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Introduction
Quasigroups are algebraic structures similar to groups. They differ from groups
mainly in that they do not have to be associative. This thesis deals with quasi-
groups of small orders with a small number of associative triples. Associativity
index of quasigroups has already been studied by Drápal [1], Ježek and Kepka [2],
Kotzig [3], and Grošek and Horák [4]. This subject has since become the focus
of our attention as well [5, 6].

The motivation for finding quasigroups with a small number of associative
triples comes from cryptography where those quasigroups can be used hash func-
tions as mentioned in [7, 8, 9].

The goal of this thesis is to determine the minimum number of associative
triples among quasigroups of orders eight and nine. This goal seems to be on
the limit of current computational powers.

The structure of the thesis is as follows. In the first chapter, we focus on
permutations and transformations of finite sets. We enumerate types of trans-
formations on 8 and 9 element sets based on the number of fixed points and
their defect. This provides the basis for case analysis in the search for quasi-
groups of orders eight and nine with the minimum number of associative triples.
In Chapter 2 we define basic terminology for dealing with quasigroups and focus
on local unit mappings in quasigroups. Chapter 3 shows the distinction between
two types of associative triples. One type, elementary associative triples, are fully
determined by local unit mappings and can be therefore counted in partially con-
structed quasigroups. The estimate on a number of elementary associative triples
presented in Chapter 3 can be seen as an improvement over the estimate found
in [4]. In the same chapter, we also devise a strategy for conquering the search for
quasigroups of orders 8 and 9 with a maximum of 16 and 18 associative triples
respectively. The strategy consists of dividing the problem into subproblems
based on the number of idempotents and using the results of Chapter 1 to reduce
the search space.

Chapter 4 focuses on nonelementary associative triples and a new approach for
counting them at the time of their creation. Combination of theoretical results
from all previous chapters can be found in Chapter 5 where we outline an al-
gorithm for counting associative triples based on their roles in the quasigroup.
The main results of this thesis were achieved by implementing and optimizing
this algorithm in order to discover the minimum number of associative triples
among quasigroups of small orders. Results of our work are presented in Chap-
ter 6 together with the classification of found quasigroups and an analysis of their
automorphism groups. In this chapter, we also present several ideas for the di-
rection of future research. One of the most notable results is the construction of
infinite series of quasigroups with the number of associative triples equal to their
order.

In Chapter 7 we share insights into implementation aspects that significantly
improved the performance of our search program. We hope that those imple-
mentation improvements might help to tackle higher orders in future. Lastly,
in Chapter 8 we measure various speed improvements presented in this thesis
and compare the results with our previous work in [5].
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1. Permutations and
transformations
In this chapter we are going to introduce necessary terms for working with permu-
tations and transformations of finite sets. This will allow us to enumerate them
based on their defect and number of fixed points. The results of these enumera-
tions will be used later in the thesis to reduce the search space when searching
for quasigroups with a small number of associative triples.

1.1 Permutations
A permutation α of a set X is a bijection from X to itself. All permutations
of set X form a group where group operation is a composition of permutations.
This group is known as a symmetric group of X and is denoted by SX . If X =
{1, . . . , n}, then SX is also written as Sn.

Any permutation α can be expressed as a composition of disjoint cycles. A cy-
cle (a1 a2 . . . an) of length n describes a permutation such that ai gets mapped
to ai+1, 1 ≤ i < n, and an gets mapped to a1. Two cycles are disjoint if they do
not have any element in common. A cycle of size two is known as a transposition.

Elements of the symmetric group on a setX are divided into conjugacy classes.
Two permutations α, β ∈ SX are conjugate if and only if there exists φ ∈ SX such
that β = φ◦α◦φ−1. This is true if and only if they consist of the same number of
disjoint cycles of the same lengths. For instance, in S6, permutations (1 2 3)(4 6)
and (1 4 3)(2 5) are conjugate. Two permutations in the same conjugacy class
are said to have the same type.

We will denote the type of a permutation α ∈ Sn by an m-tuple (t1, . . . , tm)
where t1 ≥ t2 ≥ . . . ≥ tm ≥ 1 are lengths of cycles in α and ∑m

i=1 ti = n.

1.2 Transformations
A transformation f of a set X is a mapping from X to itself. A set of all
transformations of X closed under composition form a transformation monoid
which is denoted by TX . If X = {1, . . . , n}, then TX is also written as Tn.

We are going to extend the notion of the type to TX .

Definition. Transformations f, g : X → X are of the same type if there exists
φ ∈ SX such that g = φ ◦ f ◦ φ−1.

Definition. The defect of a transformation f : X → X is defined as |X|−| Im(f)|.

Definition. A subset of X defined as C(f) = ⋂
i≥1 Im(f i) is called the cyclic part

of f . Its complement N(f) = X \ C(f) is called the non-cyclic part of f .

Note that f restricted upon C(f) is a permutation.
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Definition. Let f be a transformation. For every x ∈ C(f) define a directed
tree graph with set of vertices V = {y ∈ N(f); ∃i ∈ N : f i(y)=x and ∀j < i :
f j(y) ∈ N(f)} and edges E = {(a, b) ∈ V 2; f(a) = b} called a tree of x. It is
denoted as Tr(x).

Lemma 1.1. Type of transformation f : X → X with defect 1 is uniquely deter-
mined by (t, l, k), where t is the type of the permutation αf obtained by restricting
f to C(f), l is the smallest integer for which f l(s) ∈ C(f), where s is the only
element in X \ Im(f), and k is the length of the cycle of αf containing element
f l(s).

Proof. Let f, g : X → X be transformations described by the same triple (t, l, k).
This means that |C(f)| = |C(g)| and also that αf = f |C(f) and βg = g|C(g)
have the same type. Let sf , sg be the only elements in X \ Im(f) and X \ Im(g)
respectively. Define φ : X → X as a bijection between N(f) and N(g) for
which φ(sf )=sg and φ(f i(sf ))=gi(sg), 1 ≤ i ≤ l. Extend φ to C(f) according to
the following formula. Fix a = f l(sf ) ∈ C(f). Note that φ(a) is already defined
as gl(sg) denoted by b. Define φ on C(f) inductively by f(x) = y ⇒ φ(y) =
g(φ(x)) = g(φ(f−1(y))). In order to start the induction there has to be chosen
first element e from each cycle of C(f) and element d from each cycle of C(g)
for which φ(e) = d. This has been done for the cycles containing a and b. For
other cycles C from C(f) pick e ∈ C arbitrarily and pick any d ∈ D where D is
an unused cycle from C(g) of the same length as C. See that φ is also a bijection
on C(f). As we shall observe f = φ−1◦g◦φ. For every x ∈ N(f), x = f i(sf ), i ≤ l
this holds because:

φ−1(g(φ(f i(sf )))) = φ−1(g(gi(sg)))
= φ−1(gi+1(sg))
= f i+1(sf )
= f(f i(sf ))
= f(x).

For y ∈ C(f) this holds from the definition of φ. The opposite direction of
the proof is easy. Denote by (tf , lf , kf ) and (tg, lg, kg) triples determining types
of f and g. Let φ be a permutation for which g = φ◦f ◦φ−1. Restriction of φ on
C(f) gives tf = tg from the conjugation of permutations, lf = lg from the sizes
of N(f), N(g) and defect 1. Lastly, kf = kg because the opposite would imply
that cycles of different lengths are conjugate.

1

3

2 5

4

76

Figure 1.1: Transformation f described by (t=(2, 2, 1), l=2, k=2).
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Definition. A partition of a positive integer n is a way of writing n as a sum of
positive integers. Each partition is thus associated with an expression
n = ∑r

i=1 kici, where c1 > c2 > . . . > cr ≥ 1 and ki ≥ 1. A partition num-
ber p(n) is equal to the number of such expressions. By convention, p(0) = 1.

Denote by q(n) the number of partitions of n that do not include integer
1. This is equal to the number of those sums for which cr ≥ 2. Note that
p(n) = ∑n

m=0 q(m). Note also that p(n) is equal to the number of conjugacy
classes in Sn and q(n) is the number of those classes that consist of fixed point
free permutations.

The first few partition numbers are shown in the table below.

n 0 1 2 3 4 5 6 7 8 9 10
p(n) 1 1 2 3 5 7 11 15 22 30 42
q(n) 1 0 1 1 2 2 4 4 7 8 12

Table 1.1: Values of p(n) and q(n) for n=0, . . . , 10.

Definition. A transformation f : X → X is called near-permutation if
|X| − |C(f)| = 1.

Observe that near-permutations are the transformations with defect 1 and
l=1. It is easy to see that number of types of near-permutations on n-element
set with no fixed point, denoted by t0(n), is obtained by counting with weight r
each partition of n−1 associated with the sum n−1 = ∑r

i=1 kici, c1 ≥ c2 ≥ . . . ≥
cr ≥ 2, ki ≥ 1.

Denote by t1(n) the number of types of transformations on n elements with
no fixed point and defect one. It is clear that t1(n) = ∑

m≤n t0(m).
Lastly, denote by t2(n) the number of types of transformations from Tn with

one fixed point and defect one.

Lemma 1.2. For n ≥ 1, t2(n) = t1(n−1) + p(n−1) − q(n−1). This is equal to
t1(n−1) + p(n−2) for n ≥ 2. If h ≥ 1, then t2(n) also gives the number of types
of transformations from Tn+h−1 with exactly h fixed points and defect one.

Proof. Divide transformations f ∈ Tn with defect one and one fixed point into
two sets, according to the value of k from their determining triple (t, l, k). Those
for which k>1 are in one-to-one relations with transformations on n−1 elements
with defect one and without any fixed point. They amount to t1(n−1) types.

The other set of transformations for which k=1 contains transformations with
one fixed point z having a tree Tr(z) of height at least one. Defect one implies
that Tr(z) has only one leaf. Associate type of permutation α on n−1 elements
with at least one fixed point with the type of transformation f from this set.
The number of fixed points of α being equal to l, and cycles of length at least
2 yielding the type of C(f) \ {z}. This means that f consists of cycles from α,
fixed point z and Tr(z) of height l.

The last part of the proof is a simple observation.
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Table 1.2 shows computed values of t0(n), t1(n), and t2(n).

n 1 2 3 4 5 6 7 8 9 10
t0(n) 0 0 1 1 2 3 5 7 11 15
t1(n) 0 0 1 2 4 7 12 19 30 45
t2(n) 0 1 1 3 5 9 14 23 34 52

Table 1.2: Values of t0(n), t1(n), and t2(n) for n = 1, . . . , 10.

Lemma 1.3. For transformations f ∈ T8 that fix i ≤ 8 points and have the defect
at most one denote by ηi the number of their types. Use νi to count different types
of transformations g ∈ T9 that fix i ≤ 9 points and have the defect at most one.
Then values of ηi and νi are as in the Table 1.3:

n 0 1 2 3 4 5 6 7 8 9
ηi 26 27 18 11 7 4 2 1 1
νi 38 41 27 18 11 7 4 2 1 1

Table 1.3: Values of ηi and νi for i = 1, . . . , 9.

Proof. In the general case, ηi = q(8−i) + t2(8−i+1), 1 ≤ i ≤ 7 because there are
q(8 − i) types of those transformations with no defect and the number of types
of transformations with i fixed points and defect one on n elements is equal to
tw(8−i+1). Observe that η8 = 1 because the identity is the only choice. Lastly,
η0 = q(8)+t1(8). A similar argument also gives νi.

Lemma 1.4. For i ∈ {0, 1, 2, 3, 4} denote by µi the number of types of transfor-
mations f ∈ Tn that fix exactly n−i points, n ≥ 2i. Then µ0 = 1, µ1 = 1,
µ2 = 4, µ3 = 10, and µ4 = 30.

Proof. The case for i = 0 is clear. For i = 1 there is only one type transformation
possible and is described by (t=(1, . . . , 1), l=1, k=1). In case that i = 2 there
four types in total. One is a permutation of type (2, 1, . . . , 1). Those other three
cases are depicted in Figure 1.2. For i = 3 write µ3 as d0 + d1 + d2 + d3 where
dj is the number of types of f that have defect j. The defect 0 means that f is
a permutation and there is only one type: (3, 1, . . . , 1). By enumeration all types
of f with defect 1, illustrated in Figure 1.3, we get d1 = 3. Next, d2 = 3, as
shown in Figure 1.4 and d3 = 3 as shown in Figure 1.5. Finally, similar rewriting
of µ4 as a sum based on the defect yields µ4 = 2 + 5 + 11 + 7 + 5 = 30.

... ... ...

Figure 1.2: Types of transformations with n− 2 fixed points.
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... ... ...

Figure 1.3: Types of transformations with n− 3 fixed points and defect 1.

... ... ...

Figure 1.4: Types of transformations with n− 3 fixed points and defect 2.

... ... ...

Figure 1.5: Types of transformations with n− 3 fixed points and defect 3.

i 1 2 3 4 5 6 7 8
f1(i) 1 2 3 4 6 5 1 2
f2(i) 1 2 3 4 6 5 1 5
f3(i) 1 2 3 4 6 5 5 6
f4(i) 1 2 3 4 1 2 5 6
f5(i) 1 2 3 4 1 2 5 7
f6(i) 1 2 3 4 1 5 6 6
f7(i) 1 2 3 4 1 5 5 6

Table 1.4: The transformations on 8 element set with four fixed points and defect
two.

Lemma 1.5. Let f ∈ T8 satisfying |f−1(i)| ≤ 2, i ∈ {1, . . . , 8} have four fixed
points and defect two. Then f has the same type as one of the following trans-
formations fj in Table 1.4.

Proof. The enumeration of all possible types of those transformations is straight-
forward and can be divided into two cases based on the size of the cyclic part of
f . Transformations f1, f2 and f3 correspond to the types with |C(f)|=6 and have
two trees of height one. The others have |C(f)| = 4 where f4 and f5 have two
trees and f6 and f7 have only one tree. This enumerates all possible options.

Lemma 1.6. Let g ∈ T9 satisfying |g−1(i)| ≤ 2, i ∈ {1, . . . , 9} have four fixed
points and defect two. Then g has the same type as one of the following trans-
formations gi in Table 1.5.

Proof. Transformations g1, g2 and g3 correspond to the types with |C(f)| = 7
and have two trees of height one. Transformations g4, . . . , g9 have |C(f)| = 6 and
g10, . . . , g15 have |C(f)| = 4. This enumerates all possible options.
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i 1 2 3 4 5 6 7 8 9
g1(i) 1 2 3 4 6 7 5 1 2
g2(i) 1 2 3 4 6 7 5 1 5
g3(i) 1 2 3 4 6 7 5 5 5
g4(i) 1 2 3 4 6 5 1 2 7
g5(i) 1 2 3 4 6 5 1 7 7
g6(i) 1 2 3 4 6 5 1 5 7
g7(i) 1 2 3 4 6 5 1 5 8
g8(i) 1 2 3 4 6 5 5 7 7
g9(i) 1 2 3 4 6 5 5 6 7
g10(i) 1 2 3 4 1 2 5 6 7
g11(i) 1 2 3 4 1 2 5 7 8
g12(i) 1 2 3 4 1 5 5 6 7
g13(i) 1 2 3 4 1 5 5 6 8
g14(i) 1 2 3 4 1 5 6 6 7
g15(i) 1 2 3 4 1 5 6 7 7

Table 1.5: The transformations on 9 element set with four fixed points and defect
two.

Lemma 1.7. Let h ∈ T9 satisfying |h−1(i)| ≤ 2, i ∈ {1, . . . , 9} have five fixed
points and defect two. Then h has the same type as one of the following trans-
formations hi in Table 1.6.

i 1 2 3 4 5 6 7 8 9
h1(i) 1 2 3 4 5 1 2 6 7
h2(i) 1 2 3 4 5 1 2 6 8
h3(i) 1 2 3 4 5 1 2 9 8
h4(i) 1 2 3 4 5 1 6 6 7
h5(i) 1 2 3 4 5 1 6 7 7
h6(i) 1 2 3 4 5 1 8 7 7
h7(i) 1 2 3 4 5 7 6 6 7

Table 1.6: The transformations on 9 element set with five fixed points and defect
two.

Proof. Follows directly from Lemma 1.5

This concludes this chapter about permutations and transformations. Re-
sults of this section will be used to enumerate cases that cover the search of
highly nonassociative quasigroups of orders 8 and 9. Those cases are connected
to the types of local unit mappings in quasigroups. This will allow us to speed
up the search by several orders of magnitude. Note, for instance, the difference
between the number of all permutations on 9 elements, which is equal to 362880,
and only 30 types of those permutations.
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2. Properties of quasigroups
This chapter deals with properties of quasigroups with focus on associative triples.
It shows the link between types of mappings in quasigroups and isomorphism
classes that can be used in the search for nonassociative quasigroups.

Definition. A quasigroup (Q, ·) is a set Q with a binary operation · closed on Q
such that the equations a · x = b and y · a = b have unique solutions for every
a, b ∈ Q.

Throughout this thesis, we will write xy instead of x · y. Also, it is as-
sumed that the quasigroup operation is · unless stated otherwise. The order of Q
(i.e. the number of elements ofQ) will be denoted by |Q|. Unless stated otherwise,
Q will mean a finite quasigroup of order n.

Definition. A loop is a quasigroup with an unit; that is, an element i such that
xi = x and ix = x for every x ∈ Q.

Definition. A Latin square is an n×n array filled with n different symbols, each
occurring exactly once in each column and exactly once in each row.

Remark. Every multiplication table of a finite quasigroup is a Latin square. Con-
versely, every Latin square can be considered as the multiplication table of a quasi-
group.

Definition. For a quasigroup Q a triple (a, b, c) ∈ Q3 is called associative if
(ab)c = a(bc). Denote by A(Q) the set of all associative triples in Q and put
a(Q) = |A(Q)|. This number is also called the associativity index of Q. Also, we
set a(n) = min{a(Q);Q is a quasigroup of order n}.

Definition. An element q of a quasigroup Q is called idempotent if qq = q. De-
note by I(Q) the set of all idempotents of Q and put i(Q) = |I(Q)|. The quasi-
group Q is called idempotent if every q ∈ Q is an idempotent element.

Definition. Let Q be a quasigroup. For all a ∈ Q the left and right translations
are defined as follows:

La(x) = ax, ∀x ∈ Q; and
Ra(y) = ya,∀y ∈ Q.

The inverse mappings are left and right division, that is,

L−1
a (x) = a\x; and

R−1
a (y) = y/a.

In this notation the identities that describe quasigroup’s multiplication and
division operations are

x(x\y) = y;
x\(xy) = y;
(yx)/x = y; and
(y/x)x = y.

9



Definition. Let (Q, ·) and (R, ∗) be two quasigroups of the same order. An or-
dered triple (α, β, γ) of bijections α, β, γ of the set Q onto the set R is called
an isotopy or isotopism of (Q, ·) upon (R, ∗) if α(x) ∗ β(y) = γ(x · y) for all
x, y ∈ Q. The quasigroups (Q, ·) and (R, ∗) are then said to be isotopic. An iso-
topy (α, α, α) of Q upon R is called an isomorphism. If (Q, ·) = (R, ∗), then
(α, β, γ) is called an autotopy or autotopisms of Q and (α, α, α) is called an au-
tomorphism.

Remark. The set of all autotopisms of a quasigroup Q forms a group.
Remark. Isomorphic quasigroups have the same number of associative triples.

Definition. Denote by Aut(Q) the group of all automorphisms of Q.

Definition. For a quasigroup (Q, ·) and δ ∈ S3 define a parastrophe to the quasi-
group Q as a quasigroup (Qδ, ∗) on the same set Q where x1 · x2 = x3 ⇔
xδ(1) ∗ xδ(2) = xδ(3). Operations · and ∗ are said to be conjugates or parastrophic.

A permutation (1 2)(3) creates parastrophe Qop called an opposite quasigroup
to Q.

Definition. Quasigroups (Q, ·) and (R, ∗) are said to be paratopic or main class
isotopic if R is isotopic to a conjugate of Q. The set of quasigroups paratopic to
Q is the main class of Q.

2.1 Local units
For x ∈ Q there exist local units ex and fx such that exx = x = xfx. In the rest of
this thesis we will use e and f as mappings Q → Q, with e(x) = ex and f(x) = fx,
for all x ∈ Q.
Remark. Mapping e in quasigroup Q becomes mapping f in opposite quasigroup
Qop and vice versa.
Remark. In the case of a loop, both mappings e and f send all elements of the loop
to the identity element i. For idempotent quasigroup e and f are the identity
permutations.

For the illustration purposes, we will be using directed graphs to represent
the mappings e and f . A directed graph Ge = (Q,E) represents the mapping
e of a finite quasigroup Q if vertices of Ge are the elements of Q, and (x, y) ∈
E ⇔ e(x) = y. From the structure of the quasigroup some properties of Ge are
as follows:

• |E| = |Q|,

• outdegree of each vertex is 1,

• idempotent elements of quasigroup will manifest as loops,

• if each vertex has indegree of 1, e is a permutation, and

• number of vertices with indegree 0 is equal to the defect of e.

10



1 2 3 4 5 6

1 1 3 2 4 5 6
2 3 2 6 1 4 5
3 4 1 3 5 6 2
4 5 6 4 2 1 3
5 6 4 5 3 2 1
6 2 5 1 6 3 4

1

3

2

5 4

6

(a) The mapping e

1

3

2

5 4

6

(b) The mapping f

Figure 2.1: A quasigroup of order 6 and its mappings e and f highlighted and
illustrated.

Observe that fixing mappings e and f allows us to reduce search space when
looking for nonassociative quasigroups in the following way:

Lemma 2.1. For quasigroups (Q1, ·) and (Q2,×) denote by ei, f i, and di : x ↦→
xx mappings in Qi. If Q1 and Q2 are isomorphic, then e1 and e2, f 1 and f 2, and
d1 and d2 are of the same type.

Proof. Suppose that Q1 and Q2 are isomorphic under permutation φ. Mapping
e1(x) = e1

x such that e1
x · x = x. This is mapped by φ onto φ(e1

x) × φ(x) = φ(x)
therefore e1

x is mapped onto e2
φ(x) for all x ∈ Q1. Verify that e2 = φe1φ

−1. Put
e2(a) = e2

a and denote by b = φ−1(a). Observe that e1(b) = e1
b and φ(e1

b) = e2
φ(b) =

e2
a which concludes the proof. For mappings f and d the proof is analogous.

This simple observation is equivalent with the statement that two quasigroups
with mappings e (or f or d) of different types cannot be isomorphic. Practical
implications are that when performing an exhaustive search we can fix one of the
mappings from above, for example e, search through all quasigroups with that
mapping e and later skip those quasigroups with mapping e of the same type
because they are isomorphic to one of the quasigroups we already checked. This
corresponds with filling out |Q| cells into the multiplication table of the quasi-
group.

In the next chapter, we will use findings from Chapter 1 to enumerate all
the cases that cover the search of highly nonassociative quasigroups of orders 8
and 9.
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3. Elementary and
nonelementary associative triples
In this chapter, we show that associative triples in a quasigroup can be of sev-
eral types. For some of those types, we can determine their number just from
the knowledge of idempotents in the quasigroup and mappings e and f .

Definition. An associative triple (x, y, z) ∈ Q3 where

• x · yz = xy = xy · z is called left elementary;

• x · yz = yz = xy · z is called right elementary;

• x · yz = xz = xy · z is called middle elementary.

A triple for which at least on of the above holds is called elementary.

Lemma 3.1. An elementary associative triple T = (x, y, z) ∈ Q3 can be described
by means of e and f :

(a) T is left elementary ⇔ xy, y ∈ f−1(z);

(b) T is right elementary ⇔ yz, y ∈ e−1(x);

(c) T is middle elementary ⇔ f(x) = y = e(z).

Proof. y, xz ∈ f−1(z) ⇔ f(y) = z and f(xy) = z ⇔ yz = y and xy · z = xz ⇔
xy · z = xy = x · yz. Proof of (b) is similar to (a). For (c) simply note that
f(x) = y ⇔ xy = x and e(z) = y ⇔ yz = z. Therefore x · yz = xz = xy · z.

Lemma 3.2. Let T = (x, y, z) ∈ Q3. Then

(i) T is left and right elementary if and only if y ∈ e−1(x) ∩ f−1(z);

(ii) T is left and middle elementary if and only if f(x) = y = z ∈ I(Q);

(iii) T is right and middle elementary if and only if e(z) = x = y ∈ I(Q); and

(iv) T is left, right, and middle elementary if and only if x = y = z ∈ I(Q).

Proof. If (a) and (b) from Lemma 3.1 hold for T , then y ∈ e−1(x) ∩ f−1(z). If
y ∈ e−1(x) ∩ f−1(z), then xy = y = yz and T is both left and right elementary
because x · yz = xy = y = yz = xy · z.
If both (a) and (c) hold, then yz = y = z and therefore f(x) = y = z ∈ I(Q).
The other direction follows from f(x) = y ⇔ xy = x and therefore x · yz =
x · yy = xy = xz = xy · z.
The statement (iii) mirrors (ii), and (iv) follows directly from (ii) and (iii).

Lemma 3.3. Let Q be a finite quasigroup, I = I(Q). The number of elementary
associative triples (x, y, z) ∈ Q3 is equal to

|I|− |Q|− |e−1(I)|− |f−1(I)|+
∑
q∈Q

(|e−1(q)|2 + |f−1(q)|2 + |e−1(q)||f−1(q)|). (3.1)
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Proof. Put Tl = {T ∈ Q3;T is left elementary associative triple} and define Tr

and Tm in the similar fashion. In order to determine the size of Tl ∪ Tr ∪ Tm start
by obtaining their individual sizes. For fixed z ∈ Q there are |f−1(z)| choices
for both y and xy for left elementary triple (x, y, z) according to Lemma 3.1.
This yields |Tl| = ∑

q∈Q |f−1(q)|2. The case for Tr is analogous and gives |Tr| =∑
q∈Q |e−1(q)|2. Regarding the size of Tm, we fix y ∈ Q and see that f(x) =

y ⇔ x ∈ f−1(y). Therefore we have |f−1(y)| choices for x. The same idea gives
|e−1(y)| choices for z and from this it follows that |Tm| = ∑

q∈Q |e−1(q)||f−1(q)|.
To get the size of the union of sets Tl, Tr, and Tm we need to add their sizes
together, subtract the size of their pairwise intersections, and add the size of
the intersection of all three. From Lemma 3.2 we have that Tl ∩ Tr consists of
triples for which y ∈ e−1(x)∩f−1(z). For fixed y this gives x = e(y) and z = f(y)
and |Tl ∩ Tr| = |Q|. In the other two cases the idea is very similar. For fixed
y ∈ I(Q) there are |f−1(y)| choices for x such that (x, y, y) ∈ Tl ∩ Tm and |e−1(y)|
choices for z such that (y, y, z) ∈ Tr ∩ Tm. This makes |Tl ∩ Tm| = |f−1(I)| and
|Tr ∩ Tm| = |e−1(I)|. Lastly, |Tl ∩ Tr ∩ Tm| is clearly equal to |I|.

For Q = {1, . . . , n}, I(Q) = {1, . . . , k} put a = (a1, . . . , an), ai = |e−1(i)|, and
b = (b1, . . . , bn), bi = |f−1(i)|. Then the value of (3.1) is equal to k − n+ S(a, b),
where

S(a, b) =
n∑

i=1
(a2

i + b2
i + aibi) −

k∑
i=1

(ai + bi). (3.2)

Claim 3.4. For n ≥ k ≥ 0 consider integers ai, bi ≥ 0, 1 ≤ i ≤ n such that∑n
i=1 ai = n and ∑n

i=1 bi = n. Assume that ai, bi ≥ 1 if 1 ≤ i ≤ k. Denote by
δL the number of i for which ai = 0 and by δR the number of i with bi = 0. Put
δ = δL + δR. Then

(i) S(a, b) = 3n− 2k if and only if δ = 0;

(ii) S(a, b) ≥ 3n− 2k + δ;

(iii) S(a, b) ≥ 2n− k + 2δ if δ ≥ n− k;

(iv) S(a, b) ≥ 4δ if δ ≥ n− k/2; and

(v) S(a, b) ≥ 6δ − 2n if δ ≥ n.

If any of the inequalities (ii)-(v) holds as an equality, then it is possible to reorder
the set such that

a1 ≥ . . . ≥ ak, ak+1 ≥ . . . ≥ an, b1 ≤ . . . ≤ bk and bk+1 ≤ . . . ≤ bn.

Let this be true and let an equality (ii)-(v) hold as an equality. If k > 0, then
a1 − ak ≤ 1 and bk − b1 ≤ 1. If k + δL < n, then ak+1 − an−δL

≤ 1, and if
k + δR < n, then bn − bk+1−δR

≤ 1.

Full proof of Claim 3.4 is rather long and can be found in [10]. Still, note that
if δ = 0, then ai = bi = 1 for 1 ≤ i ≤ n which implies that both e and f are
permutations.
Remark. Note that Lemma 3.3 together with Claim 3.4 give a lower bound on
a(n). In case that both e and f are permutations, this lower bound is 2|Q| − |I|,
the same as in [4].
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Let Q be a quasigroup. Set δL(Q) = |{x∈Q; e−1(x) = ∅}| and δR(Q) =
|{x∈Q; f−1(x) = ∅}|, and δ(Q) = δL(Q) + δR(Q). Note that δL(Q), δR(Q) are
equal to the defects of mappings e and f respectively.

Theorem 3.5. Let Q be a finite quasigroup. Then a(Q) ≥ 2|Q| − i(Q) + δ(Q).
If the equality holds, then all associative triples are elementary.

Proof. Assume that Q = {1, . . . , n}. Put k = i(Q), ai = |e−1(i)|, and bi =
|f−1(i)|, for every i ∈ {1, . . . , n}. Use (3.2) to define S = S(a, b). Observe that
δ from Claim 3.4 is equal to δ(Q). By Lemma 3.3 the number of elementary
associative triples is equal to k−n+S. Thus, a(Q) ≥ k−n+S. From Claim 3.4
we have that S ≥ 3n− 2k+ δ(Q). Therefore, a(Q) ≥ 2n−k+ δ(Q). This implies
that if the equality holds, then all associative triples must be elementary.

Throughout this thesis, we will use the following terminology regarding quasi-
group with a small number of associative triples.

Definition. A finite quasigroup Q is called extremely nonassociative if
a(Q) = 2|Q| − i(Q). It is called highly nonassociative if a(Q) ≤ 2|Q|.

Corollary. For a finite extremely nonassociative quasigroup Q the mappings e
and f are permutations and all associative triples are elementary.

Theorem 3.5 together with Claim 3.4 give rise to the following statement.

Claim 3.6. Let Q be a quasigroup defined upon {1, . . . , n}. Put ai = |e−1(i)| and
bi = |f−1(i)|, 1 ≤ i ≤ n. Assume that the idempotents of Q are the elements
1, . . . , k. Use (3.2) to define S = S(a, b). Put r = δL, s = δR, and δ = δ(Q).
Then a(Q) ≥ k − n + S ≥ 2n − k + δ. If a(Q) = 2n − k + δ, then Q may be
reordered in such way that

(1) ai ≥ ai+1 and bi ≤ bi+1 if 1 ≤ i < k or k ≤ i < n,

(2) ak + 1 ≥ a1 and b1 + 1 ≥ bk if k > 0,

(3) an−r + 1 ≥ ak+1 if n > k + r, and

(4) bk+1+s + 1 ≥ bn if n > k + s.

3.1 Mappings that cannot occur
It is interesting to note that in some cases it is not possible to have both e and
f as permutations. This implies that in such cases the lower bound a(Q) =
2|Q| − |I(Q)| will never be achieved.

Lemma 3.7. Consider quasigroup Q such that i(Q) = |Q| − 1. Mappings e and
f are not permutations and the number of elementary associative triples is |Q|+4
or |Q| + 5.

Proof. Suppose that e is a permutation. Permutation e fixes exactly |Q|−1 points.
The only permutation on |Q| elements which fixes |Q| − 1 points is the identity
which fixes all |Q| points. Therefore, e cannot be a permutation. Observe that
both e and f are near-permutations. This implies that δL(Q) = 1 = δR(Q)
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and δ(Q) = 2. Claim 3.4 (iii) gives the lower bound on number of elementary
associative triples equal to |Q| + 4. This lower bound can be achieved when
se ̸= sf where se is the only element in N(e) and sf is the only element in N(f).
Substitute values of e and f into equation (3.1). |I| − |Q| − |e−1(I)| − |f−1(I)| +∑

q∈Q(|e−1(q)|2 + |f−1(q)|2 + |e−1(q)||f−1(q)|) = |Q| − 1 − 3|Q| + (|Q| − 3) ∗ 3 +
2 ∗ 7 + 0 = Q+ 4.

If se = sf the same equation gives the number of elementary associative triples
to be |Q| + 5.

The table bellow illustrates Lemma 3.7 for Q={1, 2, 3, 4, 5, 6}, I={1, 2, 3, 4, 5}.

1 2 3 4 5 6

1 1 · · · · ·
2 · 2 · · · ·
3 · · 3 · · ·
4 · · · 4 · 6
5 · · · · 5 ·
6 · · 6 · · 1

Table 3.1: Mappings e and f in quasigroup with 5 idempotents.

Lemma 3.8. Consider quasigroup Q such that i(Q) = |Q| − 2. Then only one of
the mappings e and f may be a permutation. The smallest number of elementary
associative triples is |Q| + 4.

Proof. Suppose that e is a permutation. Since it fixes exactly |Q|−2 points, it has
to be a transposition on the last two points. Denote by a, b two distinct elements
for which aa ̸= a and bb ̸= b. Therefore, e(a) = b and e(b) = a which means that
ba = a and ab = b. Using the same argument for f being a permutation observe
that this implies that f(a) = b and f(b) = a which leads to the contradiction
since it means that ab = a and ba = b. From this it is easy to see that δ(Q) ≥ 2.
The minimum number of elementary associative triples is obtained from Claim 3.4
and can be achieved when one of mappings e and f is a permutation.

The table below illustrates Lemma 3.8 for Q = {1, 2, 3, 4, 5, 6}, I = {1, 2, 3, 4}
and f being a permutation.

1 2 3 4 5 6

1 1 · · · · ·
2 · 2 · · · ·
3 · · 3 · 5 ·
4 · · · 4 · 6
5 · · · · 1 5
6 · · · · 6 2

Table 3.2: Mappings e and f in quasigroup with 4 idempotents.
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Lemmas 3.7 and 3.8 show that quasigroup Q of order n cannot be extremely
nonassociative if i(Q) ∈ {n−1, n−2}. As mentioned before, in extremely nonas-
sociative quasigroup mapping e is a permutation. The number of different types
of permutations e is equal to q(n− i(Q)). By adding up all types of permutation
e we obtain the following.

Claim 3.9. For a finite extremely nonassociative quasigroup Q of order n map-
ping e is a permutation and there are p(n)−1 possible types of those permutations.

In the next section, we extend this idea to finding highly nonassociative quasi-
group.

3.2 Finding highly nonassociative quasigroups
The main objective of this section is to explain how to use Theorem 3.5 to find
all highly nonassociative quasigroups of orders 8 and 9.

The idea how to conquer the problem of finding such quasigroups is to divide
the problem into a limited number of cases, based on the mappings e, f or d
from Lemma 2.1, in each of which it is possible to fill (at least) |Q| cells of
the multiplication table. For example, if mapping e is known, then the cells
(e(x), x) can be filled by x.

Let Q be a highly nonassociative quasigroup of order n. Put k = i(Q),
δL = δL(Q), δR = δR(Q), and δ = δ(Q). By Theorem 3.5, δ ≤ k.

3.2.1 Order 8
If k = 0, then δ = 0, and there are q(8) = 7 possible types of transformation e.

If k = 1, then δL + δR ≤ 1. We can assume that δL = 0 because mirroring
does not change the number of associative triples. This means to test q(7) = 4
permutations e.

If k = 2, then δL + δR ≤ 2. It may be assumed that the defect of e is at most
one. This gives q(6) + t2(7) = 18 cases to test, by Lemma 1.3.

If k = 3, then the situation is similar since δL + δR ≤ 3. By Lemma 1.3, there
are q(5) + t2(6) = 11 cases to consider.

If k = 4, then δL + δR ≤ 4. The situations with δL ≤ 1 or δR ≤ 1 are covered
by choosing e with the defect at most one. This yields q(4) + t2(5) = 7 cases.
Other 7 cases are those from Lemma 1.5. Let us observe that no other cases are
needed. Suppose that δL = δR = 2 and put ai = |e−1(i)|, 1 ≤ i ≤ 8. Remember
that ∑8

i=1 ai = 8. By Claim 3.6 it may be assumed that: 1, . . . , 4 are idempotents,
a1 ≥ a2 ≥ a3 ≥ a4 ≥ 1, a5 ≥ a6 ≥ a7 ≥ a8, a1 − a4 ≤ 1, and a5 − a6 ≤ 1. A case
not yet covered has to have i such that ai ≥ 3. Observe that this is not possible.
If a1 ≥ 3, then a4 ≥ 2 and a1 + a2 + a3 + a4 ≥ 9 which is not possible. Since
a1 + a2 + a3 + a4 ≥ 4, it is necessary that a5 + a6 + a7 + a8 ≤ 4. If a5 ≥ 3, then
a6 ≥ 2 and a5 + a6 ≥ 5. Thus, ai ≤ 2 for every i ∈ {1, . . . , 8}.

If k ≥ 5 consider diagonal mapping d : x ↦→ xx. By Lemma 1.4 there are 16
cases to be considered for filling the diagonal.

Together, there are 7 + 4 + 18 + 11 + 14 + 16 = 70 cases that cover the whole
search.
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3.2.2 Order 9
If k = 0, then δ = 0, and there are q(9) = 8 types of possible transformation e.

If k = 1, then δL + δR ≤ 1. Also assume that δL = 0. This means to test
q(8) = 7 permutations e.

If k = 2, then δL + δR ≤ 2. It may be assumed that the defect of e is at most
one. This gives q(7) + t2(8) = 27 cases to test, by Lemma 1.3.

If k = 3, then the situation is similar since δL + δR ≤ 3. By Lemma 1.3, there
are q(6) + t2(7) = 18 cases to consider.

If k = 4, then δL + δR ≤ 4. The situations with δL ≤ 1 or δR ≤ 1 are
covered by choosing e with defect at most one. This yields q(5) + t2(6) = 11
cases. Other 15 cases are those from Lemma 1.6. As for the order 8 observe that
no other cases are needed. Suppose that δL = δR = 2 and put ai = |e−1(i)|,
1 ≤ i ≤ 9. By Claim 3.6 it may be assumed that: 1, . . . , 4 are idempotents,
a1 ≥ a2 ≥ a3 ≥ a4 ≥ 1, a5 ≥ a6 ≥ a7 ≥ a8 ≥ a8, a1 − a4 ≤ 1, and a5 − a7 ≤ 1.
A case not yet covered has to have i such that ai ≥ 3. Observe that this is not
possible. If a1 ≥ 3, then a4 ≥ 2 and a1+a2+a3+a4 ≥ 9. Since ∑9

i=1 ai = 9, hence,
ai = 0 for i > 4 and δL = 5 which is a contradiction. Since a1 + a2 + a3 + a4 ≥ 4,
it is necessary that a5 + a6 + a7 + a8 + a9 ≤ 5. If a5 ≥ 3, then a7 ≥ 2 and
a5 + a6 + a7 ≥ 7. Thus, ai ≤ 2 for every i ∈ {1, . . . , 9}.

If k = 5, then δL + δR ≤ 5. We can assume that δL ≤ 2. The situations
with δL ≤ 1 or are covered by choosing e with defect at most one. This yields
q(4) + t2(5) = 7 cases. Other 7 cases are those from Lemma 1.7. The argument
that this covers all cases follows the same steps as before.

If k ≥ 6 consider diagonal mapping d : x ↦→ xx. By Lemma 1.4 there are 16
cases to be considered for filling the diagonal.

Together, there are 8 + 7 + 27 + 18 + 26 + 14 + 16 = 116 cases that cover
the whole search.

After enumerating all cases that cover the search of highly nonassociative
quasigroups of orders eight and nine we can continue by presenting the algorithm
that performs the search but more importantly counts the associative triples at
the time when they arise.
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4. The time for an associative
triple
In this chapter, we are going to describe the process of counting associative triples
in a partially constructed quasigroup. These computations are one of the main
results of this thesis. The quasigroups are constructed by natural approach - row
by row, top to bottom, left to right. The number of associative triples is updated
in each step. If it exceeds a predetermined threshold, the partial quasigroup is
no longer considered.

Throughout this chapter we will assume that quasigroup Q is defined on set
{0, . . . , n−1}. Let us fix the vocabulary for dealing with associative triples in
partially constructed quasigroups.

Definition. The set Q × Q is ordered linearly so that (a, b) < (c, d) if and only
if a < c or a = c ∧ b < d.

Definition. For a partially constructed quasigroup Q define the time (a, b) ∈ Q2

to be that step in the construction when all products c · d; (c, d) ≤ (a, b) are
determined but no product g · h; (g, h) > (a, b) is.

Definition. Let Q be a quasigroup. For a triple (x, y, z) ∈ Q3 denote by t(x, y, z)
the least time (a, b) ∈ Q2 when both x · yz and xy · z can be computed. Call
t(x, y, z) the decisive pair of the triple (x, y, z).

0 1 2 3 4 5

0 0 2 1 3 4 5
1 2 1 5 0 3 4
2 3 0 2 4 5 1
3 4 5 3 1 0 2
4 5 3 4 · · ·
5 · · · · · ·

Table 4.1: A partially constructed quasigroup of size 6 at time (4, 2).

Since (a, b) = t(x, y, z) = max{(x, y), (x, yz), (xy, z), (y, z)}, (a, b) can appear
in only those four roles. Denote them by (A), (B), (C), (D).

(A) (a, b) = (x, y);
(B) (a, b) = (x, yz); (4.1)
(C) (a, b) = (xy, z); or
(D) (a, b) = (y, z).

Remark. (A) and (D), and (B) and (C) are mirror symmetric.

Lemma 4.1. Let Q be a quasigroup, (a, b) ∈ Q2 and (x, y, z) ∈ A(Q) be an asso-
ciative triple. If (A) and (C) hold, then (B) holds as well. If (B) and (D) hold,
then (C) holds as well.
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Proof. If (A) and (C) hold, then x = a = xy and y = b = z. Substituting
those values into equation x(yz) = (xy)z we get a(bb) = ab, thus yz = b and
(B) holds as well. If (B) and (D) hold, then x = a = y and yz = b = z. Also
substitute those values into equation x(yz) = (xy)z and observe that ab = (aa)b
and therefore (C) holds as well.

Definition. Call a triple (x, y, z) ∈ Q3 diagonal if x = y = z and call it diagonally
idempotent if x = y = z ∈ I(Q).

Lemma 4.2. Let Q be a quasigroup, (x, y, z) ∈ Q3, (a, b) ∈ Q2. At least two
out of four equations in (4.1) are true if and only if at least one of the following
holds:

(i) Both (A) and (B) are true if and only if x=a, y=b, and (x, y, z) is left
elementary.

(ii) Both (A) and (D) are true if and only if x = y = z = a = b.

(iii) Both (B) and (C) are true if and only id x=a, z=b, and (x, y, z) is middle
elementary.

(iv) Both (C) and (D) are true if and only if y=a, z=b, and (x, y, z) is right
elementary.

Proof. From Lemma 4.1 we know that options (i)-(iv) are sufficient to cover all
distinct cases. If (A) and (B) hold, then x = a and y = yz = b. Furthermore,
ab · z = a · bz = ab holds because (x, y, z) is an associative triple and therefore
(x, y, z) is left elementary. The opposite direction is easy. The situation of the case
(ii) is clear. In case (iii) observe that x = xy = a and yz = y = b if and only
if x = a, z = b, and fa = y = eb. That is true if and only if (x, y, z) is middle
elementary according to Lemma 3.1. If (C) and (D) hold, then y = xy = a
and z = b. Furthermore, x · ab = xa · b = ab holds. Thus, (x, y, z) is right
elementary.

Corollary. In a quasigroup Q let (x, y, z) ∈ A(Q) and (a, b) ∈ Q2 such that at
least two of the four equations in (4.1) are true. Then (x, y, z) is elementary or
diagonal.
Corollary. Nonelementary and nondiagonal associative triples (x, y, z) appear in
exactly one set A(a,b), B(a,b), C(a,b), or D(a,b) defined bellow.

A(a,b) = {(x, y, z) ∈ A(Q); t(x, y, z) = (a, b) = (x, y)},
B(a,b) = {(x, y, z) ∈ A(Q); t(x, y, z) = (a, b) = (x, yz)},
C(a,b) = {(x, y, z) ∈ A(Q); t(x, y, z) = (a, b) = (xy, z)}, and
D(a,b) = {(x, y, z) ∈ A(Q); t(x, y, z) = (a, b) = (y, z)}.

This provides a useful distinction between types of nonelementary associative
triples. Size of these sets can be computed at each time (a, b) during construction
of quasigroup and add up to a total. Diagonal and elementary associative triples
are being counted separately.

The following Lemma 4.3 gives a criterion how to recognize elementary asso-
ciative triples.
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Lemma 4.3. Let Q be a quasigroup and (x, y, z) is an associative triple. It is
elementary if and only if xy ∈ {x, y} or yz ∈ {y, z}.

Proof. Direct consequence of Lemma 4.2.

Finally, in the next chapter we will present an algorithm that counts nonele-
mentary associative triples based on their roles. It also counts elementary triples
when needed according to the Lemma 4.3.
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5. Algorithm
In this chapter we are going to use mathematical results from Chapter 4 to devise
an algorithm for efficient counting of associative triples in partially constructed
quasigroups. An associative triple is counted depending on being elementary
or nonelementary. The elementary triples are counted separately and in some
cases their number can be known beforehand. The nonelementary triples are
counted based on their role. Denote by B⋆

(a,b) = {(x, y, z) ∈ B(a,b); (x, y, z) is not
elementary} the nonelementary part of B(a,b). Similarly define C⋆

(a,b) and D⋆
(a,b).

The set A⋆
(a,b) = {(x, y, z) ∈ A(a,b); (x, y, z) is not elementary and not diagonal}

is defined as such in order to resolve an ambiguity mentioned by point (ii) of
Lemma 4.2. The diagonal triples (a, a, a) are counted as elements of the set D⋆

(a,b).
Thus, the intersection of any pair of these sets is empty. The algorithm consists
of procedures that enumerate those sets. Clearly, the number of nonelementary
associative triples at time (a, b) is equal to ∑(a,b)

(i,j)=(0,0) |A⋆
(i,j)| + |B⋆

(i,j)| + |C⋆
(i,j)| +

|D⋆
(i,j)|.
For enumeration of these sets a procedure called test is used. It compares

two elements of the quasigroup and returns 1 if they are the same and 0 if not.
function test(x, y)

if x = y
return 1

else
return 0

In this section it is always assumed that at time (a, b) the newly filled value is
c = a ·b. Note that except quasigroup operation · we will also use the left division
operation \.

5.1 Nonelementary triples
The set A⋆

(a,b) contains triples (a, b, z) for which ab = c and c /∈ {a, b} according
to the Lemma 4.3. Observe that if a < b, then A⋆

(a,b) = ∅ since no product bz is
known. Similarly, A⋆

(a,b) = ∅ if a < c since no product cz is known. Focus on case
a > b. The enumeration of those triples can be done in the following way:

if a > b and a > c and b ̸= c
for z = 0, . . . , n−1

if bz < b
test(cz, a·bz)

Note that a straightforward simplification of this procedure using the left
division can be performed. Put r = bz and observe that if r > b, then the product
ar is not yet known and if b = r, then A(a,b) contains only elementary triples and
therefore A⋆

(a,b) = ∅. Thus, a simplified procedure is as follows:
if a > b and a > c and b ̸= c

for r = 0, . . . , b−1
test(c · (b\r), ar)

Observe that this saves on average n/2 steps in for cycle. Therefore, we will
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from this point only mention simplified versions of enumeration functions.
Now, in case that a = b we have A⋆

(a,a) = ∅ if a ≤ c for the similar reasons as
mentioned above. Assuming a > c observe that if z > a, then az is not known.
Thus, the restrictions are a = b, a > c, and z < a. Put s = az. If s > a we
do not know as and if s = a, then (a, a, z) would be elementary. Together with
the case a > b, we can enumerate A⋆

(a,b) using procedure countA⋆.
function countA⋆(a, b, c)

count = 0
if a > c

if a > b and b ̸= c
for r = 0, . . . , b−1

count += test(ar, c · (b\r))
if a = b

for z = 0, . . . , a−1
s = az
if s < a

count += test(as, cz)
return count

The set B⋆
(a,b) contains triples (a, y, z) for which yz = b, ay /∈ {a, y}, and

b /∈ {y, z}, according to Lemma 4.3. Divide the enumeration into two cases a ≥ b
and a < b. If a ≥ b, then the conditions for y are y ≤ b (ay has to be known)
and y ̸= b (otherwise the triple would be elementary). The conditions for ay are
ay ≤ a ((ay)z has to be known) and ay /∈ {a, y}. Note that z = y\b; thus, case
for a ≥ b is as follows:

if a ≥ b
for y = 0, . . . , b−1

l = ay
if l < a and l ̸= y

count += test(c, l · (y\b))

If a < b, then the condition for y is y ≤ a (yz has to be known). The
conditions for ay are the same as in the previous case. Observe that for y < a
the enumeration may proceed like when a ≥ b. If y = a, then a\b might not
be defined. Hence, the test must be performed in another way. Put z = (aa)\c,
meaning (aa)z = c, which is known for aa < a. If (a, a, z) is an associative triple,
then c = (aa)z = a(az). Therefore we only need to test if az = b, provided that
z ≤ b.
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The enumeration of B⋆
(a,b) can thus be done in this way:

function countB⋆(a, b, c)
count = 0
if a ≥ b

for y = 0, . . . , b−1
l = ay
if l < a and l ̸= y

count += test(c, l · (y\b))
if a < b

for y = 0, . . . , a−1
l = ay
if l < a and l ̸= y

count += test(c, l · (y\b))
l = aa
if l < a

z = l\c
if z ≤ b

count += test(b, az)
return count

The set C⋆
(a,b) contains triples (x, y, b) where xy = a. Observe that y = x\a.

The restrictions on both x and y are x, y ≤ a and x, y ̸= a. There is one more
restriction on y, y ̸= yb in order to avoid elementary triple. The enumeration of
C⋆

(a,b) is as follows:
function countC⋆(a, b, c)

count = 0
for x = 0, . . . , a−1

y = x\a
if y < a and y ̸= yb

count += test(c, x · yb)
return count

Finally, the set D⋆
(a,b) contains triples (x, a, b) with restrictions on c /∈ {a, b}

and xa /∈ {x, a}. Observe that x ≤ a otherwise xa would not be known. Di-
vide the enumeration into two parts. The first part covers cases where x < a.
The enumeration of those cases is as follows.

for x = 0, . . . , a−1
l = xa
if l < a

test(xc, lb)

Observe, that inequality l ̸= x does not have to be tested since if xa = x, then
the triple is associative if and only if c = b which we assume is not true.

The second part of the enumeration covers cases where x = a. Therefore,
aa < a and ab < b. This also covers the testing for diagonal triple (a, a, a).
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The whole enumeration function may look like this.
function countD⋆(a, b, c)

count = 0
if a ̸= c and b ̸= c

for x = 0, . . . , a−1
l = xa
if l < a

count += test(xc, lb)
if a ≤ b

l = aa
if l < a and c < b

count += test(ac, lb)
return count

At the end of this section, we would like to note that each counting pro-
cedure can return values greater than one. Table 5.1 presents a partially con-
structed quasigroup of order 9. The construction is at time (a, b) = (8, 7)
and filled value is c = 6. It is easy to verify that A⋆

(8,7) = {(8, 7, 1), (8, 7, 2)},
B⋆

(8,7) = {(8, 0, 0), (8, 1, 1)}, C⋆
(8,7) = {(0, 1, 7), (1, 0, 7), (4, 6, 7)}, and D⋆

(8,7) =
{(0, 8, 7), (1, 8, 7)}.

0 1 2 3 4 5 6 7 8

0 7 8 6 0 4 5 2 3 1
1 8 7 4 6 5 1 3 2 0
2 6 1 0 2 3 4 5 7 8
3 0 6 2 1 7 3 4 8 5
4 1 4 5 3 2 6 8 0 7
5 3 5 7 4 0 8 6 1 2
6 4 2 3 7 8 0 1 5 6
7 5 0 1 8 6 2 7 4 3
8 2 3 8 5 1 7 0 6 ·

Table 5.1: An example of time in quasigroup that induces many nonelementary
associative triples.

5.2 Condensed nonelementary triples
The following section introduces a modification of the algorithm where nonele-
mentary triples are counted before c = ab is filled. Modified functions return
n-tuple t (instead of integer value) such that t[c] is equal to number of new
nonelementary triples in corresponding set provided that newly filled value is
c = ab. This tuple is then used when filling out partially constructed quasigroup.
If the construction is done recursively, then the value c = ab is considered only
when t[c] is less than maximum targeted value. The tuple t is computed only
once and then used again when backtracking.

This modification can be done efficiently using right division operation /.
Further overhead is introduced by maintaining the special value nil to indicate
that the result of the operation is not known.
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In this version the function test is replaced by the equation that gives
the value of c for which t[c] is to be incremented.

Starting with the enumeration of A⋆
(a,b), it is the only one that uses right

division. The modification of function countA⋆ is straightforward:
function c countA⋆(a, b)

t = [0, . . . , 0]
if a > b

for r = 0, . . . , b−1
c = (ar)/(b\r)
if c ̸= nil and a > c and b ̸= c

t[c] += 1
if a = b

for z = 0, . . . , a−1
if az < a

c = (a(az))/z
if c ̸= nil and a > c

t[c] += 1
return t

The modification of function countB⋆ benefits from the introduction of nil.
We can simplify the procedure by testing if a\b is defined.

function c countB⋆(a, b)
t = [0, . . . , 0]
if a ≥ b

for y = 0, . . . , b−1
l = ay
if l < a and l ̸= y

t[l · (y\b)] += 1
if a < b

for y = 0, . . . , a−1
l = ay
if l < a and l ̸= y

t[l · (y\b)] += 1
l = aa
if l < a and a\b ̸= nil

t[l · (a\b)] += 1
return t

The modifications of functions countC⋆ and countD⋆ follow the similar steps
in a straightforward way.

function c countC⋆(a, b)
t = [0, . . . , 0]
for x = 0, . . . , a−1

y = x\a
if y < a and y ̸= yb

t[x · yb] += 1
return t
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function c countD⋆(a, b)
t = [0, . . . , 0]
for x = 0, . . . , a−1

l = xa
if l < a

c = x\(lb)
if c ̸= a and c ̸= b

t[c] += 1
if a ≤ b

l = aa
if l < a

c = a\(lb)
if c ̸= nil and c < b and c ̸= a

t[c] += 1
return t

5.3 Elementary triples
The number of elementary triples is determined only by mappings e and f and
is given by formula in Lemma 3.3. If the mappings are known in advance, then
the search is reduced to counting the nonelementary triples and backtracking
when their number surpasses the threshold.

In case that e, f , or both are not fully known we propose the following search
algorithm. Suppose, as in Sections 3.2.1 and 3.2.2, that I(Q) is known. Denote
by c0 the estimate for the number of elementary associative triples obtained from
Theorem 3.5 and by cn the number of nonelementary associative triples in the
partially constructed quasigroup. Naturally, the number of elementary triples is
denoted by ce.

A natural strategy is to test cn +c0 against threshold as long as ce ≤ c0. Then
continue testing cn + ce.

The value of ce can be computed directly from formula in Lemma 3.3 and it
changes whenever ab ∈ {a, b}. This results in formula (5.1).

For x ∈ Q = {0, 1, . . . n−1} set εx = |e−1(x)| and ηx = |f−1(x)|. Set i(x) = 1
if x ∈ I(Q), and i(x) = 0 otherwise. The initial values of εx and ηx are equal to
i(x). Denote by k the number of idempotents in Q.

ce = k − n+
∑

x

(ε2
x + η2

x + εxηx − i(x)(εx + ηx)). (5.1)

Therefore, in the beginning ce = 2k − n. From the formula (5.1) we can
determine the value by which to increment ce. For example if ηx is incremented
by one, then ce has to be incremented by ηx + 12 + εx(ηx + 1) − i(x)(ηx + 1) −
η2

x − εxηx + i(x)ηx = 2ηx + εx + 1 − i(x).
Thus, when filling out partially considered quasigroup two conditions have to

be checked. If ab = a ̸= b, then f(a) = b, ηb += 1, and ce += 2ηb + εb + 1 − i(b).
If ab = b ̸= a, then e(b) = a, εa += 1, and ce += 2εa + ηa + 1 − i(a).
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This concludes the chapter describing the algorithm for counting associative
triples. In the next chapter we present the results that have been achieved by
implementing and using this algorithm on quasigroups of orders eight and nine.
A nontrivial part of the success of our effort was optimization of the implementa-
tion. Therefore, we will dedicate a whole chapter to the implementation details
that proved to be crucial when implementing this algorithm. Lastly, we will com-
pare the unoptimized implementation of this algorithm to the optimized version
and to the previous version of the algorithm that was used in [5] to determine
the minimum number of associative triples among quasigroups of orders up to
seven.
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6. Results and future work
In this chapter, we present the results of our search for the minimum value of
a(n) for small n. For orders one through six the minimum values have been
determined by Ježek and Kepka in [2]. We carried out the search and determined
the value of a(7) in [5]. In this thesis we determined values a(8) (also published
in [10]) and a(9).

This chapter also presents a classification of extremal quasigroups as well as
an analysis of their automorphism groups and other properties. The analysis
might provide insights into the construction of extremal quasigroups of a higher
order. Lastly, we show a construction of infinite series of quasigroups for which
a(Q) = |Q|.

6.1 Order 8
We carried out the search for highly nonassociative quasigroups of order eight,
those for which a(Q) ≤ 16. The extremal value is 16 and is achieved in quasi-
groups with zero idempotents. Thus all associative triples in extremal cases are
elementary and both mappings e and f are permutations.

We have found 6 examples up to isomorphism. However, when considering
the results up to isomorphism and mirroring there are only 3 unique quasigroups.
Tables 6.1, 6.2, and 6.3 present all found quasigroups up to isomorphism and
mirroring.

0 1 2 3 4 5 6 7

0 2 7 1 3 5 0 4 6
1 0 3 4 2 7 6 1 5
2 3 1 0 5 6 4 7 2
3 6 0 2 1 3 7 5 4
4 4 6 5 0 2 1 3 7
5 1 5 7 6 4 3 2 0
6 7 2 6 4 1 5 0 3
7 5 4 3 7 0 2 6 1

Table 6.1: Extremely nonassociative quasigroup Q1 with a(Q1)=16,
e=(0 1 2 3)(4 5 6 7), f=(0 5 1 6 2 7 3 4), f 2=e, and Aut(Q1)=⟨e⟩.

6.1.1 Classification
When searching for quasigroups with the lowest number of associative triples we
are interested in the results up to isomorphism or up to main class.

To distinguish between main classes we identify several main class invariants.

Definition. For finite quasigroup Q call non-empty R ⊆ Q a subquasigroup of Q
if R is closed for multiplication.
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0 1 2 3 4 5 6 7

0 1 6 4 3 0 2 7 5
1 7 0 2 5 3 1 4 6
2 5 1 3 7 6 4 2 0
3 0 4 6 2 5 7 1 3
4 4 2 5 0 1 6 3 7
5 3 5 1 4 7 0 6 2
6 2 7 0 6 4 3 5 1
7 6 3 7 1 2 5 0 4

Table 6.2: Extremely nonassociative quasigroup Q2 with a(Q2)=16,
e=(0 3)(1 2)(4 6 5 7), f=(0 4)(1 5)(2 6 3 7), and Aut(Q2)=⟨φ⟩,
φ = (0 1)(2 3)(4 5)(6 7).

0 1 2 3 4 5 6 7

0 3 7 2 1 6 0 5 4
1 2 0 4 3 5 7 1 6
2 0 3 1 5 7 6 4 2
3 6 1 0 2 3 4 7 5
4 5 4 6 0 1 3 2 7
5 1 6 5 7 4 2 0 3
6 4 2 7 6 0 5 3 1
7 7 5 3 4 2 1 6 0

Table 6.3: Extremely nonassociative quasigroup Q3 with a(Q3)=16,
e=(0 2)(1 3)(4 5 6 7), f=(0 5 2 7)(1 6 3 4), and Aut(Q3)=⟨ψ⟩,
ψ = (0 1 2 3)(4 5 6 7).
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Definition. LetQ be a quasigroup. A permutation φ ∈ SQ is a complete mapping
if the mapping x ↦→ xφ(x) is also a permutation.

The number of subquasigroups of orders 2 and 3, the number of complete
mappings, and the order of autotopy group are the main class invariants as shown
in [11]. We will use them to specify the main class and denote them accordingly:

(1) the number of complete mappings,

(2) the number of order 2 subquasigroups,

(3) the number of order 3 subquasigroups, and

(4) the order of autotopy group.

The analysis of autotopy groups of quasigroups Q1, Q2, and Q3 can be found
in [10].

The quasigroup Q3 is autotopic to Q1 under autotopy ((1 3)(5 7), (0 2)(4 6),
(1 3)(4 6)) which means that they belong to the same main class.

The Table 6.4 presents the classification of main classes of extremal quasi-
groups of order eight carried out by us using quasigroup classification software
developed by the author of this thesis.

(1) (2) (3) (4)
Q1 88 12 0 4
Q2 112 10 0 8

Table 6.4: Classification of extremal quasigroups of order 8.

6.2 Order 9
Due to the exponential increase in the number of quasigroups we have been able
to only accomplish the search for extremely nonassociative quasigroups, those
for which a(Q) = 2|Q| − |I(Q)|. Up to isomorphism and mirroring there exist
only two quasigroups. They appear in Tables 6.5 and 6.6. Note that Q4 is
the first published example of a quasigroup with a(Q) = |Q| making it the main
focus of our attention for the rest of this chapter. We have not been able to
fully accomplish the search for highly nonassociative quasigroups of order 9. We
finished the search in quasigroups with 0, 1, and 2 idempotents. Table 6.7 presents
the only example of highly but not extremely nonassociative quasigroup we found.

6.2.1 Classification
Main class invariants of Q4, Q5, and Q6 can be found in Table 6.8

The automorphism group of Q4, Aut(Q4), is equal to

⟨(0 2 1)(3 5 4)(6 8 7), (1 4 2 8)(3 7 6 5), (1 3 2 6)(4 5 8 7), (0 5 3 1)(2 7 4 8)⟩

and it contains a normal elementary abelian subgroup N of order 9. Furthermore,
Aut(Q4) contains a subgroup H isomorphic to the quaternion groups. The order
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0 1 2 3 4 5 6 7 8

0 0 3 6 2 7 4 1 8 5
1 7 1 4 5 0 8 3 2 6
2 5 8 2 6 3 1 7 4 0
3 4 2 8 3 6 0 5 1 7
4 6 5 0 1 4 7 8 3 2
5 1 7 3 8 2 5 0 6 4
6 8 4 1 7 5 2 6 0 3
7 2 6 5 0 8 3 4 7 1
8 3 0 7 4 1 6 2 5 8

Table 6.5: Extremely nonassociative quasigroup Q4 with a(Q4)=9, e=f= id.

0 1 2 3 4 5 6 7 8

0 0 5 6 4 1 7 3 8 2
1 4 3 1 6 2 8 5 7 0
2 8 2 7 3 0 6 4 5 1
3 6 7 5 1 3 2 0 4 8
4 7 1 8 0 5 4 2 3 6
5 2 8 0 5 7 3 6 1 4
6 1 0 4 2 8 5 7 6 3
7 5 6 3 8 4 0 1 2 7
8 3 4 2 7 6 1 8 0 5

Table 6.6: Extremely nonassociative quasigroup Q5 with a(Q5)=17,
e=(1 4 7)(2 8 3)(5 6), f=(1 2)(3 4 5)(6 7 8), and Aut(Q5)=⟨id⟩.

0 1 2 3 4 5 6 7 8

0 0 2 3 4 1 8 5 6 7
1 8 1 4 7 6 0 3 2 5
2 5 7 2 1 8 6 0 4 3
3 6 5 8 3 2 4 7 0 1
4 7 3 6 5 4 2 1 8 0
5 4 8 7 0 3 5 2 1 6
6 1 4 5 8 0 7 6 3 2
7 2 0 1 6 5 3 8 7 4
8 3 6 0 2 7 1 4 5 8

Table 6.7: Highly nonassociative quasigroup Q6 with a(Q6)=17, e=f= id, and
Aut(Q6) isomorphic to quaternion group.
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(1) (2) (3) (4)
Q4 801 72 0 72
Q5 225 27 0 1
Q6 489 32 0 8

Table 6.8: Classification of extremal quasigroups of order 9.

of Aut(Q4) is equal to 72. The group can be thus characterized as a semidirect
product of N and H.

In the following sections we will focus on quasigroup Q4 and its properties in
order to extrapolate and find heuristics that might help in the search for bigger
quasigroups with the number of associative triples equal to their order.

6.2.2 Operation decomposition
An interesting property of Q4 is the quasigroup operation which can be fully
decomposed into cycles. For example:

1 · 2 = 4, 2 · 4 = 3, 4 · 3 = 1, and 3 · 1 = 2.

Call this cycle (1, 2, 4, 3). With the exception of idempotents, all cycles are of
length four and there is 18 of them in total. The list of all those cycles can be
found in Appendix A1.

These cycles form a directed 4-cycle system of order 9.

Definition. A directed m-cycle system of order n is a pair (S,C), where C is
an edge disjoint collection of directed m-cycles which partitions the edge set of
Dn (the complete directed graph on n vertices) with set S.

In [12] we can find a quasigroup construction from these cycle systems called
the directed standard construction.

Definition. Let (S,C) be a directed m-cycle system of order n and define a bi-
nary operation · on S by:

• x · x = x, for all x ∈ S, and

• if x ̸= y, x · y = z if and only if edges (x, y) and (y, z) form a directed path
in C.

Observe, that Q4 is constructed from cycles in Appendix A1 using directed
standard construction.

In the same article a special property that holds for Q4 is mentioned. For all
x ̸= y, (xy)(y(xy)) = x holds.

This naturally leads to the idea of trying different cycles of four elements and
constructing the quasigroups from them. In our experiments with this approach
we have been able to create quasigroups isomorphic to Q4 as well as idempotent
quasigroups with 81 associative triples. One of those is shown in Appendix,
Table A2.

This might also be a potential avenue for future research as these cycle con-
structions are also possible for higher orders. Unfortunately, we have not been
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able to successfully construct quasigroups with a small number of associative
triples from cycle system in the higher orders.

Another interesting pattern emerges when we look at the cycles of decompo-
sition of Q4 as vertices of a graph labeled as in Appendix A1. If two cycles share
an opposite edge, meaning (a, b) ∈ C1 and (b, a) ∈ C2, then connect them with
an edge.

The resulting graph consists of two isomorphic components of size nine. In the
classification of small graphs those components are known as L(K3,3). Figure 6.1
shows the resulting graph.

12 8 15

6 0 16

1 4 17

3 2 15

5 7 9

10 13 11

Figure 6.1: Graph constructed from cycles of decomposition of Q4.

The graph K3,3 is a complete bipartite graph as depicted below.

Figure 6.2

Its line graph L(K3,3) named by Harary and Norman in [13] is defined below.

Definition. Given a undirected graph G, its line graph L(G) is a graph such
that each vertex of L(G) represents an edge in G; and two vertices in L(G) are
connected with an edge if and only if their corresponding edges share a common
vertex in G.

This further highlights the fact that quasigroup Q4 is far from unstructured
and possesses many interesting properties. More of them will be mentioned in
the next section.

6.2.3 Sudoku property
The multiplication table of every quasigroup is a Latin square. A special case of
Latin square of order 9 known as Sudoku has an additional property which can
be generalized for Latin squares of order n2.
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Definition. A Latin square of order n2 has a Sudoku property if any subsquare
induced by rows ni + 1, . . . , ni + n and columns nj + 1, . . . , nj + n contains all
values 1, . . . , n2, for any choice of i, j, where 0 ≤ i, j < n.

In this section we will consider Q4 to be defined upon set {1, . . . 9}. It is easy
to observe that the multiplication table of Q4 has Sudoku property.

Since the algebraic counterparts of Latin squares are quasigroup we would like
to express Sudoku property in the language of quasigroups.

Quasigroup (Q, ·) defined upon set N = {1, . . . , n2} has Sudoku property if
N can be partitioned into blocks R1, . . . , Rn of size n and into blocks C1, . . . , Cn

of size n such that {x · y;x ∈ Ri, y ∈ Cj} = N for every 1 ≤ i, j ≤ n. Standardly,
blocks are chosen consecutively.

This property, however, lacks the symmetry between rows, column, and values
in Latin squares that can be found in parastrophic quasigroups. To rectify this
define 3-way Sudoku property.

Definition. Let (Q, ·) be a quasigroup defined upon set N = {1, . . . n2}. Denote
by R, C, and V partitions of N into n blocks of size n. Q has 3-way Sudoku
property if the following holds.

1. If X ∈ R, Y ∈ C, then {x · y;x ∈ X, y ∈ Y } = N ;

2. if X ∈ R, Y ∈ V , then {x\y;x ∈ X, y ∈ Y } = N ; and

3. if X ∈ V , Y ∈ C, then {x/y;x ∈ X, y ∈ Y } = N .

This 3-way condition for standard Sudoku square of order 9 means that
the nine cells induced by a block of rows (say 1,2,3) and a block of symbols
(say 4,5,6) cover all columns. In other words, {1, 2, 3}, {4, 5, 6}, and {7, 8, 9}
appear as transversals in each of the nine subsquares.

Observe that for quasigroup Q4 this 3-way property holds as well.
Unfortunately, we were not successful in finding quasigroups of order 16 with

this 3-way property and a small number of associative triples. However, the prop-
erty can be weakened. For example, for order 12 we have found quasigroup where
triples (0, 1, 2), (3, 4, 5), (6, 7, 8), and (9, 10, 11) always form a transversal if they
appear in any of subsquares 3 × 3 formed by decomposition of rows and col-
umn into four blocks of three. This quasigroups also has 54 associative triples
which is the lowest known number of associative triples for that order. Mentioned
quasigroup can be found in Appendix, Table A3.

This shows that heuristics methods mentioned in this chapter can potentially
lead to better understanding of quasigroups with a small number of associative
triples.

6.2.4 Infinite series
Based on our results, it is easy to show that there is an infinite number of quasi-
groups with a(Q) = |Q|.

Definition. For quasigroups (Q, ·) and (R, ∗) define their direct product to be
quasigroup (S, ◦) defined on Q×R by (q1, r1) ◦ (q2, r2) = (q1 · q2, r1 ∗ r2).

Lemma 6.1. Let Q and R be quasigroups. Then a(Q×R) = a(Q)a(R).

34



Proof. Put q1, q2, q3 ∈ Q, r1, r2, r3 ∈ R and observe that ((q1, r1), (q2, r2), (q3, r3))
is an associative triple if and only if both (q1, q2, q3) and (r1, r2, r3) are associative
triples.

Corollary. There exists a sequence {Qn}∞
n=1 of quasigroups such that the order

of Qn is 9n and a(Qn) = |Qn| and can be constructed from quasigroup Q4.

The existence of the infinite series of quasigroups mentioned above changes the
view on the asymptotic behavior of a(n). In [5] it was suggested that the upper
bound is at most n2. The question of asymptotic behavior of a(n) is still open,
however, these results suggest that it might be possible that a(n) = n for n big
enough.
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7. Implementation aspects
This chapter contains implementation details of the algorithm and lists different
implementation improvements for increasing its speed. In previous chapters we
introduced new approach on counting associative triples, based on mathematical
results, as opposed to the more naive approach used in [5]. The improvements
described in this chapter are not about mathematics but about implementation
details. The magnitudes of speed improvements are compared in the next chapter.

The improvements in this chapter are separated into several groups based on
the part of the algorithm they are aimed at. Those groups are:

• algorithm parallelization,

• quasigroup enumeration, and

• associative triples counting.

Throughout this chapter, we will consider quasigroups of order n defined upon
the set {0, 1, . . . n−1}. We identify a quasigroup with its multiplication table
represented as a two-dimensional array named Q by Q[a, b] = a · b. We will use
word function referring to a subroutine of a program that returns a value.

7.1 Algorithm parallelization
The parallelization has been crucial for the success of computations. The program
ran on a cluster with 1000 nodes and we strived to maximize the utilization of
those nodes during the time granted to us.

Call S = {(ai, bi, ci); i=1, . . . , k} a starting configuration of an algorithm if
algorithm starts with partially constructed quasigroup Q for which Q[ai, bi] = ci

for every i=1, . . . , k. The most natural exploitation of the parallelization is to
consider different starting configurations at the same time.

Starting configurations are chosen in order to maximize the reduction of
the search space. For orders 8 and 9 this is done upon the basis of the the-
ory developed in Sections 3.2.1 and 3.2.2 of Chapter 3. They consist of filling
out one of the mappings e, f , or diagonal mapping d in the quasigroup. How-
ever, the number of starting configurations might not be sufficient. For example,
in the case of searching for highly nonassociative quasigroups of order 9 with 6
idempotents Lemma 1.4 gives 10 types of diagonal mappings to cover. The naive
approach would be to run the computation on 10 CPUs. Since in our case 1000
nodes were available the following approach has been devised:

1. Denote by S the set of starting configurations consisting of predetermined
mapping d.

2. Fix first unfilled cell Q[x, y] and replace each S ∈ S by Sj = S ∪ {(x, y, j)},
j = 0, . . . n−1 for all values j that keep the quasigroup properties.

3. Count nonelementary associative triples for time (x, y).

4. If x = j or y = j count elementary triples in that starting configuration.
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5. Remove those starting configurations that exceed the threshold for maxi-
mum number of associative triples.

6. If |S| is smaller the desired number of starting configurations, go to 2.

7. Start the computation with the set of starting configurations S.

It is easy to see that omitting steps 3, 4, and 5 may lead to the situation where
starting configuration already contains more associative triples than the max-
imum allowed number and thus the algorithm terminates immediately. This
decreases the number of CPUs that are active during computation.

Another point of view on this algorithm is to consider it as a generator of
starting configurations that have a sufficiently small number of associative triples.
Therefore, the implementation improvement mentioned above can be viewed as a
multi-tier parallelization. In each level all resources are used to compute the start-
ing configurations for the next level. The number of levels of parallelization de-
pends on the overhead associated with redistributing starting configurations to
the available CPUs.

7.2 Quasigroup enumeration
When enumerating quasigroups the crucial part is to be able to quickly determine
which values to try for a given unfilled cell. For example, at the time (a, b) in
the construction of the quasigroup (meaning that all the previous values are
determined) the naive approach for determining valid value c to fill would look
like a procedure below.

for c = 0, . . . n−1
valid = true
for col = 0, . . . b−1

if Q[a, col] = c
valid = false

for row = 0, . . . a−1
if Q[row, a] = c

valid = false
if valid

Q[a, b] = c

This approach, however, does not take into the consideration that starting
configuration may contain filled values that are after the current position.

The better approach is to keep track of the values that are possible to fill
into each row and column at each time. This can be accomplished using a two-
dimensional array of boolean values where the first index determines row or col-
umn, the second index determines a value that we want to fill, and the value in
the twodimensional array is true if it is possible. Since we are working with small
orders we can use bits of integers instead of the second dimension in an array. Let
row and col to be arrays of length n. Initialize them with zeros. Define functions
get(x, i) that returns ith bit of integer x, function seton(x, i) that sets ith bit of
integer x to be 1, and function bmax(x, y) that returns bitwise maximum of two
integers.
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At the start of the computation adjust the values in both arrays to reflect
the starting configuration S.

for (a, b, c) ∈ S
seton(row[a], c)
seton(col[b], c)

The adjustment of both arrays is performed at every step of the computation.
Observe that for row a the only valid values to fill are those c for which c-th bit of
row[a] is zero. It takes time and memory to keep and update the arrays, however,
it still saves time overall when choosing the next value to fill with this procedure.

possible = bmax(row[a], col[b])
for c = 0, . . . n−1

if get(possible, c) = 0
Q[a, b] = c
seton(row[a], c)
seton(col[b], c)

Another implementation improvement that allows us to omit functions for
counting nonelementary associative triples is based on the following lemmas.

Lemma 7.1. Put A⋆
(a,b), B⋆

(a,b), C⋆
(a,b), and D⋆

(a,b) as in the Chapter 5. If a = 0,
then A⋆

(a,b) = B⋆
(a,b) = C⋆

(a,b) = D⋆
(a,b) = ∅.

Proof. Any associative triple (x, y, z) with decisive pair (0, b) is necessary of type
(0, 0, z). The values x and y have to be 0 in order to compute values xy and yz.
If 0 · 0 ̸= 0 then xy · z cannot be computed thus xy = 0. The associative triple is
elementary according to Lemma 4.3.

Lemma 7.2. Put A⋆
(a,b), B⋆

(a,b), C⋆
(a,b), and D⋆

(a,b) as in the Chapter 5. Assume
that a = 1. Then A⋆

(a,b) = ∅. If also Q[1, 1] ̸= 0, then B⋆
(a,b) = D⋆

(a,b) = ∅. Lastly,
if Q[0, 0] ̸= 1, then C⋆

(a,b) = ∅.

Proof. Any associative triple (x, y, z) ∈ A⋆
1,b is of type (1, b, z). Look at the

procedure countA⋆ in Chapter 5 and observe that Q[1, b] = 0. Also, if b = 0, then
A⋆

1,0 = ∅. The last case to cover is therefore b = 1. This leads to z = 0 which
would make the triple elementary.

Focus now on triple (1, y, z) in B⋆
1,b. If b = 0, then the procedure countB⋆

yields no triples and if b = 1, then the triple is elementary. Assume that b > a.
If y = 0, then Q[1, 0] would have to be both less than one and not equal to zero
in order to not be elementary. The only option is therefore triple of type (1, 1, z)
where Q[1, 1] < 1.

The enumeration of C⋆
1,b is simple and the set is not empty only if x = y = 0.

By definition, Q[0, 0] has to be equal 1.
Similar to the previous case, D⋆

1,b only contains triples of type (1, 1, z). By
necessity, Q[1, 1] has to be zero otherwise Q[Q[1, 1], z] could not be computed or
the triple would be elementary.

Implementation consequences of Lemmas 7.1 and 7.2 are following. Counting
nonelementary triples in the first row can be omitted. In the second row, we
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can omit counting triples from A⋆
1,b. Moreover, if Q[1, 1] ̸= 0, then we can skip

counting triples from B⋆
1,b and D⋆

1,b, and if Q[0, 0] ̸= 1, then there are no triples
in the C⋆

1,b.

The last implementation improvement in this section is based on the obser-
vation that values in the last row and the last column are fully determined by
their predecessor. Thus, we can simplify and speed up the procedure that chooses
the values to try out.

7.3 Associative triples counting
As mentioned in Chapter 5, when counting nonelementary associative triples it
may be useful to keep the tables of left and right division as well. The mem-
ory overhead is minimal with quasigroups of small orders and the time saved is
significant.

Another observation to make is that functions countA⋆, countB⋆, countC⋆,
and countD⋆ are usually not called separately. In fact, when the value c is filled
in position a, b and c /∈ {a, b, }, then all of them are called. If c ∈ {a, b} then only
countB⋆ and countC⋆ are called. By grouping those procedures into the same
blocks of code several for-loops can be combined together.

The last improvement in this section focuses on the situation in the construc-
tion of the quasigroup when we achieved but not surpassed the threshold for
the maximum number of nonelementary associative triples. In this situation, we
are no longer interested in the number of nonelementary triples that arise when
we fill the next value. The implementation improvement is to have two types of
functions for counting nonelementary triples. The functions of integer type are
those presented in Chapter 5. The other type is called boolean and it differs
from the previous in its return value. Instead of returning the number of nonas-
sociative triples it returns value false whenever it finds any associative triple.
Therefore, it can break the loop and return the value faster. The algorithm thus
starts in the integer mode using integer type functions and whenever the max-
imum allowed number of nonelementary associative triples is achieved it switches
to the boolean mode until the quasigroup construction is completed or one of
the functions returns false.

This concludes this chapter which details several implementation improve-
ments that make the search more efficient. In the next chapter we are going to
compare the speed of the current algorithm implementation against the algorithm
that was used in [5] to determine the value of a(7). That algorithm used most
of the implementation improvements mentioned in this chapter but still used
the naive counting of associative triples.
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8. Measuring the speed-up
This final chapter covers time comparison between implementations of different
algorithms for finding nonassociative quasigroups. We use the algorithm from [5]
as a reference point for comparisons. It will be tested against different versions
of the algorithm presented in this thesis. Those versions are chosen to determine
which aspects of optimization contribute the most to overall performance.

8.1 Algorithms
Throughout this chapter we will reference the implementations by letters A to
D. All of these programs have been implemented in C++ language.

Program A serves as a reference. It is the implementation of the algorithm used
in [5] to determine the value a(7).

Program B is an implementation of an algorithm described in Chapter 5 with-
out any condensed procedures for counting nonelementary triples. It also lacks
implementation optimizations mentioned in Sections 7.2 and 7.3.

Program C is similar to Program B but includes implementation optimizations
from Sections 7.2 and 7.3. This implementation was used to determine a(8) and
was also used in the search for a(9).

Program D is based on Program C but includes condensed procedures for
counting nonelementary triples described in Section 5.2. This implementation
was used in part to determine a(9).

8.2 Protocol
When comparing different programs we will be measuring the time of their exe-
cution on AMD A8-5600K CPU. A testing sample for each comparison is a set of
10 randomly generated starting configurations for quasigroups of order 8 with 24
cells filled. Tested program enumerates all quasigroups that contain set starting
configuration and for which the number of associative triples does not surpass
the predefined threshold. The upper limit on the number of associative triples
is set to be 32. The comparison is based on mean, minimum, and maximum of
execution times in seconds.

8.3 First comparison
Parametrization of Program A is possible only by filling whole rows of the mul-
tiplication table. Thus, starting configurations in the first comparison consist of
filled out first three rows of the multiplication table. This does not allow programs
B, C, and D to count elementary associative triples in advance since mappings
e and f are not fully known. Therefore, elementary triples have to be counted
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during the enumeration of quasigroups. An example of starting configuration
used in this comparison can be found in Table 8.1. The results of the testing are
presented in Table 8.2.

0 1 2 3 4 5 6 7

0 0 5 4 1 2 7 3 6
1 6 4 7 5 1 3 2 0
2 1 2 5 0 7 6 4 3
3 · · · · · · · ·
4 · · · · · · · ·
5 · · · · · · · ·
6 · · · · · · · ·
7 · · · · · · · ·

Table 8.1: One of the starting configuration for the first comparison.

Program Mean Min Max
A 3039.47 2312.78 3817.46
B 88.30 21.99 133.39
C 16.36 4.22 23.68
D 15.88 3.95 23.07

Table 8.2: Results of the first comparison of implementations.

Table 8.2 shows approximately 35 fold speed increase of the Program B
over the reference Program A . Moreover, programs C and D gained 5.5 fold
time improvements over Program B . This highlights the importance of proper
implementation of any algorithm. In our case, it is a result of an extended effort
to optimize the program as much as possible by focusing not only on counting
associative triples but also on the fast enumeration of quasigroups. That resulted
in approximately 190 fold improvements over Program A .

Note that there is a little difference between Program C and Program D
when both elementary and nonelementary triples are counted during the program
execution.

8.4 Second comparison
The comparison below highlights the efficiency that can be gained from filling
out mappings e and f in advance. This allows for elementary triples to be
counted before enumeration. Therefore, during the enumeration only nonele-
mentary triples are counted and their maximum allowed number is the difference
between the threshold (32) and the number of elementary triples.

In this comparison 24 cells of the multiplication table are filled. It is the same
number as in the previous example but we start by filling out cells that determine
mappings e and f and continue by filling the multiplication table row by row
starting from the top left corner until 24 cells are filled. An example of starting
configuration used in this comparison can be found in Table 8.3.
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0 1 2 3 4 5 6 7

0 0 3 1 5 7 6 2 4
1 6 1 3 2 · · · ·
2 · · · 3 · · · 2
3 · · · · · 3 6 ·
4 · · 4 · · 5 · ·
5 · · · · · · 5 7
6 · · 2 · 6 · · ·
7 · · · 7 4 · · ·

Table 8.3: One of the starting configuration for the second comparison.

Table 8.4 shows interesting results of the second comparison. Firstly, all
implementations B, C, and D are on average 100 times faster compared to the
first test despite the fact that the size of starting configurations is the same in both
cases. Secondly, when counting only nonelementary triples we can see a bigger
(32%) difference between Program C and Program D . This is achieved by
modification of counting procedures described in Section 5.2.

Program Mean Min Max
B 0.888 0.037 2.658
C 0.179 0.012 0.430
D 0.135 0.010 0.385

Table 8.4: Results of the second comparison of implementations.

From both comparison together we can see that an implementation of an al-
gorithm presented in this thesis can be at least 35 times faster than our previous
attempts. When combined with the observations from Chapters 1 and 3 and
carefully choosing starting configurations it is possible to gain additional 2 orders
of magnitude of speed improvements. Lastly, implementation aspects also play
an important role as they contribute by additional 5 fold speed increase.

By combining these improvements we have been able to successfully conquer
the search for highly nonassociative quasigroups of order 8 and extremely nonas-
sociative quasigroups of order 9 with the same computational resources as in our
previous work.
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Conclusion
The main purpose of this thesis was to determine the minimum number of asso-
ciative triples among quasigroups of orders eight and nine. We tried to achieve
this goal with the same computational resources as we had available in [5], where
we determined the minimum number of associative triples among quasigroups
of orders up to seven. In order to accomplish this task, we had to improve our
approach in several aspects.

Firstly, using combinatorics and properties of transformations and permuta-
tions we significantly reduced the search space. Secondly, we showed the distinc-
tion between two types of associative triples, called elementary and nonelemen-
tary. For elementary associative triples, we presented an estimate of their number
and a strategy that brings the parallelization of search and gives the number of
elementary associative triples at the same time. The strategy consists of filling
out local unit mappings into multiplication table of quasigroup which fully deter-
mines the number of elementary triples. Parallelization is achieved by filling out
different types of those mappings.

For nonelementary associative triples we devised an algorithm that counts
their number incrementally at each step of the construction of multiplication
table of the quasigroup.

By implementing and optimizing this algorithm we were able to accomplish
our goal and establish that the minimum number of associative triples among
quasigroups of order 8 is 16. We presented their classification and showed that
extremal quasigroups of that order belong to two distinct main classes. This
answers the question asked in [5] whether all extremal quasigroups belong to
the same main class.

For order 9 the extremal case is even more interesting as we believe it is
the first published example of quasigroup with the number of associative triples
equal to its order, 9. This quasigroup has a quite large automorphism group
from which we were able to construct Latin square with 3-way Sudoku property.
We hope that described properties of that quasigroup, cycle decomposition, cycle
construction, and 3-way Sudoku property might be useful in the future research
in finding extremely nonassociative quasigroups of higher orders that are also
squares.
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[10] Aleš Drápal and Viliam Valent. High nonassociativity in order 8 and an
associative index estimate. Submitted, 2018.

[11] Charles J Colbourn and Jeffrey H Dinitz. Handbook of combinatorial designs.
CRC press, 2006.

[12] Curt C Lindner. Quasigroups constructed from cycle systems. Quasigroups
and related systems, 10:29–64, 2003.

[13] Frank Harary and Robert Z. Norman. Some properties of line digraphs.
Rendiconti del Circolo Matematico di Palermo, 9(2):161–168, May 1960.

44



Appendix

i cycle
0 (0, 1, 3, 5)
1 (0, 2, 6, 7)
2 (0, 3, 2, 8)
3 (0, 4, 7, 3)
4 (0, 5, 4, 2)
5 (0, 6, 1, 4)
6 (0, 7, 8, 1)
7 (0, 8, 5, 6)
8 (1, 2, 4, 3)
9 (1, 5, 8, 4)

10 (1, 6, 3, 7)
11 (1, 7, 2, 5)
12 (1, 8, 6, 2)
13 (2, 3, 6, 5)
14 (2, 7, 4, 8)
15 (3, 4, 6, 8)
16 (3, 8, 7, 5)
17 (4, 5, 7, 6)

Table A1: List of cycles in quasigroup Q4.

0 1 2 3 4 5 6 7 8

0 0 8 4 2 7 3 1 6 5
1 5 1 6 4 0 8 3 2 7
2 7 3 2 6 5 1 8 4 0
3 4 0 8 3 2 7 5 1 6
4 6 5 1 8 4 0 7 3 2
5 2 7 3 1 6 5 0 8 4
6 8 4 0 7 3 2 6 5 1
7 1 6 5 0 8 4 2 7 3
8 3 2 7 5 1 6 4 0 8

Table A2: A quasigroup reconstructed from different cycles but with the same
structure as Q4.
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0 1 2 3 4 5 6 7 8 9 10 11

0 0 6 3 7 5 11 2 8 9 10 1 4
1 4 1 7 9 8 3 10 0 6 5 11 2
2 8 5 2 4 10 6 7 11 1 0 3 9
3 1 10 6 3 11 2 0 4 7 8 9 5
4 7 2 11 0 4 9 8 1 5 3 6 10
5 9 8 0 10 1 5 3 6 2 11 4 7
6 2 11 5 8 0 10 6 9 3 4 7 1
7 3 0 9 11 6 1 4 7 10 2 5 8
8 10 4 1 2 9 7 11 5 8 6 0 3
9 11 3 8 5 7 0 1 10 4 9 2 6
10 6 9 4 1 3 8 5 2 11 7 10 0
11 5 7 10 6 2 4 9 3 0 1 8 11

Table A3: A quasigroup of size 12 with 54 associative triples and symmetries
similar to Q4.
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