,∞)

∫ ∞

0
f(s)

∫ 1/s

0
g(t) dt dt

∥f∥X(0,∞)∥g∥Y ′(0,∞)

= sup
g∈Y ′(0,∞)

∫ 1/s

0
g(t) dt


X′(0,∞)

∥g∥Y ′(0,∞)

and hence
L : X(0, ∞) → Y (0, ∞)

holds if and only if
L : Y ′(0, ∞) → X ′(0, ∞),

due to Proposition 8.2.1.

Now, we restrict our attention to Orlicz spaces. Unlike for the operators
mentioned earlier in this thesis, the necessary and sufficient condition on A and
B to ensure (8.1.3) is not known. We are however able to characterise the weak-
type inequality instead.
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Proposition 8.2.3. Let A and B be Young functions. Then

L : LA(0, ∞) → MB(0, ∞) (8.2.1)

if and only if there is a constant C > 0 such that

A−1(t) ≤ CtB−1
(

1
t

)
for t > 0. (8.2.2)

Furthermore, C1 is comparable to the norm of L in (8.2.1).

Proof. We will prove both implications at once using only equivalent steps.
Proposition 8.2.1 together with the self-adjointness of the Laplace transform tells
us that (8.2.1) is equivalent to∫ 1/y

0
f(s) ds


LÃ(0,∞)

≤ C∥f∥ΛB̃(0,∞) (8.2.3)

for every f ∈ ΛB̃(0, ∞), where C > 0 is some constant depending on the norm of
(8.2.1) only. Note, that we used the Orlicz and Marcinkiewicz space in Proposi-
tion 8.2.1 together with (2.3.3) and (2.4.6). Next, (8.2.3) is equivalent to∫ 1/y

0
f ∗(s) ds


LÃ(0,∞)

≤ C∥f∥ΛB̃(0,∞). (8.2.4)

Indeed, one implication is trivial, since we restrict the inequality to monotone
functions only, and the reversed one is due to (2.4.1). From Proposition 2.8.1 we
infer that (8.2.4) is equivalent to∫ 1/y

0
χ(0,t)(s) ds


LÃ(0,∞)

≤ C∥χ(0,t)∥ΛB̃(0,∞) for t > 0. (8.2.5)

The right hand side of (8.2.5) simplifies to

∥χ(0,t)∥ΛB̃(0,∞) = 1
B̃−1(1

t
)

≃ tB−1
(

1
t

)
(8.2.6)

due to (2.4.5) and (2.1.5). Calculation shows that∫ 1/y

0
χ(0,t)(s) ds


LÃ(0,∞)

≃ t∥χ(0,1/t)∥LÃ(0,∞) = t

Ã−1(t)
≃ A−1(t) (8.2.7)

thanks to (2.4.5) and (2.1.5) again. Plugging (8.2.6) and (8.2.7) into (8.2.5) we
obtain that (8.2.5) is equivalent to (8.2.2).

A variant of parallel integral inequality is also available.

Proposition 8.2.4. Let A and B be Young functions such that (8.1.3). Then
there is a constant C > 0 such that

B

(
t

C
∫∞

0 A(|f(s)|) ds

)
|{Lf > t}| ≤ 1∫∞

0 A(|f(s)|) ds
for t ≥ 0 (8.2.8)

for every nonzero f ∈ LA(0, ∞).
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Proof. Assume that A and B are satisfying (8.1.3), or equivalently, due to Propo-
sition 8.2.3, A and B obey (8.2.2) for some C > 0. Let N > 0 be fixed and define

AN(t) = A(t)
N

and BN(t) = NB
(

t

N

)
for t ≥ 0.

Then AN and BN satisfy

A−1
N (t) ≤ CtB−1

N

(
1
t

)
for t > 0

with the same C > 0 independent of N . Thus, by Proposition 8.2.3 again,

L : LAN (0, ∞) → MBN (0, ∞) (8.2.9)

with the embedding norm independent of N . Now, assume that f ∈ LA(0, ∞) is
a nonzero function such that

∫∞
0 A(|f(s)|) ds < ∞. Setting N =

∫∞
0 A(|f(s)|) ds

and observing that
∥f∥LAN (0,∞) ≤ 1,

we infer that
∥Lf∥MBN (0,∞) ≤ C, (8.2.10)

in which C > 0 is (possibly different) constant of the norm of (8.2.9). The
equation (8.2.10) with (2.4.2) gives us that

C ≥ ∥Lf∥MBN (0,∞) ≥ sup
0<t<∞

t

B−1
N

(
1

|{Lf>t}|

) for t > 0,

which rewrites as
BN

(
t
C

)
|{Lf > t}| ≤ 1 for t > 0 (8.2.11)

and (8.2.8) follows by (8.2.11) and the choice of N .

We would like to mention that this week type embedding (8.2.1) cannot be
lifted to the strong type (8.1.3). We will demonstrate it on a simple counterex-
ample. Let us start with the result from [16, Theorem 3.8].

Example 8.2.5. Assume that p ∈ (1, ∞) and q ∈ [1, ∞]. Then

L : Lp,q(0, ∞) → Lp′,q(0, ∞) (8.2.12)

where p′ = p/(p − 1). Moreover both domain and target spaces are the optimal
rearrangement-invariant spaces with respect to L.

We now look closer to (8.2.12). Assume that 1 < p ≤ 2. Then, p ≤ p′ and,
since the Lorentz spaces are nested, Lp′,p(0, ∞) → Lp′(0, ∞). Thus, we obtain

L : Lp(0, ∞) → Lp′(0, ∞). (8.2.13)

On the contrary, if 2 < p < ∞, then p′ < p and we have only

L : Lp(0, ∞) → Lp′,p(0, ∞)

or
L : Lp,p′(0, ∞) → Lp′(0, ∞).
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Example 8.2.6. If we set A(t) = tp and B(t) = tp′ , then LA(0, ∞) = Lp(0, ∞)
and LB(0, ∞) = Lp′(0, ∞). Then, (8.1.3) holds if and only if 1 < p ≤ 2, by
(8.2.13), and (8.2.1) holds for any 1 < p < ∞.

In the sequel, we focus on a sufficient condition on A and B to ensure (8.1.3).

Theorem 8.2.7. Let A and B be Young functions satisfying∫ ∞

0
B
(1

t

)
Ã(t) dt

t
< ∞. (8.2.14)

Then Laplace transform is bounded from LA(0, ∞) to LB(0, ∞).

The proof is based on an auxiliary interpolation result for Laplace transform
in Orlicz spaces. It reads as follows.

Proposition 8.2.8. Let A and B be Young functions satisfying (8.2.14). Suppose
that (R, µ) and (S, ν) are σ-finite non-atomic measure spaces and Assume that T
is a linear operator satisfying

T : L1(R, µ) → L∞(S, ν) (8.2.15)
T : L∞(R, µ) → L1,∞(S, ν) (8.2.16)

with operator norms C1 and C2, respectively. Then
∫
S

B
(

Tf(x)
2C1

∫
R A(|f |) dµ

)
dν(x) ≤ C2 · C

C1
∫
R A(|f |) dµ

(8.2.17)

for every f ∈ LA(R), where the constant C depends on the value of (8.2.14).

Proof. Let f satisfying
∫
R A(|f |) dµ < ∞ be fixed. We need to show that T is

defined on such f . Denote t0 = inf{t > 0 : A(t) > 0} and t∞ = sup{t > 0 :
A(t) < ∞}. Let t0 < t < t∞ and decompose f as f = f t + ft, where

f t = max{|f | − t, 0} sign f and ft = min{|f |, t} sign f.

It suffices to show that f t ∈ L1(R) and ft ∈ L∞(R). The latter is obvious,
since sup f ≤ t. As for the former, A(s)/s is non-decreasing and, by (2.1.2),
A(s)/s ≤ a(s), whence

∥f t∥L1(R) =
∫ t∞

t
µ({|f | > s}) ds ≤ t

A(t)

∫ t∞

t
a(s)µ({|f | > s}) ds

≤ t

A(t)

∫
R

A(|f |) dµ
(8.2.18)

and thus f t ∈ L1(R). Further, let us denote by σ the generalised right-continuous
inverse of s/A(s). Observe that, by (8.2.14), Ã is finite-valued Young function
and hence s/A(s) decreases to zero as s → ∞. Thus σ : (0, ∞) → (t0, t∞).

Then, by (8.2.18) and (8.2.15),

∥Tfσ(t)∥L∞(S) ≤ C1∥fσ(t)∥L1(R) ≤ C1t
∫
R

A(|f |) dµ. (8.2.19)
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Denoting K = C1
∫
R A(|f |) dµ, we infer that

ν({|Tf | > 2Kt}) ≤ ν({|Tfσ(t)| > Kt}) + ν({|Tfσ(t)| > Kt}) (8.2.20)

in which the second term is zero, thanks to (8.2.19). Further, by (8.2.16),

ν({Tfσ(t) > Kt})Kt ≤ ∥fσ(t)∥L∞(S) ≤ C2σ(t). (8.2.21)

Coupling (8.2.20) with (8.2.21) we get

ν({|Tf | > 2Kt}) ≤ C2

K
· σ(t)

t
,

whence ∫
S

B
(

Tf(x)
2K

)
dν =

∫ ∞

0
b(t)ν({|Tf | > 2Kt}) dt

= C2

K

∫ ∞

0

σ(t)
t

b(t) dt

(8.2.22)

Simple analysis of σ shows that

Ã(t) ≤ tσ
(1

t

)
≤ Ã(4t)

and since tb(t) ≤ B(2t), (8.2.22) continues by∫
S

B
(

Tf(x)
2K

)
dν = C2

K

∫ ∞

0
Ã
(4

t

)
B(2t) dt

t
. (8.2.23)

The integral on the right hand side of (8.2.23) is finite due to (8.2.14) and (8.2.17)
follows by the choice of K.

The proof of the sufficient condition for the boundedness of Laplace transform
now follows easily.

Proof of Theorem 8.2.7. For every measurable f on has

|Lf(t)| ≤
∫ ∞

0
|f(s)| e−ts ds ≤

∫ ∞

0
|f(s)| ds

and therefore
∥L∥L∞(0,∞) ≤ ∥f∥L1(0,∞).

Next, if f is bounded and non-negative function, we infer

(Lf)∗(t) = Lf(t) ≤ ∥f∥L∞(0,∞)

∫ ∞

0
e−st ds = ∥f∥L∞(0,∞)

t
,

whence
∥Lf∥L1,∞(0,∞) ≤ ∥f∥L∞(0,∞).

For functions f which are not non-negative, we use that Lf ≤ L|f | and the
outcome is the same. The claim now follows by Proposition 8.2.8.

We shall demonstrate on the example (8.2.6) that the condition in Theo-
rem (8.2.7) is not necessary. Indeed, by (8.2.13), The Laplace transform is
bounded from LA to LB for the choice A(t) = tp, B(t) = tp′ for 1 < p ≤ 2.
However, the condition (8.2.14) fails in this case, since Ã is equivalent to B and
thus ∫ ∞

0
B
(1

t

)
Ã(t) dt

t
≃
∫ ∞

0

dt

t
= ∞.
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8.3 Orlicz optimality
The rest of the chapter is devoted to the particular case if LA(0, ∞) = Lp(0, ∞) or
LB(0, ∞) = Lp′(0, ∞). We show that such pair of Orlicz spaces forms an optimal
couple with respect to L if 1 < p ≤ 2. We further emphasize to show that if
p > 2 then there is no optimal Orlicz target space for LA(0, ∞) and conversely,
no optimal Orlicz domain space exists for LB(0, ∞) in this case.

Theorem 8.3.1. Let 1 < p ≤ 2. Then

L : Lp(0, ∞) → Lp′(0, ∞) (8.3.1)

and the space Lp′(0, ∞) is the optimal target space in (8.3.1) among all Orlicz
spaces.

Conversely, if p > 2 then there is no optimal Orlicz target space for Lp(0, ∞)
with respect to L.

Theorem 8.3.2. Let 1 < p ≤ 2. Then

L : Lp(0, ∞) → Lp′(0, ∞) (8.3.2)

and the space Lp(0, ∞) is the optimal domain space in (8.3.2) among all Orlicz
spaces.

Conversely, if p > 2 then there is no optimal Orlicz domain space for Lp′(0, ∞)
with respect to L.

The proofs are given at the end of the section. The method we shall use
significantly differs from all of those developed in the previous chapters. Although
this tool does not help us to answer the question of Orlicz optimality in its full
generality, it might be used in application to much broader class of operators.

Our approach is based on the analysis of a relationship between Orlicz and
Lorentz Lp,q spaces. The idea relies on the observation that all the spaces on the
scale Lp,q, for p fixed and q varying between 1 and ∞, share the same fundamental
function while there is one to one correspondence between Young functions and
fundamental functions, cf. (2.3.2).

Theorem 8.3.3. Let (R, ν) be σ-finite non-atomic measure space and let 1 ≤
p, q < ∞.
(i) If p > q, then there is no optimal Orlicz space LA(R) satisfying

LA(R) → Lp,q(R). (8.3.3)

(ii) If p ≤ q, then Lp(R) is the largest Orlicz space contained in Lp,q(R).

Theorem 8.3.4. Let (R, ν) be σ-finite non-atomic measure space and let 1 ≤
p, q < ∞.
(i) If p < q, then there is no optimal Orlicz space LB(R) satisfying

Lp,q(R) → LB(R).

(ii) If p ≥ q, then Lp(R) is the smallest Orlicz space containing Lp,q(R).
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Before we prove this results, we need some preparation. The next lemma ex-
hibits a sufficient condition for the embedding of Orlicz space LA(R) to a Lorentz-
type space Λq

w(R) in which the norm is given by

∥f∥Λq
w(R) =

(∫ ν(R)

0
[f ∗(t)]q w(t) dt

) 1
q

or, equivalently,

∥f∥Λq
w(R) ≃

(∫ ∞

0
W (µf (t)) tq−1 dt

) 1
q

.

Here W (t) =
∫ t

0 w(s) ds for 0 < t < ∞. These spaces generalize the Lorentz
Lp,q(R) spaces, since, by the choice w(t) = tq/p−1, we recover

Λq
w(R) = Lp,q(R).

Although we will need only a special instance of this result, we prove it in this
more general form. Note, that our results also include those of [53], [44] and [28].

Lemma 8.3.5. Let 0 < q < ∞, A(t) =
∫ t

0 a(s) ds be a Young function and w be
a nonincreasing weight. Denote

(i) ∫ ∞

0
W
(
w−1

(
a(t) t1−q

))
tq−1 dt < ∞, (8.3.4)

(ii)
LA(R) → Λq

w(R).

Then (i) implies (ii).

Proof. Let w be a nonincreasing weight, A be a Young function satisfying (i) and
let f ∈ LA(R) be nonzero functions. Without loss of generality we can assume
that ∥f∥LA(R) = 1 otherwise we will work with the function f/∥f∥LA(R). Denote
G = W −1. Then since w is nonincreasing, G is convex. Let t ∈ (0, ∞). Applying
Young inequality to the terms W (µf (t)) and tq−1/a(t) we get

W (µf (t)) tq−1 ≤ a(t) µf (t) + a(t) G̃

(
tq−1

a(t)

)
for t > 0

and integrating over (0, ∞), we have

∥f∥q
Λq

w(R) ≃
∫ ∞

0
W (µf (t)) tq−1 dt ≤

∫
R

A(|f |) dν +
∫ ∞

0
a(t) G̃

(
tq−1

a(t)

)
dt.

The first integral is less or equal to 1. For the second term, we have, by concavity
of G̃,

G̃

(
tq−1

a(t)

)
≤ [G̃]′

(
tq−1

a(t)

)
tq−1 for t > 0

and together with

[G̃]′(s) = [G′]−1(s) =
[
[W −1]′

]−1
(s) =

[
1

w(W −1(s))

]−1

= W
(
w−1

(
1
s

))
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for s > 0 we can finally write
∫ ∞

0
a(t) G̃

(
tq−1

a(t)

)
dt ≤

∫ ∞

0
W
(

w−1
(

a(t) t1−q
))

tq−1 dt,

which is finite by (i). We have shown that f belongs to Λq
w(R). Since f was

taken arbitrarily, we obtain the inclusion LA(R) ⊆ Λq
w(R) which implies also the

continuous embedding, due to (2.6.3).

In general, the conditions (i) and (ii) in the previous lemma are not equivalent
as the next example shows.

Example 8.3.6. Let us take A(t) = tq with q ≥ 1. Then the condition (8.3.4)
becomes

W
(
w−1(q)

) ∫ ∞

0
tq−1 dt = ∞

for every weight w. Now, one can choose a decreasing w in a way that

Lq(R) → Λq
w(R),

which is equivalent to
W (t) ≤ ct, for t ≥ 0

for some positive c. Try for instance

w(t) =

⎧⎨⎩2 − t, 0 ≤ t < 1,

1/t, 1 ≤ t < ∞.

However, in the case when the space Λq
w(R) coincides with the Lorentz space

Lp,q(R), we have the following result. The sufficiency can be also found in [4,
Lemma 4.2].

Proposition 8.3.7. Let 1 ≤ q < p < ∞ and A be a Young function. Then

LA(R) → Lp,q(R) (8.3.5)

if and only if either ν(R) < ∞ and
∫ ∞( tp

A(t)

) q
p−q dt

t
< ∞.

or ν(R) = ∞ and ∫ ∞

0

(
tp

A(t)

) q
p−q dt

t
< ∞. (8.3.6)

Proof. We prove only the global variant, the other one is analogous. The suffi-
ciency is the corollary of Lemma 8.3.5 in which we set w(t) = tq/p−1.

Conversely suppose (8.3.5). This is equivalent to the existence of a positive
constant C such that

∥u∥Lp,q(R) ≤ C whenever ∥u∥LA(R) ≤ 1.
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Since modular and norm unit balls in LA(R) coincide, this is equivalent to

∥u∥Lp,q(R) ≤ C whenever
∫
R

A(|u(x)|) dx ≤ 1

namely, by the Fubini’s theorem, it is the same as the existence of a positive C ′

such that ∫ ∞

0
[µf (t)]

p
q tq−1 dt ≤ C ′ whenever

∫ ∞

0
a(t)µf (t) dt ≤ 1,

where A(t) =
∫ t

0 a(s) ds. This is equivalent to∫ ∞

0
[ϕ(t)]

p
q tq−1 dt ≤ C ′

for every nonincreasing ϕ such that∫ ∞

0
a(t)ϕ(t) dt ≤ 1,

which is nothing but the embedding

Λ1
a(0, ∞) → Λq/p

v (0, ∞) (8.3.7)

with v(t) = tq−1. Finally, (8.3.7) is equivalent to∫ ∞

0
t

p(q−1)
p−q a(t)

q
q−p dt < ∞, (8.3.8)

thanks to [65, Section 2, Proposition 1]. Consequently, (8.3.8) holds if and only
if (8.3.6) holds, due to (2.1.2).

Proposition 8.3.8. Let 1 ≤ p < q < ∞ and B be a Young function. Then

Lp,q(R) → LB(R) (8.3.9)

if and only if either ν(R) < ∞∫ ∞(B(t)
tp

) q
q−p dt

t
< ∞.

or ν(R) = ∞ and ∫ ∞

0

(
B(t)

tp

) q
q−p dt

t
< ∞. (8.3.10)

Proof. Again, we show the statement in its global variant only. Using duality,
(8.3.9) is equivalent to

LB̃(R) → Lp′,q′(R)
which is, due to Proposition 8.3.7 characterised by

∫ ∞

0

(
tp′

B̃(t)

) q′
p′−q′ dt

t
< ∞. (8.3.11)

Using (2.1.4), (8.3.11) is equivalent to∫ ∞

0
[b−1(t)]

q(p−1)
p−q t

p
q−p dt < ∞.
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Now, Fubini’s theorem tells us that∫ ∞

0
t

p
q−p [b−1(t)]

q(p−1)
p−q dt ≃

∫ ∞

0
t

p
q−p

∫ ∞

b−1(t)
r

p(q−1)
p−q dr dt

=
∫ ∞

0
r

p(q−1)
p−q

∫ b(r)

0
t

q
p−q dt dr

=
∫ ∞

0
r

p(q−1)
p−q b(r)

q
q−p ,

whence (8.3.11) is equivalent to (8.3.10), due to (2.1.2).

Proposition 8.3.9. Let 1 ≤ q < ∞ and w be a nonincreasing weight. Then

Λq
w(R) =

⋃{
LA(R) : A satisfies (8.3.4)

}
=
⋃{

LA(R) : LA(R) ⊆ Λq
w(R)

}
.

Note that the equalities in Proposition 8.3.9 are considered as set equalities
only, since we have not defined any norm or other structure on the unions on the
right hand side.

Proof of Proposition 8.3.9. One inclusion is straightforward since every Or-
licz space LA(R) with a Young function A satisfying (8.3.4) is contained in Λq

w(R)
thanks to Lemma 8.3.5.

Conversely suppose that f ∈ Λq
w(R) and define A by

A(t) =
∫ t

0
w
(
µf/λ(s)

)
sq−1 ds

with
λ = ∥f∥Λq

w(R).

Then A is a Young function obeying the condition (8.3.4). Indeed∫ ∞

0
W
(

w−1
(

a(t) t1−q
))

tq−1 dt =
∫ ∞

0
W
(
µf/λ(t)

)
tq−1 dt ≃ ∥f∥q

Λq
w(R) < ∞.

It remains to show that f ∈ LA(R). Since W is concave, we have w(s)s ≤ W (s)
and hence∫

R
A

(
|f(x)|

λ

)
dx =

∫ ∞

0
a(t)µf/λ(t) dt =

∫ ∞

0
w
(
µf/λ(t)

)
tq−1µf/λ(t) dt

≤
∫ ∞

0
W
(
µf/λ(t)

)
tq−1 dt =

∥f∥q
Λq

w(R)

qλq
= 1

q
≤ 1.

Therefore
∥f∥LA(R) ≤ ∥f∥Λq

w(R) < ∞

and f belongs to LA(R).

Proof of Theorem 8.3.3. (i). Let us set w(t) = tq/p−1. Since q < p, the weight
w is decreasing and, by Proposition 8.3.9,

Lp,q(R) =
⋃{

LA(R) : LA(R) ⊆ Lp,q(R)
}
. (8.3.12)
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Let A be a Young function obeying (8.3.3). Then, since Lp,q(R) itself is not
an Orlicz space, there is a function f ∈ Lp,q(R) \ Lp,q(R). From (8.3.12), we
obtain that there is an Orlicz space, say LE(R) such that LE(R) ⊆ Lp,q(R) and
f ∈ LE(R). Let us define Â as the largest convex minorant of the function
min{A, E}. Then Â is a Young function such that

LÂ(R) = (LA + LE)(R) → Lp,q(R)

and LA(R) ⊊ LÂ(R). Since A was arbitrary, the assertion of (i) follows.
(ii). Since p ≤ q, then, by (2.5.1), Lp(R) → Lp,q(R). Assume that (8.3.3) for

some Young function A. Then there is a constant C > 0 such that

∥f∥Lp,q(R) ≤ C∥f∥LA(R)

for all f ∈ LA(R). Now, plugging f = χE for measurable E ⊆ R such that
ν(E) = t, 0 < t < ν(R), we infer that

t
1
p ≤ C ′

A−1
(

1
t

) for 0 < t < ν(R) (8.3.13)

and for some C ′ > 0, due to (2.3.1) and (2.5.2). Rewriting (8.3.13), we obtain that
A dominates tp near infinity provided ν(R) < 0 or globally otherwise, whence, by
(2.3.4), LA(R) → Lp(R), proving the optimality.

Since the statement of Theorem 8.3.4 is just the dual version of Theorem 8.3.3
the proof is obvious and we omit it.

Proof of Theorem 8.3.1. The use of [16, Theorem 3.8] tells us that the op-
timal r.i. target for Lp(R) is the Lorentz space Lp′,p(R). The assertion is then
consequence of Theorem 8.3.4.

The proof of Theorem 8.3.2 then follows analogously by Theorem 8.3.3 and is
skipped.
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[15] M. Buĺıček, M. Majdoub, and J. Málek. Unsteady flows of fluids with pres-
sure dependent viscosity in unbounded domains. Nonlinear Anal. Real World
Appl., 11:3968–3983, 2010.

135
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[62] F. Riesz. Sur un théorème de maximum de MM. Hardy et Littlewood. J.
London Math. Soc., 7(1):10–13, 1932.

[63] R. Sharpley. Counterexamples for classical operators on Lorentz-Zygmund
spaces. Studia Math., 68(2):141–158, 1980.

[64] E. M. Stein. Note on the class L log L. Studia Math., 32:305–310, 1969.

[65] V. D. Stepanov. The weighted Hardy’s inequality for nonincreasing functions.
Trans. Amer. Math. Soc., 338(1):173–186, 1993.

[66] R. S. Strichartz. A note on Trudinger’s extension of Sobolev’s inequalities.
Indiana Univ. Math. J., 21:841–842, 1971/72.

138
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