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Chapter 1

Introduction

The content of this thesis can be divided into two parts concerned with two
slightly different topics. The first part is focused on rearrangement-invariant
function spaces and their embeddings in the context of Carnot-Carathéodory
spaces. The second part is concerned with the approximation of the least concave
majorant of a function. Both topic have in common symmetrization techniques
and applications to rearrangement-invariant function spaces.

1.1 Non-increasing rearrangements

Consider a function f defined on D = {0, 1, . . . , N} for some N ∈ N. In this
case the non-increasing rearrangement of f has natural meaning: a function f̄
which attains the same values (with the same multiplicity), while it holds that
f̄(k) ≤ f̄(l) when l ≤ k. Some of interesting properties of such rearrangements
are ∑

0≤i≤D
f(i)g(i) ≤

∑

0≤i≤D
f̄(i)ḡ(i)

and ∑

0≤i<D

∣∣f̄(i)− f̄(i+ 1)
∣∣ ≤

∑

0≤i<D
|f(i)− f(i+ 1)| .

Such essential non-increasing rearrangements which can be easily generalized
to sequences were considered for example in [26] (where the famous Hardy-
Littlewood-Pólya theorem takes its origin).

If we allow D to be a more complicated set, the notion of non-increasing rear-
rangement becomes much more ambiguous. Numerous kinds of rearrangements
possess interesting properties.

The most widely used way to introduce a non-increasing rearrangement of a
function f : Rn → Rn, n ∈ N, is through a generalized inversion of its distribution
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function, as it was done for instance in [26], [50] and [4]. Let us recall the basic
definitions.

Definition 1 (distribution function). Suppose that (R, µ) is a measure space and
denote by M0(R, µ) the set of all µ-measurable functions that are finite µ-almost
everywhere.

The distribution function µf of a function f in M0(R, µ) is given by

µf (λ) = µ {x ∈ R : |f(x)| > λ} for all λ ≥ 0.

Two functions are called equimeasurable if they have the same distribution func-
tion.

In this thesis, we will restrict our attention to cases when µ is the classical
Lebesgue measure. If no measure is explicitly stated, the Lebesgue measure
is considered. The measure µ is used in the previous and the following definition
to emphasize the possible generality of these definitions.

Definition 2 (non-increasing rearrangement). Suppose f belongs to M0(R, µ).
The non-increasing rearrangement of f is the function f ∗ defined on [0,∞) by

f ∗(t) = inf {λ : µf (λ) ≤ t} for t ≥ 0.

Since this definition of the non-increasing rearrangement of a function is the most
widely used one in the context of function spaces, it is the default notion we will
have in mind when we mention a non-increasing rearrangement in this thesis.

The non-increasing rearrangement of a function f : R → R is f ∗ : [0,∞) →
R. Notice that the domain space of f ∗ can be different from that of f . The
domain of f ∗ is always [0,∞) independently of the domain set of f . This is used
in the theory of rearrangement-invariant spaces. It is shown in the celebrated
Luxemburg representation theorem ([4, Chapter 2, Theorem 4.10]) that every
rearrangement-invariant space has its representative function space over [0,∞).
Hence many statements can be proved once for this, representative, function space
and then carried over to other function spaces.

The non-increasing rearrangement possesses similar properties to its counterpart
from the beginning of this section:

∫

R

fg dµ ≤
∫

[0,∞)

f ∗(x)g∗(x) dx for all f, g ∈M0(R, µ)

and ∫

[0,∞)

(f ∗)′(x) dx ≤
∫

Rn
|∇f | (xn) dxn for all f ∈M0(Rn).

As an example of an application of properties of the non-increasing rearrange-
ment can be taken the sufficiency part of the characterization of Sobolev-like
embeddings, see e.g. [12].
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Another approach to the concept of the non-increasing rearrangement is the so-
called spherical rearrangement, or symmetrical rearrangement. Such rearrange-
ment is a radial function having the same distribution function as the original
one. The spherical rearrangement, f ?, can be expressed through the formula

f ?(x) = f ∗(κn |x|n), for x ∈ Rn,

where κn is the volume of the unit ball.

The spherical rearrangement has similar properties as the non-increasing rear-
rangement but, unlike the non-increasing rearrangement from Definition 2, its
domain space is Rn. Since f ∗ is admissible in any measure space, the operation
of the spherical rearrangement can be defined on functions over any measure
space, its result always being a function from Rn to R. The spherical rearrange-
ment is used in proofs of classical isoperimetric inequalities, see for instance [10]
or [6].

The key property of the spherical rearrangement is that its level sets are the
solutions to the classical isoperimetric problem. This leads to another possible
class of rearrangements built on a certain family of sets, following the approach
of [39]. This is interesting for instance in the case of the Heisenberg group where
solutions to isoperimetric problem are not spheres.

Building on the idea of a spherical rearrangement, we can define the class of
functions preserving even differential properties of higher orders. A symmetral of
f ∈M(0, 1), as used in [12], is defined by

uk,f (x) =

∫ 1

κn|x|n
1

s
1− 1

n
1

∫ 1

s1

· · ·
∫

sk

f ∗(sk)

s
1− 1

n
k

dsk . . . ds2 ds1.

The key property of the symmetral of the k-th order is the preservation of the
magnitude of the k-th order derivative. In other words, the inequality

|∇kuk,f (x)| = ∂k

∂xk
(f ∗)(κn |x|n), for a.e. x such that |x| ≤ 1,

holds for all f weakly differentiable up to order k. This short summary is by no
means exhaustive. It was meant to illustrate that the simple idea of rearranging
of functions has a surprising variety of applications.

1.2 Rearrangement-invariant function spaces

This section is dedicated to an overview of the basic theory of rearrangement-
invariant function spaces - a special case of Banach function spaces. A basic
general reference concerning this topic is [4].

The Banach function spaces approach builds on common features of custom-
ary examples of function spaces rather than their specific properties. Hence the
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following definition which collects their basic properties usually expected from
a function space.

Let (R, µ) be a measure space and let M+(R, µ) be the cone of µ-measurable
functions on R whose values lie in [0,∞].

Definition 3 (Banach function space). A mapping % : M+(R, µ) → [0,∞] is
called a Banach function norm if, for all f, g and {fn}n∈N in M+(R, µ), every
a ≥ 0, and for all µ-measurable E ⊂ Ω, the following properties hold:

A.1 %(f) = 0 if and only if f = 0 µ-a.e. Moreover, %(af) = a%(f) and %(f+g) ≤
%(f) + %(g).

A.2 If 0 ≤ g ≤ f µ-a.e. then %(g) ≤ %(f).

A.3 If 0 ≤ fn ↑ f µ-a.e. then %(fn) ↑ %(f).

A.4 If µ(E) <∞ then %(χE) <∞, where χE denotes the characteristic function
of E.

A.5 If µ(E) < ∞ then
∫
E
f dµ ≤ CE%(f) for some constant CE, 0 < CE < ∞,

depending on E and % but independent of f .

The collection X(R, µ) = X%(R, µ) of all functions f ∈ M(R, µ) for which
%(|f |) <∞ is called a Banach function space. For each f ∈ X(R, µ), define

‖f‖X(R,µ) = % (|f |) .

Let us note that different Banach function norms can define the same Banach
function space. This ambiguity leads us to express, when possible, statements
rather in terms of function spaces than underlying function norms.

Definition 4 (rearrangement-invariant function space). Suppose % : M+(R, µ)→
[0,∞] fulfills, in addition to properties from definition of a Banach function space,
the following condition:

A.6 %(f) = %(g) for every pair of equimeasurable functions f and g in M+(R, µ).

Then % is called a rearrangement-invariant Banach function norm.

If % satisfies even A.6, then the collection X(R, µ) = X%(R, µ) of all functions
f ∈ M(R, µ) for which %(|f |) < ∞ is called a rearrangement-invariant Banach
function space. As in the case of Banach function spaces, for each f ∈ X(R, µ),
define

‖f‖X(R,µ) = % (|f |) .

Rearrangement-invariant function spaces reflect information about function spaces
which is somehow independent of the underlying measure space.
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Theorem 5 (Luxemburg representation theorem). Let % be a rearrangement-
invariant function norm over a σ-finite, non-atomic measure space (R, µ). Then
there is a (not necessarily unique) rearrangement-invariant function norm %̄ over
R+ such that

%(f) = %̄(f ∗), for all f ∈M+
0 (R, µ).

Consequently, rearrangement-invariant function spaces over such measure spaces
can be fully determined by the representation function space.

Moreover, the representation norm is unique in case when the underlying measure
space is infinite. In the case of finite measure spaces, the representation norm is
unique if we consider rearrangement-invariant function norms on [0, µ(R)).

From now on we shall solely work in the following situation. The measure space
R will always be a subset of the Euclidean space Rn and µ will be the classical
n-dimensional Lebesgue measure. In this situation, we will use the symbol Ω in
place of R, where Ω ⊂ Rn.

Since we will always consider the Lebesgue measure, we will stop referring to it
explicitly and we will denote the Lebesgue measure of a given set by |K|, for all
K ⊂ Rn measurable.

Moreover, we shall for simplicity assume that |Ω| = 1. All the results remain
valid also in the cases when |Ω| is any finite number with trivial changes only.

The idea of abstracting from complicated measure spaces and working with a
considerably simpler measure space R+ (equipped with the Lebesgue measure)
is very useful. The application to Sobolev embeddings is of particular interest
to us. In this approach, the differential structure of underlying spaces is repre-
sented by the isoperimetric function. Again, relevant information on a complex
matter is extracted to setting of the well-known measure space R+. In the fol-
lowing Section 1.7 we will examine that this technique is applicable even to such
complicated settings as Carnot-Carathéodory spaces.

A basic example of a function norm is the standard Lebesgue norm ‖ · ‖Lp(0,1), for
p ∈ [1,∞], upon which the Lebesgue spaces Lp(Ω) are built.

In many situations, the class of Lebesgue spaces is not fine enough. One example
of such case is the problem of optimal embeddings described in Section 1.3. Such
problems call for finer scales of function spaces.

The most common extension of the Lebesgue spaces is the class of Lorentz spaces.
Assume that 1 ≤ p, q ≤ ∞. We define the functional ‖ · ‖Lp,q(0,1) as

‖f‖Lp,q(0,1) =
∥∥∥s

1
p
− 1
q f ∗(s)

∥∥∥
Lq(0,1)

(1.1)

for f ∈M+(0, 1). Using the elementary maximal operator

f ∗∗(s) =
1

s

∫ s

0

f ∗(t) dt, f ∈M+(0, 1), s ∈ (0, 1),
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we define ‖ · ‖L(p,q)(0,1) as

‖f‖L(p,q)(0,1) =
∥∥∥s

1
p
− 1
q f ∗∗(s)

∥∥∥
Lq(0,1)

, where f ∈M+(0, 1).

One can show that

Lp,q(Ω) = L(p,q)(Ω) if 1 < p ≤ ∞ , (1.2)

with equivalent norms. If one of the conditions





1 < p <∞, 1 ≤ q ≤ ∞,
p = q = 1,

p = q =∞,
(1.3)

is satisfied, then ‖ · ‖Lp,q(0,1) is equivalent to a rearrangement-invariant func-
tion norm. The corresponding rearrangement-invariant space Lp,q(Ω) is called
a Lorentz space.

Let us recall that Lp,p(Ω) = Lp(Ω) for every p ∈ [1,∞].

At a few occasions, we shall need also the so-called Lorentz-Zygmund space
(see [3], [17]). Assume now that 1 ≤ p, q ≤ ∞, and a third parameter α ∈ R is
called into play. We define the functionals ‖ · ‖Lp,q;α(0,1) and ‖ · ‖L(p,q;α)(0,1) as





‖f‖Lp,q;α(0,1) =
∥∥∥s

1
p
− 1
q logα

(
2
s

)
f ∗(s)

∥∥∥
Lq(0,1)

,

‖f‖L(p,q;α)(0,1) =
∥∥∥s

1
p
− 1
q logα

(
2
s

)
f ∗∗(s)

∥∥∥
Lq(0,1)

,
(1.4)

respectively, for f ∈M+(0, 1). If one of the following conditions





1 < p <∞, 1 ≤ q ≤ ∞, α ∈ R;

p = 1, q = 1, α ≥ 0;

p =∞, q =∞, α ≤ 0;

p =∞, 1 ≤ q <∞, α + 1
q
< 0,

(1.5)

is satisfied, then ‖ · ‖Lp,q;α(0,1) is equivalent to a rearrangement-invariant function
norm, called a Lorentz-Zygmund norm (it is a consequence of more general the-
orem from[42]). The corresponding rearrangement-invariant space Lp,q;α(Ω) is a
Lorentz-Zygmund space.

It is shown in [42, Theorem 3.16] that

L(p,q;α)(Ω) =

{
Lp,q;α(Ω) if 1 < p ≤ ∞;

L1,1;α+1(Ω) if p = q = 1, α > −1,
(1.6)

and
Lp(Ω) ↪→ L(1,q)(Ω) for every 1 < p ≤ ∞, 1 ≤ q ≤ ∞.

7



A generalization of the Lebesgue spaces in a different direction is provided by the
Orlicz spaces. Let A : [0,∞) → [0,∞] be a Young function, namely a convex
(non trivial), left-continuous function vanishing at 0. Any such function takes
the form

A(t) =

∫ t

0

a(τ)dτ for t ≥ 0, (1.7)

for some non-decreasing, left-continuous function a : [0,∞) → [0,∞] which
is neither identically equal to 0, nor to ∞. The Orlicz space LA(Ω) is the
rearrangement-invariant space associated with the Luxemburg function norm de-
fined as

‖f‖LA(0,1) = inf

{
λ > 0 :

∫ 1

0

A

(
f(s)

λ

)
ds ≤ 1

}
(1.8)

for f ∈M+(0, 1). In particular, LA(Ω) = Lp(Ω) if A(t) = tp for some p ∈ [1,∞),
and LA(Ω) = L∞(Ω) if A(t) =∞ · χ(1,∞)(t).

We denote by Lp logα L(Ω) the Orlicz space associated with a Young function
equivalent to tp(log t)α near infinity, where either p > 1 and α ∈ R, or p = 1
and α ≥ 0. The notation expLβ(Ω) will be used for the Orlicz space built
upon a Young function equivalent to et

β
near infinity, where β > 0. It is of

interest to note that Lp logα L(Ω) = Lp,p;
α
p (Ω), while expLβ(Ω) = L∞,∞;− 1

β (Ω)
Also, exp expLβ(Ω) stands for the Orlicz space associated with a Young function

equivalent to ee
tβ

near infinity.

Having established some classes of function spaces we can turn our attention to
relationships between them.

Definition 6 (embedding of function spaces). Let X and Y be two Banach
function spaces. We say that X is continuously embedded into Y if there exists
C > 0 such that

‖f‖X ≤ C ‖f‖Y ,
for all f ∈ M. The fact that X is continuously embedded into Y is denoted by
X ↪→ Y.

Embeddings of function spaces have been extensively studied as can be docu-
mented by the following short overview of basic embeddings in introduced classes
of function spaces. Of course, this overview is by no means exhaustive.

Embedding relations of Lebesgue spaces on domain of finite measure are quite
simple. If 1 ≤ q ≤ r ≤ ∞ then Lr(Ω) ↪→ Lq(Ω) with equality if and only if q = r.

If the first parameter is fixed, then the Lorentz spaces are nested. More precisely,
we have

Lp,q(Ω) ↪→ Lp,r(Ω) (1.9)

whenever 0 < p ≤ ∞ and 0 < q ≤ r ≤ ∞.

Let 0 < pi, qi ≤ ∞, i = 0, 1, and let α, β ∈ R. Assume that p0 < p1. Then the
embedding Lp1,q1;α ↪→ Lp0,q0;β holds. When p0 = p1, a finer interplay between the
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remaining parameters comes into picture, but we will avoid these details since
the Lorentz-Zygmund spaces are not in the focus of this thesis.

There is a lot to be said about embeddings of general rearrangement-invariant
function spaces as well. It is known that for any Banach function spaces X and
Y, if X ⊂ Y then also X ↪→ Y. Moreover, if the underlying measure space
is finite, it is known that any rearrangement-invariant space lies in a sense in
between spaces L1 and L∞.

Theorem 7 (L∞ ↪→ X ↪→ L1 ). Let X be a rearrangement-invariant space over
a finite measure spaces (R, µ). Then

L∞(R, µ) ↪→ X ↪→ L1(R, µ).

Another basic relation between two rearrangement-invariant function spaces is
being associated.

Definition 8 (associated function norm). Suppose that % : M+(R, µ) → [0,∞].
Let us call the functional defined on M+(R, µ) by

%′(g) = sup

{∫

R

fg : f ∈M+(R, µ), %(f) ≤ 1

}
, g ∈M+(R, µ),

the associated norm to %.

The associated norm %′ is a Banach function norm if % is a Banach function norm.

It turns out that associated spaces often align with representations dual space.
That is apparent from the example of Lebesgue space as (Lp(Ω))′ = Lp

′
(Ω), where

p′ = 1− 1
p

is the same exponent as of the dual spaces. Very similar is the situation
in the case of Lorentz spaces: if 1 < p <∞, 1 ≤ q ≤ ∞ or p = q = 1 or p = q =∞
then (Lp,q(Ω))′ = Lp

′,q′(Ω).

Assume that one of the conditions in (1.5) is satisfied. Then the associate space
(Lp,q;α)′(Ω) of the Lorentz–Zygmund space Lp,q;α(Ω) satisfies (up to equivalent
norms)

(
Lp,q;α

)′
(Ω) =





Lp
′,q′;−α(Ω) if 1 < p <∞, 1 ≤ q ≤ ∞, α ∈ R;

L∞,∞;−α(Ω) if p = 1, q = 1, α ≥ 0;

L1,1;−α(Ω) if p =∞, q =∞, α ≤ 0;

L(1,q′;−α−1)(Ω) if p =∞, 1 ≤ q <∞, α + 1
q
< 0.

(1.10)

See [42, Theorems 6.11 and 6.12] for more details.

The associated norm %′ is a Banach function norm if % is a Banach function
norm. The following theorem shows that the operation of taking the associate
norm creates pairs of Banach function norms, unlike representations of dual spaces
where a more complicated structure can occur.
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Theorem 9 (G.G. Lorentz and W.A.J. Luxemburg). Every Banach function
space X coincides with its second associate space X′′.

Associated spaces allow for reformulation of the Hölder inequality in terms of
general rearrangement-invariant function spaces.

Theorem 10 (Hölder inequality). Let X(Ω) be a rearrangement-invariant func-
tion space with associate space X′(Ω). If f ∈ X(Ω) and g ∈ X′(Ω), then fg is
integrable and

∫

Ω

|fg| dµ ≤
∫ ∞

0

f ∗(s)g∗(s) ds ≤ ‖f‖X(Ω) ‖g‖X′(Ω) .

This yields a new representations of % and %′ given by

%′(g) = sup

{∫ ∞

0

f ∗(s)g∗(s) ds : %(f) ≤ 1

}
, for g ∈M+

0

and

%(g) = sup

{∫ ∞

0

f ∗(s)g∗(s) ds : %′(f) ≤ 1

}
, for g ∈M+

0 .

Sometimes, the most convenient way to define a function norm is through its
associated norm. This is the case in optimal domain and range function spaces
used in theory of higher-order Sobolev embeddings which will be outlined in
Section 1.3.

The fact that the non-increasing rearrangement captures information relevant to
rearrangement-invariant norms is shown in the Hardy-Littlewood-Pólya principle.

Theorem 11 (Hardy-Littlewood-Pólya principle). Suppose that f and g belong
to M0(Ω). Let X be any rearrangement-invariant function space on Ω. If

∫ t

0

f ∗(s) ds ≤
∫ t

0

g∗(s) ds, for all t > 0

then
‖f‖X(Ω) ≤ ‖g‖X(Ω) .

1.3 Sobolev embeddings

Sobolev embeddings, or Sobolev inequalities, constitute a very important part of
modern functional analysis. This field has been the subject of intensive study for
several decades and a vast amount of literature on this subject is available. We
shall name only few items: [48], [49], [35], [40], [38], [1], [5], [29], [12]. Our aim is
to introduce a Sobolev-type space based on the class of Banach function spaces.
The straightforward definition is as follows.
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Given a Banach function space X(Ω) and a positive integer m ∈ N, the m-th
order Sobolev type space built upon X(Ω) is the normed linear space VmX(Ω) of
all functions on Ω whose m-th order weak derivatives belong to X(Ω), equipped
with a natural norm induced by X(Ω).

Unfortunately such spaces are not necessarily normed (only seminormed) and
moreover they might not be complete as the norm is affected only by the highest-
order derivative. Consequently, all constant functions have the same zero norm.
A norm which reflects derivatives of lower orders needs to be considered in order
to ensure normability and completeness of such function space.

We are interested in restricting only the m-th order derivative. Therefore, we
would like to use as weak condition on lower-order derivatives as possible. In the
world of rearrangement-invariant function spaces, the largest space on Ω (of finite
measure) is L1(Ω). Consequently, a natural choice is to require that ∇mf ∈ X(Ω)
and ∇if ∈ L1(Ω), for i = 0, 1, . . . ,m − 1 where ∇if denotes the vector of all i-
th order weak derivatives of f , in particular ∇0f = f . Note that in general
it can happen that ∇1f ∈ L1(Ω) but f /∈ L1(Ω). However, if we adopt certain
conditions on the isoperimetric function of Ω (see Section 1.4), then ∇1f ∈ L1(Ω)
implies f ∈ L1(Ω).

Definition 12 (Sobolev space). Given a Banach function space X(Ω) of measur-
able functions on Ω, and a positive integer m ∈ N, the m-th order Sobolev space
built upon X(Ω) is the normed linear space WmX(Ω) of all functions on Ω whose
derivatives up to order m belong to X(Ω), equipped with norm

‖f‖WmX(Ω) =
m∑

i=0

∥∥∇if
∥∥
X(Ω)

.

Assume that the isoperimetric function of Ω satisfies

IΩ(s) ≥ Cs for s ∈
[
0, 1

2

]
,

for some C > 0. Then we define the m-th order Sobolev space V mX(Ω) as

V mX(Ω) = {u : u is m-times weakly differentiable in Ω, and |∇mX| ∈ X(Ω)} .

The space V mX(Ω) is equipped with the norm

‖f‖VmX(Ω) =
m−1∑

i=0

∥∥∇if
∥∥
L1(Ω)

+ ‖∇mf‖X(Ω) , for all f ∈M+(Ω).

We say that the space V mX(Ω) or WmX(Ω) is a Sobolev space built upon X(Ω).

Let us note that the notion of Sobolev space is fundamentally connected to the
differential operator of gradient. In Section 1.7, we will generalize the notion of
Sobolev spaces to a custom differential operator corresponding to the intrinsic
structure of Carnot-Carathéodory spaces.
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It is a natural question to ask if properties of a function can be determined by
its derivative. In context of function spaces, this problem is usually formulated
as a so-called Sobolev embedding or Sobolev inequality.

In its most classical form, the Sobolev inequality asserts that for Ω with a Lipschitz
boundary, given 1 < p < n and setting p∗ = np

n−p , there exists C > 0 such that

(∫

Ω

|u(x)|p∗ dx
) 1

p∗

≤ C

(∫

Ω

|(∇u)(x)|p + |u(x)|p dx
) 1

p

for all W 1Lp(Ω).

We can restate this result in the form of a Sobolev embedding, namely,

W 1Lp(Ω) ↪→ Lp
∗
(Ω), 1 < p < n. (1.11)

Sobolev embeddings can be easily generalized to the setting of Banach function
spaces.

Definition 13 (Sobolev embedding). Suppose that X(Ω) and Y(Ω) are two
rearrangement-invariant function spaces. Fix m ≥ 1. A Sobolev embedding
amounts to the boundedness of the identity operator from the Sobolev space
V mX(Ω) into another function space Y(Ω), in other words

V mX(Ω)→ Y(Ω). (1.12)

When m = 1, we refer to (1.12) as a first-order embedding; otherwise, we call it
a higher-order embedding.

We recognize X(Ω) as the domain space of the embedding (1.12), and the space
Y(Ω) on the right as its range space.

Let us consider (1.11) in the previously established situation when Ω has Lipschitz
boundary. One might be wondering if there is a function space smaller than Lp

∗
,

such that (1.11) still holds with it as a range space. Or, if there is a larger domain
space than Lp which can be inserted into (1.11) without compromising its validity.

The answer is dependent on an environment within which it is investigated.
The embedding (1.11) can not be improved within the environment of Lebesgue
spaces. If we replace the domain space Lp(Ω) in (1.11) by a larger Lebesgue
space, say, Lq(Ω) with q < p, then the resulting embedding

W 1Lq(Ω) ↪→ Lp
∗
(Ω)

can no longer be true. Likewise, if we replace the range space Lp
∗
(Ω) by a smaller

Lebesgue space, say Lr(Ω), r > p∗, then, again, the resulting embedding

W 1Lp(Ω) ↪→ Lr(Ω)

does not hold any more.

12



The embedding (1.11) cannot be effectively improved in the environment of
Lebesgue spaces, hence it can be considered optimal in a sense. Therefore, we
need to use a finer class of function spaces to get a finer result.

Lebesgue scale is too rough to describe all the interesting details about embed-
dings. This is apparent when considering the example of the so-called limiting
case of the embedding (1.11), corresponding to the case p = n. When we let p
tend to n from the left, then, of course, p∗ tends to ∞. However, the limiting
embedding

W 1Ln(Ω) ↪→ L∞(Ω)

is unfortunately not true. There are unbounded functions in W 1Ln(Ω). In the
limiting case, the Lebesgue spaces environment yields only the embedding

W 1Ln(Ω) ↪→ Lq(Ω) for every q <∞. (1.13)

Again, this information is optimal within the environment of Lebesgue spaces,
where no improvement is available. This result does not provide any definite
range function space. Such a space can be obtained, but not among Lebesgue
spaces. We need a refinement of the Lebesgue scale.

The Lorentz spaces (see Section 1.2), allows for the following refinement of (1.11):

W 1Lp(Ω) ↪→ Lp
∗,p(Ω), 1 < p < n. (1.14)

Note that, thanks to embedding (1.9) and the obvious inequality p < p∗, the range
space in (1.14) is smaller than the range space in (1.11). The embedding (1.14)
is introduced in [43], but it follows from results in [41] and [27] as well.

1.4 Isoperimetric inequalities

Isoperimetric problem is very old, it even plays its role in the myth of Queen
Dido. When Dido fled to North Africa, she was supposedly offered by a local
ruler a piece of land which she was able to encompass with hide of a bull. Dido
then cut the hide into long stripes and marked a vast circle with it. The city of
Carthage was then found in this area.

In its classical formulation, as outlined above, isoperimetric problem sets the task
to find a set with the largest possible area having fixed perimeter. In plane, the
solution to this problem is naturally a circle. In higher dimensions, the solution
to isoperimetric problem is a ball.

In order to solve the isoperimetric problem in more general setting, we need a
more general definition of the perimeter. We will use the definition of perimeter
based on concept of variation of a function.

Definition 14 (variation). Let u ∈ L1

loc(Ω), the variation of u with respect to Ω
is defined as

Var(u,Ω) = sup
φ∈FΩ

∫

Ω

u(x) div φ(x) dx,

13



where

FΩ =




φ = (φ1, φ2, . . . , φn) ∈ C1

0(Ω,Rn) : sup
x∈Ω

(
n∑

j=1

|φj(x)|2
)1

2

≤ 1




.

Definition 15 (perimeter). If E ⊂ Rn is measurable, then the perimeter of E
relative to Ω is defined by

P (E,Ω) = Var(χE,Ω).

We return back to the mythological motivation. If we consider founding a city
on the coast, then the coast itself can be used as a natural boundary, giving a
different solution to the isoperimetric problem. Obviously, the “shape” of the
domain affects the solution of the isoperimetric problem. The purpose of the
isoperimetric function is to extract this information from a given domain.

Definition 16 (isoperimetric function). Suppose that Ω ⊂ Rn is open such that
|Ω| = 1. Then we define the isoperimetric function of Ω by formula

IΩ(s) =

{
inf
{
P (E,Ω) : E ⊂ Ω, s ≤ |E| ≤ 1

2

}
for s ∈

[
0, 1

2

]
,

IΩ(1− s) for s ∈
(

1
2
, 1
]
.

Let us note that in connection to Sobolev embeddings, the key feature of the
isoperimetric function is its asymptotic behavior near zero. Therefore, we don’t
need to work with the isoperimetric function itself, but any function which is
estimating its behavior near zero will do. More precisely, considering I : [0, 1]→
R, we assume that there is a c > 0 such that

IΩ(s) ≥ cI(cs) for s ∈
[
0, 1

2

]
. (1.15)

In many situations, the asymptotic behavior of the isoperimetric function is
known. The assumption that Ω belongs to some classical class of domains usually
implies certain behavior of the isoperimetric function. Let us recall the definition
of John domains, as it is most widely used besides the class of domains having
Lipschitz boundary.

Definition 17 (John domain). Recall that a bounded open set Ω in Rn is called
a John domain if there exist a constant c ∈ (0, 1) and a point x0 ∈ Ω such that
for every x ∈ Ω there exists a rectifiable curve ω : [0, l] → Ω, parameterized by
arclength, such that ω(0) = x, ω(l) = x0, and dist(ω(r), ∂Ω) ≥ cr for r ∈ [0, l].

Both domains with Lipschitz boundary and John domains have isoperimetric
function which can be estimated in the sense of (1.15) by the function

I(s) = s1− 1
n for s ∈ [0, 1].

The next natural step is to actually define specific classes of domains by their
isoperimetric behavior. This idea leads us to the concept of the so-called Maz’ya
classes.

14



Definition 18 (Maz’ya classes). Given α ∈
[
1− 1

n
, 1
]
, we denote by Iα the

Maz’ya class of all Euclidean domains Ω satisfying (1.15) with I(s) = sα for
s ∈ [0, 1].

Later, we will work with a different class of domains, the so-called X-PS domains.
From our point of view, the most important property of such classes is that we
know their X-isoperimetric function. More details can be found in Section 1.6.

1.5 Connection between isoperimetric inequali-

ties and Sobolev embeddings

Sobolev inequalities and isoperimetric inequalities were initially studied separate-
ly (Sobolev [48, 49], Gagliardo [21] and Nirenberg [40] on the Sobolev inequalities
side and De Giorgi [16] in the realm of isoperimetric inequalities). Their inti-
mate relation was discovered by Maz’ya in [34, 35]. Independently, Federer and
Fleming [18] also exploited De Giorgi’s isoperimetric inequality to exhibit the
best constant in the special case of the Sobolev inequality for functions such that
∇f ∈ Ln(Ω).

These results became a basis for an extensive research effort yielding a vast liter-
ature, to name just a few: [2, 5, 10, 38, 51].

The approach to Sobolev embeddings based on an isoperimetric inequality has
a significant advantage consisting in the possibility to apply achieved results to
a variety of rearrangement-invariant function spaces, and also in the fact that it
typically yields sharp results.

On the other hand, it is not so easily applicable to higher-order embeddings.
The customary techniques that are crucial in the derivation of first-order Sobolev
inequalities from isoperimetric inequalities, such as symmetrization, or just trun-
cation, cannot be adapted to the proof of higher-order Sobolev inequalities. This
can be overcome by subsequent applications of an optimal first-order results as
was discovered in [12].

Let us give a short example illustrating how the magnitude of derivatives can be
connected to the isoperimetric function in order to demonstrate the basis of their
relation.

Definition 19 (level set). Let u ∈ M0(Ω) have bounded variation and t ∈ R.
We define the level set of u at the value t by

Eu,Ω(t) = {x ∈ Ω : u(x) > t} .

The core of the connection between the isoperimetric inequality and the Sobolev
inequalities lies in the co-area formula. The idea is to express the integral of the
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norm of a derivative as an integral of perimeters of level sets. Consider a L1(Ω)
norm of ∇u. Then we have

∫

Ω

|∇u| = Var(u; Ω) =

∫ ∞

−∞
P (Eu,Ω(t),Ω) dt.

Now, we estimate the integrand on the right side of the inequality above by using
the isoperimetric function, namely

P (Eu(t) ≥ IΩ(t).

Consequently, we get

∫

Ω

|∇u| ≥
∫ ∞

−∞
IΩ(|Eu,Ω(t)|) dt.

The actual application of this principle is more delicate, but the rough idea re-
mains the same. This argument is a crucial step in the proof of the following
Pólya-Szegö principle, which yields a connection between the derivative of a func-
tion and its rearrangement.

Theorem 20 (Pólya-Szegö principle). Assume u ∈ V 1X(Ω) and let X be a
rearrangement-invariant function space. Then u∗ is locally absolutely continuous
and

C

∥∥∥∥
(
−du

∗

ds
Iu,Ω(s)

)∥∥∥∥
X(Ω)

≤ ‖∇u‖X(Ω)

with C > 0 independent of u ∈ V 1X(Ω).

The principal result is the reduction principle - a sufficient condition for a higher-
order Sobolev embedding.

Theorem 21 (reduction principle). Assume that there is a function I(s) satis-
fying both (1.15) and

inf
t>0

I(t)

t
> 0. (1.16)

Let m ∈ N and let X(0, 1) and Y(0, 1) be rearrangement-invariant function
spaces. If there exists a constant C such that

∥∥∥∥∥

∫ 1

t

f(s)

I(s)

(∫ s

t

dr

I(r)

)m−1

ds

∥∥∥∥∥
Y(0,1)

≤ C ‖f‖X(0,1) (1.17)

for every nonnegative f ∈ X(0, 1), then

V mX(Ω)→ Y(Ω). (1.18)

Next topic we are interested in is the compactness of embeddings. Let us start
by recalling its definition.
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Definition 22 (compact embedding). Let X and Y be two normed vector spaces
and suppose that X ⊂ Y. We say that X is compactly embedded in Y, and write
X ↪→↪→ Y, if X ↪→ Y and the identity operator from X into Y is compact: every
sequence in such a bounded set has a subsequence that is Cauchy in the norm
‖.‖Y. We similarly write T : X→→ Y to denote that an operator T is compact
from X to Y.

The properties of Banach function spaces imply that the continuous embedding
is ensured by the assumption X ⊂ Y.

As a reference let us recall the characterization of compact embeddings between
Sobolev spaces built upon rearrangement-invariant function spaces shown in [45].
This provides a context for results in Section 1.7.

Theorem 23. Assume that Ω ⊂ Rn, n ≥ 2, I : (0, 1] → (0,∞) such that(1.15)
and (1.16) holds. Let m ∈ N and let ‖.‖X(0,1) and ‖.‖Y(0,1) be rearrangement-
invariant norms. Then

Hm
I : X(0, 1)→→ Y(0, 1)

implies
V mX(Ω) ↪→↪→ Y(Ω).

This general principle then can be easily applied to examples of rearrangement-
invariant function norms to obtain characterizations of particular compact em-
beddings. This will be demonstrated in Section 1.7.

1.6 Carnot-Carathéodory spaces

The motivation behind the Carnot-Carathéodory spaces (constrained dynamics
spaces) is probably best illustrated with the example of parallel parking. Let us
point out that while it is very easy to move a car in the direction in which it is
currently heading, it is impossible to move it directly in the direction sideways.
Of course, the steering system allows to change the heading direction, but only
while moving. This practical problem is so iconic it is even taught in the driving
school.

We would like to develop a mathematical theory to describe this behavior. A
good example of application of this theory is [30].

We will view a car as a system specified by the following properties: the position
in the parking lot, rotation along the top-down axis and rotation of the steering
wheel. In principle, there are just two basic actions to control a vehicle: turning
the steering wheel and driving forward or backward.

While the first action simply changes the rotation of the steering wheel, the
effect of driving depends on other factors. If the steering wheel is in the straight
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position, only the position (and not the rotation) of the vehicle changes according
to vehicle’s direction. But in general, depending on the steering system state, the
rotation of the vehicle is changing while moving.

We adopt the following mathematical model to view possible vehicle configura-
tions. We will use four parameters, namely (x, y, r, s) ∈ R4. Here the values of x
and y are the coordinates in the plane representing a parking lot, r is the repre-
sentation of the rotation of the vehicle along the z-axis and, finally, s represents
the configuration of the vehicle’s steering system.

The basic action of steering is then represented by adding a certain multiplication
of the action vector as = (0, 0, 0, 1) to the current state of the system. The second
basic action has a more complicated representation as its effect depends on the
current state of system. Let us represent the second action as

ad(x, t, r, s) = (cos(r), sin(r), s, 0), (x, y, r, s) ∈ Rn.

Adding a multiple of such a vector to a given state changes the spatial coordinates
according to the current direction and, moreover, it affects the rotation of the car
according to the state of the steering system (the steering wheel rotation). We
represent both actions as vector fields acting on R4, hence they can be written in
form

ad(f) = cos(r)∂xf + sin(r)∂yf + s∂rf

and
as = ∂sf,

where f ∈ C∞(Rn).

To reflect possible movements of the car (which can happen only as a result of
a combination of given two basic actions), we allow only movements along the
so-called horizontal paths. A piecewise C1 curve γ : [0, T ] → R4, T > 0, is called
a horizontal path (with respect to ad and as) if γ′(t) ∈ span {ad(γ(t)), as(γ(t))}
whenever γ′(t) exists, t ∈ [0, T ]. Please note that the linear span of the vec-
tors ad(x) and as(x) depends on x, in other words the possible directions of the
movement are (in general) different at each point.

Since only the movement along horizontal paths is allowed in our system, it is
natural to measure the distance based only on such paths. This leads to the
definition of a structure based on the vector fields ad and as which in the most of
interesting cases is a metric space. Moreover this structure allows for redefinition
of many other notions such as perimeter, dimension or gradient to reflect the
custom structure defined by vector fields as and ad.

We will establish the above-illustrated concept in more rigorous settings. The
role of the vector fields ad and as will be played by a set of vector fields X =
{X1, X2, . . . , Xm} for some m ∈ N. We assume that Xi, i = 1, . . . ,m is of the
form

Xi =
m∑

j=1

bi,j(x)∂xj ,
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where x = (x1, x2, . . . , xn) ∈ Rn and bi,j ∈ C∞(Rn) (with respect to the classical
Euclidean topology). Naturally the following notions will be dependent of the
choice of vector fields in X.

Definition 24 (horizontal curve). A piecewise C1-curve γ : [0, T ] → Rn, T > 0,
is called horizontal (more precisely X-horizontal) if whenever γ′(t) exists then

γ′(t) =
m∑

j=1

cj(t)Xj(γ(t)),

where cj : (0, T )→ R are measurable and satisfying
∑m

j=1 c
2
j(t) ≤ 1 for 0 ≤ t ≤ T .

The horizontal length of γ is defined by lh(γ) = T . The family of all horizontal
curves will be denoted by HX .

As pointed out above, the family of all horizontal curves specifies a custom metric
space, where only horizontal curves are considered to influence distance.

Definition 25 (Carnot-Carathéodory space). The distance function correspond-
ing to the family of horizontal curves with respect to X is given by

dX(x, y) = inf {lh(γ) : γ ∈ HX , γ(0) = x, γ(lh(γ)) = y} , x, y ∈ Rn.

If dX is a metric, then the metric space (Rn, dX) is called the Carnot-Carathéodory
space generated by the system X.

We now return to the example of car parking. Although no linear combination
of the actions ad and as enables the car to move in the direction perpendicular
to the heading direction, a consecutive application of the actions as, ad leads to
the desired change. Such behavior can be described through commutators of our
action vector fields.

Definition 26 (commutator). Let X and Y be two smooth vector fields on Rn.
Then the commutator (or the Lie bracket) of X and Y is defined by

[X, Y ](f) = X ◦ Y (f)− Y ◦X(f), f ∈ C∞(Rn).

Let us note that although the definition of [X, Y ] suggests that it is a differen-
tial form of the second order, the commutator is, in fact, always a first-order
differential operator.

The real-life experience with cars suggests that one can get from any state to
any other state just by steering and driving, but is it true for our toy-example
Carnot-Carathéodory space generated by ad and as? The answer is given by an
application of the Chow connectivity theorem (can be found in [23]).

Theorem 27 (Chow connectivity theorem). Let X1, . . . , Xm be C∞-smooth vector
fields on a connected manifold V such that successive commutators of these fields
span each tangent space Tv(V ), v ∈ V . Then every two points in V can be joined
by a piecewise smooth curve in V where each piece is a segment of an integral
curve of one of the fields Xi.
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A bit of algebra shows that the commutator of ad and as is

lds = [ad, as](f) = ∂r.

The vector fields ad, as and lds are linearly independent, but we need a fourth
vector field for a basis. While the combination of as and lds will not help as the
commutator [as, lds] is zero vector field, the last possible combination yields the
desired vector. We have

[ad, lds] = − sin(r)∂x + cos(r)∂y.

Indeed, the vectors ad(x), as(x), lds(x) and [ad, lds](x) form a basis of a tangent
space for all x ∈ Rn, therefore, by the Chow connectivity theorem, there exists
a horizontal path between all pairs of points and (R4, dad,as) is a metric space.
The topology generated by the Carnot-Carathéodory metric of a system X in
general might not agree with the Euclidean topology. However, in this thesis
we will always assume that these topologies are the same. The condition from
Theorem 27 requiring that successive commutators of vector fields span the tan-
gent space at every point is often referred to as the Hörmander condition. This
condition implies the equivalence of topologies.

We will now introduce counterparts to basic notions of differential theory in
the context of Carnot-Carathéodory spaces. Since the intrinsic structure of
Carnot-Carathéodory spaces is being generated by a set of vector fields X =
{X1, X2, . . . , Xm}, the definitions are analogous to the standard ones.

For a function f ∈ L1
loc(Ω) its distributional derivative along the vector field Xj,

Xjf , is defined by the identity

〈Xjf, φ〉 =

∫

Ω

fX∗j φ dx for every φ ∈ C∞0 (Ω),

where X∗j (·) = −∑n
k=1

∂
∂xk

(bj,k ·) denotes the formal adjoint of Xj. If f is a non-
smooth function then Xjf will be meant in the distributional sense.

The following notion of the (first-order) gradient is widely used in the context of
Carnot-Carathéodory spaces. We will generalize it to higher orders. The litera-
ture dealing with higher-order embeddings in the context of Carnot-Carathéodory
spaces is scarce. Our notion of higher order gradient agrees with the one intro-
duced in [36].

Definition 28 (X-gradient and X-variation). Suppose that f ∈ L1
loc(Ω). If

derivatives X1f,X2f, . . . , Xmf exist, then the vector of X-gradient of a function
f is defined by

X∇f = (X1f,X2f, . . . , Xmf) .

Moreover, let us introduce the higher-order derivatives as

XDα(·) = Xα1 (Xα2 (. . . Xαk (·) . . .)) ,
where α = (α1, . . . , αk) ∈ {1, . . . ,m}k. Provided that XDαf exists for all α ∈
{1, . . . ,m}k, the X-gradient of order k is defined as a vector of length mk of the
following form:

X∇kf =
(
XDα(f) : α ∈ {1, . . . ,m}k

)
.
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Naturally, the norm of the X-gradient of order k reads as

∣∣X∇kf
∣∣2 =

∑

α∈mk
(XDα(f))2.

Analogously to Definitions 14 and 15, we can introduce notions of X-variation
and X-perimeter in the following way.

Definition 29 (X-variation). If we denote

FΩ =



φ = {φ1, φ2, . . . , φm} ∈ C1

0(Ω,Rm) : sup
x∈Ω

(
m∑

j=1

|φj(x)|2
) 1

2

≤ 1



 ,

then, for a given f ∈ L1
loc(Ω), the X-variation of f with respect to Ω is defined

as

VarX(f,Ω) = sup
φ∈FΩ

∫

Ω

u(x)
m∑

j=1

X∗j φj(x) dx.

Let us note that the set of functions with bounded X-variation is denoted as
BVX(Ω) and forms a Banach space with respect to the norm

‖·‖BVX = ‖·‖L1(Ω) + VarX(·,Ω).

If X∇f ∈ L1(Ω), then

VarX(f,Ω) ≤ Ĉ ‖X∇f‖L1 , (1.19)

where Ĉ > 0 depends only on m.

Definition 30 (X-perimeter, X-isoperimetric function). If E ⊂ Rn is measur-
able, then the X-perimeter of E relative to Ω is defined by

PX(E,Ω) = VarX(χE,Ω),

where χE denotes the characteristic function of E. The X-isoperimetric function
of Ω is given by the following formula

IX,Ω(s) = inf

{
PX(E,Ω): E ⊂ Ω, s ≤ |E| ≤ 1

2

}
for s ∈

[
0,

1

2

]
,

and IX,Ω(s) = IX,Ω (1− s) if s ∈
(

1
2
, 1
]
. Sets of finite perimeter are called X-

Caccioppoli sets.

The isoperimetric function is often unknown. Fortunately, in [22] it is shown that
if we adopt some additional assumptions we can nail it down for the so-called
X-PS domains.
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The first such condition is the following version of the doubling condition: for
any set U ⊂ Rn with diam(U) < ∞ there exist constants C1 > 0 and R0 < ∞
such that for x0 ∈ U and 0 < R < R0 one has

|B(x0, 2R)| ≤ C1 |B(x0, R)| . (1.20)

It was shown in [39] that the Hörmander condition implies the doubling condition.

The second restriction is the following version of the Poincaré inequality: for any
set U ⊂ Rn with diam(U) < ∞, there exist constants C2 > 0, R0 < ∞ and
α ≥ 1 such that for x0 ∈ U , 0 < R < R0 and every Lipschitz function u in
αB = B(x0, αR), we have for any λ > 0

∣∣∣∣
{
x ∈ B :

∣∣∣∣u(x)−
∫

B

u(x) dx

∣∣∣∣ > λ

}∣∣∣∣ ≤
C2

λ

∫

αB

|X∇u(y)| dy. (1.21)

The third restriction is that (Rn, d) is complete and it is a length-space; that is,

d(x, y) = inf l(γxy), (1.22)

where the infimum is extended over all continuous curves γ joining x to y, and
l(γxy) denotes its metric length.

Definition 31 (homogeneous dimension). Assume that (1.20) holds. Let U ⊂
Rn and denote by C the smallest constant in (1.20). Then the homogeneous
dimension relative to U (and X) is defined by

Q = log2(C).

Let us point out that the homogeneous dimension might not (and usually does
not) agree with the classical dimension, n, of the underlying set Rn (neither
with the dimension of tangent bundle). We will illustrate this on the prominent
example of the Heisenberg group.

Consider R3 and set H = {H1, H2}, where

H1 = ∂x1 −
1

2
x2∂x3 and H2 = ∂x2 +

1

2
x1∂x3 .

The Carnot-Carathéodory space generated by H is referred to as the Heisenberg
group. Let us note that the homogeneous dimension of the Heisenberg group is 4.
It can be easily verified that

[H1, H2] = ∂x3 ,

consequently, the Heisenberg group satisfies the Hörmander condition. Moreover,
it satisfies all three conditions (1.20), (1.21) and (1.22) ([22, Remark 1.2]).

Various classes of domains has been studied in this settings, see for example [28],
[37], We will recall the definition of the X-PS domains.
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Definition 32 (X-PS domain). An open set Ω ⊂ Rn is called X-PS domain if
there exist a covering {B}B∈F of Ω by metric balls and numbers N > 0, α ≥ 1
and ν ≥ 1 such that

1.
∑

B∈F χ(α+1)B(x) ≤ NχΩ(x) for every x ∈ Ω.

2. There exists a (central) ball B0 ∈ F such that for any B ∈ F one can
find a chain B0, B1, . . . , Bs(B) = B, with Bi ∩ Bi+1 6= ∅ and |Bi ∩Bi+1| ≥
1
N

max (|Bi| , |Bi+1|) .

3. For any i = 0, . . . , s(B), one has B ⊂ νBi.

Here we used the following notation: let B = B(x, r), x ∈ Rn, r > 0, and α > 0
the αB denotes the set αB = {y ∈ Rn : d(x, r) < αr}.

Under these assumptions the isoperimetric function is known. It is analogous to
the isoperimetric function of Lipschitz or John domain in the classical setting,
but depending on the homegeneous dimension.

Theorem 33 (isoperimetric function of X-PS domains). Suppose that (1.20) and
(1.21) hold and for a bounded set U ⊂ Rn let Ω ⊂ Ω̄ ⊂ U be an X-PS domain
with diam(Ω) ≤ R0

2
. Then for any X-Caccioppoli set E ⊂ Rn we have

min {|E ∩ Ω| , |Ec ∩ Ω|}
Q−1
Q ≤ C diam(Ω) |Ω|− 1

Q PX(E,Ω).

The relatively unknown notion ofX-PS domains is actually in a very close relation
to John domains relative to the Carnot-Carathéodory metric.

Definition 34 (X-John domain). An open set Ω ⊂ Rn is called an X-John
domain if there exist a constant c ∈ (0, 1) and a point x0 ∈ Ω such that for every
x ∈ Ω there exists a rectifiable curve ω : [0, l] → Ω, parametrized by arc-length,
such that ω(0) = x, ω(l) = x0, and

d(ω(r), ∂Ω) ≥ cr for r ∈ [0, l],

where ∂Ω denotes boundary of Ω.

The class of X-PS domains contains that of X-John domains if (1.20) holds, which
is always assumed in this text. On the other hand, if certain geodesic segment
property is satisfied then the class of X-John domains contains the class of X-PS
domains. Both inclusions are shown in [22, Theorem 1.30]. Consequently, both
classes coincide if both (1.20) and the geodesic segment property are satisfied.
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1.7 Sobolev-like embeddings on Carnot-Cara-

theodory spaces

Since the Banach function spaces are depending only on the measure structure
of considered domain, they behave in the context of Carnot-Carathéodory spaces
exactly the same way as in the classical setting. The Sobolev spaces built over
the Carnot-Carathéodory spaces are analogous to the classical ones too. The
difference is only in using the customary gradient operator defined in the previous
section.

Definition 35 (Sobolev space). Given a Banach function space X(Ω) and a
positive integer d ∈ N, the d-th order Sobolev space built upon X(Ω) is the
normed linear space W d

XX(Ω) of all functions on Ω whose derivatives up to the
order d (with respect to the set of vector fields X) exist and belong to X(Ω),
equipped with a natural norm

‖f‖W d
XX(Ω) =

d∑

i=0

∥∥X∇if
∥∥
X(Ω)

.

Assume that the X-isoperimetric function of Ω satisfies

IX,Ω(s) ≥ Cs for s ∈
[
0, 1

2

]
(1.23)

for some C > 0. Then we define the m-th order Sobolev space V mX(Ω) as

V m
X X(Ω) = {u : u is m-times weakly differentiable in Ω, and |X∇mX| ∈ X(Ω)} .

The space V m
X X(Ω) is equipped with the norm

‖f‖VmX X(Ω) =
m−1∑

i=0

∥∥X∇if
∥∥
L1(Ω)

+ ‖X∇mf‖X(Ω) for all f ∈M+(Ω).

The topic of Sobolev embeddings in the context of Carnot-Carathéodory spaces
or Carnot groups (or sub-Riemannian geometry) has been a subject to extensive
research, such as [39], [22], [13], [14], [24], [33], [44], [11], [15] or [7] to name just
a few.

Some results are concerned with particular type of Carnot-Carathéodory spaces.
In this brief review, this trend will be represented by results connected to the
Heisenberg group. A good reference for this topic is [7], a monograph dealing
with isoperimetric problem on the Heisenberg group and related questions, such
as some Sobolev-type embeddings.

Let us start with the case when the domain is the whole Heisenberg group. The
embeddings (between Sobolev spaces built upon Lebesgue spaces) are analogous
to the classical ones, with the only difference that the exponent parameter behaves
the same way as if the dimension was 4. We have
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W 1
HL

p(R3)→
{
L

4−p
4p (R3), for 1 ≤ p < 4,

C0,1− 4
p (R3), for p > 4.

(1.24)

One way to explain this is that the embeddings are not governed by the dimension
but by the homogeneous dimension, which is in this case equal to 4. Theorem 33
indicates that the homogeneous dimension then affects the isoperimetric function.

Let us now shift our attention to results in more general settings. From our point
of view, [22] is the key reference. It provides tools vital to techniques used in [12]
and [45], such as knowledge of asymptotic behavior of the isoperimetric function
of X-PS domains, co-area formula and prerequisites for the Maz’ya truncation
technique.

To provide some context to our results, let us state the main results focused on
the Sobolev-type inequalities from [22], as we are following the line of research
focused on X-PS domains.

Theorem 36. Suppose (1.20) and (1.21) hold and, for a bounded set U ⊂ Rn,
let Ω ⊂ Ω̄ ⊂ U be an X-PS domain with diam(Ω) < R0

2
. Then there exists a

constant C > 0 such that for any u ∈ W 1
XL

1(Ω)

(
1

|Ω|

∫

Ω

|u− uΩ|
Q
Q−1 dx

)Q−1
Q

≤ C diam(Ω)

(
1

|Ω|

∫

Ω

|X∇u| dx
)
,

where uΩ =
∫

Ω
u(x) dx.

Theorem 36 implies that the following versions of Poincaré inequality hold for
domains fulfilling assumptions of Theorem 36:

1. Let 1 ≤ p < Q. Then, for any 1 ≤ k ≤ Q
Q−p ,

(
1

|Ω|

∫

Ω

|u− uΩ|kp dx
) 1

kp

≤ C diam(Ω)

(
1

|Ω|

∫

Ω

|X∇u|p dx
) 1

p

for any u ∈ W 1
XL

p(Ω) and some C independent of u and Ω.

2. Under these assumptions Ω supports the Poincaré inequality, that is,

∫

Ω

|u− uΩ|p dx ≤ C diam(Ω)p
∫

Ω

|X∇u|p dx, 1 ≤ p <∞,

for any u ∈ W 1
XL

p(Ω).

Now we give an overview of our results. Their novelty consists in utilization of
the rearrangement-invariant function spaces approach in the context of Carnot-
Carathéodory spaces. The achieved knowledge can be easily applied to any
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rearrangement-invariant space. As an example, we apply the theory to Sobolev
spaces built upon Lebesgue and Lorentz spaces. Another novel aspect of our
results is that they deal with embeddings of higher order.

Now we are in the position to state the central result. It yields a sufficient
condition on higher-order Sobolev-type embeddings in great generality.

Analogously to the classical case, we will be working with a function estimating
the behavior of isoperimetric function near zero. We will assume that there is a
c > 0 such that

IX,Ω(s) ≥ cI(cs) for s ∈
[
0, 1

2

]
. (1.25)

In addition, we assume

inf
t∈(0,1)

I(t)

t
> 0. (1.26)

Theorem 37 (reduction theorem). Assume that Ω ⊂ Rn is open, |Ω| = 1, such
that there is some non-decreasing function I satisfying (1.25) and (1.26). Let
m ∈ N and let ‖·‖X(0,1) and ‖·‖Y(0,1) be rearrangement-invariant function norms.
If there exists a constant C > 0 such that

∥∥∥∥∥

∫ t

t

f(s)

I(s)

(∫ s

t

dr

I(r)

)m−1

ds

∥∥∥∥∥
Y(0,1)

≤ C ‖f‖X(0,1)

for every nonnegative f ∈M+(0, 1), then

V m
X X(Ω)→ Y(Ω).

This principle can be easily applied provided the asymptotic behavior of the
isoperimetric function is known. This yields the following condition on embed-
dings in the context of X-PS domains.

Theorem 38 (reduction theorem for X-PS domains). Let us consider the case
when X is such that the conditions (1.20), (1.21) are fulfilled. Assume that Ω ⊂
Rn is an X-PS domain, |Ω| = 1, denote by Q the homogeneous dimension relative
to Ω. Let m ∈ N, and let ‖.‖X(0,1) and ‖.‖Y(0,1) be rearrangement-invariant
function norms. If there exists a constant C such that

∥∥∥∥
∫ 1

t

f(s)s−1+m
Q ds

∥∥∥∥
Y(0,1)

≤ C ‖f‖X(0,1) (1.27)

for every nonnegative f ∈M+(0, 1), then

V m
X X(Ω)→ Y(Ω). (1.28)

An embedding between particular function spaces can be obtained by application
of Theorem 38. Let us demonstrate this on examples of Lebesgue and Lorentz
spaces.
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Theorem 39. Assume that the conditions (1.20), (1.21) are fulfilled, let Ω ⊂ Rn

be an X-PS domain and denote by Q the homogeneous dimension relative to Ω.
Let m ∈ N and p ∈ [1,∞]. Then the following embeddings hold:

V m
X L

p(Ω)→





L
Qp

Q−mp (Ω) if m < Q and 1 ≤ p < Q
m
,

Lr(Ω) for r ∈ [1,∞), if m < Q and p = Q
m
.

L∞(Ω) otherwise.

(1.29)

Theorem 40. Assume that the conditions (1.20), (1.21) are fulfilled, let Ω ⊂ Rn

be an X-PS domain and denote by Q the homogeneous dimension relative to Ω
and X. Let m ∈ N, 1 < p <∞ and 1 ≤ q ≤ ∞, then

V m
X L

p,q(Ω)→





L
Qp

Q−mp ,q(Ω) if m < Q and 1 ≤ p < Q
m
,

L∞,q;−1(Ω) if m < Q, p = Q
m

and q > 1.

L∞(Ω) otherwise.

(1.30)

To obtain a result analogous to (1.24) (but for bounded X-PS domains), we can
apply Theorem 39 to the Heisenberg group.

Corollary 41 (embeddings of Lebesgue spaces on the Heisenberg group). Let
Ω ⊂ R3 be a H-PS domain. Let m ∈ N and p, q ∈ [1,∞]. Then the following
embeddings hold:

V m
H Lp(Ω)→





L
4p

4−mp (Ω) if m < 4 and 1 ≤ p < 4
m
,

Lr(Ω) for r ∈ [1,∞), if m < 4 and p = 4
m
,

L∞(Ω) otherwise.

(1.31)

It is a natural question whether the sufficient condition is necessary as well. The
original results in classical settings are in fact dealing with this question, see [12].
Unfortunately, techniques used to achieve these results are hard to apply to the
customary structure of Carnot-Carathéodory spaces in its generality. However,
thanks to extensive available knowledge base, it was possible to employ the same
techniques in the case of the Heisenberg group.

Theorem 42. Let m ∈ N. Let ‖.‖X(0,1) and ‖.‖Y(0,1) be rearrangement-invariant
function norms such that

V m
H X(Ω)→ Y(Ω) (1.32)

for all H-John domains Ω ⊂ R3. Then there exists a constant C such that
∥∥∥∥
∫ 1

t

f(s)s−1+m
Q ds

∥∥∥∥
Y(0,1)

≤ C ‖f‖X(0,1) (1.33)

for all f ∈M+(0, 1).

It is worth noting that a customary spherical symmetral based on the so-called
Korányi gauge (see [31]) was employed in the proof of Theorem 42. Let us define
the Korányi gauge by

‖(x1, x2, x3)‖4
H = (x2

1 + x2
2)2 + 16x2

3, for (x1, x2, x3) ∈ R3.
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Korányi ball with centre (0, 0, 0) and diameter s is defined as follows:

BH(s) = {x ∈ H : ‖x‖H ≤ s} .

Let us note that |BH(s)| = Ks4, for some K > 0 and that BH is a H-John domain
([8, Corollary 5]).

To a given function f ∈M+(0, 1), let us define the m-th order H-symmetral

uf,m(x) = g(‖x‖H) =

∫ 1

K‖x‖4H

∫ 1

t1

· · ·
∫ 1

tm−1

f(tm)t
−m+m

4
m dtm . . . dt2 dt1,

where x ∈ B = BH(1). The motivation behind the H-symmetral is the following
property. Let f ∈M(0, 1), m ∈ N, then

|H∇m(uf,m)(x)| ≤ Ĉ

(
f(K ‖x‖4

H) +
m−1∑

j=1

‖x‖4j−m
H

∫ 1

K‖x‖4H
f(s)sm−

m
4 ds

)
,

for x ∈ B.

We will shift our attention to compact embeddings now.

It was possible to adapt techniques from [45] to achieve reduction principle anal-
ogous to Theorem 37 for compact embeddings.

Theorem 43 (reduction theorem for compact embeddings). Assume that (1.20),
(1.21) and (1.22) are fulfilled. Let Ω ⊂ Rn be open and m ∈ N. Suppose that
there is some non-decreasing function I : [0, 1]→ R satisfying (1.25) and (1.26),
let ‖·‖X(0,1) and ‖·‖Y(0,1) be rearrangement-invariant norms, then

Hm
I : X(0, 1)→→ Y(0, 1) (1.34)

implies
V m
X X(Ω) ↪→↪→ Y(Ω). (1.35)

Particular compact embeddings can be derived from the reduction theorem for
compact embeddings in similar manner to Theorems 38 – 41.

Theorem 44 (reduction principle for compact embeddings for X-PS domains).
Assume that (1.20), (1.21) and (1.22) are fulfilled. Let m ∈ N and Ω be a X-PS
domain with homogeneous dimension Q. Suppose that ‖·‖X(0,1) and ‖·‖Y(0,1) are
rearrangement-invariant function spaces.

If m ≤ Q and
QmQ : X(0, 1)→→ Y(0, 1), (1.36)

here

QmQf(t) =

∫ 1

t

s1−m
Q |f | (s) ds, f ∈M+(0, 1), t ∈ [0, 1].

Then
V m
X X(Ω) ↪→↪→ Y(Ω). (1.37)
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In particular, the assumption that Q = m implies that (1.37) is satisfied for all
‖·‖Y(0,1) if X(0, 1) 6= L1(0, 1). Furthermore, if m > Q then (1.37) is fulfilled for
all choices of X(0, 1) and Y(0, 1).

Again, we will demonstrate an application of the general statement from Theo-
rem 44 on examples of compact embeddings between Sobolev spaces built upon
Lebesgue and Lorentz spaces.

Theorem 45. Assume that (1.20), (1.21) and (1.22) are fulfilled. Let m ∈ N
and let Ω ⊂ Rn be an X-PS domain. Let p1, p2, q1, q2 ∈ [1,∞] be such that the
triples (p1, q1, 0) and (p2, q2, 0) satisfy one of conditions in (1.5). Let Q denote
the homogeneous dimension of Ω, assume Q > 2 and m < Q, then each of the
following conditions

1. p1 <
Q
m

and p2 <
p1

1−mp1
Q

;

2. p1 = Q
m

and p2 <∞ ;

3. p1 >
Q
m

;

ensures that
VXL

p1,q1(Ω) ↪→↪→ Lp2,q2(Ω). (1.38)

Let us note that cases when m = Q and m ≥ Q, missing from Theorem 45, are
already covered by Theorem 44. Let us explicitly state the conditions on compact
embeddings of Sobolev spaces built upon Lebesgue spaces which are implied by
Theorem 45.

Corollary 46. Assume that (1.20), (1.21) and (1.22) are fulfilled. Let m ∈ N
and let Ω ⊂ Rn be an X-PS domain. Let p1, p2 ∈ [1,∞]. Let Q denote the
homogeneous dimension of Ω, assume Q > 2 and m < Q, then each of the
following conditions

1. p1 <
Q
m

and p2 <
p1

1−mp1
Q

;

2. p1 = Q
m

and p2 <∞ ;

3. p1 >
Q
m

;

ensures that
VXL

p1(Ω) ↪→↪→ Lp2(Ω). (1.39)
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1.8 Least concave majorant

In this section we will focus on the least concave majorant and the level function.
We start with recalling definitions and basic properties. Then we give a short
summary of results from [20]. We illustrate the key idea behind the algorithm
to find the least concave majorant (and therefore the level function) of a cubic
spline and conclude by restating the estimate of error involved.

We are dealing with a topic which is fundamentally different from the context of
the previous section. We will be working with a continuous function F : I → R,
where I = [a, b], a, b ∈ R. Although the notions of the least concave majorant and
the level function can be introduced in much more general settings (more general
measure space), we will restrict ourselves to the situation considered in [20].

Definition 47 (least concave majorant). Suppose F is a continuous function on
the interval I. Denote by F̂ the least concave majorant of F , namely,

F̂ (x) = inf {G(x) : G ≥ F,G concave} .

The notion of the least concave majorant has been intensively studied and a lot
of information is available in the literature. It has a broad variety of applications.
For example, it can be shown that

F̂ (x) = sup

{
β − x
β − αF (α) +

x− α
β − αF (β) : a ≤ α ≤ x ≤ β ≤ b

}
, x ∈ I.

The least concave majorant is in a close relation to the level function. The level
function was introduced by Halperin in [25] (and further developed in [32]). It has
been in a constant use ever since and many it’s important applications have been
found. To give a few examples, let us mention the improvement of the Hölder
inequality (see e.g. Sinnamon [46, 47]) or the characterization of the dual spaces
of certain classical Lorentz spaces ([9]).

Definition 48 (level function). Let f be a measurable function on I. Then there
exists a function f ◦, called the level function of f , and a partition of I = E ∪ F ,
E ∩ K = ∅, where K = ∪kj=1Ij, Ij are disjoint intervals of finite measure, such
that f ◦ is decreasing, and

f ◦(x) =

{
f(x), x ∈ E;

1
|Ij |
∫
Ij
w(x) dx, c ∈ Ij, 1 ≤ j ≤ k.

The connection between the least concave majorant and the level function is that
the level function, f ◦, coincides almost everywhere with the derivative of the least
concave majorant of F (x) =

∫ x
a
f(x).

The key property of the level function is that
∫ x

a

f(x) dx ≤
∫ x

a

f ◦(x) dx ≤
∫ x−a

0

f ∗(x) dx for x ∈ I. (1.40)
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To illustrate an application of the level function let us recall the useful concept
of the so-called down norm.

Definition 49 (down norm). Let X be a rearrangement-invariant function space.
We define the down norm of a measurable function f to be

‖f‖X↓ = sup

{∫

R
|f(x)| g(x) dx : g ≥ 0, g non-increasing, ‖g‖X′ ≤ 1

}
. (1.41)

The down norm is tightly connected to the level function as the following equality
holds

‖f‖X↓ = ‖f ◦‖X
for all measurable functions. One clearly has

‖f‖X↓ ≤ ‖f‖X .
The significance of the down norm is that the inequality

∫

R
fg dλ ≤ ‖f‖X↓ ‖g‖X

holds for all f and all non-negative, non-increasing functions g. This allows us
to improve, in a sense, the Hölder inequality (10) by using the (possibly smaller)
down norm.

Now, we will focus on a method to find the least concave majorant of a function.
If F is continuous, so is F̂ . Consequently, continuity of F implies that the set
K = {x : F̂ (x) 6= F (x)} is open. Obviously, K is either empty or a union of
open intervals. Let us refer to these intervals as component intervals. The key
observation is that any component interval, say (α, β), satisfies several important
properties, which we shall now describe in detail. First, one has

F̂ (α) = F (α), F̂ (β) = F (β). (1.42)

Next, the least concave majorant is linear on (α, β), the linear segment joining
points [α, F (α)] and [β, F (β)] is acting as a sort of bridge over some convex part
contained in (α, β). We have

F (x) ≤ F̂ (x) = F (α) + (xα)
F (β)− F (α)

β − α , for α < x < β. (1.43)

Moreover, the derivatives at endpoints of component interval agree with the slope
of the linear segment of F̂ , more precisely,

(F̂ )′(α) = F ′(α) =
F (β)− F (α)

β − α = F ′(β) = (F̂ )′(β). (1.44)

Let us call a bridge interval any interval which satisfies conditions (1.42), (1.43)
and (1.44). Unfortunately, not every bridge interval is a component interval.
That is a consequence of locality of all three conditions. However, bridge intervals
constitute a good pool of intervals to select desired component intervals from. It
turns out that the largest (in sense of inclusion) bridge intervals are always the
desired component intervals. As our discussion is about to steer towards splines,
let us recall the definition of relevant cubic splines.
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Definition 50 (clamped cubic spline). Let % be a partition of I given by points

a = x0 < x1 < · · · < xk−1 < xk = b,

where k ∈ N.

A function s : I → R will be called a cubic spline (with respect to %) if s ∈ C2(I)
and for each i = 0, 1, . . . , k−1 there exists a polynomial pi of degree up to 3 such
that

s(x) = p(x) for all x ∈ [xk, xk+1].

Given a function f ∈ C(I) which is differentiable at a and b, the clamped cubic
spline approximation (interpolant) of f with respect to the partition % is the
unique cubic spline (with respect to partition %) s such that

s(xi) = f(xi), i = 0, 1, . . . , k

and
f ′(a) = s′(a), f ′(b) = s′(b).

The nature of conditions (1.42), (1.43) and (1.44) allows us to find all bridge
intervals of a cubic spline and hence we are able to compute its least concave
majorant. The least concave majorant of a clamped cubic spline approximating
a function is then seen as a good approximation of the least concave majorant of
the original function.

Theorem 51. Let % be a partition of the interval I = [a, b] and suppose G ∈
C4([a, b]). Let F be the clamped cubic spline interpolating G on %. Then

‖f ◦ − g◦‖L∞(I) ≤ ‖f − g‖L∞(I) ≤
1

24

∥∥G(4)
∥∥
L∞(I)

‖%‖3

and for each x ∈ [a, b],

∣∣∣F̂ (x)− Ĝ(x)
∣∣∣ ≤ min {x− a, b− x}

24

∥∥G(4)
∥∥
L∞(I)

‖%‖3 .

Here F̂ and Ĝ denote the least concave majorants of F and G, respectively, f =
F ′, g = G′; f ◦ = (F̂ )′, and g◦ = (Ĝ)′. The symbol ‖%‖ denotes the length of the
longest interval in a partition %.
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[23] Gromov M., Carnot-Carathéodory spaces seen from within. In Sub-
Riemannian Geometry, vol. 144 of Progress in Mathematics. Birkhäuser,
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A sufficient condition for higher-order Sobolev-type embeddings on bounded domains of Carnot-Carathéodory
spaces is established for the class of rearrangement-invariant function spaces. The condition takes form of
a one-dimensional inequality for suitable integral operators depending on the isoperimetric function relative to
the Carnot-Carathéodory structure of the relevant sets. General results are then applied to particular Sobolev
spaces built upon Lebesgue, Lorentz and Orlicz spaces on John domains in the Heisenberg group. In the case
of the Heisenberg group, the condition is shown to be necessary as well.
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1 Introduction

Sobolev-type embeddings constitute a very important concept in functional analysis with wide range of applica-
tions. Their primary use concerns functions defined on domains in an Euclidean space, but they are of interest
also in other situations. The investigation of Sobolev embeddings on all kinds of domains including very bad
ones is considered classical nowadays, and not only in the Euclidean setting (for example their investigation on
domains equipped with the product probability measures, or, in particular, the Gauss measure, is notorious - see
e.g. [3, 1]).

Sobolev embeddings are of particular interest in connection with the isoperimetric inequality and its various
modifications. Although these two subjects had been investigated at first along separate lines, it was observed by
Maz’ya [27, 28] and also by Federer and Fleming [16] in early 1960’s that there is in fact an intimate connection
between them.

Since Hörmander’s pioneering paper on hypoellipticity [21] the Sobolev embeddings involving general differ-
ential operators connected to non-commu-
tative vector fields became immensely important, mainly due to their applications in the study of both linear and
non-linear partial differential equations arising from a system of smooth vector fields. These considerations lead
one to the study of Carnot-Carathéodory spaces, and, in particular, the Heisenberg group.

The principal goal of this paper is to establish sufficient conditions for the validity of Sobolev-type embeddings
in the setting of Carnot-Carathéodory spaces. We shall consider such embeddings in a fairly general situation,
namely for Sobolev spaces built upon the so-called rearrangement-invariant spaces. This enables us to formulate
our results in terms of wide class of function spaces. The custom structure of given Carnot-Carathéodory space is
mediated by the isoperimetric function relative to it. The topic of Sobolev embeddings in the context of Carnot-
Carathéodory spaces has received wide attention (see e.g. the papers [23], [26], [13], [12], [11], [19], [9], [33],
[10], [29], [34], or the monograph [4]). However, the existing literature seems to be restricted to certain particular
classes of function spaces and the possibility of use of the rearrangement-invariant spaces has been neglected so
far. We will restrict ourselves to bounded domains.

∗ Corresponding author: e-mail: martinfrancu@gmail.com, Phone: +00420 605 452 894,
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2 Franců M.: Higher-order Sobolev-type embeddings on CC spaces

Carnot-Carathéodory spaces are determined by a certain system of vector fields on Rn, let us denote it by X .
This system generates metric and differential structure with many notions, which are counterparts to their ana-
logues from the classical differential geometry, for instance, the perimeter of sets relative to Carnot-Carathéodory
structure.

A central role in our approach is played by the isoperimetric function. The isoperimetric function, relative to
a given set Ω ⊂ Rn and a system of vector fields X , is defined as

IX,Ω(s) = min {PX(E) : E ⊂ Ω; |E| = s} ; s ∈ (0, |Ω|).

In general, the isoperimetric function cannot be evaluated exactly. This is in fact possible only in very special
situations (e.g. for balls in classical Euclidean spaces or for half-spaces in Rn equipped with the Gaussian mea-
sure). However, in many customary cases the asymptotic behaviour of the isoperimetric function near zero is
known, and this fact can be used to formulate exact requirements on embeddings (cf. e.g. [8]).

In the present paper we establish sufficient conditions for Sobolev embeddings built on rearrangement-invariant
spaces on the Carnot-Carathéodory spaces. Our approach involves certain essential tools from [17] as well as
sharp rearrangement iteration techniques developed recently in [8].

Our principal result is a reduction-type theorem which provides a sufficient condition for the validity of
a higher-order Sobolev embedding in the fairly general setting of the rearrangement-invariant spaces in terms of
a function which estimates from below the behaviour of the isoperimetric function of the underlying domain near
zero. We also give applications of the general theorem to embeddings of Sobolev spaces build upon Lebesgue,
Lorentz and Orlicz spaces on the Heisenberg group.

The simple setting of the Heisenberg group allows us to show that the considered condition is necessary as
well.

The paper is structured as follows. In the following section we collect some basic notions and known results.
The main results are presented in the third section. In the fourth section an auxiliary lemma is proved and further
facts are observed. The final section contains proofs of the main results.

2 Carnot-Carathéodory spaces and rearrangement-invariant function spaces

Throughout this paper we will be considering Rn equipped with the standard Lebesgue measure (denoted as
|·|) and a special differential structure. All integrals will be considered with respect to Lebesgue measure of
appropriate dimension. In most cases, a general system of vector fields will be involved, while in some particular
cases we will restrict ourselves to specific tangent fields of the Heisenberg group. This fact will be clearly
indicated where appropriate.

By Ω we will denote an open set in Rn with |Ω| = 1. The restriction on volume of Ω is adopted for convenience
only. In the cases when Ω is having a different (finite) measure, analogous results hold with different constants.
Sometimes additional properties will be required.

We denote by M(Ω) the set of all Lebesgue-measurable functions on Ω whose values belong to [−∞,∞].
Moreover, let us denote M+(Ω) = {u ∈M(Ω) : u ≥ 0}.

Assume that X = {X1, . . . , Xm} is a system of vector fields given by

Xj =
n∑

k=1

bj,k(x)
∂

∂xk
, j = 1, . . . ,m,

where bj,k ∈ C∞(Rn).

The simplest choice of
{
Xj = ∂

∂xj
, j = 1, . . . , n

}
would yield the classical Euclidean case.

A piecewise C1-curve γ : [0, T ]→ Rn is called horizontal if whenever γ′(t) exists then

γ′(t) =
m∑

j=1

cj(t)Xj(γ(t)),

where cj : (0, T ) → R are measurable, satisfying
∑m
j=1 c

2
j (t) ≤ 1 for 0 ≤ t ≤ T . The horizontal length of γ is

defined by lh(γ) = T .
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Let us denote byH the family of all horizontal curves. Distance function corresponding X is defined by

d(x, y) = inf{lh(γ) : γ ∈ H, γ(0) = x, γ(lh(γ)) = y}, x, y ∈ Rn.

If d(x, y) is a metric, then this metric space is called the Carnot-Carathéodory space, generated by the system X .
Throughout this paper we assume that this distance function is a metric, specially that d(x, y) < ∞ for all

x, y ∈ Rn, and that the topology generated by it is the same as the classical Euclidean topology. This is ensured
if the system X enjoys the so-called Hörmander finite-rank condition. For more details on Carnot-Carethéodory
spaces, we refer the reader for instance to [18], [31] or [20].

For a function f ∈ L1
loc(Ω) its distributional derivative along the vector field Xj , Xjf , is defined by the

identity

〈Xjf, φ〉 =

∫

Ω

fX∗j φdx for every φ ∈ C∞0 (Ω),

where X∗j (.) = −∑n
k=1

∂
∂xk

(bj,k .) denotes the formal adjoint of Xj . Throughout the paper, if f is a non-
smooth function, Xjf will be meant in the distributional sense. We define the vector of X-gradient of a function
f as

X∇f = (X1f,X2f, . . . ,Xmf) .

Moreover, let us introduce the higher-order derivatives operators as

XDα(.) = Xα1
(Xα2

(. . . Xαk (.) . . .)) ,

where α = (α1, . . . , αk) ∈ {1, . . . ,m}k. The X-gradient of order k is defined as a vector of length mk of the
following form:

X∇kf =
(
XDα(f) : α ∈ {1, . . . ,m}k

)
.

Naturally, the norm of the X-gradient of order k reads as

∣∣X∇kf
∣∣2 =

∑

α∈mk
(XDα(f))2.

The X-variation and the X-perimeter can be defined as follows: If we denote

FΩ =




φ = {φ1, φ2, . . . φm} ∈ C1

0(Ω→ Rm) : sup
x∈Ω




m∑

j=1

|φj(x)|2



1
2

≤ 1




,

then, for a given u ∈ L1
loc(Ω), the X-variation of u with respect to Ω is defined as

VarX(u,Ω) = sup
φ∈FΩ

∫

Ω

u(x)
m∑

j=1

X∗j φj(x) dx.

The set of functions with bounded X-variation is denoted as BVX(Ω) and forms a Banach space with respect to
the norm

‖.‖BVX = ‖.‖L1(Ω) + VarX(.,Ω).

If X∇f ∈ L1(Ω), then

VarX(f,Ω) ≤ Ĉ ‖X∇f‖L1 (1)

Copyright line will be provided by the publisher



4 Franců M.: Higher-order Sobolev-type embeddings on CC spaces

where Ĉ > 0 depends only on m.
If E ⊂ Rn is measurable, then the X-perimeter of E relative to Ω is defined by

PX(E,Ω) = VarX(χE ,Ω),

where χE denotes the characteristic function of E. The X-isoperimetric function of Ω is given by the following
formula

IX,Ω(s) = inf

{
PX(E,Ω) : E ⊂ Ω, s ≤ |E| ≤ 1

2

}
for s ∈

[
0,

1

2

]
,

and IX,Ω(s) = IX,Ω (1− s) if s ∈
(

1
2 , 1
]
.

An open set Ω ⊂ Rn is called an X-John domain if there exist a constant c ∈ (0, 1) and a point x0 ∈ Ω
such that for every x ∈ Ω there exists a rectifiable curve ω : [0, l] → Ω, parametrised by arc-length, such that
ω(0) = x, ω(l) = x0, and

d(ω(r), ∂XΩ) ≥ cr for r ∈ [0, l].

Now we turn our attention to the rearrangement-invariant function spaces. The basic reference for reader
interested in more details is [2]. We recall the non-increasing rearrangement and distribution function.

Let u ∈M(Ω), then

µu(t) = |{x ∈ Ω : |u(x)| > t}| , t ∈ [0,∞),

is the distribution function of u.
Let (R, λ) and (S, µ) be two measurable spaces. Functions u ∈ M(R, λ) and v ∈ M(S, µ) are called

equimeasurable if µu = µv (on R+).
The non-increasing rearrangement of function u ∈M(R, λ) is then defined as

u∗(t) = inf {s ≥ 0 : µu(s) ≤ t} , t ∈ [0,∞).

A mapping ρ : M+(R, λ)→ [0,∞] is called a rearrangement-invariant Banach function norm if, for all f, g and
{fn}n∈N in M+(R, λ), every a ≥ 0, and for all Lebesgue measurable E ⊂ Ω, the following properties hold:

1. ρ(f) = 0 if and only if f = 0 a.e.. Moreover, ρ(af) = aρ(f) and ρ(f + g) ≤ ρ(f) + ρ(g).

2. If 0 ≤ g ≤ f a.e. then ρ(g) ≤ ρ(f).

3. If 0 ≤ fn ↑ f a.e. then ρ(fn) ↑ ρ(f).

4. If |E| <∞ then ρ(χE) <∞.

5. If |E| < ∞ then
∫
E
f dλ ≤ CEρ(f), for some constant CE , 0 < CE < ∞, depending on E and ρ but

independent of f .

6. %(f) = %(g) for every pair of equimeasurable functions f and g in M+(R, λ).

The collection X = Xρ of all functions f ∈M(R, λ) for which ρ(|f |) <∞ is called a rearrangement-invariant
Banach function space (r.i. space). For each f ∈ X, define

‖f‖X = ρ (|f |) .

With any r.i. Banach function norm %, it is associated another functional %′ is defined on M+(R, λ) by

%′(g) = sup

{∫

Ω

fg : f ∈M+(R, λ), %(f) ≤ 1

}
, g ∈M+(R, λ).

Copyright line will be provided by the publisher
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It turns out that %′ is a r.i. Banach function norm, which is called associate function norm of %. Let us note that
if |Ω| < ∞ then to any r.i. Banach function space X(Ω) there exists a representation rearrangement-invariant
Banach function norm %X : M+(0, 1)→ [0,∞] such that

‖f‖X(Ω) = %X (f∗ (|Ω| ·)) , f ∈ X(Ω).

This allows us to work sometimes with function spaces over simple measurable space (0, 1) instead of with
function spaces over Ω.

Next, we recall some examples of r.i. spaces and some of their basic properties. This matter is depending only
on the properties of measurable space (Ω, λn) which is the same as in the classical Euclidean case. More detailed
treatment of this topic, together with proofs of subsequent statements can be found in [32]. The most common
examples of a rearrangement-invariant Banach function norms are the Lebesgue norms, defined for f ∈ M(Ω)
as

‖f‖Lp(Ω) =

(∫ |Ω|

0

(f∗)p (t)

) 1
p

dt

when p ∈ [1,∞), and

‖f‖L∞(Ω) = ess supΩ |f |

when p =∞. The associate space to Lp(Ω) is Lp
′
(Ω) = L

p−1
p (Ω).

Another examples are the Lorentz spaces Lp,q(Ω), determined by the functional

‖f‖Lp,q(Ω) =
∥∥∥s 1

p− 1
q f∗(s)

∥∥∥
Lq(0,|Ω|)

where 1 ≤ p, q ≤ ∞, f ∈M+(Ω),

where the expression 1
∞ is considered to be zero. The function ‖.‖Lp,q(Ω) is equivalent to a rearrangement-

invariant function norm if one of the following conditions is satisfied:

1 < p <∞, 1 ≤ q ≤ ∞,
p = q = 1,

p = q =∞.
It is easy to see that Lp,p(Ω) = Lp(Ω) for 1 ≤ p ≤ ∞ and (Lp,q)

′
(Ω) = Lp

′,q′(Ω).
Let us set

‖f‖Lp,q;α(0,1) =

∥∥∥∥s
1
p− 1

q logα
(

2

s

)
f∗(s)

∥∥∥∥
Lq(0,1)

,

for f ∈M+(0, 1). If one of the following conditions

1 < p <∞, 1 ≤ q ≤ ∞, α ∈ R;

p = 1, q = 1, α ≥ 0;

p =∞, q =∞, α ≤ 0;

p =∞, 1 ≤ q ≤ ∞, α+ 1
q < 0,

is satisfied, then ‖·‖Lp,q;α(0,1) is equivalent to a rearrangement-invariant function norm, called a Lorentz-Zygmund
function norm.

The last class of rearrangement-invariant function spaces that we will recall here are Orlicz spaces. Let
A : [0,∞) → [0,∞] be a convex (non-trivial), left-continuous function vanishing at 0. Such function is called
a Young function. The Orlicz space LA(Ω) is the rearrangement-invariant space associated with the Luxemburg
function norm defined by

‖f‖LA(0,1) = inf

{
λ > 0 :

∫ 1

0

A

(
f(s)

λ

)
ds ≤ 1

}
for f ∈M+(0, 1).
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6 Franců M.: Higher-order Sobolev-type embeddings on CC spaces

In the rest of this section we will recall some basic notions from the theory of function spaces.
Let m ∈ N and let X(Ω) be a rearrangement-invariant Banach function space. We define the m-th order

Sobolev space V mX X(Ω) as the set of all functions f ∈ M(Ω) such that X∇mf exists in a distributional sense
and it is represented by locally integrable functions such that |X∇mf | ∈ X(Ω).

If we adopt an additional restriction on behaviour of the isoperimetric function near zero, then functions in
V mX X(Ω) will also lie in V kXL

1(Ω) for k < m. Namely, if

IΩ,X(s) ≥ C̄s for s ∈
[
0,

1

2

]
(2)

with some constant C̄ > 0, then

V mX X(Ω)→ V kXL
1(Ω), for k = 0, 1, . . . ,m− 1.

The exact statement and its proof is given in the Proposition 11.
Provided that (2) holds, the V mX X(Ω) forms a normed linear space with respect to the norm

‖u‖VmX X(Ω) =
m−1∑

k=0

∥∥X∇ku
∥∥
L1(Ω)

+ ‖X∇mu‖X(Ω) .

Given two function spaces X(Ω) and Y(Ω), the notation X(Ω) → Y(Ω) represents the fact that there exists
a constant C independent of f ∈ X(Ω) such that

‖f‖Y ≤ C ‖f‖X .

In such case we say that X(Ω) is embedded into Y(Ω). By saying that Y is the optimal target in X(Ω)→ Y(Ω)
we mean that for any function space Z satisfying X(Ω)→ Z(Ω) one necessarily has Y(Ω)→ Z(Ω).

3 Main results

In this section we state our principal results. We shall often work with a certain monotone function I on [0, 1]
that estimates the isoperimetric function IΩ,X from below, rather than with IΩ,X itself. More precisely, in the
statements below, we shall often assume that there exists a nondecreasing function I : [0, 1] → [0,∞) and a
constant c > 0 such that

IX,Ω(s) ≥ cI(cs) for s ∈
[
0,

1

2

]
(3)

and

inf
t∈(0,1)

I(t)

t
> 0. (4)

Theorem 1 (Reduction theorem) Assume that Ω ⊂ Rn is open, |Ω| = 1, such that there is some non-deceasing
function I satisfying (3) and (4). Letm ∈ N, and let ‖.‖X(0,1) and ‖.‖Y(0,1) be rearrangement-invariant function
norms. If there exists a constant C > 0 such that

∥∥∥∥∥

∫ 1

t

f(s)

I(s)

(∫ s

t

dr

I(r)

)m−1

ds

∥∥∥∥∥
Y(0,1)

≤ C ‖f‖X(0,1) (5)

for every nonnegative f ∈M+(0, 1), then

V mX X(Ω)→ Y(Ω). (6)
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Corollary 2 (Sobolev embeddings into L∞) Assume that Ω ⊂ Rn is open, |Ω| = 1, such that there is
some non-deceasing function I satisfying (3) and (4). Let m ∈ N, and let ‖.‖X(0,1) be rearrangement-invariant
function norm. If

∥∥∥∥∥
1

I(s)

(∫ s

0

dr

I(r)

)m−1
∥∥∥∥∥
X′(0,1)

<∞, (7)

then

V mX X(Ω)→ L∞(Ω).

In this generality, the isoperimetric function is usually unknown. However, in [17] it was shown that the
isoperimetric function can be evaluated if some additional conditions holds. The first such condition is the
following version of the doubling condition: for any set U ⊂ Rn with diam(U) < ∞, there exist constants
C1 > 0 and R0 <∞ such that for x0 ∈ U and 0 < R < R0 one has

|B(x0, 2R)| ≤ C1 |B(x0, R)| . (8)

It was shown in [31] that the finite-rank Hörmander condition implies the doubling condition.
The second restriction is the following version of the Poincaré inequality: for any setU ⊂ Rn with diam(U) <

∞, there exist constants C2 > 0, R0 < ∞ and α ≥ 1 such that for x0 ∈ U , 0 < R < R0 and every Lipschitz
function u in αB = B(x0, αR), we have for any λ > 0

∣∣∣∣
{
x ∈ B :

∣∣∣∣u(x)−
∫

B

u(x) dx

∣∣∣∣ > λ

}∣∣∣∣ ≤
C2

λ

∫

αB

|X∇u(y)| dy. (9)

Let U ⊂ Rn and denote by C the smallest constant in (8). Then the homogeneous dimension relative to U
(and X) is defined by

Q = log2(C).

An open set Ω ⊂ Rn is called X-PS domain if there exist a covering {B}B∈F of Ω by metric balls and
numbers N > 0, α ≥ 1, and ν ≥ 1 such that

1.
∑
B∈F χ(α+1)B(x) ≤ NχΩ(x) for every x ∈ Ω.

2. There exists (central) ball B0 ∈ F such that for any B ∈ F one can find a chain B0, B1, . . . , Bs(B) = B,
with Bi ∩Bi+1 6= ∅ and |Bi ∩Bi+1| ≥ 1

N max (|Bi| , |Bi+1|) .
3. For any i = 0, . . . , s(B), one has B ⊂ νBi.
If the metric space (Rn, d) is in addition complete and a length-space, then it is shown in [17] that metric balls

with small diameter are X-PS domains.
The class ofX-PS domains is larger than the class of non-tangentially accessible domains (introduced in [22]),

the class of extension domains (introduced in [24]) and X-John domain. In [30] it is shown that if X is generated
by structure of a step two homogeneous group then any C1,1 domain is a X-NTA domain and consequently a
X-PS domain. More examples of X-NTA and therefore X-PS domains can be found in [5]. However, the task
of finding X-PS domains in a general setting is rather non-trivial.

In [17, Theorem 1.18] it is shown that if Ω ⊂ Rn is an X-PS domain (and conditions (8) and (9) are in hold),
then

IX,Ω(s) ≤





C

diam(Ω)|Ω|−
1
Q
s
Q−1
Q , for s ∈

[
0, 1

2

]
;

C

diam(Ω)|Ω|−
1
Q

(1− s)
Q−1
Q , for s ∈

(
1
2 , 1
]
,

(10)

where Q is the homogeneous dimension relative to Ω.
The known and sufficiently regular isoperimetric function ofX-PS domains yields the following simplification

of the condition in the reduction theorem.
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8 Franců M.: Higher-order Sobolev-type embeddings on CC spaces

Theorem 3 (Reduction theorem for X-PS domains) Let us consider the case when X is such that the con-
ditions (8), (9) are fulfilled. Assume that Ω ⊂ Rn is an X-PS domain, |Ω| = 1, denote by Q the homogeneous
dimension relative to Ω. Let m ∈ N, and let ‖.‖X(0,1) and ‖.‖Y(0,1) be rearrangement-invariant function norms.
If there exists a constant C such that

∥∥∥∥
∫ 1

t

f(s)s−1+m
Q ds

∥∥∥∥
Y(0,1)

≤ C ‖f‖X(0,1) (11)

for every nonnegative f ∈M(0, 1), then

V mX X(Ω)→ Y(Ω). (12)

We shall now state some particular embeddings which follow from our main theorems.
Theorem 4 Assume that the conditions (8), (9) are fulfilled, let Ω ⊂ Rn be an X-PS domain and denote by

Q the homogeneous dimension relative to Ω. Let m ∈ N and p ∈ [1,∞]. Then the following embeddings hold:

V mX Lp(Ω)→





L
Qp

Q−mp (Ω) if m < Q and 1 ≤ p < Q
m ,

Lr(Ω) for r ∈ [1,∞), if m < Q and p = Q
m .

L∞(Ω) otherwise.

(13)

Theorem 5 Assume that the conditions (8), (9) are fulfilled, let Ω ⊂ Rn be an X-PS domain and denote Q
the homogeneous dimension relative to Ω and X . Let m ∈ N, 1 < p <∞ and 1 ≤ q ≤ ∞, then

V mX Lp,q(Ω)→





L
Qp

Q−mp ,q(Ω) if m < Q and 1 ≤ p < Q
m ,

L∞,q;−1(Ω) if m < Q, p = Q
m and q > 1.

L∞(Ω) otherwise.

(14)

Theorem 4 covers the cases L1,1(Ω) = L1(Ω) and L∞,∞(Ω) = L∞(Ω), therefore all settings of parameters
p and r which leads to r.i. function norm are covered in Theorems 4 and 5.

Theorem 6 Assume that the conditions (8), (9) are fulfilled, let Ω ⊂ Rn be an X-PS domain and denote by
Q the homogeneous dimension relative to Ω. Let m ∈ N and let A be a Young function fulfilling

∫ s

0

(
t

A(t)

) m
Q−m

dt <∞, for some s > 0. (15)

Let us introduce the following notation of a Young function Am,Q

Am,Q(t) =

∫ H−1
m
Q

(t)

0

A(τ)

τ
dτ,

where

Hp(τ) =

(∫ τ

0

(
%

A(%)

) 1
p−1

d%

)1− 1
p

.

If m < Q and the integral

∫ ∞

s

(
1

A(t)

) m
4−m

dt, (16)

for some s > 0 diverges, then

V mX LA(Ω)→ LAm,Q(Ω). (17)

Moreover, if one of the following conditions holds:
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• m ≥ Q,

• m < Q and the integral (16) converges,

then

V mX LA(Ω)→ L∞(Ω). (18)

In the rest of this section we will turn our attention to the setting of the Heisenberg group. It can be represented
as R3 (with the corresponding group operation) endowed with the system of vector fields

X1 =
∂

∂x1
− x2

2

∂

∂x3
and X2 =

∂

∂x2
+
x1

2

∂

∂x3
.

Let us denote

H = {X1, X2} .

The Carnot-Carathéodory space generated by H satisfies the Hörmander condition and conditions (8), (9). The
homogeneous dimension of H-PS domains is Q = 4. Moreover, in the case of the Heisenberg group the H-PS
domains coincide with H-John domains as it is shown in [17].

Theorem 4, Theorem 5 and Theorem 6 yield the following embeddings on the Heisenberg group.
Corollary 7 (Imbeddings of Lebesgue spaces on the Heisenberg group) Let Ω ⊂ R3 be a H-PS domain. Let

m ∈ N and p, q ∈ [1,∞]. Then the following embeddings hold:

V mH Lp(Ω)→





L
4p

4−mp (Ω) if m < 4 and 1 ≤ p < 4
m ,

Lr(Ω) for r ∈ [1,∞), if m < 4 and p = 4
m ,

L∞(Ω) otherwise.

(19)

Corollary 8 (Imbeddings of Lorentz spaces on the Heisenberg group) Let Ω ⊂ R3 be a H-PS domain. Let
m ∈ N, 1 < p <∞ and 1 ≤ q ≤ ∞, then

V mH Lp,q(Ω)→





L
4p

4−mp ,q(Ω) if m < 4 and 1 ≤ p < 4
m ,

L∞,q;−1(Ω) if m < 4, p = 4
m and q > 1,

L∞(Ω) otherwise.

(20)

Corollary 9 (Imbeddings of Orlicz spaces on the Heisenberg group) Let Ω ⊂ R3, an H-PS domain. Let
m ∈ N and let A be a Young function fulfilling

∫ s

0

(
t

A(t)

) m
4−m

dt <∞, for some s > 0.

If m < 4 and the integral

∫ ∞

s

(
1

A(t)

) m
4−m

dt (21)

for some s > 0 diverges, then we have

V mH LA(Ω)→ LAm,4(Ω). (22)

Moreover, if one of the following conditions holds

• m ≥ 4,

• m < 4 and the integral (21) converges,
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10 Franců M.: Higher-order Sobolev-type embeddings on CC spaces

then

V mH LA(Ω)→ L∞(Ω). (23)

In the case of the Heisenberg group the sufficient condition can be proved to be necessary as well.
Theorem 10 Let m ∈ N. Let ‖.‖X(0,1) and ‖.‖Y(0,1) be rearrangement-invariant function norms such that

V mH X(Ω)→ Y(Ω) (24)

for all H-John domains Ω ⊂ R3. Then there exists a constant C such that
∥∥∥∥
∫ 1

t

f(s)s−1+m
Q ds

∥∥∥∥
Y(0,1)

≤ C ‖f‖X(0,1) (25)

for all f ∈M+(0, 1).

4 Background theorems

We will state some theorems that will be used in proofs in Section 5. First, let us recall the Carnot-Carathéodory
co-area formula, [17, Theorem 5.2]:

Let Ω ⊂ Rn be open, u ∈ BVX(Ω), and for t ∈ R denote

Eu(t) = {x ∈ Ω : u(x) > t}.

Then the following holds:

• PX(Eu(t),Ω) <∞ for a.e. t ∈ R.

• Moreover,

VarX(u; Ω) =

∫ ∞

−∞
PX(Eu(t),Ω) dt. (26)

• Conversely, if u ∈ L1(Ω) and
∫∞
−∞ PX(Eu(t),Ω) dt <∞, then u ∈ BVX(Ω).

Proposition 11 Let Ω ⊂ Rn, with |Ω| <∞, m ∈ N. Suppose that

IΩ,X(s) ≥ C̄s for s ∈
[
0,

1

2

]
, (27)

with some constant C̄ > 0. Then

V mX X(Ω)→ V kXL
1(Ω), for k = 0, 1, . . . ,m− 1.

P r o o f. First, we will show that

C ‖u−med(u)‖L1(Ω) ≤ ‖X∇u‖L1(Ω) (28)

for every u ∈ V 1
XL

1(Ω), where med(u) is the real number satisfying

|{u < med(u)}| ≤ |Ω|
2

and |{u > med(u)}| ≤ |Ω|
2

and C > 0 is some constant independent of u. Without loss of generality, we can assume that med(u) = 0,
because both sides of inequality will yield the same value with function u as with function u −med(u). Let us
set u+ = 1

2 (|u|+ u) and u− = 1
2 (|u| − u). We have that u± ∈ L1(Ω), [17, Lemma 3.5]. Note that

|{u± > t}| ≤ 1

2
, for t > 0. (29)
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Of course, thanks to (27), (29) and the isoperimetric inequality, we have

PX({u± > t,Ω}) ≥ IX,Ω(|{u± > t,Ω}|) ≥ C̄ |{u± > t,Ω}| , (30)

where C̄ is a constant from (27). Consequently, the inequalities (30) and (26) yield

C̄ ‖u±‖L1(Ω) = C̄

∫ ∞

0

|{u± > t}| dt ≤
∫ ∞

0

PX ({u± > t} ,Ω) dt

≤
∫

Ω

|X∇u±(x)| dx.

It follows that u−med(u) is in L1(Ω) for all u ∈ V 1
XL

1(Ω). Consequently, u ∈ L1(Ω).
Since we are considering Ω of finite measure, we have X(Ω) → L1(Ω). Iterated use of the embedding

V 1
XL

1(Ω)→ L1(Ω) yields our claim.

Lemma 12 (Generalised Polya-Szegö principle ) Let Ω ⊂ Rn, Ω is open, and let X be an r.i. space, assume
u ∈ V 1

XX(Ω). Then u∗ is locally absolutely continuous and

C

∥∥∥∥
(
−du

∗

ds

)
IX,Ω(s)

∥∥∥∥
X(0,1)

≤ ‖X∇u‖X(Ω) , (31)

with C > 0 independent of u ∈ V 1
XX(Ω).

P r o o f. Let us set

φ(s) =

(
−du

∗

ds

)
IX,Ω(s), 0 < s < 1.

If we show that
∫ s

0

φ∗(r) dr ≤
∫ s

0

|X∇u|∗ (r) dr, 0 < s < 1, (32)

then (31) will follow by applying the Hardy-Littlewood-Pólya principle, see [2, Chapter 2, Theorem 4.6]. Let
0 ≤ a < b ≤ |Ω|, we denote

Du
a,b = {x ∈ Ω : u∗(a) > |u(x)| > u∗(b)} .

We define v = va,b by

v(x) =





(u∗(a)− u∗(b)) signu(x) x ∈ {y : |u(y)| ≥ u∗(a)},
u(x)− u∗(b) signu(x) x ∈ {y : u∗(a) > |u(y)| > u∗(b)},
0 x ∈ {y : u∗(b) ≥ |u(y)|}.

Function v can be obtained from u through several applications of subtraction of a constant, multiplication by
(−1) and truncation operator defined

u+(x) = max[u(x), 0],

for x ∈ Ω, u ∈M(Ω). But [17, Lemma 3.5] yields that

X∇u+ =

{
X∇u a. e. on {x ∈ Ω : u(x) ≥ 0} ,
0 otherwise,

for u ∈ V 1
XL

1(Ω). Therefore we have that |X∇u| = |X∇v| almost everywhere in Du
a,b and X∇v = 0

elsewhere. Consequently we have that v ∈ V 1
XL

1(Ω).
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12 Franců M.: Higher-order Sobolev-type embeddings on CC spaces

If we apply the equalities (1) and (26) to the function v, we get

∫

Dua,b

|X∇u| dx =

∫

Ω

|X∇v| dx ≥ C
∫ u∗(a)

u∗(b)
PX (Ev(t),Ω) dt, (33)

where C is a constant dependent only on m. Now, we use the definition of IX,Ω to get
∫ u∗(a)

u∗(b)
PX (Ev(t),Ω) dt ≥

∫ u∗(a)

u∗(b)
IX,Ω (|Ev(t)|) dt (34)

≥ (u∗(a)− u∗(b)) min [IX,Ω(a), IX,Ω(b)] .

The latter inequality together with the inequality

|{x ∈ Ω : u∗(a) > |u(x)| > u∗(b)}| ≤ b− a, (35)

and the absolute continuity of Lebesgue integral ensures that u∗ is locally absolutely continuous. We apply
change of variables u∗(s) = t to the combination of equations (33) and (34) to get

∫

Dua,b

|X∇u(x)| dx ≥
∫ b

a

IX,Ω (s)

(
−du

∗

dt

)
(s) ds.

The Hardy-Littlewood inequality, together with (35) yields that for any disjoint system of intervals

{(ai, bi), i = 1, . . . , k; ai, bi ∈ [0, |Ω|)}

we have
∫

∪(ai,bi)

φ(r) dr ≤
∫ ∑

bi−ai

0

|X∇u|∗ (r) dr.

Consequently, the outer regularity of the Lebesgue measure yields

sup
E⊂(0,|Ω|):|E|=s

∫

E

φ(r) dr ≤
∫ s

0

|X∇u|∗ (r) dr, 0 < s < |Ω| .

Since R1 is resonant, we get
∫ s

0

φ∗(r) dr ≤
∫ s

0

|X∇u|∗ (r) dr,

for 0 < s < |Ω|. Therefore (32) holds and an application of Hardy-Littlewood-Polya principle completes the
proof.

In the remaining part of this section we survey some auxiliary tools that will be useful in the proof of our main
results. We follow the notation from [8]. Since these facts are connected only to certain operators defined on
functions on real line, the Carnot-Carathéodory structure won’t interfere.

Let I : [0, 1] → [0,∞) be a measurable function satisfying (4). We define the following two operators from
M+(0, 1) into M+(0, 1) by

HI(f)(t) =

∫ 1

t

f(s)

I(s)
ds,

and

RI(f)(t) =
1

I(t)

∫ t

0

f(s) ds for t ∈ (0, 1].
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Moreover, given j ∈ N, we set

Hj
I (f) = HI ◦HI ◦ · · · ◦HI︸ ︷︷ ︸

j−times

(f).

We also set H0
I = Id.

Given a rearrangement-invariant function space X(0, 1), we set

‖f‖X′m,I(0,1) =

∥∥∥∥∥
1

I(t)

∫ t

0

(∫ t

s

dr

I(r)

)m−1

f∗(s) ds

∥∥∥∥∥
X′(0,1)

.

Next, define ‖.‖Xj(0,1) as the rearrangement-invariant function norm whose associate norm ‖.‖X′j(0,1) is given,
via iteration, by ‖.‖X′0(0,1) = ‖.‖X′(0,1), and, for j ≥ 1, by

‖f‖X′j(0,1) = ‖RI (f∗)‖X′j−1(0,1) , for f ∈M+(0, 1).

We recall that it was shown in [8] that for every m ∈ N and f ∈M+(0, 1), one has

Hm
I f(t) =

1

(m− 1)!

∫ 1

t

f(s)

I(s)

(∫ s

t

dr

I(r)
dr

)m−1

ds. (36)

Moreover, if we define the norm ‖.‖Xm,I
as the associated norm to ‖.‖X′m,I(0,1), then

Hj
I : X(0, 1)→ Xj,I(0, 1), j ∈ N, (37)

and Xj,I is the optimal target among all r.i. spaces.
Furthermore,

X1(0, 1) = X1,I(0, 1) and Xj(0, 1) =
(
. . . (X1,I)1,I . . .

)
1,I︸ ︷︷ ︸

j−times

(0, 1),

for j ∈ N. In particular,

(Xk)h (0, 1) = Xk+h(0, 1). (38)

5 Proofs of the main results

The proof of the reduction theorem is split into two steps. First we prove our claim in the case m = 1, using an
approach similar to the one from [15]. The second step is then based on an iteration of the first-order result.

Proof of Theorem 1. Step one. Assume that m = 1. Fix u ∈ V 1
XX(Ω) and let t ∈ [0, 1

2 ], set α =
limt→ 1

2− u
∗(t), then we have

u∗ (t) =

∫ 1
2

t

−
(
IX,Ω

du∗

ds

)
(s)

1

IX,Ω(s)
ds+ α

≤
∫ 1

2

t

∣∣∣∣−
(
IX,Ω

du∗

ds

)
(s)

∣∣∣∣
1

IX,Ω(s)
ds+ α

≤
∫ 1

2

t

∣∣∣∣−
(
IX,Ω

du∗

ds

)
(s)

∣∣∣∣
1

c

1

I(cs)
ds+ α,

where c is the constant from (3). Moreover, the property 4. from definition of r.i. Banach function norm yields
∥∥∥χ(0, 12 )(t)α

∥∥∥
Y
≤ αCY ≤ 2CY ‖u∗(t)‖L1(0,1) ,
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14 Franců M.: Higher-order Sobolev-type embeddings on CC spaces

where CY > 0 is a constant independent of u. Consequently, we have

‖u‖Y(Ω) = ‖u∗(t)‖Y(0,1) ≤ 2
∥∥∥u∗ (t)χ[0, 12 ](t)

∥∥∥
Y(0,1)

≤ 2

c

∥∥∥∥∥χ[0, 12 ](t)

∫ 1
2

t

∣∣∣∣
(
IX,Ω

du∗

ds

)
(s)

∣∣∣∣
1

I(cs)
ds

∥∥∥∥∥
Y(0,1)

+ 2CY ‖u∗‖L1(0,1)

≤ 2

c

∥∥∥∥
∫ 1

t

∣∣∣∣
(
IX,Ω

du∗

ds

)
(s)

∣∣∣∣
1

I(cs)
ds

∥∥∥∥
Y(0,1)

+ 2CY ‖u∗‖L1(0,1) .

Using the assumption of this theorem and boundedness of dilations on rearrangement-invariant spaces, we get

‖u‖Y(Ω) ≤ 2

c

∥∥∥∥
(
IX,Ω

du∗

ds

)
(cs) ds

∥∥∥∥
X(0,1)

+ 4CY ‖u∗‖L1(0,1)

≤ 2C ′

c

∥∥∥∥
(
IX,Ω

du∗

ds

)
(s) ds

∥∥∥∥
X(0,1)

+ 4CY ‖u∗‖L1(0,1) ,

where C ′ is the constant of boundedness of dilation operator on Y(0, 1) ([2, Chapter 3, Proposition 5.11]).
An application of Lemma 12 then yields our claim.
Step two. Now suppose that m > 1. From (37) with j = 1, we get

∥∥H1
I f
∥∥
X1,I(0,1)

=

∥∥∥∥
∫ 1

t

f(s)

I(s)
ds

∥∥∥∥
X1,I(0,1)

≤ C ‖f‖X(0,1) , for f ∈M+(0, 1),

thus (5) holds with m = 1 and Y(0, 1) = X1,I(0, 1). Hence we get (from the case m = 1)

V 1
XX(Ω)→ X1(Ω).

Consequently, if we apply this embedding to all spaces Xj(Ω), for j = 0, . . . ,m− 1, we get

V 1
XXj(Ω)→ Xj+1(Ω),

in other words, there are constants Cj > 0, j = 0, . . . ,m− 1, such that

‖u‖Xj+1(Ω) ≤ Cj
(
‖u‖L1(Ω) + ‖X∇u‖Xj(Ω)

)
,

for all u ∈ V 1
XXj(Ω), j = 0, . . . ,m− 1. Therefore, there is a constant C ′ > 0 such that

‖u‖Xm(Ω) ≤ Cm ‖u‖V 1
XXm−1(Ω) = Cm

(
‖u‖L1(Ω) + ‖X∇u‖Xm−1(Ω)

)

≤ Cm

(
‖u‖L1(Ω) + Cm−1

(
‖X∇u‖L1(Ω) +

∥∥X∇2u
∥∥
Xm−2(Ω)

))

...

≤ (Πm
i=1 max {1, Ci})



m−1∑

j=1

∥∥X∇ju
∥∥
L1(Ω)

+ ‖X∇mu‖X(Ω)




≤ C ′ ‖u‖VmX X(Ω)

holds for all u ∈ V 1
XXj(Ω). Hence,

V mX X(Ω)→ Xm(Ω).

The assumption of this theorem implies that

Hm
I : X(0, 1)→ Y(0, 1).
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Optimality of the space Xm,I(0, 1) as a target in (37) yields

Xm,I(0, 1)→ Y(0, 1).

Altogether, then there are constants D,D′, D′′ > 0 such that for all u ∈ V mX X(Ω) one has

‖u‖Y(Ω) = ‖u∗‖Y(0,1) ≤ D ‖u∗‖Xm,I(0,1) ≤ D′ ‖u∗‖Xm(0,1) ≤ D′′ ‖u‖VmX X(Ω) .

In other words

V mX X(Ω)→ Y(Ω),

as desired.

Proof of Corollary 2. We have for f ∈M+(0, 1)

∥∥∥∥∥

∫ 1

t

f(s)

I(s)

(∫ s

t

dr

I(r)

)m−1

ds

∥∥∥∥∥
L∞(0,1)

=

∫ 1

0

f(s)

I(s)

(∫ s

0

d r

I(r)

)m−1

ds.

Therefore,

sup
f≥0,‖f‖X(0,1)≤1

∥∥∥∥∥

∫ 1

t

f(s)

I(s)

(∫ s

t

dr

I(r)

)m−1

ds

∥∥∥∥∥
L∞(0,1)

=

=

∥∥∥∥∥
1

I(s)

(∫ s

0

d r

I(r)

)m−1
∥∥∥∥∥
X′(0,1)

.

This shows that (5) with Y(0, 1) = L∞(0, 1) is equivalent to (7), and the application of Theorem 1 yields the
claim.

Proof of Theorem 3. Assumptions of this Theorem combined with (10) yield that the function I(s) = s
Q−1
Q

satisfies conditions (3) and (4). For f ∈M+(0, 1) it holds
∫ 1

t

f(s)

I(s)

(∫ s

t

dr

I(r)

)m−1

ds =

∫ 1

t

f(s)s−
Q−1
Q

(∫ s

t

dr

r
Q−1
Q

)m−1

ds

≤
∫ 1

t

f(s)s−
Q−1
Q

(∫ s

0

dr

r
Q−1
Q

)m−1

ds

≤
∫ 1

t

f(s)s−1+m
Q ds.

Therefore, the inequality (11) yields
∥∥∥∥∥

∫ 1

t

f(s)

I(s)

(∫ s

t

dr

I(r)

)m−1

ds

∥∥∥∥∥
Y(0,1)

≤
∥∥∥∥
∫ 1

t

f(s)s−1+m
Q ds

∥∥∥∥
L1(Ω)

≤ C ‖f‖X(0,1) ,

where C is a constant from (11). This means that the assumptions of Theorem 1 are verified and its application
completes the proof.

Proof of Theorem 4. Function I(s) = s
Q−1
Q is estimating the isoperimetric function IX,Ω near zero in sense

of conditions (3) and (4). In [8, proof of Theorem 6.8] it is shown that

(Lp)m,I (0, 1)→ L
Qp

Q−mp (0, 1), if m < Q and 1 ≤ p < Q

m
,
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and

(Lp)m,I (0, 1)→ Lr(0, 1) for r ∈ [1,∞), if m < Q and p =
Q

m
.

This, together with (37) and (36) ensures that there exist a constants C1, C2 > 0 independent of f ∈ M(0, 1)
such that

∥∥∥∥∥

∫ 1

t

f(s)

I(s)

(∫ s

t

dr

I(r)

)m−1

ds

∥∥∥∥∥
L

Qp
Q−mp (0,1)

≤ C1 ‖f‖Lp(0,1)

if m < Q, 1 ≤ p < Q
m , and

∥∥∥∥∥

∫ 1

t

f(s)

I(s)

(∫ s

t

dr

I(r)

)m−1

ds

∥∥∥∥∥
Lr(0,1)

≤ C2 ‖f‖Lp(0,1) ,

for r ∈ [1,∞), provided that m < Q and p = Q
m . First two cases in (19) thus follow by application of Theorem

1.
The proof of the last case relies on Corollary 2. There is a constant C3 > 0 depending on m and Q such that

Φ =

∥∥∥∥∥
1

I(s)

(∫ s

0

dr

I(r)

)m−1
∥∥∥∥∥

p′

Lp′ (0,1)

= C
∥∥∥smQ−1

∥∥∥
p′

Lp′ (0,1)

= C

∫ 1

0

(
s
m
Q−1

)p′
ds = C

∫ 1

0

s(
m
Q−1) p

p−1 ds.

If m ≥ Q, then Φ < ∞ because the exponent of s inside the integral on the last line is not negative. If m < Q
and p > Q

m , then

(
m

Q
− 1

)
p

p− 1
>

(
m

Q
− 1

) Q
m

Q
m − 1

= −1.

Therefore Φ <∞ if m ≥ Q or m < Q and p > Q
m . Assumptions of Corollary 2 are verified and it’s application

will provide the rest of (13).

Proof of Theorem 5. It is shown in [8, proof of Theorem 6.9] that if m < Q and 1 ≤ p < Q
m then

‖f‖(Lp,q)′m,I(0,1) ≈c ‖f‖(
L

Qp
Q−mp ,q

)′
(0,1)

,

where the equivalence holds up to constants depending on p and q. Therefore, (37) yields that

Hj
I : (Lp,q)m,I (0, 1)→ L

Qp
Q−mp ,q(0, 1)

and the claim follows from Theorem 1.
Additionally, it is shown in [8] that if m < Q, p = Q

m and q > 1 then

‖f‖(Lp,q)′m,I(0,1) ≈c ‖f‖(L∞,q;−1)′(0,1) .

Application of Theorem 1 then yields the claim.
To achieve embeddings into L∞(Ω), we will use Corollary 2. The inequality (7) in our setting reads as

∥∥∥smQ−1
∥∥∥
Lp′,q′ (0,1)

<∞. (39)

This can be verified by simple computation.
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Proof of Theorem 6. It is shown in [6, Theorem 3.5, with choice of p = m
Q and q = p

p−1 ] that for A fulfilling
(15) it holds with some constant C1 > 0 that

∥∥∥∥
∫ 1

t

f(s)s−1+m
Q ds

∥∥∥∥
LAm,Q (0,1)

≤ C1 ‖f‖LA(0,1) , f ∈M(0, 1),

if integral (16) diverges for some s > 0 and m < Q. Therefore, Theorem 3 implies our claim in that case. It is
shown in [6] as well, that if m < Q and (16) converges for some s > 0, then there is a constant C2 > 0 such that

∥∥∥∥
∫ 1

t

f(s)s−1+m
Q ds

∥∥∥∥
L∞(0,1)

≤ C2 ‖f‖LA(0,1) , f ∈M(0, 1),

which yields the second case. The remaining case when m ≥ Q follows from the application of Theorem 3. We
have that if ε = −1 + m

Q ≥ 0, then for some C3 > 0

∥∥∥∥
∫ 1

0

f(s)sε ds

∥∥∥∥
L∞(0,1)

≤
∫ 1

0

f(s)sε ds ≤ C3 ‖f‖LA(0,1) , f ∈M(0, 1),

since LA(0, 1) ⊂ L1(0, 1).

Corollaries 7, 8 and 9 are just particular cases of appropriate more general results above.
Proof of Theorem 10 uses the notion of Korányi gauge (see [25]) on the Heisenberg group:

‖(x1, x2, x3)‖4H = (x2
1 + x2

2)2 + 16x2
3, for (x1, x2, x3) ∈ R3.

Korányi ball with centre (0, 0, 0) and diameter s is defined as follows:

BH(s) = {x ∈ H : ‖x‖H ≤ s} .

Let us note that |BH(s)| = Ks4, for some K > 0 and that BH is a H-John domain [5, Corollary 5].
To a given function f ∈M+(0, 1), let us define the m-th order symmetral

uf,m(x) = g(‖x‖H) =

∫ 1

K‖x‖4H

∫ 1

t1

. . .

∫ 1

tm−1

f(tm)t
−m+m

4
m dtm . . . dt2 dt1.

where x ∈ B = BH(1). Functions uf,m are fabricated in such way that norm of their m-th order gradient can be
controlled by properties of function f , as it is shown in the following lemma.

Lemma 13 Let f ∈M(0, 1), m ∈ N, then

|H∇m(uf,m)(x)| ≤ Ĉ


f(K ‖x‖4H) +

m−1∑

j=1

‖x‖4j−mH

∫ 1

K‖x‖4H
f(s)sm−

m
4 ds


 ,

for x ∈ B.

P r o o f. Let us begin by stating few technical observations. Consider k ≥ 1, α ∈ {1, 2}k and x ∈ B, then

1.

HDα ‖x‖H =

h∑

i=1

Ci
x
ei,1
1 x

ei,2
2 x

ei,3
3

‖x‖piH

for some constants ei,1, ei,2, ei,3, pi and Ci, where h depends only on k. This can be shown by induction
with respect to k through simple computation.
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2.

|HDα ‖x‖H| ≤
C

‖x‖k−1
H

,

where C depends only on k. This inequality is easily verified for k = 1. The case when k > 1 follows
by induction. According to the previous observation, (k − 1)-th derivatives must be written as a linear
combination of expressions

Pk−1,i =
x
ek−1,i,1

1 x
ek−1,i,2

2 x
ek−1,i,3

3

‖x‖pk−1,i

H
, i = 1, . . . , h.

Thanks to the induction assumption it must hold for all exponents pk−1,i, ek−1,i,1, ek−1,i,2 and ek−1,i,3 that

pk−1,i − (ek−1,i,1 + ek−1,i,2 + 2ek−1,i,3) < k − 2.

Computation of Xα1
(Pk−1,i) then yields the desired inequality for k.

3. HDαuf,m(x) can be expressed in the following way:

HDαuf,m(x) =

n∑

i=1

Cig
(li)(‖x‖H)HDαi,1 ‖x‖H . . .HDαi,h ‖x‖H ,

where li ∈ N, αi,j are multi-indices which satisfy
h∑

j=1

(|αi,j | − 1) = |α| − li, for all i = 1, . . . , n, (40)

and n is a constant depending only on k. Particularly, if li = k then |αi,j | = 1 for all j. This can be shown
by induction as well. The induction step consists of verification that the application of vector field Xα1

preserve condition (40).

4. There is C ′ > 0 such that
∣∣∣g(l)(‖x‖H)

∣∣∣ ≤ C ′
l∑

j=1

‖x‖4j−lH

∫ 1

K‖x‖H
f(s)sm−

m
4 ds, x ∈ B.

This inequality follows from the fact that g(l)(‖x‖H) is a linear combination of the expressions

Rl,j = ‖x‖4j−lH

∫ 1

K‖x‖4H
. . .

∫ 1

tm−1

f(tm)t
m−m4
m dtm . . . dtj+1.

Simple estimates obtained by extending domains of integration of integrals yield that there is Ĉ > 0 such
that

Rl,j ≤ Ĉ ‖x‖4j−lH

∫ 1

K‖x‖4H
f(s)sm−

m
4 ds, f ∈M(0, 1).

Combining given observations we get

|H∇m(uf )(x)| ≤ C

m∑

l=1

g(l)(‖x‖H)

‖x‖m−lH

≤ Ĉ
l∑

j=1

‖x‖4j−mH

∫ 1

K‖x‖4H
f(s)sm−

m
4 ds

≤ Ĉ


f(K ‖x‖4H) +

m−1∑

j=1

‖x‖4j−mH

∫ 1

K‖x‖4H
f(s)sm−

m
4 ds


 .
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Proof of Theorem 10. Fix f ∈M+(0, 1). Constants C1, C2, . . . , C6 used below are independent of choice of
f . Using the previous lemma we get with some C1 > 0

‖|H∇m(uf )|‖X(B) ≤ C1



∥∥∥f(K ‖x‖4H)

∥∥∥
X(B)

+
m−1∑

j=1

∥∥∥∥∥‖x‖
4j−m
H

∫ 1

K‖x‖H
f(s)sm−

m
4 ds

∥∥∥∥∥
X(B)




and therefore

∥∥|H∇m(uf )|∗
∥∥
X(0,1)

≤ C1


‖f‖X(0,1) +

m−1∑

j=1

∥∥∥∥j4j−m
∫ 1

j

f(s)sm−
m
4 ds

∥∥∥∥
X(0,1)


 .

Since, for j = 1, . . . ,m1,
∥∥∥∥t4j−m

∫ 1

t

f(s)sm−
m
4 ds

∥∥∥∥
L1(0,1)

≤ ‖f‖L1(0,1)

and
∥∥∥∥t4j−m

∫ 1

t

f(s)sm−
m
4 ds

∥∥∥∥
L∞(0,1)

≤ ‖f‖L∞(0,1) ,

the standard interpolation theory ([2, Chapter 3, Theorem 2.12]) yields that
∥∥∥∥t4j−m

∫ 1

t

f(s)sm−
m
4 ds

∥∥∥∥
X(0,1)

≤ C2 ‖f‖X(0,1) ,

Hence we have established following estimate
∥∥|H∇m(uf )|∗

∥∥
X(0,1)

≤ C1(C2 + 1)m ‖f‖X(0,1) . (41)

The assumption of this Theorem yields that there exists a constant C3 > 0 such that

‖|H∇m(uf )|‖X(B) ≥ C3

∥∥u∗f
∥∥
Y(0,1)

= C3

∥∥∥∥∥

∫ 1

t

∫ 1

t1

. . .

∫ 1

tm−1

f(tm)t
−m+m

4
m dtm . . . dt2 dt1

∥∥∥∥∥
Y(0,1)

.

Sequential applications of the Fubini Theorem then yield

∫ 1

tm−1

f(tm)t
−m+m

4
m dtm . . . dt2 dt1

=

∫ 1

t

f(tm)t
−m+m

4
m

∫ t1

t

. . .

∫ tm−1

t

dtm−1 . . . dt1 dtm

=

∫ 1

t

f(tm)t
−m+m

4
m

(tm − t)m−1

(m− 1)!
dtm

If s ∈ (2t, 1) then there exists a constant C4 > 0 such that (s−t)m−1

(m−1)! ≥ sm−1. This observation yields

∫ 1

t

f(s)s−m+m
4

(s− t)m−1

(m− 1)!
ds ≥ χ(0,1)(2t)

∫ 1

2t

f(s)s−m+m
4

(s− t)m−1

(m− 1)!
ds

≥ C4χ(0,1)(2t)

(∫ 1

2t

f(s)s−1+m
4 ds

)
.
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Let us set

φ(t) =

∫ 1

t

f(s)s
m
4 −1 dsχ(0,1)(t).

Boundedness of the dilation operator on r.i. function spaces then yields that there is a constant C5 > 0 such that

‖φ(t)‖Y(0,1) ≤ C5 ‖φ(2t)‖Y(0,1) .

Consequently, there is a constant C6 > 0 such that

‖|H∇m(uf )|‖X(B) ≥ C6

∥∥∥∥
∫ 1

t

f(s)s
m
4 −1 ds

∥∥∥∥
Y(0,1)

. (42)

Altogether, by combining inequalities (41) and (42) we get
∥∥∥∥
∫ 1

t

f(s)s
m
4 −1 ds

∥∥∥∥
Y(0,1)

≤ 1

C6
‖|H∇m(uf )|‖X(B) ≤

C1(C2 + 1)m

C6
‖f‖X(0,1) ,

which concludes the proof.
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HIGHER-ORDER COMPACT EMBEDDINGS OF FUNCTION
SPACES ON CARNOT-CARATHÉODORY SPACES

MARTIN FRANCŮ1∗

Abstract. A sufficient condition for higher-order compact embeddings on
bounded domains in Carnot-Carathéodory spaces is established for the class of
rearrangement-invariant function spaces. The condition is expressed in terms
of compactness of a suitable one-dimensional integral operator depending on
the isoperimetric function relative to the Carnot-Carathéodory structure of the
relevant sets. The general result is then applied to particular Sobolev spaces
built upon Lebesgue and Lorentz spaces.

1. Introduction

One of the most important characteristics of Sobolev spaces is how they re-
late to other spaces. This sort of information is usually expressed in terms of
(continuous) embeddings, and compact embeddings. Compact embeddings are
of particular interest from the point of view of applications of Sobolev spaces in
mathematical physics, calculus of variations, economical sciences and the proba-
bility theory. A compact embedding can be used to pave a path pointing towards
a solution to a given partial differential equation or to show the discreteness of
the spectra of linear elliptic partial differential operators defined over bounded
domains.

One of the first classical compactness results originated in a lemma by Rel-
lich [33] and was later proved specifically for Sobolev spaces by Kondrachov [24].
These results of course found their way to classical textbooks such as [1]. Compact
embeddings of Sobolev spaces have been ever since the subject of an extensive re-
search as a very important topic of functional analysis. Obtained results extend
far beyond the original context of underlining measurable space Rn to various
classes or domains in different measurable spaces.

It has been realized that the quality of an embedding of a Sobolev space
into another appropriate space is closely connected to the isoperimetric profile
of the underlying domain, and even that Sobolev embeddings can be derived
from isoperimetric inequalities. The problem of Sobolev inequalities and func-
tion spaces embeddings can thus be approached through isoperimetric inequality.
Their deep connection was observed by Maz’ya [26] and [27] and also by Federer
and Fleming [13] in early 1960’s.
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2 M. FRANCŮ

The approach to Sobolev spaces via isoperimetric inequalities allows one to con-
sider Sobolev embeddings from much wider perspective than that of the classical
Euclidean setting. Examples of important non-Euclidean embeddings include, for
instance, the Gaussian-Sobolev embeddings studied in the connection with the
so-called logarithmic Sobolev inequalities (see e.g. [16, 2]), a central subject in
the investigation of hypercontractive semigroups. On the other hand, investiga-
tion of Sobolev embeddings has been carried out on Carnot-Carathéodory spaces,
where Sobolev spaces are build with respect to a different differential operator,
and whose pivotal example is the Heisenberg chain.

While the Sobolev embeddings on Carnot-Carathéodory spaces have been stud-
ied to some extent ([8, 11, 10, 9, 12, 15, 17, 18, 20, 28, 25, 31, 6]), very little is
known about compactness of such embeddings. In this paper we concentrate on
this problem.

The isoperimetric approach was successfully applied in the context of Carnot-
Carathéodory spaces to the problem of establishing higher-order Sobolev-type
embeddings in [14]. Our main aim here is to determine when a Sobolev embedding
on a Carnot-Carathéodory space is compact. We intend to work under quite
general setting of rearrangement-invariant spaces.

The Carnot-Carathéodory spaces (also known as Sub-Riemannian spaces) pos-
sess an exciting range of applications ranging from quantum mechanics (where
we can also find the origin of the most famous example, the Heisenberg group),
through the control theory to exotic applications such as automatic animation of
physically plausible trajectories of vehicles in computer graphics [23]. This paper
continues in this trend by applying the readily prepared tools in [15], [7] and [14]
to adapting state-of-art proofs from [35] to Carnot-Carathéodory spaces settings.

One of the main advantages of the isoperimetric approach to embeddings of
Sobolev spaces is the possibility to extend the embeddings to the classes of
rearrangement-invariant function spaces and higher-order embeddings. More-
over, it allows us to reduce sufficient condition on embeddings over Carnot-
Carathéodory spaces to condition on certain one-dimensional operator over R.

This paper is structured as follows. In Section 2 we collect a necessary back-
ground material. In particular we fix all the indispensable basic notions concern-
ing Carnot-Carathéodory spaces, the rearrangement spaces, and the isoperimetric
inequalities (as our approach is built on the combination of these three topics).
In Section 3 we state the main theorems. In Section 4, for the readers conve-
nience, the authors collect known results that will be used in the proof. In the
final section we present the proofs of the main results.

2. Settings

Let X be a system of vector fields X1, . . . , Xm such that

Xi =
n∑

j=1

bi,j(x)
∂

∂xj
,

where x = (x1, x2, . . . , xn) ∈ Rn and bi,j : Rn → R, bij ∈ C∞(Rn) (with respect
to the classical Euclidean topology).
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The simplest choice of
{
Xj = ∂

∂xj
, j = 1, . . . , n

}
would yield the classical Eu-

clidean case.
A piecewise C1-curve γ : [0, T ] → Rn, T > 0, is called horizontal if whenever

γ′(t) exists then

γ′(t) =
m∑

j=1

cj(t)Xj(γ(t)),

where cj : (0, T )→ R are measurable and satisfying
∑m

j=1 c
2
j(t) ≤ 1 for 0 ≤ t ≤ T .

The horizontal length of γ is defined by lh(γ) = T .
Let us denote by H the family of all horizontal curves. The distance function

corresponding to X is defined by

d(x, y) = inf{lh(γ) : γ ∈ H, γ(0) = x, γ(lh(γ)) = y}, x, y ∈ Rn.

If d(x, y) is a metric, then Rn equipped with d(x, y) as metric is called the Carnot-
Carathéodory space, generated by the system X.

Throughout this paper we assume that the distance function is a metric, espe-
cially that d(x, y) <∞ for all x, y ∈ Rn, and that the topology generated by it is
the same as the classical Euclidean topology. It is known that this is ensured if
the system X enjoys the so-called Hörmander finite-rank condition.

In this paper we assume that Ω ⊂ Rn is open with |Ω| <∞, where |·| denotes
the n-dimensional Lebesgue measure.

For a function f ∈ L1
loc(Ω) its distributional derivative along the vector field

Xj, Xjf , is defined by the identity

〈Xjf, φ〉 =

∫

Ω

fX∗j φ dx for every φ ∈ C∞0 (Ω),

where X∗j (·) = −∑n
k=1

∂
∂xk

(bj,k ·) denotes the formal adjoint of Xj. Throughout
the paper, if f is a non-smooth function, Xjf will be meant in the distributional
sense. If derivatives X1f,X2f, . . . , Xmf exist, then the vector of X-gradient of a
function f is defined by

X∇f = (X1f,X2f, . . . , Xmf) .

Moreover, let us introduce the higher-order derivatives as

XDα(.) = Xα1 (Xα2 (. . . Xαk (·) . . .)) ,

where α = (α1, . . . , αk) ∈ {1, . . . ,m}k. Provided that XDαf exists for all α ∈
{1, . . . ,m}k, the X-gradient of order k is defined as a vector of length mk of the
following form:

X∇kf =
(
XDα(f) : α ∈ {1, . . . ,m}k

)
.

Naturally, the norm of the X-gradient of order k reads as
∣∣X∇kf

∣∣2 =
∑

α∈mk
(XDα(f))2.
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The X-variation and the X-perimeter can be defined as follows: if we denote

FΩ =



φ = {φ1, φ2, . . . φm} ∈ C1

0(Ω→ Rm) : sup
x∈Ω

(
m∑

j=1

|φj(x)|2
) 1

2

≤ 1



 ,

then, for a given u ∈ L1
loc(Ω), the X-variation of u with respect to Ω is defined

as

VarX(u,Ω) = sup
φ∈FΩ

∫

Ω

u(x)
m∑

j=1

X∗j φj(x) dx.

The set of functions with bounded X-variation is denoted as BVX(Ω) and forms
a Banach space with respect to the norm

‖·‖BVX = ‖·‖L1(Ω) + VarX(·,Ω).

If X∇f ∈ L1(Ω), then

VarX(f,Ω) ≤ Ĉ ‖X∇f‖L1 (2.1)

where Ĉ > 0 depends only on m.
If E ⊂ Rn is measurable, then the X-perimeter of E relative to Ω is defined

by
PX(E,Ω) = VarX(χE,Ω),

where χE denotes the characteristic function of E. The X-isoperimetric function
of Ω is given by the following formula

IX,Ω(s) = inf

{
PX(E,Ω): E ⊂ Ω, s ≤ |E| ≤ 1

2

}
for s ∈

[
0,

1

2

]
,

and IX,Ω(s) = IX,Ω (1− s) if s ∈
(

1
2
, 1
]
.

Through this paper we will assume certain regularity of IX,Ω(s), namely: sup-
pose that there is some non-decreasing function I : [0, 1]→ R satisfying

IX,Ω(s) ≥ cI(cs) for s ∈
[
0,

1

2

]
(2.2)

with some constant c > 0, and

inf
t∈(0,1)

I(t)

t
> 0. (2.3)

In this generality, the isoperimetric function is usually unknown. However,
in [15] it was shown that the isoperimetric function can be evaluated if some
additional conditions hold.

The first such condition is the following version of the doubling condition: for
any set U ⊂ Rn with diam(U) < ∞, there exist constants C1 > 0 and R0 < ∞
such that for x0 ∈ U and 0 < R < R0 one has

|B(x0, 2R)| ≤ C1 |B(x0, R)| . (2.4)

It was shown in [30] that the finite-rank Hörmander condition implies the doubling
condition.

The second restriction is the following version of the Poincaré inequality: for
any set U ⊂ Rn with diam(U) < ∞, there exist constants C2 > 0, R0 < ∞
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and α ≥ 1 such that for x0 ∈ U , 0 < R < R0 and every Lipschitz function u in
αB = B(x0, αR), we have for any λ > 0

∣∣∣∣
{
x ∈ B :

∣∣∣∣u(x)−
∫

B

u(x) dx

∣∣∣∣ > λ

}∣∣∣∣ ≤
C2

λ

∫

αB

|X∇u(y)| dy. (2.5)

The third restriction is that (Rn, d) is complete and it is a length-space; that
is

d(x, y) = inf l(γxy), (2.6)

where γ is a continuous curve joining x to y, and l(γxy) denotes its metric length.
Let U ⊂ Rn and denote by C the smallest constant in (2.4). Then the homo-

geneous dimension relative to U (and X) is defined by

Q = log2(C).

Let us recall definitions of John domains and X-PS domains in the following
two paragraphs.

An open set Ω ⊂ Rn is called an X-John domain if there exist a constant
c ∈ (0, 1) and a point x0 ∈ Ω such that for every x ∈ Ω there exists a rectifiable
curve ω : [0, l] → Ω, parametrized by arc-length, such that ω(0) = x, ω(l) = x0,
and

d(ω(r), ∂Ω) ≥ cr for r ∈ [0, l],

where ∂Ω denotes boundary of Ω.
An open set Ω ⊂ Rn is called X-PS domain if there exist a covering {B}B∈F

of Ω by metric balls and numbers N > 0, α ≥ 1, and ν ≥ 1 such that

(1)
∑

B∈F χ(α+1)B(x) ≤ NχΩ(x) for every x ∈ Ω.
(2) There exists a (central) ball B0 ∈ F such that for any B ∈ F one can

find a chain B0, B1, . . . , Bs(B) = B, with Bi ∩Bi+1 6= ∅ and |Bi ∩Bi+1| ≥
1
N

max (|Bi| , |Bi+1|) .
(3) For any i = 0, . . . , s(B), one has B ⊂ νBi.

Though the class of John domains is better known in the context of Sobolev-
type embeddings, we will state our results by means of the notion of X-PS do-
mains. The class of X-PS domains contains that of X-John domains if (2.4)
holds, which is always assumed in this paper. On the other hand, if certain geo-
desic segment property is satisfied then the class of X-John domains contains the
class of X-PS domains. Both inclusions are shown in [15, Theorem 1.30]. Con-
sequently, both classes coincide if both (2.4) and the geodesic segment property
are satisfied.

If the metric space (Rn, d) is in addition complete and a length-space, then it
is shown in [15] that metric balls with small diameter are X-PS domains.

The class of X-PS domains is larger than the class of non-tangentially accessible
domains (introduced in [19]), the class of extension domains (introduced in [22]).
In [29] it is shown that if X is generated by structure of a step two homogeneous
group then any C1,1 domain is an X-NTA domain and consequently an X-PS
domain. More examples of X-NTA and therefore X-PS domains can be found
in [4]. However, the task of finding X-PS domains in a general setting is rather
non-trivial.
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In [15, Theorem 1.18] it is shown that if Ω ⊂ Rn is an X-PS domain (and
conditions (2.4) and (2.5) are in hold), then

IX,Ω(s) ≤





C

diam(Ω)|Ω|−
1
Q
s
Q−1
Q , for s ∈

[
0, 1

2

]
;

C

diam(Ω)|Ω|−
1
Q

(1− s)
Q−1
Q , for s ∈

]
1
2
, 1
]
,

(2.7)

where Q is the homogeneous dimension relative to Ω.
Now we turn our attention to the rearrangement-invariant function spaces. The

basic references and new ones for reader interested in more details are [3, 5, 21,
32, 36]. We recall the non-increasing rearrangement and distribution function.

Let u ∈M(Ω), then

µu(t) = |{x ∈ Ω: |u(x)| > t}| , t ∈ [0,∞),

is the distribution function of u.
Let (R, λ) and (S, µ) be two measurable spaces. Functions u ∈ M(R, λ) and

v ∈M(S, µ) are called equimeasurable if µu = µv (on R+). In such case we write
u ∼ v.

The non-increasing rearrangement of function u ∈M(R, λ) is then defined as

u∗(t) = inf {s ≥ 0: µu(s) ≤ t} , t ∈ [0,∞).

A mapping % : M+(R, λ)→ [0,∞] is called a Banach function norm if, for all f, g
and {fn}n∈N in M+(R, λ), every a ≥ 0, and for all Lebesgue measurable E ⊂ Ω,
the following properties hold:

(1) %(f) = 0 if and only if f = 0 a.e.. Moreover, %(af) = a%(f) and %(f+g) ≤
%(f) + %(g).

(2) If 0 ≤ g ≤ f a.e. then %(g) ≤ %(f).
(3) If 0 ≤ fn ↑ f a.e. then %(fn) ↑ %(f).
(4) If |E| <∞ then %(χE) <∞.
(5) If |E| < ∞ then

∫
E
f dλ ≤ CE%(f), for some constant CE, 0 < CE < ∞,

depending on E and % but independent of f .

If, in addition, % satisfies %(f) = %(g) for every pair of equimeasurable functions
f and g in M+(R, λ), then % is called a rearrangement-invariant Banach function
norm.

The collection X(R, µ) = X%(R, µ) of all functions f ∈ M(R, λ) for which
%(|f |) <∞ is called a rearrangement-invariant Banach function space (r.i. space).
For each f ∈ X(R, µ), define

‖f‖X (R, µ) = % (|f |) .
Let us recall that there is functional %′ defined on M+(R, λ) by

%′(g) = sup

{∫

R

fg : f ∈M+(R, λ), %(f) ≤ 1

}
, g ∈M+(R, λ),

associated with r.i. Banach function norm %. It turns out that %′ is an r.i. Banach
function norm, which is called associate function norm of %.
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Let us note that if |Ω| <∞ then to any r.i. Banach function space X(Ω) there
exists a representation rearrangement-invariant Banach function norm

%X(Ω) : M+(0, 1)→ [0,∞]

such that

‖f‖X(Ω) = %X (f ∗ (|Ω| ·)) , f ∈ X(Ω).

This allows us to work sometimes with function spaces over simple measurable
space (0, 1) instead of with function spaces over Ω.

Let us now give some examples of r.i. norms. A basic example are the Lebesgue
norms Lp(0, 1), p ∈ [1,∞], defined for all f ∈M(0, 1) by

‖f‖Lp(0,1) =





(∫ 1

0
|f(x)|p dx

) 1
p
, p <∞;

esssupx∈(0,1) |f(x)| , p =∞.
The corresponding r.i. spaces lp(R, µ) are then called the Lebesgue spaces.

One can consider also more general functionals ‖·‖Lp,q(0,1) and ‖·‖Lp,q:α(0,1). They

are given for any f ∈M(0, 1) by

‖f‖Lp,q(0,1) =
∥∥∥f ∗(s)s

1
p
− 1
q

∥∥∥
Lq(0,1)

and

‖f‖Lp,q,α(0,1) =

∥∥∥∥f ∗(s)s
1
p
− 1
q

(
log

2

s

)α∥∥∥∥
Lq(0,1)

,

respectively. Here, we assume that p ∈ [1,∞], α ∈ R, and use the convention
that 1

∞ = 0. Note that ‖·‖Lp(0,1) = ‖·‖Lp,p(0,1) and ‖·‖Lp,q(0,1) = ‖·‖Lp,q:0(0,1) for
every such p and q. However, it turns out that under these assumptions on p,
q and α, ‖·‖Lp,q(0,1) and ‖·‖Lp,q:α(0,1) do not have to be r.i. norms. To ensure

that ‖·‖Lp,q:α(0,1) is equivalent to a r.i. norm, we need to assume that one of the
following conditions is satisfied:

p = q = 1, α ≥ 0; (2.8)

1 < p <∞; (2.9)

p =∞, q <∞, α + 1
q
< 0; (2.10)

p = q =∞, α ≤ 0. (2.11)

In this case, ‖·‖Lp,q(0,1) is called Lorentz norm, ‖·‖Lp,q:α(0,1) is called Lorentz-

Zygmund norm and the corresponding r.i. spaces Lp,q(0, 1) and Lp,q:α(0, 1) are
called Lorentz spaces and Lorentz-Zygmund spaces, respectively.

Let m ∈ N and let X(Ω) be a rearrangement-invariant Banach function space.
We define the m-th order Sobolev space V m

X X(Ω) as the set of all functions
f ∈M(Ω) such that X∇mf exists in a distributional sense and it is represented
by locally integrable functions such that |X∇mf | ∈ X(Ω).

In [14] it is proved that if

IΩ,X(s) ≥ C̄s for s ∈
[
0,

1

2

]
(2.12)
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with some constant C̄ > 0 then

V m
X X(Ω) ⊂ V k

XL
1(Ω) for k < m. (2.13)

Provided that (2.12) holds, the V m
X X(Ω) forms a normed linear space with

respect to the norm

‖u‖VmX X(Ω) =
m−1∑

k=0

∥∥X∇ku
∥∥
L1(Ω)

+ ‖X∇mu‖X(Ω) .

Moreover, by Wm
X X(Ω) we denote the set of all functions f ∈ (Ω) such that for

all k = 0, 1, . . .m, X∇kf exists in a distributional sense and it is represented by
locally integrable functions such that

∣∣X∇kf
∣∣ ∈ X(Ω). Wm

X (Ω) forms a normed
linear space with respect to norm

‖u‖Wm
X X(Ω) =

m∑

k=0

∥∥X∇ku
∥∥
X(Ω)

.

Let (R, µ) be a measurable space. Given two function spaces X(R, µ) and
Y(R, µ) (not necessarily rearrangement invariant), the notation

X(R, µ)→ Y(R, µ)

represents the fact that there exists a constant C independent of f ∈ X(R, µ)
such that

‖f‖Y(R,µ) ≤ C ‖f‖X(R,µ) .

In such case we say that X(R, µ) is embedded into Y(R, µ). By saying that
Y(R, µ) is the optimal target in X(R, µ)→ Y(R, µ) we mean that for any func-
tion space Z(R, µ) satisfying X(R, µ) → Z(R, µ) one necessarily has Y(R, µ) →
Z(R, µ).

If X(R, µ)→ Y(R, µ) then the identity operator Id is continuous from X(R, µ)
to Y(R, µ). If it is, in addition, compact we write

X(R, µ) ↪→↪→ Y(R, µ).

In such case we say that function space X(R, µ) is compactly embedded into
Y(R, µ). The fact that operator T is compact from function space X(R, µ) into
Y(R, µ) is denoted as

T : X(R, µ)→→ Y(R, µ).

Suppose that ‖·‖X(0,1) and ‖·‖Y(0,1) are rearrangement-invariant norms. We say

that X(R, µ) is almost-compactly embedded int Y(R, µ) and write

X(R, µ)
∗
↪→ Y(R, µ)

if

lim
k→∞

sup
‖f‖X(R,µ)≤1

‖χEkf‖Y(R,µ) = 0

is satisfied for every sequence (Ek)
∞
k=1 of µ-measurable subset of R fulfilling χEk →

0 µ-a.e.
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3. The main theorems

The connection between Sobolev embeddings and certain Hardy-type operators
in the setting of Carnot-Carathéodory spaces is established in [14]. Here, we are
going to extend this connection to compactness of Sobolev embeddings.

Let J : (0, 1]→ (0,∞) be a measurable function satisfying (2.3), we shall con-
sider the operator HJ : M(0, 1)→M(0, 1) defined by

HJf(t) =

∫ 1

t

|f(s)|
J(s)

ds, f ∈M(0, 1) and t ∈ (0, 1). (3.1)

Furthermore, given j ∈ N, we define the operator Hj
J by

HJ ◦HJ ◦ · · · ◦HJ︸ ︷︷ ︸
j−times

(f). (3.2)

Theorem 3.1. Assume that (2.4), (2.5) and (2.6) are fulfilled. Let Ω ⊂ Rn be
open, let m ∈ N. Suppose that there is some non-decreasing function I : [0, 1]→ R
satisfying (2.2) and (2.3), let ‖·‖X(0,1) and ‖·‖Y(0,1) be rearrangement-invariant
norms, then

Hm
I : X(0, 1)→→ Y(0, 1) (3.3)

implies
V m
X X(Ω) ↪→↪→ Y(Ω). (3.4)

Remark 3.2. According to [35] the following two conditions are equivalent under
the assumptions of Theorem 3.1:

• Hm
I : X(0, 1)→→ Y(0, 1),

• lim
a→0+

sup‖f‖X(0,1)≤1

∥∥Hm
I

(
χ(0,a)f

)∥∥
Y(0,1)

= 0.

Adopting some additional conditions allows us to reformulate the condition
from Theorem 3.1 in terms of a simpler operator which we shall denote Km

I .
Suppose that I : (0, 1] → (0,∞) is a nondecreasing function satisfying (2.3)

and let m ∈ N. Set

J(t) =
(I(t))m

tm−1
, t ∈ (0, 1]. (3.5)

Let us observe that J is measurable on (0, 1] and fulfills (2.3). Consider the
operator Km

I defined by

Km
I f(t) =

∫ 1

t

|f(s)| sm−1

(I(s))m
ds, f ∈M(0, 1), t ∈ (0, 1).

If, up to multiplicative constants depending on I,
∫ s

0

dr

I(r)
≈ s

I(s)
, s ∈ (0, 1), (3.6)

then the sufficient condition for (3.4) can be reformulated with operator Km
I .

Theorem 3.3. Assume that (2.4), (2.5) and (2.6) are fulfilled. Suppose that
there is some non-decreasing function I : [0, 1]→ R satisfying (2.2) and (3.6).

Let m ∈ N and let ‖·‖X(0,1) and ‖·‖Y(0,1) be rearrangement-invariant norms.
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(1) Suppose that

lim
t→0+

tm−1

(I(t))m
6= 0. (3.7)

Then
Km
I : X(0, 1)→→ Y(0, 1) (3.8)

implies

V m
X X(Ω) ↪→↪→ Y(Ω). (3.9)

(2) Suppose that

lim
t→0+

tm−1

(I(t))m
= 0. (3.10)

Then (3.9) is satisfied for all pairs of rearrangement-invariant norms
‖·‖X(0,1) and ‖·‖Y(0,1).

If we restrict our consideration to X-PS domains, where the isoperimetric func-
tion is known, we can use a yet simpler operator. Given Q > 0 and m ∈ N, we
define

QmQf(t) =

∫ 1

t

|f(s)| smQ−1 ds, f ∈M(0, 1) and t ∈ (0, 1).

Theorem 3.4 (Reduction principle for X-PS domains). Assume that (2.4), (2.5)
and (2.6) are fulfilled. Let m ∈ N and Ω be a X-PS domain with homogeneous
dimension Q. Suppose that ‖·‖X(0,1) and ‖·‖Y(0,1) are rearrangement-invariant
function spaces.

If m ≤ Q and
QmQ : X(0, 1)→→ Y(0, 1), (3.11)

then
V m
X X(Ω) ↪→↪→ Y(Ω). (3.12)

In particular, the assumption that Q = m implies that (3.12) is satisfied for all
‖·‖Y(0,1) if X(0, 1) 6= L1(0, 1).

Furthermore, if m > Q then (3.12) is fulfilled for all choices of X(0, 1) and
Y(0, 1).

The principle introduced in the Theorem 3.1 and further developed in Theo-
rems 3.3 and Theorem 3.4 will be applied to the class of Lorentz spaces.

Theorem 3.5. Assume that (2.4), (2.5) and (2.6) are fulfilled. Let m ∈ N and
let Ω ⊂ Rn be an X-PS domain. Let p1, p2, q1, q2 ∈ [1,∞] be such that the triples
(p1, q1, 0) and (p2, q2, 0) satisfy one of conditions (2.8)-(2.11). Let Q denote the
homogeneous dimension of Ω, assume Q > 2 and m < Q, then each of the
following conditions

(1) p1 <
Q
m

and p2 <
p1

1−mp1
Q

;

(2) p1 = Q
m

and p2 <∞ ;

(3) p1 >
Q
m

;

ensures that
VXL

p1,q1(Ω) ↪→↪→ Lp2,q2(Ω). (3.13)
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Let us note that cases when m = Q and m ≥ Q, missing from Theorem 3.5 are
already covered in Theorem 3.4. Let us explicitly state the conditions on compact
embeddings of Sobolev spaces build upon Lebesgue spaces which are implied by
Theorem 3.5.

Corollary 3.6. Assume that (2.4), (2.5) and (2.6) are fulfilled. Let m ∈ N and let
Ω ⊂ Rn be an X-PS domain. Let p1, p2 ∈ [1,∞]. Let Q denote the homogeneous
dimension of Ω, assume Q > 2 and m < Q, then each of the following conditions

(1) p1 <
Q
m

and p2 <
p1

1−mp1
Q

;

(2) p1 = Q
m

and p2 <∞ ;

(3) p1 >
Q
m

;

ensures that

VXL
p1(Ω) ↪→↪→ Lp2(Ω). (3.14)

4. Support theorems

In this section we collect known theorems which will be used in proofs of
theorems from the section 3. First we recall some facts about the operator Hj

J and
its connection to compact and almost compact embeddings of r.i. spaces. Then
we shift our attention to compact and almost compact embeddings of Lebesgue
spaces on Carnot-Carathéodory spaces, adapting known results to this settings
if necessary. We conclude this section by brief summary of some properties of
functions from Sobolev-like spaces over Carnot-Carathéodory spaces.

Assume that J : (0, 1]→ (0,∞) is a measurable function satisfying

inf
J(t)

t
> 0. (4.1)

It is proved in [7, Remark 8.2] that

Hj
Jf(t) =

1

(j − 1)!

∫ 1

t

|f |
J(s)

(∫ s

t

dr

J(r)

)j−1

ds,

for f ∈M(0, 1), t ∈ (0, 1).
Let j ∈ N and ‖·‖X(0,1) be an r.i. norm. For every f ∈ M(0, 1) we define the

functional ‖·‖(Xr
j,J )′(0,1) by

‖f‖(Xr
j,J )′(0,1) =

1

(j − 1)!

∥∥∥∥∥
1

J(s)

∫ s

0

(∫ s

t

dr

J(r)

)j−1

f ∗(t) dt

∥∥∥∥∥
X′(0,1)

.

It is shown in [7, Proposition 8.3] that ‖·‖(Xr
j,J )′(0,1) is an r. i. norm and its

associate norm ‖·‖(Xr
j,J )(0,1) fulfills

Hj
J : X(0, 1)→ Xr

j,J(0, 1). (4.2)

Lemma 4.1. Let J : (0, 1] → (0,∞) be a measurable function then H1
J is not

compact from L1(0, 1) into L∞(0, 1).
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Proof. We will follow the argument from the end of the proof of Lemma 4.1 in
[35].

Since 1
J(t)

> 0, t ∈ (0, 1) there exists ε > 0 and set M ⊂ (0, 1) with |M | = 1
2

such that 1
J(s)
≥ ε for s ∈ M . Let (xn)∞n=1 be sequence of points in [0, 1) such

that |(xn, 1) ∩M | = 1
2n

, n ∈ N and set

fn(t) = 2nχ(xn,xn+1)∩M(t), for t ∈ (0, 1), n ∈ N.
We have

‖f‖L1(0,1) = 2n |(xn, xn+1) ∩M | = 2n(|(xn, 1) ∩M | − |(xn+1, 1) ∩M |) =
1

2
,

hence (fn)∞n=1 is bounded in L1(0, 1).
Fix m,n ∈ N, m < n.∥∥H1

J(fn)−H1
J(fm)

∥∥
L∞(0,1)

≥ |HJfn(xn)−HJfm(xn)|

=

∣∣∣∣∣∣∣∣∣

∫ 1

xn

2nχ(xn,xn+1)∩M(s)

J(s)
ds−

∫ 1

xn

2mχ(xm,xm+1)∩M(s)

J(s)︸ ︷︷ ︸
=0 since m<n

ds

∣∣∣∣∣∣∣∣∣

= 2n
∫ xn+1

xn

χM(s)

J(s)
ds ≥ 2nε

1

2n+1
=
ε

2
.

Consequently, the sequence (H1
J(fn))∞n=1 is not a Cauchy sequence in L∞(0, 1)

and H1
J is not compact from L1(0, 1) into L∞(0, 1). �

Let us restate the following two characterizations of compactness of operator
Hj
J ([35, Theorem 4.1 and Theorem 4.2]).

Theorem 4.2. Let J : (0, 1] → (0,∞) be a measurable function satisfying (2.3)
and let j ∈ N. Suppose that ‖·‖X(0,1) and ‖·‖Y(0,1) are rearrangement-invariant
norms. Consider the following two conditions:

(a) Hj
J : X(0, 1)→→ Y(0, 1),

(b) lima→0+ sup‖f‖X(0,1)≤1

∥∥Hj
J(χ(0,a)f)

∥∥
Y(0,1)

= 0.

If X(0, 1) = L1(0, 1), Y(0, 1) = L∞(0, 1), j = 1 and

lim
a→0+

ess supt∈(0,a)

1

J(t)
= 0,

then (b) is satisfied but (a) is not. In all other cases, (a) holds if and only if (b)
holds.

Theorem 4.3. Let J : (0, 1]→ (0,∞) be a measurable function satisfying (2.3),
and let j ∈ N. Suppose that ‖·‖X(0,1) and ‖·‖Y(0,1) are rearrangement-invariant
norms. If

Y(0, 1) 6= L∞(0, 1) or

∫ 1

0

dr

J(r)
=∞,

then the following conditions are equivalent

(1) Hj
J : X(0, 1)→→ Y(0, 1);
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(2) Xr
j,J(0, 1)

∗
↪→ Y(0, 1).

Assume that X(0, 1) and J are such that, in addition to (4.1), it holds that∥∥∥∥∥

(∫ 1

t

dr

J(r)

)j∥∥∥∥∥
X(0,1)

<∞. (4.3)

For every f ∈M(0, 1) define the function ‖·‖Yd
j,J (0,1) by

‖f‖Yd
j,J (0,1) = sup

h∼f

∥∥Hj
Jh
∥∥
Y(0,1)

+ ‖f‖L1(0,1) .

Important properties of Yd
j,J(0, 1) are summarised in the following proposition

and theorem from [35, Proposition 4.5, Theorem 4.6].

Proposition 4.4. Let J : (0, 1] → (0,∞) be a measurable function satisfying
(2.3) and let j ∈ N. Suppose that ‖·‖Y(0,1) is a rearrangement-invariant norm

fulfilling (4.3). Then ‖·‖(Y)dj,J (0,1) is a rearrangement-invariant norm and

Hj
J : Yd

j,J(0, 1)→ Y(0, 1).

Theorem 4.5. Let J : (0, 1] → (0,∞) be a measurable function satisfying (2.3)
and let j ∈ N. Suppose that X(0, 1) is a r.i. function space such that X(0, 1) 6=
L1(0, 1). Assume that Y(0, 1) is a r.i. function space fulfilling (4.3). Then the
following conditions are equivalent:

(1) Hj
J : X(0, 1)→→ Y(0, 1);

(2) X(0, 1)
∗
↪→ Yd

j,J(0, 1).

When certain conditions are satisfied the norm ‖·‖(L∞)d1,I(0,1) can be approxi-

mated by a simpler one as is shown in the next lemma from [35, Lemma 5.6].

Lemma 4.6. Let I : (0, 1]→ (0,∞) be a non-decreasing function satisfying (2.3)
and ∫ 1

0

ds

I(s)
<∞.

Then

‖f‖(L∞)d1,I(0,1) ≈
∫ 1

0

f ∗(s)

I(s)
ds, f ∈M(0, 1).

up to multiplicative constants depending on I.

Useful conditions on compactness of operatorHj
J formulated through its bound-

edness stated in Lemma 4.7 are proved in [35, Remark 4.8].

Lemma 4.7. Let X(0, 1) 6= L1(0, 1) and Y(0, 1) are rearrangement-invariant
function spaces. Suppose that j ∈ N and J : (0, 1] → (0,∞) is a measurable
function satisfying

inf
t∈(0,1]

J(t)

t
> 0

then
Hj
J : L1(0, 1)→ Y(0, 1),
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implies

Hj
J : X(0, 1) ↪→↪→ Y(0, 1).

We continue by stating the characterization of almost compact embeddings of
r.i. spaces from [34, Theorem 3.1].

Theorem 4.8. Let X(R, µ) and Y(R, µ) be Banach function spaces over a totally

σ-finite measure space (R, µ). Then X(R, µ)
∗
↪→ Y(R, µ) if and only if for every

sequence (fn)∞n=1 of µ-measurable functions on R satisfying ‖fn‖X(R,µ) ≤ 1 and

fn → 0 µ-a.e., one has ‖fn‖Y(R,µ) → 0.

The following lemma is an adaptation of Lemma 5.5 from [35].

Lemma 4.9. Assume that (2.4), (2.5) and (2.6) are fulfilled, Ω is an open domain
and m ∈ N. Let ‖·‖X be an rearrangement-invariant function space. Then every
sequence (uk)

∞
k=1 bounded in V m

X X(Ω) contains a subsequence (ukl)
∞
l=1 converging

a.e. in Ω.

To prove Lemma 4.9 we need compact embedding V 1
XL

1(Bxl) ↪→↪→ L1(Bxl).
which was conveniently already proved in [15, Theorem 1.28].

Theorem 4.10. Assume that (2.4), (2.5) and (2.6), and let Ω ⊂ Rn be an X-PS
domain with diam(Ω) < R0

2
, where R0 is the constant from (2.4). Then, one has

the following:

(1) The embedding BVX(Ω) ↪→↪→ Lq(Ω) holds for any 1 ≤ q < Q
Q−1

.

(2) For any 1 ≤ p < Q the embedding V 1
XL

p(Ω) ↪→↪→ Lq(Ω) holds provided
that 1 ≤ q < Qp

Q−p .

(3) For any Q ≤ p < ∞ and any 1 ≤ q < ∞, the embedding V 1
XL

p(Ω) ↪→↪→
Lq(Ω) holds.

Proof of Lemma 4.9. Since Ω is open, for all x ∈ Ω there exists a ball (with
respect to metric d) Bx such that x ∈ Bx and Bx ⊂ Ω. There is a sequence
(xl)

∞
l of points in Ω such that {Bxl , xl = 1, 2, . . .} is a covering of Ω because the

topology generated by the metric d is equivalent to the Euclidean topology.
Let (uk)

∞
k=1 be bounded in V m

X X(Ω). Balls with respect to metric d are an X-
PS domain. X-PS domains fulfills (2.12) with a specific constant (consequence
of Theorem 1.18 in [15]). Proposition 11 in [14] yields that V 1

XX(Bxl)→ L1(Bxl)
for all all l = 1, 2, . . .∞. Moreover, the proof of Proposition 11 yields that the
embedding constant is dependent only on constant from (2.12), therefore there
exists a constant which holds for all embeddings V 1

XX(Bxl) → L1(Bxl), l ∈ N.
Consequently, there exists C > 0 such that

‖uk‖L1(Bxl )
≤ C ‖uk‖VmX X(Bxl )

≤ C ‖uk‖VmX X(Ω)

for all l ∈ N. Sequence (uk)
∞
k=1 is therefore bounded in V 1

XL
1(Bxl) with the same

bounding constant for all l ∈ N.
Now, for every l ∈ N Theorem 4.10 yields that

V 1
XL

1(Bxl) ↪→↪→ L1(Bxl).
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Consequently, a bounded sequence (vk)
∞
k=1 in V 1

XL
1(Bxl) contains a subsequence

(vkr)
∞
r=1 such that vkr converges in L1(Bxl).

We start with selecting a subsequence of (uk)
∞
k=1, let us name it (uk1,r)

∞
r=1,

such that it converges in L1(Bx1). Then there exists a subsequence of (uk1,r)
∞
r=1,

(uk2,r)
∞
r=1, such that it converges in L1(Bx2) and L1(Bx1).

By repeating this step, we get a sequence (ukl,r)
∞
r=1 for each l ∈ N which

converges (with respect to r) in L1(Bxs) for all s ∈ N, s ≤ l.
The diagonal sequence, (ukl,l)

∞
l=1 is then the desired subsequence of (uk)

∞
k=1

which converges a.e. on Ω. �
Theorem 4.11 (Reduction theorem for non-compact embeddings). Assume that
Ω ⊂ Rn is open. Suppose that there is some non-deceasing function I : [0, 1] →
R satisfying (2.2) and (2.3). Let m ∈ N, and let ‖·‖X(0,1) and ‖·‖Y(0,1) be
rearrangement-invariant function norms. If there exists a constant C > 0 such
that ∥∥∥∥∥

∫ 1

t

f(s)

I(s)

(∫ s

t

dr

I(r)

)m−1

ds

∥∥∥∥∥
Y(0,1)

≤ C ‖f‖X(0,1) (4.4)

for every nonnegative f ∈M+(0, 1), then

V m
X X(Ω)→ Y(Ω). (4.5)

Remark 4.12. The condition (4.4) can be restated as Hm
I : X(0, 1)→ Y(0, 1).

Lemma 4.13 (W 1
XX(Ω) = V 1

XX). Assume that Ω ⊂ Rn is open. Suppose that
there is some non-deceasing function I : [0, 1]→ R satisfying (2.2) and

∫ s

0

dt

I(t)
<∞, for some s > 0. (4.6)

Let Ω ⊂ Rn is open. Then there exists a constant C > 0 such that

‖f‖X(Ω) ≤ C ‖X∇f‖X(Ω) , f ∈M(0, 1).

Consequently, up to a multiplicative constants, we get

‖f‖V 1
XX(Ω) ≈ ‖f‖X(Ω) + ‖X∇f‖X(Ω) , f ∈ V 1

XX(Ω).

Proof. We will follow the approach of the Proposition 4.5 in [7]. We define

J(t) =

{
I(s), s ∈ [0, 1

3
]

I(1
3
), s ∈

]
1
3
, 1
]
,

Then J(t) > cs for some constant c > 0 thanks to (4.6) and J fulfills

IΩ,X(s) ≥ c′J(c′s)

for some c′ > 0 and s near zero. A simple computation shows that H1
J : L1(0, 1)→

L1(0, 1) and H1
JL
∞(0, 1)→ L∞(0, 1). The interpolation theorem of Calderón ([3,

Chapter 3, Theorem 2.12]) then yields that H1
J : X(0, 1) → X(0, 1). Application

of Theorem 4.11 then implies the desired embedding

V 1
XX(Ω)→ X(Ω).

�
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Let us restate here Lemma 3.5 from [15] which allows us to use the well known
Maz’ya truncation technique.

Lemma 4.14. Let 1 ≤ p < ∞, and Ω be a bounded open set in Rn. If u ∈
W 1
XL

p(Ω) and F ∈ C1(R), F ′ ∈ L∞(R), then we have the following:

(1) F ◦ u ∈ W 1
XL

p(Ω) and

Xj(F ◦ u) = (F ′ ◦ u)Xju in D′(Ω) for 1 ≤ j ≤ m.

(2) Also, one has u+, u−, |u| ∈ V 1
XL

1(Ω) and

X∇u+ =

{
X∇u a. e. on {x ∈ Ω: u(x) ≥ 0}
0 otherwise

X∇u− =

{
−X∇u a. e. on {x ∈ Ω: u(x) < 0}
0 otherwise

X∇ |u| =





X∇u a. e. on {x ∈ Ω: u(x)0}
0 a. e. on {x ∈ Ω: u(x) = 0}
−X∇u a.e. on {x ∈ Ω: u(x) < 0}.

5. Proof of the main theorem

Proof of Theorem 3.1. Assume first that Y(Ω) 6= L∞(Ω) or
∫ 1

0
ds
I(s)

= ∞. In

this case Theorem 4.3 yields Xr
m,I(0, 1)

∗
↪→ Y(0, 1) and consequently Xr

m,I(Ω)
∗
↪→

Y(Ω).
Assume that (uk)

∞
k=1 is a sequence bounded in V m

X X(Ω). Lemma 4.9 ensures
that there is subsequence (ukl)

∞
l=1 which converges to some function u a. e. on

Ω. The embedding (4.2) implies that Hm
I X(0, 1) → Xr

m,I(0, 1). Theorem 4.11
then yields that V m

X X(Ω) → Xr
m,I(Ω). Hence, (ukl)

∞
l=1 is bounded in Xr

m,I(Ω).

Therefore, the almost compact embedding Xr
m,I(Ω)

∗
↪→ Y(Ω) and Theorem 4.8

yield that ukl → u ∈ Y(Ω). Thus, V m
X X(Ω) ↪→↪→ Y(Ω).

In following we will focus on the remaining case Y(Ω) = L∞(Ω) and
∫ 1

0
ds
I(s)

<

∞. Assume first that m = 1.
Lemma 4.1 ensures that X(0, 1) 6= L1(0, 1) since we are assuming

H1
J : X(0, 1)→→ L∞(0, 1).

This, together with observation that∥∥∥∥
∫ 1

t

dr

I(r)

∥∥∥∥
L∞(0,1)

=

∫ 1

0

dr

I(r)
<∞, (5.1)

and Theorem 4.5 yields that

X(0, 1)
∗
↪→ (L∞)d1,I (0, 1). (5.2)

Moreover, the inequality (5.1) and Lemma 4.4 yields that assumptions of Theorem
4.11 are met with X(0, 1) = (L∞)d1,I(0, 1) and Y(0, 1) = L∞(0, 1). Consequently,
we get

V 1
X(L∞)d1,I(Ω)→ L∞(Ω). (5.3)
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Assume that (uk)
∞
k=1 in V 1

XX(Ω) is a bounded sequence. Since
∫ 1

0
ds
I(s)

< ∞,

the Lemma 4.13 ensures that (uk)
∞
k=1 is bounded in W 1

XX(Ω) as well. Without
loss of generality we may assume that

‖uk‖W 1
XX(Ω) ≤ 1, k ∈ N. (5.4)

Lemma 4.9 then assure that there is a subsequence (vk)
∞
k=1 which converges in

measure to some function v. Indeed, our goal is to show that (vk)
∞
k=1 is a Cauchy

sequence in L∞(Ω) and thus it converges to v in L∞(Ω), which will imply that
V 1
XX(Ω) compactly embedded into L∞(Ω).
Fix ε > 0 and k, l ∈ N. Let us introduce the following notation:

d(x) = |vk(x)− vl(x)| = min
{
d(x),

ε

2

}
+ max

{
d(x)− ε

2
, 0
}

for x ∈ Ω. Moreover, let us write e(x) = max
{
d(x)− ε

2
, 0
}

, x ∈ Ω.
Differentiability of vk and vl combined with Lemma 4.14 ensures that d− ε

2
and

e are both differentiable almost everywhere in Ω. Because e is being derived from
vk and vl by substraction, absolute value operator and truncation by constant,
standard argumentation accompanied by Lemma 4.14 yields that

|X∇e(x)| = χ{d≥ ε2}(x) |X∇vk(x)−X∇vl(x)| , (5.5)

for almost every x ∈ Ω.
Consequently, we have

‖d‖L∞(Ω) ≤
∥∥∥min

{
d(x),

ε

2

}∥∥∥
L∞(Ω)

+ ‖e‖L∞(Ω)

≤ ε

2
+ C ‖e‖W 1

X(L∞)d1,I(Ω)

≤ ε

2
+ C

∥∥∥χ{d> ε
2} |X∇(vk − vl)|

∥∥∥
(L∞)d1,I(Ω)

+ C
∥∥∥χ{d> ε

2} |e|
∥∥∥

(L∞)d1,I(Ω)

where we have used (5.3), Lemma 4.13 and (5.5). Therefore, we get

‖d‖L∞(Ω) ≤
ε

2
+ C

(∥∥∥χ{d> ε
2} |X∇vk|

∥∥∥
(L∞)d1,I(Ω)

+
∥∥∥χ{d> ε

2} |X∇vl|
∥∥∥

(L∞)d1,I(Ω)
+

∥∥∥χ{d> ε
2} |vk|

∥∥∥
(L∞)d1,I(Ω)

+
∥∥∥χ{d> ε

2} |vl|
∥∥∥

(L∞)d1,I(Ω)

)

=
ε

2
+ C

(∥∥∥(χ{d> ε
2} |X∇vk|)

∗
∥∥∥

(L∞)d1,I(0,1)

+
∥∥∥(χ{d> ε

2} |X∇vl|)
∗
∥∥∥

(L∞)d1,I(0,1)

+
∥∥∥χ{d> ε

2}v
∗
k

∥∥∥
(L∞)d1,I(0,1)

+
∥∥∥χ{d> ε

2}v
∗
l

∥∥∥
(L∞)d1,I(0,1)

)

Since (5.4) is in hold, we have that
∥∥∥(χ{d> ε

2} |X∇vk|)
∗
∥∥∥

(L∞)d1,I(0,1)
≤ sup
‖f‖X(0,1)≤1

∥∥∥χ(0,|{d> ε
2}|)f

∗
∥∥∥

(L∞)d1,I(0,1)
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and ∥∥∥χ{d> ε
2}v

∗
k

∥∥∥
(L∞)d1,I(0,1)

≤ sup
‖f‖X(0,1)≤1

∥∥∥χ(0,|{d> ε
2}|)f

∗
∥∥∥

(L∞)d1,I(0,1)
,

for k ∈ N. But (5.2) yields that there is δ > 0 such that

sup
‖f‖X(0,1)≤1

∥∥χ(0,δ)f
∗∥∥

(L∞)d1,I(0,1)
<

ε

8C
.

Since (vk)
∞
k=1 converges in measure to v, we can find k0 ∈ N such that for every

k ≥ k0 ∣∣∣
{
x ∈ Ω: |vk(x)− v(x)| > ε

4

}∣∣∣ < δ

2
.

Moreover, for all k, l ≥ k0, it holds
{
x ∈ Ω: |d| ≥ ε

2

}
⊂
{
x ∈ Ω: |vk(x)− v(x)| ≥ ε

4

}
∪
{
x ∈ Ω: |vl(x)− v(x)| ≥ ε

4

}

and ∣∣∣
{
x ∈ Ω: |d| ≥ ε

2

}∣∣∣ ≤ δ.

Consequently, for k, l > n0, we have

‖d‖L∞(Ω) ≤
ε

2
+ 4C sup

‖f‖X(0,1)≤1

∥∥∥χ(0,|{d> ε
2}|)f

∗
∥∥∥

(L∞)d1,I(0,1)

≤ ε

2
+ 4C sup

‖f‖X(0,1)≤1

∥∥χ(0,δ)f
∗∥∥

(L∞)d1,I(0,1)
≤ ε.

Therefore (vk)
∞
k=1 is a Cauchy sequence in L∞(Ω) and V 1

XX(Ω) is compactly
embedded into L∞(Ω).

Next, we will deal with the case m > 1. (We still assume that Y(Ω) = L∞(Ω)

and
∫ 1

0
ds
I(s)

<∞.) According to Lemma 4.6, for every f ∈M(0, 1), then

‖g‖(L∞)d1,I(0,1) ≈
∫ 1

0

g∗(s)

I(s)
ds = ‖HIg

∗‖L∞(0,1)

up to multiplicative constants depending on I. Thus, whenever f ∈M(0, 1) and
a ∈ (0, 1), then

∥∥Hm
I (χ(0,a)f)

∥∥
L∞(0,1)

=
∥∥HI

(
Hm−1
I (χ(0,a)f)

)∥∥
L∞(0,1)

≈
∥∥Hm−1

I

(
χ(0,a)f

)∥∥
(L∞)d1,I(0,1)

,

up to multiplicative constants depending on I. As it is stated in Remark 3.2 the
assumption (3.3) is equivalent to

lim
a→0+

sup
‖f‖X(0,1)≤1

∥∥Hm
I

(
χ(0,a)f

)∥∥
L∞(0,1)

= 0,

hence it is also equivalent to

lim
a→0+

sup
‖f‖X(0,1)≤1

∥∥Hm−1
I

(
χ(0,a)f

)∥∥
(L∞)d1,I(0,1)

= 0.

In order to use the previously proved case of this proof, we will show that
(L∞)d1,I(0, 1) 6= L∞(0, 1). Consider functions χ(0,a) for a ∈ (0, 1). We have
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∥∥χ(0,a)

∥∥
L∞(0,1)

= 1. On the other hand, up to multiplicative constants depending

on I, we have

lim
a→0+

∥∥χ(0,a)

∥∥
(L∞)d1,I(0,1)

≈ lim
a→0+

∫ a

0

ds

I(s)
= 0.

If (L∞)d1,I(0, 1) = L∞(0, 1), then ‖·‖(L∞)d1,I(0,1) must be equivalent to ‖·‖L∞(0,1) up

to multiplicative constants. Consequently, (L∞)d1,I(0, 1) 6= L∞(0, 1), because it is
impossible to have constant c > 0 such that ‖f‖L∞(0,1) ≤ c ‖f‖(L∞)d1,I(0,1), for all

f ∈ L∞(0, 1).
Since (L∞)d1,I(0, 1) 6= L∞(0, 1), the previous part of proof implies that

V m−1
X X(Ω) ↪→↪→ (L∞)d1,I(Ω). (5.6)

Let (uk)
∞
k=1 be a bounded sequence in V m

X X(Ω). Then (uk)
∞
k=1 is bounded in

L1(Ω), so (
∫

Ω
uk(x) dx)∞k=1 is a bounded sequence of real numbers and we can

find a subsequence (u0
k)
∞
k=1 of (uk)

∞
k=1 such that the sequence (

∫
Ω
u0
k(x) dx)∞k=1 is

convergent.
Consider sequences (Xiu

0
k)
∞
k=1, Xi ∈ X, i = 1, . . . ,m. Owing to boundedness of

(u0
k)
∞
k=1 in V m

X X(Ω), (Xiu
0
k)
∞
k=1 is bounded in V m−1

X X(Ω). Compact embedding
(5.6) then yields that, we can inductively find (uik)

∞
k=1, subsequence of (ui−1

k )∞k=1,
i = 1, 2, . . . ,m such that (Xiu

i
k)
∞
k=1 is convergent in (L∞)d1,I(Ω). Consequently,

(Xiu
m
k )∞k=1 is a Cauchy sequence in (L∞)d1,I(Ω) for every j = 1, 2, . . . ,m.

To conclude the proof, we need to show that (umk )∞k=1 is a Cauchy sequence in
L∞(Ω).

Let ε > 0. Assumptions (2.2) and (2.3) ensures (2.12). Therefore the inequality
(2.13) with X(Ω) = (L∞)d1,I(Ω) yields that there exists a constant C > 0 such
that

∥∥∥∥u−
∫

Ω

u(x) dx

∥∥∥∥
L∞(Ω)

≤ C ‖X∇u‖(L∞)d1,I(Ω) ≤ C

m∑

j=1

‖Xju‖(L∞)d1,I(Ω) .

Because (Xju
m
k )∞k=1, j = 1, . . . ,m, is a Cauchy sequence in (L∞)d1,I(Ω), there

exists k0 ∈ N such that

‖Xju
m
l −Xju

m
l ‖(L∞)d1,I(Ω) ≤

ε

Cm
,

for all j = 1, . . . ,m, whenever k, l > k0. Sequence (umk −
∫

Ω
umk (x) dx)∞k=1 is

Cauchy sequence in L∞(Ω) since

∥∥∥∥uml −
∫

Ω

uml (x) dx− umk −
∫

Ω

umk (x) dx

∥∥∥∥ ≤ C

m∑

j=1

‖Xju
m
l −Xju

m
l ‖(L∞)d1,I(Ω) < ε,

for k, l > k0. L∞(Ω) is complete therefore (umk −
∫

Ω
umk (x) dx)∞k=1 is a convergent

sequence. Sequence (
∫

Ω
umk (x) dx)∞k=1 is a subsequence of (

∫
Ω
u0
k(x) dx)∞k=1 which

is convergent in L∞(Ω). Therefore (umk )∞k=1 is convergent sequence in L∞(Ω) as
well. This concludes the proof. �
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Proof of Theorem 3.3. It is proved in [7, Proposition 8.6] that if (3.6) holds than
for any r.i. space Y and f ∈M(0, 1) we have

‖Hm
I f‖Y(0,1) ≈ ‖Km

I f‖Y(0,1) ,

up to multiplicative constants depending on m and I.
Moreover, it is shown in [35, Proof of Theorem 5.3] that, under the same

assumptions, it holds∥∥Hm
I (χ(0,a)f)

∥∥
Y(0,1)

≈
∥∥Km

I (χ(0,a)f)
∥∥
Y(0,1)

, (5.7)

for a given a ∈ (0, 1), up to multiplicative constants depending on m and I.
At the same place, it is shown that in this situation

lim
t→0+

ess sups∈(0,t)

1

J(s)
= 0

holds if and only if

lim
t→0+

tm−1

(I(t))m
= 0.

Therefore, if (3.7) holds, Theorem 4.2 and fact that Km
I = HJ yields that

lim
a→0+

sup
‖f‖X(0,1)≤1

∥∥Km
I (χ(0,a)f)

∥∥
Y(0,1)

= 0

is equivalent to
Km
I : X(0, 1)→→ Y(0, 1).

Remark 3.2 together with (5.7) yields that (3.8) implies (3.3). Therefore the
assumptions of Theorem 3.1 are satisfied and it ensures that (3.9) holds.

Assume now, that (3.10) is in force. In such case, Theorem 4.2 yields that

lim
a→0+

sup
‖f‖L1(0,1)≤1

∥∥Hj
J(χ(0,a)f)

∥∥
L∞(0,1)

= 0.

Remark 3.2, together with Theorem 3.1 yields that

V m
X L

1(Ω) ↪→↪→ L∞(Ω).

Standard embeddings X(Ω) ↪→ L1(Ω) and L∞(Ω) ↪→ Y(Ω) (which are valid for
all rearrangement-invariant spaces X(Ω) and Y(Ω)) then concludes the proof. �

Proof of Theorem 3.4. Consider function I(t) = t1−
1
Q . It follows from the fact

that Ω is X-PS domain and (2.7) that (2.2) holds with such I(t). Simple compu-
tation yields that (3.6) holds as well.

An application of the Theorem 3.3 will yield the claim. We have

lim
t→0+

tm−1

(I(t))m
= lim

t→0+

tm−1

tm−
m
Q

= lim
t→0+

t
m
Q
−1. (5.8)

Therefore, if m > Q, then limt→0+
tm−1

(I(t))m
= 0 and Theorem 3.3 yields the claim.

On the other hand, if m ≤ Q then limt→0+
tm−1

(I(t))m
6= 0. We have

QmQf(t) =

∫ 1

t

|f(x)| smQ−1 ds =

∫ 1

t

|f(s)| sm−1

(
s1− 1

Q

)m ds = Km
I f(t),
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for f ∈ M(0, 1) and t ∈ (0, 1). Consequently, if (3.11) holds (and Q ≤ m), so
does (3.8) and the Theorem 3.3 yields the required embedding.

If Q = m,then we have

Qmmf(t) =

∫ 1

t

|f(s)| ds = H1
1f(t), f ∈M(0, 1).

Simple computation now yields that Qmm : L1(0, 1) → L∞(0, 1). Consequently,
since L∞(0, 1) ↪→ Y(0, 1), we get Qmm : L1(0, 1) → Y(0, 1). Application of
Lemma 4.7 then yields the result. �

The proof of Theorem 3.5 rests on the following characterization of almost com-
pact embeddings between Lorentz-Zygmund spaces from [35, Proposition 7.12].

Theorem 5.1. Let p1, p2, q1, q2 ∈ [1,∞], α1, α2 ∈ R be such that both triples
(p, q, α) = (p1, q1, α1) and (p, q, α) = (p2, q2, α2) satisfy one of the conditions
(2.8)-(2.11). Then

Lp1,q1:α1(0, 1)
∗
↪→ Lp2,q2:α2(0, 1)

holds if and only of p1 > p2, or p1 = p2 and the following conditions are satisfied:

if p1 = p2 <∞ and q1 ≤ q2 then α1 > α2;

if p1 = p2 =∞ or q1 > q2 then α1 +
1

q1

> α2 +
1

q2

.

In particular, if p1, p2, q1, q2 ∈ [1,∞] are such that both triplets (p, q, α) = (p1, q1, 0)
and (p, q, α) = (p2, q2, 0) satisfy one of the conditions (2.8)-(2.11) then

Lp1,q1(0, 1)
∗
↪→ Lp2,q2(0, 1)

holds if and only if p1 > p2.

Proof of Theorem 3.5. Using the Theorem 3.4 we can reduce (3.13) to proving
that

QmQ : Lp1,q1(0, 1)→→ Lp1,q1(0, 1). (5.9)

We are going to derive the embedding (5.9) from assumption of the Theorem 3.5.
Assume that p1 >

Q
m

, then Theorem 5.1 yields that

Lp1,q1(0, 1)
∗
↪→ L

Q
m
,1(0, 1).

Since
∫ 1

0
1

s
1−m

Q
ds <∞, application of Lemma 4.6 yields that

‖f‖
L
Q
m,1(0,1)

=

∫ 1

0

f ∗(s)

s1−m
Q

ds ≈ ‖f‖(L∞)d

1,s
1−m

Q
(0,1) (5.10)

Hence we get

Lp1,q1(0, 1)
∗
↪→ (L∞)d

1,s
1−m

Q
(0, 1). (5.11)

Now, we want to use the Theorem 4.5 to get required compactness of the operator
QmQ . To this end, we need to verify assumptions of the corresponding theorems.



22 M. FRANCŮ

Since p1 >
Q
m

and m < Q, Lp1,q1(0, 1) 6= L1(0, 1). The role of function J in the

claim of the Theorem 4.5 plays function J = s1−m
Q (0, 1), which satisfy condition

(2.3). Finally, ∥∥∥∥∥

(∫ 1

t

ds

J(s)

)1
∥∥∥∥∥
L∞(0,1)

=

∫ 1

0

1

s1−m
Q

ds <∞,

which is the condition (4.3) with J = s1−m
Q (0, 1), j = 1 and Y(0, 1) = L∞(0, 1).

Theorem 4.5 combined with (5.11) now yields

QmQ : Lp1,q1(0, 1)→→ L∞(0, 1).

The previous result together with the embedding L∞(0, 1) ↪→ Lp2,q2(0, 1), now
yields the claim.

Suppose now that p1 ≤ Q
m

. Assumptions of this theorem excludes cases when
Lp2,q2(0, 1) = L∞(0, 1) from consideration. This allows us to use the Theorem 4.3
to reduce (5.9) to

(Lp1,q1)r
1,s

1−m
Q

(0, 1)
∗
↪→ Lp2,q2(0, 1). (5.12)

It is shown in [7, Proposition 8.3] that Xr
j,J(0, 1) is the smallest rearrangement-

invariant space such that

Hj
J : X(0, 1)→→ Xr

j,J(0, 1)

holds. In [7, Theorem 6.8.] the following characterization of such rearrangement-
invariant space is given.

(Lp1,q1)r
1,s

1−m
Q

(0, 1) =





L
p1

1−mp1
Q

,q1
(0, 1), if m

Q
< 1 and 1 ≤ p1 <

Q
m
,

L∞,q1;−1(0, 1), if m
Q
< 1 and q1 > 1,

L∞(0, 1), otherwise.

Consequently, if p1 <
Q
m

and

p2 <
p1

1− mp1

Q

then the Theorem 5.1 ensures that (5.12) holds.
If p1 = Q

m
then, again, Theorem 5.1 yields that (5.12) holds if p2 <∞. �
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(1998), no. 4-5, 403–432.



COMPACT EMBEDDINGS ON CARNOT-CARATHÉODORY SPACES 23
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Abstract. The least concave majorant, F̂ , of a continuous function F on a closed inter-
val, I , is defined by

F̂ (x) = inf{G(x) : G > F, G concave}, x ∈ I.

We present an algorithm, in the spirit of the Jarvis March, to approximate the least concave
majorant of a differentiable piecewise polynomial function of degree at most three on I .
Given any function F ∈ C4(I), it can be well-approximated on I by a clamped cubic

spline S. We show that Ŝ is then a good approximation to F̂ .
We give two examples, one to illustrate, the other to apply our algorithm.

Keywords: least concave majorant; level function; spline approximation

MSC 2010 : 26A51, 52A41, 46N10

1. Introduction

Suppose F is a continuous function on the interval I = [a, b]. Denote by F̂ the

least concave majorant of F , namely,

F̂ (x) = inf{G(x) : G > F, G concave},

which can be shown to be given by

F̂ (x) = sup
{β − x

β − α
F (α) +

x− α

β − α
F (β) : a 6 α 6 x 6 β 6 b

}
, x ∈ I.

The first-named author was supported by the grant SVV-2016-260335 and by the grant
P201/13/14743S of the Grant Agency of the Czech Republic. NSERC support is grate-
fully acknowledged.
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This concave function has application in such diverse areas as mathematical eco-

nomics, statistics, and abstract interpolation theory. See, for example, [3], [2], [11],

[1], [10] and [8]. We observe that F̂ is continuous on I, and it is differentiable there

when F is.

Our aim in this paper is to give a new algorithm to approximate F̂ , together with

an estimate of the error entailed. If F is a continuous or, stronger yet, a differen-

tiable piecewise polynomial of degree at most three, then so is F̂ . If not, then F

may be approximated by a clamped cubic spline and the least concave majorant of

the approximating function is seen to be a good approximation to F̂ . To estimate

the error in Theorem 16 below we use a known result for the approximation error

involving such cubic splines from [4], together with a new result on (F̂ )′, which in [9],

page 70, and [5] is denoted by (F ′)◦ and is referred to as the level function of F ′ in

the unweighted case. See the aforementioned Theorem 16.

The simple structure of F̂ will be the basis of our algorithm. Since F and F̂

are continuous, the zero set, ZF , of F̂ − F is closed; of course, F̂ = F on ZF . The

connected components of Zc
F are intervals open in the relative topology of I on which

F̂ is a strict linear majorant of F ; indeed, if, for definiteness, the component interval

with endpoints α and β is a subset of the interior of I, then

(1) F̂ (α) = F (α), F̂ (β) = F (β),

(2) F (x) < F̂ (x) = F (α) + (x− α)
F (β) − F (α)

β − α
, α < x < β,

and, if F is differentiable on I,

(3) (F̂ )′(α) = F ′(α) =
F (β)− F (α)

β − α
= F ′(β) = (F̂ )′(β).

Our task is thus to find the component intervals of Zc
F . This will be done using

a refinement of the Jarvis March algorithm; see [7]. To begin, we determine the set

of points, D, at which F attains its maximum value, M , and then take C = [c1, c2]

to be the smallest closed interval containing D. Of course, in many cases D consists

of one point and c1 = c2.

It turns out that F̂ increases to M on [a, c1], is identically equal to M on C, then

decreases on [c2, b].

To describe in general terms how the algorithm works we focus on [a, c1], a < c1,

and take F to be a differentiable function which is piecewise cubic. As such, there

is a partition, P , of [a, c1] on each subinterval of which F is a cubic polynomial. By

refining the partition, if necessary, to include critical points and points of inflection

2



of F , we may assume that this polynomial is either strictly concave, linear or strictly

convex, and is either increasing or decreasing on its subinterval. It is the subintervals

where the associated cubic polynomial is increasing and strictly concave that are of

interest. It is important to point out that for a piecewise cubic function, Zc
F has

only finitely many components.

Now, F̂ on a component of Zc
F may be thought of as a kind of linear bridge over

a convex part of F . With this in mind, we call an interval, say J = (α, β), a bridge

interval if, on it, F satisfies

(4) F (x) < F (α) + (x− α)
F (β) − F (α)

β − α
, α < x < β,

and

(5) F ′(α) =
F (β)− F (α)

β − α
= F ′(β).

We include endpoints of I as possible endpoints of bridge intervals. In such case, the

corresponding part of (5) is omitted. An illustrating example of bridge intervals and

least concave majorant of a function can be found in Figure 7. It might be helpful to

reader to check the demonstrative Example 1 in Section 7 while reading the formal

description of algorithm. The algorithm is there applied to a particular spline.

Proceeding systematically from c1 to a (the procedure from c2 to b is similar)

our algorithm determines, in a finite number of steps, a finite number of pairwise

disjoint bridge intervals with endpoints in the intervals of increasing strict concavity

referred to in the above paragraph. The desired components are among these bridge

intervals.

The technical details of all this are elaborated in Section 2. Proofs of results

stated in that section are given in the next one and the algorithm itself is justified in

the one following that. Remarks on the implementation of the procedure are made

in Section 5. Section 6 has estimates of the error incurred when approximating an

absolutely continuous function by a clamped cubic spline, while in the final section

two examples are given.

2. The algorithm

In this section we describe our algorithm in more detail. This will require us to

first state some lemmas whose proof will be given in the next section.

Suppose that F is a continuous function on some interval I = [a, b] and let F̂ , Zc
F ,

M , D and C = [c1, c2] be as in the introduction.

3



Lemma 1. If F is a continuous function on I, then the least concave majorant,

F̂ , of F on I = [a, b] is continuous on I, with F̂ (a) = F (a) and F̂ (b) = F (b).

Moreover, on each component interval, J , of Zc
F , with endpoints α and β, F̂ is the

linear function, l, interpolating F at the points α and β.

Lemma 2. Suppose F is differentiable on (a, b) and (α, β) is a component

of Zc
F . Then F̂ is differentiable on (a, b), (F̂ )′(x) = F ′(x) for x ∈ (a, b) ∩ ZF , and

(F̂ )′(x) = (F (β) − F (α))/(β − α) for x ∈ [α, β]. In particular, F ′(x) = (F̂ )′(x) =

(F (β) − F (α))/(β − α) if x = α ∈ (a, b) or x = β ∈ (a, b). Moreover, if F ′ is

continuous on (a, b), then so is (F̂ )′.

Lemma 3. Let F be a continuous function on I, then F̂ ≡ M on C. Moreover,

F̂ is strictly increasing on (a, c1) and strictly decreasing on (c2, b).

Lemma 4. Let F be a continuous function, suppose C = [c1, c2] is as in the

introduction, and suppose x, y, z ∈ (a, b) are such that F is strictly convex on (x, z)

and y ∈ (x, z). Then F (y) 6= F̂ (y).

Suppose F is differentiable as well. If y ∈ (a, c1) and F
′(y) 6 0 then F (y) 6= F̂ (y).

Analogously, if y ∈ (c2, b) and F ′(y) > 0 then F (y) 6= F̂ (y).

Lemma 5. Let F be a continuous function. If J = (α, β) is a component interval

of Zc
F then either J ⊂ (a, c1), J ⊂ (c1, c2) or J ⊂ (c2, b).

Suppose that F is piecewise cubic and differentiable on I, and suppose J ⊂ [a, c1].

Denote by P the closed intervals determined by the partition of [a, c1] inherited from

the piecewise cubic structure of F , together with any critical points and points of

inflection of F in [a, c1].

Lemma 6. Suppose that F is piecewise cubic and differentiable on I. Let J =

(α, β) ⊂ [a, c1) be a component interval of Zc
F . Then either α = a or there is an

interval K = [k1, k2] in P containing α on which F is strictly concave and increasing.

Similarly, either β = c1 or there is an interval L = [l1, l2] in P containing β on which

F is strictly concave and increasing. Moreover, K 6= L.

Leaving aside the case c1 = c2 = b our goal is to select the components of Zc
F from

among the bridge intervals of the form [a, b1) or (a1, b1), a1 > a, such that a1 and

b1 lie in distinct intervals in P with disjoint interiors on which intervals F is strictly
concave and increasing.

Let P be the collection of intervals in P where F is strictly concave and increasing.
Given a pair of intervals in P that can have the endpoints of a bridge interval in

them, one determines those endpoints, if they exist, by the study of a certain sextic
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polynomial equation. The details of the most complicated case are described in the

following lemma.

Lemma 7. Let L = [l1, l2] and R = [r1, r2] belong to P with l2 6 r1. Suppose

F (x) =

{
PL(x) = Ax3 +Bx2 + Cx+D on L,

PR(x) = Wx3 +Xx2 + Y x+ Z on R,

with AW 6= 0. Assume

J = P ′
L(L) ∩ P ′

R(R) 6= ∅.

Then, if there is a bridge interval I1 = (a1, b1) with a1 ∈ L and b1 ∈ R, this bridge

interval is such that

(6) a1 = (P ′
L)

−1(y0) and b1 = (P ′
R)

−1(y0),

where y0 is a point in J satisfying the sextic equation

(µ2
1 − µ2

2 − µ2
3δ)

2 − 4µ2
2µ

2
3γδ = 0,

in which

γ = 3Ay +B2 − 3AC, δ = 3Wy +X2 − 3WY, µ2 =
−2γ

27A2
, µ3 =

2δ

27W 2

and

µ1 =
1

3

(X

W
− B

A

)
y +

(
Z +

2X3

27W 2
− Y X

3W

)
−
(
D +

2B3

27A2
− BC

3A

)
.

The verification that a given interval J = (α, β) ⊂ (a, c1) satisfies condition (4)

can be achieved using the following criterion: Assume that α ∈ L = [l1, l2] ∈ P ,
β ∈ R = [r1, r2] ∈ P , l2 < r1, and that l is a linear function interpolating F on J .

Then J satisfies (4) if for every K = [k1, k2] in P with K ⊂ [l2, r1],

l(k1)− F (k1) > 0 and l(k2)− F (k2) > 0,

and, in addition, if K ∈ P , then

l(̺)− F (̺) > 0

for any root, ̺, in K of the quadratic

F ′(x) =
F (β) − F (α)

β − α
.
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Obvious modifications of the above must also hold for [a1, l2] and [r1, b2]. This

criterion can be proved using elementary calculus.

We are now able to describe an iterative procedure that selects the component

intervals of Zc
F from a class of bridge intervals. We will focus our description on

the case of finding all component intervals contained in (a, c1) as the case in which

the component intervals are contained in (c2, b) is analogous while the component

intervals in (c1, c2) are determined trivially by Lemma 3.

If a = c1, then there is no such component interval. In the following, we exclude,

at first, the case c1 = c2 = b, so that c1 < b. Set P0 = P .
We claim that P0 cannot be empty. As a consequence of Lemma 5 we have that

F̂ (c1) = F (c1), since c1 cannot be in the interior of any component interval. The

point c1 is a local maximum of F . The choice of P ensures that there is an interval

(x, c1) such that F is increasing and concave on it, hence P0 must contain at least

one interval.

Assume P0 has exactly one interval. The fact that c1 is a local maximum of F

ensures that this interval is of a form [x, c1). Suppose now that x = a, then F = F̂

on [a, c1], since the function

m(t) =

{
F (t), t ∈ [a, c1],

M, t ∈ (c1, b],

is a concave majorant of F . (It is a concave function extended linearly with slope

equel to that of the tangent line at the endpoint.)

Suppose now that x 6= a. We have F 6= F̂ on (a, x) — if there were y ∈ (a, x)

such that F (y) = F̂ (y), then F would have to be increasing and strictly concave

on some neighbourhood by Lemma 4 and Lemma 6. This is a contradiction to the

assumption that [x, c1] is the only interval in P0. Since F 6= F̂ on (a, x) there must

be a component interval containing (a, x). On the other hand, Lemma 3 implies that

F (c1) = F̂ (c1), hence this component interval must be a subset of (a, c1).

The desired component interval is of a form (a, β), β ∈ [x, c1). If we choose β to

be the unique solution to the equation

F ′(β) =
F (β)− F (a)

β − a
,

then the interval (a, β) will be the component interval, since it is the only interval

which satisfies the necessary conditions (3).

Suppose next that P0 has at least two intervals and take R = [r1, r2] to be that

interval in P0 closest to c1.
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We seek first a component interval of the form (a, r), r ∈ R, as if R were the only

interval in P0. If no such interval exists, let L = [l1, l2] be the interval in P0 closest

to a, then use Lemma 7 to test for a bridge interval W = (w1, w2) with w1 ∈ L and

w2 ∈ R.

It is important to point out that Lemma 7 only places a restriction on bridge inter-

vals, it does not guarantee them. Once the sextic is solved, condition (2) must still

be verified for the proposed bridge interval. This means iterating through each par-

tition subinterval contained in the proposed bridge interval and solving a maximum

problem to verify that F lies underneath the proposed linear F̂ .

In a true Jarvis March points, rather than intervals, are ordered according to the

angle of a tangent line. In the case of intervals associated to piecewise cubic functions

such an ordering is computationally expensive.

Should there be no such W carry out the same test on the interval in P0 closest

to the right of L, if one exists.

If, in moving systematically to the right in this way, we find no W , we discard R

from P0 to get P1 and repeat the above procedure.

If, on the contrary, we find such a W , it will be a component interval. Say

w1 ∈ N = [n1, n2], N ∈ P0.

We next form P1 by discarding from P0 all intervals to the right of the point w1, for

example R, and, in addition, replace N by the interval [n1, w1] (if n1 < w1, otherwise

just discardN). We then carry out the above-described procedure with P1, if P1 6= ∅.
Continuing in this way we see that Pn+1 has at least one less interval than Pn, so

the algorithm terminates after a finite number of steps.

Finally, in the case c1 = c2 = b there may be a component interval of Zc
F of the

form (r, b), r ∈ [a, b). This may be found in a way similar to those of the form (a, r).

Remark 8. We now comment briefly on how one can modify our algorithm to

deal with piecewise cubic functions that are only continuous. In this case the notion

of a bridge interval has to be changed since the function F might not be differentiable

at the endpoint of a component intervals of Zc
F and hence that end point needn’t

belong to an interval of strict concavity. Accordingly, we say that (α, β) is a bridge

interval if conditions (4) and (5) hold and, in addition,

F ′(α−) > F (β)− F (α)

β − α
> F ′(α+) and F ′(β−) > F (β)− F (α)

β − α
> F ′(β+).

Again, Lemma 6 must be modified to compensate for the F need not be differen-

tiable. To do this we allow for three possibilities, namely, α = a, α is contained in an

interval of strict concavity of F or α is one of the points at which F ′(α−) > F ′(α+);

a similar change must be made at the β. These changes necessitate our including all

points of discontinuity of F ′ as degenerate intervals in P .
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The iterations of our algorithm proceed much as in the differentiable case, with

the difference that when some point, say x, is selected from Pi we must check if

(α, x) (or (β, x)) is a bridge interval in the new sense. This can be done in a manner

similar to the one we described for determining if (α, β) is a bridge interval in the

old sense.

3. Proof of Lemmas 1–7

P r o o f of Lemma 1. Since F̂ is concave it is continuous on the interior of I.

This continuity ensures that for all ε > 0, there exists a slope m such that the graph

of F lies under the line

la(x) = F (a) +m(x− a) + ε.

But then la would be a concave majorant of F , so

F (x) 6 F̂ (x) 6 la(x), x ∈ I.

As ε > 0 is arbitrary, F̂ is continuous at a, with F̂ (a) = F (a). A similar argument

shows F̂ is continuous at b, with F̂ (b) = F (b).

Let J and l be as in the statement of Lemma 1 and suppose y is a point at which

F − l achieves its maximum value on I. Since F lies below the line l + F (y)− l(y),

so does F̂ . In particular, F̂ (y) 6 F (y), so F̂ (y) = F (y) and hence y /∈ J◦. But,

F̂ (α) = F (α) and F̂ (β) = F (β), so, by concavity, F̂ lies above l on J and below l

off J◦. Thus,

F (y)− l(y) 6 F̂ (y)− l(y) 6 0,

whence

F 6 l + F (y)− l(y) 6 l.

This means F̂ lies below l on J . It follows that F̂ = l on J . �

P r o o f of Lemma 2. If x ∈ (a, b) ∩ ZF then F̂ (x) = F (x). Since F̂ is a concave

majorant of F for any w and y satisfying a < w < x < y < b we have

F (y)− F (x)

y − x
6 F̂ (y)− F̂ (x)

y − x
6 F̂ (x)− F̂ (w)

x− w
6 F (x)− F (w)

x− w
=

F (w) − F (x)

w − x
.

Since F is differentiable at x, the squeeze theorem shows that (F̂ )′(x) exists and

equals F ′(x).

Lemma 1 shows that, on (α, β), F̂ is a line with slope (F (β) − F (α))/(β − α).

So it is differentiable on (α, β) and has one-sided derivatives at the points α and β.
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If α or β is in (a, b) ∩ ZF the derivative of F̂ exists there and, of course, coincides

with its one-sided derivative. If α = a or β = b, the endpoints of the domain of F̂ ,

then (F̂ )′ is a necessarily just a one-sided derivative. We conclude that (F̂ )′ =

(F (β) − F (α))/(β − α) on the closed interval [α, β].

Evidently, (F̂ )′ is continuous at each x ∈ Xc
F . Suppose F

′ is continuous at x ∈
(a, b) ∩ ZF . If a < w < x < y < b then any component of Zc

F that intersects (w, y)

has at least one endpoint in (w, y). It follows that (F̂ )′(w, y) ⊂ F ′(w, y). Since F ′ is

continuous at x, so is (F̂ )′. �

P r o o f of Lemma 3. To verify the first statement, one needs only to observe

that between two points in D (at which F = M) F̂ = M .

The second statement follows from a simple contradiction argument: Assume that

there are x1, x2 ∈ (a, c1), x1 < x2, such that F̂ (x1) > F̂ (x2). Then F̂ (x1) < F̂ (c1)

implies that

F̂ (x2) < F̂ (x1)
c1 − x2

c1 − x1
+ F̂ (c1)

(
1− c1 − x2

c1 − x1

)
.

But this contradicts the concavity of F̂ . Consequently, we have F̂ (x1) < F̂ (x2). An

analogous argument shows that F̂ is strictly decreasing on (c2, b). �

P r o o f of Lemma 4. The second part follows from Lemma 3, as F̂ is strictly

increasing on (a, c1) and strictly decreasing on (c2, b). This leads to contradiction as

if F (y) = F̂ (y) then F ′(y) = (F̂ )′(y) by Lemma 2 if y is an isolated point of ZF and

trivially otherwise.

To prove the first part: suppose for contradiction that F̂ (y) = F (y). Then

F̂ (y) = F (y) 6 F (x)
y − x

z − x
+ F (z)

z − y

z − x
6 F̂ (x)

y − x

z − x
+ F̂ (z)

z − y

z − x
,

which is in contradiction with the strict concavity of F̂ . �

P r o o f of Lemma 5. For x in a bridge interval J = (α, β), condition (4) yields

F (x) 6 F (α)
β − x

β − α
+ F (β)

x − α

β − α
6 M,

with equality only with F (α) = F (β) = M . Thus, J intersects C only if both

endpoints are contained in C. The conclusion follows. �

P r o o f of Lemma 6. When a = α or b = c1 = β there is nothing to prove.

Assume first, then, that α > a and choose K = [k1, k2] ∈ P such that α ∈ [k1, k2).

For any x ∈ J ∩ (α, k2), Lemmas 2 and 3 combine to give

F (x) < F̂ (x) = F (α) + (x− α)F ′(α).
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Since F lies below its tangent line, it is neither linear nor strictly convex on [k1, k2].

Thus, F must be strictly concave on K. Lemma 3 implies that F̂ is strictly

increasing on (a, c1), hence (F̂ )′(α) > 0. Lemma 2 yields that (F̂ )′ exists and

(F̂ )′(α) = F ′(α). The choice of P ensures that F is monotone on K. Hence F

is increasing on K.

A similar argument yields F strictly concave and increasing on L = [l1, l2] when

β < c1. �

P r o o f of Lemma 7. Since F ′ is decreasing on L and R, J = [c, d], with c =

max[F ′(l2), F ′(r2)] and d = min[F ′(l1), F ′(r1)].

Now,

F ′(x) =

{
P ′
L(x) = 3Ax2 + 2Bx+ C on L,

P ′
R(x) = 3Wx2 + 2Xx+ Y on R,

with F ′ decreasing on both intervals. So, the unique roots, a(y) and b(y), of

P ′
L(a(y)) = y and P ′

R(b(y)) = y, y ∈ J,

can be obtained from the formulas

a(y) = − 1

3A

[
B ±

√
3Ay +B2 − 3AC

]

and

b(y) = − 1

3W

[
X ±

√
3Wy +X2 − 3WY

]
.

We now seek y ∈ J such that

F (b(y))− F (a(y))

b(y)− a(y)
= y

or

(7) F (b(y))− yb(y)− (F (a(y))− ya(y)) = 0.

Figures 1 and Figures 2 below illustrate the geometric meaning of equation (7).

Letting

γ(y) = 3Ay +B2 − 3AC and δ(y) = 3Wy +X2 − 3WY,

equation (7) is equivalent to

(8) µ1 + µ2
√
γ + µ3

√
δ = 0,
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a(y) b(y)

PL

PR

Figure 1. For each y ∈ (PL)
′(L) ∩ (PR)

′(R) there exist exactly one a(y) ∈ L and b(y) ∈ R
such that P ′

L(a(y)) = R′
L(b(y)) = y.

a(y) b(y)

PL

PR

Figure 2. There is a y0 ∈ (PL)
′(L) ∩ (PR)

′(R) such that the corresponding a(y0) and
b(y0) referred to in the caption of Figure 1 satisfy y0 = (F (b(y0))− F (a(y0)))/
(b(y0)− a(y0)) = (PR(b(y0))− PL(a(y0)))/(b(y0)− a(y0)), whence P

′
L(a(y0)) =

P ′
R(b(y0)) = y0 = (F (b(y0))− F (a(y0)))/(b(y0)− a(y0)).

with µ1, µ2, µ3 linear functions of y, namely,

µ2(y) = − 2γ

27A2
, µ3 =

2δ

27W 2
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and

µ1(y) =
1

3

(X

W
− B

A

)
y +

(
Z +

2X2

27W 2
− Y X

3W

)
−
(
D +

2B2

27A2
− CB

3A

)
.

We claim the solution of (7) is a root of the sextic polynomial equation

(9) (µ2
1 − µ2

2γ − µ2
3δ)

2 − 4µ2
2µ

2
3γδ = 0.

Indeed, isolating µ1 in (8), then squaring both sides gives

(10) µ2
1 = µ2

2γ + µ2
3δ + 2µ2µ3

√
γ
√
δ.

Isolating the term in (10) with the square roots and squaring both sides yields (9).

�

The following remark is given to make the appearance of the sextic equation seem

more natural.

Remark 9. Suppose, for definiteness, the a(y) and b(y) referred to in the proof

of Lemma 7 are given by

a(y) =
−B

3A
+

1

3A

√
3Ay +B2 − 3AC and b(y) =

−X

3W
+

1

3W

√
3WY +X2 − 3WY .

Then, equation (7) can be written as

PR

(−X

3W
+

1

3W

√
3WY +X2 − 3WY

)
− PL

(−B

3A
+

1

3A

√
3Ay +B2 − 3AC

)

= y
(−X

3W
+

B

3A
+

1

3W

√
3WY +X2 − 3WY − 1

3A

√
3Ay +B2 − 3AC

)
.

In our original proof of Lemma 7 we rearranged the terms in this version of (7), then

squared both sides. We repeated this procedure a few times to get rid of the square

roots and so arrive at the sextic equation (9).

4. Justification of the algorithm

The purpose of this section is to prove

Theorem 10. Let F be a differentiable piecewise cubic function. Then the bridge

intervals coming out of the algorithm are precisely the component intervals of Zc
f .

For simplicity, we consider only the components in [a, c1). We begin with the

preparatory
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Lemma 11. Suppose that F is absolutely continuous on I0 = [a, b]. Let I =

(a1, b1) be a bridge interval with the right hand endpoint in an interval R on which

F is strictly concave and increasing. If J = (a2, b2) is another bridge interval such

that I ∩ J 6= ∅, b2 ∈ R and b1 < b2, then a2 < a1.

P r o o f. Let

lI(x) = F (a1) + (x − a1)
F (b1)− F (a1)

b1 − a1

and, similarly,

lJ(x) = F (a2) + (x− a2)
F (b2)− F (a2)

b2 − a2
.

Assume, if possible, a1 < a2. Then, a2 < b1, otherwise I ∩ J = ∅. So,

(11) lJ(a2) = F (a2) < lI(a2),

since I is a bridge interval. The latter also implies

F (b2) = lI(a2) + (b1 − a2)F
′(b1) +

∫ b2

b1

F ′(t) dt;

further, J being a bridge interval, we have

F (b2) = lJ(a2) + (b2 − a2)F
′(b2).

Therefore,

0 = lJ(a2)− lI(a2) + (b2 − a2)F
′(b2)− (b1 − a2)F

′(b1)−
∫ b2

b1

F ′(t) dt.

The strict concavity of F on R ensures that F ′(t) > F ′(b2) for t ∈ R, t < b2. Thus

lI(a2)− lJ (a2) = (b2 − a2)F
′(b2)− (b1 − a2)F

′(b1)−
∫ b2

b1

F ′(t) dt

< (b2 − a2)F
′(b2)− (b1 − a2)F

′(b2)−
∫ b2

b1

F ′(t) dt

= (b2 − b1)F
′(b2)−

∫ b2

b1

F ′(t) dt < 0.

Consequently,

lI(a2)− lJ(a2) < 0,

thereby contradicting (11). �
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P r o o f of Theorem 10. As a consequence of Lemma 5 one gets that the compo-

nent intervals are split into three groups: component intervals contained in [a, c1],

[c1, c2] and component intervals which are subsets of [c2, b]. We begin by observing

that component intervals of Zc
F in [a, c1] are the maximal bridge intervals there.

To the end of showing every bridge interval coming out of the algorithm is a com-

ponent interval of Zc
F , fix an iteration, say the nth, of the procedure. Let R = [r1, r2]

be that interval in Pn closest to c1. According to Lemma 11, if there are bridge in-

tervals with righthand endpoint in R, the one closest to c1 will be the bridge interval

chosen by the algorithm and, moreover, will be a maximal bridge interval.

We next prove all component intervals of Zc
F (in [a, c1)) come out of the algorithm.

Assume, if possible, M = (m1,m2) is a component not obtained by the algorithm.

Let S = [s1, s2] be that member of P such that m2 ∈ S.

Now, either S was chosen as an R in some iteration or it was not. If it was

chosen and M is not the bridge interval with righthand endpoint in S closest to c1,

then another bridge interval, N = (n1, n2), is; in particular, M and N satisfy the

hypotheses of Lemma 11, with m2 < n2. We conclude M ⊂ N , which contradicts

the maximality of M .

Finally, suppose S was not chosen. Then there is a last iteration, say the nth,

such that S ∈ Pn. Let T ∈ Pn be the interval in Pn closest to c2.

If T does not contain the righthand endpoint of a bridge interval, S, it will be

chosen in the next iteration, which cannot be. So, let N = (n1, n2) be a bridge

interval, indeed a component interval of Zc
F , having n2 ∈ T . Now, n1 cannot be to

the right of S as that would entail S ∈ Pn+1. Again, n1 cannot lie to the left of S

nor can we have n1 < m2, since either would contradict the maximality of M . The

only possibility left is n1 ∈ S, n1 > m2.

Should we have n1 > s1, M would arise from [s1, n1] in the next iteration. This

leaves the case s1 = m2 = n1. All intervals in Pn contained in [n1, c1] = [m2, c2] will

be discarded at the end of the nth step. But, according to Lemma 6, there exists

an interval in Pn+1 with m2 as its right hand endpoint, which interval will be the

one in Pn+1 closest to c1. As m2 belongs to that interval M would come out of the

(n+ 1)-st step of the algorithm contrary to our assumption. �

5. Implementation of the algorithm

In this section we discuss ways to make the algorithm more efficient. Suppose,

then, that F is a differentiable piecewise polynomial and that we are searching for

component intervals contained in [a, c1]. In a given iteration we have chosen the

interval R = [r1, r2] furthest to the right in the current version of P and we are
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about to seek in it and, in an appropriate interval L to the left, endpoints of a bridge

interval. It turns out we needn’t do this for all L.

We have developed a few simple criteria to determine those L which cannot contain

the left endpoint of a bridge interval with right endpoint in R.

One natural test is to require of L that F ′(L) ∩ F ′(R) 6= ∅.
Lemma 12 below implies that there must be an intervening interval in P between

L and R on which F is convex (or linear). We split the intervals in P into groups
such that intervals in the same group are not separated by any intervening convex

or linear interval. Then, bridge intervals cannot have endpoints in intervals from the

same group. Consequently L is a viable candidate only if it belongs to a group other

then R.

Moreover, for L to be a viable candidate it must lie to the left of the set of points

at which F equals its maximum value on [a, r1]. This is a consequence of Lemma 13

as it ensures that otherwise no bridge interval has endpoints in L and R.

Of course, there are more such criteria. We now state and proof the two Lemmas

referred to above.

Lemma 12. Let F be a differentiable piecewise polynomial function. Every

bridge interval has to contain an interval from P on which F is not strictly concave.

P r o o f. Suppose for contradiction that there is a bridge interval B = (b1, b2)

such that F is strictly concave on (b1, b2). Condition 5 then yields that F
′(b1) =

F ′(b2). At the same time, strict concavity of F yields that F ′ is decreasing on B,

which leads to contradiction. �

Lemma 13. Assume F is a cubic spline, suppose R = [r1, r2] ⊂ [a, c1] is an

interval on which F is strictly concave and increasing, with m2 ∈ R such that

F̂ (m2) = F (m2). Given s < r1 satisfying F (s) = max{F (x) : x ∈ [a, r1]} and an
m1 < r1 for whichM = (m1,m2) is a component interval of Z

c
F , one has m1 ∈ [a, s].

P r o o f. Assume, if possible, m1 ∈ (s, r1]. Then F̂ (s) > F (s) > F (m1) = F̂ (m1)

by hypothesis, and F̂ (m2) > F̂ (m1), since F̂ is increasing on [a, c1] according to

Lemma 3. Hence

F̂ (m1) 6
m2 −m1

m2 − s
F̂ (s) +

m1 − s

m2 − s
F̂ (m2)

= F̂ (s) + (m1 − s)
F̂ (m2)− F̂ (s)

m2 − s
,

which contradicts the concavity of F̂ . �
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6. Error estimates

Given an absolutely continuous functionG on a closed interval I of finite length, we

choose F to be the clamped cubic spline interpolating G at the points of a partition

̺ of I. This permits us to take advantage of the following special case of optimal

error bounds for cubic spline interpolation obtained by Hall and Meyer in [4].

Proposition 14. Suppose G ∈ C4(I) and let ̺ := [x0, . . . , xn+1] be a partition

of I. Denote by F the clamped cubic spline interpolating G at the nodes of ̺. Then

|G′(x)− F ′(x)| 6 1

24
‖G(4)‖∞ ‖̺‖3, x ∈ I,

where ‖·‖∞ denotes the usual supremum norm and

‖̺‖ := sup{|xk − xk−1| : k = 1, . . . , n}.

To estimate the error involved in approximating the least concave majorant, we

first consider the sensitivity of the level function to changes in the original function.

We recall that the level function, f◦, of f is given by f◦ = (F̂ )′, where F ′ = f .

Theorem 15. Suppose F and G are absolutely continuous functions defined on

a finite interval I. Then f = F ′, g = G′ and we denote by f◦ and g◦ the level

functions of f and g, respectively. Then F̂ and Ĝ are also absolutely continuous

on I, and

‖f◦ − g◦‖∞ = ‖(F̂ )′ − (Ĝ)′‖∞ 6 ‖f − g‖∞.

Here F̂ and Ĝ denote the least concave majorants of F and G, respectively, and

f = F ′, g = G′, while f◦ = (F̂ )′, and g◦ = (Ĝ)′.

P r o o f. Set

ZF = {x ∈ I : F (x) = F̂ (x)}, ZG = {x ∈ I : G(x) = Ĝ(x)}

and observe that f◦ = f almost everywhere on ZF and g◦ = g almost everywhere

on ZG. By Lemma 1, F̂ is continuous and is of constant slope on each component

of the complement of ZF . It follows that F̂ is absolutely continuous on I. Since Ĝ

is continuous and is of constant slope on each component of the complement of ZG,

Ĝ is absolutely continuous on I as well. We consider several cases to establish that

|f◦(x)− g◦(x)| 6 ‖f − g‖∞ for almost every x ∈ I.
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Case 1 : x ∈ ZF and x ∈ ZG. For almost every such x,

|f◦(x) − g◦(x)| = |f(x)− g(x)| 6 ‖f − g‖∞.

Case 2 : x ∈ ZG but x /∈ ZF . Then x is in the interior of some component interval

[a, b] of F . By Lemma 1, F̂ (a) = F (a) and F̂ (b) = F (b). Since F̂ has constant slope

on [a, b], ∫ x

a

f = F (x) − F (a) 6 F̂ (x)− F̂ (a) = (x − a)f◦(x)

and ∫ b

x

f = F (b)− F (x) > F̂ (b)− F̂ (x) = (b− x)f◦(x).

Also, since Ĝ(x) = G(x) and g◦ is non-increasing,

∫ x

a

g = G(x)−G(a) > Ĝ(x) − Ĝ(a) =

∫ x

a

g◦ > (x− a)g◦(x)

and ∫ b

x

g = G(b)−G(x) 6 Ĝ(b)− Ĝ(x) =

∫ b

x

g◦ 6 (b− x)g◦(x).

Combining these four inequalities, we obtain

−‖f − g‖∞ 6 1

x− a

∫ x

a

(f − g) 6 f◦(x) − g◦(x)

6 1

b− x

∫ b

x

(f − g) 6 ‖f − g‖∞.

Thus, |f◦(x) − g◦(x)| 6 |f − g‖∞.
Case 3 : x ∈ ZF but x /∈ ZG. Just reverse the roles of F and G in Case 2.

Case 4 : x /∈ ZF and x /∈ ZG. Suppose without loss of generality that g
◦(x) 6

f◦(x). Let a be the left-hand endpoint of the component interval of G containing x,

and let b be the right-hand endpoint of the component interval of F containing x.

By Lemma 1, Ĝ(a) = G(a) and F̂ (b) = F (b). Since g◦ is constant on (a, x) and

non-increasing on (x, b) we have

(b − a)g◦(x) >
∫ b

a

g◦ = Ĝ(b)− Ĝ(a) > G(b)−G(a) =

∫ b

a

g.

Since f◦ is non-increasing on (a, x) and constant on (x, b), we have

(b− a)f◦(x) 6
∫ b

a

f◦ = F̂ (b)− F̂ (a) 6 F (b)− F (a) =

∫ b

a

f.
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Combining these, we have

f◦(x) − g◦(x) 6 1

b− a

∫ b

a

(f − g) 6 ‖f − g‖∞.

This completes the proof. �

The last result can be combined with Proposition 14 to give the desired error

estimates.

Theorem 16. Let ̺ be a partition of the interval [a, b] and suppose G ∈ C4([a, b]).

Let F be the clamped cubic spline interpolating G on ̺. Then

‖f◦ − g◦‖∞ 6 ‖f − g‖∞ 6 1

24
‖G(4)‖∞ ‖̺‖3

and for each x ∈ [a, b],

|F̂ (x) − Ĝ(x)| 6 min{x− a, b− x}
24

‖G(4)‖∞ ‖̺‖3.

Here F̂ and Ĝ denote the least concave majorants of F and G, respectively, and

f = F ′, g = G′; f◦ = (F̂ )′, and g◦ = (Ĝ)′.

P r o o f. The first inequality is just Theorem 15 together with the result from [4].

For the second, observe that by Lemma 1, F̂ (a) = F (a) and Ĝ(a) = G(a), and since

a is in the partition ̺, G(a) = F (a). Thus, F̂ (a) = G(a). Since both F̂ and Ĝ are

concave and hence absolutely continuous,

|F̂ (x)− Ĝ(x)| =
∣∣∣∣
∫ x

a

f◦(x)− g◦(x)

∣∣∣∣ 6
∫ x

a

‖f◦ − g◦‖∞ 6 x− a

24
‖G(4)‖∞ ‖̺‖3.

A similar argument, using integration on [x,B], shows that

|F̂ (x) − Ĝ(x)| 6 b− x

24
‖G(4)‖∞ ‖̺‖3

and completes the proof. �
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7. Examples

We present here two examples involving our algorithm.

Example 1. With our first example we illustrate the flow of the algorithm. Let

s be the continuously differentiable, piecewise cubic function defined on [0, 10] by

s(x) = sn(x) on [n− 1, n], n = 1, 2, . . . , 10,

where

s1(x) = −1.1x3 + 1.1x2 + x+ 1, s2(x) = 1.3x3 − 5.3x2 + 6.6x− 0.6,

s3(x) = −0.9x3 + 6x2 − 12.2x+ 9.4, s4(x) = −1.5x3 + 16x2 − 56x+ 67,

s5(x) = 3, s6(x) = 0.5x3 − 8.75x2 + 50x− 90.75,

s7(x) = 2 + (x − 6.5)2, s8(x) = − 0.5x3 + 10.75x2 − 76x+ 179,

s9(x) = x3 − 25.5x2 + 216x− 605, s10(x) = 0.6x3 − 16.6x2 + 153x− 467.3.

The graph of s is given in Figure 3.

1.0

1.5

2.0

2.5

3.0

2 4 6 8 10

s

Figure 3. Graph of s with marked points where prescribed polynomials change.

To begin, s attains its maximum value of 3 on D = [4, 5] ∪ {8}. So, ŝ(x) = 3 on

C = [4, 8].

Since s < 3 on (5, 8) it will be a component interval. We next seek the component

intervals in [0, 4]. By adding to the partition those points in [0, 4] for which s′ or s′′

changes sign we get a refined partition where, on each subinterval, s is monotone and
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either strictly convex or strictly concave. The first derivative of s changes sign at

0.97687, 1.75204, 2.8701 and 3.1̄. The second derivative changes sign at 0.3̄, 1.35897,

2.2̄ and 3.5̄. We are interested in subintervals of [0, 4] where s is strictly concave and

increasing. These are I1 = [0.3̄, 0.97687], I2 = [2.2̄, 2.87011] and I3 = [3.5̄, 4]. Thus,

P0 = {I1, I2, I3}. Clearly, I3 is the interval in P0 furthest to the right.

There are no bridge intervals with left endpoint 0 and right endpoint in I3.

Indeed, there are two candidate intervals of the form [a, r], r ∈ I3, such that

(12) s′(r) =
s(r) − s(0)

r
=

s(r) − 1

r
,

but, for neither candidate does one have (3), that is,

s(x) < x
[s(r) − 1

r

]
, x ∈ (0, r).

This can be seen in Figure 4.

1.0

1.5

2.0

2.5

3.0

2 4 6 8 10

s

Figure 4. The two intervals with left-hand endpoint being 0 which satisfy the first con-
dition (12) are [0, 3.24826] and [0, 3.84606]. But neither of them can meet the
second condition from the definition of a bridge interval.

Again, there are two intervals with right endpoint in I3 and left endpoint in I1 for

which (1) and (2) holds. These are

I1,1 = (0.89359, 3.90772) and I1,2 = (0.92390, 3.16878).

However, only on I1,1 is (3) satisfied. The situation is depicted in Figure 5.
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s

Figure 5. This figure pictures the bridge interval joining intervals I1 and I3 and the other
candidate.

Since no interval with left endpoint in I2 can have the left endpoint smaller than

the left endpoint of I1,1, the interval I1,1 is the desired component interval. This

completes the first iteration of our algorithm.

To form P1 for the second iteration we, of course, discard I3. We also discard I2,

since it is contained int I1,1. This leaves in P1 only interval I
′
1, as (0.3̄, 0.89359) =

I1 \ I1,1.
There is one bridge interval with right endpoint in I ′1 and left endpoint 0. It is

(0, 0.5), therefore (0, 0.5) is a component interval. We have thus found all component

intervals in [0, 4].

We now seek component intervals contained in [8, 10]. To begin we must ad to

the partition points 8,9,10 the critical point 8.5 and the inflection points 9.2̄ and 9.4̄.

It is then found that the intervals on which s is strictly concave and increasing are

J1 = [8, 8.5] and J2 = [9, 9.2̄].

The interval [8.05353, 10] is a bridge interval with left endpoint in J1 and right

endpoint 10.

The unique component interval is [8, 10]. See Figure 6.

The graph of ŝ appears in Figure 7.

Example 2. Consider the trimodal density function discussed in [6], namely,

f(x) = 0.5ϕ(x− 3) + 3ϕ(10(x− 3.8)) + 2ϕ(10(x− 4.2)),

in which

ϕ(x) =
1√
2π

e−x2/2.
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Figure 6. This figure shows the component interval (8.05353, 10).

1.0

1.5

2.0

2.5

3.0

2 4 6 8 10

s

ŝ

Figure 7. The least concave majorant of s is linear interpolation of s from the end-points
of a component interval and agrees with s elsewhere.

We wish to approximate the least concave majorant of F (x) =
∫ x

0
f(y) dy on [0, 6].

Now, ‖F (4)‖∞ 6 700, so to ensure that the clamped cubic spline SF approximating F

on [0, 6] satisfies |f◦(x)−(S′
F )

◦(x)| 6 0.001 on [0, 6], we solve the equation 700
24 ‖̺‖3 =

0.001 to obtain ‖̺‖ = 0.03249. Dividing [0, 6] into 85 > 6
0.03249 equal subintervals, we

apply the algorithm to identify the component intervals of ZC
Sf
. The approximation∫ x

0 (Ŝ
′
f )

◦ to F̂ (x) is accurate to within 0.003.

Figure 8 shows the graph of F (y) and the approximation to its least concave

majorant, ŜF .

22
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0.1

0.2

0.3

0.4
F

F̂

Figure 8. The trimodal density function F with its least concave majorant F̂ . The bridge
intervals are (0, 2.42575) and (2.48781, 3.23693).
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