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Abstract: In the present work we investigate the solution of the univalent twistor equa-
tion on an isolated horizon that serves for the definition of the so-called Penrose mass.
We start our discussion with the construction of adapted coordinates to the isolated hori-
zon and summarizing the main results in this field that are needed for our work. We
include a chapter devoted to the extremal isolated horizons and prove an important re-
sult concerning uniqueness of geometry therein. It is a generalization of the paper by
Lewandowski and Pawlowski (Class. Quantum Grav. 31 (17), 2014), which states that
the extremal isolated horizons are necessarily isometric to the intrinsic geometry of the
Kerr-Newmann black hole. Further we proceed to investigation of the twistor equation
on the isolated horizon. We analyze conditions of integrability and derive the time depen-
dent solution. Consequently we solve the 2-surface twistor equation and briefly discuss
the general approach to the problem of defining the Penrose charge.
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1 | Introduction

Black holes are, on the one hand, the simplest objects we can find in nature: according
to the no-hair theorem, they are described by a small number of parameters which com-
pletely determine all their properties. At the same time, black holes are very mysterious
objects in which the space and time display their strangest and most incomprehensible
properties. They are interesting also from astrophysical point of view, since their strong
fields significantly contribute to gravitational lensing, thus allowing to investigate the
large scale structure of the Universe. Black holes power the most violent processes like
the emission of Blandford-Znajek jets from active galactic nuclei, black hole merger was
the source of historically first detected burst of gravitational waves.

From theoretical point of view, black holes are also important laboratories for testing
basic physical principles. The laws of black hole thermodynamics and related Hawking
effect point to the possibility that gravitational field might be only effective description
of more fundamental degrees of freedom that are, presumably, described by not-yet-
discovered theory of quantum gravity. Attempts to apply principles of general relativity
and quantum theory simultaneously have lead not only to Hawking’s satisfactory dis-
covery of black hole evaporation but, even more importantly, also to several paradoxes
showing that principles of both theories might be contradictory, see e.g. information para-
dox, black hole complementarity or recent firewall paradox. The existence of black hole
evaporation plays a crucial role even in cosmological scenarios like Penrose’s conformal
cyclic cosmology.

All these considerations show that black holes are both important astrophysical ob-
jects and gates to our deeper understanding of fundamental laws of nature.

From mathematical point of view, basic properties of black holes (like laws of ther-
modynamics, role of the horizon in the causal structure of spacetimes, existence of sin-
gularities) were discovered during the so-called golden age of general relativity (roughly
1960–1975) in works by Penrose, Hawking, Bekenstein, Carter, Bardeen and others. Al-
though these works were absolutely fundamental for the progress of black hole physics
(and gravitational physics in general), they were based on somewhat restrictive notion of
the event horizon. In realistic situations, a more general concept of black hole is needed
and there indeed exist several modifications of the notion of the horizon: apparent hori-
zon, dynamical horizon, absolute horizon, Cauchy horizon, Killing horizon. . .

In this thesis we are particularly interested in the so-called isolated horizons intro-
duced by Ashtekar and other in the context of loop quantum gravity. Mathematical
description of isolated horizons is presented in Chapter 2. First we spell out in detail the
limitations of the standard concept of the event horizon and explain how these limita-
tions are overcame by isolated horizons. Then we employ the Newman-Penrose formalism
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to provide geometrical characterization and derive basic properties of isolated horizons.
Then we specialize to the horizons possessing axial symmetry and introduce appropriate
coordinate system on the spherical cuts of the horizons and discuss the multipole moments
(in the sense of Ashtekar) which can be associated with the axi-symmetric horizon.

The important point here is that the geometry of the spacetime can be conveniently
split into the intrinsic geometry of the horizon and the exterior region. Assumptions
imposed on the isolated horizons fix the intrinsic part of the geometry (including part of
the connection) but, up to some restrictions, leave a significant freedom for the geometry
outside the black hole. For example, the presence of the external matter or radiation
deforming the black hole is allowed.

With this formalism at hand, we prove the main result of this thesis in chapter 3. As
we explain there in detail, despite the fact that isolated horizons are typically much more
general than standard black holes admitting the event horizon, there is an important
exception. Extremal horizons possessing the axial symmetry have a unique intrinsic
geometry, regardless of the spacetime outside the black hole. We rederive existing results
on the uniqueness of extremal horizons in different coordinate system and generalize them
by allowing the deficit angles around the poles of the spherical cuts of the horizon. Our
uniqueness result shows that in the absence of deficit angles, extremal horizon is isometric
to that of extremal Kerr-Newman solution, but our family of solutions covers also the
rotating C-metric with possibly non-vanishing NUT parameter.

The next goal of the thesis which was not fully achieved is related to the problem
of quasi-local energy in general relativity. In Chapter 4 we explain the origin of the
difficulties with the definition of energy in GR and describe a specific suggestion by
Penrose how to define the energy on the quasi-local level. This suggestion is based on
the solution of the twistor equation. Here, we do not go into the details of the twistor
theory but we briefly review the main points of the Penrose construction.

The motivation for this part of the thesis is to compare the aforementioned Ashtekar
multipole moments with other approaches to characterize the properties of gravitational
field on a quasi-local level. Here we focused on the Penrose mass but other definitions
exist (Hawking mass, Bartnik mass, Ludvigsen-Vickers mass, Brown-York mass, Dougan-
Mason mass . . . ). The construction is quite sophisticated and beside standard relativistic
apparatus it requires the tools of advanced functional analysis, topology, cohomology
theory etc. For this reason we restricted our attention to the study of the properties of
the twistor equation (and related 2-surface twistor equation) which is the key ingredient
in the construction. Namely, in Chapter 5 we analyze in detail the integrability conditions
for the twistor equation on axially symmetric isolated horizons. Then we find an explicit
solution of this equation in terms of free data on the horizon. We find the expression
for the Penrose charge integral but we leave aside other subtleties connected with the
construction of the Penrose mass. These will be discussed in the context of isolated
horizons in future work.

Finally, in the appendix A we provide the equations of Newman-Penrose formalism
which is the essential mathematical tool employed in the thesis, including the description
of electromagnetic and gravitational field and definitions related to quantities with spin
weight.
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Conventions
Throughout the thesis we use the following conventions. Small Latin indices a, b, c . . .
denote the tensorial abstract indices as they were introduced by R. Penrose [1]. On the
other hand, concrete tensor components with respect to a coordinate basis are labeled
by small Greek letters, e.g. µ, ν, ρ, . . . . Here and there we use i, j, k . . . to denote spatial
indices running through 1, 2, 3 and I, J with values 1, 2. We also use the standard summa-
tion convention – every pair of (non-abstract) indices, where one is upper and the other
one is lower, is implicitly summed. Capital Latin indices A, B, C, . . . or A′, B′, C ′, . . .
denotes spinorial abstract indices. In this work we deal only with two-spinors and their
basis components are always explicitly labeled by 0, 1.

The tensor quantities are usually denoted by corresponding abstract indices, but oc-
casionally a compact, index-free, notation by the same but bold symbol is used, e.g.
Fab ≡ F.

The metric tensor gab is assumed to have signature (+ − −−). The metric compatible
covariant derivative is denoted by ∇a. For the Riemann tensor we use the convention
[∇a, ∇b]Xc = −Rc

dabX
d, the Ricci tensor is obtained via contraction Rab = Rc

acd. Then
the Einstein field equations of general relativity read

Rab − 1
2Rgab + Λ̃gab = −8πG Tab.
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2 | Isolated horizons

The motivating ideas behind introducing the concept of (weakly) isolated horizons come
mainly from loop quantum gravity. One of the most challenging task of all candidates for
quantum theory of gravity is to provide a micropscopic explanation for the Bekenstein-
Hawking entropy of black holes which is related to the area of the event horizon. However,
because of its teleological nature, the event horizon is a very rigid concept that requires
the knowledge of the causal structure of the full spacetime and, hence, it cannot be char-
acterized locally. Similar concept of the apparent horizon is defined quasi-locally but is
observer-dependent and therefore not suitable for general considerations in the covariant
theory. Isolated horizons have been introduced in order to obtain am invariant, quasi-
locally defined horizon accessible for quantization methods of loop quantum gravity. On
the other hand, isolated horizons have numerous applications in purely classical general
relativity.

In GR, the prototypical solution representing physically realistic black hole is the
so-called Kerr-Newman black hole. This solution describes a black hole of mass M , an-
gular momentum J = a M (parameter a, which enters the standard form of the metric, is
usually referred to as the spin parameter) and possibly non-zero charge Q, although astro-
physical black holes are typically uncharged. This solution is an excellent approximation
of astrophysically relevant black holes and successfully models important physical phe-
nomena, ranging from the description of accreting matter, through the highly energetic
jets from active galactic nuclei, to the final states of binary black hole mergers [MHD,
Blandford-Znajek,mergers]. Yet, this solution has been derived under several restricting
simplifying assumptions which are not fulfilled in all relevant scenarios.

First, the solution is stationary, meaning that the spacetime admits a timelike Killing
vector. This assumption might be a good approximation for a black hole in equilibrium
with its neighborhood for a significant period of the lifetime of a black hole but it is
too restrictive for the rest of the spacetime. For example, black holes arise as products
of stellar collapse and their creation is usually accompanied by the emission of gravita-
tional radiation which remains present also after the black hole has formed. Hence, the
spacetime outside the black hole is not stationary. Second, Kerr solution assumes axial
symmetry of the spacetime. Again, such symmetry describes the equilibrium stage of
a black hole (otherwise the black hole would emit radiation) itself, but is unreasonably
restrictive for the rest of spacetime.

Third, Kerr spacetime is asymptotically flat, i.e. it possesses both timelike and null
infinity where the symmetries resembling the Poincaré group of the flat spacetime are
recovered (more precisely, the relevant group of symmetries is the BMS group which
is a direct sum of Lorentz group and infinite dimensional group of supertranslations).
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Quantities like mass or angular momentum are defined as global Geroch-Hansen[] mul-
tipoles evaluated at infinity, since in general no quasi-local definition is available. Real
black holes, however, are immersed in expanding universe with de Sitter asymptotics and,
thus, such definitions are more questionable. Isolated horizons circumvent this problem
by introducing Ashtekar’s multipole moments that are evaluated on the horizon; such
multipoles differ from the Kerr parameters. For the discussion on multipole moments,
see section 2.8.

Finally, realistic black holes are usually surrounded by the accretion disks or strong
electromagnetic fields. All kinds of matter deform the geometry around the black hole.
Usually, it is possible to neglect the backreaction of the matter on the geometry but there
are good reasons to study geometries and fields beyond the test field approximation. For
example, some recently proposed experiments, e.g. the Event Horizon Telescope [], aim
to test the no-hair theorem in astrophysical settings and might be sensitive even to slight
deformations of the geometry. Full understanding of such corrections is necessary in
order to correctly attribute possible deviations either to purely GR effects or to possible
alternative theories of gravity.

2.1 NP tetrad and optical scalars
The starting point of our work is the so-called Newman-Penrose (NP) formalism in general
relativity. Since it is not our primary interest, we just briefly sum up all relevant results
important for our future work. More technical parts are included in the appendix A.
Introduction to NP formalism is provided by several books and articles, see e.g. [2, 1].

Definition 1 A set of null vectors {la, na, ma, ma} is said to constitute a Newman-
Penrose (NP) tetrad if

lala = nana = mama = mama = 0,

lana = 1, mama = −1, otherwise zero.
(2.1)

Covariant derivatives in the direction of these vectors are conventionally denoted as

la∇a ≡ D, na∇a ≡ ∆, ma∇a ≡ δ, la∇a ≡ δ. (2.2)

The metric tensor in the NP tetrad has the form

gab = lanb + lbna − mamb − mamb. (2.3)

The NP tetrad allows us to define the orthogonal Minkowski tetrad via

T a = 1√
2

(la + na), Za = 1√
2

(la − na),

Xa = 1√
2

(ma + ma), Y a = −i√
2

(ma − ma).
(2.4)

Straightforward computation using the definition 2.1 yields

TaT a = 1, ZaZa = XaXa = YaY a = −1. (2.5)
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The metric has in this basis diagonal form g = diag(1, −1, −1, −1), which coincides with
the metric of the flat space. This is the reason, why (2.4) is called the Minkowski tetrad,
even when the spacetime is not flat. Conversely, any orthonormal tetrad which fulfills
(2.5) can be used to construct an NP tetrad via

la = 1√
2

(T a + Za), na = 1√
2

(T a − Za),

ma = 1√
2

(Xa + iY a), ma = 1√
2

(Xa − iY a).
(2.6)

Definition 2 A projector to the orthogonal complement to vectors la, na of the NP tetrad
is defined by

qab = −mamb − mamb. (2.7)

An alternating or Levi-Civita tensor on this complement is

εab = i (mamb − mamb) ≡ i mc ∧ md. (2.8)

Definition 3 For the congruence of curves with the tangent vector field la, we define [3]

1. expansion tensor and expansion

Θl ab ≡ qc
aqd

b ∇(cld), Θl ≡ qab∇alb,

2. shear tensor

σab ≡ Θl ab − 1
2qabΘl,

3. twist tensor

ωab ≡ qc
aqd

b ∇[cld],

and corresponding scalar quantities usually referred to as optical scalars

Θl, S2 ≡ σabσ
ab, ω2 ≡ ωabω

ab. (2.9)

Note: Notice that the optical tensors σab and ωab are by definition trace-free with respect
to qab.

Theorem 1 The optical scalars (2.9) have the following form in terms of spin coefficients
(see also [4])

Θl = −(ρ + ρ) = 2Re {ρ},

ω = 1√
2

(ρ − ρ) =
√

2Im {ρ},

S =
√

2|σ|.

(2.10)
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2.2 Non-expanding horizon
In this section we outline the notion of non-expanding horizon, which provides a starting
point to a local generalization of event horizons. The basic idea is to extract the minimal
information of a Killing horizon, which can describe black hole in an equilibrium. Here,
we refer mainly to articles by Asthekar et al. [5, 6, 7, 8, 9, 4] and very readable summary
[10]. In what follows, we rather state precisely formulated definitions supplemented by
necessary theorems, which proofs are omitted to keep this section reasonably short and
transparent. Here and there a sketch of a proof appears. An interested reader can find
details in the cited literature or do all the calculations on his/her own (many of them are
just straightforward computations).

Definition 4 A submanifold H ⊂ M of a spacetime (M, gab) is said to be a non-
expanding horizon (NH) if the following conditions are satisfied:

1. H is null hypersurface with topology R × S2,

2. every (null) normal la of H has vanishing expansion Θl
H= 0,

3. Einstein equations are satisfied on H and energy-momentum tensor Tab is such that
for every future normal vector la, the vector T b

a la is also future pointing.

By the symbol H= we mean the equality of two quantities on the horizon H.

Note: For many calculations, some of these assumptions can be weakened without af-
fecting the main results. For example, the topology can be assumed R × K where K is
a compact 2-dimensional manifold. It is known that the topology of a horizon distorted
by the external matter can be, in fact, toroidal [11]. Another possibility is to introduce
deficit angles around the poles of otherwise spherical horizon possessing axial symmetry,
like in the case of the C-metric [12]. See [13] for more detailed discussion.

According to the definition 4 H ∼ R × S2, so it can be covered by a continuous set
of (topological) spheres S2 parametrized by a real number. Let us choose an arbitrary
sphere of this foliation S2

0 . We define a coordinate v on H by

v = 0 on S2
0 , la∇av

H= 1, (2.11)

for a particular choice of smooth normal la. The solution exists and is unique by the
method of characteristics, see e.g. [14]. Or simply, we have defined v in a such way, that
the null normal la is a coordinate vector on H. On the spherical cut S2

0 coordinates x1, x2

can be chosen arbitrarily (typically spherical coordinates). We propagate them along the
generators of the horizon by the condition

Dx1 H= Dx2 H= 0.

Since S2
0 is a topological 2-sphere, we can find smooth orthonormal space-like vector

fields1 Xa, Y a ∈ TS2
0 ⊂ TH, which define vectors ma, ma of an NP tetrad via relations

1For instance normalized coordinate vectors in spherical coordinates in a local map on S2
0 .
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(2.6). Notice that laXa = laY a = 0, because la is a covariant normal. In principle, at
every point of H we can find vectors la, ma, ma, but we are not guaranteed smoothness
of ma, ma. Therefore, we rather define the vector ma (and also ma) on H by setting

Dma H= 0. (2.12)

Since Xa, Y a are some linear combinations of basis vectors ∂1, ∂2 corresponding to x1, x2

respectively, they are parallel transported to H as ∂1, ∂2 are. This means, that ma is
given by (2.6) everywhere on the horizon. The vectors la, ma, ma define by (2.1) uniquely
the fourth vector of an NP tetrad na at every point of H, which is also smooth. A
projector to a tangent space of a two-sphere S2

v of the foliation v = const. is given by
(2.7).

The framework of the constructed NP tetrad allows us to determine non-trivial con-
ditions on the corresponding spin coefficients, which follow from the fact that la is hyper-
surface orthogonal and null. The essential point in our discussion also will be a restriction
that the definition 4 imposes on tetrad components of the Ricci tensor (A.10).

Theorem 2 On every non-expanding horizon H, the following tetrad components of the
Ricci tensor vanish

Φ00
H= Φ01

H= 0.

In the case of electrovacuum spacetimes in addition

Φ02
H= 0, Λ = 0.

Note: The proof of this theorem is based on the energy condition 3 in the definition 4.
The basic idea might be sketched as

Φ00 ≡ −1
2Rabl

alb = −1
2(Rab − 1

2Rgab + Λ̃gab)lalb = 4πTabl
alb,

where Λ̃ is the cosmological constant. The energy condition now implies that on the
horizon T b

a la is proportional to lb, because the only future pointing vector there is just
la. But contraction of la with any vector on H yields automatically zero. The same
argument also holds for Φ01. In electrovacuum spacetimes, Einstein equations read Φmn =
ϕm ϕ̄n, m, n ∈ {1, 2, 3}, where ϕn are projections of an electromagnetic field tensor (see
appendix A.2 and equation (A.20)). Since 0 H= Φ00 = |ϕ0|2 the component ϕ0 is zero on
the horizon and consequently Φ0n = 0 for every n.

Theorem 3 Let la be a null normal of non-expanding horizon H. Integral curves of the
vector field la are null geodesics and the spin coefficient κ vanishes on the horizon, i.e.

κ
H= 0. (2.13)

Theorem 4 Non-expanding horizon H has zero twist and zero shear. Moreover, the spin
coefficients ρ, σ vanish on the horizon, or

ρ
H= σ

H= 0. (2.14)
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As a consequence, the tetrad components of the Weyl tensor Ψ0, Ψ1 are zero on the horizon,
i.e.

Ψ0
H= Ψ1

H= 0. (2.15)

Moreover, in source free electrovacuum spacetimes

Dϕ1
H= 0, ∆Φ00

H= 0 ⇒ DΨ2
H= 0. (2.16)

Note: These properties of la are in fact independent of the rest of the tetrad. Let us
keep la fixed and transform ma, ma by a null rotation. From (A.25) we see, that the spin
coefficient κ is invariant under this transformation and ρ, σ, ε change only by adding a
term proportional to κ. But κ

H= 0, so ρ, σ, ε are left unchanged. To show the second
statement of the theorem 4 one has to use the Ricci identities (A.13b), (A.13p) and the
theorem 2. The last proposition follows from the Maxwell equation (A.19a), the Einstein
equations for Φmn, theorem 2 and the Bianchi identity (A.15b).

Let us now return to the triad la, ma, ma defined only on TM|S2
0
. In order to define it

on the whole TH, we propagated ma by (2.12). However, as it will turn out soon, more
suitable definition of ma on entire H is given by Lie dragging. To make it work, theorems
3 and 4 are necessary.

Theorem 5 Let {la, na, ma, ma} be an NP tetrad defined on a tangent space TM|S2
0

at
points of a spherical section S2

0 of non-expanding horizon H. Then the vector field ma

propagated to TH by a condition

£lm
a H= 0 (2.17)

defines together with the vector field la an NP tetrad at every point of H. Namely, the
Lie dragging of ma preserves conditions (2.1).

The relation (2.17) puts the following restrictions on spin coefficients

ε − ε
H= 0, α + β

H= π. (2.18)

From the construction we have

la H= ∂a
v, , ma H= A∂a

v + ξI∂a
I ,

where A, ξI are some functions of (v, xI) and A = 0 on S2
0 . The directional derivatives

are

D ≡ la∇a
H= ∂v, δ ≡ ma∇a

H= A∂v + ξI∂I .

Commutator [D, δ] acting on a scalar function is identically zero on the horizon, because
of vanishing of the corresponding spin coefficients (see (A.4a)). On the other hand, its
action on v, xI yields

DA
H= DξI H= 0,
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so A, ξI are fully determined by their value on S2
0 , implying A

H= 0 everywhere on the
horizon. Hence, we conclude

la H= ∂a
v, ma H= ξI(xJ)∂a

I . (2.19)

The only non-tangential vector to H is na, which can be used to extend the coordinates
into the whole spacetime. From every point of H we send an affinelly parametrized
geodesic in the direction of na, or

∆na = 0 ⇒ na = N∂a
r ,

where r denotes the affine parameter and N is some constant. By a suitable rescaling of
r, we may achieve N = 1, r|H = r0. The parameter r defined in this way will constitute
the new coordinate. The remaining coordinates and vectors are propagated analogously:

∆v = ∆x1,2 = 0,

∆la = ∆ma = 0. (2.20)

The transport equations (A.5) together with (2.20) imply

γ = τ = ν = 0.

Vectors la, ma within the horizon are given simply by (2.19), but outside it we have to
consider general expansion into the coordinate basis

la = B∂a
v + U∂a

r + XI∂a
I , na = ∂a

r ,

ma = C∂a
v + Ω∂a

r + ξI∂a
I , ma = C∂a

v + Ω∂a
r + ξ

I
∂a

I .

At first, it is good to realize that na∂a
I = 0. On the horizon the inverse relation to the

second one of (2.19) can be written in a form ∂I
H= ηIma +φIma for some functions ηI , φI ,

so na∂a
I
H= 0 holds trivially. It is also valid everywhere, because the coordinate vectors

are parallel transported along na. By the same argument we get na∂a
v = 1. Using this

results and explicit form of products nala, nama, we immediately obtain B = 1, C = 0.
To sum up

la = ∂a
v + U∂a

r + XI∂a
I , na = ∂a

r , ma = Ω∂a
r + ξI∂a

I , ma = Ω∂a
r + ξ

I
∂a

I . (2.21)

Directional derivatives acting on a scalar function:

D = ∂v + U∂r + XI∂I , ∆ = ∂r, δ = Ω∂r + ξI∂I , δ = Ω∂r + ξ
I
∂I , (2.22)

The tetrad components U, XI , Ω, ξI remain to be determined. The functions ξI can be
chosen arbitrarily on H (or more precisely on S2

0 ), but U, XI , Ω H= 0. Appropriate equa-
tions might be derived from the general commutation relations (A.4) acting subsequently
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on the coordinates (v, x1, x2, r). The non-trivial equations are

DΩ − δU = −κ + (ρ̄ − ε̄ + ε) Ω + σ Ω̄, (2.23a)
DξI − δXI = (ρ̄ − ε̄ + ε) ξI + σ̄ ξ̄I , (2.23b)

δ̄Ω − δΩ̄ = ρ̄ − ρ +
(
α − β̄

)
Ω − (ᾱ − β) Ω̄, (2.23c)

δξ̄I − δ̄ξI = (ᾱ − β) ξ̄I −
(
α − β̄

)
ξI , (2.23d)

∆U = ε + ε̄ − π Ω − π̄ Ω̄, (2.23e)
∆XI = −π ξI − π̄ ξ̄I , (2.23f)

∆Ω = π̄ − µ Ω − λ̄ Ω̄, (2.23g)
∆ξI = −µ ξI − λ̄ ξ̄I , (2.23h)

and will be referred to as the frame equations. In addition to these we get

µ = µ, α + β = π. (2.24)

The metric can be reconstructed according to (2.3) and it is fully determined by the
functions U, XI , Ω, ξI . Therefore these are also called the metric functions.

The spin coefficient π is related by (2.24) to α and β, which are independent. However,
it seems more natural to work with quantities π and a, where

a ≡ maδma = α − β, (2.25)

as these quantities have more direct geometrical meaning: a defines the connection on the
sphere and π is related to the angular momentum of the horizon, see (2.36) and section
2.8. For further reference, we write explicitly

α = 1
2(π + a), β = 1

2(π − a) (2.26)

Throughout the text we will use both π, a or α, β keeping these relations in mind.

2.3 Covariant derivative on the non-expanding hori-
zon

We have defined a non-expanding horizon as a null hypersurface, i.e. its normal la has
vanishing norm. This implies that the metric qab of the horizon is degenerate, simply
because qabl

b annihilates any tangent vector. So qab does not have an inverse in the
standard sense, but it can be given an inverse qab in a weaker way qmaqnbq

ab = qmn.
The inverse qab is not unique, there are infinitely many of them. Consequently, there
are infinitely many covariant derivatives2 compatible with the metric qab. However, the
framework of isolated horizons and vanishing of some spin coefficients allow us to choose
a preferred one.

2If one wants to define Christoffel symbols (of the 1. kind), one has to employ also the inverse of the
metric, which is not unique in our case.
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Theorem 6 Let H be a non-expanding horizon embedded in a spacetime (M, gab) equipped
with a metric compatible covariant derivative ∇a. Then a derivative Da defined by

XaDaY b H= Xa∇aY b, ∀Xa, Y a ∈ TH (2.27)

is a covariant derivative on H. Moreover, pull-back of this derivative on H is compatible
with the induced metric qab.

Theorem 7 Let Da be the induced covariant derivative on H as in the previous theorem.
Then there exists a 1-form ωa ∈ TM satisfying

Dalb H= ωalb, (2.28)

where la is a null normal to H. The 1-form ωa is called rotation 1-form and might be
expressed as

ωa
H= (ε + ε)na − πma − π ma

Note: We use a conventional notation for the rotation 1-form ωa, which has nothing to
do neither with the twist tensor nor the twist scalar.

Definition 5 A pair (qab, Da), where qab and Da are induced metric and covariant deriva-
tive on a non-expanding horizon H, is called intrinsic geometry of H.

Theorem 8 Consider a spherical section S2
0 of a non-expanding horizon H equipped with

a rotation 1-form ωa. Then its curl on S2
0 is

D[aω̃b] = Im {Ψ2}εab, (2.29)

where ω̃a denotes pull-back of ωa onto S2
0 and εab is Levi-Civita tensor on S2

0 .

2.4 Weakly-isolated horizons and the zeroth law of
black hole thermodynamics

Definition 6 An equivalence class [·] of vector fields is defined

[va] = {Xa, ∃λ ∈ R+ : Xa = λva}.

The weakly isolated horizon (WIH) is a pair (H, [la]), where H is non-expanding horizon
and [la] is an equivalence class of a chosen null normal la of H such that

[£l, Da]lb H= 0. (2.30)

Note: The parameter λ in the definition 6 is supposed to be a constant, not a space time
function. Since λ is defined to be positive, for a future pointing vector va every Xa ∈ [va]
is also future pointing.
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Definition 7 A surface gravity κ(ℓ) associated with the normal la of a weakly isolated
horizon (H, [la]) is defined by

κ(ℓ)
H≡ naDla

H= ε + ε (2.31)

We say that the WIH is extremal, if κ(ℓ) = 0, otherwise it is called non-extremal.

Note: The surface gravity κ(ℓ) is not a particular number for a given WIH. Rescaling la

in the chosen equivalence class l′a = cla, c ∈ R yields κ′(ℓ) = cκ(ℓ). However, the extremal
horizon κ(ℓ) = 0 is defined uniquely.

Theorem 9 (The zeroth law of black hole thermodynamics) The surface gravity
κ(ℓ) associated with a weakly isolated horizon (H, [la]) is constant on H. Moreover, rota-
tional 1-form ωa is time independent in the sense that £lωa

H= 0 and following relations
for spin coefficients are satisfied:

Dε
H= Dπ

H= Dα
H= Dβ

H= 0, δε
H= 0. (2.32)

2.5 Isolated horizons and free data
A stronger notion of isolation is in many physical applications more natural and plausible
[15]. Here we also touch problematics what the free data are that have to be given in
order to reconstruct horizon geometry completely.

Definition 8 An isolated horizon (IH) is a weakly isolated horizon (H, [la]), such that

[£l, Da]Xb H= 0 (2.33)

for any tangential vector field Xa.

Notes: • Every non-expanding horizon H can be given a (WIH) structure with a
suitable choice of an equivalence class of normal vectors [la] and the condition (2.30) is
therefore only a gauge fixing. However, time independence of the horizon connection Da,
as the requirement (2.33) might be interpreted, is non-trivial restriction on spacetime
geometry. It translates to time independence of spin coefficients λ, µ.

• Imposing merely time independence of µ leads to the notion of an almost isolated
horizon as introduced in [13].

Theorem 10 Spin coefficients λ, µ are time independent in the sense

Dλ
H= Dµ

H= 0

on every isolated horizon.
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Let us pay some attention to free data on an isolated horizon. We have shown that
actually all the spin coefficients are independent of v on an IH. Hence, they are determined
on H by their values on a particular slice Sv, say S0. The same has been already concluded
about functions ξI that can be chosen suitably. However, not all the remaining non-zero
spin coefficients can be specified freely (see [9] or [5] for discussion).

The function π on H is governed by the Ricci identity (A.13g)

δπ
H= 2ελ − π2 − aπ (2.34)

The Ricci identity (A.13q) determines Ψ2. In terms of π and a it is recast as

δπ − δπ + δa + δa
H= 2aa + πa − πa − 2Ψ2 + Φ11, (2.35)

which, taking the real and imaginary part separately, yields

Re {Ψ2}
H= |a|2 − 1

2(δa + δa) + Φ11

Im {Ψ2}
H= −Im {δπ − aπ} ≡ −Im {ðπ},

(2.36)

where ð is defined by (A.22). On the other hand, π and Ψ2 enter the equation (A.13h)
which, for isolated horizon, reads

δπ = 2εµ − ππ + aπ − Ψ2. (2.37)

Algebraically, this can be regarded as an equation for Ψ2 but, at the same time, Ψ2 is
constrained by relations (2.36). Hence, (2.37) is an equation where the only unknown
quantity is the metric on the sphere S2

0 , provided that the spin coefficient µ is freely
specified. This is reasonable, since µ is a part of the extrinsic curvature of the horizon.
In the special case of extremal horizon, µ drops out of the equation (2.37) which is at
the core of our uniqueness theorem for axisymmetric extremal horizons to be discussed
in the chapter 3.

Free data entering the game are summarized in the following theorem.

Theorem 11 (Free data on an IH) Let H be an isolated horizon, N a null hypersur-
face such that intersection of the two is a spherical slice S2

v of constant coordinate v of
a foliation of H. Then functions

ε, λ, µ,

may be specified freely on Sv and this specification makes them uniquely determined on
the entire horizon H. The Weyl scalar Ψ4 has to be prescribed on the hypersurface N .

The electromagnetic field in electrovacuum spacetimes is determined by values of ϕ1
on S2

v and ϕ2 on N .

Note: Here we omit detailed analysis of the characteristic initial value problem, e.g. the
(in)dependence of various constraints. These details, including the existence results, can
be found in [16].

In practical applications, an isolated horizon is often assumed to possess some sym-
metries. Before going into details, we state a definition of this notion.
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Definition 9 A map F : H ↦→ H, which is diffeomorphism of an isolated horizon H onto
itself and preserves its intrinsic geometry (qab, Da) is called a symmetry of H.

Time independence of quantities on an IH implies that diffeomorphisms generated by
the field la are symmetries. So a symmetry group of the IH is at least one dimensional.
No other symmetries are present in general, therefore we recognize several classes of IHs
[8, 17]:

Type I: geometry of the IH is spherical, symmetry group is four-dimensional,

Type II: geometry of the IH is axially symmetric, symmetry group is two-dimensional,

Type III: symmetries generated by la are the only symmetries, symmetry group is one-
dimensional.

Later in the thesis, we restrict ourselves to the type II isolated horizons.

Note: Notice that the symmetry as it was presented here relates only to H. The outer
geometry can be affected by matter fields, radiation, etc. and is not required to share
the same symmetry properties.

It has already been mentioned that an isolated horizon is a generalization of the notion
of a Killing horizon. Now, we make this statement more clear.

Theorem 12 Every Killing horizon K ≡ {P ∈ M, g(k, k)|P = 0} of a Killing vector k,
which has topology R× S2 is also an isolated horizon, provided the weak energy condition
is satisfied.
Proof. To prove that the Killing horizon K is a non-expanding horizon it suffices to show that it
has zero expansion, since the other two requirements of the definition 4 are assumed to be satisfied. A
straightforward calculation yields

Θk ab = qc
aqd

b ∇(ckb) = 0,

because of the Killing equation ∇(ckb) = 0. The expansion and the shear tensor are therefore automatically
zero.

The defining requirement of a weakly isolated horizon (2.30) is in fact equivalent to the zeroth law of
black hole termodynamics. Thus, we want to show that the surface gravity associated with ka is constant
on K. The vector ka is null on K, therefore geodesic and can serve as a preferred normal. The surface
gravity is defined by

ka∇akb = κkkb. (2.38)

Differentiation of this equation with respect to kc∇c gives

kc∇cka ∇akb + kcka ∇c∇akb = kckb ∇cκk + κk kc∇ckb,

kcka∇c∇akb = kbkc∇cκk, (2.39)

where we used (2.38). Furthermore, the Killing field is a non-trivial restriction on the spacetime geometry,
hence it has to satisfy a certain integrability conditions. These can be derived easily. The second exterior
derivative of ka has to vanish identically

∇[c∇akb] ≡ 0. (2.40)
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Using the Killing equation and the definition of the Riemann tensor in (2.40) one derives

∇[c∇akb] = Rabcdkd.

Substitution in (2.39) immediately yields

kc∇cκk = 0,

or in other words, the surface gravity κk is constant along ka.
To show that K is an isolated horizon, one has to project the Killing equation and the integrability

conditions (2.40) onto the NP tetrad. The resulting restrictions on the spin coefficients are precisely
conditions stated in the theorem 10, which are equivalent to the definition of the isolated horizon. ■

2.6 Axi-symmetric structures
In this section we deal with metric manifolds of two sphere topology that obey axial
symmetry. We offer a definition of this notion and construct an appropriate coordinate
system following mainly [17]. For an application and further reference see also [13]. In
what follows, we assume a metric to have signature (++) just to keep things throughout
the construction without unnecessary minuses. The opposite sign convention will be
discussed at the end of the section.

Let us consider a manifold S of topology of a two sphere equipped with a metric qab.
Then there exists the unique metric area form

εµν =
√

| det(qρσ)|ϵµν , (2.41)

where ϵµν denotes a permutation symbol3. It allows us to define the area of S as

A =
∮
S

ε (2.42)

and its “radius” R by the relation A = 4πR2.

Definition 10 A manifold (S, qab) is said to be axi-symmetric if there exists a Killing
field ϕa with closed orbits such that ϕa = 0 exactly at two points of S. These points will
be referred to as poles.

Note: Since ϕa is a Killing field, its orbits ⟨ϕa⟩ can not intersect each other (otherwise
it would violate the requirement that the orbits are closed) and they foliate the manifold
S.

The field ϕa is by definition a Killing field, so we immediately have £ϕqab = 0 and
also £ϕεab = 0, which allows us to introduce a coordinate in a specific way.

Theorem 13 On S there exists a function ζ satisfying

Daζ = 1
R2 εbaϕb,

∮
S

ζε = 0. (2.43)

3We use convention, where ϵ12 = ϵ12 = 1, cf. also (2.8).
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Moreover this function is unique and ζ = const. on integral curves of ϕa.
Proof. Let us contract the first equation by ϕa. The right hand side is zero, because εab is contracted
with a symmetric expression. Since the covariant derivative Da acts as a partial one on every scalar
function, we are left with

ϕa∂aζ = 0

in a local coordinate map. This equation has a unique solution up to a constant by the method of
characteristics (see [14] and discussion after the equation (2.11)). Characteristics coincide with integral
curves of ϕa.

The second condition of (2.43) fixes the freedom contained in the integration constant and makes ζ

unique. ■

From the proof we can infer the meaning of the two requirements (2.43). The first
one tells us that there is a function which is constant on integral curves of the field ϕa,
the second one just fixes the integration constant.

The fact ζ = const. on ⟨ϕ⟩ can also be expressed as £ϕζ = 0. Since Daζ = 0 only at
the poles, the function ζ has to be monotonic on the foliation of S. The pole where ζ
has the maximum will be called the north pole PN , the other one the south pole PS.

Further we define a vector field on S − {PN , PS}

ζa = R4

Φ2 qabDbζ, Φ2 ≡ qabϕ
aϕb. (2.44)

Theorem 14 The vector field ζa defined above satisfies

ζaDaζ = 1, ζaϕa = 0. (2.45)

Proof. A straightforward calculation where one substitutes the defining condition (2.44) into each of
the two formulae (2.45) while using (2.43) leads to desired results. ■

Conversely, the properties (2.45) can be used to define the vector field ζa itself. From
(2.43) we see that the vector Daζ ≡ qabDbζ is not proportional to ϕa. Therefore these
vectors can be taken as a basis that ζa can be expanded into:

ζa = Xϕa + Y Daζ.

Functions X, Y are then determined from (2.45). Direct substitution yields

X = 0, Y = R4

Φ2 .

Since ζa is perpendicular to the field ϕa and ζaDaζ = 1, integral curves of ζa run from
the south pole to the north pole.

We can always find a parameter λ of the vector field ϕa such that ϕa = (∂/∂λ)a,
however the vector field ζa allows us to define a preferred parameter ϕ of ϕa in the
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Figure 2.1: Coordinate vector fields on a topological two-sphere S.

following way4. Let us choose an integral curve ⟨ζa⟩0 and set ϕ = 0 on it. So £ζϕ = 0 on
⟨ζa⟩0. Now, we define ϕ on S by condition

£ϕϕ = 1. (2.46)

The field ζa is constructed only of qab and ϕa, so [ϕ, ζ]a = £ϕζa = 0 or the commutator
[£ϕ, £ζ ]h = £[ϕ,ζ]h = 0 for all test functions h. Taking ϕ as the test function, we find

£ϕ(£ζϕ) = £ζ(£ϕϕ) = £ζ1 ≡ 0 ⇒ £ζϕ = g|⟨ϕ⟩ = g(ζ),

where the function g can depend on a particular orbit of ϕa, but ζ = const. on ⟨ϕa⟩ so
it is equivalent to dependence (only) on ζ. However, we have chosen g(ζ)|⟨ζa⟩0 = 0 what
implies £ζϕ = 0 at every point of S, in other words ϕ is constant on the orbits of ζa.
It is not difficult to realize that due to this equality the range of ϕ is the same on every
orbit of ϕa, so ϕ ∈ [0, ϕmax).

Functions ζ, ϕ can be regarded as independent coordinates, which are, at least in some
sense, preferred ones on S. Equations £ζϕ = 0, £ϕζ = 0 with defining conditions (2.46)
and (2.43) tell us that ϕa, ζa are coordinate vector fields, i.e.

ϕa =
(

∂

∂ϕ

)a

, ζa =
(

∂

∂ζ

)a

. (2.47)

Moreover, the coordinates are orthogonal, because the vectors are orthogonal by con-
struction. The property that ϕa is a Killing vector is independent of rescaling ϕa by
an arbitrary constant. We can choose a new coordinate ϕ′ = (2π/ϕmax)ϕ, which lies in
the interval ϕ′ ∈ [0, 2π). Then ϕa = ∂a

ϕ = (2π/ϕmax)∂a
ϕ′ ≡ (2π/ϕmax)ϕ′a. Furthermore,

we can choose ϕ′a as the Killing field and repeat the whole construction, which will fix
the range of its parameter to [0, 2π). Hence, we can assume ϕ ∈ [0, 2π) without loss
of generality.

A covector basis can consist of ϕa, ζa, but we choose rather Daζ, Daϕ, because these
constitute a dual coordinate basis. The first relation of (2.43) defines Daζ, while Daϕ
can be expanded as

Daϕ = Uϕa + V ζa, U, V ∈ R.

4It is good to have the picture 2.1 in mind.

21



Transvecting with ζa and using £ζϕ = 0 we get V = 0, while contracting with ϕa yields
U = 1/Φ2. Hence

Daϕ = 1
Φ2 ϕa.

Now, we have all ingredients to express the metric in this basis. Since coordinates are
orthogonal, the metric is diagonal and only two its components have to be calculated.
By the same procedure, one derives

qϕϕ = qabϕ
aϕb = Φ2, qζζ = R4

Φ2 .

Further, let us denote f = Φ2/R2. Finally

qab = R2
(

fDaϕ Dbϕ + 1
f

Daζ Dbζ

)
, qab = 1

R2

(
1
f

ϕaϕb + fζaζa

)
. (2.48)

The metrics depends only on a single function f . Notice that ∂ϕf = 0, as can be inferred
from

∂

∂ϕ
Φ2 = ϕaDaΦ2 = 2ϕaϕbDaϕb ≡ 0.

The last equality is valid, because ϕa satisfies the Killing equation D(aϕb) = 0.
Our definition of area and radius of S imposes a non-trivial condition on the coordi-

nate ζ.

Lemma 1 The definition of radius R fixes the range of the coordinate ζ to [−1, 1].
Proof. Direct computation of area using det(qab) = R2 in (2.41) gives

A =
∮

S
ε = R2

∫ 2π

0

∫ ζ(PN )

ζ(PS)
dϕ dζ = 2πR2(ζ(PN ) − ζ(PS)) != 4πR2 ⇒ ζ(PN ) − ζ(PS) = 2.

On the other hand, the defining relation (2.43) yields

0 =
∮

S
ζε = πR2(ζ2(PN ) − ζ2(PS)) = 2πR2(ζ(PN ) + ζ(PS)),

0 = ζ(PN ) + ζ(PS)

or ζ(PN ) = 1 and ζ(PS) = −1 as was to be shown. ■

The range of coordinates is yet definitely established on (ζ, ϕ) ∈ [−1, 1] × [0, 2π).
Similarly to the case of standard spherical coordinates, ϕ has the meaning of azimuthal
angle and it has a discontinuity of 2π at ⟨ζa⟩0. This discontinuity causes no problems
as the vector field ϕa is smooth and thus limϕ→0+ f = limϕ→0− f . However at the poles
f = 0, so a divergence occurs in the metric coefficients and we have to impose appropriate
regularity conditions on the behavior of the metric there. Following [17], we assume that
the spheres are elementary flat, i.e. no conical singularities are present. By definition it
means

lim
ζc→+1/−1

O(ζc)
rN/S(ζc)

= 2π,
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where O stands for the circumference of a circle at ζ = ζc , rN/S for its radius5 at north
and south pole, respectively:

O(ζc) ≡
∫ 2π

0

√
qϕϕ|ζcdϕ = 2πR

√
f(ζc), rN/S(ζc) ≡

∫ 1/ζc

ζc/−1

√
qζζdζ = R

∫ 1/ζc

ζc/−1

dζ√
f(ζ)

.

The limit can be explicitly calculated by l’Hospital rule. For the north pole

lim
ζc→+1

O(ζc)
rN(ζc)

= lim
ζc→+1

2πR
√

f(ζc)

−R
∫ ζc

1

√
1/f(ζ)dζ

= −π lim
ζc→+1

f ′(ζc) ⇒ lim
ζc→+1

f ′(ζc) != −2.

Analogously for the south pole. The absence of conical singularities requires f to satisfy

lim
ζc→±1

f ′(ζc) = ∓2. (2.49)

Example: To get a better idea about introduced notions, we offer an illustration for
a 2-sphere with a deficit angle. The line element in spherical coordinates (θ, φ) is

ds2 = dθ2 + (1 − φd)2 sin2 θdφ2,

where φd denotes the deficit angle. The Killing field is clearly ϕa = (∂/∂φ)a with norm
Φ2 = (1 − φd)2 sin2 θ. Circumference O of the sphere at given θ0 and distance ρ from the
north pole to this circle is

O = (1 − φd) sin θ0

∫ 2π

0
dφ = 2π(1 − φd) sin θ0, ρ =

∫ θ0

0
dθ = θ0.

Approaching the north pole, the ratio O/ρ reveals the conical singularity

lim
θ0→0

O

ρ
= 2π(1 − φd).

The coordinate ζ is obtained from the definition (2.43)

∂ζ

∂φ
= 0,

∂ζ

∂θ
= −(1 − φd)

R2 sin θ,

where we used (2.41) and det|q| = (1 − φd)2 sin2 θ therein. The solution clearly is
ζ = (1 − φd) cos θ/R2 + C. The second requirement of (2.43) was prescribed to fix
the integration constant

0 =
∫

dφ
∫

dθ ζ sin θ = 4πC ⇒ C = 0.

5More precisely, rN/S is the length of the arc between the pole and the point with coordinate ζ, while
the Euclidean radius would be the distance of that point from the axis of symmetry. Such radius, though,
cannot be defined using the intrinsic properties of the sphere, i.e. without considering the embedding of
the sphere into a hypersurface. However, in the limit ζ → ±1 these two notions of radius differ only by
higher order terms and drop out from the limit.
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The north pole corresponds to θ = 0 and the south pole to θ = π, where indeed Φ2 = 0.
Moreover, these are the only points where the norm of the Killing field vanishes. A trivial
calculation of the area (2.42) leads to A = 4π(1−φd) ⇒ R =

√
1 − φd, so ζ = cos θ. The

function f which metrics depends on is therefore f = (1−φd) sin2 θ = (1−φd)(1−ζ2) ⇒
f ′(ζ) = −2(1 − φd)ζ. The condition (2.49) is satisfied only if φd = 0 as we wanted
to demonstrate.

The covariant derivative together with the metrics define the Christoffel symbols and
consequently the Riemann tensor, which in the case of two dimensional manifold has only
one independent component. This can be equivalently expressed via scalar curvature,
from which the geometry of S can be reconstructed, as it is summarized in the following
theorem.

Theorem 15 Geometry of the manifold (S, qab) is fully determined by its area A and its
scalar curvature R.
Proof. We have already mentioned that the metrics qab depends only on the single function f and one
constant R. The constant R is of course defined by the area of S, so we are only supposed to find f from
R. The derivation of scalar curvature proceeds by finding the Christoffel symbols Γa

bc, then the Ricci
tensor Rab, which is contracted to the scalar curvature R = Ra

a. It is straightforward but somewhat
tedious, so we just summarize intermediate results:

Γϕ
ϕϕ = Γϕ

ζζ = Γζ
ϕζ = 0, Γϕ

ϕζ = −Γζ
ζζ = f ′

2f
, Γζ

ϕϕ = −1
2ff ′,

Rϕϕ = 1
2ff ′′, Rζζ = f ′′

2f
, Rζϕ = 0,

R = f ′′

R2 . (2.50)

Integrating the last expression twice and employing the boundary conditions for f , i.e. f(−1) = 0 and
f ′(−1) = 2, one finds

f(ζ) = R2
∫ ζ

−1
dζ1

∫ ζ1

−1
R(ζ2)dζ2 + 2(ζ + 1).

■

The coordinates ϕ, ζ allow us to define a “canonical” two-sphere metric. As we have
seen in the example, the function f is given on a two-sphere of unit radius by fS = 1 − ζ.
In that spirit, we define

qSab = −R2
(

fSDaϕ Dbϕ + 1
fS

Daζ Dbζ

)
. (2.51)

Let us add a final remark. Throughout this section we have been using convention for
the metric signature (++). It was not of much importance, because we dealt only with
two dimensional manifolds. If we want to immerse such a manifold into the spacetime
with the metric sign convention (+ – – –), the metric (2.48) has to be taken with the
opposite sign (what equivalently means f ↦→ −f , since f is required positive)

qab = −R2
(

fDaϕ Dbϕ + 1
f

Daζ Dbζ

)
. (2.52)
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2.7 Axially symmetric isolated horizons
The formalism of the previous section allows us to describe isolated horizons exhibiting
axial symmetry. Moreover, we have a manual how to introduce adapted coordinates in a
geometrical way. Taking into account our sign convention for the spacetime metric, the
appropriate intrinsic metric of a two sphere is given by (2.52).

The vectors la, na of an NP tetrad remain untouched by our assumption of axial
symmetry, while ma, ma that are tangent to spherical cuts of the IH can be defined by
the coordinate vectors (2.47) via (2.6). Namely,

ma H= 1
R

√
f(ζ)

2 ∂a
ζ + i

R
√

2f(ζ)
∂a

ϕ, ma H= 1
R

√
f(ζ)

2 ∂a
ζ − i

R
√

2f(ζ)
∂a

ϕ, (2.53)

where we have chosen Xa = R−1√f ∂a
ζ , Y a = (R

√
f)−1∂a

ϕ to ensure correct normaliza-
tion6. In agreement with (2.19) we denote

ξ ≡ ξζ H= 1
R

√
f(ζ)

2 (2.54)

for brevity. Derivative operators (2.22) are therefore reduced to

D
H= ∂v ∆ H= ∂r, δ

H= δ
H= ξ∂ζ . (2.55)

Covariant form of ma is

ma = gabm
b H= qabm

b = − R√
2f

Daϕ − iR
√

f

2 Daζ

From δ − δ and equation (2.23d) it is evident that the spin coefficient a is real on
the horizon. Actually, it is fully characterized by the geometry of the two-sphere S0. By
direct computation7

a ≡ maδma H= mµmν∂νmµ + mµmνmρΓρ
µν
H= − 1

2
√

2R

f ′√
f

(2.56)

Notice ξ′ ≡ ∂ζξ = −a. This relation will be useful in the future.
Note: One remark is in place here. Connection components are, in our tetrad language,
coefficients in the expansion of directional derivatives of the NP basis vectors la, na, ma, ma

(see also [2], page 26.). On the sphere S2
0 the relevant ones are δma, δma. Expanding

them into basis, we find

δma = Ama + Bma H= −(mbδmb) ma,

δma = Cma + Dma H= −(mbδmb) ma = (mbδmb) ma.

6We need orthonormal spacelike vectors in (2.6), so ∂ζ , ∂ϕ have to be at first normalized to −1.
7The first term yields zero, for the second one, the Christoffel symbols can be taken from the proof

of the theorem 15.
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We immediately see that there is just one independent component, which is precisely the
spin coefficient a. It is a consequence of the third equation of (2.55). Hence, the full
information about the connection on axially symmetric horizon is encoded in a.

Quantity a is also closely related to the spin-raising operator ð (and its spin-lowering
counterpart ð̄) defined by (A.22), (A.23). These operators act on functions with well-
defined spin weight which are regarded as sections of appropriate bundle over the base
manifold and define a connection on such bundle. In this sense, ð is a covariant derivative
which is also fully determined by the spin coefficient a which, therefore, gives rise to two
different connections over the base manifold S2.

2.8 Multipole moments of isolated horizons
Isolated horizons that possess a Killing vector field representing axial symmetry can be
naturally characterized by a set of numbers, which can be given standard interpretation
of mass and angular momentum multipoles. In this section we introduce this description
following mainly [17].

At first, we restrict ourselves to isolated horizons without any matter fields. We
choose a spherical cut S0 of a such horizon H. It can be thought as a leaf of foliation Sv

as it has been introduced in the section 2.2. Namely, we choose a null normal la defined
by the relations (2.11). Projection operator onto leaves of this foliation is obviously
qa

b = δa
b − lanb. Geometry of S0 is fully characterized by the induced metric q̃ab and

(pull-back of) the rotation 1-form ω̃a. The forms la, na annihilate all tangent vectors to
S0 so their pull-back onto S0 has to vanish identically. Therefore q̃ab is given just by (2.7)
and pull-back of the rotation 1-form is

ω̃a = (2εna − πma − πma)←S0 = −π ma − π̄ m̄a = ωa − 2εna.

Let us choose an another leaf of the foliation Sw. Our construction of coordinates on
H implies that there exists a natural diffeomorphism D : S0 ↦→ Sw generated by integral
curves of la. Since la H= ∂a

v
H= (1, 0, 0) we have

∂Dv

∂v
= 1,

∂DI

∂xI
= 0, ⇒ D = (w, x1, x2).

The map D induces a tangent map D⋆ : TS0 ↦→ TSw. It is straightforward to verify
that the tangent map is an identity8. Hence, we conclude that leaves of the foliation are
mutually diffeomorphic, while the geometry (q̃ab, ω̃a) remains the same.

However, with our choice of the foliation is connected a certain gauge freedom, which
we are going to investigate. Define a new coordinate u = v − F . Under this transfor-
mation, the induced metric remains unchanged q̃′ab = q̃ab, while the rotation form on S2

0
transfers to ω̃′a = ω̃a + 2ε∇aF .

Geometry of an isolated horizon is determined by the pair (qab, ωa), cf. definition 5.
Hence, to define appropriate multipole moments we have to include information coming
from both quantities. At the same time we would like to have a coordinate foliation
independent characterization of a horizon. To omit this ambiguity in the rotation form

8This result in fact follows from our definition of propagation of ma onto horizon (2.17).
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ωa, it seems natural to consider its curl D[aωb] instead of ωa itself. From the theorem 8
we know that D[aωb] = Im {Ψ2}εab. Another piece of information concerning geometry
comes from the metric function f , or equivalently the scalar curvature R (cf. theorem
15). Similarly to D[aωb], R is related to the Weyl spinor component Ψ2, as it summarized
in the following lemma.

Lemma 2 The scalar curvature R of a spherical section S2
0 of an isolated horizon without

presence of matter fields is related to the tetrad component of the Weyl spinor Ψ2 via

R = −4Re {Ψ2}. (2.57)

Proof. The general formula (2.36) for Re {Ψ2} on an (weakly) isolated horizon is reduced to

Re {Ψ2} H= a2 − ξa′ = 1
2(ξ2)′′ = f ′′

4R2 = −1
4R.

where we used (2.50) (in addition, the sign has to be changed because here we use the convention (2.52),
where f ↦→ −f). ■

Maybe a little surprisingly, the whole information about geometry of S2
0 in a situation

without a matter is encoded in the tetrad component of the Weyl tensor Ψ2. Generally,
when a matter is present on H, the relation (2.57) is modified, but f can be reconstructed
from R anyway. Thus, we are led to define a function on H

ΦH ≡ 1
4R − i Im {Ψ2}.

Without matter fields, it is just ΦH = −Ψ2. The function ΦH serves to define multipole
moments:

Definition 11 Geometric multipole moments {In}, {Ln}, n = 0, 1, 2, . . . of an axially
symmetric isolated horizon (H, qab, ωa) are defined by

In + iLn ≡
∮
S2

0

ΦHY 0
n (ζ) ε,

where Y 0
n are spherical harmonics defined with respect to canonical two-sphere metric

(2.51), ΦH is defined above and ε is the metric volume form on a spherical cut S2
0 of H.

Note: Recall, that the standard spherical harmonics on the unit sphere are defined as

Y m
l (θ, φ) ≡ NeimφP m

l (cos θ), l = 0, 1, 2, . . . ; m ∈ {−l, . . . , l}

with P m
l associated Legendre polynomials and a normalization constant

N =

√2l + 1
4π

(l − m)!
(l + m)! .

27



In this convention, orthogonality reads∮
unit sphere

Y m
l Y

n

k ε = δlk δmn, ⇒
∮
S2

0

Y m
l Y

n

k ε = R2δlk δmn

Imposing axial symmetry, Y m
l are independent of φ and we are left with (rescaled) ordi-

nary Legendre polynomials

Y 0
n (θ) ≡

√
2n + 1

4π
Pn(cos θ), n = 0, 1, 2, . . .

Given a horizon geometry, we may define two sets of numbers {In} and {Ln}. It
can be shown (see [17]) that these are diffeomorphism invariant. Conversely, one can
start with the set {In, Ln} and then reconstruct the horizon geometry uniquely up to
a diffeomorphism. However, multipoles can not be specified completely freely. Some of
them already have common value that originate in prescribed boundary conditions of the
function f , namely f(±1) = 0 and f ′(±) = ∓2. Then

I0 = 1
4

∮
S2

0

RY 0
0 ε = 1

4

∫ 2π

0
dϕ
∫ 1

−1
dζ R2

(
−f ′′

R2

)
1√
4π

=
√

π,

I1 = 1
4

∮
S2

0

RY 0
1 ε = −

√
3π

4

∫ 1

−1
dζ f ′′ζ

per partes=
√

3π

4

∫ 1

−1
dζ f ′ = 0,

where we used Y 0
0 =

√
1/4π and Y 0

1 =
√

3/4π ζ. Another condition follows from the
relation (2.29) and the Stokes theorem

L0 = −
∮
S2

0

Im {Ψ2}Y 0
0 ε = − 1√

4π

∮
S2

0

D[aωb]ε
ab =

∮
∂S2

0

ωa ≡ 0.

As we shall show bellow, this condition translates to vanishing of angular momentum
monopole.

We have already mentioned that In, Ln suffice to reconstruct the horizon geometry,
but we have not discussed their physical interpretation. From the definition 11, it is clear
that In, Ln are dimensionless. A suitable rescaling yields mass and angular momentum
multipoles, see [17] for details and also [7, 8]:

Definition 12 Consider an isolated horizon characterized by geometric multipoles Im, Lm,
m = 0, 1, 2 . . . defined above. Angular momentum multipole moments are defined by

Jn ≡
√

4π

2n + 1
Rn+1

4πG
Ln, n = 0, 1, 2, . . .

where R is the radius of the horizon and G is the gravitational constant. A mass M of
the horizon is defined by

M ≡ 1
2GR

√
R4 + 4G2J2

1 ,

and finally mass multipole moments by

Mn ≡
√

4π

2n + 1
MRn

2π
In, n = 0, 1, 2, . . .
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Notes: • The zeroth mass moment M0 always coincide with the horizon mass M . The
first one M1 always vanishes or in other words, the definition 12 places us to the “center of
a mass frame”. Similarly, as one would expect, the zeroth angular momentum moment J0
identically vanishes.
• One may wonder, how these multipoles are connected to Geroch-Hansen’s multipoles
at spatial infinity [18, 19]. Since Jm, Mm are defined locally with respect to the horizon
without any reference to surrounding spacetime, one may expect a certain disagreement
between the two definitions. In general, it is indeed so. For instance, in the Kerr space-
times they differ only slightly and coincide as a/M ↦→ 0 (M, a are standard mass and
angular momentum parameters of the Kerr metric) [17].
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3 | Extremal isolated horizons

This chapter is devoted to extremal isolated horizons which are also axially symmetric.
The defining condition for an isolated horizon to be extremal is vanishing of the surface
gravity κ(ℓ) or equivalently ε = 0 (in the gauge where ε̄ = ε). As we already showed in
the previous chapter, this property is independent of the choice of a null normal. In the
following text we shall show more, namely that the whole geometry of such a horizon is
determined uniquely. This is a non-trivial result and hence few remarks are appropriate.

In previous chapter we have also explained why isolated horizons, despite the fact
they describe black holes in equilibrium, are in fact compatible with much wider class of
spacetimes than the usual Kerr-Newman solution. Recall that in the framework of isolated
horizons, the full spacetime is determined by the initial data given on the horizon itself,
and on the null hypersurface N intersecting the horizon in a spherical cut, cf. section 2.5.
The former determines the intrinsic geometry of the horizon and its extrinsic curvature,
the latter describes the geometry outside. More specifically, data on N consist of Ψ4
representing the longitudinal gravitational radiation and ϕ2 representing the longitudinal
part of electromagnetic field. In general, the intrinsic geometry of the horizon can be
prescribed arbitrarily (in the sense of section 2.5) and the geometry outside the black
hole is distorted by the presence of external matter.

Surprisingly, this fails to be true in the case of extremal horizons. As we shall show
below, the extremality imposes additional conditions on the intrinsic geometry and these
conditions are sufficient to determine the intrinsic geometry completely to a 2-parametric
family of solutions. It was first shown in [6] that this family is exactly the family of
Kerr-Newman extremal black holes (condition of extremality reduces the 3 parameters
of Kerr-Newman metric to two). Their proof contains an implicit assumption that the
2-metric of spherical cuts of the horizon is regular, e.g. free of conical singularities. In
the present work we generalize this result by allowing for deficit angles on the north and
south poles. This gives as wider class of solutions parametrized by the “radius” of the
black hole, its electric and magnetic charges, and two deficit angles.

We proceed as follows. At first, we solve the necessary constrains following [13] and
consequently we investigate equation for the metric function f of section 2.6.

3.1 Electromagnetic field and the spin coefficient π

The coefficient π is governed by the equation (2.34). The extremality of the horizon
allows one to find a solution explicitly in terms of the metric function f (cf.(2.52)), since
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the unknown function λ is canceled. Hence, we are left with

ξ∂ζπ + πa
H= −π2, or explicitly π′ − f ′

2f
π
H= −

√
2R√
f

π2,

where we denoted ∂ζπ ≡ π′. One can recognize the Bernoulli differential equation [20],
which has the general form

y′ + g(x)y = h(x)yn

for the unknown function y(x) with some general given functions g(x), h(x). This equation
can be transformed into a linear one introducing substitution z(x) = y1−n(x), so that

z′ + (1 − n)g(x)z = (1 − n)h(x).

The general solution is

z(x) = y1−n =
(

(1 − n)
∫

dx
(
h(x)e(1−n)

∫
dx g(x)

)
+ z0

)
e−(1−n)

∫
dx g(x). (3.1)

In our case, we identify

n = 2, g(x) ↔ − f ′

2f
, h(x) ↔ −R

√
2
f

.

After substitution to (3.1) and some calculation one obtains

π
H=
√

f

2
1

R(ζ + cπ) = ξ

ζ + cπ

, (3.2)

where cπ is an integration constant connected with integration over ζ and the constant z0
in the general formula (3.1). In fact, it is fixed by intrinsic geometry and in electro-vacuum
spacetimes it might be expressed via electromagnetic dipole and quadrupole moments,
see [13] for discussion.
Note: As mentioned above, the integration constant cπ is related to ζ and also π via z0.
Since π is complex, cπ is also in general a complex number even though ζ is real.

Let us have a look at projection ϕ1 of the electromagnetic tensor. In what follows, we
shall assume that the electromagnetic field shares the stationarity and the axial symmetry
with the gravitational field. Since ϕ0

H= 0 the Maxwell equation (A.19a) implies

Dϕ1
H= 0,

so ϕ1 is time independent. To make the whole electromagnetic field time independent,
we prescribe

Dϕ2
H= 0.

Under this assumption, equation (A.19b) simplifies to

δϕ1 + 2πϕ1 − 2εϕ2
H= 0.
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Moreover, in the situation of extremal horizon we are left with

δϕ1 + 2πϕ1
H= 0, or (ζ + cπ)∂ζϕ1 + 2ϕ1

H= 0

the function ϕ1 can be found easily, multiplying the equation by (ζ + cπ) and using
the Leibniz rule one gets

∂ζ

(
(ζ + cπ)2ϕ1

) H= 0.

After direct integration the solution appears in the form

ϕ1
H= cϕ

(ζ + cπ)2 , (3.3)

where cϕ is some complex integration constant and can be related to the total electric
charge QE and magnetic charge QM of the black hole. For compactness, we introduce the
complex charge

Q = QE + i QM. (3.4)

By the Gauss law, we have1

Q =
∮
S2

0

ϕ1 ε = 4 π◦R2 cϕ

c2
π − 1 . (3.5)

Inverting this relation we find

cϕ = Q
4 π◦R2 (c2

π − 1). (3.6)

Hence, the value of the integration constant cϕ is fixed by the total charge of the black
hole.

3.2 Uniqueness of extremal horizons
In this section we generalize the result of [21] according to which the intrinsic geometry
of an extremal axisymmetric horizon is necessarily isometric to the intrinsic geometry of
Kerr-Newman black hole.

We turn our attention to geometry of the horizon, i.e. the function f . Since in (2.37)
the spin coefficient µ drops out for the extremal horizon, we find an equation for f

δπ
H= −ππ + aπ − Ψ2.

The imaginary part of this equation is (always) trivially satisfied, we have to take the
real part. Substitution for δπ from (2.34) after some manipulations gives

Re {Ψ2}
H= 2(πRa − π2

I ),
1To avoid confusion with the spin coefficient π, in this section we denote the number π by π◦.
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where R, I denote real and imaginary parts, resectively, namely π = πR + i πI . Further,
we use (2.36) in the left hand side, the results (3.2), (3.3) and the Leibniz rule to get

1
2(ξ2)′′ + (ξ2)′ ζ + cπ,R

|ζ + cπ|2
+ ξ2 2c2

π,I

|ζ + cπ|4
+ |cϕ,I |2

|ζ + cπ|4
= 0.

The next step is to use the definition (2.54). After some simplification one arrives at

|ζ + cπ|4f ′′ + 2(ζ + cπ,R)|ζ + cπ|2f ′ + 4 c2
π,If + 4R2|cϕ|2 = 0.

This equation admits the explicit solution. Imposing the boundary conditions f(±1) = 0,
we find

f(ζ) = 2 |cϕ|2 R2(1 − ζ2)
|ζ + cπ|2(|cπ|2 − 1) . (3.7)

Notice that f formally vanishes for uncharged black holes because of (3.6). However,
we have not fixed the integration constant cπ yet. Allowing for the deficit angles around
north and south pole, we prescribe [13]

f(±1) = ∓
(

2 + α±
π◦

)
, (3.8)

where α+ and α− are deficit angles on the north and the south poles, respectively. Then,
the metric function f reads

f(ζ) = 4 R2 (α− + 2π◦)(α+ + 2π◦)(1 − ζ2)
Q(1 − ζ2) + 2 π◦R2 (α+(1 − ζ2) + α−(1 + ζ2) + 4π◦(1 + ζ2)) . (3.9)

Notice that this function has well-behaved limit for Q → 0, i.e. function f remains non-
zero in this limit.

We have proved an important result. Extremal, stationary, axisymmetric horizon
is unique in the sense that its metric is necessarily of the form (3.9). Such horizons
form a 5-parametric family of solutions. In [21], a similar result has been proved, but
there the possibility of the presence of the deficit angles was excluded. The authors of
[21] concluded that extremal horizons form a 3-parametric family of solutions isometric
to Kerr-Newman black holes. Kerr-Newman black holes are parametrized by the mass,
electric and magnetic charges and the angular momentum, but the extremality condition
reduces the freedom to 3 parameters. In our setting, we have 5 parameters: radius of the
black hole (which replaces the mass), electric and magnetic charges and two deficit angles.
Extremality is already taken into account and therefore does not reduce the number of
independent parameters. The two additional parameters (compared to Kerr-Newman)
presumably correspond to the acceleration parameter of the C-metric (which determines
both deficit angles around the axis) and the NUT parameter [12]. Precise interpretation
and connection to known exact solutions is the task for our future investigation.
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4 | Penrose quasi-local mass

One of the longstanding problems in general relativity is to provide a precise definition of
energy and angular momentum of a gravitation field. Due to the equivalence principle,
energy can not be associated with a particular point of spacetime and the classical in-
terpretation as the first integral of equations of motion following from a symmetry loses
its meaning. On the other hand, it seems natural to define this notion quasilocally, i.e.
associate conserved charges with a finite spacetime domain. There are several approaches
based on different ideas and often yielding different results in the same situations. One
of these is the so called Penrose mass. It provides a definition that gives physically rea-
sonable results in many applications but it also suffers from several drawbacks. In the
following text, we introduce basic ideas behind the Penrose construction.

In standard field theories on the flat background, the usual way of defining mass,
momentum and angular momentum (to be referred to as charges) is to apply the (first)
Nœther theorem and the symmetries of the Minkowski spacetime. There are essentially
two ways of describing the relation between symmetries and conserved charges. Assuming
that the dynamics of a given field is governed by the action principle and correspond-
ing Lagrangian, the relativistic covariance of the equations of motion requires that the
Lagrangian is invariant under the action of the Poincaré group consisting of 3 spatial
rotations, 3 boosts and 4 spacetime translations. The conserved charges are then associ-
ated with the generators of Poincaré (Lie) group. Equivalently, the Minkowski spacetime
admits 10 independent Killing vectors that are regarded as generators of isometries. The
Lie algebra of these Killing vectors is isomorphic to the Lie algebra of the Poincaré group.
The requirement of covariance then translates to the statement that the Lagrangian is
Lie constant along the Killing vectors and conserved charges are associated with these
Killing vectors. Similar construction will work whenever we consider propagation of a
field on a fixed background with Killing vectors.

In full general relativity, the situation is significantly more complicated, since the
spacetime is a dynamical quantity itself and, in general, does not admit a Killing vector
field, i.e. there are no isometries. From the physical point of view, however, any two
spacetimes (M, gab) and (N, g̃ab) related by a diffeomorphism ϕ : M ↦→ N such that
ϕ∗g̃ab = gab, are regarded as physically equivalent and the diffeomorphism ϕ can be
interpreted merely as a coordinate transformation. Hence, values of tensor fields at
spacetime points do not have direct physical meaning. In this sense, the equivalence
principle prevents us to introduce the local notion of the energy.

Nevertheless, we know that, for example, gravitational waves carry the energy, there-
fore it should be possible to introduce an appropriate notion of energy of gravitational
field even in a dynamical situation. It is well known that this can be done unambiguously
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in the case of asymptotically flat spacetimes representing isolated gravitating sources, as
was first shown in pioneering works by Bondi, Metzner, Sachs et al [22, 23, 24] and later
formulated in geometrical language by Penrose, Newman, Unti, and others [25, 26, 27, 28].
In this case, the gravitational field decays far from the gravitating sources and vanishes at
infinity, so that the isometries of Minkowski spacetime are partially recovered. Relevant
group in this case is the Bondi-Metzner-Sachs group which is a (semi-)direct sum of the
usual Lorentz group and the infinite-dimensional group of supertranslations. Then, the
so-called Bondi mass can be defined. It is a global characteristics of the spacetime and,
provided that certain energy conditions are satisfied, it is positive and non-increasing in
time. The decrease of the Bondi mass amounts to the presence of radiation close to null
infinity, so that the Bondi mass measures the loss of energy by radiation.

The drawback of the Bondi amss is that it cannot be associated with a finite domain
of the spacetime (it is global rather than quasi-local). On the other hand, thanks to
its canonical character, any reasonable quasi-local mass should reduce to that of Bondi
in the limit of large spheres [29]. The Penrose mass, which is a subject of this chap-
ter, satisfies this requirement. It also admits a natural Hamiltonian interpretation which
makes it a good candidate for the generally acceptable quasi-local mass. Unfortunately,
Penrose mass cannot be constructed for a general spacetime and general spacetime do-
main. Still, it has several interesting properties and, more importantly, it inspired many
other approaches to the definition of quasi-local mass based on the Sen connection and
Nester-Witten form [30, 31].

4.1 Motivation behind the Penrose construction
An elementary example of relation between field variables and corresponding sources
comes from the classical mechanics. Potential of a gravitation field Φ in the Newton’s
theory satisfies the familiar Poisson equation1

∆Φ(x) = 4πGρ(x), (4.1)

where G is gravitational constant, ρ is density of a gravitating mass and x is radius vector
in Cartesian coordinates. Obviously, total mass in a domain Ω enclosed by a surface ∂Ω
is

mΩ =
∫

Ω
dx ρ(x). (4.2)

The key point is that the equation (4.1) might be used to rewrite (4.2) in terms of the
field variable

mΩ = 1
4πG

∫
Ω

dx ∆Φ(x) = 1
4πG

∮
∂Ω

dS · ∇Φ(x),

where we employed the well known vector identity ∆ ≡ ∇ · ∇ and consequently the
Gauss-Ostrogradski theorem. Thus the field equation allows us to determine “charge”,
which is contained in a particular region of space from the knowledge of the field itself.

1In this section we work within SI system of units.

36



This might be useful in a situation, when one does not know what exactly the charge
should be represented by.

Let us move to another motivational example, which is little less trivial and comes
from electromagnetism. The Maxwell equations in the special relativity framework can
be written in the form

∇aF ba = µJ b, ∇[aFbc] = 0 (4.3)

where Fab = ∇aAb − ∇bAa is electromagnetic field tensor given by potential Aa, Ja =
(ρE/c, j) is 4-current composed of electric charge density ρE divided by speed of light c
and current density j, and finally µ is permeability of vacuum. Furthermore, we introduce
the Hodge dual to Fab

⋆Fab = 1
2!εabcdF cd. (4.4)

We denoted εabcd the Levi-Civita tensor. Our convention is ε0123 = 1 (in the Cartesian
coordinates). For calculation, the following identities are useful

εabcdεaklm = −δbcd
klm ≡ −

∑
π∈perm.

sign(π)δb
π(k)δ

c
π(l)δ

d
π(m), (4.5a)

εabcdεabkl = −2! δcd
kl = −2(δc

kδd
l − δd

kδc
l ), (4.5b)

εabcdεabck = −3! δd
k (4.5c)

εabcdεabcd = −4!, (4.5d)

For instance, using (4.5b) an inverse relation to (4.4) can be found

Fab = −1
2εabcd

⋆F cd. (4.6)

Note: In general, the Hodge operator is isomorphism of k-th and n−k-th exterior power
of an n-dimensional vector space V , i.e. ⋆ : ∧k(V ) ↦→ ∧n−k(V ). Substitution (4.4) to
(4.6) leads to a special case of an identity

⋆ ◦ ⋆ = −id|V .

Hence, eigenvalues of ⋆ are ±i. If ⋆ω = iω for some form ω, then ω is called self-dual, if
⋆ω = −iω the form is called anti-self-dual.

Furthermore we substitute (4.6) to the Maxwell equations (4.3), after some manipu-
lations using (4.5) we arrive at

∇a
⋆F ba = 0, ∇[a

⋆Fbc] = 2µ⋆Jabc,

where ⋆Jabc = εabcdJd is Hodge dual to Ja. These equations have formally the same
structure as (4.3) except for the presence of the current in the second set of equations
instead of the first one.

In a more abstract geometrical language ∇[aFbc] is de Rham differential dF ≡ ∇[aFbc],
so the Maxwell equations can be recast to an elegant version

dF = 0, d⋆F = 2µ⋆J. (4.7)
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Consider a spacelike domain Ω with smooth boundary ∂Ω and define quantity

Q ≡ κ
∮

∂Ω
F + i⋆F, (4.8)

with some constant κ be to determined later. It is well defined, since both F, ⋆F are
two-forms integrated over two-dimensional manifold. Using the general Stokes theorem
and (4.7) Q may be simplified to

Q =
∫

Ω
dF + id⋆F = 2iµ

∫
Ω

⋆J. (4.9)

In order to find explicit expression for Q, one has to consider embedding E : U ⊂ R3 ↦→
R4, such that E (U) = Ω and corresponding pull-back E ∗(⋆J) on U . We know that pull-
back of a form ω in coordinates is ωa...b = ∂aE c . . . ∂bE d ωc...d. The embedding E can be
chosen as the identity on U , i.e. E (x1, x2, x3) = (0, x1, x2, x3) which implies ∂iE a = δa

i ,
where now i = 1, 2, 3. Then

E ∗(⋆J)ijk = εabcdδa
i δb

jδ
c
kJd = J0ε0ijk = J0εijk ⇒ E ∗(⋆J) = 6J0dx1 ∧ dx2 ∧ dx3

and the integral (4.9) explicitly∫
Ω

⋆J =
∫

U
E ∗(⋆J) = 6

c

∫
Ω

dx ρE(x) ≡ 6
c
QE

On the right hand side we recognized a total electric charge QE in Ω. If we choose κ =
c/(12iµ), the quantity Q will coincide with QE. Analogously to our previous motivational
example of mass, we are able to express corresponding source in a spacetime domain
directly via integration of the field variable itself. Notice that in both examples, the
charges are not related to a Noether current connected with a symmetry of the system
under investigation. This will be briefly discussed in the next section.
Note: Let us add a final remark here. The Maxwell equations (4.7) are somewhat
asymmetric in source terms. Therefore one may think of a generalization on presence of
a magnetic charge current

dF = 2µ⋆JM, d⋆F = 2µ⋆JE.

By the same procedure as above, the integral (4.8) would yield

Q ≡ κ
∮

∂Ω
F + i⋆F ≡ iQM + QE,

where QM is a magnetic charge in the domain Ω.

4.2 Conserved currents of energy-momentum tensor
It is well known that invariance of a particular system under spacetime translations
x′a = xa + ξa, where ξa is a constant vector, implies, according to the Noether’s theorem,
conservation of energy-momentum tensor T ab. The conservation law is

∇aT ab = 0.
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Its validity is also assumed in general curved spacetimes, where any matter fields are
present. If such a spacetime has additional symmetry represented by a Killing field ka, one
can construct an appropriate conserved current setting Ja ≡ T abkb. Local conservation
law can be inferred from

∇aJa = T ab∇akb = 0,

since ka satisfies the Killing equation ∇(akb) = 0 and T ab is symmetric. Associated charge
is defined by

Q[ka] ≡ 1
3!

∫
Ω

⋆J = 1
3!

∫
Ω

εabcdT deke, (4.10)

where Q : K ↦→ R has to be understood as functional on the Lie algebra of Killing vectors
K. The interpretation of the conserved current Ja or the charge Q depends on the nature
of a Killing field.

The first observation is that the form ⋆J is closed. The exterior differential of ⋆J is
four-form, so it has to be proportional to the volume form

∇[eεabc]dJd = λεeabc /εeabc

−3!δe
d∇eJ

d = −4!λ

λ = 1
4∇eJ

e = 0.

In the first step we used ∇ε = 0 and (4.5). Thus, d⋆J = 0. The Poincaré lemma now
implies that on a simply connected compact domain Ω there exists a two form K such
that dK = ⋆J. The charge (4.10) can be therefore expressed via surface integral over ∂Ω

3! Q[ka] ≡
∫

Ω
dK =

∫
∂Ω

K.

The form K is not uniquely defined. Let be R another two form for which dR = ⋆J.
Then d(K − R) = 0 so K is unique up to addition of an exact two-form, or K = R + dα.
However, Q[ka] is not affected by this freedom

3! Q[ka] =
∫

∂Ω
R + dα =

∫
∂Ω

R +
∫

∂∂Ω
α =

∫
∂Ω

R,

where we used that boundary of a boundary is zero chain ∂∂Ω = 0. So, for a given Killing
vector ka the charge depends only on the surface ∂Ω. Moreover, it can be associated with
the whole domain of dependence D(Ω) because Q[ka] is independent of an actual Cauchy
hypersurface of D(Ω). Choose two such hypersurfaces Ω, Ω′. Since they have both the
same boundary, which in a particular time slice coincides with ∂Ω, Q can not change
within D(Ω) (see figure 4.1). In this sense the charge (4.10) is conserved.

In the Minkowski spacetime M4, 10 Killing vectors can be found and they constitute
a 10 dimensional Lie algebra K (for details see [29]). Its generators are interpreted as
4-momentum vector P a and antisymmetric angular momentum tensor J ab = xa∂b −
xb∂a (in the Cartesian coordinates). Every vector of this algebra can be expanded in
ka = tµP µ

a + mµν(xµdxν
a − xνdxµ

a), where µ, ν are concrete indices. The charge Q can
be used to define momentum PΩ and angular-momentum JΩ of a whole domain Ω by
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Figure 4.1: Conservation of the charge Q[ka] within the domain of dependence D(Ω).

Q[ka] = tµP µ
Ω + mµνJ µν

Ω . Numbers P µ
Ω , J µν

Ω are coordinate components of corresponding
tensor quantities. Mass is obtained by the standard relation MΩ ≡ P a

ΩPΩ a.
This procedure might be applied even in the case, when no Killing vector is present.

For a time-like vector ua the integral

Q[ua] ≡ 1
3!

∫
Ω

εabcdT deue,

is interpreted as local energy-momentum density seen by an observer with 4-velocity ua.
However, Q now depends on a particular Cauchy hypersurface. A mass still can be defined
reasonably, but in M4 does not reduce to MΩ and therefore represents a different concept
[29].

4.3 Penrose construction
After some introductory text we proceed to the construction originally presented by R.
Penrose [32]. Our starting point is the definition (4.10). In the spirit of the section 4.1 we
want to express the charge by a surface integral of a suitable field variable. An appropriate
one might seems to be the Ricci tensor Rab, which is directly connected to the energy-
momentum tensor Tab via the field equations. However, Rab vanishes in absence of a
matter and we want to describe also autonomous gravitation field, e.g waves. Therefore,
Penrose suggested to take rather the Riemann tensor Rabcd, which does not vanish in
such situations2. However, Rabcd is not a two-form, so it can not be integrated over a
two-surface directly. One has to employ an auxiliary function fab, then

Q[ka] ≡ 1
3!

∫
Ω

εabcdT deke = C
∮

∂Ω
Rabcdf cd, (4.11)

where C is a suitable constant, which will be determined later. On the right hand side
of (4.11) we use the general Stokes theorem yielding a volume integral∫

Ω

1
3!εabcdT deke − C ∇[c(Rab]edf ed) = 0.

2In absence of matter Rabcd is, of course, reduced to the Weyl tensor Cabcd.
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We require validity for any spacetime domain Ω, so the integrand has to vanish identically

1
3!εabcdT deke = C ∇[c(Rab]edf ed) = C Red[ab∇c]f

ed /εabcg

−T geke = C εabcgRedab∇cf
ed = C εcgabRedab∇cf

ed.

We used the Bianchi identity ∇[cRab]ed = 0 and the symmetry of the Riemann tensor
Rabcd = Rcdab in the first equation and consequently (4.5). It can be further simplified
introducing dual Riemann tensor

⋆Rabcd ≡ 1
2ε ef

cd Rabef .

Substitution in the previous formula gives

−i⋆Rabcd∇cfab = i
2C

Tdek
e. (4.12)

The next step is to express every quantity by its spinor equivalent. Without loss of
generality, the function fab may be taken antisymmetric, so its spinor decomposition is
(see [33] or literature [2, 1, 34])

fab = ωABϵA′B′ + ωA′B′
ϵAB, (4.13)

where ωAB = ωBA is symmetric second rank spinor and ϵAB is symplectic form on a spinor
space SA ⊗ SB. Recall that ϵAB acts as index raising/lowering operator in the following
way

κA = κBϵBA = −ϵABκB, κA = ϵABκB, ∀κ ∈ S,

where ϵAB ≡ −(ϵAB)−1. So to raise/lower index with plus sign, the indices have to be
“adjacent and descending to the right”. It can be also easily proved that

ϵABϵAB = δ A
A = 2. (4.14)

Spinor equivalent of the Levi-Civita tensor is ([2], page 76)

εabcd = i(ϵABϵCDϵA′C′ϵB′D′ − ϵACϵBDϵA′B′ϵC′D′).

Using this formula, spinor form of the Hodge dual to f cd can be found

⋆fab = −iωABϵA′B′ + iωA′B′
ϵAB. (4.15)

Comparing (4.13) with (4.15) we clearly have

ωABϵA′B′ ⋆↦→ −iωABϵA′B′
ωA′B′

ϵAB ⋆↦→ iωA′B′
ϵAB,

so ωABϵA′B′ represents anti-self-dual part and ωA′B′
ϵAB self-dual part. The make our

calculations shorter, we will assume that fab has only anti-self-dual part, i.e.

fab = ωABϵA′B′
. (4.16)
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Furthermore, we need the dual Riemann tensor ([2], page 86)

−i⋆Rabcd = ϵABϵCDΨA′B′C′D′ − ϵA′B′ϵC′D′ΨABCD + ϵA′B′ϵCDΦABC′D′

− ϵABϵC′D′ΦA′B′CD + 2Λ(ϵA′B′ϵC′D′ϵD(AϵB)C − ϵABϵCDϵD′(A′ϵB′)C′)

and Einstein equations (here with zero cosmological constant, see [1], page 235)

ΦABA′B′ + 3ΛϵABϵA′B′ = 4πGTABA′B′ .

The left hand side of (4.12) is then

LHS = −2ϵC′D′ΨABCD∇CC′
ωAB + 2ϵCDΦABC′D′∇CC′

ωAB + 4ΛϵC′D′ϵD(AϵB)C∇CC′
ωAB

= −2ΨABCD∇C
D′ωAB + 2ΦABC′D′∇ C′

D ωAB + 4Λ∇AD′ωA
D,

where we used (4.14) and ϵAB∇CC′
ω(AB) = 0. The right hand side of (4.12) is simply

RHS = i
8πGC

(
ΦDED′E′kEE′ + 3ΛkDD′

)
.

To cancel unnecessary constants we choose C = 1/(16πG). After same manipulation we
finally obtain

−ΨABCD∇C
D′ωAB + ΦABC′D′∇ C′

D ωAB − iΦDED′E′kEE′

+ 2Λ∇AD′ωA
D − 3iΛkDD′ = 0. (4.17)

Let us first investigate when the part containing the Ricci spinor ΦABC′D′ vanishes

ΦABC′D′∇ C′

D ωAB − iΦDED′E′kEE′ != 0
ΦABA′D′

(
∇ A′

D ωAB − iϵ B
D kAA′) = 0, or

∇ A′

D ωAB − iϵ (B
D kA)A′ = 0, (4.18)

since we require validity in arbitrary space time (with any ΦABA′D′). Raising index D
and symmetrization in ABD cancels the term proportional to ϵAB, so finally

∇ A′(DωAB) = 0. (4.19)

This equation immediately implies that the term proportional to ΨABCD in (4.17) is zero.
Now, we just have to show that (4.18) is compatible with the rest of (4.17). Renaming
index D ↦→ A in (4.18) yields

2∇ A′

A ωAB = 2iϵ (B
A kA)A′ = i(ϵ B

A kAA′ + ϵ A
A kBA′) = 3ikBA′

,

what is exactly the part of (4.17) containing Λ. To conclude, the necessary condition,
which the spinor analogue of the auxiliary function fab has to satisfy is (4.19) (or (4.18)
respectively).

In (4.19) we obtained an example of the so called twistor equation for a second rank
symmetric spinor ωAB. Its variations appear throughout physics in different contexts
([34, 35]). The general definition is as follows:
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Definition 13 The twistor equation for a fully symmetric spinor of k-th valence ωAB...C ∈
SA ⊗ SB ⊗ · · · ⊗ SC is

∇(A
A′ωBC...D) = 0.

After finding the condition that ωAB has to satisfy, we can proceed to calculation of
explicit formula for the charge Q[ka]. Denote rab ≡ Rabcdf cd, E : Σ ↦→ ∂Ω embedding of
the surface ∂Ω and {yi}, i = 1, 2 coordinates on Σ. Since rab ≡ r is two-form it can be
written as r = rµνdxµ ∧ dxν in some coordinates xµ, µ = 1, 2, 3, 4. Its pull-back onto Σ
reads

E ∗(r) = rµν ◦ E (y)∂xµ

∂yi

∂xν

∂yj
dyi ∧ dyj = rµν ◦ E (y)∂xµ

∂yi

∂xν

∂yj
ϵij dy1 ∧ dy2

= rµν ◦ E (y)εµνdy1 ∧ dy2

where we recognized the surface form3 εab. Thus, we have

Q[ka] = 1
16πG

∮
∂Ω

Rabcdf cd = 1
16πG

∫
Σ

Rµνρσfρσεµνd(y1, y2).

The integral on the left is understood in the Lebesgue sense. The surface two-form in
our NP tetrad of chapter 2 is given by (2.8). Its spinor equivalent may be found easily
using definition of NP tetrad vector ma via a spin basis ma = oAιA′

εab = −i(o(AιB)ϵA′B′ − ō(A′ ῑB′)ϵAB). (4.20)

To find Rabcdf cdεab = Rabcdfabεcd explicitly, we employ the spinor equivalent of the Rie-
mann tensor which is given by (A.6) and the relation (4.16). At first, the form Rabcdfab

after a simple calculation is

Rabcdfab = 2ΨABCDωABϵC′D′ + 2ΦABC′D′ωABϵCD + 4ΛωCDϵD′C′ .

Contracting it further with εcd using (4.20) yields

Rabcdfabεcd = −4i
(
ΨABCDωABoCιD − ΦABC′D′ωAB ōC′

ῑD′ + 2ΛωABoAιB
)

. (4.21)

Terms proportional to the Weyl and Ricci spinor may be expanded in the spin basis via
(A.9) and (A.11) respectively. The horrible looking expressions are radically reduced
with the help of defining formulae of a spin basis

oAoA = ιAιA = 0, oAιA = −oAιA = 1

Then, the first two terms are simplified to

ΨABCDoCιD = Ψ3oAoB − Ψ2(oAιB + ιAoB) + Ψ1ιAιB,

ΦABC′D′ ōC′
ῑD′ = Φ21oAoB − Φ11(oAιB + ιAoB) + Φ01ιAιB.

3Here ϵij denotes permutation symbol, c.f. (2.41).

43



Since the spinor ωAB is symmetric, there exists univalent spinors ηA, ϑA ∈ SA such that
ωAB = η(AϑB) (see [2]). Expansion into the basis is

ηA = η0oA + η1ιA, ϑA = ϑ0oA + ϑ1ιA,

ωAB =η0ϑ0oAoB + η0ϑ1oAιB + η1ϑ0ιAoB + η1ϑ1ιAιB.

Substituting to (4.21) after some process we finally arrive at

Rabcdfabεcd = 4i
(
η0ϑ0(Φ01 − Ψ1) + (η0ϑ1 + η1ϑ0)(Φ11 + Λ − Ψ2) + η1ϑ1(Φ21 − Ψ3)

)
and explicit formula for the charge Q[ka] in terms of tetrad components of the Riemann
tensor and spin basis components of ωAB

Q[η, ϑ] =
i

4πG

∮
∂Ω

(
η0ϑ0(Φ01 − Ψ1) + (η0ϑ1 + η1ϑ0)(Φ11 + Λ − Ψ2) + η1ϑ1(Φ21 − Ψ3)

)
.

(4.22)

So far we have not discussed possible solutions of the twistor equation (4.19). It turns
out that it does not posses a non-trivial solution in a general spacetime. Actually this is
not surprising, because we started with a spacetime, where at least one Killing field ka

is present. The relation (4.18) tells us that ωAB plays a role of a “potential” for kAA′ .
So, if we want to achieve working construction in a general spacetime, requirements on
ωAB have to be weakened. Penrose suggested that ωAB should satisfy only tangential
projections of (4.19) to ∂Ω in a suitable chosen tetrad. However, obtained equations are
under-determined and another additional assumption is needed. Further, it is assumed
that both spinors η and ϑ are solutions of univalent twistor equation, i.e.

∇(A
A′ηB) = 0, ∇(A

A′ϑB) = 0. (4.23)

The charge (4.22) is then defined in terms of these solutions. The necessary condition for
this construction to work is that (4.23) has exactly four linearly independent solutions
that can be identified with four components of the 4-momentum. We return to discussion
of this problem at the end of the chapter 5.
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5 | Twistor equation

The main purpose of this chapter is to get some insight into a problem of defining the
Penrose mass on a general isolated horizon (IH). The Penrose mass, as it was introduced
in the chapter 4, requires to solve the twistor equation for univalent spinor ωA,

∇ (A
A′ ωB) = 0. (5.1)

It has been already mentioned that this equation does not have a solution in a general
spacetime. However, an isolated horizon is a prominent spacetime region and one may
be interested in the exact conditions that has to be satisfied to get a non-trivial solution.
Thus, we first derive the most general equations governing our problem and then spend
some time investigating appropriate conditions of integrability. Later, we provide a time
dependent solution of (5.1) on the isolated horizon and finish our discussion summarizing
the result of the general approach to the problem.

5.1 Twistor equation on an isolated horizon

Our starting point is the twistor equation (5.1). In order to find a solution on an isolated
horizon H, we employ NP formalism and adapted coordinates of the section 2.2. For that
purpose, we introduce a spinor basis {oA, ιA} and expand the spinor ωA into it

ωA = ω0oA + ω1ιA. (5.2)

Notes: • Following standard conventions of the NP formalism, we expand contravariant
spinors in the form (5.2), i.e. into a spinor dyad (oA, ιA). Covariant spinors, on the other
hand, are expanded into the dual dyad (−ιA, oA). In particular, spinor πA′ to introduced
shortly will have an expansion in the form

πA′ = π1′ oA′ − π0′ ιA′ . (5.3)

• Notice that ω0 and ω1 have spin weights −1/2 and +1/2, respectively, in the sense
of section A.3.
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Corresponding NP equations to (5.1) are then obtained by projections onto the spin
basis, which yields differential equations for components ω0 and ω1, e.g.

oAoBoA′∇ A
A′ ωB = −oBla∇a(ω0oB + ω1ιB) = −ω0oBDoB − Dω1 − ω1oBDιB

= −Dω1 + κω0 + εω1,

oAιBoA′∇ (A
A′ ωB) = 1

2(oAιB + ιAoB)oA′∇ A
A′ ωB = −1

2ιBDωB − 1
2oBδωB

= −1
2
(
Dω0 − ω0ιBDoB − ω1ιBDιB − ω0oBδoB − δω1 − oBδιBω1

)
= −1

2
(
Dω0 − δω1 + εω0 + πω1 + ρω0 + αω1

)
,

Where we used la = oAoA′
, ma = ιAoA′ and the definition of spin coefficients (A.3a).

The other equations can be obtained in the same fashion. The full set of equations reads

Dω1 = κω0 + εω1,

δω1 = σω0 + βω1,

−Dω0 + δω1 = (ε + ρ)ω0 + (α + π)ω1,

−δω0 + ∆ω1 = (β + τ)ω0 + (µ + γ)ω1,

δω0 = −αω0 − λω1,

∆ω0 = −γω0 − νω1.

(5.4)

In the case of the isolated horizon H, some of the spin coefficients are zero on H and
some are zero identically in the whole spacetime, namely

κ
H= ρ

H= σ
H= ε − ε

H= 0, γ = ν = τ = 0, α + β = π, α − β = a, µ = µ. (5.5)

The system of equations (5.4) in the neighborhood of IH simplifies to

Dω1 = κω0 + εω1, (5.6a)
δω1 = σω0 + βω1, (5.6b)

−Dω0 + δω1 = (ε + ρ)ω0 + (α + π)ω1, (5.6c)
−δω0 + ∆ω1 = βω0 + µω1, (5.6d)

δω0 = −αω0 − λω1, (5.6e)
∆ω0 = 0. (5.6f)

Using the general commutation relations (A.4) subsequently on ω0, ω1 and employing
(5.6) plus the Ricci identities (A.13) one arrives at integrability conditions for the twistor
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equation in a sufficiently small neighborhood of H:

[∆, D]ω0 :

(π − a)δω0 H= −1
2ω0(ππ − aa − πa + πa + 2Ψ2 + 4Ψ3) − ω1(λπ − λa + 3Ψ3) , (5.7)

[∆, D]ω1 :

(π − a)δω1 H= −1
2ω0(π − a) + 1

2ω1 ((π − a)(π − a) − 3Ψ2) , (5.8)

[δ, ∆]ω1 :

δ2ω0 H= −πδω0 + λ δω1 − 1
4ω0(2δπ − 2δa − π2 + a2 + Φ02)

− ω1
(

δµ + 1
2λ(π + a) + πµ + Φ12

)
. (5.9)

The other commutators are trivially satisfied (e.g. [D, δ]ω1 H= 0) or bring no new infor-
mation, because the derivatives δω0, δω1 can not be at the present stage expressed fully
from (5.6) (as for instance [δ, ∆]ω0). On the other hand, the first two equations can be
considered as supplementary ones to (5.6). The third one should be consistent with them,
as the remaining commutators should be, consequently. Unfortunately, these equations
are far too complicated to yield reasonable predictions. Hence, we leave them as they are
and further restrict ourselves only to an axially symmetric horizon.

The twistor equation in a neighborhood of an isolated horizon can be written explicitly
in coordinates using the coordinate expansion of directional derivatives (2.22):

∂vω1 + U∂rω
1 + XI∂Iω1 = κω0 + εω1,

Ω∂rω
1 + ξI∂Iω1 = σω0 + βω1,

Ω∂rω
1 + ξ

I
∂Iω1 − ∂vω0 − U∂rω

0 − XI∂Iω0 = (ε + ρ)ω0 + (α + π)ω1,

∂rω
1 − Ω∂rω

0 − ξI∂Iω0 = βω0 + µω1,

Ω∂rω
0 + ξ

I
∂Iω0 = −αω0 − λω1,

∂rω
0 = 0.

(5.10)

5.2 Axially symmetric case

Imposing axial symmetry of the spacetime, we can introduce coordinates (ζ, ϕ) on spher-
ical cuts of H adapted to this symmetry in correspondence with the section 2.6. Axial
symmetry eliminates ϕ-dependence of all quantities. Practically, we set ∂ϕF ≡ 0 for any
spacetime function F .

Let us first analyze the full set of equations (5.6) under this assumption. The simplest
way to deal with our task is to find an expansion of the derivative ∂ϕ in terms of the NP
derivatives and coordinate components of NP vectors. Let us recall (2.22), or specifically

δ = Ω∂r + ξζ∂ζ + ξϕ∂ϕ, δ = Ω∂r + ξ
ζ
∂ζ + ξ

ϕ
∂ϕ.
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Using these two equations and ∆ = ∂r we derive

0 !=
(
ξ

ζ
ξϕ − ξζξ

ϕ
)

∂ϕ = ξ
ζ
δ − ξζδ −

(
ξ

ζΩ − ξζΩ
)

∆, or

ξ
ζ
δ − ξζδ =

(
ξ

ζΩ − ξζΩ
)

∆. (5.11)

On an IH it reduces to

ξζ H= ξ
ζ
, δ − δ

H= 0.

For the sake of simplicity, we denote η ≡ ξ/ξ, where ξ ≡ ξζ (cf. (2.54)). Of course, η
H= 1.

Substitution (5.11) to (5.6f) immediatelly gives(
δ − ηδ

)
ω0 = 0. (5.12)

Further, we want to implement (5.11) into the equations (5.6). To do so, we multiply
(5.6d) by ξ and (5.6e) by ξ. After adding the obtained equations and some simplification
using (5.12), we arrive at

∆ω1 = (β − ηα)ω0 + (µ − ηλ)ω1.

In the same way, we multiply (5.6b) by ξ, equation (5.6c) by −ξ and (5.6d) by
(
−ξ

ζΩ + ξζΩ
)
.

After some manipulations, one gets

Dω0 =
(
σ − η(ε + ρ) + (ηΩ − Ω)(β − ηα)

)
ω0 +

(
β − η(α + π) + (ηΩ − Ω)(µ − ηλ)

)
ω1.

The full set of equations (5.6) in the axially symmetric case is

Dω1 = κω0 + εω1, (5.13a)
δω1 = σω0 + βω1, (5.13b)

Dω0 =
(
σ − η(ε + ρ) + (ηΩ − Ω)(β − ηα)

)
ω0+

+
(
β − η(α + π) + (ηΩ − Ω)(µ − ηλ)

)
ω1, (5.13c)

∆ω1 = (β − ηα)ω0 + (µ − ηλ)ω1, (5.13d)
δω0 = −αω0 − λω1, (5.13e)

∆ω0 = 0. (5.13f)

At first sight, it does not seem any simpler than the original equations. However, an
advantage of this full form is that one can derive integrability conditions in terms of only
ω0, ω1 since all derivatives are given as their linear combinations. In what follows, we
do not analyze the integrability conditions in general, but we rather restrict ourselves at
first only to the horizon, where Ω = 0, η = 1 and analyze them afterwards. Moreover,
there is no r-dependence of quantities on H, so we are left just with

Dω1 H= εω1,

δω1 H= βω1,

Dω0 H= −εω0 + (β − α − π)ω1,

δω0 H= −αω0 − λω1.
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In order to solve this set of equations, we rewrite them in the coordinates (cf. (5.10)),

∂vω1 H= εω1, (5.14a)

ξ∂ζω1 H= βω1, (5.14b)

∂vω0 H= −εω0 + (β − α − π)ω1, (5.14c)

ξ∂ζω0 H= −αω0 − λω1. (5.14d)

5.2.1 Solving the twistor equation
The starting point of this section are the equations (5.14). The first thing one may think
of is time independence of ω0, ω1. At first sight it seems reasonable, since all non-zero spin
coefficients are time-independent on an IH (cf. theorems 9, 10 and 11). However, for non-
extremal black holes (ε ̸= 0) this assumption is consistent only with the trivial solution
ω0, ω1 H= 0. Assuming ∂vω0,1 H= 0 and ε ̸= 0 the first equation (5.14a) immediately implies
ω1 H= 0. Using this result in (5.14c) we get ω0 H= 0. So at this level, a solution of (5.14) in
the non-extremal case must be time dependent. For the extremal black hole ε

H= 0 only
tangential projection of the twistor equation (5.14b), (5.14d) remain. This situation will
be analyzed later.

Let us rather look at compatibility of this equations and what it implies. The spin
coefficient ε is constant on H so the differentiation (5.14a) with respect to ζ yields

∂ζ∂vω1 = ε∂ζω1 = εβ

ξ
ω1.

On the other hand, differentiating (5.14b) with respect to v one gets

ξ∂v∂ζω1 = β∂vω1 = βεω1,

where we used ∂vβ
H= 0. Since partial derivatives commute (on smooth functions), equat-

ing the two second derivatives one obtains trivially 0 = 0. Thus (5.14a) and (5.14b) are
compatible. Differentiation of (5.14c), (5.14d) respectively gives

ξ∂ζ∂vω0 = αεω0 + ω1(λε + β2 − αβ − πβ + ξ∂ζ(β − α − π))
ξ∂v∂ζω0 = αεω0 + ω1(α2 + απ − αβ − λε).

Compatibility requires

ω1(2λε + β2 − α2 − πβ − απ + ξ∂ζ(β − α − π)) = 0. (5.15)

Since ξ∂ζ
H= δ, the derivatives are governed by the Ricci identities (A.13h) and (A.13q)

ξ∂ζ(β − α − π) H= −αα − ββ + 2αβ + Ψ2 − Λ − Φ11 − 2ελ + 2απ.

Substituting back to (5.15) and expressing everything in terms of π and a gives

ω1(1
4(π − π)2 − a2 + Ψ2 − Λ − Φ11) = 0.

Obviously, we recognize two possibilities:
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1. ω1 = 0

2. 1
4(π − π)2 − a2 + Ψ2 − Λ − ϕ11 = 0, ∧ ω1 ̸= 0

If the first one is satisfied, the twistor equation does not restrict spacetime geometry. The
equations (5.14a), (5.14b) holds trivially, so we are left with

∂vω0 H= −εω0, (5.16a)

ξ∂ζω0 H= −αω0. (5.16b)

Simple integration yields solution

ω0(v, ζ) H= ω0
(0) e−εv−

∫
dζ̃ α

ξ ,

where integration runs through interval [−1, ζ] (cf. lemma 1) and ω0
(0) is a (complex)

integration constant. Furthermore, we can substitute for ξ, express α by (2.26) and use
the explicit formula (2.56) for a in the integral∫

dζ̃
α

ξ
= 1

2

∫
dζ̃

π + a

ξ
= R√

2

∫
dζ̃

π√
f

− 1
4

∫
dζ̃

f ′

f
= R√

2

∫
dζ̃

π√
f

− ln
(
f 1/4

)
.

Thus, the solution acquires the form

ω0(v, ζ) H= ω0
(0)f

1/4 e
−εv− R√

2

∫
dζ̃ π√

f .

Clearly, it represents an exponential damping in time v, while in its spatial part a certain
freedom in the form of λ via π remains. Recall that π is governed by the Ricci identity

ξ∂ζπ
H= 2ελ − π2 − πa. (5.17)

On each slice v =const. ω0 is constant. Expressing the integration constant in terms
of solution on S2

0 yields

ω0(v, ζ) H= ω0|S0 e−εv.

In the limit v → ∞ we get ω0 → 0. The time dependence of ω0 would reflect itself in
the Penrose’s charge (4.22). Its physical interpretation is not straightforward, especially
when the solution decays with time. However, in the case with ω1 = 0 the charge is
automatically zero, because on every IH it holds Φ01

H= Ψ1
H= 0.

We stay with this integrability condition for a little more time and look at the special
case of extremal horizon, when ε

H= 0. The explicit form of π allows us to evaluate ω0.
The corresponding integral is

− R√
2

∫ ζ

−1
dζ̃

π√
f

= −1
2

∫ ζ

−1
dζ̃

1
ζ̃ + cπ

= −1
2 ln

(
ζ + cπ

cπ − 1

)
.

Thus,

ω0(ζ) H= ω0
0f 1/4

√
cπ − 1
ζ + cπ

. (5.18)

50



The second condition of integrability, when ω1 ̸= 0, is a direct restriction on spacetime,
since a, π are (at least in principle) known functions.

In the case of electrovacuum spacetimes the projections of the Ricci tensor are simply
Φab = ϕaϕb and Λ = 0. Assuming this situation we are left with

1
4(π − π)2 − a2 + Ψ2 − |ϕ1|2 = 0.

Taking real and imaginary parts separately we have

Re : − π2
I − a2 + Re {Ψ2} − |ϕ1|2

H= 0, (5.19)

Im : Im {Ψ2}
H= 0, (5.20)

where π = πR + iπI . However, we already know, that the real and imaginary part of Ψ2
are determined by (2.36). In our case of axial symmetry these are reduced to

Re {Ψ2}
H= a2 − ξa′ + |ϕ1|2

Im {Ψ2}
H= −Im {ξπ′ + ξ′π}.

Taking into account (5.20) the second equation can be solved,

Im {(ξπ)′} = 0 ⇒ πI = KI

ξ
= KIR

√
2
f

,

with some real integration constant KI . With the knowledge of πI the equation (5.19) is
the aforementioned restriction on spacetime geometry. Substituting Re {Ψ2} into (5.19)
gives

−π2
I + ξξ′′ = 0, or ξ′′ = K2

I ξ−3, (5.21)

which is the equation for f . This equation has form

y′′(x) = Axnym,

for a function y(x) and some constant A, and can be found in tables [36] under the name
Emden-Fowler equation. Solution for n = 0, m ̸= −1 in general is

x = ±
∫

dy
( 2A

1 + m
y1+m + C1

)−1/2
+ C2,

where C1, C2 ∈ R are integration constants. In our case m = −3, so after a simple
calculation one arrives at

y =
√

A

C1
+ C1(x − C2)2,

or in terms of our variables

ξ =
√

K2
I

C1
+ C1(ζ − C2)2, or f = 2R2

(
K2

I

C1
+ C1(ζ − C2)2

)
.
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The function f has to vanish at the poles, where ζ = ±1, and its derivative has to be
f ′ −→

ζ→±1
∓2 which fixes the integration constants C1, C2:

0 != f(±1) = 2R2
(

K2
I

C1
+ C1(±1 − C2)2

)
,

∓2 != f ′(±1) = 4R2C1(±1 − C2).

The second condition implies C1 = −1/(2R2), C2 = 0. When we plug it into the first one,
we find K2

I = −1/(2R2). However, KI has to be real, contradicting our result. On the
other hand, the requirement imposed on the derivative f ′, which expresses the absence of
conical singularities, can be relaxed. Then, the first two equations fix C1, C2, while the
second two fix deficit angles at the poles. For C1, C2 we get

C2 = 0, C2
1 = −K2

I ⇒ C1 = KI = 0.

For KI = 0 the imaginary part of π is zero. The equation (5.21) transforms to

ξ′′ = 0 ⇒ ξ = Uζ + V, or f = 2R2(Uζ + V ), U, V ∈ R.

Vanishing of f at poles gives

0 != f(1) = 2R2(U + V )2,

0 != f(−1) = 2R2(−U + V )2

⎫⎬⎭ ⇒ U = V = 0.

Thus, introduction of conical singularities is not sufficient for the existence of a non-trivial
solution.

To conclude our computation, we state a summarizing lemma.

Lemma 3 Let the time dependent projections of a twistor equation (5.14) for univalent
spinor ωA be given on a non-extremal axially symmetric isolated horizon (H, qab). Then,
the only non-trivial solution is

ω0(v, ζ) H= ω0
(0)f

1/4 e
−εv− R√

2

∫
dζ̃ π√

f , ω1(v, ζ) = 0.

Other possibilities, where ω1 ̸= 0 are excluded by integrability conditions of the twistor
equation. Moreover, this solution yields zero Penrose’s charge.

5.2.2 Solving the twistor equation – tangential projections
As we saw in the previous section, time dependence of the twistor equation has only
solutions that yield zero Penrose charge. Hence, time dependence itself is incompatible
with physical requirements, so in what follows we proceed in the way originally suggested
by Penrose – we look only at the tangential projections of the twistor equation to a 2-
surface whose mass has to be found. Resulting set of equations is known as the 2-surface
twistor equation. Concerning an isolated horizon, the surface is the two sphere S0. A
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basis of its tangent vectors can be taken as ma, ma as discussed at the end of the section
2.6. We already have the required equations at hand. They are simply

ξ∂ζω1 H= βω1, (5.22)

ξ∂ζω0 H= −αω0 − λω1. (5.23)

Analysis of these equations is analogous to the one that was already done. But now, they
are fully independent, so no conditions of integrability need to be verified.

Both equations (5.22), (5.23) are linear differential equations, the second one in ad-
dition with the right hand side. The general solution reads

ω1(ζ) = ω1
0e
∫

dζ β
ξ ,

ω0(ζ) =
(

ω0
0 −

∫
dζ

λω1

ξ
e
∫

dζ α
ξ

)
e−
∫

dζ α
ξ .

Using relations (2.26) one can simplify the integrals in the exponents:∫
dζ

β

ξ
= 1

2

∫
dζ

π

ξ
+ ln(ξ1/2), −

∫
dζ

α

ξ
= −1

2

∫
dζ

π

ξ
+ ln(ξ1/2),

then ω1, ω0 can be recast into1

ω1(ζ) = ω1
0f 1/4e

1
2

∫
dζ π

ξ ,

ω0(ζ) = ω0
0

(
1 − C

∫
dζ

λω1

ξ
f−1/4e

1
2

∫
dζ π

ξ

)
f 1/4e−

1
2

∫
dζ π

ξ .
(5.24)

To work out explicit solution, one has to provide the spin coefficient λ, which represents
free data on an IH.

Let us for simplicity consider a situation, where λ = 0 (e.g. Schwarzschild spacetime).
The spin coefficient π is governed by the same equation as in the case of extremal horizons,
so it admits solution (3.2). Substituting to (5.24) after a simple calculation we obtain

ω1(ζ) = ω1
0f 1/4(ζ)

√
ζ + cπ,

ω0(ζ) = ω0
0f 1/4(ζ)√
ζ + cπ

.
(5.25)

If we add a condition of extremality κ(ℓ) = 0, the function f(ζ) is unique and has the
closed form (3.7). To conclude, for extremal horizons with λ = 0 it is possible to find an
explicit solution of the 2-surface twistor equation.

We should add a final remark here. In order to solve the system even in the case when
λ ̸= 0 one is forced to decompose λ and µ into the spherical harmonics Y 0

n (ζ) similarly to
multipole decomposition of the isolated horizon geometry introduced in the section 2.8.
One would then expect to obtain some form of Penrose mass multipoles. However, the
problem turns out to be a little more difficult then it appears and will be examined in
the future work.

1Here we hide all constants to ω1
0 , ω0

0 and C, but C is in fact fully determined by the first two.
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5.3 The 2-surface twistor space
Without going into much details, let us return to general discussion about solutions of
the twistor equation at the end of the section 4.3.

The twistor equation was originally introduced by Penrose in order to find explicit
solutions for equations of motion of fields with arbitrary spin in terms of the contour
integrals which are today known as Penrose transform [37]. Notice that (5.1) is equivalent
to

∇A
A′ωB = −i ϵAB πA′ , (5.26)

for some spinor πA′ . In the flat spacetime, this equation admits a solution in the form

ωA = ωA
0 − i xAA′

πA′ ,

where ωA
0 is constant spinor playing the role of an integration constant and πA′ is also

necessarily constant. Hence, the space of solutions of the twistor equation can be coor-
dinatized by two constant spinors . By a twistor we mean the pair

Zα ≡ (ωA, πA′),

where spinors ωA and πA′ transform under a translation of the origin of the coordinates by

ωA ↦→ ωA − i xAA′
πA′ , πA′ ↦→ πA′ .

The dual twistor to Zα is defined

Zα ≡ (ωA, πA′).

The space of the solutions of (4.23) in the form of twistors has natural structure of
a vector space. For that reason it will be referred to as the twistor space. Moreover, we
can introduce the norm

Σ = Zα Z̄α = ωA π̄A + ω̄A′
πA′ ≡ 2 s, (5.27)

where s can be interpreted as the helicity of a massless field [34, 38, 39] and complex
conjugate twistor is defined by Zα ≡ Zα = (πA, ωA′). In the flat spacetime, Σ is constant
throughout the spacetime, i.e. it is invariant under the shift of the origin. Thus, Σ is
a well-defined norm on the twistor space.

Projecting (5.26) onto NP tetrad adapted to IH, analogously to the section 5.1, one
finds

δω1 = β ω1, δω0 = −α ω0 − λ ω1, (5.28)
δω1 = α ω1 − i π0′ , δω0 = −β ω0 − µ ω1 − i π1′ , (5.29)

where we already imposed axial symmetry and used the relations (5.5). The former pair
of equations determines spinor ωA, while the latter pair can be regarded as a definition
of πA′ . As shown in [35], the charge integral (4.22) can be rewritten in terms of πA′ as

Q = − i
4 π G

∮
S2

0

(
π

(1)
0′ π

(2)
1′ + π

(1)
1′ π

(2)
0′

)
ε,
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where superscripts (1) and (2), respectively, denote two independent solutions of the
2-surface twistor equation.

The existence of solutions of elliptic system (5.28) is a delicate question and requires
deeper topological considerations which we only briefly sketch here. For details, see
[35, 37, 32, 30, 31, 29].

The operators appearing in (5.28) together form the so-called 2-twistor operator which
is one of the irreducible parts of the Sen connection adapted to a topological 2-sphere
(the other irreducible part being the Witten operator which can be used to prove several
energy positivity theorems [40]). This operator can be regarded as a mapping between
bundles of quantities with appropriate spin weights, schematically,

T : E ↦→ F. (5.30)

Roughly speaking, E is the bundle on which the components of ωA live, while F is
the space where the image of the 2-twistor operator lives. We can choose an arbitrary
Hermitian inner product on the product bundle E ⊗ F , then one can define the adjoint
operator T † : F ↦→ E. The solution of the twistor equation belongs to ker T , the kernel of
T . Similarly, we introduce the co-kernel coker T as the kernel of the adjoint T †. Finally,
the index of the operator T is defined as

ind T = dim ker T − dim coker T. (5.31)

In other words, index gives the difference of number of independent solutions of the
2-twistor equation and the adjoint equation T †ω = 0.

One of the most important results in mathematical physics is called the Atiyah-Singer
index theorem, see, e.g. [41] for a slight introduction. Loosely speaking, the theorem
asserts that index of an elliptic operator is a topological invariant and does not depend
neither on the metric or the connection. Index of the twistor operator has been calculated
by Baston [42] who has shown that

ind T = 4(1 − g), (5.32)

where g is the genus of the 2-surface (g = 0 for the sphere). Hence, if the kernel of
T † is trivial, 2-twistor equation has exactly 4 solutions which can be identified with the
components of the 4-momentum. This is indeed a generic case, i.e. it holds in many
physically relevant situations. Nevertheless, it is not true in general and if the coker T is
not trivial, twistor equation has too many solutions.

For the extraction of components of the 4-momentum from the Penrose charge integral
(4.22), one needs an inner product on the twistor space. Such inner product is naturally
provided by the twistor norm (5.27) which is constant in the Minkowski space, but not in
general curved spacetime. If the 2-surface with spherical topology can be embedded into
a flat spacetime, while preserving its intrinsic and extrinsic curvatures, it is called non-
contorted. Therefore, for a non-contorted surface one can use the flat spacetime twistor
norm to defined the Penrose mass and the Atiyah-Singer index theorem guarantees that
the set of solutions of the twistor equation is the same for both the original non-contorted
surface and its embedding.

The situation is much less clear for contorted surfaces which do not admit such em-
bedding. There various suggestions how to circumvent the failure of original Penrose’s
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construction in this case, see [29] for a general review and [43] for technical details and
further references.

In our setting, we aimed to investigate the relation between Penrose’s mass (and its
modifications) to Ashtekar multipole moments, since we expect they both describe the
same properties of black hole (mass, angular momentum). Because of the complexity
of the underlying theory and difficulty of calculations, we did not finish this part of the
project. As a partial result we have derived the twistor norm for axisymmetric isolated
horizons in the form

Σ = i(π̄ − π)
(
ω0 ω1′ + ω1 ω0′)+ i |ω1|2

(
λ − λ

)
. (5.33)

This is a surprising and confusing result. Indeed, for a Schwarzschild black hole, where the
Penrose’s construction is known to work, this reduces to zero. Hence, it seems impossible
to use this norm in order to have a well-defined inner product on the space of 2-twistors.
Perhaps, the reason is the degeneracy of the horizon (being a null hypersurface), while the
original calculation of the mass by Tod was based on spheres of symmetry surrounding
the black hole, including singularity and the horizon. For the calculation there, standard
Schwarzschild coordinates have been employed which do not penetrate the horizon and
therefore these surfaces do not feel the degeneracy of the induced metric on the horizon.
Moreover, the Penrose mass is known to give standard Schwarzschild mass for sphere sur-
rounding the singularity and zero otherwise. The only sign of the presence of singularity
in our formalism is the spin coefficient µ describing the expansion of ingoing null con-
gruence na. In order that the surface be trapped, µ must be strictly negative. However,
from our expression for the norm, the spin coefficient µ has dropped out. In other words,
another possibility why we obtain degenerate norm might be that our 2-surface actually
does not feel the presence of singularity. We leave better understanding of this situation
for future work.
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6 | Conclusion

The recently developed formalism of isolated horizons was an important tool throughout
our work. Therefore a significant part of the thesis was dedicated to the study of necessary
notions and existing results. We started with the basic definitions of isolated horizons,
which provide a quasi-local generalization of even horizons and describe black holes in an
equilibrium. Instead of detailed calculation and proofs of theorems we stated their precise
formulation in order to make our assumptions clear. The corresponding details can be
found in the cited literature. Construction of adapted coordinates and the choice of a
Newman-Penrose tetrad is especially emphasized since it is important for understanding
of introduced ideas. Further we merely restricted ourselves to the axially symmetric
horizons characterized by the presence of an axial Killing field ϕa. This property was
used to define a preferred coordinate system in an invariant way. The general discussion
ends with the definition of multipole moments of the isolated horizon, which provide an
equivalent characterization of its (intrinsic) geometry. Moreover, they can be given the
interpretation similar to the standard mass and angular multipoles.

In the subsequent chapter we stayed a little more time with isolated horizons and
looked at a special case of the extremal horizon defined by vanishing of its surface gravity
κ(ℓ). We showed, following [13], that the electromagnetic field and the spin coefficient
π entering the game are fully determined. In addition, we were also able to prove the
uniqueness of the geometry, represented by the metric function f , in this setting. It is a
non-trivial result and a generalization of [6]. The function f turned out to depend on 5
parameters: radius (representing the mass), electric and magnetic charges and two deficit
angles, which might be connected with the acceleration parameter of the C-metric or a
NUT parameter. Precise interpretation and connection to the known exact spacetimes
of the Einstein’s theory of relativity will be studied in the future.

Afterwards, we turned our attention to the construction of the Penrose charge. A
short motivation was included to make the basic ideas behind this construction more
familiar to the reader. Since it was one of our main interests, more detailed calculations
accompany the main text. Here, we also briefly explained the connection to the Nœther
currents associated with energy-momentum tensor.

After the derivation of explicit formula for the Penrose charge we proceeded to solv-
ing the twistor equation on the isolated horizon that turn out to be the crucial point.
We worked out the general equations governing this problem and discussed integrability
conditions for them. In what followed we again restricted ourselves to the case of axial
symmetry and found an explicit time-dependent solution. However, this solution yielded
just a zero Penrose charge and hence was not suitable to construct mass or angular mo-
mentum. Thus, we chose to follow the initial Penrose’s idea to consider only tangential
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projections of the twistor equation to a surface which mass has to be be found. Here,
we gave the general result and, as and example, calculated the solution fully in the case,
where the spin coefficient has an explicit form.

We concluded our work by a discussion of possible solutions of the Penrose charge
and problems that appeared during our investigation.
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A | Newman-Penrose formalism

A.1 Gravitational field

We offer a brief summary of definitions and equations which are used in the Newmann-
Penrose formalism.
Directional derivatives:

D = ℓa∇a, ∆ = na∇a, δ = ma∇a, δ̄ = m̄a∇a. (A.1)

Decomposition of covariant derivative:

∇a = gb
a∇b = ℓa ∆ + na D − ma δ̄ − m̄a δ. (A.2)

Spin coefficients:

κ = maDℓa = oADoA, τ = ma∆ℓa = oA∆oA,

σ = maδℓa = oAδoA, ρ = maδ̄ℓa = oAδ̄oA,

π = naDm̄a = ιADιA, ν = na∆m̄a = ιA∆ιA,

λ = naδ̄m̄a = ιAδ̄ιA, µ = naδm̄a = ιAδιA, (A.3a)

ε = 1
2 [naDℓa − m̄aDma] = ιADoA, β = 1

2 [naδℓa − m̄aδma] = ιAδoA,

γ = 1
2 [na∆ℓa − m̄a∆ma] = ιA∆oA, α = 1

2
[
naδ̄ℓa − m̄aδ̄ma

]
= ιAδ̄oA,

The operators (A.1) acting on a scalar function obey this commutation relations:

Dδ − δD = (π̄ − ᾱ − β)D − κ∆ + (ρ̄ − ε̄ + ε)δ + σδ̄, (A.4a)
∆D − D∆ = (γ + γ̄)D + (ε + ε̄)∆ − (τ̄ + π)δ − (τ + π̄)δ̄, (A.4b)

∆δ − δ∆ = ν̄D + (ᾱ + β − τ)∆ + (γ − γ̄ − µ)δ − λ̄δ̄, (A.4c)
δδ̄ − δ̄δ = (µ − µ̄)D + (ρ − ρ̄)∆ + (ᾱ − β)δ̄ − (α − β̄)δ. (A.4d)
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Transport equations:

Dℓa = (ε + ε̄) ℓa − κ̄ ma − κ m̄a, (A.5a)
∆ℓa = (γ + γ̄) ℓa − τ̄ ma − τ m̄a, (A.5b)
δℓa = (ᾱ + β) ℓa − ρ̄ ma − σ m̄a, (A.5c)

Dna = − (ε + ε̄) na + π ma + π̄ m̄a, (A.5d)
∆na = − (γ + γ̄) na + ν ma + ν̄ m̄a, (A.5e)
δna = −(ᾱ + β)na + µ ma + λ̄ m̄a, (A.5f)

Dma = π̄ ℓa − κ na + (ε − ε̄) ma, (A.5g)
∆ma = ν̄ ℓa − τ na + (γ − γ̄) ma, (A.5h)
δma = λ̄ ℓa − σ na + (β − ᾱ) ma, (A.5i)
δ̄ma = µ̄ ℓa − ρ na +

(
α − β̄

)
ma. (A.5j)

The Riemann tensor can be decomposed as follows:

Rabcd = ΨABCDϵA′B′ϵC′D′ + Ψ̄A′B′C′D′ϵABϵCD

+ ΦABC′D′ϵA′B′ϵCD + Φ̄A′B′CDϵABϵC′D′

+ 2Λ (ϵACϵBDϵA′C′ϵB′D′ − ϵADϵBCϵA′D′ϵB′C′)
(A.6)

The first part is the the totally symmetric Weyl spinor ΨABCD, which corresponds to the
Weyl tensor Cabcd. The symmetric Ricci spinor ΦABC′D′ is equivalent to the trace-free
part of the Ricci tensor and the scalar Λ is related to the scalar curvature R by

Λ = 1
24R. (A.7)

The five (complex) tetrad components of the Weyl spinor are

Ψ0 = Cabcdlamblcmd = ΨABCD oAoBoCoD, (A.8a)
Ψ1 = Cabcdlanblcmd = ΨABCD oAoBoCιD, (A.8b)
Ψ2 = Cabcdlambm̄cnd = ΨABCD oAoBιCιD, (A.8c)
Ψ3 = Cabcdlanbm̄cnd = ΨABCD oAιBιCιD, (A.8d)
Ψ4 = Cabcdm̄anbm̄cnd = ΨABCD ιAιBιCιD. (A.8e)

Then the spinor basis expansion of ΨABCD is

ΨABCD = Ψ4oAoBoCoD − Ψ3(oAoBoCιD + oAoBιCoD + oAιBoCoD + ιAoBoCoD)
+ Ψ2(oAoBιCιD + oAιBoCιD + ιAoBoCιD + oAιBιCoD + ιAoBιCoD

+ ιAιBoCoD) − Ψ1(oAιBιCιD + ιAoBιCιD + ιAιBoCιD + ιAιBιCoD)
+ Ψ0ιAιBιCιD

(A.9)

The trace-less Ricci tensor has the following components, which are 3 real and 3 complex:
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Φ00 = −1
2Rabl

alb = ΦABA′B′oAoB ōA′
ōB′

, (A.10a)

Φ01 = −1
2Rabl

amb = ΦABA′B′oAoB ōA′
ῑB′

, (A.10b)

Φ02 = −1
2Rabm

amb = ΦABA′B′oAoB ῑA′
ῑB′

, (A.10c)

Φ11 = −1
4Rab

(
lanb + mam̄b

)
= ΦABA′B′oAιB ōA′

ῑB′
, (A.10d)

Φ12 = −1
2Rabn

amb = ΦABA′B′oAιB ῑA′
ῑB′

, (A.10e)

Φ22 = −1
2Rabn

anb = ΦABA′B′ιAιB ῑA′
ῑB′

. (A.10f)

The three remaining components can be obtained via the condition Φij = Φ̄ji. Spinor
basis expansion of ΦABC′D′ is

ΦABC′D′ = Φ22 oAoB ōC′ ōD′ − Φ12 (oAιB + ιAoB)ōC′ ōD′ + Φ02 ιAιB ōC′ ōD′

+ Φ21 oAoB(ōC′ ῑD′ + ῑC′ ōD′) + Φ11 (oAιB + ιAoB)(ōC′ ῑD′ + ῑC′ ōD′)
− Φ01 ιAιB(ōC′ ῑD′ + ῑC′ ōD′) + Φ20 oAoB ῑC′ ῑD′

− Φ10 (oAιB + ιAoB)ῑC′ ῑD′ + Φ00ιAιB ῑC′ ῑD′

(A.11)

The Ricci identities in the spinor formalism:

∇A′(A∇A′

B)ξC = ΨABCDξD − 2Λξ(AϵB)C ,

∇A(A′∇A
B′)ξC = ΦCDA′B′ξD.

(A.12)
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Projections onto the spin basis read:

Dρ − δ̄κ = ρ2 + (ϵ + ϵ̄) ρ − κ
(
3α + β̄ − π

)
− τ κ̄ + σσ̄ + Φ00, (A.13a)

Dσ − δκ = (ρ + ρ̄ + 3ε − ε̄)σ − (τ − π̄ + ᾱ + 3β)κ + Ψ0, (A.13b)
Dτ − ∆κ = ρ(τ + π̄) + σ(τ̄ + π) + (ε − ε̄)τ − (3γ + γ̄)κ + Ψ1 + Φ01, (A.13c)
Dα − δ̄ε = (ρ + ε̄ − 2ε)α + βσ̄ − β̄ε − κλ − κ̄γ + (ε + ρ)π + Φ10, (A.13d)
Dβ − δε = (α + π)σ + (ρ̄ − ε̄)β − (µ + γ)κ − (ᾱ − π̄)ε + Ψ1, (A.13e)

Dγ − ∆ε = (τ + π̄)α + (τ̄ + π)β − (ε + ε̄)γ − (γ + γ̄)ε + τπ − νκ + Ψ2 − Λ + Φ11,
(A.13f)

Dλ − δ̄π = (ρ − 3ε + ε̄)λ + σ̄µ + (π + α − β̄)π − νκ̄ + Φ20, (A.13g)
Dµ − δπ = (ρ̄ − ε − ε̄)µ + σλ + (π̄ − ᾱ + β)π − νκ + Ψ2 + 2Λ, (A.13h)

Dν − ∆π = (π + τ̄)µ + (π̄ + τ)λ + (γ − γ̄)π − (3ε + ε̄)ν + Ψ3 + Φ21, (A.13i)
∆λ − δ̄ν = −(µ + µ̄ + 3γ − γ̄)λ + (3α + β̄ + π − τ̄)ν − Ψ4, (A.13j)
∆µ − δν = −(µ + γ + γ̄)µ − λλ̄ + ν̄π + (ᾱ + 3β − τ)ν − Φ22, (A.13k)
∆β − δγ = (ᾱ + β − τ)γ − µτ + σν + εν̄ + (γ − γ̄ − µ)β − αλ̄ − Φ12, (A.13l)
∆σ − δτ = −(µ − 3γ + γ̄)σ − λ̄ρ − (τ + β − ᾱ)τ + κν̄ − Φ02, (A.13m)
∆ρ − δ̄τ = (γ + γ̄ − µ̄)ρ − σλ + (β̄ − α − τ̄)τ + νκ − Ψ2 − 2Λ, (A.13n)
∆α − δ̄γ = (ρ + ε)ν − (τ + β)λ + (γ̄ − µ̄)α + (β̄ − τ̄)γ − Ψ3, (A.13o)
δρ − δ̄σ = (ᾱ + β)ρ − (3α − β̄)σ + (ρ − ρ̄)τ + (µ − µ̄)κ − Ψ1 + Φ01, (A.13p)
δα − δ̄β = µρ − λσ + αᾱ + ββ̄ − 2αβ + (ρ − ρ̄)γ + (µ − µ̄)ε − Ψ2 + Λ + Φ11, (A.13q)
δλ − δ̄µ = (ρ − ρ̄)ν + (µ − µ̄)π + (α + β̄)µ + (ᾱ − 3β)λ − Ψ3 + Φ21. (A.13r)

The spinor form of the Bianchi identities is

∇D
B′ΨABCD = ∇A′

A ΦBCA′B′ + ϵC(A ∇B)B′Λ − 3
2 ϵAB ∇CB′Λ. (A.14)

Projecting these equations onto the spin basis leads to the Bianchi identities in the NP
formalism:

DΨ1 − δ̄Ψ0 −DΦ01 +δΦ00 = (π−4α)Ψ0 +2(2ρ+ε)Ψ1 −3κΨ2 +2κΦ11 −(π̄−2ᾱ−2β)Φ00

− 2σΦ10 − 2(ρ̄ + ε)Φ01 + κ̄Φ02, (A.15a)

DΨ2 − δ̄Ψ1 + ∆Φ00 − δ̄Φ01 + 2DΛ = −λΨ0 + 2(π − α)Ψ1 + 3ρΨ2 − 2κΨ3 + 2ρΦ11 + σ̄Φ02

+ (2γ + 2γ̄ − µ̄)Φ00 − 2(α + τ̄)Φ01 − 2τΦ10, (A.15b)

DΨ3 − δ̄Ψ2 − DΦ21 + δΦ20 − 2δ̄Λ = −2λΨ1 + 3πΨ2 + 2(ρ − ε)Ψ3 − κΨ4 + 2µΦ10 − 2πΦ11

− (2β + π̄ − 2ᾱ)Φ20 − 2(ρ̄ − ε)Φ21 + κ̄Φ22, (A.15c)

DΨ4 − δ̄Ψ3 + ∆Φ20 − δ̄Φ21 = −3λΨ2 + 2(α + 2π)Ψ3 + (ρ − 4ε)Ψ4 + 2νΦ10 − 2λΦ11

− (2γ − 2γ̄ + µ̄)Φ20 − 2(τ̄ − α)Φ21 + σ̄Φ22, (A.15d)
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∆Ψ0 − δΨ1 + DΦ02 − δΦ01 = (4γ − µ)Ψ0 − 2(2τ + β)Ψ1 + 3σΨ2

+ (ρ̄ + 2ε − 2ε̄)Φ02 + 2σΦ11 − 2κΦ12 − λ̄Φ00 + 2(π̄ − β)Φ01, (A.15e)

∆Ψ1 − δΨ2 − ∆Φ01 + δ̄Φ02 − 2δΛ = νΨ0 + 2(γ − µ)Ψ1 − 3τΨ2 + 2σΨ3

− ν̄Φ00 + 2(µ̄ − γ)Φ01 + (2α + τ̄ − 2β̄)Φ02 + 2τΦ11 − 2ρΦ12, (A.15f)

∆Ψ2 − δΨ3 + DΦ22 − δΦ21 + 2∆Λ = 2νΨ1 − 3µΨ2 + 2(β − τ)Ψ3 + σΨ4

− 2µΦ11 − λ̄Φ20 + 2πΦ12 + 2(β + π̄)Φ21 + (ρ̄ − 2ε − 2ε̄)Φ22, (A.15g)

∆Ψ3 − δΨ4 − ∆Φ21 + δ̄Φ22 = 3νΨ2 − 2(γ + 2µ)Ψ3 + (4β − τ)Ψ4 − 2νΦ11

− ν̄Φ20 + 2λΦ12 + 2(γ + µ̄)Φ21 + (τ̄ − 2β̄ − 2α)Φ22, (A.15h)

DΦ11 − δΦ10 + ∆Φ00 − δ̄Φ01 + 3DΛ = (2γ + 2γ̄ − µ − µ̄)Φ00 + (π − 2α − 2τ̄)Φ01

+ (π̄ − 2ᾱ − 2τ)Φ10 + 2(ρ + ρ̄)Φ11 + σ̄Φ02 + σΦ20 − κ̄Φ12 − κΦ21, (A.15i)

DΦ12 − δΦ11 + ∆Φ01 − δ̄Φ02 + 3δΛ = (2γ − µ − 2µ̄)Φ01 + ν̄Φ00 − λ̄Φ10

+ 2(π̄ − τ)Φ11 + (π + 2β̄ − 2α − τ̄)Φ02 + (2ρ + ρ̄ − 2ε̄)Φ12 + σΦ21 − κΦ22, (A.15j)

DΦ22 − δΦ21 + ∆Φ11 − δ̄Φ12 + 3∆Λ = νΦ01 + ν̄Φ10 − 2(µ + µ̄)Φ11 − λΦ02 − λ̄Φ20

+ (2π − τ̄ + 2β̄)Φ12 + (2β − τ + 2π̄)Φ21 + (ρ + ρ̄ − 2ε − 2ε̄)Φ22. (A.15k)

A.2 Electromagnetic field
Electromagnetic field is described by the electromagnetic tensor Fab or its spinor equiva-
lent ϕAB:

Fab = ϕABϵA′B′ + ϕ̄A′B′ϵAB. (A.16)

Projections of ϕAB on a spin basis (NP tetrad) are

ϕ0 ≡ Fabl
amb = ϕABoAoB, (A.17a)

ϕ1 ≡ 1
2Fab

[
lanb − mam̄b

]
= ϕABoAιB, (A.17b)

ϕ2 ≡ Fabm̄
anb = ϕABιAιB, (A.17c)

The source free Maxwell equations are equivalent to the spin-1 zero-rest-mass equation

∇A
A′ ϕAB = 0. (A.18)
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Projecting this onto the spin basis we obtain Maxwell equations in the NP formalism:

Dϕ1 − δ̄ϕ0 = (π − 2α)ϕ0 + 2ρϕ1 − κϕ2, (A.19a)
Dϕ2 − δ̄ϕ1 = −λϕ0 + 2πϕ1 + (ρ − 2ε)ϕ2, (A.19b)
∆ϕ0 − δϕ1 = (2γ − µ)ϕ0 − 2τϕ1 + σϕ2, (A.19c)
∆ϕ1 − δϕ2 = νϕ0 − 2µϕ1 + (2β − τ)ϕ2. (A.19d)

The Ricci tensor in the electrovacuum spacetime is given by

Φmn = ϕm ϕ̄n, Λ = 0, (A.20)

what are also the Einstein equations for electrovacuum spacetimes.

A.3 Spin transformation

The spin transformation is defined as rotation in the plane spanned by ma, ma,

ma ↦→ ei χ ma, m̄a ↦→ e−i χ m̄a, (A.21)

where χ is arbitrary real function. The scalar quantity η is said to have the spin weight s
provided

η′ = ei s χ η.

under transformation (A.21). The NP operators δ and δ̄ contain vectors ma, ma and do
not preserve the spin weight. If η has spin weight s, we have

δ′η′ = ei(s+1)χ (δη + i s η δχ) .

This suggests that δη could have the weight n + 1, but there is an inhomogeneous term
proportional to δχ. However, this term can be eliminated defining a new operator ð by

ðη ≡ δη + s(ᾱ − β)η = δη + sāη, (A.22)

which transforms yet homogeneously:

ðη ↦→ ei(s+1)χ ðη.

So if η has spin weight s, ðη has spin weight s + 1. Therefore ð acts as a spin-raising
operator. Analogously we define

ð̄η = δ̄η − s(α − β̄)η = δη − saη. (A.23)

The spin weights of the Newman-Penrose quantities are summarized in the table A.1.
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−2 −1 0 1 2
λ ν ρ κ σ

π µ τ
ϕ2 ϕ1 ϕ0

Ψ4 Ψ3 Ψ2 Ψ1 Ψ0

(A.24)

Table A.1: Spin weights of the Newman-Penrose scalars.

A.4 Lorentz transformations
The transformation between two spin basis is described by a simplectomorphism1, which
reflect itself as a Lorentz transformation acting on vectors. In this section we give a sum-
mary of transformation properties of NP quantities under a particular simplectomorphism
known as a null rotation about la

(o′A, ι′A) = (oA, ιA + coA), c is complex function.

For other transformations see appendix B in [2]. Transformation of NP tetrad

l′a = la, m′a = ma + cla, n′a = na + cma + c ma + ccla

The NP scalars transforms as

κ′ = κ

ε′ = ε + cκ

σ′ = σ + cκ

ρ′ = ρ + cκ

τ ′ = τ + cσ + cρ + ccκ

α′ = cαε + cρ + c2κ

β′ = β + cσ + cε + ccκ

π′ = π + 2cε + c2κ + Dc

γ′ = γ + cα + c(τ + β) + cc(ρ + ε) + c2σ + c2cκ

λ′ = λ + cπ + 2cα + c2(ρ + 2ε) + c3κ + cDc + δc

µ′ = µ + 2cβ + cπ + c2σ + 2ccε + c2cκ + cDc + δc

ν ′ = ν + c(2γ + µ) + cλ + c2(τ + 2β) + cc(π + 2α)
+ c3σ + c2c(ρ + 2ε) + c3cκ + ∆c + cδc + cδc + ccDc

(A.25)

For transformations of Riemann and Ricci tensor components see again [2].

1A simplectomorphism is a linear map that preserves the simplectic structure of a spinor space.
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