Charles University in Prague

Faculty of Mathematics and Physics

DOCTORAL THESIS

Martin Koutecky

Treewidth, Extended Formulations

of CSP and MSO Polytopes,
and their Algorithmic Applications

Department of Applied Mathematics

Supervisor of the doctoral thesis: doc. Mgr. Petr Kolman Ph.D.
Study programme: Computer Science

Specialization: Discrete Models and Algorithms

Prague 2017

Parts of this work are copyrighted.
© Springer International Publishing AG

My greatest thanks go out to my advisor, Petr Kolman. For nine years he
wooed and nudged me towards excellence, precision, and elegance, and has done
so with supernatural patience. His genuine interest allowed me to rest in the
certainty that he cares more about me than merely my performance. Hans Raj
Tiwary got me interested in polytopes and optimization by the clarity of his in-
tuition. Jifi Fiala introduced me to parameterized complexity and graph widths.
Jir1 Sgall was quick to point out proof flaws at seminars, but more importantly
he made me feel I am always welcome to ask for advice, professional or otherwise.

Many thanks also to my colleagues from graduate school. Dusan Knop allowed
me to flesh out my ideas aloud, pointed out problems and invented solutions. His
attention to detail, clean notation and illuminating figures and examples inspire
me. Tomas Masariik and Tomas Toufar have moved our research forward when I
could not.

A large and pleasantly surprising experience for me have been research visits,
and much gratitude belongs to my hosts. Petr Hlinény provided many logic-
flavored insights and overall contributed so much more than I expected. Shmuel
Onn greatly furthered my interest in optimization and integer programming and
encouraged me at a time when I particularly needed it. Many thanks also to
Josep Diaz, Iyad Kanj, Matthias Koppe, Jon Lee, Daniel Lokshtanov, Matthias
Mnich, Saket Saurabh, and Maria Serna.

My work would not have been possible without the funding from the Czech
Science Foundation (GA CR), the Charles University Science Foundation (GA
UK) and the Specific Academic Research Project grant (SVV). Many thanks also
to the anonymous reviewers for pointing out existing work and improving ours
with their feedback.

Finally, I am indebted to my family and friends. You know who you are: Mom
& Dad, Tom, Jana & Pavel, Jordan, Jared, Keith & Rachel, Scott, Dave, Tom,
Evc¢a, Jan, Maru & Alan, Vlada and many many others. Most of all, my love
and respect goes to my wife Dana. She has chosen and continually chooses to
sacrifice for me and submit to my lead, supports me and inspires me. She gives
me perspective when I get sucked too close, and gives me focus when I get too
distracted. I am a blessed man for having her.

I dedicate this thesis to Barunka. You taught me more about the meaning of
family in a split second then I have ever known before. 1 cannot wait to meet
you again.

Soli Deo Gloria

I declare that I carried out this doctoral thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In........ date signature of the author

Nazev prace: Stromova sitka, rozsitené formulace CSP a MSO polytopt a jejich
algoritmické aplikace

Autor: Martin Koutecky
Katedra: Katedra aplikované matematiky
Vedouci disertacni prace: doc. Mgr. Petr Kolman, Ph.D., KAM MFF UK

Abstrakt: Tato prace podava dikaz existence kompaktnich rozsitenych formu-
laci pro Sirokou skalu polytopii souvisejicich s problémem omezujicich podminek
(CSP), grafovou monadickou logikou druhého fadu (MSO) a rozsifenimi MSO,
maji-li dané instance omezenou stromovou sitku. Ukazeme, Ze nase rozsitené for-
mulace maji dalsi uzitecné vlastnosti a odkryvame souvislosti mezi MSO a CSP.
Dochazime tak k zavéru, ze kombinace MSO logiky, CSP a geometrie poskytuje
rozsititelny ramec pro konstrukci kompaktnich rozsitenych formulaci a parametri-
zovanych algoritmii pro grafy s omezenou stromovou sitkou.

S pouzitim téchto nastroju pak zcela zodpovime otazku parametrizované slozi-
tosti riznych rozsiteni MSO na dvou tiidach grafli, konkrétné grafech s omezenou
stromovou Sitkou a s omezenou ruznorodosti sousedstvi. Objevili jsme, ze
(ne)linearita téchto rozsiteni urCuje parametrizovanou slozitost na grafech s
omezenou ruznorodosti sousedstvi.

Na zévér studujeme tzv. posunutou kombinatorickou optimalizaci, kterda tvori
nelinearni optimaliza¢ni rdmec zobecnujici standardni kombinatorickou optimal-
izaci. V této oblasti poskytneme prvotni zjisténi z perspektivy parametrizované
slozitosti.

Klicova slova: Rozsitena formulace, stromova sitka, MSO, CSP, kombinatoricka
optimalizace

Title: Treewidth, Extended Formulations of CSP and MSO Polytopes, and their
Algorithmic Applications

Author: Martin Koutecky
Department: Department of Applied Mathematics

Supervisor: doc. Mgr. Petr Kolman, Ph.D.; KAM MFF UK

Abstract: In the present thesis we provide compact extended formulations for
a wide range of polytopes associated with the constraint satisfaction problem
(CSP), monadic second order logic (MSO) on graphs, and extensions of MSO,
when the given instances have bounded treewidth. We show that our extended
formulations have additional useful properties, and we uncover connections be-
tween MSO and CSP. We conclude that a combination of the MSO logic, CSP and
geometry provides an extensible framework for the design of compact extended
formulations and parameterized algorithms for graphs of bounded treewidth.

Putting our framework to use, we settle the parameterized complexity landscape
for various extensions of MSO when parameterized by two important graph width
parameters, namely treewidth and neighborhood diversity. We discover that the
(non)linearity of the MSO extension determines the difference between fixed-
parameter tractability and intractability when parameterized by neighborhood
diversity.

Finally, we study shifted combinatorial optimization, a new nonlinear optimiza-
tion framework generalizing standard combinatorial optimization, and provide
initial findings from the perspective of parameterized complexity.

Keywords: Extended formulation, treewidth, MSO, CSP, combinatorial optimiza-
tion

Contents

[Prefacel

(1 __Introduction|

(1.1 MSO, CSP, Graph Widths and Extended Formulations|
Il,2 (2“1 (:Snlllitz”li!z“l
[1.2.1 Chapter [} The CSP Polytope|.
[1.2.2 Chapter 4 The MSO Polytope]
(1.2.3 Chapter |5 Connecting MSO, CSP, and Treewidth|
(1.2.4 Chapter |6 Extensions of MSO Logic|
[1.2.5 Chapter [7} Shitfted Combinatorial Optimization|

5 Preliminaries

[2.1 ~ Parameterized Complexity|
[2.2 Graphs and General Relational Structures|
2.3 Graph Widths[. oo
2.3.1 Treewidth and Pathwidthl
[2.3.2 Treedepth|
[2.3.3 Cliquewidth|
[2.3.4 Neighborhood Diversity|]
[2.4 Constraint Satisfaction Problem (CSP)[.
[2.5 Monadic Second Order Logic/.
[2.6 Polytopes, Extended Formulations and Extension Complexity]

Extension Complexity of the CSP Polytope]

[3.1 Integer Linear Programming Formulation|

B.1.1 Extended Formulation|

[3.2 Applications|

Extension Complexity of the M5O Polytope|

4.1 Preliminariesl
.1.1 |m|-colored T-boundaried Graphs
[4.1.2 Monadic Second Order Logic and Types of Graphs|
[4.1.3 Feasible Types

4.2 Glued Product of Polytopes over Common Coordinates

[4.3 Extension Complexity of the M5O Polytopel

[4.4 Etficient Construction ot the MSO Polytopel

M5 Extensiond
[4.5.1 Cliquewidth|
[4.5.2 Courcelle’s Theorem and Optimization.
[4.5.3 Total Unimodularity|

© 0o co Ut Ut

10

15
18
18
19
20

23
23
23
24
24
25
25
26
27
28
29

31
31
32
34
36

[> Connecting M50, CSP, and Treewidth|

5.1 MSO Polytope: Decomposability and Treewidth|

[5.1.1 Decomposability of Polyhedral

[>.1.2 Treewidth of Gaifman Graphs of Extended Formulations| .

[5.1.3 MSO Polytope: Take Two| .
[5.2 Combining MSO and CSP|

b.2.1 CSP Polytope via Glued Product|

[H.2.2 Courcelle’s Theorem as CSP)

[6.1.2 Regarding M50, and M50,

6.2 XP Algorithm For MSO®" on Bounded Treewidth|

[6.2.1 Applications|.

[6.3 Graphs of Bounded Neighborhood Diversity|

6.3.1 WI[1]-hardness of MSO" and MSO®|.

6.3.2 FPT Algorithm for MSOZH .
6.3.3 XP Algorithm for MSO®H . .

7 Parameterized Shifted Combinatorial Optimization|

[7.1 Sets Given Explicitly]

(.2 MSO-definable Sets: XP for Bounded Treewidthl

[7.2.1 Relating SCO to Decomposable Polyhedra]

[7.2.2 XP Algorithm tfor MSO-definable Sets{

[8 Conclusion and Open Problems|
BT C T Salislaciion Problol .
(8.2 Algorithmic Metatheorems|
[8.3 Shitted Combinatorial Optimization|

(Bibliography|

53
23
23
95
56
60
60
64

71
71
72
73
4
75
78
78
81
86

91
91
96
96
97
98
100
103

105
105
105
106

109

Preface

I still remember how I have heard professor Martin Loebl describe Courcelle’s
theorem to our class, my first time hearing it. It was the summer semester of
my first year at Charles University and I have somewhat naively signed up for
a class on “Polyhedral Combinatorics and Mathematical Programming.” Cour-
celle’s theorem states that any problem expressible in a certain logical language
(MSO) has an efficient algorithm on a certain graph class (graphs of bounded
treewidth). Such a result seemed to me magical at the time, and even after eight
years | am fascinated by its simplicity and power. That class was also my first
encounter with my advisor, professor Petr Kolman. It was him who led us in our
exploration of polytopes and their combinatorics.

The next year I was in a need of an advisor and a project. I turned to Petr,
who was open and courageous enough to lead me in a project which ended up
being my bachelor thesis. Its main topic, Courcelle’s theorem.

In the following years I got even more interested in algorithms for specific
graph classes and the whole area of parameterized complexity. Petr again agreed
to advise my master thesis, even though it was not related to his main area of
interest, which is network flows and cuts and approximation algorithms. Together
with Dusan Knop, we have managed to design the first efficient algorithms for a
few problems on so-called graphs of bounded neighborhood diversity.

When I approached Petr to once again become my advisor for my graduate
studies, we have agreed that, this time, we will attempt to focus on Petr’s main
interest. We started experimenting with a linear programming relaxation for a
certain cut problem. However, something strange happened: whatever graph
we ran our relaxation on, the objective it returned was identical with the integer
objective. After a while, we realized that all our graphs are so-called series-parallel
graphs, and that our relaxation is always integral for such graphs. Eventuall, we
were able to prove that a closely related linear program is an extended formulation
of a CSP polytope, i.e. the polytope of feasible assignments of a constraint
satisfaction problem, provided this CSP has bounded treewidth.

This way we have found ourselves, unintentionally, in the middle of the re-
cently growing field of extension complexity. At the same time, we were (at least
partially) back to my “home turf” of parameterized complexity, graph classes
etc. I wondered: could we extend our CSP result to a “polytope analogue” of
Courcelle’s theorem? Petr, Hans Raj Tiwary and I have proved that this is so:
there is a compact extended formulation of the MSO polytope, i.e. the polytope
of satisfying assignments of an MSO formula on a graph of bounded treewidth.
In the course of doing so, we have also rediscovered a “glued product” technique
for constructing extended formulations.

Motivated by our experience with graphs of bounded neighborhood diversity,
together with Dusan, Tomas Masarik and Tomas Toufar, we started wonder-
ing about Courcelle-like theorems on graphs of bounded treewidth or bounded
neighborhood diversity, and for extensions of the MSO logic. About the same
time, I have visited Shmuel Onn at the Technion and we explored an extension
of the standard combinatorial optimization paradigm, called shifted combinato-
rial optimization (SCO). In particular, we were interested in optimizing over sets

3

definable by the MSO language.

To my surprise, both of these research directions lead me back to our results
on MSO and CSP polytopes. I have discovered that the glued product operation
behaves well with respect to certain useful polytope properties. Then, combin-
ing these results with CSP allowed us to show our Courcelle-like theorems for
extensions of MSO, and some positive results for SCO.

While we explore here several additional topics and give much attention to
complementing hardness results, the bulk of this work centers on the following
thesis:

A combination of the MSO logic, CSP and geometry provides an ez-
tensible framework for the design of compact extended formulations
and parameterized algorithms for graphs of bounded trecwidth.

The thesis is structured as follows. Chapter (1] first gives the reader a back-
ground in the areas covered by this thesis, then presents its main contributions,
and finally reviews related work. This chapter is inteded for general audiences
and attempts to stay away from technical details wherever possible. Then, Chap-
ter [2 provides the necessary preliminaries such as definitions and notation for
the following chapters. The first half of the results is presented in Chapters
where we develop connections between linear programming (LP), CSP and the
MSO logic on graphs of bounded treewidth. This concludes with a new modeling
tool useful for obtaining parameterized algorithms and compact extended formu-
lations. Chapter [3]is based on a paper which appeared in the Electronic Journal
of Combinatorics [10]. Chapters |4 and |5| are partially based on a paper which
appareared at the 15th Scandinavian Symposium and Workshops on Algorithm
Theory (SWAT’16) [71].

Then, in Chapter [6] we unify prior work on extensions of the MSO logic and
completely settle the complexity landscape on two graph classes by providing
new positive and negative results. Moreover, the positive results carry over to
extension complexity upper bounds. This chapter is mostly based on a paper
which appeared at the /3rd International Workshop on Graph-Theoretic Concepts
in Computer Science (WG’17) [68]. Finally, in Chapter [7| we develop a new
optimization framework generalizing standard combinatorial optimization and
explore it from the perspective of parameterized complexity; this chapter is based
on a paper which appeared at the 23rd Annual International Computing and
Combinatorics Conference (COCOON’17) [45]. In both chapters, we significantly
use the tools developed in Chapter 5} We close with conclusions in Chapter

1. Introduction

This chapter has three sections. First, we briefly introduce the notions which
form the background and context of this thesis. Then, we give an overview of
our contributions without going into too much formal detail; we make up for it
in the subsequent chapters. Finally, we review other relevant work. Most formal
definitions are postponed to Chapter [2]

1.1 MSO, CSP, Graph Widths and Extended

Formulations

Parameterized Complexity

Our complexity viewpoint is that of parameterized complexity. Already in the 70’s
and 80’s it was known that various computational problems belong to the class
P of polynomially solvable problems when restricted to some special cases. For
example, Lenstra [81] famously proved in 1983 that integer linear programming is
solvable in polynomial time if the dimension is a fixed constant, and it was known
that various NP-hard graph problems are solvable in polynomial time on trees.
However, only in the 90’s Downey and Fellows pioneered the field of parameterized
complexity which is able to distinguish finer details.

Consider the example of the VERTEX COVER and INDEPENDENT SET prob-
lems, where we are to determine whether a vertex cover or an independent set of
size k exists. On one hand, a 2* 4 n algorithm exists for the VERTEX COVER
problem. On the other hand, it can be shown that under reasonable complexity
assumptions the trivial n* algorithm enumerating all independent sets is essen-
tially optimal, ruling out the existence of any algorithm for INDEPENDENT SET
running in tim f(E)n®® . In the language of parameterized complexity, an
algorithm solving problem II in time f(k)n®® is an FPT-algorithm (for fired-
parameter tractable) for 11 with parameter k (or parameterized by k), and we say
that IT is in FPT (or that II is FPT) with respect to k. An analogue of NP-hard-
ness in parameterized complexity is W[1]-hardness. W][1]-hard problems cannot
have an algorithm running in time better than n®) for some computable func-
tion g € w(1) unless FPT = W[1], which is a commonly believed conjecture. An
algorithm running in time n9%) is an XP-algorithm (for slice-wise polynomial) and
means that a problem belongs to XP (or is XP) with respect to k. Thus, while
VERTEX COVER is FPT parameterized by solution size, INDEPENDENT SET is
WI[1]-hard and in XP. The key contribution here is in distinguishing problems
which look the same from the perspective of classical complexity, i.e., NP-hard.
For a thorough exposition, see the monograph of Downey and Fellows [30].

Graph Widths

Structural graph theory deals with establishing results that characterize various
properties of graphs, and utilizes them in the design of efficient algorithms and

'We use the standard notation O(f),w(f): for two functions g, f : N — N, g € O(f) when
Jde € R s.t. eventually g < ¢f, and g € w(f) when Ve € R eventually g > cf.

. . ‘W
Figure 1.1: Hierarchy of relevant parameters. In- fw\av
cluded are vertex cover number, treedepth, path- i W
width, treewidth, neighborhood diversity, cliquewidth 4
and rankwidth. An arrow implies generalization, for ex- pw E‘d
ample treewidth is a generalization of vertex cover num- t g

.1 .. td s
ber. A dashed arrow indicates that the generalization -~ S
may increase the parameter exponentialy, for example \4e

treewidth & implies cliquewidth at most 2*.

other applications. A subset of structural graph theory is the study of various
graph width parameters. The fundamental example of a graph width is treewidth
which constitutes a measure of “tree-likeness”, and a graph of bounded treewidth
can be thought of as a “fat tree”; we denote the treewidth of a graph G by tw(G).
Generally, a graph width assigns a number to a graph, and we are typically
interested in FPT or XP algorithms parameterized by a graph width. A graph
width is typically associated with some kind of graph decomposition; for example,
the fact that a graph G has treewidth 7 is certified by a tree decomposition of
width 7. Other parameters of graph structure which we consider here are the
vertex cover number, treedepth, pathwidth, neighborhood diversity, cliquewidth
and rankwidth, and for a graph G, we denote them by ve(G), td(G), pw(G),
nd(G), cw(G) and rw(G), respectively. These parameters form a hierarchy, as
depicted on Figure (1.1

Our main focus in this thesis are graphs of bounded treewidth and graphs
of bounded neighborhood diversity. These two classes are incomparable: for
example, paths have unbounded neighborhood diversity but bounded treewidth,
and vice versa for cliques. Treewidth has become a standard parameter with many
practical applications (cf. a survey [12]); neighborhood diversity is of theoretical
interest [11, 2, (13 38, 47, 61, O0] because it can be viewed as representing the
simplest of dense graphs.

Algorithmic Metatheorems

In the ’70s and ’'80s, it was repeatedly observed that various NP-hard problems
are solvable in polynomial time on graphs resembling trees. The graph property
of resembling a tree was eventually formalized as having bounded treewidth, and
in the beginning of the '90s, the class of problems efficiently solvable on graphs of
bounded treewidth was shown by Courcelle [24] to contain the class of problems
definable by the Monadic Second Order Logic (MSO); here, “efficiently solvable”
means FPT with respect to tw(G) and the size of the MSO formula. This result
is now known as Courcelle’s theorem and it is a prototype of an algorithmic
metatheorem: “logic L is decidable in time 7" on a graph class G.”

Courcelle’s theorem has soon been extended to an optimization version (Arn-
borg et al. [3]) and MSO-evaluation (Courcelle and Mosbah [26]). Using similar
techniques, analogous results for weaker logics were then proven for wider graph
classes such as graphs of bounded cliquewidth and rankwidth [25]. Results of
this kind are usually referred to as Courcelle’s theorem for a specific class of

structures.

Monadic Second Order Logic. Let us shortly introduce MSO over graphs.
In first-order logic (FO) we have variables for the elements (z,v,...), equality
for variables, quantifiers V, 3 ranging over elements, and the standard Boolean
connectives /A,V, => . MSO is the extension of FO by quantification over sets
(X,Y,...). Graph MSO has the binary relational symbol edge(z,y) encoding
edges, and traditionally comes in two flavours, MSO; and MSQO,, differing by the
objects we are allowed to quantify over: in MSO; these are the vertices and vertex
sets, while in MSOy we can additionally quantify over edges and edge sets. For
example, the 3-colorability property can be expressed in MSO; as follows:

Ele,XQ,Xg [\V/ZE(ZL‘EXl\/ZEGXQ\/erX:g)/\
Nioios77y (@ & X Vy & X; V ~edge(, y))]

For a formula ¢, we denote by |¢| the size (number of symbols) of p. We briefly
remark that MSO, can express properties which are not MSO; definable (e.g.,
Hamiltonicity). The relationship of MSO; and MSO, on various graph classes is
somewhat complicated (cf. Subsection [6.1.2). Typically, on graphs of bounded
treewidth, by MSO we mean MSQO,, and on graphs of bounded cliquewidth and
bounded neighborhood diversity, by MSO we mean MSO;.

Courcelle’s theorem proliferated into many fields. Originating among automa-
ta theorists, it has since been reinterpreted in terms of finite model theory [83],
database programming [53] and game theory [67]. Note the result of Gottlob et
al. [53] which shows that Courcelle’s theorem can be reinterpreted in the realm of
database programming. We highlight it because it can be phrased as an expres-
siity result: “the database language Datalog can efficiently express MSO queries
on bounded treewidth graphs.”

Lower bounds. Another research direction was to improve the computational
complexity of Courcelle’s theorem. Its complexity is f(|p|,7) - n, which is FPT
with respect to |p| and 7 = tw(G), but the function f grows as an exponential
tower in the quantifier depth of the MSO formula. Unfortunatelly, Frick and
Grohe [44] proved that this is unavoidable unless P = NP, which raises a question:
is there a (nontrivial) graph class where MSO model checking can be done in
single-exponential (i.e. 2’“0(1)) time? This was answered in the affirmative by
Lampis [75] for graphs of bounded neighborhood diversity: given a graph G, an

MSO; formula ¢ can be decided in time 2"/l . p,

MSO partitioning. A related problem is MSO PARTITIONING, where we are
given an MSO formula ¢ with one free set variable X, a graph G and an integer
r, and the task is to partition V(G) or E(G) (depending on ¢ being an MSO; or
MSO, formula) into 7 sets, all of which satisfy ¢; we use the standard notation
V(Q) for the vertices of G and E(G) for its edges. Rao [103] showed that MSO;
PARTITIONING is in XP with respect to cw(G) and the size of the formula.

Constraint Satisfaction Problem

The constraint satisfaction problem (CSP) is a powerful modeling tool. We con-
sider a very general setting where an instance I of CSP consists of a set of
variables V', a set of their domains D, a set of hard constraints H and a set

7

of soft constraints S. The hard constraints induce the set of feasible solutions
Feas(I) and the soft constraints then define an objective function over Feas(I).
The goal is to find a feasible solution with optimal objective value. The modeling
power of CSP is large: it naturally captures many graph problems, SATISFIABIL-
ITY, INTEGER LINEAR PROGRAMMING (ILP), problems in scheduling, planning,
databases, machine vision, belief maintenance, temporal reasoning, type recon-
struction, and many other areas of artificial intelligence; cf. a complexity-focused
review of Hell and Nesetfil [58].

As CSP captures many NP-hard problems, it is a natural problem to identify
tractable special cases of CSP. Structural graph theory has been of use in this
area as well. For example, Samer and Szeider [I06] study the parameterized
complexity of CSP with respect to the treewidth of various graphs related to a
CSP instance. The most natural graph is the primal graph G(I) (also known as
constraint graph), which has a vertex for each variable and an edge between two
variables if they appear together in a constraint. We let tw(/) = tw(G(I)) be the
treewidth of I. Already in 1990, Freuder [43] showed that CSP instances whose
constraint graph has treewidth bounded by 7 and whose maximum domain size is
D can be solved in time O(D™n). Later, Grohe et al. [55] proved that, assuming
FPT # W1, this is essentially the only nontrivial class of graphs for which CSP
is solvable in polynomial time (also cf. Marx [89]).

Extended Formulations

In recent years, a lot of attention has been given to study the extension complexity
of problems [22]: given a problem (), what is the minimum number of inequalities
representing a polytope whose (suitably chosen) linear projection coincides with
the convex hull H of all integral solutions of)7 Any polytope which projects
to H is called an extended formulation (or an extension) of H. The question
at hand is essentially an expressivity questions: is linear programming capable
of expressing H compactly? Indeed, the pioneering result of Yannakakis [117]
from 1991 was motivated by many claims that the Travelling Salesman Problem
(TSP) polytope is compactly expressible by a certain kind of linear programs,
which Yannakakis refuted. This notion of expressivity has also been extended
to semidefinite programming (SDP). Note that membership of a problem in the
class P does not necessarily imply the existence of an extended formulation of
polynomial size: Rothvoss [105] shows that the polytope of matchings has expo-
nential extension complexity, in spite of MAXIMUM MATCHING belonging to P.
On the other hand, the existence of an extended formulation of a problem II of
polynomial size trivially implies that II belongs to P.

1.2 Owur Contribution

1.2.1 Chapter [3; The CSP Polytope
The main result of Chapter |3 is the following theorem:

Theorem [3.0.1] There exists an extended formulation of the CSP polytope
CSP(I) that can be described by O(DT - n) inequalities, where n = |V|, D is
the largest domain size, and T = tw([).

Notice that, in a sense, this is an expressivity result: a certain subclass of
CSP instances can be compactly expressed with linear programming. Our proof
technique in this chapter is the following. We directly provide an LP related
to CSP(I) and prove that every vertex of this LP is integral. Thus, this LP
defines an extended formulation of the CSP polytope. This result was the first
meta-theorem in the theory of extended formulations, providing an extension
complexity upper bound for several important NP-hard problems on graphs of
bounded treewidth. Prior to our result, there was only a failed attempt [I10] at
proving the same result and several ad hoc proofs of specializations of our result
for various graph problems [I8| [79]; cf. Section (1.3

1.2.2 Chapter 4 The MSO Polytope

In Chapter 4] we prove an analogue of Courcelle’s theorem for polytopes. We say
that a set S is MSO-definable if S = S,(G) is the set of satisfying assignments of
an MSO formula ¢ on a graph G, represented in an appropriate space by their
characteristic vectors. Then, let P,(G) = conv(S,(G)) be the polytope obtained
as the convex hull of S,(G). We call it the MSO polytope.

Theorem There exists an extended formulation of P,(G) that can be
described by f(|p|, T) - n inequalities, where n is the number of vertices in G, T is
the treewidth of G and f is a computable function depending only on ¢ and T.

In other words, we prove that the extension complexity of P,(G) is linear in
the size of the graph G, with a constant depending on the treewidth of G and
the formula ¢.

This again provides a very general yet very simple meta-theorem about the
extension complexity of polytopes related to a wide class of problems and graphs;
we note that even though there is a certain equivalence between the expressivity
of MSO and CSP (cf. the next subsection), there are problems which are naturally
expressible in one way but not in the other.

In sharp contrast with the previous chapter, our proof technique here does
not directly consider an LP representing the extension P of P,(G). Rather, we
develop a geometric tool which we term the glued product of polytopes, and use it
to obtain P in a bottom-up way by gluing smaller polytopes.

Our proof essentially works by “merging the common wisdom” from the areas
of extended formulations and parameterized complexity. It is known that dynamic
programming can usually be turned into a compact extended formulation (Martin
et al. [88] and Kaibel [61]), and that Courcelle’s theorem can be seen as an
instance of dynamic programming [74], and therefore it should be expected that
the polytope of satisfying assignments of an MSO formula of a bounded treewidth
graph be small.

However, there are a few roadblocks in trying to merge these two folklore
wisdoms. For one, while Courcelle’s theorem being an instance of dynamic pro-
gramming in some sense may be obvious to a parameterized complexity theorist,
it is far from clear to anyone else what that sentence may even mean. On the
other hand, being able to turn a dynamic program into a compact polytope may
be a theoretical possibility for an expert on extended formulations, but it is by
no means an easy statement for an outsider to comprehend. What complicates

9

the matters even further is that the result of Martin et al. [88] is not a result that
can be used in a black box fashion. That is, a certain condition must be satisfied
to get a compact extended formulation out of a dynamic program. This is far
from a trivial task, especially for a theorem like Courcelle’s.

1.2.3 Chapter 5} Connecting MSO, CSP, and Treewidth

Chapter [5] ties together all of our previous research on polytopes, MSO, and CSP,
and provides a new perspective on designing algorithms and extended formula-
tions for bounded treewidth graphs.

We start by studying the glued product of polytopes in more depth. In partic-
ular, we study the decomposability of polyhedra: a polyhedron P is decomposable
if any integer point in its r-dilate rP = {rx | x € P} can be written as a sum
of r integer points from P; rP is essentially P blown up by a factor of r. We
show that the glued product of two decomposable polyhedra is decomposable.
Another property of the glued product is preserving the treewidth of matriced?]
of LPs defining the glued polytopes. Using these results, we are able to show:

Theorem [5.1.9, There is an extended formulation of P,(G) of size f(|¢|,T) - n,
where T = tw(G), which is decomposable and can be represented by an LP whose
defining matriz has treewidth bounded by f(|p|,T) for some computable function

f.

The importance of decomposability stems from the fact that if »P is de-
composable, then its integer points represent multisets of integer points of P of
cardinality r (or r-multisets for short). Recall the MSO PARTITIONING problem
mentioned above: using these notions we can essentially recast it as searching for
a decomposable integer point x € rP,(G) with an objective function enforcing
that x corresponds to a partition (cf. Chapter @

Furthermore, we show two interesting connections between Chapters |3 and
On one hand, we show that an extension P(I) of the CSP polytope C'SP(I)
can be constructed using the glued product, which proves additional properties
about it. Furthermore, we study the complexity of realizing an integer separable
minimization oracle for its r-dilate »P(7). We shall introduce this concept now.
An integer separable function is a function f: > " fi(x;) with f; : N — R for all
1. An integer separable minimization oracle for a set of points P is an algorithm
which, queried on an integer separable function f, returns an integer point x € P
minimizing f(x), or reports that P is empty or unbounded.

Theorem . The CSP polytope CSP(I) has a decomposable extended for-
mulation P(I) of size O(D7 - n) whose defining matriz has treewidth bounded by
a function of T = tw(I) and D, and an integer separable minimization oracle for
rP(I) can be realized in time min(DOC™) P77

length of I.

|||, where ||I|| is the encoding

On the other hand, we show that Courcelle’s theorem can be recast as an
instance of CSP of bounded treewidth. To that end, we introduce the notion of

2The treewidth of a matrix A is the treewidth of its Gaifman graph, which has a vertex for
each column of A and two vertices i # j are connected if a row a of A exists s.t. both a; and
a; are nonzero.

10

a CSP extended formulation. Similarly as with LPs, a CSP extended formulation
(or extension) J of a CSP I is a CSP instance whose variables V; are a superset
of the variables V; of I, and Feas(.J) coincides with Feas(/) after discarding these
extra variables. Then we have:

Lemma [5.2.8, Let I be a CSP instance with Feas(I) = S,(G). Then I has a
CSP extended formulation J of treewidth 2 and with domain sizes bounded by
fel, tw(G)) for some computable function f.

Applying Theorem to this instance then provides an alternative proof of
Theorem 371

In our applications, we typically wish to construct a CSP instance I with
Feas(I) C S,(G), i.e., its solutions are satisfying assignments of an MSO formula
¢ complying with some additional constraints. We say that these additional con-
straints have the local scope property if they can be expressed by hard constraints
which are restricted to variables corresponding to vertices of G contained in adja-
cent nodes of the tree decomposition of G. For n € N, we write [n| = {1,...,n}.
Then, we are able to extend Lemma [5.2.8| as follows:

Lemma Let G be a graph with tw(G) = 7 and (T, B) be its optimal tree
decomposition, ¢ be an MSOy formula with m free variables, and k an integer.
Let I be a CSP instance with variables {y’ | v € V(G),i € [m|} and {2 | a €
V(T),j € [k]}, with a hard constraint y € S,(G) and additional hard constraints
H' over y and x satisfying the local scope property. Then I has an extended
formulation J of treewidth bounded by a function of |p|, T, and k, and with
domain sizes bounded by a function of |¢|, T, and the domain sizes of x.

Let us return to integer separable minimization oracles. Our motivation for
studying them is the following. Let S C N" be a set; then let rS = {x!+---+x" |
x' . ..,x" € S}, and let ((f)) be the set of multisubsets of .S of size r. It is clear

that 7S and ((f)) are closely related, because 1S = {x'+---+x" | {x!,...,x"} €
((f))}, but they are not completely equivalent, because one element of S may

correspond to multiple elements of ((f)) Abusing our terminology slightly, we
say that there is an integer separable minimization oracle over the r-multisubsets
of S if there is an integer separable minimization oracle for S, and, together
with a minimum x, it returns its decomposition x* + --- +x" = x.

Then, combining Lemma [5.2.10| with Theorem and utilizing this close
connection between integer separable minimization over rC'SP(I) and the 7-
multisubsets of Feas(I), we show our “Master Theorem:”

Theorem [5.2.13] (Master MSO-CSP Theorem). Let I be a CSP instance as
in Lemma [5.2.10. Then xc(CSP(I)) < (f(l¢|.7) + 2k) - |I|| and it is pos-
sible to realize an integer separable minimization oracle over the decomposable
points of rC'SP(I) and over the r-multisubsets of Feas(I) in time min((f (||, 7)+
k)r’rf(\sﬂ\ﬁ)'i'k) ik

In summary, we have brought together notions from optimization (CSP,
integer separable minimization), geometry (decomposability), graph theory
(treewidth) and logic (Courcelle’s theorem). We believe that this combination

11

is unique and has its merit for the following reason. We have overviewed much
work on extensions and reinterpretations of Courcelle’s theorem. Our observation
is that for these results, it seems unavoidable to either start from scratch, or to
pull in many foreign notions (at least foreign to a researcher primarily familiar
with classical graph theory and optimization) such as automata, finite model the-
ory, etc. In this sense, the prior work resembles powerful black boxes. We believe
that, in contrast, our work provides an approachable and extensible framework.
Our main thesis can thus be stated as this:

A combination of MSO, CSP and geometry provides an extensible
framework for the design of extended formulations and parameterized
algorithms for graphs of bounded treewidth.

The following chapters attempt to demonstrate this claim but also explore
topics beyond problems on bounded treewidth graphs.

1.2.4 Chapter 6 Extensions of MSO Logic

As already mentioned, several extensions of Courcelle’s theorem have been proven
in the 90’s. However, some important graph problems do not admit an MSO
description and are W[1]-hard and thus unlikely to be solvable in FPT time on
graphs of bounded treewidth. This led to examination of extensions of MSO which
allow greater expressive power. The contribution of this chapter is twofold. First,
we survey and enrich the so far studied extensions of MSO logic:

o CardMSO (Ganian and Obdrzalek [49], which places cardinality constraints
on the free set variables,

« fairMSO (Kolman et al. [72]), which asks to optimize a “fair” objective
function, and,

e MSO-LCC (Szeider [111], which, for every vertex, places cardinality con-
straints on how many of its neighbors can belong to which free set variables.

While both MSO-LCC and CardMSO express certain cardinality constraints, the
constraints of CardMSO are inherently global and linear, yet the constraints of
MSO-LCC are local and nonlinear. This leads us to introduce two more fragments
and rename the aforementioned ones: CardMSO becomes MSOp, MSO-LCC be-

comes MSO" and we additionally have MSO® and MSOL . Furthermore, we have

lin*
MSOEE, the combination of MSOf and MSO}. , and MSO®", the combination of
MSO® and MSO:. MSOS®! thus represents the most expressive fragment under
our consideration. By this we give a complete landscape for all possible combi-
nations of global/local and linear/nonlinear. It is known that MSOj;, generalizes
fairMSO, and that already fairMSO is W[1]-hard on graphs of bounded treewidth.
Thus, we disregard fairMSO from now on.

Second, we study the parameterized complexity of the associated model check-
ing problem for all of the newly introduced fragments. We completely settle the
parameterized complexity landscape for the model checking problems with respect
to the parameters treewidth and neighborhood diversity. Refer to Figure for

a joint overview of both treewidth and neighborhood diversity, and Figure [1.3

12

Figure 1.2: MSO extensions. A partial order of MSO

LTI -~ extensions considered. An arrow denotes generaliza-
e MSOCt e, tions; e.g., MSOL generalizes MSO and is generalized
’ / \ * by MSOfL. Green (dashed) line separates logics whose
MSOL MSOC model checking is FPT parameterized by tw(G) (Cour-
\ b 4 celle [24]) from those whose model checking is W[1]-hard
MsoGL/ (both MSOk. and MSOS, capture the W[l]-hard Eq-

v "”V\ UITABLE 7-COLORING problem). Orange (dotted) line

MS Ohn MSOS separates logics whose model checking is FPT param-

\ / fin eterized by nd(G) (Theorem [6.3.5) from those whose

model checking is W[1]-hard (Theorems and|[6.3.2]).
MSO The model checking of all logics below the red (dashed-

dotted) line is XP parameterized by both tw(G) (Theo-

rem and nd(G) (Theorem .

which gives a more detailed summary of our and prior work separately for the two
parameters. We postpone formal definitions of logic extensions and corresponding
model checking to Chapter [6]

Our results in Chapter [f] could be summarized by saying that,

o on graphs of bounded treewidth, even the weakest MSO extensions are
already W([1]-hard, but even the strongest are still in XP, while

« on graphs of bounded neighborhood diversity, linear constraints make prob-
lems FPT, while nonlinear constraints make them W[1]-hard, and even the
strongest MSO extension is still in XP.

One important contribution here is that we have identified the source of hard-
ness for neighborhood diversity (or, indeed, already vertex cover number): the
nonlinearity of the constraints. For graphs of bounded treewidth we prove using

Theorem 5.2.13| the following.

Theorem MSO®" Model Checking is XP parameterized by tw(G) and |¢|.

Theorem [5.2.13] allows us to formulate the proof of Theorem [6.2.1] as pro-
viding a certain CSP instance, surpassing the typical complexity of a dynamic
programming formulation. We believe that the key advantage of our approach
when compared with prior work is that it is fairly declarative: we state what a
solution looks like and implicitely (by CSP constraints) describe how to obtain it
along a tree decomposition, but we do not describe the algorithm computing it.
This makes the proof cleaner and possible extensions easier. Moreover, since the
proof uses Theorem [5.2.13] we immediatelly obtain extension complexity upper
bounds as a corollary:

Corollary [6.2.2L Let G be a graph of treewidth T, I be an instance of MSO®*
Model Checking and P,(G) be the MSOCL polytope of satisfying assignments of
instance I. Then xc(P,(G)) < nfU9l") for some computable function f.

Afterwards, we briefly discuss how these resuts can be applied:

13

nd, ve 0 fairMSO MSOj;,
MSO FPT [75] FPT [90]

FPT, Thm [6.3.5

tw | 0 fairMSO MSOL MSOL

lin

MSO
MSO¢

lin

MSQ°¢

Figure 1.3: MSO extensions tables. FEach cell of a table corresponds to a
logic fragment formed by combining the fragments of the respective row and
column. Moving right and down in the table gives a more general MSO extension.
Thus, positive results (FPT, XP) spread to the left and up and W[1]-hardness
spreads to the right and down. Green background (lighter gray) stands for FPT
fragments, while orange (darker gray) stands for W[1]-hard and XP. The first
table provides positive results when parameterized by nd(G) and negative results
when parameterized by ve(G). The second table deals with parameterization by

tw(G).

Theorem Let G be a graph of treewidth T and with n = |V (G)|.

(XP) The following problems have algorithms with runtime n/™) and extended
formulations of the same size: GENERAL FACTOR, MINIMUM MAXIMUM OUT-
DEGREE, CAPACITATED DOMINATING SET, CAPACITATED VERTEX COVER,
VECTOR DOMINATING SET, GENERALIZED DOMINATION.

(FPT) The following problems have algorithms with runtime f(t + k) - n©®)
and extended formulations of the same size, with k specified further:

e EQUITABLE 7-COLORING, EQUITABLE CONNECTED 7-PARTITION, 7-
BALANCED PARTITIONING, with k =,

e GRAPH MOTIF, with k = x, where x is the number of colors.

For graphs of bounded neighborhood diversity we give two positive results.

Theorem [6.3.5. MSOS- Model Checking is FPT parameterized by nd(G) and |¢|.

lin
Theorem [6.3.15, MSO®" Model Checking is XP parameterized by nd(G) and |¢|.

We complement the above results with a hardness results for MSO and MSQ®
already when parameterizing by ve(G).

Theorem . MSO" Model Checking is W[1]-hard parameterized by ve (G) and
ol

14

Theorem MSO® Model Checking is W[1]-hard parameterized by vc (G) and
ol

Interestingly, our finding about hardness being caused by nonlinearity in the
case of neighborhood diversity carries over to a generalization of the SET COVER
problem. In the MULTIDEMAND SET MULTICOVER problem, we are given a
universe U = [k] of size k, multidemands d; C N for all i € [k], a covering system
represented by a multisubset F C 2V with a weight wr associated with each
F € F. The task is to find a multisubset 7' C F of minimum weight which
satisfies the demands, that is, for each i € [k], |[{F € F' | i € F}| € d;. We show
that the (non)linearity of the multidemands is crucial:

Corollary MULTIDEMAND SET MULTICOVER is W([1]-hard parameterized
by k.

Proposition [7.1.4. MULTIDEMAND SET MULTICOVER is FPT parameterized
by k when each d; is an interval.

1.2.5 Chapter [7 Shifted Combinatorial Optimization

In the last chapter, we study a wide generalization of standard combinatorial
optimization from the perspective of parameterized complexity. Shifted combina-
torial optimization is a new nonlinear optimization framework which is a broad
extension of standard combinatorial optimization, involving the choice of several
feasible solutions at a time. This framework captures well studied and diverse
problems ranging from so-called vulnerability problems to sharing and partition-
ing problems. In particular, every standard combinatorial optimization problem
has its shifted counterpart, which is typically much harder. Already with explic-
itly given input set the shifted problem may be NP-hard. In this chapter we study
the parameterized complexity of this framework.

Specifically, the following problem has been studied extensively in the litera-
ture.

(Standard) Combinatorial Optimization. Given S C {0,1}" and w € Z",
solve
max{ws |s € S} . (1.1)
The complexity of the problem depends on w and the type and representation of
S. Often, S is the set of indicating (characteristic) vectors of members of a family
of subsets over a ground set [n], such as the family of s—¢ dipaths in a digraph
with n arcs, the set of perfect matchings in a bipartite or arbitrary graph with n
edges, or the set of bases in a matroid over [n] given by an independence oracle.
Partly motivated by wvulnerability problems studied recently in the litera-
ture [4, [94] (as we shall discuss further on), we study a broad nonlinear extension
of Combinatorial Optimization, in which the optimization is over r choices of
elements of S and which is defined as follows. For a set S C R"”, let S denote
the set of n x r matrices having each column in S,

ST = {xeR™ |x' ..., x"€S}.

Call x,y € R™™" equivalent and write x ~ y if each row of x is a permutation of
the corresponding row of y. The shift of x € R™™" is the unique matrix X € R™*"

15

satisfying X ~ x and X' > --- > X", that is, the unique matrix equivalent to x
with each row nonincreasing. Our nonlinear optimization problem follows:

Shifted Combinatorial Optimization (SCO). Given S C {0,1}" and ¢ €
7", solve
max{cX | x € S"} . (1.2)

(Here ¢X is used to denote the ordinary scalar product of the vectors ¢ and X.)

Motivation

This problem easily captures many classical fundamental problems. For example,
given a graph G = (V, E) with n vertices, let S = {N[v] | v € V} C {0,1}",
where N[v] is the characteristic vector of the closed neighborhood of v, i.e. N[v]
contains v. Choose an integer parameter r and let ¢! = 1 for all i and ¢/ = 0 for
all 7 and all j > 2. Then the optimal objective function value of is n if and
only if we can select a set D of r vertices in GG such that every vertex belongs
to the closed neighborhood of at least one of the selected vertices, that is, when
D is a dominating set of G. Likewise, one can formulate the vertex cover and
independent set problems in a similar way.

Vulnerability. One specific motivation for the SCO problem is the following.
Suppose S is the set of indicators of members of a family over [n]. A feasible
solution x € S” then represents a choice of » members of the given family such
that the k-th column x* is the indicator of the k-th member. Call element 7 in the
ground set k-vulnerable in X if it is used by at least k of the members represented
by x, that is, if the i-th row x; of x has at least k ones. It is easy to see that the
k-th column X* of the shift of x is precisely the indicator of the set of k-vulnerable
elements in x. So the shifted optimization problem is to maximize

cx = Y {c|iis k-vulnerable in x, i € [n], k € [r]} .

Minimizing the numbers of k-vulnerable elements in x may be beneficial for sur-
vival of some family members under various attacks to vulnerable elements by
an adversary, see e.g. [4, [94] for more details. For example, to minimize the
number of k-vulnerable elements for some k, we set ¢ = —1 for all i and ¢} = 0
for all ¢ and all j # k. To lexicographically minimize the numbers of r-vulnerable
elements, then of (r — 1)-vulnerable elements, and so on, till that of 1-vulnerable
elements, we can set cf = —(n + 1)*~1 for all i, k.

Partitioning and coloring. As another natural example, consider ¢ with ¢} = 1
and c{ = —1for 1 < j <r. Then ¢X = n if and only if the columns of x represent
a partition of S. This formulation hence allows us to optimize over partitions of
the ground set. Or, consider ¢ with ¢; = (1,...,1,—1,...,—1) of length a > 0
with b < a ones, and let S be the family of independent sets of a graph GG. Then
max cX relates to fractional coloring of G; it holds that max ¢X = bn if and only
if G has a coloring by a colors in total such that every vertex receives b distinct
colors — this is the so-called (a : b)-COLORING problem.

Congestion game. Another interpretation of the problem is in terms of min-
imizing social cost in a congestion game [104]. We are given a set S C {0,1}"
of indicators of members of a family over ground set [n], representing a set of
strategies. For i € [n] we are now given a function f; : [r] — Z. Each x € S”

16

represents a choice of r players with x/ € S the choice of player j. The congestion
of x at element i € [n] is the number >77_, ¥, ; of players using i in x. The cost
of x at 7 is the value fi(37_, z;;) of f; on the congestion at i. The social cost
of x is 3iL, fi(Xj=; 74;) and we want to find x € S” minimizing social cost. For
instance, S may be the set of s—t dipaths in a digraph; each player chooses a
dipath; and the cost at edge « may be an increasing function f; of the congestion
at i. Now define ¢ € Z™" by ¢;; := fi(j — 1) — fi(j) for all ¢ and j. Then for
every x € S” we have cxX = I, f;(0) — X0, fi(3X7-, i) and so x maximizes cX
if and only if it minimizes the social cost. So the congestion and shifted problems
are equivalent. A case of special interest is when the f; are convez, implying the
rows of ¢ are nonincreasing, that is, ¢ = € is shifted.

Clearly, the set rS defined previously is related to the set S". Roughly, rS
corresponds to multisubsets of S, while S™ corresponds to r-tuples of elements
of S. Without going into details, we remark that this difference is significant.
Because the shift operator is indifferent to the order of the tuple x, SCO is more
closely related to optimizing over S than S”. We make this distinction clearer

in Chapter

Prior results

The complexity of the SCO problem depends on ¢ and on the representation of
S, and is typically harder than the corresponding standard combinatorial opti-
mization problem. Say, when S is the set of perfect matchings in a graph, the
standard problem is polynomial time solvable, but the shifted problem is NP-hard
even for r = 2 and cubic graphs, as the optimal value of the above 2-vulnerability
problem is 0 if and only if the graph is 3-edge-colorable [82]. The minimization
of 2-vulnerable arcs with S the set of s—t dipaths in a digraph, also called the
MINIMUM SHARED EDGES problem, was recently first shown to be NP-hard for
r variable in [94], then XP with respect to r [4], and finally FPT with respect to
r [41].

In the rest of this chapter we always assume that the number r of choices is
variable. Call a matrix ¢ € Z"*" shifted if ¢ = €, that is, if its rows are nonin-
creasing. In [63] it was shown that when S = {s € {0,1}" | As = b} where A is
a totally unimodular matrix and b is an integer vector, the shifted problem with
shifted ¢, and hence in particular the above lexicographic vulnerability problem,
can be solved in polynomial time. In particular this applies to the cases of S the
set of s—t dipaths in a digraph and S the set of perfect matchings in a bipar-
tite graph. In [82] it was shown that the shifted problem with shifted c is also
solvable in polynomial time for S the set of bases of a matroid presented by an
independence oracle (in particular, spanning trees in a graph), and even for the
intersection of matroids of certain type.

Our results

Our results can be summarized as follows. First we show that whether SCO over
an explicitly given set S parameterized by |S| belongs to the class XP, FPT, or
P depends on the objective function. Particularly, in the FPT case we use the
fact that convex integer minimization is FPT parameterized by the dimension,
which so far has few applications in the literature. Second, we study the shifted

17

problem over MSO-definable sets (which includes, e.g., the MSO PARTITIONING
problem). Our main results here are that shifted combinatorial optimization over
MSO-definable sets is in XP with respect to the MSO formula and the treewidth
(or more generally cliquewidth) of the input graph, and is W[1]-hard even when
the formula is first-order and the graph has bounded treedepth.

More specifically, we first consider the case when the set S is given explicitely.
While the standard problem is always trivial in such case, the SCO problem can
be NP-hard for an explicit set S (Proposition [7.1.1]). Our main results in this case
can be briefly summarized as follows:

Theorem (7.1.2. The shifted combinatorial optimization problem parameterized
by |S| = m is;

e for general ¢ in XP and WJ[1]-hard,
e for shifted c in FPT, and,
e for shifted —c in P.

Then, we study a more general framework of SCO for MSO-definable sets, i.e.
S = 9,(G). We give a result generalizing known results about MSO PARTITION-
ING:

Theorem [7.2.2] The shifted combinatorial optimization problem, for
e graphs of bounded treewidth and S defined by ¢ € MSO,, or
e graphs of bounded cliquewidth and S defined by ¢ € MSOy,

is XP parameterized by the width and |p|.

The proof of this statement connects SCO to integer separable minimiza-
tion and then uses Theorem To complement the previous tractability
result, we then prove the following negative result under much more restrictive
parametrization.

Theorem [7.3.1] There exists a fized First Order formula ¢ such that the as-
sociated MSO; PARTITIONING problem, and hence also the SCO problem with
S = 94(G), are W[1]-hard on graphs of bounded treedepth.

Thus the result of Theorem is in a sense best possible.

1.3 Related Work

1.3.1 CSP

Many important combinatorial optimization problems belong to the class of con-
straint satisfaction problems (CSP) [58]. Naturally, a lot of effort has been given
to design efficient approximation algorithms for CSP, to prove complexity lower
bounds for CSP, and to identify “islands of tractability” of CSP, recently espe-
cially from the point of view of parameterized complexity.

A prominent way of defining islands of tractability for CSP is to restrict the
relations that may occur in the constraints to a fixed set I', called a constraint

18

language. The main standing’| open problem in this direction is the dichotomy
conjecture of Feder and Vardi [34].

A very active area of research takes a different approach than restricting the
constraint language and instead considers the constraint graph of a CSP instance.
Besides the aforementioned results of Freuder [43], Grohe et al. [55], Marx [89] or
Samer and Szeider [I06], we highlight for example the recent work of Ganian et
al. [50] on combining treewidth with backdoors. A backdoor is essentially a set
of variables whose valuation turns the instance into a tractable one.

1.3.2 Extended Formulations

A lot of recent work on extended formulations has focused on establishing lower
bounds in various settings: exact, approximate, linear vs. semidefinite, etc. (see
for example [40, 6], 14, 80]). A wide variety of tools have been developed and used
for these results including connections to nonnegative matrix factorizations [117],
communication complexity [33], information theory [I5], and quantum communi-
cation [40], among others.

For proving upper bounds on extended formulations, several authors have
proposed various tools as well. Kaibel and Loos [62] describe a setting of branched
polyhedral systems which was later used by Kaibel and Pashkovich [64] to provide
a way to construct polytopes using reflection relations.

A particularly specific composition rule which we term glued product (cf. Sec-
tion was studied by Margot in his PhD thesis [87]. Margot showed that a
property called the projected face property suffices to glue two polytopes effi-
ciently. Conforti and Pashkovich [23] describe and strengthen Margot’s result to
make the projected face property to be a necessary and sufficient condition to
describe the glued product in a particularly efficient way.

Martin et al. [88] have shown that under certain conditions, an efficient dy-
namic programming based algorithm can be turned into a compact extended
formulation. Kaibel [61] summarizes this and various other methods.

CSP and graphs of bounded treewidth. Describing the polytope of CSP
solutions by the means of linear programming for instances of bounded treewidth
is not a new idea. In 2007, Sellmann et al. published a paper [I10] in which they
described a linear program that was supposed to define the convex hull of all
feasible solutions of a binary CSP when the constraint graph is a tree. They also
provided a procedure to convert a given CSP instance with bounded treewidth
into one whose constraint graph is a tree, at the cost of blowing up the number
of variables and constraints by a function of the treewidth. Unfortunately, there
was a substantial bug in their proof and one of the main theorems in the paper
does not even hold [109].

The paper [110] also implicitly includes this folklore result: if the constraint
graph has treewidth at most 7, then CSP can be solved by 7 levels of the Sherali-
Adams hierarchy (we are not aware of an explicit formulation of this result in
its generality though partial results of this type are known, e.g., for independent
set [9]). The resulting formulation is of size O(n") while our approach yields size
O(D7n). This formulation seems to have recently been rediscovered by Braun et

3 Although probably not for long; cf. recent claims for proof [19] 09, [119]

19

al. [16]. They give a uniform extended formulation for the MATCHING, INDEPEN-
DENT SET and VERTEX COVER polytopes of size O(n”), where uniform means
that the same extended formulation can be used for any graph, and a given graph
is only encoded in the objective function; this makes our extended formulations
nonuniform.

Laurent [79] provides extended formulations for the INDEPENDENT SET and
the CUT polytopes, both a special case of CSP, that have size O(27n) where T
denotes the treewidth of the given graph. These results are given in the context
of moment matrices as an application of a sparsity structure present in instances
of bounded treewidth. Independently, Buchanan and Butenko [I§] later gave the
same result for the INDEPENDENT SET polytope. Our results can be viewed as
a generalization: the size of our formulation for a general CSP, when applied to
the INDEPENDENT SET and the CUT polytopes, is also O(27n).

In a recent work, independently of our result, Bienstock and Munoz [§] define
a class of so called general binary optimization problems which are essential-
ly weighted boolean CSP problems, and, among other results, for instances of
treewidth 7 provide an LP formulation of size O(27n). Again, this is a special
case of our Theorem [3.0.1] It is worth mentioning at this point that every CSP in-
stance can be transformed into a boolean CSP instance by encoding every variable
with domain size D by [log D] boolean variables. This increases the treewidth
of the constraint graph by a factor of [log D| and thus leads to a formulation of
size O(27M°8Pln). This bound corresponds to O(D7n) in the special case that
D is a power of two, and to O(D72™n) in the general case. Compared to their
approach, we describe directly the polytope of the original problem and our proof
is self-contained, without relying on other techniques; also, our results apply not
only for binary CSP but for any CSP.

CSP and general graphs. Chan et al. [20] study the extent to which linear
programming relaxations can be used in dealing with approximating CSP. They
show that polynomial-sized LPs are exactly as powerful as LPs obtained from
a constant number of rounds of the Sherali-Adams hierarchy. They also prove
integrality gaps for polynomial-sized LPs for some CSP.

Raghavendra [100] shows that under the Unique Games Conjecture, a certain
simple SDP relaxation achieves the best approximation ratio for every CSP. In
a follow up paper, Raghavendra and Steurer [I0I] describe an efficient rounding
scheme that achieves the integrality gap of the simple SDP relaxation, and, in
another paper [102], they show unconditionally that the integrality gap of this
SDP relaxation cannot be reduced by Sherali-Adams hierarchies.

1.3.3 Algorithmic Metatheorems

Connecting different fields. Because of the wide relevance of the treewidth
parameter in many areas (cf. survey by Bodlaender [12]) and the large expres-
sivity of MSO and its extensions (cf. the surveys of Langer et al. [78] and Grohe
and Kreutzer [54]), considerable attention was given to Courcelle’s theorem by
theorists from various fields, reinterpreting it into their own setting. These rein-
terpretations helped uncover several interesting connections.

The classical way of proving Courcelle’s theorem is constructing a tree au-
tomaton A in time only dependent on ¢ and the treewidth 7, such that A accepts

20

a tree decomposition of a graph of treewidth 7 if and only if the corresponding
graph satisfies ; this is the automata theory perspective [24]. Another per-
spective comes from finite model theory [83] where one can prove that a certain
equivalence on the set of graphs of treewidth at most 7 has only finitely many
(depending on ¢ and 7) equivalence classes and that it behaves well [53]. (This
is the approach we chose to build on.) Another approach proves that a quite dif-
ferent equivalence on so-called extended model checking games has finitely many
equivalence classes [67] as well; this is the game-theoretic perspective. It can be
observed that the finiteness in either perspective stems from the same roots.
The result of Gottlob et al. [53] can also be viewed as an expressivity result:
they prove that on bounded treewidth graphs, a certain subset of the database
query language Datalog has the same expressive power as MSO. This provides
an interesting connection between automata theory and database theory. Our
results can be seen as an analogue connecting automata theory to LP and CSP.

Practicality of Courcelle’s theorem. Because of its unavoidably restric-
tive time complexity bounds, Courcelle’s theorem has long been considered a
classification-only tool. It was argued (e.g. by Niedermeier [92] or more recently
by Cygan et al. [28]) that proving a problem to be FPT on bounded treewidth
graphs using Courcelle’s theorem is only the first step, and one should afterwards
turn to designing a problem-specific algorithm attaining reasonable runtimes.
However, based on the recent work of Kneis et al. [67] and Langer et al. [78], an
MSO solver was implemented and evaluated [77], and it was found that it beats
commercial ILP solvers on several real-world instances. The work of the research
group of Woltran (e.g. [I0]) can be seen as a continuation of these efforts to bring
the theory behind Courcelle’s theorem to practical settings. For these reasons, we
think it is no longer fair to claim that Courcelle’s theorem is merely of theoretical
interest.

Extensions of Courcelle’s Theorem

Objective functions. A linear optimization version of Courcelle’s theorem was
given by Arnborg, Lagergren and Seese [3]. An extension to further objectives was
given by Courcelle and Mosbah [26]. Kolman, Lidicky and Sereni [72] introduce
MSO with a fair objective function (fairMSO) which, for a given MSO formula
©(F) with a free edge set variable F', minimizes the maximum degree in the
subgraph given by F', and present an XP algorithm. This is justified by the
problem being W[1]-hard, as was later shown by Masarik and Toufar [90], who
additionally give an FPT algorithm on graphs of bounded neighborhood diversity
for MSO; and an FPT algorithm on graph of bounded vertex cover for MSOs.

Extended logics. Along with MSO, Courcelle also considered counting MSO
(cMSO) where predicates of the form “|X| = p mod ¢” are allowed, with the
largest modulus ¢ constant. Szeider [I11] introduced MSO with local cardinal-
ity constraints (MSO-LCC) and gave an XP algorithm deciding it on graphs of
bounded treewidth. MSO-LCC can express various problems, such as GENER-
AL FACTOR, EQUITABLE 7-COLORING or MINIMUM MAXIMUM OUTDEGREE,
which are known to be W[1]-hard on graphs of bounded treewidth. Ganian and
Obdrzélek [49] study CardMSO, which is incomparable with MSO-LCC in its ex-

21

pressive power; they give an FPT algorithm on graphs of bounded neighborhood
diversity.

22

2. Preliminaries

In this chapter, we introduce the central notions and associated notation. Let n
be a non-negative integer; by [n] we denote the set {1,...,n}. For two integers
a,b we define the set [a,b] = {r € Z | a < z < b}.

We write vectors of numbers in boldface, e.g., x,y etc., and thus distinguish
them from their entries, written in normal font. The ¢-th entry of x is denoted
by x;, x(i) or x[i]. For a vector x and a subset I of coordinates, we denote
by x|; the projection of x to I, which is the subvector of x specified by the
coordinates I. We write tuples of other objects (e.g. vertices, vertex sets etc.)
as p = (p1,...,pr). By supp(x) = {i | x; # 0} we denote the support of x,
that is, the set of its nonzero coordinates. By A; we denote the j-th row of a
matrix A. Let z € Z; by (z) = log, x + 1 we denote the encoding length of z, and
extend this notion naturally to vectors (for x € Z", (x) = >, (z;)), matrices (for
A eZ™m (A) =37, (A;)) and functions with finite domains (for f : D — R,
(Y =Xiep(f(9))). For simplification, we sometimes write the dot product of two
vectors x and y incorrectly not as xTy, but as xy; the expression xy is always a
dot product.

2.1 Parameterized Complexity

A parameterized problem () is a subset of ¥* x Ny, where X is a finite alphabet.
A parameterized problem () is said to be fized-parameter tractable if there is an
algorithm that given (x,k) € ¥ x Ny decides whether (z, k) is a YES-instance
of @ in time f(k) - p(|z|) where f is some computable function of k alone, p is a
polynomial and |z| is the size measure of the input. The class of such problems
is denoted by FPT. The class XP is the class of parameterized problems that
admit algorithms with a run-time of |2|/* for some computable function f, i.e.
polynomial-time for every fixed value of k.

The theory of parameterized complexity also defines complexity classes W[t
for t > 1, where W[t] C XP for all integers t > 1. For instance, the k-
INDEPENDENT SET problem (with parameter k) is complete for W[1]. Problems
that are W[1]-hard do not admit an FPT algorithm unless the Exponential Time
Hypothesis (ETH) fails, which is considered unlikely.

2.2 Graphs and General Relational Structures

We use standard notation for graphs, see e.g. Diestel’s book [29]. For a vertex
v €V of a graph G = (V, E), we denote by Ng(v) the neighborhood of v in G,
that is, Ng(v) = {uv € V | {u,v} € E}; the subscript G is omitted when clear
from the context. For a rooted tree T, Nr(v) denotes the down-neighborhood of
v in G, i.e., the set of descendants of v. For general directed graphs, N (v) and
N¢ (v) denotes the in-neighborhood and out-neighborhood of v in G, respectively.

Regarding more general relational structures, in most cases we stick to stan-
dard notation as given by Libkin [83]. A wvocabulary o is a finite collection of
constant symbols ¢y, ca, ... and relation symbols P, P, Each relation sym-

23

bol P; has an associated arity r;. A o-structure is a tuple A = (A, {c/'}, {PA})
that consists of a universe A together with an interpretation of the constant and
relation symbols: each constant symbol ¢; from o is associated with an element
¢ € A and each relation symbol P; from ¢ is associated with an r;-ary relation
PiA C ATi

To give an example, a graph G = (V, E) can be viewed as a oj-structure
(V,0,{E}) where FE is a symmetric binary relation on V' x V" and the vocabulary
o1 contains a single relation symbol. Alternatively, for another vocabulary oo
containing three relation symbols, one of arity two and two of arity one, we can
view a graph G = (V| E) also as a oy-structure I(G) = (V;,0,{E;, Ly, Lg}), with
Vi=VUE, Er ={{v,e} | ve€eec E}, Ly =V and Lg = E; we will call
I(G) the incidence graph of G.

2.3 Graph Widths

2.3.1 Treewidth and Pathwidth

For notions related to the treewidth of a graph, we mostly stick to the standard
terminology as given in the book of Kloks [66]; the only deviation is in the leaf
nodes of the nice tree decomposition where we assume that the bags are empty.

Definition 2.3.1 (Tree decomposition, Treewidth). A tree decomposition of a
graph G = (V, E) is a pair (T, B), where T is a tree and B is a mapping B :
V(T) — 2V satisfying

Edge condition: for any uv € E, there exists a € V(T') such that u,v € B(a),

Connectedness condition: if v € B(a) and v € B(b), then v € B(c) for all ¢
on the path from a to b in T.

We use the convention that the vertices of the tree are called nodes and the sets
B(a) are called bags. Occasionally, we will view the mapping B as the set B =
{B(u) |ueV}.

The treewidth tw((7, B)) of a tree decomposition (7, B) is the size of the
largest bag of (T, B) minus one. The treewidth tw(G) of a graph G is the mini-
mum treewidth over all possible tree decompositions of G.

Before moving on to more refined notions, we also mention the closely related
parameter pathwidth.

Definition 2.3.2 (Pathwidth). A path decomposition of a graph G is its tree
decomposition (T, B) such that T is a path. The pathwidth pw(G) of a graph G
is the minimum treewidth over all possible path decompositions of G.

Definition 2.3.3 (Nice tree decomposition). A nice tree decomposition is a tree
decomposition in which T is a rooted tree and each node is one of the following

types:
Leaf node: a leaf a of T with B(a) = 0.

Introduce node: an internal node a of T with one child b for which B(a) =
B(b) U{v} for some v € B(a); for short we write a = b * (v).

24

Forget node: an internal node a of T with one child b for which B(a) = B(b) \
{v} for some v € B(b); for short a =b1 (v).

Join node: an internal node a with two children b and ¢ with B(a) = B(b) =
B(c); for short a = A(b, c).

For a vertex v € V, we denote by top(v) the topmost node of the nice tree
decomposition (7, B) that contains v in its bag. For any graph G of treewith 7
on n vertices, a nice tree decomposition of G of width 7 with at most 8n nodes
can be computed in time f(7)-n, for some computable function f: Bodlaender’s
algorithm [I1] can find an optimal tree decompositon, and [66, Lemma 13.1.3]
then converts it into a nice tree decomposition.

Given a graph G = (V, E) and a subset of vertices {vy,...,v4} €V, we denote
by G[{vi,...,vq}] the subgraph of G induced by the set {vy,...,v4}. Given a
tree decomposition (7', B) and a node a € V(T'), we denote by T, the subtree
of T rooted in a, and by G, the subgraph of G induced by all vertices in bags
of T,, that is, G, = G[Upey (r,) B(b)]. Throughout this thesis we assume that
for every graph, its vertex set is a subset of N. We define the following operator
n: for any set U = {v1,v,...,0x} C N, n(U) = (vi,, Viy,...,0;,) such that
Viy < Uiy < U,

Definition 2.3.4 (Gaifman graph). Given a relational structure A = (A, S) with
S C 24, its Gaifman graph is the graph G(A) = (A, E) where E = {{u,v} | 35 €
S:u,ve St

The Gaifman graph G(A) associated with a matrix A € R™*" is the Gaifman
graph of the structure ([n], {supp(A;) | ¢ € [m]}) where A; is the i-th row of
A. In other words, the graph G(A) has a vertex for each column of A and two
vertices are connected by an edge if the supports of the corresponding columns
have non-empty intersection.

Definition 2.3.5 (Treewidth of a matrix). The treewidth of a matrix A € R"*™
denoted tw(A), is the treewidth of its Gaifman graph. The treewidth of a system
of inequalities Ax < b is defined as tw(A).

2.3.2 Treedepth

Definition 2.3.6 (Treedepth [91]). Let the height of a rooted tree or forest be
the mazximum root-to-leaf distance in it. The closure cl(F') of a rooted forest F' is
the graph obtained from F by making every vertex adjacent to all of its ancestors.
The treedepth td(G) of a graph G is one more than the minimum height of a
forest F' such that G C cl(F).

Note that always td(G) > tw(G) + 1 since we can use the vertex sets of
the root-to-leaf paths of the forest F' in a proper order as the bags of a tree-
decomposition of G.

2.3.3 Cliquewidth

Definition 2.3.7 (Cliquewidth [27]). Let G be a graph. The cliquewidth of G
is the smallest number of labels v = cw(G) such that some labeling of G can

25

be constructed by an algebraic vy-expression using the following operations (where
1<i,j<9):

1. create a new vertex with label 1,

2. take the disjoint union of two labeled graphs;

3. add all edges between vertices of label v and label 7; and
4. relabel all vertices with label i to have label j.

The parameter rankwidth [96] has an involved definition which we skip here,
because we never directly work with graphs of bounded rankwidth. It is significant
to us only since it is currently an open problem whether an optimal y-expression
can be computed for a graph with cw(G) = 7. However, an optimal rank-
decomposition of G' can be computed in FPT time using an algorithm of Hlinény
and Oum [59], and can be used as an approximation of a y-expression with up to
an exponential jump, which does not matter for a fixed parameter ~ in theory.

2.3.4 Neighborhood Diversity

We say that two (distinct) vertices u, v are of the same neighborhood type if they
share their respective neighborhoods, that is, when N(u) \ {v} = N(v) \ {u}.

Definition 2.3.8 (Neighborhood decomposition). Let G = (V, E) be a graph. We
call a partition of its vertices T = {T1,...,T,} a neighborhood decomposition if,
for every i € [v], all vertices of T; are of one neighborhood type. We call the sets
Ty, ...,T, types.

Note that every type induces either a clique or an independent set in G and
two types are either joined by a complete bipartite graph or no edge between
vertices of the two types is present in G. Thus, we introduce the notion of a type
graph Tr(G). The vertices of Tr(G) are the types T1,...,T, and two types T;, T}
are joined by an edge if T; and T} are joined by a complete bipartite graph in G.
If the decomposition 7 is clear from the context, we omit the subscript 7.

Definition 2.3.9 (Neighborhood diversity [75]). A graph G = (V, E) has neigh-
borhood diversity v (nd(G) = v) if its minimal neighborhood decomposition is of
size v.

The definition above is sound, as it is known [75] that a minimal neighborhood
decomposition is unique. Moreover, it can be computed in linear time.

For completeness, we introduce one more graph parameter. For a graph G =
(V.E), aset U CV is a vertexr cover of G if for every edge e € E it holds that
enU # 0.

Definition 2.3.10 (Vertex cover number). A graph G has vertex cover number
k (ve(G) = k) if its minimum vertex cover is of size k.

Recall that these graph parameter form a hierarchy as presented in Figure|l.1

26

2.4 Constraint Satisfaction Problem (CSP)

Definition 2.4.1 (CSP instance). A CSP instance [= (V,D,H,S) consists of

e a set of variables z,, one for each v € V; without loss of generality we as-
sume that V' = [n], but variables can have arbitrary names in formulations,

a set D of finite domains D, (also denoted D(v)), one for each v € V,

a set of hard constraints H C {Cy | U C V'} where each hard constraint
Cy € H with a scope U = {iy,ig,...,i} TV and iy < iy < --- <, is a
\U|-ary relation Cy C D;, X D;y X -+ % D;,

e a set of soft constraints S C {Cy | U C V} where each soft constraint
Cy € S with a scope U = {iy,ia,...,ix} TV and iy < iy < -+ <y, is a
\U|-ary relation Cy C D;, X D;y X -+ X D;, .

A vector z € Z™ satisfies the hard constraint Cy € H if and only if z|y € Cy.

We say that a vector z* = (2],...,25) is a feasible assignment for [if z* €

Dy x ... x D, and z* satisfies every hard constraint C' € H; let Feas(I) be the set
of all feasible assignments of I. We denote by D; the largest size of all domains,
that is, D; = max,ey |Dy|, and we omit the subscript I if the instance is clear
from the context. Finally, we denote by [|D||, ||| and ||S|| the length of D, H
and S, respectively, and define it as ||D|| = Y,cy | Do, ||H| = Xeyen |Cul and
|S|| = e, es |Cul. Analogously, we let |[I|| = || D| + ||H|| + ||S]| be the length

of 1.

Decision / Max / Min CSP. In the decision version of CSP, the set S of
soft constraints is empty and the task is to decide whether there exists a feasible
assignment. In the mazimization (minimization, resp.) version of the problem,
the task is to find a feasible assignment that maximizes (minimizes, resp.) the
number of satisfied (unsatisfied, resp.) soft constraints. Note that there is no
difference between maximization and minimization versions of the problem with
respect to optimal solutions but the two versions differ significantly from an
approximation perspective.

Weighted CSP. In the weighted version of CSP we are also given a weight
function w : S — R that specifies for each soft constraint C' € S its weight w(C').
The goal is to find a feasible assignment that maximizes (minimizes, resp.) the
total weight of satisfied (unsatisfied, resp.) constraints. The unweighted version
of CSP is equivalent to the weighted version with w(C) =1 for all C' € S.

Even more generally, the relations in the soft constraints can be replaced
by bounded real valued payoff functions: a soft constraint wy € C with U =
{i1,42,...,ix} is not a |Ul|-ary relation but a function wy : D;, x D;, X ... X
D;, — R and the payoff of the soft constraint wy for a feasible assignment z* is
wy (2*|y); the objective is to maximize (minimize, resp.) the total payoff. Then,
|S|l = Xu, |wu|, where |wy| denotes the size of the subset of D;, x --- x D;, for
which the function wy; is nonzero.

Definition 2.4.2 (Constraint (primal) graph). The constraint (or primal) graph
of I denoted G(I) is defined as G(I) = (V, E) where E = {{u,v} | 3Cy €
SUH s.t. {u,v} CU}.

27

Definition 2.4.3 (Treewidth of CSP). The treewidth of a CSP instance I tw([)
is defined as the treewidth of its constraint graph tw(G(I)).

In binary CSP, every hard and soft constraint is a unary or binary relation,
and in boolean CSP, the domain D, of every variable v € V' is D, = {0, 1}.

In Chapter 5] we will use Freuder’s algorithm for solving CSPs of small
treewidth:

Theorem 2.4.4 (Freuder [43]). For a CSP instance I of treewidth T and
mazimum domain size D, a minimum weight solution can be found in time

O(D™n + 1| + [IS])-

2.5 Monadic Second Order Logic

The monadic second order logic MSO extends first order logic using so called
monadic variables, which are variables for sets of vertices in MSO; and in addition
variables for sets of edges in MSQO,. To simplify the presentation, without loss of
generality (cf. [98, Subsection 3.1.3]) we can assume that the input formulae are
given in a variant of MSO; that uses only set variables (and no element variables).

Thus, atomic formulas are ¢; for every constant symbol ¢;, Pi(Xy,...,X,,)
for every r;-ary relational symbol P; and variables X;,...,X,,, and X C Y for
two variables X,Y. MSO formulas are built from atomic formulas using usual
Boolean connectives (—, A, V, —, ++) and quantification over variables (VX,3X).
We also use the usual shortcuts such as X =Y for X CY AY C X ete. A (set)
variable X is free in ¢ if it does not appear in any quantification in ¢. If X is
the tuple of all free variables in ¢, we write <p()?). A variable X is bound in ¢ if
it is not free. By qr(p) we denote the quantifier rank of ¢ which is the number
of quantifiers of ¢ when transformed into the prenex form (i.e., all quantifiers are
at the beginning of the formula). Let G be a graph, S C V(G), and ¢(X) be an
MSO formula with one free variable. We write

G |= ¢(5)

to indicate that ¢ for G if X is interpreted as S; similarly for multiple free
variables.

In our proofs we will restrict our attention to MSO; for two reasons which we
only sketch now; see a detailed argument in Subsection [6.1.2] First, on graphs
of bounded treewidth, we can equivalently study MSQO; over the vocabulary o,
instead of MSOy over the standard graph vocabulary o;. Second, on graphs of
bounded neighborhood diversity (and thus also cliquewidth), deciding MSO, is
not even in XP.

MSO-definable sets. The following definition allows us to phrase our results as
results about the expressivity and optimization over MSO-definable sets.

Definition 2.5.1 (MSO-definable sets). For a graph G on |V(G)| = n vertices,
we interpret a 0/1 vector x € {0,1}™™ as m sets Xy, ..., X,, CV where v € X;

iff 1 = 1. We then say that x satisfies a formula ¢ with m free variables if
GEo(Xy,...,Xm). Let

S,(G) = {x | x satisfies ¢ in G} .

28

When m = 1, we omit the superscript i and call the coordinates of x simply x,

forv e V(G).

2.6 Polytopes, Extended Formulations and Ex-
tension Complexity

For background on polytopes we refer the reader to Grinbaum [56] and Ziegler
[120].

We write vectors of numbers in boldface, e.g., x,y etc., and thus distinguish
them from their entries, written in normal font. The ¢-th entry of x is denoted
by x;, x(i) or x[i]. For a vector x and a subset I of coordinates, we denote
by x|; the projection of x to I, which is the subvector of x specified by the
coordinates I. We write tuples of other objects (e.g. vertices, vertex sets etc.)
as p = (p1,-..,pr). By supp(x) = {i | x; # 0} we denote the support of x,
that is, the set of its nonzero coordinates. By A; we denote the j-th row of a
matrix A. Let x € Z; by (z) = log, z + 1 we denote the encoding length of x, and

extend this notion naturally to vectors (for x € Z", (x) = >, (z;)), matrices (for
A eZ™m, (A) =37 ,(A;)) and functions with finite domains (for f: D — R,

(fY = Xiep(f(9))). For simplification, we sometimes write the dot product of two
vectors x and y incorrectly not as xyT, but as xy; the expression xy is always a
dot product.

Definition 2.6.1 (Hyperplane). A hyperplane in R™ is a closed convex set of
the form {x | aTx = b} where a € R",b € R.

Definition 2.6.2 (Halfspace). A halfspace in R" is a closed convex set of the
form {x | aTx < b} where a € R" b € R. The inequality aTx < b is said to define
the corresponding halfspace.

Definition 2.6.3 (Convex hull). A convex hull of a set V = {vy,...,v,} CR?
is the set conv(V) = {\vi+ -+ v | X0 N =15 N, >0 fori € [n]}.

Definition 2.6.4 (Polytope). A polytope P C R" is a bounded subset defined
by intersection of finite number of halfspaces. A result of Minkowsky-Weyl states
that equivalently, every polytope is the convex hull of a finite number of points.

Definition 2.6.5 (Valid inequality). Let h be a halfspace defined by an inequality
aTx < b; the inequality is said to be valid for a polytope P if P = P N h.

Definition 2.6.6 (Face). Let aTx < b be a valid inequality for polytope P; then,
PN {x|a™x = b} is said to be a face of P.

Note that, taking a to be the zero vector and b = 0 results in the face being
P itself. Also, taking a to be the zero vector and b = 1 results in the empty set.
These two faces are often called the trivial faces and they are polytopes “living
in” dimensions n and —1, respectively. Every face — that is not trivial — is itself
a polytope of dimension d where 0 < d <n — 1.

It is not uncommon to refer to three separate (but related) objects as a face:
the actual face as defined above, the valid inequality defining it, and the equation
corresponding to the valid inequality. While this is clearly a misuse of notation,
the context usually makes it clear as to exactly which object is being referred to.

29

Definition 2.6.7 (Vertices and Facets). The zero dimensional faces of a polytope
are called its vertices, and the (n — 1)-dimensional faces are called its facets.

We denote by vert(P) the set of vertices of a polytope P. By Definition [2.6.4]
we have that P = conv(vert(P)).

Definition 2.6.8 (Extended formulation). Let P be a polytope in RY. A polytope
Q in R¥" 4s called an extended formulation or an extension of P if P is a
projection of () onto the first d coordinates. Note that for any linear map m :
R — R? such that P = m(Q), a polytope Q' exists such that P is obtained by
dropping all but the first d coordinates on Q)', and, moreover, Q and Q)" have the
same number of facets.

Definition 2.6.9 (Size of a polytope). The size of a polytope is defined to be the
number of its facet-defining inequalities.

Definition 2.6.10 (Extension complexity). Finally, the extension complexity of
a polytope P, denoted by xc(P), is the size of its smallest extended formulation.

We refer the readers to the surveys [22] [61), 1T5] 116] for details and back-
ground of the subject and we only state two basic propositions about extended
formulations here.

Proposition 2.6.11. Let P be a polytope with a vertex set V.= {vy,...,v,}.
Then xc(P) < n.

Proof. Let P = conv ({vy,...,v,}) be a polytope. Then, P is the projection of

X =)\ivi;Z)\izl;)\iz()forie[n}}.

=1 i=1

Q= {x

It is clear that @ has at most n facets and therefore xc(P) < n. O

Proposition 2.6.12. Let P be a polytope obtained by intersecting a set H of
hyperplanes with a polytope Q. Then xc(P) < xc(Q).

Proof. Note that any extended formulation of (), when intersected with H, gives
an extended formulation of P. Intersecting a polytope with hyperplanes does

not increase the number of facet-defining inequalities (and only possibly reduces
it). m

30

3. Extension Complexity of the
CSP Polytope

Before stating the main result of this chapter, we additionally introduce the notion
of extended feasible assignments.

Extended feasible assignments. Most natural graph problems are modeled
as maximization or minimization CSP. In order to express the objective function
as a linear function, it is useful to additionally consider binary variables for soft
constraints which indicate whether a given constraint is satisfied or not. Formal-
ly, for a given feasible assignment z* we define an extended feasible assignment
ex(z*) = (z*,h*) € R""IS| as follows: the coordinates of h* are indexed by the
soft constraints from S (or, more precisely, their scopes) and for each Cy € S,
we have h}; = 1 if and only if z*|y € Cy, and h}; = 0 otherwise. We denote by
Feas“ (1) = {ex(z*) | z* € Feas(I)} the set of all extended feasible assignments
for I.

CSP polytopes. For every instance I we define two polytopes: CSP**(I) is
the convex hull of Feas® (1) and C'SP(I) is the convex hull of Feas(l). We also
define three trivial linear projections:

® prOjV<Z> h) =1z, prOjE(Za h) = ha projid(za h) = (Z7 h)

where z € R” and h € RS/ and observe that proj, (C.SP*(I)) = CSP(I).
Our main result is then summarized as the following theorem.

Theorem 3.0.1. For every CSP instance I = (V,D,H,S), there exists an ex-
tended formulation P(I) of CSP(I) and CSP (1) of size O(D™n) where T is the
treewidth of I; moreover, given a tree decomposition of the constraint graph of 1
of width T, the corresponding LP can be constructed in time O(D™n).

As a corollary, in Section we obtain upper bounds on the extension
complexity for several NP-hard problems on the class of graphs with bounded
treewidth; as far as we know, these results have not been known.

3.1 Integer Linear Programming Formulation

We start by introducing the terms and notation that we use throughout this
section. We assume that I = (V, D, H,S) is a given instance of CSP. For the sake
of simplicity of the presentation we do not consider the problem in the general
weighted case here, although our techniques apply in the general setting as well.
Let A be a symbol not appearing in any of the domains D,, u € V. For every
subset W C V' we define the set of all configurations of W as

’C(W>:{(alu---7an) |VCU EH<UgW — a]UGCU),
andVigZW:ozi:)\}

Let k € IC(U) be a configuration and v € V. Recall that since k is a vector, k(v)
refers to the v-th element of k. For v € V' \ U and « € D,,, we use the notation

31

k[v < @] to denote the vector k’ such that k'(v) = @ and k'(u) = k(u) for every
u # v. Note that k[v <— a] does not necessarily have to be a configuration.

For an n-dimensional vector k = (a, ..., a;,) and a subset of variables U C V'
we denote by k [the restriction of k to U that is defined as an n-dimensional
vector with k [y (i) = k(i) for i € U and k [y (i) = A for i ¢ U (i.e., we set to A
all coordinates of k outside of U).

In our linear program, for every index v € V' and every ¢ € D,, we introduce
a binary variable y’. The task of the variable y’ is to encode the value of the
CSP-variable z,: the variable y! is set to one if and only if 2, = i. Since in
every solution each variable assumes a unique value, we enforce the constraint
Yiepw) Yo = 1 for each v € V.

For every configuration k € Up.c,esun K(U) we introduce a binary variable
g(k). The intended meaning of the variable g(k), for k € (U) and U C V, is
to provide information about the values of the CSP-variables z, for u € U in the
following way: g(k) = 1 if and only if for every u € U, z, = k(u). To ensure
consistency between the y and g variables, for every Cpy € S U H and for every
v € U, we enforce the constraint Y ycicu)m(w)=i 9(K) = y'. Note that for binary
CSP, the g variables capture the values of CSP-variables z for pairs of elements
from V' that correspond to edges of the constraint graph.

Relaxing the integrality constraints we obtain the following initial LP relax-
ation of the CSP problem I = (V,D,H,S):

Yooy =1 YoeV (3.1)
i€D(v)
g(k) =1 VCy € SUH Yo € U Vi€ D(v) (3.2)
kek(U):k(v)=1
0<yg<1. (3.3)

Note that there is a one to one correspondence between the (extended) feasible
assignments of I and integral solutions of —; from now on we denote by
proj; the linear projection of the convex hull of integral solutions of —
to CSP*(I). Also observe that the total weight of CSP-constraints satisfied by

an integral vector (y, g) satisfying (i3.1)—(3.3]) isﬂ

Z w(Cr) Z g(k) .

Cyes keK(U):k|yeCy

Unfortunately, even for CSP problems whose constraint graph is series-

parallel, the polytope given by the LP (3.1)—(3.3) is not integral (consider, e.g.,
the instance of CSP corresponding to the independent set problem on K3). The
weakness of the formulation is that no global consistency among the y variables
is guaranteed. To strengthen the relaxation, we introduce new variables and
constraints derived from a tree decomposition of the constraint graph of I.

3.1.1 Extended Formulation

Here we describe, for every CSP instance I = (V,D,H,S), a polytope P(I),
and in the next subsection we prove that P(I) is an extended formulation of

'In the case of general payoff functions, the total weight is given by
2wy s 2akek(U)wo (k)0 WU (Klu)g(k)

32

CSP(I) and CSP(I). The set of variables in the given LP description of P(I)
is substantially different from the set of variables used in the LP f, and
the set of new constraints is completely different from the the set of constraints
in the LP (3.1)-(3.3). Whereas in the previous subsection, there is (roughly)
a variable g(k) for every feasible assignment of every subset of CSP variables
corresponding to a soft or hard constraint, here we have a variable for every
feasible assignment of every subset of CSP variables corresponding to a bag in a
given tree decomposition of the constraint graph. Nevertheless, as we show after
defining P(I), there exists a simple linear projection of P(I) to the convex hull
of all integral points in the polytope given by the LP f.

Let (7, B) be a fixed nice tree decomposition. Let Kp = Ugev () K(B(a)) be
the set of all configurations of all bags in 7. We use V; C V(T') to denote the
subset of all introduce nodes in 7" and Vp C V(T') to denote the subset of all
forget nodes in 7.

For every configuration k € Kp we introduce a binary variable f(k). As in
the previous subsection, the intended meaning of the variable f(k) for a € V(T
and k € IC(B(a)), is to provide information about the values of the CSP-variables
2z, for u € B(a) in the following way: f(k) = 1 if and only if for every u € B(a),
zy = k(u). To ensure consistency among variables indexed by the configurations
of the same bag, namely to ensure that for every a € V(T') there exists exactly
one configuration k € K(B(a)) with f(k) = 1, we introduce for every a € V(T)
the LP constraint Yyexc(p)) f(k) = 1.

For every introduce node ¢ € V(T') with a child b € V(T') and for every config-
uration k € K(B(b)) we have the constraint Y cx(p(e)x 15,=k / (K') = f(k), and
symmetrically, for every forget node ¢ € V(T') with a child b € V(T') and for ev-
ery configuration k € K(B(c)) we have the constraint > yex () 15, =k f(K') =
f (k).

We remark that the idea of ensuring local consistency over the bags of a

tree decomposition is indeed natural, but also profound. It is one of the crucial
tools in heuristics for general CSPs, and also the key idea in Freuder’s algorithm

(Theorem [2.4.4)).

Relaxing the integrality constraints and putting all these additional con-
straints together, we obtain:

Yo fk)=1 Va € V(T) (3.4)
keK(B(a))
f(k')=fk) VeeV,VkeK(B(b)) where b is (3.5)
KER(B(0)) K 5w =k the only child of ¢
f(K) = f(k) Vce Vg VkeK(B(c)) where b is (3.6)
KEL(B0))X 5=k the only child of ¢
0<f<1. (3.7)

For the given binary CSP instance I, we denote the polytope associated with the
LP (3.4)-(3.7), as P(I). Note that it is not necessary to add any constraints for
a join node ¢ = A(a,b): since B(a) = B(b) = B(c), the variables f(k) for all
k € K(B(c)) are “shared” by a and b.

33

Consider now a vector f € P(I) and the following set of linear equations:

vi= Y. f(k) VaeV(T),VveB(a),Vi€D, (38)
keK(B(a)):k(v)=t
g(k) = 3 f(K') Va€V(T),YCy € SUH s.t. U C B(a),Vk € K(U) .

k' eK(B(a))k [y=k
(3.9)

It is just a technical exercise to check that for a given f € P([), there al-
ways exists a unique solution (y,g) of this LP and that the unique (y,g) is a
linear projection of f. Moreover, such a vector (y,g) also satisfies the LP con-
straints (3.1)—(3.3). The point is that there exists a linear projection, obtained
from (3.8)—(3.9), of P(I) into the polytope defined by the LP (3.1)—(3.3); more-
over, an integral point from P([) is mapped on an integral point. From now on
we denote this projection projs.

3.1.2 Proof of Theorem [3.0.1l

As in the previous subsections, we assume that I = (V, D, H,S) is a given instance
of CSP, G = (V, E) is the constraint graph of I and (7, B) is a fixed nice tree
decomposition of G. We start by introducing several notions that will help us
dealing with tree decompositions and our linear program.

Recall that for a node a € V(T), T, is the subtree of T rooted in a. The
configurations relevant to T, are those in the set R(a) = Upev(r,) K(B(D)), and
the variables relevant to T, are those f(k) for which k € R(a). For succinctness
of notation, we denote the projection f|z(,) of the vector f on the set of variables
relevant to T, also by f|,. The constraints relevant to T, are those containing
only the variables relevant to T,. We say that a vector p € {0, 1} agrees with
the configuration k € R(a) if p(k) = 1.

Let f be a fixed solution of the LP f that corresponds to a vertex
of the polytope P(I). Our main tool is the following lemma; our approach was
partially inspired by the proof of the matching polytope theorem as given by
Schrijver [107].

Lemma 3.1.1. For every node b € V(T'), there exist a positive integer M and
binary vectors p1,Ppa,- .-, Pm € {0, 1}R(b), some possibly identical, such that

& cvery p; satisfies the constraints relevant to Ty,

& [, = ﬁ Zﬁ‘il Pi-
Proof. By induction. We start in the leaves of T" and proceed in a bottom-up
fashion.

Base case. Assume that b € V(7)) is a leaf of the nice decomposition tree T'. By
the definition of a nice tree decomposition, the bag B(b) is empty and thus R(b)
is empty. This makes the lemma trivially satisfied by the empty vector.

Inductive step. Consider an internal node ¢ € V(7T') of the nice decomposition
tree T'. We distinguish three cases: c is a join node, c is an introduce node and ¢
is a forget node.

34

Join node. Assume ¢ = A(a,b). Recall that B(a) = B(b) = B(c). By
the inductive assumption, there exist integers M and M’ and integral vectors
P, ..., Py € {0,1}”@ each of them satisfying the relevant constraints for 7},
and such that f|, = ﬁ S M. pi, and integral vectors qi, ..., qur € {0, 1}7%®) each
of them satisfying the relevant constraints for T, and such that f|, = 15 M q.

Two vectors p; and q; that agree with a given configuration k € IC(B(c)) can
be easily merged into an integral vector r € {0, 1}®(¢) that satisfies r|, = p; and
r|, = q;; as the set of all constraints relevant to 7. is the union of the constraints
relevant to T, and the constraints relevant to T}, the vector r satisfies also all the
constraints relevant to 1.

For simplicity we assume, without loss of generality, that M = M’. Then,
by the property & and since B(a) = B(b) = B(c), for every configuration k €
K(B(c)), the number of vectors p; that agree with k is equal to the number of
vectors q; that agree with k, namely M - f(k). Thus, it is possible to match the
vectors p; and q; one to one in such a way that both vectors in each pair agree
with the same configuration; let ry,rs, ..., ry, denote the result of their merging
as described above. Then the vectors r; satisfy the property # as explained in
the previous paragraph, and by construction they also satisfy the property é.

Introduce node. Assume that ¢ = b* (v) and thus B(c) = B(b) U {v}. By the
inductive assumption, there exists integer M and integral vectors p1,...,pm €
{0,1}R®)each of them satisfying the relevant constraints for T, and such that
fl, = ﬁ S M p;. Without loss of generality we assume that for every variable
relevant to T,, its M-multiple is integral. We partition the vectors p1,...,pum
into several groups indexed by the configurations from K(B(b)): the group Zy,
for k € KC(B(b)), consists exactly of those vectors p; that agree with k.

Consider a fixed configuration k € (B(b)) and the corresponding group Z.
Note that the size of this group is M - f(k). We further partition the group Zx
into at most | D, | subgroups Zy/, where k' = k[v < j|, for every j € D, satisfying
k[v < j| € K(B(c)), in such a way that Zy contains exactly M - f(k’) vectors (it
does not matter which ones); the LP constraint makes this possible. Then,
for every j € D,, we create from every vector p € Zyj,«j a new integral vector
qp in the following way:

o for every k € R(b), ¢p(k) = p(k); this guarantees dpls = P,
« gp(klvj]) =1,
o forevery i € D,, i # j, ¢p(k[v < i]) = 0.

Obviously, the new vectors qp satisfy all constraints relevant to 7;, and it
is easy to check that they satisfy all constraints relevant to T, as well, given
the definitions above. Moreover, the definitions above imply that the vectors qp
satisfy the property é.

Forget node. Assume that ¢ = b1 (v) and thus B(c) = B(b) \ {v}. This case
is symmetric to the previous one in that instead of splitting the groups Zy into
smaller groups Zy/, we merge them into bigger 7.

By the inductive assumption, there exists an integer M and integral vectors
Pi,...,Pu € {0,1}7*®) cach of them satisfying the relevant constraints for Tj,
and such that f|, = ﬁ Zf\il p;. Without loss of generality we assume that for
every variable relevant to 7., its M-multiple is integral. We partition the vectors

35

P1,- .-, Py into several groups indexed by the configurations from IC(B(b)): the
group Zy, for k € K(B(b)), consists exactly of those vectors p; that agree with
k. Note that the size of Zy is M - f(k).

For every k' € K(B(c)) we create a bigger group Zy by merging |D,| of the
groups Zy, namely those satisfying k|p) = k. By the LP constraint (3.6)), the
new group Zy contains exactly M - f(K’) vectors. For every k' € IC(B(c)), we
create from every vector p € Zy a new integral vector qp in the following way:

o for every k € R(b), qp(k) = p(k).
If (B(c)) € R(b), there is nothing more to do. Otherwise we further define
e gp(K') =1, and for every k € K(B(c)), k # K/, gp(k) = 0.

We have to check that the vectors qp satisfy all constraints relevant to 7;. The
only possibly new constraints are those using variables f(k') for k' € K(B(c))
and it is easily seen that they are satisfied, given the definitions above. Also, the
definitions above imply that the vectors qp, satisfy the property . O

By applying Lemma to the whole tree T', that is, to the subtree rooted
in the root of T, we immediately obtain that f is an integral vector, and, thus,
also the corresponding vertex of P(I) is integral. As this holds for every vertex
of P(I), we conclude that P(I) is an integral polytope.

Considering the notes at the ends of the previous two subsections, we also
conclude that C'SP(I) = proj, (proj,(P(I)) and CSP(I) = proj, (CSP*(I)).

To complete the proof of Theorem [3.0.1 we observe that the number of vari-
ables and constraints in the LP (3.4)-(3.7) is O(D™n).

3.2 Applications

The purpose of this section is to make explicit the extension complexity upper
bounds given in Theorem for several well known graph problems. Note that
in all considered cases the constraint graph obtained from our CSP formulation is
identical with the input graph; specifically, this means the treewidth of the CSP
instance is the treewidth of the input graph. This is not obvious: for example,
a natural CSP formulation of the MINIMUM DOMINATING SET problem involves
constraints over a neighborhood of a vertex and thus has a possibly unbounded
treewidth. (On the other hand, it ¢s possible to provide a bounded treewidth CSP
formulation for MDS. However, its constraint graph is not G but the incidence
graph I(G) of G, and the constraints are a little complicated, so we do not describe
it here. Moreover, an existence of a compact extension for the DOMINATING SET
polytope follows from the main result of the next chapter, Theorem M)

We find it interesting that the attained extension complexity upper bounds
almost meet the best possible, assuming Strong ETH, time complexity lower
bounds, given by Lokshtanov et al. [85]. They show for several problems whose
time complexity is upper bounded by O(c"n®W), that they cannot be solved in
time O((c—€)™n®W), for any € > 0, unless SETH fails. The only exception in our
list is the MULTIWAY CUT problem where the corresponding lower bounds are
not known. To state our results, we use for each problem the following template:

36

PROBLEM NAME Projection Extension complexity Time complexity

INSTANCE:

SOLUTION: :

CSP FORMULATION: V', D, H, S. CSP version: Decision / MAX / MIN
where Projection is the name of the linear projection that yields the natural poly-
tope of the problem I from the C'SP*(I) polytope (or from the P(I) polytope,
in case of the OCT problem).

COLORING / CHROMATIC NUMBER [5] proj,, O(q¢™n) O(q"™n)

INSTANCE: Graph G = (V, E), set of colors [q].

SOLUTION: A coloring of G with ¢ colors with no monochromatic edges.

CSP FORMULATION: V = [n], D, = [q] for every v € V, H,, = {(i,7) | i €
D,,j € Dy,i# j} for every uwv € E, S = 0. Decision
Comment: Note that CHROMATIC NUMBER X (G) of G is always upper bounded
by 7 + 1 since graphs treewidth 7 are 7-degenerate [66] and 7-degenerate graphs
are (7 + 1)-colorable [I12]. Thus, if the goal is to determine x(G), it suffice to
find the smallest g such that C'SP**(I) is non-empty.

LisT-H-COLORING / LiIST HOMOMORPHISM proj,, O(L™n) O(L™n)
[35]

INSTANCE: Graph G = (V| E), graph H = (Vy, Ey) possibly containing loops,
and for every vertex v € V a set L(v) C V.

SOLUTION: A mapping f : V — Vg such that Yuv € E it holds that f(u)f(v) €
Ey and f(v) € L(v) for every v € V.

CSP FORMULATION: V = [n], D, = L(v) for every v € V, H,, = {(i,j) | i €
D.,j € Dy,ij € Ey} for every uwv € E, S = 0. Decision
Comment: Note that the problems LiST COLORING, PRECOLORING EXTEN-
SION and H-COLORING (or GRAPH HOMOMORPHISM) are all special cases of
this problem. The lower bound given by Lokshtanov et al. [85] applies to all of
them since COLORING is a special case of each of them.

UNIQUE GAMES [65] proj,; O(t™n) —
INSTANCE: Graph G = (V, E), an integer ¢ € N, a permutation 7, of order ¢ for
every edge e € F.

SOLUTION: A mapping ¢ : V' — [t] such that the number of edges uv € E with
Tuw(l(u)) = £(v) is maximized.

CSP FORMULATION: V = [n], D, = [t|] for every v € V, H = 0, C,, =
{(i, mu(2)) | i € D,} for every edge uv € E. Max
Comment: The decision variant of this problem is not interesting as it is trivially
solvable in polynomial time.

MiN Murtiway CuTt [5] projp O(t™n) O(t™n)
INSTANCE: Graph G = (V| E), an integer ¢ € N and ¢ vertices si,...,s, € V.
SOLUTION: A partition of V into sets Vi,...,V; such that for every i we have

s; € V; and the total number of edges between V; and V; for 7 # j is minimized.
CSP FORMULATION: V = [n], D, = [t] foreveryv € V., H =0, Cy, = {(i,1) | i €
[t]} for every edge uv € E. Max

37

Comment: Setting z, = ¢ models vertex v belonging to the set V;. Not satisfying
the constraint (', means that the edge uv belongs to the multiway cut.

Max Cur [5] projp O(27n) O(27n)
INSTANCE: Graph G = (V, E).

SOLUTION: A partition of vertices into two sets Vi, V5 such that the number of
edges between V; and V5 is maximized.

CSP FORMULATION: V = [n|, D, = {0,1} for every v € V, H = 0, C,, =
{(1,0),(0,1)} for every edge uv € E. Max
Comment: The values 0, 1 model the vertex belonging to the set V; or V5. If we
replace maximization by minimization, the problem becomes EDGE BIPARTIZA-
TION (aka EDGE OCT) problem which is a parametric dual of Max CuUT.

MiIN VERTEX COVER [5] proj,, O(2™n) O(27n)
INSTANCE: Graph G = (V, E).

SOLUTION: A set of vertices C' C V' of minimal size such that every edge contains
a vertex v € (' as at least one of its endpoints.

CSP rorRMULATION: V = [n|, D, = {0,1} for every v € V, H,, =
{(1,1),(0,1),(1,0)} for every edge uwv € E, C, = {0} for every vertex v € V.
MIN

Comment: The values 1,0 model the vertex belonging to C or V' \ C.

MAX INDEPENDENT SET [5] proj, O(2™n) O(2™n)
INSTANCE: Graph G = (V, E).

SOLUTION: A set of vertices C' C V' of maximal size such that no edge contains
both its endpoints in C.

CSP rorMuLATION: V = [n|, D, = {0,1} for every v € V, H,, =
{(0,0),(0,1),(1,0)} for every edge uv € E, C, = {1} for every vertex v € V.
Max

Comment: The values 1,0 model the vertex belonging to C or V' \ C.

ODD CYCLE TRANSVERSAL [85] Projoor © projs O(3™n) O(3™n)
INSTANCE: Graph G = (V, E).

SOLUTION: A subset of vertices W C V' of minimal size such that G[V \ W] is a
bipartite graph.

CSP FORMULATION: V' = [n], D, = {0,1,2} for every v € V, H,, = {0,1,2}*\
{(0,0),(1,1)} for every edge uv € E, C, = {0, 1} for every v € V. MIN
Comment: The values 0, 1,2 model the vertex belonging to either the first or
the second partite of a bipartite graph, or the deletion set W. Satisfying the
constraint C', corresponds to not putting v in the deletion set W. Also known as
VERTEX BIPARTIZATION. The projection projocr : P(I) — {0,1}V is defined as

prOJOCT(y%y%ay%aygvy%ayga cee 7y27y7117y3ug> = (y%aygv s 7?/721) .

38

4. Extension Complexity of the
MSO Polytope

Let us give an outline of the following chapter. In Section [4.1) we describe the
foundations of Courcelle’s theorem by introducing the notion of [m]-colored 7-
boundaried graphs and their logical equivalences. In Section .2 we describe
our geometric tool, the glued product of polytopes. In Section we prove the
existence of compact extended formulations for MSO polytopes parameterized by
the length of the given MSO formula and the treewidth of the given graph. In
Section we describe how to efficiently construct such a polytope given a tree
decomposition of a graph. Finally, in Section 4.5 we show applicability of our
proof to graphs of bounded cliquewidth, and obtain an optimization version of
Courcelle’s theorem in a particularly simple way.

4.1 Preliminaries

4.1.1 [m]-colored T-boundaried Graphs

For an integer m > 0, an [m]-colored graph is a pair (G, V) where G = (V, E) is a
graph and V= (Vi, ..., Vi) is an m-tuple of subsets of vertices of G called an m-
coloring of G. For integers m > 0 and 7 > 0, an [m/|-colored T-boundaried graph
is a triple (G,V,ﬁ) where (G, V) is an [m]-colored graph and p' = (p1,...,p:)
is a 7-tuple of vertices of GG called a boundary of G. If the tuples V and p are
clear from the context or if their content is not important, we simply denote an
[m]-colored 7-boundaried graph by GI"l7. For a tuple 5= (p1, ..., p;), we denote
by p the corresponding set, that is, p = {p1,...,p-}.

Figure 4.1: A [3]-colored 3-boundaried graph with p'= (p1, p2, p3).

Two [m]-colored 7-boundaried graphs (Gy,V,) and (Gs, U, §) are compatible
if the function h : p — ¢, defined by h(p;) = ¢; for each i, is an isomorphism of
the induced subgraphs Gy [{p1,...,p-}] and Go[{q1, ..., ¢-}], and if for each i and
J,pi €Vyeq el

Given two compatible [m]-colored 7-boundaried graphs G = (G1, U, p)
and G[zm]’T = (Gs, W,), the join of G[lm}’T and G[Qm}’T, denoted by G[lm]’T @ G[zm]’T,
is the [m]-colored 7-boundaried graph GI™'™ = (G, V',) where

e (is the graph obtained by taking the disjoint union of GG; and G5, and for
each 7, identifying the vertex p; with the vertex ¢; and keeping the label p;
for it;

39

(Go, W, Q)

(GL [jvm S5 (G27 Wa (?)

Figure 4.3: The join of two [m]-colored T-boundaried graphs.

. V= (V1,..., V) with V; = U; UW; and every ¢; replaced by p;, for each j
and 17;

e p=(p1,...,p;) with p; being the node in V(G) obtained by the identifica-
tion of p; € V(G1) and ¢; € V(Gs), for each i.

Because of the choice of referring to the boundary vertices by their names in
G it does not always hold that G/ & GI™™ = G @ GI™7: however, the
two structures are isomorphic and equivalent for our purposes (see below).

4.1.2 Monadic Second Order Logic and Types of Graphs

An [m]-colored 7-boundaried graph G = (V, E) with boundary p,...,p, col-
ored with Vi,...,V,, is viewed as a structure (V7,{p1,...,p-},{Fr, Lv,Lg,
Vi,..., Vi, }); for notational simplicity, we stick to the notation GI™'™ or (G, \7,]5)
The corresponding vocabulary is denoted by o, .. We denote by MSOIk, 7, m|
the set of all MSO; formulae ¢ over the vocabulary o, ,, with qr(¢) < k.

Two [m]-colored 7-boundaried graphs GI™7 and GI™" are MSO[k]-
elementarily equivalent if they satisfy the same MSOIk, 7, m] formulae; this is
denoted by GI™™ =MSO GI"T The main tool in the model theoretic approach
to Courcelle’s theorem, that will also play a crucial role in our approach, can

be stated as the following theorem which follows from [83] Proposition 7.5 and
Theorem 7.7].

Theorem 4.1.1 ([83]). For any fived 7,k,m € N, the equivalence relation =M5°
has a finite number of equivalence classes.

40

Let us denote the equivalence classes of the relation =Y by C =
{ai...,ay}, fixing an ordering such that a; is the class containing the empty
graph. Note that the size of C depends only on k, m and 7, that is, |C| = f(k, m,T)
for some computable function f. For a given MSO formula ¢ with m free vari-
ables, we define an indicator function p, : {1,...,|C|} — {0,1} as follows: for
every i, if there exists a graph GI™™ € a; such that GI"™ |= ¢, we set pp(i) =1,
and we set p,(i) = 0 otherwise; note that if there exists a graph G™'™ € ; such
that GI™™ |= ¢, then G |= o for every G € q.

For every [m]-colored 7-boundaried graph GI™7 its type, with respect to the
relation =79¢ is the class to which G} belongs. We say that types o; and
a; are compatible if there exist two [m]-colored 7-boundaried graphs of types «;
and «; that are compatible; note that this is well defined as all [m]-colored 7-
boundaried graphs of a given type are compatible. For every ¢ > 1, we will encode
the type a; naturally as a binary vector {0, 1}l with exactly one 1, namely with
1 on the position 7.

An important property of the types and the join operation is that the type of
a join of two [m]-colored 7-boundaried graphs depends on their types only. The
following lemma really only says this simple fact; we encourage the reader not be
frightened by notation. We will see that the join operation corresponds to join
nodes of a tree decomposition. Thus, the following lemma will be key in dealing
with join nodes.

Lemma 4.1.2 (Join node lemma [83, Lemma 7.11] and [53, Lemma 3.5]). Let
Glmlr, GLT/H}’T, G,[)m}’T and GI[T]’T be [m]-colored T-boundaried graphs such that
Glmr =MSO GIMT gpg G ZMSO G Then (GIMT @ GYT) =psO
(G & G,

The importance of the lemma rests in the fact that for determination of the
type of a join of two [m]-colored 7-boundaried graphs, it suffices to know only
a small amount of information about the two graphs, namely their types. The
following two lemmas deal in a similar way with the type of a graph in the
remaining situations of an introduce and a forget node. Essentially, the lemmas
say that the type of an [m]-colored 7-boundaried graph obtained by attaching a
new vertex v to the boundary and coloring it is entirely determined by the type
of the original graph, the way v is attached to the boundary, and the coloring of
v. The lemma which follows after deals analogously with the situation when we
omit a vertex from the boundary.

—

Lemma 4.1.3 (Introduce node lemma [53, implicit]). Let (Gq, X, 5), (Gb, Y,)
be [m]-colored T-boundaried graphs and let (G, X', p), (Gy,Y",¢) be [m]-colored
(T + 1)-boundaried graphs with G, = (V, E), Go = (V. E'), Gy, = (W, F), Gy =
(W', F") such that

1' (Gaaia@ E%SO (Gb’?’(f)’.

2.V = VU{w} for somev & V, Nw) C p, 7 is a subtuple of p' and
(Ga/[V],X'[V]J)/[V]) = (Gvaﬁ);

3. W' =W U{w} for some w ¢ W, N(w) C q, ¢ is a subtuple of ¢ and
(Gb’[W]vyl[W]aq/[W]) = (Gb7Y7®7'

41

4. (Ga/,X’,ﬁ) and (Gb,717’,(]_7) are compatible.
Then (Gg, X', ') =MSO (Gy, Y,).

Lemma 4.1.4 (Forget node lemma [53, implicit]). Let (Gq, X,5), (Gy, Y, q) be
[m]-colored T-boundaried graphs and let (Go, X', 9), (Gy,Y",q') be [m]-colored
(1 + 1)-boundaried graphs with G, = (V, E), Gy = (V', E"), G, = (W, F), Gy =

(W', F") such that

1. (Ga/,X’,ﬁ) 52450 (Gb’> }7/’ q_;);

2.V CV/, |V!|=|V|+1, §is a subtuple of ' and (Gu[V],X'[V],P[V]) =
(Ga, X, 9);

3. W CW' W =|W|+1, is a subtuple of ¢ and (Gy[W],Y'[W],¢[W]) =
(Gy, Y, Q).

Then (Gq, X, 7) =M5° (G, Y,).

These three lemmas are examples of Feferman-Vaught-style theorems, in the
context of algorithmic metatheorems also known as the “composition method”.
Its applicability is large; cf. a survey of Makowsky [86].

4.1.3 Feasible Types

Suppose that we are given an MSO; formula ¢ over g, with m free variables and
of quantifier rank at most k, a graph G of treewidth at most 7 represented as the
o9 structure /(G), and a nice tree decomposition (7, B) of the graph G.

For every node of T' we are going to define certain types and tuples of types
as feasible. Recall that the operator n(X) for X C V orders X according to a
fixed ordering of V' (Subsection [2.3.1). For a node b € V(T') of any kind (leaf,
introduce, forget, join) and for o € C, we say that « is a feasible type of the node
b if there exist X1, ..., X,, C V(Gy) such that (G,, X, n(B(b))) is of type o where
X = (X1,...,Xn); we say that X realizes type o on the node b. We denote the
set of feasible types of the node b by F(b).

For an introduce node b € V(T') with a child a € V(T') (assuming that v is
the new vertex), for a € F(a) and € F(b), we say that («,) is a feasible pair
of types for b if there exist X = (Xy,...,X,,) and X’ = (X/,..., X/ realizing
types a and 3 on the nodes a and b, respectively, such that for each i, either
X! = X; or X] = X; U {v}. We denote the set of feasible pairs of types of the
introduce node b by F,(b).

For a forget node b € V(T') with a child a € V(T) and for 5 € F(b) and
a € F(a), we say («, B) is a feasible pair of types for b if there exists X realizing
£ onband a on a. We denote the set of feasible pairs of types of the forget node
b by F,(b).

For a join node ¢ € V(T) with children a,b € V(T) and for a € F(c),

7 € F(a) and v, € F(b), we say that (y1, 79,) is a feaszble tmple of types for c
if 71, 72 and « are mutually compatlble and there exist X! , X (2 realizing v; and
v, on a and b, respectively, such that X = (XU X2, ... ,X}n U X2) realizes a on
c. We denote the set of feasible triples of types of the join node ¢ by Fi(c).

42

We define an indicator function v : C x V(T') x V(G) x [m] — {0, 1} such
that v(3,b,v,i) = 1 if and only if there exists X = (X1,...,X) realizing the
type 5 on the node b € V(T') with v € B(b) and v € X;. Additionally, we define
p:CxV(G) x [m] — {0,1} to be u(B,v,i) = v(B, top(v), v, 7).

4.2 Glued Product of Polytopes over Common
Coordinates

The (cartesian) product of two polytopes P, and P; is defined as
P x Py =conv ({(x,y) | x € P1,y € P»}).
The following is a well known fact.

Proposition 4.2.1. Let Py, P, be two polytopes. Then
XC(Pl X PQ) < XC(Pl) -+ XC(PQ) .

Proof. Let 1 and ()5 be extended formulations of P; and Ps, respectively. Then,
()1 X Q2 is an extended formulation of Py x P,. Now assume that @ = {x | Ax <
b} and Q2 = {y | Cy < d} and that these are the smallest extended formulations
of P, and P,, resp. Then,

Q1 x Qy={(x,y) | Ax <b,Cy <d} .

That is, we have an extended formulation of P; x P, of size at most xc(P;) +
XC(PQ).]

We are going to define the glued product of polytopes, a slight generalization
of the usual product of polytopes. We study a case where the extension complex-
ity of the glued product of two polytopes is upper bounded by the sum of the
extension complexities of the two polytopes and which exhibits several other nice
properties. Then we use it in Section [4.3]to describe a small extended formulation
for the MSO polytope P,(G) on graphs with bounded treewidth.

Let P C R®"™ and Q C R%®** be 0/1-polytopes defined by m; and msy
inequalities and with vertex sets vert(P) and vert(Q), respectively. Let Ip C
[d1+k] be a subset of coordinates of size k, I C [d2+k] be a subset of coordinates
of size k, and let Ip = [dy + k] \ Ip. Recall that for a vector x and a subset of
its coordinates I, we denote by x|; the projection of x to the coordinates I. The
glued product of P and @, (glued) with respect to the k coordinates Ip and I,
denoted by P X, @, is defined as

P x;, Q = conv ({<X|I}:7y> € RUTetr | x € vert(P),y € vert(Q), x|, = y|IQ}) :

We adopt the following convention while discussing glued products in the rest
of this chapter. In the above scenario, we say that P X, () is obtained by gluing
P and @ along the k coordinates Ip of P with the k coordinates Ig of Q. If,
for example, these coordinates are named z in P and w in (), then we also say
that P and @ have been glued along the z and w coordinates and we refer to the

43

coordinates z and w as the glued coordinates. In the special case that we glue
along the last k£ coordinates, the definition of the glued product simplifies to

P x;, QQ = conv ({(x,y,z) € REteth | (x 7) € vert(P), (y,z) € Vert(Q)}) .

This notion was studied by Margot [87] who provided a sufficient condition
for being able to write the glued product in a specific (and efficient) way from the
descriptions of P and Q). We will use this particular way in Lemma [£.2.2] The
existing work [23], 87], however, is more focused on characterizing exactly when
this particular method works. We do not need the result in its full generality
and therefore we only state a very specific version of it that is relevant for our
purposes; for the sake of completeness, we also provide a proof of it.

Lemma 4.2.2 (Gluing lemma). Let P and @ be 0/1-polytopes and let the k
(glued) coordinates in P be labeled z1, ..., zy, and the k (glued) coordinates in @
be labeled wy, ..., wy. Suppose that 17z < 1 is valid for P and 1w < 1 is valid
for Q. Then xc(P x; Q) < xc(P) + x¢(Q).

Proof. Let (x',2',y’,w') be a point from P x QN {(x,z,y,w)|z = w}. Observe

that the point (x',z’) is a convex combination of points (x’, 0), (X', e1), ..., (X', ex)
from P with coefficients (1 — X%, 20),2!,2},..., 2, where e; is the i-th unit
vector. Similarly, the point (y’,w’) is a convex combination of points

(¥,0),(y',e1),...,(y, e) from Q with coefficients (1 — X8, w}), w), wh, ..., w).
Notice that for every j € [k], (x},e;,y}) is a point from the glued product. As
w; = z; for every i € [k], we conclude that (x',w’,z") € P x; Q. Thus, by Propo-
sition the extension complexity of P xj @ is at most that of P x) which
is at most xc(P) + xc(Q) by Proposition [£.2.1] O

We remark that in some sense the Gluing lemma is optimal. The glued product
has an additive extension complexity only when the gluing is done over coordi-
nates containing at most one 1. If some vertices of the multiplicand polytopes
contain more than one 1 along the glued coordinates, then the extension com-
plexity of the glued product cannot in general be additive, and must require a
multiplicative factor strictly larger than one. We omit a proof of this claim here
since the polytopes we consider do satisfy the requirement of the above lemma.

4.3 Extension Complexity of the MSO Polytope
For a given MSO; formula cp()?) over gy with m free set variables X, ..., X,,,
we define a polytope of satisfying assignments on a given graph G, represented

as a og-structure I(G) with |V(I(G))| = n, in a natural way as the convex hull
of S,(G), that is,

P,(G) = conv ({y € {0,1}"™ | y satisfies }).

For the sake of simplicity, we state the following theorem and carry out the
exposition for graphs; however, identical arguments can be carried out analogously
for any oo-structure (or any fixed signature o) whose Gaifman graph has treewidth
bounded by 7.

44

Theorem 4.3.1 (Extension complexity of the MSO polytope). For every graph
G represented as I(G) and for every MSO; formula ¢ over o,, xc(P,(G)) <
f(el, 7) - n where f is some computable function, T = tw(G) and n = |Vj].

Proof. Let (T, B) be a fixed nice tree decomposition of treewidth 7 of I(G) and
let k denote the quantifier rank of ¢ and m the number of free variables of ¢. Let
C be the set of equivalence classes of the relation =}5¢. For each node b of T we
introduce |C| binary variables that will represent a feasible type of the node b; we
denote the vector of them by t; (i.e., t, € {0, 1}/l). For each introduce and each
forget node b of T, we introduce additional |C| binary variables that will represent
a feasible type of the child (descendant) of b; we denote the vector of them by d,
(ie., d, € {0,1}). Similarly, for each join node b we introduce additional |C]|
binary variables, denoted by 1, that will represent a feasible type of the left child
of b, and other |C| binary variables, denoted by r;, that will represent a feasible
type of the right child of b (i.e., 1, r, € {0, 1}/).

We are going to describe inductively a polytope in the dimension given (rough-
ly) by all the binary variables of all nodes of the given nice tree decomposition.
Then we show that its extension complexity is small and that a properly chosen
face of it is an extension of P,(G).

First, for each node b of T', depending on its type, we define a polytope P, as
follows:

Icl

—
» bisa leaf. P, consists of a single point P, = {100...0}.

b is an introduce or forget node. For each feasible pair of types (o, ;) €
F,(b) of the node b, we create a vector (dy,ty) € {0,1}2¢ with d,(i) =
tp(7) = 1 and all other coordinates zero. P, is defined as the convex hull of
all such vectors.

 bis a join node. For each feasible triple of types (as, oy, a;) € Fi(b) of the
node b, we create a vector (1, 1y, t,) € {0, 133l with I,(h) = r,(i) = t,(j) =
1 and all other coordinates zero. B, is defined as the convex hull of all such
vectors.

It is clear that for every node b in T, the polytope P, contains at most |C|?
vertices, and, thus, by Proposition it has extension complexity at most
xc(P,) < |C]®. Recalling our discussion in Section about the size of C, we
conclude that there exists a function f such that for every b € V(T'), it holds
that xc(Py) < f(|e], 7).

We create an extended formulation for P,(G) by gluing these polytopes to-
gether, starting in the leaves of T" and processing 1" in a bottom up fashion. We
create polytopes @), for each node b in T recursively as follows:

e Ifbis a leaf then QQ, = B,.

o If bis an introduce or forget node, then @), = @, x|¢| P, where a is the child
of b and the gluing is done along the coordinates t, in), and d; in B,.

o If bis a join node, then we first define Ry = Q4 x| I}, where a is the left
child of b and the gluing is done along the coordinates t, in), and 1, in
P,. Then (), is obtained by gluing R, with (). along the coordinates t. in
Q. and ry, in R, where c is the right child of b.

45

The following lemma states the key property of the polytopes).

Lemma 4.3.2. For every vertex'y of the polytope Qp there exist Xy,..., X, C
V(Gy) such that (G, (X1, ..., Xm),n(B(b))) is of type a where « is the unique
type such that the coordinate of y corresponding to the binary variable t,(«) is
equal to one.

Proof. The proof is by induction, starting in the leaves of T" and going up towards
the root. For leaves, the lemma easily follows from the definition of the polytopes
Pb-

For the inductive step, we consider an inner node b of 7" and we distinguish
two cases:

o If b is a join node, then the claim for b follows from the inductive assump-
tions for the children of b, definition of a feasible triple, definition of the
polytope P,, Lemma and the construction of the polytope Qy.

o If b is an introduce node or a forget node, respectively, then, analogously,
the claim for b follows from the inductive assumption for the child of b,
definition of a feasible pair, definition of the polytope B,, Lemma [£.1.3] or
Lemma [£.1.4] respectively, and the construction of the polytope Q.

]

Let ¢ be the root node of the tree decomposition T'. Consider the polytope
Q.. From the construction of @)., our previous discussion and the Gluing lemma,
it follows that xc(Qc) < Xpev () xc(P) < f([ol,7) - n. It remains to show that a
properly chosen face of Q. is an extension of P,(G). We start by observing that
Z|C| t.(i) <1 and Zl 1 P4(1)t.(7) < 1, where p, is the indicator function defined
in Subsection 4.1.2] are valid inequalities for Q).

Let @, be the face of (. corresponding to the valid inequality

Zlcll pe(i)-tc(i) < 1. Then, by Lemma , the polytope @, represents those
[m]-colorings of G for which ¢ holds. The corresponding feasible assignments of
¢ on G are obtained as follows: for every vertex v € V(G) and every i € [m] we
set y! = ZLCH 10y, v, %) tiop(wy (7). The sum is 1 if and only if there exists a type
J such that tipe(j) = 1 and at the same time p(ay,v,4) = 1; by the definition
of the indicator function p in Subsection [£.1.3] this implies that v € X;. Thus,
by applying the above projection to @), we obtain P,(G), as desired.

It is worth mentioning at this point that the polytope). depends only on
the treewidth 7, the quantifier rank & of ¢ and the number of free variables of ¢.

The dependence on the formula ¢ itself only manifests in the choice of the face
Q, of Q. and its projection to P,(G). [

Corollary 4.3.3. The extension complexity of the convex hull of all satisfying
assignments of a given MSOq formula ¢ on a given graph G of bounded treewidth
is linear in the size of the graph G.

46

4.4 Efficient Construction of the MSO Polytope

In the previous section we have proven that P,(G) has a compact extended for-
mulation but our definition of feasible tuples and the indicator functions p and
p, did not explicitly provide a way how to actually obtain it efficiently. That is
what we do in this section.

As in the previous section we assume that we are given a graph G of treewidth
7 and an MSO formula ¢ with m free variables and quantifier rank k. We start
by constructing a nice tree decomposition (7', B) of G of treewidth 7 in time
f(r) - n [11} 66].

Let C denote the set of equivalence classes of =M9C. Because C is finite and
its size is independent of the size of G (Theorem , for each class a € C,
there exists an [m]-colored 7-boundaried graph (G®, X, p®) of type a whose size
is upper-bounded by a function of k,m and 7. For each o € C, we fix one such
graph, denote it by W (a) and call it the witness of . Let W = {W(a) | a € C}.
The witnesses make it possible to easily compute the indicator function p,: for
every a € C, we set p,(a) = 1 if and only if W («) = ¢ (which can be evaluated
straightforwardly), and we set p,(a) = 0 otherwise.

The following Lemma is implicit in [53] in the proof of Theorem 4.6 and
Corollary 4.7.

Lemma 4.4.1 ([53]). The set W and the indicator function p, can be computed
in time f(k,m,T), for some computable function f.

It will be important to have an efficient algorithmic test for MSOIk, 7]-
elementary equivalence. This can be done using the Ehrenfeucht-FraAfssAl
games:

Lemma 4.4.2 ([83, Theorem 7.7]). Given two [m|-colored T-boundaried graphs

G and GYUT, it can be decided in time f(m,k,7,|G1],|Gs|) whether
G[lm}’T =M50 G[Qm}’T, for some computable function f.

Corollary 4.4.3. Recognizing the type of an [m|-colored T-boundaried graph
GIM™ can be done in time f(m,k,7,|G|), for some computable function f.

Now we describe a linear time construction of the sets of feasible types, pairs
and triples of types F(b), F,(b) and F;(b) for all relevant nodes b in T". In the ini-
tialization phase we construct the set W, using the algorithm from Lemma [4.4.1]
The rest of the construction is inductive, starting in the leaves of 7" and advancing
in a bottom up fashion towards the root of T'. The idea is to always replace a
possibly large graph G([lm}” of type a by the small witness W («) when computing
the set of feasible types for the father of a node a.

Leaf node. For every leaf node a € V(T') we set F(a) = {aq}. Obviously, this
corresponds to the definition in Section

Introduce node. Assume that b = a * (v) is an introduce node for which F(a)
has already been computed. For every a € F(a), we first produce a 7’-boundaried
graph H™ = (H*,) from W (a) = (G*, X, p?) as follows: let 7/ = [p%| + 1 and
H* be obtained from G* by attaching to it a new vertex in the same way as
v is attached to G,. The boundary ¢ is obtained from the boundary p® by
inserting in it the new vertex at the same position that v has in the boundary of

47

(Ga.n(B(a))). For every subset I C [m] we construct an [m]-coloring Y*! from
X by setting V! = X U {v}, for every i € I, and Y = X2 for every i & I.
Each of these [m]-colorings Y/ is used to produce an [m]-colored 7-boundaried
graph (H?, yol, ¢) and the types of all these [m]-colored 7’-boundaried graphs are
added to the set F(b) of feasible types of b, and, similarly, the pairs (a, 3) where
f3 is a feasible type of some of the [m]-colored 7’-boundaried graph (H?, yel q),
are added to the set F,(b) of all feasible pairs of types of b. The correctness
of the construction of the sets F(b) and F,(b) for the node b of T' follows from
Lemma 4.1.3]

Forget node. Assume that b = a 1 (v) is a forget node for which F(a) has
already been computed and where v is the d-th vertex of the boundary n(B(a)).
We proceed in a similar way as in the case of the introduce node. For ev-
ery o € F(a) we produce an [m]-colored 7'-boundaried graph (H®,Y®,§) from
W(a) = (G X p) as follows: let 7 = |p?| — 1, H* = G*, Y* = X and
7= (p1,--,DPd-1,Pds1,---,Pr+1). For every o € F(a), the type [of the con-
structed graph is added to F(b), and, similarly, the pairs (o, 3) are added to
F,(b). The correctness of the construction of the sets F(b) and F,(b) for the
node b of T follows from Lemma [4.1.4

Join node. Assume that ¢ = A(a,b) is a join node for which F(a) and F(b)
have already been computed. For every pair of compatible types a € F(a) and
p € F(b), we add the type v of W (a) & W(B) to F(c), and the triple («, 3, 7)
to Fi(c). The correctness of the construction of the sets F(c) and Fy(c) for the
node b of T follows from Lemma [£.1.2]

It remains to construct the indicator functions v and pu. We do it during the
construction of the sets of feasible types as follows. We initialize v to zero. Then,
every time we process a node b in 7" and we find a new feasible type [of b,
for every v € B(b) and for every i for which the d-th vertex in the boundary of
W(p) = (Gﬁ,)?,ﬁ) belongs to X;, we set pu(5,b,v,i) = 1 where d is the order of
v in the boundary of (G, n(B(b)). The correctness follows from the definition of
v and the definition of feasible types. The function p is then straightforwardly
defined using v.

Concerning the time complexity of the inductive construction, we observe,
exploiting Corollary [£.4.3] that for every node b in T, the number of steps, the
sizes of graphs that we worked with when dealing with the node b, and the time
needed for each of the steps, depend on k, m and 7 only. We summarize the main
result of this section in the following theorem.

Theorem 4.4.4. Under the assumptions of Theorem the polytope P,(G)
can be constructed in time f'(|¢|, T) - n, for some computable function f'.

4.5 Extensions

4.5.1 Cliquewidth

The results of this paper can be extended also to graphs of bounded cliquewidth,
a more general class of graphs, at the cost of restricting our logic from MSO,
to MSO; (or, equivalently, restricting it from MSO; over oy to MSO; over o).
Recall that a y-expression is a concept analogous to a tree decomposition.

48

Theorem 4.5.1. Let G be a graph of cliquewidth cw(G) = 7 represented as a

oy-structure, let ¢ be an MSO; formula with m free variables, and let Py(G) =

conv(Sy(G)). Then xc(Py(G)) < f(|¢],7) - n for some computable function f.
Moreover, if G is given along with its y-expression I', Py(G) can be constructed

in time f(|¢[,7) - n.

While we could prove Theorem directly using notions analogous to fea-
sible types and tuples, it is easier to use a tool demonstrating a close relationship
between cliquewidth and treewidth. This tool simply extends a folklore fact that
a class of graphs is of bounded cliquewidth if and only if it has an MSQO; inter-
pretation in the class of rooted trees.

Lemma 4.5.2 (Treewidth—cliquewidth correspondence). Let G be a graph of
cliquewidth cw(G) = v given along with its ~y-expression T', and let 1 be an MSO;
formula. One can, in time O(|V(G)|+ ||+ |¢|), compute a tree T and an MSO;
formula ¢ such that V(G) C V(T) and

for every X, T = o(X), if and only if X CV(G) and G = (X).

Addition to Lemma [4.5.2] Before giving a (short) proof of this lemma, we
need to formally introduce a simplified concept of MSO interpretability. Let o
and o be two relational vocabularies. A one-dimensional MSO interpretation of
0 in o is a tuple [= (V(:c), {nR(f)}Reg) of MSO|o]-formulas where v has one
free element variable and the number of free element variables in 7y is equal to
the arity of R in p.

« To every o-structure A the interpretation I assigns a p-structure A! with
the domain A” = {a | A = v(a)} and the relations R = {a | A = nr(a)}
for each R € p. We say that a class C of g-structures has an interpretation
in a class D of o-structures if there exists an interpretation I such that for
each C' € C there exists D € D such that C' ~ D!, and for every D € D the
structure D' is isomorphic to a member of C.

« The interpretation I of ¢ in o defines a translation of every MSO[g]-formula
¥ to an MSO[o]-formula ¢! as follows:
— every Jz.¢ is replaced by Jz.(v(x) A ¢7),
— every 3X.¢ is replaced by 3X.(Vy(y € X — v(y)) A ¢!), and
— every occurrence of a g-atom R(Z) is replaced by the corresponding

formula ng(z).

It is a folklore fact that for all MSOJp]-formulas ¢ and all o-structures A
AEY = AT 9.

Proof of Lemmal[{.5.9. Let Ty be the parse tree of the given v-expression T
constructing G. Hence Tj is a rooted tree such that the set of its leaves is
V(G). Tt is well known that there is a one-dimensional MSO; interpretation

I = (Vl(x),nl(x,y)) of the graphs of cliquewidth < ~ in the class of colored
rooted trees (such that the finite set of colors depends only on 7). The used

49

colors are in fact the vertex labels (in the leaves) and the operator symbols (in
the internal nodes) from Definition , and the interpretation [; is easy to
construct for given v. See, e.g., [74, Section 4.3] for close details. Consequently,
G~TH.

To finish the proof, we just need to “remove” the colors from Ty and “forget”
the root (to make an ordinary uncolored tree 7T°). We first give the root of T a
new distinguished color ¢, (as a copy of its original color). Then the parent-child
relation in 7 can be easily interpreted based on the unique path to a vertex
colored ¢,. Let all the colors used in I; be C' = {¢cy,...,¢,} where m depends
on v (including our distinguished root colors). We construct a tree T from T by
attaching ¢ new leaves to every vertex of Ty of color ¢; € C.

We now straightforwardly define an MSO; interpretation I, = (VQ(ZL"), ne(z,y),

A, for i € [m]) of rooted C-colored trees in the class of ordinary trees:

o wo(z) simply asserts that z is not a leaf (z has more than one neighbor),
o 1o(z,y) = edge(x,y) (note that Tj is an induced subgraph of T'), and

o M\i(x) asserts that z has precisely ¢ neighbors which are leaves—this has
a routine brute-force expression by existential quantification of the i leaf
neighbors, coupled by non-existence of i 4+ 1 leaf neighbors.

Clearly, T"2 ~ T (including the colors of Tp). We finally set I = I; o I, (inter-
pretability is a transitive concept) and ¢ = ¢! and we are done. O]

Proof of Theorem[{.5.1. Let T" be some 7-expression of G. Consider the tree T
of Lemma derived from G and 7 and the MSO; formula ¢ derived from).
By the relationship between G and T" and ¢ and ¢ of Lemma [4.5.2] the polytope
P,(T) is an extended formulation of P,(G). Thus, by applying Theorem
to T and ¢ suffices to show that xc(Py(G)) < xc(P,(T)) < f(|¢],7y) - n for
some computable function f. If a y-expression of G is provided, clearly the proof
becomes constructive. [

For simplicity, we have required that G comes along with its y-expression to
obtain a constructivity in Theorem See our remark in Subsection
about using rank-decompositions as approximations of y-expressions.

4.5.2 Courcelle’s Theorem and Optimization.

It is worth noting that even though linear time optimization versions of Courcelle’s
theorem are known, our result provides a linear size LP for these problems out of
the box. Together with a polynomial algorithm for solving linear programming
we immediately get the following:

Theorem 4.5.3. Given a graph G on n wvertices with treewidth 7, a formula
© € MSO with m free variables and real weights w’, for every v € V(G) and
i € [m] the problem

opt{ s Suiy

VeV (G) i=1

y satisfies @}

where opt is min or max, is solvable in time f(|¢|, 7)-n®MD-(w), for some function
f, where (w) is the encoding length of w.

20

4.5.3 Total Unimodularity

We believe there is also an alternative way to prove Theorem by exploiting
the well known fact that polyhedra defined by totally unimodular matrices are
integral. However, at the moment we are only able to demonstrate this approach
for graphs of bounded pathwidth. This will still provide us with some insight, as
we discuss in Subsection [7.3.1l

It is known that the polytope of s—t dipaths in a directed graph D = (W, A)
is integral by the fact that its defining matrix is totally unimodular [107]. We
shall define a directed graph D with vertices s and ¢ whose s—t dipaths will be
closely related to the vertices of the previously constructed polytope P. A suitable
integer projection then provides the polytope P,(G).

Theorem 4.5.4. Let G be a graph with pw(G) = 7 and ¢ an MSO; formula of
quantifier depth k with m free variables. Then xc(P,(G) < f(r,k,m)-|V(G)] for
some computable function f.

Proof. Let (T, B) be an optimal path decomposition of G with N nodes labeled
by,...,by. We abuse the notation slightly and use top(v) not only as the last
node b; containing v, but also as its index 7. We shall construct a directed graph
D = (W, A) with two distinguished vertices s and ¢. This graph is layered and
acyclic, with arcs going only between consecutive layers. We denote the set of
vertices of layer ¢+ by £;. The layers and arcs are as follows.

e Lo={s}and Ly = {t}.

o Forie [N], L; ={(i,a) | « € F(b;)}, i.e., layer ¢ contains one vertex for
each feasible type from F(b;).

o There is an arc from s to vertex (1, ;); note that since b; has to be a leaf,
its only feasible type is ay, i.e., £1 = {(1,a1)}.

o+ There is an arc from (N, «) to t for every o € F(by) with p,(a) =1, i.e.,
for every type a which makes the formula ¢ satisfied.

o Finally, let i« € [N — 1]. There is an arc between a vertex (i,a) € L;
and a vertex (i + 1,8) € L1 if (o, 8) € F,(bis1); note that since a path
decomposition only contains introduce and forget nodes, this definition is
sound.

Fix an s—t dipath in D and consider its vertices. Omitting s and ¢, they can be
viewed as an N-tuple («q, ..., ay) of types satisfying that every consecutive pair
is a feasible pair for the respective node, and that p,(an) = 1. By an argument
similar to that of Lemma , we see that taking y! = 1 op(v), ¥, 4) produces
a vector y encoding a satisfying assignment to ¢.

Now, consider the polytope of s—t dipaths in D:

P, (D) = {x | x is an indicator of an st dipath in D} C {0,1}*,

and a projection 7 : R4 — R™™:

yh = Z pla,v,i) - Z Tq -

a€F (top(v)) a€N} ((top(v),a))

51

By the fact that 7 is an integer projection, and by our argument above, P, (G) =
m(Ps—¢(D)). Finally, since Ps_(D) = {x | Ax = b,0 < x < 1} where A is
a totally unimodular matrix of flow-preservation equalities for every vertex, we
have that xc(Ps_¢(D)) < |W|+2|A| = f(7, k,m) - n, concluding the proof. [

Observe that we immediatelly obtain that P,(G) has a constructively de-
composable extension by the fact that P;_(D) is constructively decomposable
(since it is defined by a TU system) and P,(G) is obtaiend from it by an integer
projection (Lemma [5.1.3).

We note the results of Tiwary [I13] on the extension complexity of formal
languages defined by certain a certain automaton. It is not difficult to see that
we can construct a digraph whose paths correspond to computations of said
automaton and thus obtain their results using the ideas sketched in the proof
above.

52

5. Connecting MSO, CSP, and
Treewidth

In Section we show further properties of the glued product, and then use it to
prove that there is an extension of the MSO polytope which has these desirable
properties. Then, in Section [5.2] we show connections between MSO and CSP
for graphs and instances of bounded treewidth, and between CSP and integer
separable minimization.

5.1 MSO Polytope: Decomposability and
Treewidth

5.1.1 Decomposability of Polyhedra

Now we will define decomposable polyhedra and show that decomposability is
preserved by taking the glued product. Decomposability is also known as integer
decomposition property or being integrally closed in the literature (cf. Schri-
jver [107]). The best known example are polyhedra given by totally unimodular
matrices [7].

Definition 5.1.1 (Decomposable polyhedron, Decomposition oracle). A polyhe-
dron P C R™ is decomposable if for everyr € N and everyx € rPNZ", there exist
x', ..., x" € PNZ" withx =x'+---+x", where rP = {ry | y € P} is called the
r-dilate of P. A decomposition oracle for a decomposable P is one that, queried
onr € N and onx € rPNZ", returns its decomposition x', ..., x" € PNZ" with
x = x! + .-+ x". If a decomposition oracle for P is realizable by an algorithm
running in time polynomial in the length of the unary encoding of v and x, we
say that P is constructively decomposable.

Lemma 5.1.2 (Decomposability and glued product). Let P C RU+k gnd Q C
R%=F* be 0/1-polytopes and let the k glued coordinates in P be labeled zy, . . ., z,
and the k glued coordinates in () be labeled wy, ..., wx. Suppose that 17z < 1
1s valid for P and 1™w < 1 s wvalid for Q). Then if P and Q) are constructively
decomposable, so is P X}, Q).

Proof. For the sake of simplicity, we assume without loss of generality that glueing
is done along the last k coordinates. Then P x; Q = conv{(x,y,z) € RitTdztk |
(x,z) € vert(P),(y,w) € vert(Q),z = w}. Let R = P x; Q. To prove that
R is constructively decomposable, it suffices to find, for every integer » € N
and every integer vector (x,y,z) € rR, r integer vectors (x',y’,z') € R such that

(x,y,z) = 3/_,(x,y', z'). Using the assumption that P and @ are constructively
decomposable, we find in polynomial time 7 integer vectors (x,z') € P such
that (x,2z) = YI_,(x%,z") and r integer vectors (y’,z’) € Q such that (y,z) =

Z;:l (ij Zj)') X . .
Observe that z = Y] ,z' = Z§:1 z’. Moreover, because z' and z’ satisfy
17z° < 1 and 1727 < 1 for all i and j, respectively, each vector z* and each vector

93

z’ contains at most one 1. Clearly, the number of vectors z' with z! = 1 is equal
to the number of vectors z/ with z/ = 1, namely 2.

Thus, it is possible to greedily pair the vectors (x*,z’) and (y’,z’) one to one
in such a way that z° = 2z’ for all the paired vectors. By merging each such pair
of vectors, we obtain r new integer vectors (x!,y!,z!) € R, for [€ [r], that satisfy
(x,y,z) = 3;_, (¥, ¥, 2!), concluding the proof. O

We remark that this proof is very similar to the proof of Lemma [3.1.1] In
fact, having the insight of that proof allowed us to realize has the nice properties
shown in Lemmas [(.1.2] and B.1.6l

It is typical that we construct some polytope and apply an integer projection
to it. The following lemma will be useful in such situations:

Lemma 5.1.3 (Decomposability and projections). Let Q) C R™ be a polyhedron
which is constructively decomposable, let w: R — R™ be a linear projection with
integer coefficients and let P = w(Q). Then the polytope R = conv({(y,n(y)) |
y € Q}) is constructively decomposable.

Proof. Consider an integer r and an integer vector (x,y) € rR. Since @ is
constructively decomposable, we can find in polynomial time r vectors y* € Q N

Z", for i € [r], such that y = ¥7_, y*. For every i, let x* = 7(y’); note that
every x' is integral. Since x = 7(y) = Y, 7(y") = 3, x', we conclude that
(x,y) =30, ((x%,y")), proving that R is constructively decomposable. O

Obviously, not all integer polyhedra are decomposable: consider the three-
dimensional parity polytope P = conv({(0,0,0),(1,1,0),(1,0,1),(0,1,1)}) and
the point (1,1,1) € 2P — there is no way to express it as a sum of integral points
in P. However, the following lemma shows that every integer polyhedron has an
extension that is decomposable.

Lemma 5.1.4 (Decomposable extension). Every integer polytope P has an ex-
tension R that is constructively decomposable. Moreover, a description of such
an extension can be computed in time O(d + n) where d is the dimension of P
and n is the number of vertices of P if the vertices of P are given.

Proof. Recall that vert(P) = {vy,...,v,} denotes all the vertices of P and let
Q=1{X| X A\ = 1,X > 0} be the n-dimensional simplex. Then, for the
linear projection w(X) = > | \;v;, the polytope R = {(7(X),A) | A € @} is an
extended formulation of P (note that the same extended formulation of P is used
also in the proof of Proposition [2.6.11)).

Consider an arbitrary integer r and an integral point A = (A\,...,\,) €
r@Q. As A = ?:1 Aje; where e; is the j-the unit vector, and as Z?Zl Aj =,
we see that A can be written as a sum of at most r integral points from @),
and such a decomposition can be found in time polynomial in n and d. Thus,
@ is constructively decomposable. Then, applying the previous lemma to the
simplex () and the linear projection 7, we see that the polytope R is constructively
decomposable. O

Given a polytope P, it is an interesting problem to determine the minimum
size of an extension of P that is decomposable. This is an analogue of extension
complexity:

o4

Definition 5.1.5 (Decomposable extension complexity). The decomposable ex-
tension complexity of a polytope P, denoted XCge.(P), is the minimum size of an
extension of P that is decomposable. A polytope (Q which is an extension of P
and is decomposable is called a decomposable extension of P.

Obviously, xc¢(P) < xCgee(P). Using Lemma and Proposition [2.6.11] we
see that if a polytope P has n vertices, then xcge.(P) < m. It is an interesting

problem to determine for which polytopes xc(P) = XCgee(P), or, on the other
hand, when xc(P) < xcge.(P) and by how much they can differ.

5.1.2 Treewidth of Gaifman Graphs of Extended Formu-
lations

Recall that the treewidth of a matrix is the treewidth of its Gaifman graph, as
defined in Subsection 2.3.1]

Lemma 5.1.6 (Treewidth and glued product). Let P and Q be 0/1-polytopes and
let the k glued coordinates in P be labeled zy, ...,z and the k glued coordinates
in Q be labeled wy, ..., wg. Suppose that 17z < 1 is valid for P and 1w < 1 s
valid for Q). Let Ax + Cz > a be inequalities describing an extended formulation
of P and Dw + Ey > b be inequalities describing an extended formulation of
Q. Then there exists an extended formulation of P X Q) described by inequalities
Fv > ¢ such that tw(F) < max{tw(A C),tw(D E), k}.

Moreover, if (Tp, Bp) is a tree decomposition of G(A C) of treewidth tw(A C)
with a node d with “columns of C” C Bp(d) and (Tg, Bg) is a tree decomposition
of G(D E) of treewidth tw(D E) containing a node d' with “columns of D”
D Bg(d'), then we can choose F and ¢ in such a way that a tree decomposition
(Tr, Br) of G(F) of treewidth max{tw(A C),tw(D E), k} exists, where Tg is
obtained from Tp and Ty by identifying the nodes d and d' and Br = Bp U (Bg \
{Ba(d)}).

Proof. We start by observing that the assumptions and the gluing lemma imply
that the inequalities

Ax+Cz > a
Dz+Ey>b

describe an extended formulation of P x; (). Consider the treewidth of the matrix
F = (13 S %) The Gaifman graph G(F) of F can be obtained by taking G(A C)
and G(D E) and identifying the vertices corresponding to the variables z and
w in the above formulation. It is easy to observe that the treewidth of G(F) is
max{tw(A C),tw(D E), k}, as desired, and that if (7, Bp) and (T, Bg) are as
assumed, the tuple (T, Bg) obtained in the aforementioned way is indeed a tree
decomposition of G(F). O

Lemma 5.1.7 (Trivial treewidth bound). Let P C R? be a polytope with n
vertices. Then there exist an extension of P that can be described by inequalities
of treewidth at most n + d.

95

Proof. Consider again the description of the extension of P used in the proof of
Proposition [2.6.11

1 =1
VA-Ix=0
A >0

where 0 and 1 are the all-0 and all-1 vectors of appropriate dimensions, respec-
tively, I is the identity matrix and V is a matrix whose ¢-th column is the i-th
vertex of P; each equality is just an abbreviation of two opposing inequalities.
Since the number of columns in the system is n + d, its treewidth is by definition
also at most n + d. O]

Putting Lemmas [5.1.4] and [5.1.7] together gives the following corollary:

Corollary 5.1.8. Let P C R™ be an integral polytope with n vertices. Then
there exists a constructively decomposable extension of P that can be described by
inequalities of treewidth at most n + m.

Proof. 1t suffices to notice that the extended formulations of Lemmas
and are identical and thus simultaneously have small treewidth and are
decomposable. O

5.1.3 MSO Polytope: Take Two

Using our results about the glued product in Section we can extend Theo-
rem to guarantee a couple of additional non-trivial properties of a certain
extended formulation of P,(G). Recall that C = {oy, ..., } is the set of equiv-
alence classes of the relation =59 and that for a given formula ¢, a graph G
and a tree decomposition (T, B) of G, for every node a of T, we denote the set of
feasible types of the node a by F(a), for every introduce and every forget node a
of T' the set of feasible pairs of the node a by F,(a) and for every join node a of
T the set of feasible triples of the node a by F;(a). Moreover, let Vir denote the
set of introduce and forget nodes in 1", V; the set of join nodes and V, the set of
leaves, and let F = Upey,, {{0} X F3(0) }UUe, {{b} x F1(0) } UUpev,, {{b} x F(b)},
that is, F is a set containing for every node b € V(T) a pair {b, F'(b)} where
F'(b) is the set of feasible pairs F,(b) for introduce and forget nodes, the set of
feasible triples JF;(b) for join nodes and the set of feasible types F(b) for leaves.
As in the case of Theorem [4.3.1] for the sake of simplicity we again formulate
and prove the main theorem of this section in terms of graphs represented as
oo-structures; the extension to arbitrary go-structures is straightforward.

Theorem 5.1.9. Let G = (V,0,{E, Ly, Lg}) be a o9-structure of treewidth T
representing a graph, let n = |V | and let (T, B) be a nice tree decomposition of G
of treewidth T and let p be an MSOy go-formula with m free variables.

Then there exist matrices A, D, C, a vector e, a function v :Cx V(T) xV x
m] — {0,1} and a tree decomposition (T*, B*) of the Gaifman graph G(A D C)
such that the following claims hold:

1. The polytope P = {(y,t,f) € RVXIm x ROVT) x R | Ay + Dt 4 Cf =
e, t,f>0}isa0/1-polytope and P,(G) = {y | 3t.f: (y,t,f) € P}.

o6

2. P is constructively decomposable.

3. For any (y,t,f) € vert(P), for any j € C, b€ V(T), v € B(b) and i € [m],
equalities ty(j) = 1 and v(j,b,v,1) = 1 imply that y¢ = 1.

4. (a) The treewidth of (T*, B*) is O(|C]?),
(b) T* =T,
(c) for every node b € V(T*), Ujec{ts(s)} € B*(D), and,
(d) Ujec{ts(7)} N B*(a) = 0 for every a & Np-(b).

5. A,D,C,e,v can be computed in time O(|C|* - n).

Let us first comment on the meaning and usefulness of the various points of
the theorem. Point (1)) simply states that P is an extended formulation of P,(G).
However, there are variables t which allow some interpretation of integer points
of P as we will discuss further (point (3))), and there are also variables f, which
are used to ensure constructive decomposability (point (2))).

Our results in Chapters[6land [7] can be viewed as applications of this theorem.
We shall now preview ideas that we develop further on in this chapter, even
though we end up taking a slightly different path. It is possible to view the
system of linear inequalities Ay + Dt + Cf = e with t,f > 0, which defines P, as
an ILP, because we are only interested in its integer solutions. Then, it is easy to
observe that ILP is a special case of CSP where all constraints are linear. Thus,
viewing the ILP as a CSP allows adding nonlinear constraints and optimizing
a nonconvex objective function. Finally, by point , this CSP instance has
bounded treewidth, and thus can be efficiently solved by Freuder’s algorithm
(Theorem [2.4.4).

Point (3)) is closely related to Lemma which we needed for the proof of
Theorem [4.3.1] Intuitively, it says that we can view the variables t of integer
points of P as an assignment from V(T) to C (i.e., each node is assigned a type)
and that knowing a type of a node b is sufficient for knowing, for each vertex
v € B(b), to which free variables X; vertex v belongs. This makes it possible
to extend the CSP instance corresponding to the system defining P with further
constraints modeling various extensions of MSO; see Chapter @ Point is
crucial here, since it allows us to add new constraints in a way which does not
increase the treewidth of the resulting CSP instance by much.

Point essentially says that integer points of P correspond to r-multisets
(i.e., multisets of size r) of vertices of P. We use this in Chapter 7}, where connect
separable optimization over the r-dilate of a decomposable 0/1 polyhedron @ to
shifted combinatorial optimization. Thus, when S = S,(G) is the set of satisfying
assignments of a formula ¢ on a graph G, one can optimize over integer points
of P in order to optimize over r-multisubsets of S,(G).

Proof of Theorem[5.1.9. Let us give an outline of the proof first. The construc-
tion of the polytope P, and of the corresponding system of linear inequalities
describing it, is done in three phases. In each phase we construct and examine
three related objects: a certain polytope, a system of linear inequalities defining

it, and a tree decomposition of the Gaifman graph of the system of linear in-
equalities. We closely follow along the lines of the proof of Theorem but we

o7

modify and extend it in a way that will make it possible to prove the additional
properties. In the first phase, we construct a polytope @), an analogue of the
polytope Q. from the aforementioned proof. The vertices of this polytope cor-
respond to assignments of feasible types to the nodes of the tree decomposition
T. In the second phase, we define a polytope (), as a properly chosen face of
the polytope (), analogously to the choice of the face), of the polytope Q..
The third phase consists only of introducing the variables 3’ as a suitable linear
combination of z — this way we obtain the polytope P from the polytope Q.

Phase 1: Constructing Q. In the proof of Theorem we obtain the
polytope Q. by gluing together polytopes B, b € V(T'), in a bottom-up fashion
over nodes of a nice tree decomposition of G. Recall that every B, is a 0/1-
polytope, has dimension at most 3|C| and its number of vertices is at most |C|3.
Thus, by Corollary [5.1.8 there exists a constructively decomposable extension
P} of P, describable by inequalities of treewidth at most |C|* 4+ 3|C| = O(|C|?).

We proceed in the same way as in the construction in the proof of Theo-
rem but instead of P,, we glue together the polytopes P/. At the same
time, by Lemma we combine, again in the bottom-up fashion over nodes of
the nice tree decomposition (7', B) of G, the systems of inequalities that describe
the polytopes P and also the tree decompositions of the corresponding Gaifman
graphs. Let ¢ denote the root of the decomposition tree 7' as in the proof of
Theorem [4.3.1] let D't + C'f = €’ with t,f > 0 denote the resulting system of
inequalities describing the polytope Q.. and let (77, B’) denote the resulting tree
decomposition of the Gaifman graph G(D’ C').

We shall now prove that the conditions hold for (7”7, B’) by induction.
Then, it will be sufficient in the later stages of the proof to show that they will
not be violated.

Lemma 5.1.10. For each b € V(T), there are matrices Cj and D} such that
C't, + D,(t,f) = €} with t,,t,f > 0 describes the intermediate polytope Q)
obtained in the bottom-up construction, G(Cj, Dy;) has a tree decomposition
(Ty, By) of treewidth O(|C|?), Ty is as defined before (i.e., a subtree of T root-
ed in b), and for every node a € V(T1y), it holds that U;cc{ta(i)} C By(a), and
Uiec{ta(i)} N By(a’) = 0 for every o’ ¢ N, (a).

Clearly, if these conditions hold for the root ¢, the conditions (4]) are satisfied.

Proof. First, let b be a leaf. By Lemma [5.1.7] there is a system Cjt, + Djf, = e,
with f, > 0 describing P} (which contains just one point), and there is a trivial tree
decomposition of G(C; Dj) with one bag containing all vertices. This establishes
the base case of the induction.

Consider an introduce or forget node b of T" with a child a, and we glue the
polytopes @, and P). By Lemma [5.1.7, P} is described by Aud, + Cpty, + Dyfy, =
e, with f, > 0, and G(A, C, D;) has a trivial tree decomposition with one
bag containing all its vertices. By the induction hypothesis,)/, is described by
C't, + D' (t,f) = e, with t,,t,f > 0, where t and f are the t and f variables
associated with the nodes of T,. Thus, the following system, where the columns

é/” correspond to the matrix C; and the remaining columns to the matrix Dy,
describes Q)j;:

o8

Ady + Gty + Duf, > g
Clt, + D!

Moreover, because there is a tree decomposition (7, B,) of the Gaifman graph
G(A, E,) such that U;ec{ta(i)} € By(a), we are in the situation of the second
part of Lemma with A = (A, Dy), C = C,, D = C,, E = D/. This
implies that (T}, B,) with B, defined by B,(a’) = B,(a') for all ' € T,, and
By(b) = V(G(Ay Cy Dy)), is a tree decomposition of G(C” D’) which has the
desired properties.

The situation is analogous for the join node. By the first part of Lemma [5.1.6
together with the induction hypothesis, the treewidth of (T3, By) is clearly at most
O(ICP). O

Phase 2: Taking the face Q;,. We take the face @/, of @, corresponding to the
valid inequality Y- cc po(k)-t.(j) < 1. That corresponds to adding the equality
Yjec Po(j)te(j) = 1 to the system D't +-C'f = €’. Let us denote D"t +C"f = €
the system obtained from D't + C'f = €’ by adding the aforementioned equality.
Adding the new equality corresponds to adding edges to G(D’ C’) which are
connecting vertices t.(7). Since all variables ¢.(j) belong to the bag B'(c), the
tree decomposition conditions are not violated by adding these edges and (7", B’)
is a tree decomposition of G(D” C”) as well. Thus, the treewidth of G(D” C”)
is the same as the treewidth of G(D' C’).

We will now show that since @, is constructively decomposable and a 0/1-
polytope, @7, is constructively decomposable as well. Let r € N and consider
any X € rQ),. Because x € rQ);, C r(Q);, there exist x! . ..,x" € @, such that
> x' = x. Because x € r@Qy, it satisfies 3;cc py(j)-tc(j) = r, and because @, is
a 0/1-polytope, every x* satisfies 3= ;cc p,(t)-tc(j) = 1. This implies that x* € @,
for all i € [r].

Phase 3: Obtaining P by adding variables y. To obtain P from @, it
remains to add projections y!, = Y- (4, v,%)-tiop(w)(J) for each v € V and i € [m].
j€C

Now consider the system Ay + Dt + Cf = e which is thus obtained.

Regarding the treewidth of G(A D C), note that the sum defining each 3’ only
involves variables associated with the node top(v). Specifically, Ay+Dt+Cf = e
can be written as

Oy + D"t + C"f = &”
—-Iy+At+0f =0

where the block (—I A 0) corresponds to the projections to y!.

Fix v € V. Then in G(A D C) the variable y corresponds to a vertex
connected to vertices tiop(v)(j) for which yi(j,v,4) = 1, all of which belong to one
bag B = B'(top(v)). A decomposition (7%, B*) of G(A D C) can be obtained
from (7", B') by adding, for every i € [m], the vertex corresponding to ¥’ to the
bag B. This increases the width of B by at most m. Since top(v) is distinct for
every v € V| this operation can be performed independently for every v, resulting

99

in a decomposition of width at most O(|C|*)+m = O(|C|?), satisfying the claimed
properties ([4).

Regarding constructive decomposability, we use Lemma The polytope
pr is constructively decomposable, and there is a linear projection 7 with integer
coefficients such that P,(G) = 7(Q},). Thus P = {(7(t),t,f) | (t,f) € Q} is
constructively decomposable, satisfying property .

Finally, Theorem [4.4.4] shows that A, D, C,e and v can be constructed in the
claimed time, satisfying property (), and by the definition of v and Lemma [4.3.2]
condition (3)) is also satisfied, completing the proof. m

As a corollary, we have the following.

Corollary 5.1.11 (Decomposable extension complexity of the MSO polytope).
Under the assumptions of Theorem XCaee(Pp(G)) < f(lo|,T) - 1.

5.2 Combining MSO and CSP

In this section we shall connect Courcelle’s Theorem and CSP. First, we will use
our theory of the glued product to give an alternative proof of Theorem [3.0.1]
Using the glued product immediatelly provides some additional properties, like
we saw in Theorem Moreover, we will show that a strong optimization
oracle is realizable for the r-dilate of the CSP polytope. Afterwards, we will
show that Courcelle’s theorem can actually be cast as an instance of CSP. This
implies that Theorem follows from Theorem [3.0.1] Since by then we will
have a much stronger theorem for CSPs, we will obtain a stronger theorem also
for MSO-definable sets.

5.2.1 CSP Polytope via Glued Product

Definition 5.2.1 (Separable function). A function f : R® — R is (additively)
separable if there exist functions fi,..., fn such that f(x) =", fi(x;).

Definition 5.2.2 (Integer separable (convex) minimization oracle). Let P C R".
An integer separable minimization oracle for P is one that, queried on a separable
function f, either reports that PNZ" is empty, or that it is unbounded, or returns
a point x € PNZ" which minimizes f(X).

An integer separable convex minimization oracle for P is an integer separable
minimization oracle for P which can only be queried on functions f as above with
all f; conver.

Then the main result of this subsection is the following.

Theorem 5.2.3 (Master CSP theorem). Let I = (V,D,H,S) be a CSP instance
of treewidth T and let (T, B) be a nice tree decomposition of G(I) of width T.
Then there exist matrices A, C,D, a vector e and a tree decomposition (T, B¥)

of the Gaifman graph G(A C D) such that the following claims hold:

1. The polytope P = {(y,f,h) | Ay + Cf + Dh = e, f,h > 0} C RO"P+D*)
is a 0/1-polytope and CSP(I) = {y | 3(f,h) : (y,f,h) € P}, i.e., P is an
extension of CSP(I).

60

2. P is constructively decomposable.
3. The treewidth of (T*, B*) is at most D*™ and T = T*.
4. A,C,D,e and (T*, B*) can be computed in time D°n,

5. An integer separable minimization oracle for rP is realizable in time
min(DO PO V| 4 ||H| 4 (f), where (f) is the encoding length of f.

Proof. Points The idea of our proof is the same as in Theorem [5.1.9]
except that we replace the sets of feasible types and pairs or triples of types
with appropriate sets of configurations. Then we verify that all our arguments
go through as expected. More precisely:

« for each node a € V(T'), we replace the set of feasible types F(a) with the
set of configurations of the bag B(a), that is, F“57(a) = K(B(a)),

o for each introduce node b € V(7T') with a child a € V(T), we replace the
set of feasible pairs JF,(c) with the set F%F(c) = {(k,k’) € K(B(b)) x
K(B(a)) | k[p@=k'}, and symmetrically for a forget node b with the only
difference that k'[p@)= k', and,

« for each join node ¢ € V(T') with children a,b € V(T'), we replace the set
of feasible triples F;(c) with the set FC5F(c) = {(k,k, k) | k € K(B(c))}.

All our arguments from Phase 1 of the proof of Theorem [5.1.9| carry over and
thus we obtain a polytope ()., which is constructively decomposable and there is a
system C'f+D'h = €/, f,h > 0 defining it such that tw(C’ D’) < D*" by the fact
that |[IC(B(b))|* = |F5P(0)[> < |FS5P(b)] < D*" for each b € V(T); note that
for join nodes, | FE5F(b)| = | FE5F(b)|. Phase 2 does not exist in the case of CSP.
Finally, in Phase 3 (obtaining variables y') we have argued that the treewidth is
not significantly increased by adding these variables in a suitable way and that
the resulting polytope is still constructively decomposable. These arguments
also carry over completely by replacing the indicator function pu(f3,v,4) with an
analogous function u/(k, v,) defined for each variable v € V| each configuration
k € K(B(top(v)) and each i € D(v) as p/(k,v,7) = 1 if k|g,) = 7 and 0 otherwise.

Point The following exposition is heavy on notation. However, there is an
easier way to obtain only a slightly weaker version of Point [5| which is sufficient
for all of our purposes. We provide it after we are finished with this proof.

We will set up an auxiliary CSP instance J to realize an integer separable
minimization oracle for rP. Let us first review the meaning of the variables f
and h, as the CSP instance J will follow it closely. By the construction above,
for each node b and each configuration k € K(B(b)) = FC5P(b), there is a binary
variable f,[k| indicating whether b has configuration k in the solution. Moreover,
for each introduce or forget node b € V(7T') with a child a € V(T) and each
(k,k') € FS5P(b), there is a binary variable hy[(k,k’)] indicating that a has
configuration k’ and b has configuration k; analogously for a join node ¢ € V(T)
with children a,b € V(T') and a variable h.[(k, k, k).

In the following exposition we use multisets, so let us review a few relevant
notions first. Let X be a set of size n and k£ be an integer. Then the number

61

k k
multichoose k7). It is common to denote by () the set of all subsets of X of

size k. We extend this notation to multisubsets and let ((f)) be the set of all
multisubsets of X of size k. For a multiset A and its element a, we denote by
mult(a, A) the multiplicity of a in A.

Let us distinguish the components of two CSP instances I and J with sub-
scripts, e.g. the variables of [are V; and the variables of J are V;. Because the
variables of J are analogous to the variables of P, we shall denote them with
capital letters Y, F and H.

of multisubsets of X of size k is precisely ("Jrk*l), which we denote ((")) (“n

« For each v € V7 and each i € D(v) we have a variable Y, with domain [r];
this variable plays exactly the same role as the variable .

o For each b € V(T) we have a variable Fj, with domain ((’C(li (b)))); this
variable plays the role of the variables f,, the only difference is that f, is
essentially a unary encoding of Fy,.

« For each node ¢ € V(T) with a child a € V(T) (i.e., for an introduce or
forget node) or children a,b € V(T) (i.e., for a join node), we have a variable

H. with domain ((f v Srp(b))) or ((f ¢ ip(b))) for introduce and forget nodes,
or join nodes, respectively. Again, the variables h, are essentially a unary
encoding of H.. Observe that the elements of ((f v Srp(b))) and ((f Cip(b))) are
multisets of pairs or triples. For a multiset of tuples K, we abuse notation
and denote K[i] = {k[i] | k € K}; eg., for K € ((ff’csrp(b)), K[1] is the
multiset of first coordinates of elements of K.

The hard constraints H; are as follows.

 For each node ¢ € V(T') with a child a € V(T or children a,b € V(T), we
have the following hard constraints:

- {(F.,H.) | H 1] = F.} and {(F,, H.) | H.[2] = F,} if a is the only
child of ¢, and,

- {<FC7HC) | Hc{l] = Fc}7 {(FavHC) | Hc{z] = Fa} and {(FbaH0> |
H.[3] = F,}, if a,b are the two children of b.

v

K(top(v)),Y) = M(Fiop(w),v,i)}, where M(K,v,i) is defined for all K €
((ICSP(:OP(”)))) as the cardinality of the multiset {k € K | p/(k,v,i) = 1}.

« For each Y, we have a hard constraint {(Fiopw),Yy) | Fiopw) €

Consider now the given separable function f. We define the following weighted
soft constraints C; based on f.

« For each variable !, let wy:(Yy) = f,: (V).
e For each node b € V(T), let wr, (Fy) = 3250 Xkermutt(k,Fy)=j £, (J)-

« For each node b € V(T), let wy, (H,) = 22720 - K€ Hymult (K, Hy)—=j J ho [K] (7).

Then, we use Freuder’s algorithm (Theorem [2.4.4)) to find a minimal solution
to J. It is easy to find a point of rP based on this solution as follows. Let:

62

cu =Y,

o folk] = mult(k, F},), and

o hy[K] = mult(K, Hy), where K is a pair or a triple of configurations when
b is a introduce and forget or join node, respectively.

Regarding the time complexity, observe that J has treewidth 1 because G(J)
is a tree by a similar argument as we have used in the alternative proof of
Theorem [4.3.1, Moreover, the size of its domains is upper bounded by the

maximum size of (7% Srp(b))) over all nodes b € V(T'). By standard identities,

(1) = ("5 = (") = (*1)- Thus, by the bound (}) < n¥, we have

k k n—1 n—1
that ((Z)) < min(n*, k). This implies that the maximum domain size of J sat-

isfies Dy < min(D}7, rP7); similarly we have that ||H,|| < min(D?7,rP7"). O

The polytope P of the last theorem is derived not just from the CSP instance
I, but also the nice tree decompostition (7, B) of G(I). Nevertheless, with slight
abuse of notation, we shall denote it from now on as P(I).

Viewing ILP as CSP. Note that we could have obtained a slightly weaker
version of Point [5] of Theorem [5.2.3] by a different argument. Observe that we
have used the bound ((Z)) < min(n*, k") to prove Point . In situations when

bounding by n* suffices, we can do the following. Since the polytope rP(I) is
described by an LP of small treewidth, and we are only interested in its integer
solutions, we can view it as an ILP of small treewidth. Moreover, it is easy to
see that an ILP is a special case of CSP where all constraints are linear. Let us
make this argument explicit.

Definition 5.2.4 (CSP-ILP equivalence). A CSP instance I is equivalent to an
ILP Ax < b,x € Z" if

{x €Z" | Ax < b} = Feas(]).

Lemma 5.2.5. Let A € Z"™ b € Z™ £,u € Z" be given s.t. tw(A) = T,
and let D = ||u — £||oo. Then an integer separable minimization oracle over
P={xe€Z"| Ax =b,£ < x <u} is realizable in time D™ (n +m) + (f).

Proof. The proof proceeds as follows. First, we construct a CSP instance I equiv-
alent to the ILP Ax = b, £ < x < u,x € Z" such that their Gaifman graphs
G(A) and G(I) are equal, and thus tw(A) = tw(I). Moreover, the maximum
domain size of I is D. Second, we use the fact that an integer separable func-
tion is easily encoded in a CSP instance by weighted soft constraints. Then,
Theorem does the job.

We now construct I. Let V = {xy,...,z,}. For every i € [n], let D; = [{;, u;]
and D = {D; | i € [n]}. Observe that max; |D;| = ||u — £||.c = D. Regarding
hard constraints H, observe that every row A; of A contains at most 7 4 1 non-
zeros, since otherwise the Gaifman graph of A would contain a clique of size
T + 2, contradicting its treewidth of 7. Let U; = {4y, ..., }, where k < 7 + 1,
be the set of indices of non-zero elements of A;, and let x. = 0 for all ¢ ¢ Uj.
Let Cy, be the set of assignments from D;, X --- x Dy, to z;,...,z; that satisfy

63

A;x = bj; obviously |Cy,| < D" and it can be constructed in time O(DF).
Let H = {Cy, | j € [m]}. Finally, for a given separable function f such that
f(x) =20, fi(z;), let SS = {wyy,y | i € [n]} where wy,,y = f; for all 7.

It is easy to verify that the feasible assignments of I correspond to integer
solutions of Ax = b, £ < x < u, that its maximum domain size is D and its
weighted soft constraints SS sum up to exactly f. Finally, the treewidth of I is 7,
since the Gaifman graph of G(I) of I is exactly G(A). Then Theorem [2.4.4]solves
I in time O(D7(n+ |H| 4+ |C]) = O(D™(n+m+ (f))), concluding the proof. [J

Returning to Theorem [5.2.3] notice that if a polytope P is represented by an
LP Ax < b, it is easy to see that rP is represented by Ax < rb. Applying
Lemma to the ILP Ax < rb and the objective function f does the job.

5.2.2 Courcelle’s Theorem as CSP

Now we will show that it is possible to view Theorem about the extension
complexity of the MSO polytope as a consequence of Theorem [3.0.1] about the
extension complexity of the CSP polytope. Because we will build on this work
further, let us first introduce the notion of a CSP extension, modeled after the
terminology of polytopes and their extended formulations. Recall (Subsection
that for a vector x and a subset of its coordinates I, x|; is the |/|-dimensional
projection of x to the coordinates I, which is the subvector of x specified by the
coordinates I.

Definition 5.2.6 (CSP extension). Let I = (V;, Dy, H,Sr) be a CSP instance.
We say that J = (V;, Dy, H;,Sy) with Vi C V; is an extension of I (or that J
extends I) if Feas(I) = {Z|VI ’ z € Feas(J)}.

Our motivation for introducing CSP extensions is the following. A typical
task we face in the following chapters is that we are interested in a certain set S
of feasible solutions and our goal is to optimize over S or its r-dilate ((f)) Then,
our approach is this:

1. We formulate a CSP instance I, possibly of large size and treewidth, such
that S = Feas([]).

2. We apply Theorem [5.2.13| which implies the existence of an extension J of
I with bounded treewidth and domain sizes, and with an integer separable
minimization oracle for rCSP(J).

3. By the fact that Feas(I) = {z|y, | z € Feas(J)}, we can optimize over
Feas(I) by optimizing over Feas(J). Analogously, since the integer points
of CSP(J) correspond to the elements of Feas(.J), we can optimize over

((Feas([))) by optimizing over the decomposable integer points of rC'SP(J).

r

Let us sketch our plan for the rest of this section. Definition [5.2.7] introduces
the CSP instance C'SP,(G) with the property that Feas(CSP,(G)) = S,(G).
Then, Lemma shows that C'SP,(G) has an extension of treewidth 2 and
with domain sizes bounded by a function of tw(G) and |¢|. Definition [5.2.9)
introduces the local scope property which is used in Lemma [5.2.10f There, we
show that if a CSP instace I with Feas(I) C S,(G) can be described as C'SP,(G)

64

with additional variables and constraints satisfying the local scope property, then
I has an extension J with good bounds on its treewidth and domain sizes. Finally,

Theorem [5.2.13| applies Theorem to the extension J of Lemma [5.2.10]

Definition 5.2.7 (CSP,(G) instance). Let G with tw(G) = T be a oa-structure
representing a graph and let ¢ be an MSOy ogo-formula with m free variables. By
CSP,(G) we denote the CSP instance (V, D, H,0) with V = {y. | v € V(G),i €
[m]}, all domains equal {0,1}, and with a hard constraint {y | G,y |= ¢}.

Observe that Feas(CSP,(G)) = S,(G).

Lemma 5.2.8 (Extension of CSP(G)). Let G with tw(G) = T be a oy-structure
representing a graph, let (T, B) be a nice tree decomposition of G of treewidth T,
and let ¢ be an MSO; oo-formula with m free variables. Then CSP,(G) has a
CSP extension J with tw(J) = 2, G(J) has a tree decomposition (T, B*) of width
2+m, D;=0O(|C|) and |Hs|| = O(IC|]? - n).

Proof. Let us first give a brief clarifying comment on the seemingly mismatching
treewidths of J and its tree decomposition (7, B*). As we shall show further,
it is indeed not difficult to obtain a tree decomposition (7", B’) of J of width 2.
However, we no longer have T = T" as in the statement of the lemma, and it
is not obvious that a tree decomposition (7", B") of width 2 with 7" = T even
exists. Moreover, having the tree decomposition (7, B*) will make the following
expositions cleaner, and the additional “+m” factor does not matter asymptoti-
cally.

Let (7, B) be a nice decomposition of G of treewidth 7. Consider the following
CSP instance J = (V;, Dy, Hy, D) derived from G, (T, B) and p. We have these

variables in V/:
o For each vertex v € V(G) and each i € [m] a variable y with domain {0, 1},

o for each node a € V(T') except the root a variable ¢, with domain F(a),
and,

o for the root node ¢ € V(T) a variable t. with domain {5 € F(c) | p,(5) =

1}.
We have the following hard constraints in H ;:

« For each introduce or forget node b € V(T') with child a € V(T') a constraint
{(t, 1a) € Fp(b)}.

e For each join node ¢ € V/(T') with children a,b € V(T) a constraint
{(te, ta, ty) € Fi(c)}

« For each vertex v € V(@) and each ¢ € [m], a constraint {(ttop(v),yf))) €

{(8,u(B,v,1) | B € Fltop(v))}}.

It is not difficult to observe that the variables t, encode the feasible type of
each node a and thus the feasible assignments of variables y’ exactly correspond
to the satisfying assignments of p(X,...,X,,) in G.

65

Let us turn our attention to the treewidth of G(J). Its vertices are the vari-
ables t, and y’. First, consider the variables t. The constraints imposed because
of introduce and forget nodes only contain edges of T', and the constraints im-
posed because of join nodes only include ¢, and its children ¢,,t,. For each node
be V(T), let B'(b) = {t. | a € Np(b)}. It is easy to check that (T, B’) is a tree
decomposition of G(J)[{t, | a € V(T)}], and that it has treewidth 27| Turning
our attention to the variables y, we see that each variable y! is connected to one
variable t,p(,) and the variables y are not connected among themselves. Thus,
for each v € V(G), we let B*(top(v)) = B'(top(v))U{y! | i € [m]}, implying that
(T, B*) has treewidth 2 + m. However, it is not difficult to see that G(J) itself
has treewidth just 2: it is possible to “stretch” the node top(v) into m copies
and add a different 3’ into the bag of every copy. Note that this creates a tree
decomposition whose tree is no longer T'. Since |F(b)| < |F,(b)| < |C]* holds for
any introduce or forget node b € V(T), and | F(b)| < |F:(b)| < |C|? holds for any
join node b € V(T), clearly ||H || < n-|C|>. O

Alternative proof of Theorem [{.53.1. Consider the instance J of Lemma[5.2.8, By
Theorem [3.0.1] there exists a polytope P(J) with xc(P(J)) < O(|C|- | H,]|| - nm -
(V(T)|) < O(|C]? - nm). Since Feas(I) = S,(G) and J is an extension of I, P(J)
is an extension of P,(G). O

Moreover, using the much stronger Theorem [5.2.3] it is possible to obtain
an analogue of Theorem together with an integer separable minimization
oracle. We will leave this result without a formal statement, because we are about
to prove an even stronger result, tying together all our developments so far.

Definition 5.2.9 (Local scope property). Let m,k € N, G be a graph, (T, B)
be its nice tree decomposition, and S be a set of vectors of elements indexed by
V(G) x [m] and V(T) x [k]. We say that S has the local scope property if

s €S Jac V(T): supp(s) C ({(v,4) | v € Ba),i € [m]} U
{(b,4) | b€ Nr(a),j € [K]}).

Lemma 5.2.10 (On extension of CSP,(G)). Let G with tw(G) = 7 be a o9-
structure representing a graph, ¢ € MSOy with m free variables, (T, B) a nice tree
decomposition of G of treewidth T, and k € N. Furthermore, let I = (V,D,H,S)
be a CSP instance with V = {y! | v € V(G),i € [m]} U{z | a € V(T),J € [K]},
and H = {{y |G,y E gp}}UH’, and H'US have the local scope property, i.e., the
scope of all constraints is restricted to variables corresponding to the descendants
of some node a € V(T).

Then there exists a CSP instance J = (Vy, Dy, H;,S;) which extends I, and

a computable function f such that
1. tw(J) <2k +m(1t + 1),

2 A+ 1SS < fels) - VI R+ ST,

"'We could have constructed .J differently to obtain treewidth 1 by replacing arity-3 hard
constraints with additional vertices whose domains would be these hard constraints. Such a
construction is similar to the one in the proof of Theorem

66

3. Dy =max(Dy, f(|el, 7)),

Proof. The proof proceeds as follows. First, we use Lemma to obtain a CSP
instance J' which is an extension of CSP,(G) (recall that Feas(CSP,(G)) =
S,(G)). Then, we show that if H' and S have the local scope property, it is
possible to add new constraints derived from H' and S to J’ in such a way that
J has the claimed properties.

Let I’ be the CSP,(G) instance over variables y with H = {{y |G,y E gp}}
By Lemma we obtain a CSP instance J’ which is an extension of I’, and
(T, B*) is a tree decomposition of G(J').

We introduce auxiliary binary variables f>% for each a € V(T'), i € [m] and v €
B(a), and we impose a hard constraint on f»* and t, enforcing f>* = n(t,, a,v,1).
Recall that by the definition of 7, this implies f>* = y!. For any subset U of
variables of I, let U, be the set U where each variable 4 is replaced by f>®. Then,
for every constraint Cpy € H' and wy € S let a € V(1) be the node such that
the local scope property of Cyy and wy, respectively, is fulfilled by a, add to J' an
identical constraint with scope U replaced by U,. We call the resulting instance
J. Observe that, for any constraint Cyy or wy, f>* = 3 implies that replacing
its scope with U, does not change the set of feasible assignments, and J is an
extension of I.

By Lemmal5.2.8] we have that ||H || < f(|¢|,7)-n. Since |[H,\ Hr|| = [|H'||
and |5, = (S]], we have that |[H,]|+[|Ss]| < f(l¢l, 7)-n+ |H'[|+[S]]. Clearly,
D; = max(Dy, Dy) = max(Dy, f(|e], 7))

It remains to show that tw(J) <2+ m + 2k. A lemma will help us see that.

Lemma 5.2.11. Let T = (I, F) be a rooted binary tree, let (T, B) be a tree
decomposition of a graph G = (V, E) of width k, and let H = (VUW,EUY) be
a supergraph of G such that:

o W =Uwer Wa, Y = Uasser Yar, and all W, and Yy, are mutually disjoint,

o |Wo| <K forallacl,

e if a € I has only child b, then Yy C (B(a) U W, UW,), and,

e if a has two children bV, then (Yo U Yar) C (B(a) U W, U W, U Wy).
Then there is a tree decomposition (T, B') of H of width at most k + 2k’.

Let B’ be obtained from B by, for every edge ab € F, adding W, to the bags
B(a) and B(b). We will verify that (7, B') is a tree decomposition of H of width
at most k + 2x’; we shall denote by B’ the bags of (T, B’). The conditions of
a tree decomposition obviously hold for all vertices and edges of GG, so we only
check it for new vertices and edges.

Edge condition. Let uwv € Yy, be an edge in H \ G with u € W,. Either
v € B(a) and then {u,v} C B(a) UW, C B'(a), or v € X} and then {u,v} C
B(b) UW, C B'(b).

Connectedness condition. Let v € W, and let a have children b, b, with
possibly b = I'. Notice that v does not appear in the bag of any node above a
and any node below b and ¥'. Since we have added W, to all of a,b and V', the
connectedness condition holds.

67

Proof.

Figure 5.1: The situation of Lemma [5.2.11} the additional vertices X are parti-
tioned along the nodes of T', and only connect to original or new vertices associ-
ated with adjacent nodes.

We have added to each node b (except the root) two sets W,, Wj, where a is
the parent of b, and because |W,| + |W3| < 2x/, tw((T, B')) < k + 2K/, O

Let us consider how the constraint graph G(J) relates to G(J'). Since J is
obtained by adding new variables and constraints, G(.J) is a supergraph of G(.J').
The vertices X = V(G(J)) \ V(G(J')) corresponding to the new variables can
be partitioned into sets W, for every node a € V(T'), and |W,| < k. Moreover,
the new edges Y = E(G(J)) \ E(G(J')) can be partitioned into sets Yy, for each
ab € E(T), such that for each uwv € Yy, {u,v} C (W, UW,), because, for each
node a € V(T'), the new constraints only contain variables associated with a and
its neighbors by the local scope property. The tree decomposition (7', B*) of G(.J’)
is such that we are precisely in the situation of Lemma with G := G(J'),
H:=G(J), k:=tw(J") =2+ mand " := k+m7, which then implies that G(.J)
has a tree decomposition (T, B") of width 2k +m + m7 < 2k +m(7 + 1). O

Definition 5.2.12 (Integer separable minimization oracle over r-multisets). Let
S C N". Abusing our terminology slightly, we say that an integer separable
minimization oracle over the r-multisets of S is an integer separable minimization
oracle for rS = {x' + .-+ x" | {x,...,x"} € ((f))}, which, together with a
minimum X, returns its decomposition x! + - - + x" = x.

Theorem 5.2.13 (Master MSO-CSP theorem). Let G with tw(G) = 7 be a o-
structure representing a graph, ¢ be an MSO; oy-formula with m free variables,
(T, B) a nice tree decomposition of G of width T, and k € N. Furthermore, let
I = (V,D,H,S) be a CSP instance with V. = {y’ | v € V(GQ),i1 € [m]} U {z? |
acV(T),je[k]}, and H = {{y |G,y = (p}} UH', and H' and S have the local
scope property.

Then there exists a constructively decomposable extended formulation P(J) of
the polytope CSP(J) of size D§f(‘“"’”+2’“>. Moreover, it is possible to realize an
integer separable minimization oracle over the set rP(J), and ((Fea:u))) in time
min(D?(f(M’TH%),T’Dgfwmﬁk)) ~([|H']| + (g9) + nmk) when queried on a sepable
function g.

Proof. The proof is a straightforward application of Theorem to the instance
obtained by Lemma [5.2.10, An integer separable minimization oracle for rP(.J)

68

is provided directly by Theorem [5.1.9, Regarding minimization over ((Fea;(‘]))),
let (y,f,h) € rP(J) be a minimum when the oracle for rP(.J) is queried on
g. Since rP(J) is constructively decomposable, we find in polynomial time a
decomposition (y,f h) = (y',f',h!) + .-+ (y",f",h"). Clearly {y',...,y"} €
((Feaf(J))), and it is minimal such r-multisubset with respect to g.

Regarding time complexity, combining the bounds of Theorem [5.2.3]and Lem-

ma [5.2.10] gives

min(DSC O R DT 1|+ (g) + nmk)
. - - (F(ll,m)+2k)
< win(Dp AT PEETEE (3 + (g) o)

69

70

6. MSO extensions

We start this chapter by introducing several extensions of the MSO logic in Sec-
tion[6.1] This provides a summary of prior work and allows us to spot distinguish-
ing properties of extensions with respect to computational complexity. Then, in
Section we apply Theorem to obtain an XP algorithm for the logic
MSOC®! on graphs of bounded treewidth. Finally, Section deals with graphs
of bounded neighborhood diversity, providing two hardness results, an FPT al-
gorithm for the linear extension MSOFL, and an XP algorithm for the MSO®"
logic.

6.1 MSO Extensions

Let us introduce extensions of the MSO logic. We consider two orthogonal ways
to extend MSO. In what follows, ¢ is a formula with m free set variables.

Global cardinality constraints. We introduce a new type of atomic formulae
called global cardinality constraints (global constraints for short). An MSO for-
mula with ¢ global cardinality constraints contains m-ary predicates Ry, ..., R,
where each predicate takes as argument only the free variables of ¢. The input
to the model checking problem is a graph G = (V, F)) on n vertices and a tuple
(RY,...,RY), where RY C [n]™.

To define the semantics of the extension, it is enough to define the truth of
the newly introduced atomic formulae. A formula R;(X7,...,X,,) is true under
an assignment p: {X1,..., X} — 2V if and only if (|u(X1)], ..., |u(Xn)]) € RY.

We allow the relations to be represented either explicitly as a list of tuples, or
implicitly as a linear constraint a;|Xi| + - - @y, | Xn| < b, where (ay, ..., a,,b) €
R™H,

For example, suppose we want to satisfy a formula ¢(X;, Xy) with two sets
for which | X| > | X5|? holds. Then, we solve the MSO® Model Checking problem
with a formula ¢ := ¢ A [|X;]| > |X2|*]. Notice that we write the relation as a
part of the formula, as this is a more convenient way to think of the problem.
However, formally the relation is a part of the input.

Local cardinality constraints. Local cardinality constraints are additional
cardinality requirements such that every variable assignment has to satisfy the
cardinality constraint for every vertex and for every free variable. Specifically, we
want to control the size of u(X)NN(v) for every v € V(G); we define a shorthand
S(v) = SN N(v) for a subset S C V and vertex v € V(G)[T| Local cardinality
constraints for a graph G = (V, E) on n vertices and a formula ¢ with m free
variables are mappings oy, . . ., ay,, where each a; is a mapping from V to 2",

We say that an assignment p obeys local cardinality constraints oy, . .., oy, if
for every i € [m] and every v € V(G) it holds that |u(X;)(v)| € ai(v).

More accurately, Szeider [I11] introduces local cardinality constraints in a way which con-
strain the size of S(v) also when S is an edge set S C E(G). In Subsection we show that
instead of GG, we can equivalently work with a different structure which has elements for both
vertices and edges of the original graph G, and preserves their incidence. Then, our definition
also captures the more general original definition.

71

The logic that incorporates both of these extensions is denoted as MSO®".
Let ¢ be an MSO®! formula with ¢ global cardinality constraints.

MSO®t Model Checking

Input: A graph G = (V, E) on n vertices, relations RY, ..., RS C [n]™,
and mappings aq, ..., : V — 20,

Task: Find an assignment p that obeys local cardinality constraints and
such that ¢ is true under p by the semantics defined above.

The MSO®" logic is very powerful and, as we later show, does not admit
an FPT model checking algorithm for the parameterization even by the very
restrictive parameter vertex cover number, which rules out an FPT algorithm for
both treewidth and neighborhood diversity. It is therefore relevant to consider
weakenings of the MSO®" logic:

MSO® Only global cardinality constraints are allowed.

MSO" (originally MSO-LCC [I11]) Only local cardinality constraints are al-
lowed.

MSO¢ (originally CardMSO [47]) The cardinality constraints can only be lin-
ear; that is, we allow constraints in the form [e; > ey], where e; is linear
expression over |Xi|,...|X,,|.

l\/ISO|Lin Only local cardinality constraints are allowed; furthermore every local
cardinality constraint c; must be of the form «a;(v) = [I,u}], (i.e., an in-

terval) where [, u} € [n]. Those constraints are referred to as linear local
cardinality constraintsf]

MSOSE A combination of MSOp, and MSO(,; both local and global constraints

lin lins
are allowed, but only in their linear variants.

The model checking problem for the considered fragments is defined in a natural
way analogously to MSO®" model checking.

By saying that ¢ is an MSO* formula, we mean that ¢ is a formula from any
of the extensions defined above.

6.1.1 Pre-evaluations

Many techniques used for designing MSO model checking algorithms fail when
applied to MSO extensions. A common workaround is first transforming the given
MSO* formula into an MSO formula by fixing values of all global constraints to
either true or false. Once we determine which variable assignments satisfy the
transformed MSO formula, we can by other means (e.g, ILP or CSP) ensure that
they obey the constraints imposed by fixing the values to true or false. This
approach was first used for CardMSO by Ganian and Obdrzélek [49]. We formally
describe this technique as pre-evaluations:

2The logic fairMSO introduced by Kolman et al. [72] is a further restriction of MSOJ;,; now we
only allow a;(v) = [0,u?]. Since the hardness results for MSOF, already hold for fairMSO [0,
and our positive results hold for the more general MSO}.., we do not study fairMSO any further.

72

Definition 6.1.1 (Pre-evaluation). Let ¢ be an MSO* formula. Denote by C(y)
the list of all global constraints. A mapping 5: C(p) — {true,false} is called
a pre-evaluation function on ¢. The MSO formula obtained by replacing each
global constraint ¢; € C(p) by B(c;) is denoted by S(p) and is referred to as a
pre-evaluation of .

Definition 6.1.2 (Coplying with a pre-evaluation). A wvariable assignment u of
an MSO* formula ¢ complies with a pre-evaluation function B if every global
constraint ¢; € C(p) evaluates to (c;) under the assignment fi.

6.1.2 Regarding MSO; and MSO,

Despite the fact that MSO, is strictly stronger than MSO; (hamiltonicity is ex-
pressible in MSO, but not in MSO; [83]), it is known [69] that on graphs with
bounded treewidth their power is equal by an argument we shall review below.
We will show that only a small change in the argument still works even for our
extensions of MSO.

As we discussed in Section , a graph G = (V, E) is typically viewed as
either a oy or a gg-structure. Then, every MSO; o;-formula about G can be
rewritten into an equivalent MSO; oo-formula about its incidence graph I(G) =
(Vi,0,{Er, Ly, Lg}), with Vi = VUE, E; = {{v,e} |v €e,e € E}, Ly =V and
Lg = FE (cf. Section . The crucial observation typically used in the literature
is that the treewidth of the structure I(G) is equal to the original graph structure
G [69].

Let us examine this observation more closely. The oy-structure I(G) is es-
sentially obtained from G by subdividing every edge and labelling the original
vertices by Ly and the new vertices by Lg. However, the local cardinality con-
straints in MSO, require counting the number of both incident edges and vertices,
which is impossible in I(G), since two vertices u,v incident in G are no longer
incident in I(G). (Global cardinality constraints pose no problems.) What we
need is to reintroduce the edge uv into I(G); let us call the resulting structure
IMG).

Fortunatelly, we will show this does not increase treewidth by more than one.
Observe that we can equivalently view the process obtaining I(G) as copying
each edge e of G and then subdividing one copy of e and letting the other as
is. Then, if (T, B) is a tree decomposition of GG, there must exist a node b with
e C B(b). We subdivide T such that there is a distinct such node b, for each
edge e € E(G); then, for each edge e € E(G), we insert the vertex obtained by
subdividing e into B(b.). This results in a tree decomposition (7", B’) which is a
tree decomposition of I*(G) (or, more specifically, its Gaifman graph) and whose
treewidth is 1 larger than that of (7, B).

For this reason, when considering graphs of bounded treewidth, we focus on
MSO; formulae over oy-structures (i.e., graphs with labels Ly and Lg), rather
than working with MSQO,.

On graphs of bounded neighborhood diversity, MSO, is strictly more powerful
than MSOy; however, model checking of an MSQO, formula is not even in XP unless
E = NE [25, [76]. Thus, here too we restrict our attention to MSO; and use MSO
as a shortcut for MSO;.

73

6.2 XP Algorithm For MSO® on Bounded
Treewidth

We consider a natural optimization version of MSO®" model checking:

Weighted MSO®" Model Checking

Input: An MSO®" model checking instance, weights w', ..., w™ € Z"
Task: Find an assignment X, ..., X,, satisfying the MSO®" Model Check-
ing instance and minimizing 337", > ex, w)

Theorem 6.2.1. There is an algorithm that solves the Weighted MSO®t Mod-
el Checking problem in time n/U¢7) where 7 = tw (G) and f is a computable
function.

The merit of Theorem lies not only in being a very general tractability
result, but also in showcasing a simplified way to prove a metatheorem extending
MSO using Theorem [5.2.13] In the MSO®" Model Checking problem, we wish to
find a satisfying assignment of some formula ¢ which satisfies further constraints.
Simply put, Theorem says that it is possible to restrict the set of satisfying
assignments of a formula ¢ € MSO; with CSP constraints under the condition
that these additional constraints are structured along the tree decomposition of
G. This allows the proof of Theorem to simply be a CSP formulation
satisfying this property.

Proof of Theorem[6.2.1 As is standard when dealing with MSO extensions (cf.
Subsection , we first observe that there are at most 2/ different pre-
evaluations [(p) of ¢, so we can try each and choose the best result. Let a
pre-evaluation f(¢) be fixed from now on.

Let (7, B) be a nice tree decomposition of G. We will now construct a CSP
instance [satisfying the conditions of Theorem . Let y be the variables as
in Theorem [5.2.13} we use the hard constraint

G,y = B(p)

to enforce that each feasible solution complies with the pre-evaluation 5(¢). Now
we will introduce additional CSP variables and constraints in two ways to en-
force the local and global cardinality constraints. Observe that we introduce the
additional CSP variables and constraints in such a way that they have the local
scope property of Theorem that is, their scopes will always be limited to
the neighborhood of some node a € V(7).

Global cardinality constraints. In addition to the original y variables, we
introduce, for each node a € V(T) and each j € [m], a variable s with domain
[n]. The meaning of this variable is s = |X; N V(G,)|. Thus, in the root node r,
sJ is exactly |X;|. To enforce the desired meaning of the variables s, we add the
following hard constraints:

sl =0 For all leaves a)\ sl =5l 4y For all a = b* (v)

sl=s] Forala=bt(v) N\ si=sl+s,— > 1y TForalla=A(bb)
vEB(a)

74

To enforce the cardinality constraints themselves, we add:

(sf,....,s™ €ER VR: B(R) = true

(sh,...,8™) € ([n]™\ R) VR : B(R) = false
Local cardinality constraints. For every node a € V(T), every j € [m] and
every vertex v € B(a), introduce a variable A% with domain [n], with the meaning
A = |Ng, (v) N X;|. This is enforced by setting:

No= > v Va = bx* (v)
uwF#u€B(a)
uvelE
AU = N gy Va=0bx (v),u € B(a),uv € E
A = N\ Va=0b7 (u),u# v,v € B(a)
M= N+ N - Yy Ya = A(b, 1)
u:v;éueeEB(a)

Now the local cardinality constraints themselves are enforced by setting:

AV

top(v

) € (v) ForallveV, je[m].

Objective function. Use the integer separable minimization oracle for
Feas(I) = ((Feaf(l))) with f(y) = 2781 Yoev(q) ¥iw), which is a linear (and thus
separable) function.

Since the CSP instance I we have constructed satisfies the local scope prop-
erty, we are ready to apply Theorem [5.2.13] Let us determine the necessary
parameters. We have introduced m variables s per node, and m7 variables A\ per
node. Thus, k = (17 + 1)m. Let N = ¥5_ |RS| 4+ X7 Yoev(a) la;(v)] be the
input length of the global and local cardinality constraints. Since ||[H'|| < N, we
have that the optimum can be found in time n/(¥7) + N finishing the proof. O

Conditional cardinality constraints. As Szeider [I11] points out, it is easy to
extend his XP result for MSO" in such a way that the local cardinality constraint
| X (v)| € a(v) is conditioned on the fact that v € X. Observe that our approach
can be extended in such a way as well. Moreover, in our setting with multiple
set variables, we can even condition on an arbitrary predicate (v, Xi,..., X;,)
describing how vertex v relates to the set variables.

Extended formulations. Since the main engine of our proof was Theo-

rem [5.2.13] it is easy to see the following:

Corollary 6.2.2. Let G be a o9-structure of treewidth 7, I = (¢, (R1,..., R.),a)

(
be an instance of MSO®" model checking, and P,(G) = conv((@) be the MSO®H
polytope of satisfying assignments of instance I. Then xc(P, (G)) < nfUelm) for
some computable function f.

6.2.1 Applications

Let us briefly sketch some consequences of Theorem [6.2.1and Corollary[6.2.2] We
focus on showing how to encode various W[1]-hard (W.r.t. treewidth) problems

75

using the notions we have provided. The parameterized complexity statements
which follow are not very surprising and in many cases were known. Still, we
believe that our approach captures and summarizes them nicely. On the other
hand, these are the first compact extended formulations for such polytopes as the
polytope of equitable colorings, capacitated dominating sets etc., to the best of
our knowledge.

Local constraints. While introducing MSO", Szeider [I11] points out that the
problems GENERAL FACTOR, EQUITABLE r-COLORING and MINIMUM MAX-
IMUM OUTDEGREE are expressible in MSO". Let us now observe that using
the extension to conditional local constraints, we can also express the problems
CAPACITATED DOMINATING SET, CAPACITATED VERTEX COVER, VECTOR
DOMINATING SET and GENERALIZED DOMINATION.

Take for example the CAPACITATED DOMINATING SET problem. There, we
are given a graph G = (V, E) together with a capacity function ¢ : V' — N, and
our goal is to find a subset D C V and a mapping f : V' \ D — D such that for
each v € D, |f~1(v)] < ¢(v). Essentially, f(w) = v means that the vertex w is
dominated by the vertex v, and the condition |f~*(v)| < c¢(v) ensures that the
mapping f respects the capacities. To encode this problem using MSO", we need
to view G as its incidence graph I(G) whose vertex set V; = VU E. Then, we let
©(D, F) and « be a formula and local cardinality constraints enforcing that:

« DCV,
.« FCE,

e each v € V is either in D or has a neighbor in F,

each e € I has a neighbor in D, and,
o if v € D, then |[N(v) N F| € ar(v) =10,c(v)].

Then D encodes a dominating set and F' can be used to construct the mapping
f since for each edge e € F', at most one of its endpoints is not in D, and each
v € D sees at most ¢(v) edges from F.

Let us define the remaining problems; their MSO" formulations are analo-
gous to the one above. The VECTOR DOMINATING SET problem is similar to
CAPACITATED DOMINATING SET, except now each vertex v has a demand d(v)
and if v € D, then it must have at least d(v) neighbors in D. In GENERALIZED
DOMINATION, we are given two sets o,p C N and for each vertex v in D or in
V'\ D, it must hold that |[N(v) N D| € o or |[N(v) N D| € p, respectively. Finally,
the CAPACITATED VERTEX COVER problem is the following. We are given a ca-
pacitated graph, and the task is to find a vertex cover C' C V' and an assignment
[+ E — C such that for each v, |f~1(v)]| < ¢(v).

Global constraints: r-Balanced Partitioning. Ganian and Obdrzélek [49]
introduce MSOS, and show that also this logic expresses EQUITABLE 7-
COLORING, and moreover the EQUITABLE CONNECTED r-PARTITION problem.
Interestingly, they also discuss the complexity of the r~-BALANCED PARTITION-
ING problem, where our goal is to find an equitable (all parts of size differing by
at most one) r-partition and, moreover, minimize the number of edges between

partites. They provide an FPT algorithm for graphs of bounded vertex cover,

76

but are unable to express the problem in MSOﬁn, and thus pose as an open prob-
lem the task of finding a more expressive formalism which would capture this
problem. They also state that no parameterized algorithm exists for graphs of
bounded treewidth, but that is no longer true due to the results of van Bevern
et al. [I14]. On the other hand, the question of capturing r-BALANCED PARTI-
TIONING by some MSO extension stands. Here we show that it can be expressed
as an instance of Weighted MSOfi;n Model Checking when we use edge set variables
(thus this is not applicable to graphs of bounded neighborhood diversity).

Let ¢ be an MSO® formula with r free vertex set variables Xj, ..., X, and one
free edge set variable Y. We use ¢ to express that Xi,..., X, is an equitable -
partition; this is easily done using the global constraints. Furthermore, we enforce
that Y is the set of edges with one endpoint in X; and another in X; for any
i # j. For a satisfying assignment X1,..., X,,Y, let (x,y) € {0,1}"VI x {0, 1}I#!
be its characteristic vector. To minimize the number of edges between partites,
it suffices to minimize y. This also clearly extends to the case studied in the
literature when edges are assigned weights.

Moreover, it is not difficult to see that the CSP instance in the proof of
Theorem could be extended to enforce constraints such as > ¢y | X (v)| € A
for some set A C N. With such constraints, it is possible to directly express the
set of minimal (by appropriate choice of A) r-balanced partitions, which in turn
provides a compact extended formulation.

Global constraints: Graph Motif. Fellows et al. [36] study the GRAPH
MOoTIF problem from the perspective of parameterized complexity, especially on
graphs with bounded widths. In GRAPH MOTIF, we are given a vertex-colored
graph GG and a multiset of colors M, and the task is to find a motif, that is, a
connected subset of vertices S C V' such that the multiset of colors of S is exactly
M. This problem is most naturally expressed when the vertex-colored graph G is
encoded as a general relational structure over a finite vocabulary. Since we have
not explicitely phrased our results for such structures, GRAPH MOTIF does not
directly fit any of our notions; however, the extension of our results to general
structures is straightforward.

Then, let us consider the number of colors y a parameter and introduce addi-
tional unary relations (labels) Ly, ..., L,. It is easy to see that GRAPH MOTIF
is encoded by the following MSOg. formula ¢(S):

lin
X

¢(S) = connected(S) A A[|S N L;| = mult(s, M)],

i=1

where connected(S) is a formula which holds if S is connected, and mult(i, M) €
N is the multiplicity of color ¢ in the motif M.

Theorem 6.2.3. Let G be a graph of treewidth T and with n = |V (G)].

(XP) The following problems have algorithms with runtime n'") and extended
formulations of the same size: GENERAL FACTOR, MINIMUM MAXIMUM OUT-
DEGREE, CAPACITATED DOMINATING SET, CAPACITATED VERTEX COVER,
VECTOR DOMINATING SET, GENERALIZED DOMINATION.

(FPT) The following problems have algorithms with runtime f(1 + k) - noM
and extended formulations of the same size, with k specified further:

7

e EQUITABLE 7r-COLORING, EQUITABLE CONNECTED 7-PARTITION, 7r-
BALANCED PARTITIONING, with k =,

e GRAPH MOTIF, with k = x, where x is the number of colors.

6.3 Graphs of Bounded Neighborhood Diversity

For graphs of bounded neighborhood diversity we prove two negative results (The-
orems [6.3.1] and [6.3.2]) and two positive results (Theorems [6.3.5 and [6.3.15)).

6.3.1 W][1]-hardness of MSO" and MSO®

Theorem 6.3.1. The MSO® Model Checking problem is W[1]-hard when param-
eterized by ve (G) and |¢|.

Theorem 6.3.2. The MSO" Model Checking problem is W[1]-hard when param-
eterized by ve (G) and |¢|.

We begin with a definition of an auxiliary problem:

LCC SUBSET
Input: Graph G = (V, E) with |[V| = n and a function f: V — 2.
Task: Find a set U C V such that for each vertex v € V' it holds that

U(v)] € f(v).

Obviously LCC SUBSET is equivalent to MSO" with an empty formula ¢ with
one free variable. We call an LCC SUBSET instance uniform if, on G with
nd(G) = k, the demand function f can be written as f : [k] — 2", such that
vertices of one type have the same demand set. We show that already uniform
LCC SuBSET is W[1]-hard by a reduction from the W[1]-hard k-MULTICOLORED
CLIQUE problem [28].

k-MULTICOLORED CLIQUE Parameter: k
Input: k-partite graph G = (ViU---UV}, E), where V, is an independent
set for every a € [k].

Task: Find a clique of size k.

We refer to a set V,, as to a colorclass of G. Our proof is actually a simplified
proof of W[1]-hardness for the TARGET SET SELECTION problem [31].

Theorem 6.3.3. The LCC SUBSET problem is W[1]-hard when parameterized
by the vertex cover number, already in the case when f(v) = {0} for all v not
belonging to the vertex cover.

Proof. Denote G = (V1 U --- UV, F) the instance graph for k-MULTICOLORED
CLIQUE. We naturally split the set of edges E' into sets Fy,) by which we denote
the edges between colorclasses V, and V,. We may assume that all colorclasses
are of the same size which we denote n, and similarly for the number of edges
between any two colorclasses which we denote m. Fix N > n, say N = n?, and
distinct a, b € [k].

78

Tia
S, Incy {a.b} Multyq 5

D R
@ 9y, mN (D
0 Lap \0/ {tN | t € [m]}

Figure 6.1: An overview of the decomposition of a gadget used in the proof of The-
orem Numbers inside nodes denote the number of vertices in the indepen-
dent set represented by the node. Below each node a description of the respective
set of admissible numbers is shown.

Description of the reduction. We numerate vertices in each color class V, for
a € [k] using numbers in [n] and denote the numeration of vertex v as n%. We also
numerate the edges between color classes @ and b by numbers in [m| and denote
the numeration of edge e as m{®. Let I, = {nﬁ + Nmio? | v €ee € E{a,b}}-
We build the graph using the following groups of vertices (refer to Figure :

 an independent set S, of size n for each color class V, and set f(v) = {0}
for every v € S,

+ anindependent set T4} of size mN for each edge set Eq), with f(v) = {0}
for every v € T(qu),

« a single vertex Multy, ;) with f(Multg,,) = {tN | ¢ € [m]},
o a single vertex Incy, with f(Incy) = Iyp.

Finally, we add a complete bipartite graphs between S, and Inc,;,, between Incy,
and Ty, py, and between Ty, and Multy, py. Denote the resulting graph H. It is
straightforward to check that the vertices Mult, ;) together with vertices Inc,,

form a vertex cover of H. It follows that vc (H) = (g) + k(k—1).

Correctness of the reduction. Suppose there is a clique of size k in G with set
of vertices {v1,...,v;}. We select n,, vertices in the set S, and miva*} vertices
in the set Ty, . It is straightforward to check that this is a solution respecting
demands in H.

Suppose the LCC SUBSET problem has a solution U in H. First note that
none of vertices Mult(,), Incgy, is selected as their neighborhood demands are set
to 0. Denote s, = |U N S,| and tyapy = [Tiapy N U|. Now observe that because
the demand of vertex Multy, 3y is fulfilled, then there are t{, ;) = tN vertices with
0 <t < m. We denote by ey, the edge with numeration Mey,,, =t As the
demand of vertex Inc,, is fulfilled the vertex v, with n,, = s, as well as for the
vertex Incy, and vertex v,. This implies that both v, and v are incident to edge
6{a,b}~]

Note that Theorem follows easily from Theorem [6.3.3

Multidemand Set Cover. Recently, Bredereck et al. [I7] showed important
applications of the WEIGHTED SET MULTICOVER problem when the size of the
universe is a parameter. The hardness result above allows us to show a hardness
result for a variant of the SET COVER problem, in contrast with the positive
results of [17]:

79

MULTIDEMAND SET MULTICOVER

Input: Universe U = [k], set of multidemands dy,...,d; C [n], a cover-
ing system represented by a multisubset F = {Fy,..., F,} C 2V, weights
Wi, ..., Wy € Z.

Task: Find a multisubset &/ C F of minimum weight satisfying
(X juser, M) € d; for each i € [k] or report there is none.

Corollary 6.3.4. MULTIDEMAND SET MULTICOVER is W[1]-hard with respect
to parameter k, already when n = k and when the task is to just decide whether
a multicover exists.

Proof. Given a uniform instance of LCC SUBSET on a graph G with nd(G) = v
with every type being an independent seff] and , let U = [v], F = {N(v) | Vv €
T(G)}, all weights are 1, and d; = f(i). Then if the instance of MULTIDEMAND
SET MULTICOVER which we have just defined has a solution, the given LCC
SUBSET instance is a YES instance, and otherwise it is a NO instance. O

Proof of Theorem[6.3.1 Let (G = (V, E), f, k) be an instance of the LCC SuB-
SET problem parameterized by the vertex cover number resulting from Theo-
rem [6.3.3] Let C' C V be the vertex cover in G. Note that it follows from the
proof of Theorem that we may assume that the independent set V'\ C' is di-
vided into O(k) groups, where each group shares the neighborhood in C. Observe
further that in fact the graph G is bipartite (i.e., the set C' is also an independent
set), in particular, the largest clique subgraph of G is of size 2.

By Theorem we know that it is W[1]-hard to find a subset X C V' \ C
such that | X (v)| € f(v) for all v € C. Our goal now is to build an MSO® formula
expressing exactly this.

First, we take G and construct a graph G’ by, for each v € C, attaching
a Kyipnw) to N(v), where n: C' — [k] is a bijective mapping. We will call the
clique Ky) a marker because it will allow us to recognize exactly the vertices
of N(v). Note that markers are the only cliques present in G’ of size at least 3.
Note further that by this we have added O(k) cliques of size O(k) and thus the
resulting graph has a vertex cover of size O(k?).

Let us describe some auxiliary formulae which we then use to define the desired
formula ¢. We reserve X for the set that will represent the set X from the LCC
SUBSET problem.

e Z/ is a clique:
clique(Z) := Vo,y € Z)(x #y = xy € E)
 u and v are of the same neighborhood type:

same(u,v) == (Vw e V)(w=uVw=vV(wu € F < wv € £))

e Z is a neighborhood type:

type(Z) :=(Z # 0) A Vu,v € Z)(same(u,v)) A (Vu € Z,v ¢ Z)(—same(u,v))

3We can indeed assume that every type is an independent set: Theoremm shows hardness
for graphs with a small vertex cover, which implies a small neighborhood diversity decomposi-
tion where every type is an independent set.

80

o 7 is n(v)-th marker:
marker,(Z) := (|Z| =2+ n(v)) A clique(Z) A type(Z)
e Zis N(v):

neigh (Z) := type(Z) A (3Q C V)(marker,(Q) A (Yu € Z,w € Q)(uw € E))

e Z is exactly X,:
sel-neigh (Z, X) := (3%,)(neigh, (Z,) N Z = Z, N X)

Now ¢(X, (X,)vec) = /\Uec(sel—neighv(Xv,X) N|Xy| € f(v)) We note that
only a unary global constraint was required. O

6.3.2 FPT Algorithm for MSOS"

lin
Theorem 6.3.5. There is an algorithm that solves the MSOR- Model Checking
problem in time f(|p|,v)-n°Y, where v = nd (G) and f is a computable function.

Essentially, we are modifying the algorithm of Ganian and Obdrzalek [49]
for MSOS, model checking so that it can deal with the additional constraints
introduced by MSOF. .
Definition 6.3.6 (Signature of a variable assignment). Let ¢ be a MSOE, formula
with free set variables Xy, ..., Xy, let G = (V, E) be a graph with nd(G) = v with
types T, ..., T,, and let p: {X1,...,X;n} — 2V be a variable assignment. The
signature of u is a mapping from S,: [v] x 2™ — N defined by

Su(7, 1) = |V (X)) NI

el

Clearly, if we have two variable assignments pu, i/ with the same signature,
then G, = ¢ if and only if G, i/ = .

However, for MSO formulae and graphs of bounded neighborhood diversity,
much more is true. Informally speaking, the formula cannot distinguish between
two cardinalities if both of them are large. This is formally stated in the next
lemma, which is a direct consequence of [75, Lemma 5]:

Lemma 6.3.7. Let ¢ be an MSO formula with free set variables Xi,..., X,
that has qs set quantifiers and q. element quantifiers. Let G be a graph with
nd(G) = v. Denote by t the number 295 - q.. Suppose that p, 1/ are two variable
assignments such that for every I C [m], j € [v], we have either

° Sﬂ(ja [> = Su'(j>[)7 or
e both S,(j,1),8,(j,1)>t.
Then G, u = ¢ if and only if G, 1 = .

The last lemma leads to the following definition.

81

Definition 6.3.8 (Shape of a variable assignment). Let ¢, G and t be as before.
A shape of a variable assignment pi is a mapping shy: [v] x 2™ — 0,4 U {1}
defined by

Su(1) if Su(, 1) <t
T if Su(j, 1) >t

Since t depends only on the formula ¢, the number of shapes can be bounded
by some function of |¢| and nd(G). Note that there are mappings from [v] x 2I™
to [0,¢] U {1} that do not correspond to shape of any variable assignment p for a
particular graph G. For example, if sh(j, 1) = 1 for some j and I but |T};| < t,
clearly there is no assignment of shape sh.

However, Lemma [6.3.7| cannot be used directly, as the global linear constraints
allow us to distinguish small differences in cardinalities, even if the cardinalities
are large; consider the constraint [|X| = | Xz| +1]. We use the approach outlined
in Subsection [6.1.1] Pre-evaluations. This approach relies upon Definitions
and [6.1.2] We simply guess all possible outcomes of the cardinality constraints
(there number of such outcomes is clearly bounded by 21#1) and later, we ensure
that our assignment obeys those constraints by an ILP formulation.

Moreover, the following definition is required for the proof.

Shﬂ(jv I) = {

Definition 6.3.9 (Admissible shape). The shape sh is admissible with respect to
pre-evaluation (B, if for any variable assignment u of shape sh we have G, u =

B(p).

Theorem 6.3.10. There exists an algorithm that, given an MSO;. formula ¢
with free set variables Xy, ..., Xm, a graph G = (V, E) with v = nd(G) and local
linear constraints a;(v), either outputs an assignment p such that G, |= ¢ and
for everyv € V and every i € [m| we have |u(X;)(v)| € a;(v), or correctly reports
that no such assignment exists. The algorithm terminates in time f(|p|,v)n®®
for some computable function f.

Proof. Denote by T, ...,T, the types of graph G. Note that the types can be
computed in polynomial time.

The algorithm works as follows. For every pre-evaluation function 5 and every
mapping sh,: [v] x 2M — [0,¢] U {1}, we test whether sh is admissible. This
can be done by picking arbitrary variable assignment p of shape sh (if one exists)
and testing whether G, i |= B(p) by an FPT model checking algorithm for MSO
formulae [75].

If the shape sh is admissible with respect to 3, we need to find a variable
assignment g such that

e 4 complies with (3,

e 1 has shape sh, and

o L satisfies the local linear constraints.
This is done by following ILP.

o for every I C [m)],j € [v], we introduce an integer variable 27 (these corre-
spond to S,(j,I) of the variable assignment p we are trying to find),

82

o for every i € [m],j € [v], we introduce an auxiliary variable 3/ correspond-
ing to |u(X;) NT;|, and,

« for every i € [m], we add an auxiliary variable z; corresponding to |u(X;)]|.

We note that, technically, the variables yf and z; are not needed since they
completely depend on x, but will simplify the presentation. To ensure that ;s has
the required properties, we add these constraints:

S 2l =T for every j € [V] (0)
I1C[m)]
yl= Y) for every j € [v] and every i € [m] (al)
&
=Y vyl for every i € [m] (a2)
=1
x} = sh(I,j) for every j € [v],I C [m] such that sh(I,7) #1 (shl)
>t for every j € [v],I C [m] such that sh(l,j) =71 (sh2)

The constraints @ ensure that variables x} encode a variable assignment on a
graph GG. The constraints and set auxiliary variables ¢! and z; to the
desired values. The constraints (shl]) and (sh2|) guarantee that p has the shape
sh.

Local linear cardinality constraints. What remains is to enforce the local
linear cardinality constraints. It is relatively easy to see that if a neighborhood di-
versity decomposition is uniform with respect to the local cardinality constraints,
i.e., if all vertices of one type have the same local cardinality constraint, it is pos-
sible to incorporate these to the ILP above. Most of the following is dedicated to
showing that we can obtain different local cardinality constraints o’ and a refine-
ment 7 of the given neighborhood diversity decomposition which is uniform with
respect to o/, but nonetheless there is a direct correspondence between solutions
in the uniform instance (G, ') and the original instance (G, o).

For a graph G and its neighborhood diversity decomposition 7 we define
Vo(T) as the number of nonuniform types in 7" with respect to . Observe that
if 7" is a refinement of 7, then v, (7T") < vo(T). A type T € T is said to be
nonuniform with respect to local linear cardinality constraints « if there exist
vertices u,v € T with a(u) # a(v).

Proposition 6.3.11. Let G = (V, E) be a graph and let T be a neighborhood
diversity decomposition. For every T € T and for every X C V there exists a
nonnegative integer z such that for every vertexr w € T

e if T is an independent set, then | X (w)| = z, and,
o if T is a clique, then | X (w)| € {2,z + 1}.

Proof. First assume that 7' is an independent set. Then N(v) = N(w) for all
v,w € T. On the other hand, assume that T is a clique, and let v € T, with
possibly v = w. If both v and w either belong to X or not belong to X, then

83

clearly | X (v)| = | X(w)]. If v € X and w ¢ X, then ‘|X(v)| - |X(w)|‘ =1, and
symmetrically for w € X and v ¢ X. Since no other possibilities exist we are
done. 0

Lemma 6.3.12 (Local refinement lemma). Let G = (V, E) be a graph and T
be its meighborhood diversity decomposition, and let a be local linear cardinality
constraints. Let T € T be a nonuniform type of G. Then there exists partition
T" of T and local linear cardinality constraints o/ such that the following holds

1. |T"| <4,
2. Vo (T\ATHUT") <v(T), and
3. for each X CV, X satisfies a if and only if X satisfies o.

Proof. Let us first argue about the case when 7' is an independent type. In this
case it suffices to set o/ (u) = Nyer @(v) for each u € T. Now X C V satisfies «
if and only if X satisfies o/ as the value |N(7") N X| has to be the same for all
vertices of T and thus, by Proposition it has to be in o/(v) forv e T
Let T be a clique type of 7. We define
¢ = max min o(v), and,
veT

u = min max a(v) .
veT

If u < ¢ — 2, then, by Proposition [6.3.11, « cannot be satisfied. Denote the
new local linear constraints o/ (v) = a(v) N[¢ — 1,u + 1] for v € T and define
o' (v) = a(v) for v € V\T. We get that:

e o/(v) C[¢—1,u+ 1] for each v € T and
e [{,u] Cd(v) for each v € T.

This yields at most 4 possibilities for o/(v). We can refine 7' into at most 4
subtypes such that all the vertices of a subtype of T" have the same o/(v). As all
newly introduced types are uniform we have replaced a nonuniform type 7" with
at most 4 uniform types. We have proven Points and ; in order to prove
Point we use the following proposition.

Proposition 6.3.13. Let p € [n], let £ be defined as above. If there exists v € T
such that p € a(v) and p < € — 2, then for each X satisfying «, it holds that

p# |1 X ()l

Proof. This easily follows as for each X satisfying the local cardinality constraints
a there exists a z = z(X,T) and by Proposition each w € T' must contain
z or z+1in a(w). Suppose for contradiction that | X (v)| = p and let s be a vertex
with a(s) C [¢,n] (such s exists from the definition of ¢). As p < ¢ — 2, it follows
that X cannot satisfy a(s). From Proposition [6.3.11} there are two possible
options {p—1,p} and {p,p+ 1} . Observe that {p—1,p,p+ 1} Na(s) = 0 holds.
This finishes the proof of the claim. O

Clearly if X C V does not satisfy «, then it does not satisfy o as o/(v) C «a(v)
for every v € V. Assume that X satisfies . By the above claim and its symmetric
version for p > u + 2 it follows that { — 1 < X (v) < uw+ 1. By the definition of
o/ it follows that X satisfies . O

84

Lemma 6.3.14 (Refinement lemma). Given a graph G = (V, E) with nd(G) = v
and with local linear cardinality constraints «; for each i € [m], there ezist a
netghborhood decomposition T of G of size at most v4™ and local linear cardinality
constraints o, for each i € [m] such that:

e the constraints o, for all i € [m], are uniform with respect to T, and,

e for each (Xi,...,X,,) C V™ X, satisfies oy for all i € [m] if and only if
X, satisfies o for alli € [m].

Proof. The proof goes by repeatedly applying Lemma We start with the
neighborhood decomposition T of size v that is guaranteed by nd(G) = v, and
with the local linear cardinality constraints «;.

First let ¢ = 1, and go sequentially over the types Ti,...,7,. Apply Lem-
ma to the presently processed type 7 and the local linear cardinality
constraint o and decomposition 7’ resulting from the previous application of
the lemma, using a; and 7 in the beginning. Clearly after we are done we have
a neighborhood decomposition T of size at most 4v and local linear cardinality
constraints «/j which are uniform with respect to 7.

Then, continuing with i € [2,m|, we do the same, finally resulting in a decom-
position T of size v4™ and local linear cardinality constraints of, ...,/ which
are uniform with respect to 7. O

By the previous lemma, we can without loss of generality assume that each
type has uniform constraints, i.e. for every i € [m],j € [v], and v,w € T; we
have «;(v) = a;(w). For convenience, we denote this unique integer interval by
a; ; and furthermore set lb;- ‘= minq;; and ubz- = max ;.

If T} is an independent type, we need to ensure that for every v € T we have
|u(Xi)(v)] € a;;(v). It is easy to see that the quantity |p(X;)(v)| is the same for
every v € T; and it can be expressed as

> | (Xa) N Tyl

33" iteE(Tq)

By the definition of auxiliary variables y7, we have |u(X;) N Ty| = v/ ', so the local
linear condition for the variable X, can be rewritten as

i< >yl <ubl (11i)
3'{5"3yeE(Tg)

If T; is a clique type, we have to be slightly more careful. The quantity
|(X;)(v)| depends on whether v belongs to p(X;) or not; the set N(v) does not
include v itself, so if |p(X;)(v")] = |p(X;)(v)| + 1 for every v € T; N pu(X;), v €
T; \ p(X;). Similarly as before, we have equations

peOoI=(S a1

for v € T; N p(X;), and

(X)) = Y (X)) NTyl

3'H{i"ireE(Te)

85

for v € T; \ p(X;).
This means that we need to add the constraint

bi< Yyl < (lle1)

i'{i"ireE(Tg)

if |u(X;) NT;| > 1 and add the constraint

i< Y oyl —1<ub) (11c2)
§:43") EB(Ts)

i 75\ p(X0)] > 1
Fortunately, we can deduce whether the conditions |u(X;) NT;| > 1 or |7} \
w#(X;)| > 1 hold from the shape sh. If we have

> sh(I,j) >0, (sh1)

el

then p(X;) necessarily intersects 7}, while if we have

3" sh(I,j) >0, (sh2)

I:i¢1

then there exists vertex in 7j \ Xj.

This means that the local linear constraints for type 7 and variable X; can
be enforced by adding constraint if holds, and by adding constraint
if holds.

Let us turn our attention to the analysis of the running time of the algo-
rithm. There are (t 4 2)*®" different shapes (after the refinement) and 2/¢()!
pre-evaluation functions. Since ¢ depends only on the number of quantifiers in
the formula ¢, both numbers can be bounded by a function of |¢| and v. For
each such function, we construct an ILP with v - 8™ integer variables, and O(v)
constraints. By Lenstra’s algorithm [81], such an ILP can be solved in FPT time
with respect to |¢| and v. O

6.3.3 XP Algorithm for MSO®t

Theorem 6.3.15. There is an algorithm that solves the MSO®" Model Checking
problem in time n?U¢\) where v = nd (G) and f is a computable function.

We first describe the idea for a formula ¢ with only one free variable X,
and later show how this approach can be generalized for a formula with m free
variables X1, ..., X,,. As before, we go over all at most 2/?/ pre-evaluations 3 of
©. Let us fix a pre-evaluation () of the formula ¢ from now on.

Let G = (V,E) be a graph on n vertices with v = nd(G) and with types
Ti,...,T,, and let a(v) C [0,|V]] be a set of integers for every vertex v € V. We
want to find a subset X of vertices of G such that 5(¢)(X) is true and for each
v e G, |X(v)| € a(v). We give an algorithm for finding such X running in time
nfw,

We fix integers x1,...,x, such that 1 + --- 4+ x, < n, and our aim is to find
a set X with | X NTj| = z;. Note that there are n®®) choices of such x;. Then
we test if a set X with | X N7Tj| = x; satisfies G |= 5(¢)(X) and, for each global

86

constraint R; whether | X| € R; if B(R;) = true and | X| ¢ R; if f(R;) = false.
Afterwards, we want to pick z; vertices in each 7} in such a way that the local
cardinality constraints are satisfied.

Note that if we have two sets X, X’ of the same size and they differ only on
some type T}, then every local cardinality constraint of v ¢ T is satisfied for X
if and only if it is satisfied for X’. This means that changes of X in one type
cannot influence the validity of local cardinality constraints in other types. This
allows us to pick x; vertices in T} separately in each type.

Let us now focus on type 7T;. We set

Cj = Z T; .

i:(1,7)€eE(Tg)

If T is an independent type, then every vertex v € T} has exactly ¢; neighbors
in X. Therefore, every vertex v € T; must satisfy ¢; € a(v), otherwise there is
no solution with | X N7T};| = z;. If T; is a clique type, every vertex in v € T; N X
has ¢; — 1 neighbors in X, while every vertex v € T; \ X has ¢; neighbors in X.
Let us partition the type Tj into the following sets:

T0 {0 €Ty ;=1 ¢ alo).e; ¢ o).
T/ ={veT;|l¢—1¢a),cea(v)},
Tf={veTjlc—1€alv),q¢a()}
T]?’:{UET]-|cj—1€a(v),0j€@<v)} .

From the previous, it follows that any v € TjQ cannot lie in 7; N X because
¢; — 1 ¢ a(v). Similarly, v cannot lie in 7} \ X, because ¢; ¢ a(v). Therefore, if
T3} is nonempty, there is no solution with |X N 7T}| = x;.

By similar reasoning, we see that every vertex in le must be outside X and
every vertex in sz must be in X. Combining these observations, we see that we
can satisfy local cardinality constraints in 7} if and only if

e T} is empty, and
o T2 <0y < T2+ T

We now describe how to extend this idea when we have a formula with m free
variables. Observe that it is enough to determine whether there is a satisfying
assignment that obeys local constraints for a fixed signature; as there are at
most n?"* signatures, we can simply try all of them. Analogously for the global
constraints.

Given a signature S, we check whether there is a satisfying assignment in the
same manner as in the case of one free variable.

Let us set

ah= > S(1,j),and

1C[m)
el

Those are analogous to z; and ¢; in the case of formula with one free variable.
The value 2 denotes the [u(X;) NTj|. As before, if T} is an independent type
then every vertex v € T; has exactly ¢} neighbors in X;.

We immediately see that if 7} is an independent type and there is a vertex v
for which ¢/ ¢ a;(v), then we cannot fulfill the local cardinality constraint of v
given the signature S.

For the case of a clique type, we refine the approach with sets T]Q, . ,Tj?’. We
define an auxiliary notion of the kind of a vertex with respect to X;; we say that

« vertex v is of kind 0 if ¢ — 1 ¢ oy(v) and ¢, ¢ a;(v),
o vertex v is of kind 1 if ¢ — 1 ¢ (v

v) and ¢; ¢ a;(v),

) (v)

(v) and ¢ € ay(v),
o vertex v is of kind 2 if ¢ — 1 € ay(v) (v)
o vertex v is of kind 3 if ¢} — 1 ¢ a;(v) and ¢, € a;(v).

Finally, the kind of a vertex v is an m-tuple (ki, ..., k,,), where k; is the kind of
v with respect to Xj.

The kinds correspond to sets T}, ..., T} from the previous case. By the same
reasoning, we see that a vertex whose kind contains a 0 is a witness that we
cannot satisfy the local cardinality constraints, a vertex of kind 1 with respect
to X; must be outside u(X;), and a vertex of kind 2 with respect to X; must
lie inside p(X;). We assume that there is no vertex whose kind contains 0 with
respect to any X;, as no solution exist in such case.

We subdivide each type T; according to kinds. For a kind K = (ky,...,ky)
we denote by TjK the set of all vertices of T of kind K.

We now describe a linear program that finds a satisfying assignment if one
exists. For every j € [v], I C [m], and K € [3]™, we introduce a variable z';.
The purpose of the variable z{fj is to represent the value

(X)) NTS

iel

We add the following constraints:

Z zf] = S(I,) for every I C [m] and every j € [v] (sc)
Ke[3|m
o oot =Tf for every K € [3]™ and every j € [V]
IC[m]
(ke)
> 2 =0 for every K € [3]™ such that k; = 1 and every j € [V]
£
(k1)

" zp;=|TF| for every K € [3]™ such that k; = 2 and every j € [v]
1C[m]

iel

(k2)

38

The constraints (jsc) maintain “shape consistency”; that is, if we construct an
assignment according to zfj, it will be of shape S. The constraints ensure
“kind consistency”. The constraint ensures that no vertex of kind 1 with
respect to X; lies in p(X;), while the constraint guarantees that all vertices
of kind 2 with respect to X; are in u(X;).

If there is no solution to the given ILP then no assignment of given shape obeys
linear cardinality constraints. On the other hand, every solution of the given
program describes an assignment of given shape that obeys the linear cardinality
constraints.

The program has 32™v variables and hence can be solved in FPT time with
respect to 3(p) and v by Lenstra’s algorithm [8I]. Running the program n?"”
times, once for each signature, determines whether there is a satisfying assignment
obeying the local cardinality constraints.

89

90

7. Parameterized Shifted
Combinatorial Optimization

In this chapter we initiate the study of shifted combinatorial optimization from
the perspective of parameterized complexity. In Section we consider the
case when the set S is given explicitely, and show that the complexity depends
mainly on the objective function c¢. This leads to the complexity being P, FPT
or XP with respect to the parameter |S| when —c = €, ¢ = € or when neither
holds, respectively. In Section [7.2] we consider the case when S is an MSO-
definable set S,(G) and G is a graph of bounded treewidth or cliquewidth. As a
part of this investigation, we connect SCO to integer separable optimization over
constructively decomposable polyhedra, which then allows us to use our results
from Chapter 5] Moreover, it provides further insight into prior work on SCO.
Finally, in Section [7.3| we show that the MSO PARTITIONING problem is W[1]-hard
even when ¢ is an FO formula and the graph G has bounded treedepth.

7.1 Sets Given Explicitly

In this section we consider the shifted problem over an explicitly given
set S = {s',...,s™}. We demonstrate that already this seemingly simple case
is in fact nontrivial and interesting. First, notice that with S C {0,1}" given
explicitly the problem is generally NP-hard, which follows by the reduction from
DOMINATING SET which we gave in the introduction (and give below). Moreover,
it follows from known lower bounds on the DOMINATING SET problem that the
brute-force algorithm which tries all possible r-subsets of S is likely close to
optimal:

Proposition 7.1.1. The SCO problem is NP-hard for 0/1 shifted matrices
c = ¢ € {0,1}™" and explicitly given 0/1 sets S = {s',... ;s™} C {0,1}".
Moreover, unless the Exponential Time Hypothesis (ETH) fails, it cannot be
solved in time n°").

Proof. The NP-complete DOMINATING SET problem is to decide whether, given
a graph G = (V, E), there is a subset of vertices D C V of size r such that every
vertex v € V is either in D, or has a neighbor in D. Let S = {N[v] |v e V} C
{0,1}", where N|v] is the characteristic vector of the closed neighborhood of v,
i.e. including v itself, and let ¢} = 1 for all i and ¢/ =0 for all i and all j > 2.
Then the optimal objective function value of is n if and only if G has a
dominating set of size r.

Moreover, Chen et al. [2I] proved that unless ETH fails, there is no n°"
algorithm solving Dominating set; thus, under the same assumption, there is no
n°") algorithm solving SCO even when ¢ is 0/1 and ¢ = €. O

Note that the next results in this section concerning Shifted IP apply to the

more general situation in which S may consist of arbitrary integer vectors, not
necessarily 0/1. This is formulated as follows.

91

Shifted Integer Programming. Given S C Z" and ¢ € Z"*", similarly to

[3), solve

max{cX | x € S"}. (7.1)

For S = {s!,...,s™} and nonnegative integers ry,...,r, with 7" r, = r,
let x(r1,...,7,) be the matrix in S” with first r; columns equal to s!, next ry
columns equal to s2, and so on, with last 7, columns equal to s™, and define

f(riy . oyrm) = cX(T1, ..,).
We have the following effective theorem in contrast with Proposition [7.1.1]

Theorem 7.1.2. The shifted integer programming problem (7.1)) over an explic-
itly given set S = {s',... 8™} C Z" reduces to the following nonlinear integer
programming problem over a simplex,

rl,...,rmeN,Z'r’k:'r}. (7.2)

k=1

max{f('rl,...,'rm)

If ¢ =€ is shifted then f is concave, and if —c is shifted then f is convex.
Moreover, the following hold:

1. With m parameter and c arbitrary, problem (7.1) is in XP. Furthermore,
the problem is W[1]-hard with parameter m even for 0/1 sets S.

2. With m parameter and c shifted, problem ([7.1]) is in FPT.
3. With m variable and —c shifted, problem (7.1)) is in P.

Proof. Consider any x € S". For k € [m] let 7, = |{j | x) = s*}| be the number
of columns of x equal to s*. Then x ~ x(ry,...,7,) 50 X = X(r1,...,7,) and
cX = f(ry,...,7y). So an optimal solution r1,...,7, to gives an optimal
solution x(7q,...,7,) to the shifted problem ([7.1]), proving the first statement.

We next show that if c is shifted then f is concave in the r; variables. Suppose
first that n = 1 so that ¢!,...,c¢” and s',...,s™ are scalars. For k € [m], define
functions gx(r1,...,7m) = Z?Zl r; which are linear in ry,...,7,, and define a
function h by h(0) = 0 and h(l) = _; ¢/ for I € [r], which is concave since
cl>...>c".

Let 7 be a permutation of [m] such that s™ > ... > s Consider any
ri,...,Tm feasible in and let x = x(rq,...,7ry). Note that X is the row
vector with first r,(1) entries equal to s™"), next 72 entries equal to s™*, and so
on, with last r.(y) entries equal to s™M) Let g, = Gk(Tx(1), - - Trmy) for k € [m]
and t* = s™®) — gm(*+1) > 0 for k € [m — 1]. Then we have that

flri,...,rm) = X
= s"Wh(g) + 5™ (h(g2) — h(g)) + - + 5™ (h(gm) — "(gm-1))
= t'h(g1) + t?h(g2) + - + " h(gm-1) + 5" A(gm)

m—1 I
= Z tkh(gk(hr(l), . ,Tﬂ(m))) + Sﬁ(m) Z Cj . (73)
k=1 J=1

Now, g, are linear functions of 7., and h is concave, and so each composition
h(gr(r=), - - -+ T=(m))) is also concave. So f(ry,...,ry), which is a constant plus
a nonnegative combination of concave functions, is a concave function of the ry.

92

We continue with general n. Consider any ry,...,r, which are feasible in
(7.2) and let x = x(ry,...,7n). For each i € [n] proceed as follows. Let
filri,...,mm) = ¢;X; with ¢; the i-th row of ¢ and X; the i-th row of the shift
X. Let m; be a permutation of [m] such that st > ... > gM™ Repeating
the above procedure with this 1-dimensional data we see that f;(r1,...,7y) is
concave. So f(ry,...,ry) is also concave in the 7y, being the following sum of
concave functions,

d d
f(’l"l,...,’l"m) = X = Zciii = Zfi(Tl,...,Tm).
i=1 i=1

This also shows that if —c is shifted then — f is concave and hence f is convex.

We proceed with the (positive) algorithmic statements of the theorem. For
Point (), which was also proved in [82], just note that for fixed m, there are
O(r™ 1) feasible solutions in , obtained by taking integers 0 < ry,... 7,1 <
r with 2?51 r; < r and setting r,, =1 — Z;’;l r;. Hence, in polynomial time we
can enumerate all, pick the best, and obtain an optimal solution x(r1,...,7,) to
the shifted problem (7.1).

For Point , if ¢ is shifted, then, as just shown, f is concave. So the integer
program is to maximize a concave function with the number m of variables
as a parameter. By known results on convex integer minimization, see [93], this
problem is FPT and solvable in time p(m)(logr)? for some computable function p
of m and some constant ¢q. Because it is enough to present the objective function
by an oracle, we can extend this to the case when c is not given explicitly, but
by a partial sums oracle (i, j) = >27_, ¢¢, in which case r can be given in binary.

For Point , if —c is shifted, then, as just shown, f is convex. Therefore,
the maximum in (7.2]) is attained at a vertex of the simplex. These vertices are
the m vectors req,...,re,,, where e, is the k-th unit vector in R™. Hence, in
polynomial time we can pick the best vertex re; and obtain again an optimal
solution x(rey) to (7.1).

To complete the proof of the theorem, we return to the hardness claim in
Point . We proceed by reduction from the MULTIDEMAND SET MULTI-
COVER (MSM) problem, which we introduced in the previous chapter. We
use it here in a slightly different formulation, which is nonetheless still hard
by Corollary . Given is a universe U = {uy,...,u,}, a collection of mul-
tidemands d = (di,...,d,) where d; C N for i € [n], a covering set system
F ={F,...,Fx} C 2Y and an integer 7 € N. The goal is to find an integer
partition 7 = p; + - + py, such that, for all i € [n], we have (3;.,,cp, Pj) € di.
Corollary shows that MSM is W[1]-hard with respect to the parameter n,
even when n = k.

For clarity, we briefly and informally remark on a meaning of the MSM prob-
lem. We wish to take each set F}, j € [k], with multiplicity p;, and we demand
that for each universe element w;, ¢ € [n], the total sum of multiplicities of sets
u; belongs to, falls into the constraint set d;.

Given an instance U,d, F and r of MSM, let S C {0, 1}" be the set of char-
acteristic vectors of F, where |S| = m in our case. We will define ¢ inductively.
Fix a row i € [n] and let ¢} = 1if 1 € d; and ¢} = 0 otherwise. For j € [r —1], let
A =1-%3_ difj+1ed;,and T = —3)_, ¢ otherwise. Then max cX < n

93

and ¢X = n exactly when the multiplicities p, ..., p,, of the vectors of S'in x € S”
are such that the number of 1’s in each row ¢ of X falls into d;, by our choice of
c. This is the case if and only if the MSM instance is a YES instance. m

In the rest of this section we provide several supplementary results related to
the cases of Theorem [7.1.2]

Let us first give an exemplary application of Point of Theorem
now. Bredereck et al. [I7] study the WEIGHTED SET MULTICOVER (WSM)
problem, which is as follows. Given a universe U = {uy,...,us}, integer de-
mands dy,...,dy € N and a multiset F = {Fy,...,F,} C 2V with weights
wy,...,w, € N, find a multiset 7/ C F of smallest weight which satisfies all
the demands — that is, for all i € [k], [{F € F' | u; € F}| > d;. It is shown [17]
that this problem is FPT when the size of the universe is a parameter, and then
several applications in computational social choice are given. This problem is
also solved implicitly in several papers [38| 46, [75].

Notice that F can be represented in a succinct way by viewing F as a set
Fs = {F,...,Fx} and representing the different copies of F' € F, in F by
defining K weight functions wy, ..., wg such that, for each i € [K], w;(j) returns
the total weight of the first j lightest copies of F;, or oo if there are less than j
copies. We call this the succinct variant.

Bredereck et al. [I7] use Lenstra’s algorithm for their result, which only works
when F is given explicitly. We note in passing that our approach allows us to
extend their result to the succinct case.

Proposition 7.1.3. WEIGHTED SET MULTICOVER is in FPT with respect to
universe size k, even in the succinct variant.

Proof. Let d, F,w be an instance of WEIGHTED SET MULTICOVER with universe
of size k, where k is parameter, and let K = |F,| < 2*. We will construct an
SCO instance with S of size k + K such that solving it will correspond to solving
the original WSM problem. Since max cX with ¢ = € is equivalent to min ¢X with
¢ = —c, we will define a minimization instance with ¢ non-decreasing.

Let S = ({(fi,ei) | F; € Fs} U {(0,0)}) C {0,1}**K where f; is the charac-
teristic vector of the set F; and e; is the ¢-th unit vector. Let W be the total
weight of F and let D = >~ d; be the total demand. Then, the first k& rows of
c are defined as ¢/ = —W if j < d; and ¢/ = 0 otherwise. The corresponding
partial sums oracle is v(i,j) = —jW if j < d; and 7(i,7) = —d;W otherwise.
The remaining K rows of c are exactly the weight functions wq, ..., wg, that is,
v(k +1,7) = wi(), where w; returns DW whenever it should return oo.

Let r = D and solve the SCO given above. A solution is represented by
multiplicities r; for ¢ € [0, K|, where 7 is the multiplicity of the 0 vector. We
interpret it as a WSM solution straightforwardly: r; means how many copies of
F; we take to the solution, and we always choose the r; lightest. Observe that if
the objective is at most —(D —1)W, it means that the solution “hits” all the — W
items in the first k£ rows, which in turn means all demands are satisfied. On the
other hand, the objective is more than —(D — 1)W only if some demand was not
satisfied. Also, if min¢x < —(D —1)W, then the solution never hit a DW item in
the last K rows, which in turn means that, for each ¢ € [K], we have never used
more copies of F; than there actually are. Because the objective decomposes into

94

—DW + K w;(r;), where the first term is a constant and the second is exactly
the weight of the solution, we have found the optimum.]

Proposition 7.1.4. If each demand d; is an interval [¢;,u;], MULTIDEMAND
SET MULTICOVER is in FPT with respect to universe size k, even in the succinct
variant.

Proof. We could prove Proposition along the lines of the previous proof, with
a few tweaks. However, for more clarity and the benefit of a slightly different
perspective, we will directly design a convex integer program in dimension K
which solves it.

Let us describe the variables of our integer program. We have variables
x1,...,TK, one for each F; € F,. The variable x; encodes how many copies
of F; we take into the solution. Then the program is simply

K

min Y w;(z;) (7.4)
i=1

;<Y i <uy for each i € [k] (7.5)
1:jE€F;

Clearly, the objective is equal to the objective of the MSM problem.
Moreover, the constraint ensures that, for each ¢ € [k] = U, i is present in
at least ¢; and at most u; of the selected covering sets. The dimension of this
program is K < 2¥. Applying for example the result of Oertel et al. [93]) that
convex integer minimization is FPT with respect to the dimension concludes the
proof. O]

Theorem Point (@), can be applied also to sets S presented implicitly
by an oracle.

Definition 7.1.5 (Linear optimization oracle). A linear optimization oracle for
S C 7Z" is one that, queried on w € Z", solves the linear optimization problem
max{ws | s € S}. Namely, the oracle either asserts that the problem is infeasible,
or unbounded, or provides an optimal solution.

As mentioned before, even for r = 2, the shifted problem for perfect matchings
is NP-hard, and hence for general c the shifted problem over S presented by a
linear optimization oracle is also hard even for » = 2. In contrast, we have the
following strengthening.

Theorem 7.1.6. The shifted problem (7.1) with c nondecreasing, over any set
S C Z" which is presented by a linear optimization oracle, can be solved in poly-
nomaial time.

Proof. Let w = 377, ¢/ be the sum of the columns of ¢, and query the linear
optimization oracle of S on w. If the oracle asserts that the problem is infeasible,
then S = () hence S™ = () hence so is the shifted problem. Suppose it asserts that
the problem is unbounded. Then for every real number ¢ there is an s € S with
ws > ¢. Then the matrix x = [s, ..., s] with all columns equal to s satisfies X = x
and hence ¢X = cx = 377 ¢/s = ws > ¢, and therefore the shifted problem is
also unbounded.

95

Suppose then that the oracle returns an optimal solution s* € S and define
x* = [s*,...,s"] to be the matrix with all columns equal to s*. We claim that x*
is an optimal solution to the shifted problem. Suppose indirectly x is a strictly
better solution. Let T be the set of columns of x, that means T'= {x!,...,x"} =
{t*,...,t™} for suitable distinct t* € S, where k € [m] and m = |T| < r.

Consider the shifted problem over 7. By the proof of the algorithmic
Point [3| of Theorem [7.1.2] we will have an optimal solution y = t(re;) =
t(0,...,0,7,0...,0) for some unit vector e, € R™, that is, y = [t,...,t] for
some t € T. We then obtain

Wt = cy = ¢y > ¢cX > ¢cX' = ¢cx' = ws

which is a contradiction to the assumed optimality of s*, completing the proof. [

7.2 MSO-definable Sets: XP for Bounded
Treewidth

In this section we study another tractable and rich case of shifted combinatorial
optimization, namely that of the set S defined in the MSO logic of graphs. This
case, in particular, includes well studied MSO PARTITIONING problem of graphs
(see below) which is tractable on graphs of bounded treewidth and cliquewidth.
In the course of proving our results, it is useful to study a geometric connection
of 0/1 SCO problems to separable optimization over decomposable polyhedra.

7.2.1 Relating SCO to Decomposable Polyhedra

The purpose of this subsection is to demonstrate how shifted optimization over
0/1 polytopes closely relates to the established concept of decomposable polyhe-
dra.

Lemma 7.2.1. Let (S,c,r) be an instance of shifted combinatorial optimization,
with S C {0,1}", r € N and ¢ € Z"*". Let P C [0,1]" be a polytope such
that S = P N {0,1}" and let Q C [0,1]"*™ be some eatension of P, that is,
P={x|(xy)eQ}

Then, provided a decomposition oracle for Q) and an integer separable mini-
mization oracle for rQ), the shifted problem given by (S, c,r) can be solved with
one call to the optimization oracle and one call to the decomposition oracle. Fur-
thermore, if ¢ is shifted, an integer separable conver minimization oracle suffices.

To demonstrate Lemma we use it to give an alternative proof of the
result of Kaibel et al. [63] that the shifted problem is polynomial when S = {x €
{0,1}" | Ax = b, } and A is totally unimodular. It is known that P = {x |
Ax =Db,0 < x < 1} is decomposable and a decomposition oracle is realizable in
polynomial time [I08]. Moreover, it is known that an integer separable convex
minimization oracle for rP is realizable in polynomial time [60]. Lemma
implies that the shifted problem is polynomial for this S when c is shifted.

Another example is in fact our proof of Part [2] of Theorem [7.1.2] Observe that
equation is an extended formulation of a polytope rP with P = conv(S).

96

Furthermore, we demonstrate that this extended formulation can be easily de-
composed, and use a result about convex integer minimization to provide an
integer separable convex minimization oracle.

The reason we have formulated Lemma for S' given by an extension () of
the polytope P corresponding to S, is expressed in Lemma [5.1.4} while P itself
might not be decomposable, it always has a decomposable extension.

Other potential candidates where Lemma could be applied are class-
es of polytopes that are either decomposable, or allow efficient integer sep-
arable (convex) minimization. Some known decomposable polyhedra are the
stable set polytopes of perfect graphs, polyhedra defined by k-balanced matri-
ces [118], polyhedra defined by nearly totally unimodular matrices [52], etc. Some
known cases where integer separable convex minimization is polynomial are for
P={x|Ax=b,x € {0,1,...,r}"} where the Graver basis of A has small size
or when A is highly structured, namely when A is either an n-fold product, a
transpose of it, or a 4-block n-fold product; see the books of Onn [95] and De
Loera, Hemmecke and Koppe [84].

Now we return to the proof of Lemma

Proof of Lemma[7.2.1 Fix (x, y) € rQ NZ"™ and consider the set

@zx,y>—{<a,b> ((a, b)) _ y>,<ai,bi>e@m{o,l}”+"’,z'em}

 (@n{o, 13)
Note that ca is the same for all (a,b) € @y, and observe that (@ N

n+n'\r __ r
{07 1}) - U(x,y)E(rQﬂ{O,l}”+”/) Q(XQ’)'
Consider now the objective function ¢ € Z"*". Define w; : [0,7] — Z for
€ [n] by w;(k) = le c!. Note that if ¢ is shifted, every w; is concave as it is a

partial sum of a non-increasing sequence. Observe that ca = > w; (3], al) =
> wi(x;). It follows that the minimum of 7 | w;(z;) over r@Q N Z"" equals
the minimum of ca over (Q N {0, 1}"+")".

To solve the shifted problem, let f = "™ f; with f; = w; for i € [n] and
fi =0fori € [n+1,n+n'], and query the integer separable minimization oracle on
r@) with —f (minimizing — f maximizes f). The oracle returns that the problem
is either infeasible or unbounded or returns (x,y) € r() maximizing f. Next,
query the decomposition oracle for @ on r and (x,y) to obtain ((x%,y%))/_,, and

return ((x%))7_, as the solution. If c is shifted then —f is convex and an integer
separable convex minimization oracle suffices for the first step. n

7.2.2 XP Algorithm for MSO-definable Sets

The aforementioned MSO PARTITIONING problem on graphs comes as follows.

MSO PARTITIONING

Input: A graph G, an MSO, formula ¢ with one free vertex-set variable
and an integer r.

Task: Find a partition UjUU, ... UU, = V(G) of the vertices of G such
that G = ¢(U;) for all i € [r], or confirm that no such partition of V(G)
exists.

97

For example, if ¢(X) expresses that X is an independent set, then the ¢-MSO
PARTITIONING problem decides if G has an r-coloring, and thus, finding minimum
feasible r (simply by trying r = 1,2,...) solves the CHROMATIC NUMBER prob-
lem. Similarly, if G = ¢(X) when X is a dominating set, minimizing r solves the
DOMATIC NUMBER problem, and so on.

Rao [103] showed an algorithm for MSO PARTITIONING, for any MSO, formula
¢, on a graph G with treewidth tw(G) = 7 running in time r#(»7n (XP) for some
computable function f. Our next result widely generalizes this to SCO over MSO-
definable sets.

Let ¢ be defined as ¢! = 1 for i € [n] and ¢/ = —1 for j € [2,7] and € [n].
Observe then the following: deciding whether the shifted problem with S =
S,(G), ¢ and r, has an optimum of value n is equivalent to solving the MSO
PARTITIONING problem for ¢.

Theorem 7.2.2. Let G be a graph of treewidth tw(G) = 1, let p be an MSOq
formula and S,(G) = {x | x satisfies ¢}. There is an algorithm solving the
shifted problem with S = S,(G) and any given ¢ and r in time r/®7 - |V(GQ))|
for some computable function f. In other words, for parameters ¢ and T, the
problem is in the complexity class XP.

Theorem [7.2.2] follows immediatelly by combining Lemma [7.2.1] with Theo-
rem [5.2.13] with the slight difference that we have phrased Theorem for
MSO; over og-structure, but this detail is insignificant.

Rao’s result [103] applies also to the MSO PARTITIONING problem for MSO;

formulas and graphs of bounded cliquewidth. We show the analogous extension
of Theorem [7.2.2] next.

Corollary 7.2.3. Let G be a graph of cliquewidth cw(G) = v given along with its
y-ezpression, let 1 be an MSOy formula and Sy (G) = {x | x satisfies 1}. There
is an algorithm solving the shifted problem with S = Sy (G) and any given ¢ and
rin time r¥¥) - |V(G)| for some computable f.

Proof. We invoke Lemma to construct the tree T" and formula ¢, and then
apply Theorem to them (for a tree, tw(7T) = 7 = 1, but note that ¢ now
depends on both ¢ and 7). Since Sy, (G) is essentially identical to S,(T"), up to the
coordinates corresponding to V(T')\ V(G) which are all zero by Lemmal[l.5.2] the
solution to the shifted problem with S, (G) is the same as the computed solution
to the shifted problem with S, (7). O

7.2.3 Applications

We have already discussed that SCO generalizes MSO PARTITIONING. We shall
now discuss that also covering and packing problems can be expressed in SCO.
In a covering problem, we require that every element is covered, but it can be
possibly covered multiple times. In a packing problem, we require that that no
element is used more than once. We can define a covering analogue of MSO
PARTITIONING as follows:

98

MSO COVERING
Input: A graph G, an MSO, formula ¢ with one free vertex-set variable
and an integer r.
Task: Find a covering Uy, ...,U, C V(G) with U]_, U; = V(G) such that
G = ¢(U;) for all i € [r], or confirm that no such covering of V(G) exists.

A packing problem would be similar while requiring that the sets U; are mu-
tually disjoint and without the condition that UU; = V(G).

To express the covering problem in SCO, we set each coordinate of the first
column of ¢ to a 1, and all remaining coordinates to 0. If maxcX = n, then
x encodes a covering, while max cX < n implies that at least one vertex is not
covered. For a packing problem, we can similarly set the first column of ¢ to
all zeros, and all remaining coordinates to —1. Then, ¢X = 0 if and only if x
encodes a packing. Weighted versions are also possible using standard tricks such
as coding lexicographical ordering by large numbers etc.

Thus, Theorem implies that MSO, COVERING and MSOy PACKING are
XP on graphs of bounded treewidth, and Corollary gives a similar result for
MSO; and graphs of bounded cliquewidth.

Mixed Cycle Cover and Mixed Chinese Postman. We will sketch an
application of Theorem to the MIXED CycLE COVER problem (MCCP)
and the related MIXED CHINESE POSTMAN problem (MCP). In MIXED CYCLE
COVER, we are given a bridgeless strongly connected mized graph M = (V, E, A)
with vertex set V', set of (undirected) edges E and a set of (directed) arcs A.
The task is to find cycles C1, ..., C, such that U;_; C; = E'U A while minimizing
the sum of their weights >7_; |C;|. In MIXED CHINESE POSTMAN, we are given
a strongly connected mixed graph M and the task is to find the smallest closed
walk in M containing all edges and arcs. Fernandes et al. [37] proved that MCP
and MCCP are XP parameterized by treewidth, and Gutin et al. [57] showed that
MCP is W[1]-hard parameterized by treewidth.

Let M = (V, E, A) be an instance of MCCP. As before, we note that to deal
with mixed graphs in MSO, we need to use a different vocabulary, but that does
not pose a significant problem. We preprocess M slightly to make the SCO
formulation easier. For every edge uv € FE, we introduce two additional arcs
(u,v) and (v,u), obtaining a mixed (multi)graph M’ = (V| E, A"). We refer to
the arcs in A as original and the arcs in A’ \ A as added. Then, we let ¢(C') be
a formula ensuring that:

«. CCEUA,

o the elements of C' N A’ form a directed cycle, i.e. V(u,v) €e CN A" : 3w €
Vi(v,w)e CnA and CNA"is connected, and,

e (u,v) eCN(A\A) < uve CNE,ie. if C contains the arc (u,v) added
because uv € F, then include uv in C as well[f]

Then, we solve SCO with S = S,(M’) and c defined as follows. Let m =
|E| + |A| and let N be a large number, e.g.N > mr. Each row corresponding to

!To be precise here, we would need a unary symbol (label) A to distinguish original and
added arcs. Implementing this is straightforward.

99

an original arc a or to an edge e is (N, —1,...,—1), and each row corresponding
to an added arc a is (0,...,0). Then, maxcxX < (m — 1)N if and only if some
original arc or edge is not covered. Moreover, when max ¢X > (m—1)N, then it is
exactly max ¢X = Nm—(>}_; |C;]—m) and thus the solution to SCO corresponds
to a smallest covering of M with r cycles. Trying all r € [m] and picking the best
result then does the job.

Mixed Chinese Postman. Fernandes et al. [37] also show that MCP can be
cast as finding a smallest covering by cycles and pseudocycles; a pseudocycle is
a cycle formed by using the same edge e € F twice. We note in passing that
a slightly different preprocessing of M allows to formulate ¢ to also deal with
pseudocycles. The rest is similar.

7.3 MSO-definable Sets: W[1]-hardness

Recall that natural hard graph problems such as CHROMATIC NUMBER are in-
stances of MSO PARTITIONING and so also instances of shifted combinatorial op-
timization. While we have shown an XP algorithm for SCO with MSO-definable
sets on graphs of bounded treewidth and cliquewidth in Theorem and Corol-
lary [7.2.3] it is a natural question whether an FPT algorithm could exist for this
problem, perhaps under a more restrictive width measure.

Here we give a strong negative answer to this question. First, we point out
the result of Fomin et al. [42] proving WJ[1]-hardness of CHROMATIC NUMBER
parameterized by the cliquewidth of the input graph. This immediately implies
that an FPT algorithm in Corollary would be very unlikely (cf. Section [2.1).
Although, CHROMATIC NUMBER is special in the sense that it is solvable in FPT
time when parameterized by the treewith of the input. Here we prove that it is
not the case of MSO PARTITIONING problems and SCO in general, even when
considering restricted MSQO; formulas and shifted ¢, and parameterizing by the
much more restrictive treedepth parameter.

Theorem 7.3.1. There exists a graph FO formula o(X) with a free set variable X
such that the instance of the MSO PARTITIONING problem given by ¢ is W[1]-hard
when parameterized by the treedepth of an input simple graph G.

Consequently, the shifted problem with S,(G) is also W[1]-hard (for suitable
shifted c) when parameterized by the treedepth of G.

We are going to prove Theorem by a reduction from W([1]-hardness of
CHROMATIC NUMBER with respect to cliquewidth [42]. As an intermediate step
for our purpose, Gajarsky et al. [46] prove that the graphs constructed for the
reduction in [42], can be interpreted in a special way (formal details to follow)
into labeled rooted trees of height 5, where the parameter is the number of labels.
We, in turn, prove here that these labels can be traded for increased height of the
tree and certain additional edges belonging to the tree closure. Consequently, the
property of a set X of vertices to be independent in the original graph can now be
expressed by a certain fixed formula ¢(X) (independent of the parameter) over
a plain simple graph which is of bounded treedepth. So the MSO PARTITIONING
instance given by ¢ is indeed W[1]-hard when parameterized by the treedepth.

We start with formulating the needed special reformulation of the aforemen-
tioned result of Fomin et al [42] on hardness of CHROMATIC NUMBER.

100

Definition 7.3.2 (Tree-model [48]). We say that a graph G has a tree-model of
m labels and depth d if there exists a rooted tree T such that

1. the set of leaves of T is exactly V(G),
2. the length of each root-to-leaf path in T is exactly d,
3. each leaf of T is assigned one of m labels, and,

4. the existence of a G-edge between u,v € V(G) depends solely on the labels
of u,v and the distance between u,v in T.

Let TM.,,(d) denote the class of all graphs with a tree-model of m labels and depth
d.

Theorem 7.3.3 ([40]). The graphs constructed as the “hard” instances of CHRO-
MATIC NUMBER in [{Z] belong to TM,,(5) where m is the considered parame-
ter. Consequently, the CHROMATIC NUMBER problem considered on the classes
TM,,(5) is W[1]-hard when parameterized by m.

Proof of Theorem [7.3.1. We use a reduction from the instance described in The-
orem Let G € TM,,(5) and r be an input of CHROMATIC NUMBER, i.e.,
the question is whether G is r-colorable. Let T' be a tree-model of m labels and
depth 5 of G. We are going to construct a formula ¢ and a graph H of treedepth
at most bm + 7 such that V(G) C V(H) and X C V(G) is independent if and
only if H = ¢(X). Moreover, for Y C V(H) such that Y ¢ V(G), it must hold
H = ¢(Y) if and only if Y = V(H) \ V(G). Then, clearly, (H,r + 1) will be a
YES instance of the MSO PARTITIONING problem given by ¢ if, and only if, G is
r-colorable. This would be the desired reduction.

The rest of the proof is devoted to the construction of ¢ and H. Let M = [m)]
be the set of labels from Definition[7.3.2/and let lab map V(G), the set of leaves of
T, into M. There exist graphs Ly, ..., Ls (self-loops allowed), each on the vertex
set M, such that the following holds for any u,v € V(G) by Definition [7.3.2}
wv € E(G) if and only if the least common ancestor of u,v in T is at distance
i <5 from u and {lab(u),lab(v)} € E(L;).

A graph H; is constructed from 7' as follows:

o All vertices and edges of T" are included in H; (the labels from T are ig-
nored), the leaves of T have no label in H; while all the non-leaf nodes get
a new label 7 in H;.

 For every non-leaf node z € V(T') at distance ¢ < 5 from the leaves of T', a
disjoint copy L* of the graph L; is created and added to H;, such that the
vertices of L” receive the same (new) label A and z is made adjacent to all
vertices of L”.

o Every leaf z of T', for + = 1,...,5, is connected by an edge in H; to the

copy of the vertex lab(z) in L*, where x is the ancestor of z at distance i
from z.

101

First of all, it is easy to see that H; is of treedepth at most 5m+6 = 145(m+
1), since H; is contained in the closure of a tree obtained from 7" by “splitting”
each non-leaf node z to a path on m + 1 vertices forming the set {z} U V(L")
(which is of cardinality m+1). Second, we observe that the graph H; encodes the
edges of G as follows: (x) for u,v € V(G), we find the least common ancestor x of
u and v among the 7-labeled vertices of Hy, and then we test whether there exist
A-labeled neighbors v/, v’ of x (and so v/, v" € V(L")) such that uu',vv" € E(H;)
and also v'v' € E(H,).

Assume for now that the encoding () of the edges of G is expressed in a binary
predicate v, such that wv € E(G) <= H; | v(u,v). With v, we can easily
define a desired formula ¢, such that H; | ¢1(X) if, and only if, X C V(G) is
independent in G or X =V (H;) \ V(G). It is

1 (X) = [Vm € X<—|T(x) A —l)\(x)) AVz,y € X(a: =y V —y(z, y)) }
vz ((r(@) V M) «— x € X).

Note that v does not depend on the original m labels of T

The remaining two tasks are; to express v in FO over Hy, and to “get rid
of” possible self-loops and the labels 7, A in H; by transforming ¢, over H; into
equivalent ¢ over simple unlabeled H. We finish these tasks as follows.

We recursively define ag(z,y) = (r = y) and, for i = 1,...,5, a;(z,y) =
T(y) A Elz(edge(z, y) ANay_q(z, z)) The meaning of «;(z,y) is that y is an internal
node of 7" at distance i from x (where x will be a leaf of 7" but this is not enforced

by «a;). The above encoding (x) of the edges of G into H; can now be literally
expressed as

v(u,v) = Jx {T(.’L‘) A (\/?Zl a;(u,) A ag(v,) A ﬁﬂx’(ai_l(u, ') A a1 (v, x’)))
AT ()\(u’) AN A edge(x,u’) A edge(z,v')

A edge(u, u') A edge(v,v") A edge(u, v’))} ,

which is an FO formula independent of H; and given T

Lastly, we observe that H; has no vertices of degree 1. We hence construct
H from H; by adding one new degree-1 neighbor to every 7-labeled vertex of Hy,
adding two new degree-1 neighbors to every A-labeled vertex of H; without self-
loop, adding three new degree-1 neighbors to every A-labeled vertex of H; with
self-loop, and removing all the loops. The resulting simple graph H is of treedepth
at most bm + 7 (in fact, again < 5m + 6), and one can identify the original
vertices of H; as those having degree > 1 in H. The labels 7, A and the self-loops
of H; (as used in the formula ;) can be routinely interpreted by FO formulas,

e.g., 7(x) = ~01(x) A Jy(01(y) A edge(x, y)) Ay, o[(31(y) A edge(x, y) Adi(y') A

edge(z, y’)) —y = y’}, where d1(y) = Vz, z/[(edge(y, z) N\ edge(y, z’)) — 2= z’}.
Such an interpretation defines desired ¢ from ;. [

102

7.3.1 Remarks on Hardness
Convex versus Separable Convex Optimization

Separable convex optimization is, by definition, a special case of convex optimiza-
tion. However, it is helpful to our intuition to have some tangible evidence that
general convex optimization truly is harder than separable convex optimization.
One such piece of evidence is exhibited by the hardness of Theorem [7.1.1]

As we have shown in Theorem[4.5.4] the MSO polytope P,(G) can be obtained
as a projection of a totally unimodular (TU) system defining a polytope P =
P,_4(D) of s—t dipaths in a certain directed graph D. We have already mentioned
that integer separable convex minimization is polynomial in TU systems [60].
Thus it is tempting to think that integer separable convex minimization should
be realizible in FPT time for P,(G) as well. However, this argument breaks down
with the projection 7 : Py_4;(D) — P,(G), because adding 7 to the TU system
Ax = b which defines P;_;(D) makes it non-TU.

Since pathwidth is a more general parameter than treedepth, Theorem
shows that there likely does not exist any projection from P;_;(D) to P,(G) which
would preserve total unimodularity. Also, it shows that while integer separable
convex minimization is in P for TU systems, this is unlikely for general integer
convex minimization.

The Sets S™ and rS

A central object of SCO is the set S™ of r-tuples of elements of S. Clearly S” is
related to the set ((f)) of r-multisubsets of S. Let X = {x',...,x"} € ((f)) The
key difference is that S” contains all r! orderings of X as individual elements, while
((f)) does not. However, the shift operation disregards the order of X anyway,

and thus SCO over S most closely resembles optimization over ((f)) rather than
S”. We note that linear optimization over S” is as hard as linear optimization
over S, since it can be split into r separate linear optimization tasks over S.

SCO can be seen as a form of nonlinear optimization, since we are doing linear
minimization after applying the nonlinear shift operator. It is natural to ask how
difficult is the even more general problem

Given S C {0,1}" and a function f:{0,1}™*" — N, solve
max{f(x) | x € S"}

in the case of S = S,(G). Theorem allows us to show that even for graphs
of treewidth 2 and relatively well-behaved functions f, this problem is NP-hard.
We merely sketch the proof here.

The reduction is from the L(2, 1)-COLORING problem, where we seek to color
a graph G with numbers from 1 to A such that the color of neighbors differs by at
least 2, and the color of distance-2 neighbors differs by at least 1. Fiala et al. [39]
prove that this problem is NP-hard already on graphs of treewidth 2. By G? we
denote the square of G, which is the graph obtained from G by connecting every
pair of vertices in distance 2. Note that any color class in an L(2, 1)-coloring is
an independent set in G2. Let S be the set of indicators of independent sets of
G?; it is not too difficult to see that this set S is MSO;-definable.

103

The remaining task then is to formulate the objective function f such that it
penalizes if two consecutive colors contain neighboring vertices and if x is not a
partition (some vertex contained more or less than once). Fix a A € N. Then x
is a valid L(2,1)-coloring if and only if f(x) = 0 with

fo0 = (3 3 —airtal—ai i)+ (X

=1 wek ueV

)\ .
-y a) -
i=1

104

8. Conclusion and Open
Problems

We have provided extended formulations of polytopes associated with the con-
straint satisfaction problem (CSP) and the monadic second order logic on graphs
(MSO) when given instances have bounded treewidth. Then, we have shown that
our extended formulations have various additional properties, and we have used
these to provide compact extended formulations and algorithmic applications for
extensions of MSO and problems expressible in these extensions. We have also
complemented our findings by matching hardness results, explored other graph
width parameters like cliquewidth and neighborhood diversity, and also intro-
duced the broad shifted combinatorial optimization framework.

Of course, interesting and important open problems and research directions
regarding these topics remain. We close with listing a few of them, divided
according to the considered topics.

8.1 Constraint Satisfaction Problem

We find it interesting that the size of the extended formulation we derive matches
the best known runtime of the algorithm for CSP (Theorem and the best
possible runtimes (assuming Strong ETH) of the algorithms for VERTEX CoOV-
ER, INDEPENDENT SET etc. Is it possible to prove a matching lower bound to
our extended formulation? Or, on the other hand, what is a natural problem
whose time complexity does not match the extension complexity of its natural
polytope when parameterized by treewidth? The question phrased like this has
a trivial answer: the matching polytope has exponential extension complexity
(Rothvoss [105]). We might pose a refinement of the question: which NP-hard
problem is FPT parameterized by treewidth but its natural polytope does not
have an FPT-size extended formulation?

In Subsection [£.5.3 we have sketched how to construct an extended formula-
tion of the MSO polytope for bounded pathwidth graphs. Due to the similarities
in our constructions of the CSP and MSO polytopes which we discuss in Chap-
ter [5] it is reasonable to expect that the same argument goes through for the CSP
polytope. The real question is if it can be extended to bounded treewidth graphs.
We suspect it could: our approach now is constructing a digraph whose s—t paths
essentially correspond to computations of an automaton on a string. What we
need is to capture computations of a tree automaton. However, it should be
possible to “serialize” even such computations.

8.2 Algorithmic Metatheorems

Limits of MSO extensions, other logics and metatheorems. We have de-
fined extensions of MSO and extended positive and negative results for them.
There is still some unexplored space in MSO extensions. For example, in our ex-
tensions we do not allow the constrained variables to be quantified. Szeider [111]

105

shows that MSO" where some of the constrained sets are quantified is NP-hard
already on graphs of treewidth 2. We are not aware of a comparable result for
MSOC, and no results of this kind are known for graphs of bounded neighbor-
hood diversity. We have sketched in Subsection that our results on MSO®"
parameterized by tw(G) can be strenghtened in some ways.

In that regard, we believe that a great merit of algorithmic metatheorems is
in generalizing existing results. Many problems [47) B8] are FPT parameterized
by nd(G) but are not expressible in any of the studied logics. Similarly, there are
still a few problems which are W[1]-hard and XP parameterized by tw(G) but not
expressible in any of the studied logics. So we ask for a metatheorem generalizing
as many such positive results as possible. We believe that a promising direction
is studying and extending the MSO PARTITIONING problem, as done by Ganian
and Obdrzélek [49] or us in Chapter [7

Also, we have not explored other logics, as for example the modal logic consid-
ered by Pilipczuk [97], although his aim is single-exponential complexity rather
than large expressivity.

Complementary Parameters and Problems. Unlike for treewidth, taking
the complement of a graph preserves its neighborhood diversity. Thus our results
apply also in the complementary setting, where, given a graph G and a parame-
ter p(G), we are interested in the complexity (with respect to p(G)) of deciding
a problem P on the complement of G. While the complexity remains the same
when parameterizing by neighborhood diversity, it is unclear for sparse graph
parameters such as treewidth. It was shown very recently [32] that the HAMIL-
TONIAN PATH problem admits an FPT algorithm with respect to the treewidth
of the complement of the graph. This suggest that at least sometimes this is
the case and some extension of Courcelle’s theorem deciding properties of the
complement may hold.

8.3 Shifted Combinatorial Optimization

Further uses of Lemma [7.2.1] For example, which interesting combinatori-
al sets S can be represented as n-fold integer programs [84, [95] such that the
corresponding polyhedra are decomposable?

Parameterizing by the number of selected elements r. It is interesting to
consider taking r as a parameter. For example, Fluschnik et al. [41] prove that
the MINIMUM SHARED EDGES problem is FPT parameterized by the number of
paths. Omran et al. [94] prove that the MINIMUM VULNERABILITY problem is
in XP with the same parameter. Since both problems are particular cases of the
shifted problem, we ask whether the shifted problem with S being the set of s—
paths of a (di)graph lies in XP or is NP-hard already for some constant r. We
know that this does not generalize to S given by a totally unimodular system by
the recent result of Koutecky et al. [73] who prove that such a problem is NP-hard
already when S is the set of matchings of a bipartite graph and r = 2.

Approximation. The MINIMUM VULNERABILITY problem has also been stud-
ied from the perspective of approximation algorithms [94]. The study of approxi-

106

mation algorithms for shifted combinatorial optimization has been initiated only
very recently [73], and we suspect more to be provable.

Going beyond 0/1. The results on Shifted Integer Programming in Section
are the only known ones in which S does not have to be 0/1. What can be said
about the shifted problem with such sets S that are not given explicitly, e.g.,
when S is given by a totally unimodular system?

107

108

Bibliography

1]

[10]

[11]

[12]

Sancrey Rodrigues Alves, Konrad Kazimierz Dabrowski, Luérbio Faria, Su-
lamita Klein, Ignasi Sau, and Uéverton dos Santos Souza. On the (pa-
rameterized) complexity of recognizing well-covered (r, 1)-graphs. In 10th
International Conference on Combinatorial Optimization and Applications
(COCOA’16), volume 10043 of Lecture Notes in Computer Science, pages
423-437, 2016.

NR Aravind, Subrahmanyam Kalyanasundaram, Anjeneya Swami Kare,
and Juho Lauri. Algorithms and hardness results for happy coloring prob-
lems. arXiv preprint arXiv:1705.08282, 2017.

Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-
decomposable graphs. Journal of Algorithms, 12(2):308-340, June 1991.

Sepehr Assadi, Ehsan Emamjomeh-Zadeh, Ashkan Norouzi-Fard, Sadra
Yazdanbod, and Hamid Zarrabi-Zadeh. The minimum vulnerability prob-
lem. Algorithmica, 70(4):718-731, 2014.

Giorgio Ausiello, Pierluigi Creczenzi, Giorgio Gambosi, Viggo Kann, Al-
berto Marchetti-Spaccamela, and Marco Protasi. Complexity and Approz-
imation; Combinatorial Optimization Problems and Their Approrimability
Properties. Springer, 1999.

David Avis and Hans Raj Tiwary. On the extension complexity of com-
binatorial polytopes. In Annual International Colloguium on Automata,
Languages and Programming (ICALP’13), pages 57-68, 2013.

Stephen Baum and Leslie E. Trotter Jr. Integer rounding and polyhedral
decomposition for totally unimodular systems. In Optimization and Oper-
ations Research, pages 15-23. Springer, 1978.

Daniel Bienstock and Gonzalo Munoz. Lp approximations to mixed-integer
polynomial optimization problems. arXiv preprint arXiv:1501.00288, 2015.

Daniel Bienstock and Nuri Ozbay. Tree-width and the sherali-adams oper-
ator. Discrete Optimization, 1(1):13-21, 2004.

Bernhard Bliem, Benjamin Kaufmann, Torsten Schaub, and Stefan
Woltran. ASP for anytime dynamic programming on tree decomposi-
tions. In 25th International Joint Conference on Artificial Intelligence (1J-
CAI’'16), New York, NY, USA, 9-15 July 2016, pages 979-986, 2016.

Hans L. Bodlaender. A linear time algorithm for finding tree-

decompositions of small treewidth. In Annual ACM Symposium on Theory
of Computing (STOC’93), pages 226-234, 1993.

Hans L. Bodlaender. Treewidth: characterizations, applications, and com-
putations. In International Workshop on Graph-Theoretic Concepts in
Computer Science (WG’06), volume 4271 of Lecture Notes in Computer
Science, pages 1-14, 2006.

109

[13]

[14]

[15]

[21]

[22]

[23]

[24]

[25]

Edouard Bonnet and Florian Sikora. The graph motif problem parameter-
ized by the structure of the input graph. Discrete Applied Mathematics,
2016.

Gébor Braun, Samuel Fiorini, Sebastian Pokutta, and David Steurer. Ap-

proximation limits of linear programs (beyond hierarchies). Math. Oper.
Res., 40(3):756-772, 2015.

Gabor Braun, Rahul Jain, Troy Lee, and Sebastian Pokutta. Information-

theoretic approximations of the nonnegative rank. Computational Com-
plexity, 26(1):147-197, 2017.

Géabor Braun, Sebastian Pokutta, and Aurko Roy. Strong reductions for ex-
tended formulations. In International Conference on Integer Programming
and Combinatorial Optimization (IPCO’16), pages 350-361. Springer, 2016.

Robert Bredereck, Piotr Faliszewski, Rolf Niedermeier, Piotr Skowron, and
Nimrod Talmon. Elections with few candidates: Prices, weights, and cover-
ing problems. In International Conference on Algorithmic Decision Theory
(ADT’15), volume 9346 of Lecture Notes in Computer Science, pages 414—
431, 2015.

Austin Buchanan and Segiy Butenko. Tight extended formulations for in-
dependent set, 2014. Available on Optimization Online.

Andrei A Bulatov. A dichotomy theorem for nonuniform csps. arXiw
preprint arXiv:1703.03021, 2017.

Siu On Chan, James R. Lee, Prasad Raghavendra, and David Steurer. Ap-
proximate constraint satisfaction requires large LP relaxations. In 54th An-
nual IEEE Symposium on Foundations of Computer Science, (FOCS’13),
pages 350-359, 2013.

Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. Strong compu-
tational lower bounds via parameterized complexity. J. Comput. Syst. Sci,
72(8):1346-1367, 2006.

Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. Extended

formulations in combinatorial optimization. Annals of Operations Research,
204(1):97-143, 2013.

Michele Conforti and Kanstantsin Pashkovich. The projected faces property
and polyhedral relations. Mathematical Programming, pages 1-12, 2015.

Bruno Courcelle. The monadic second-order logic of graphs I: Recognizable
sets of finite graphs. Information and Computation, 85:12-75, 1990.

Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solv-
able optimization problems on graphs of bounded clique-width. Theory of
Computing Systems, 33(2):125-150, 2000.

110

[26]

[27]

28]

[33]

[34]

[35]

[36]

Bruno Courcelle and Mohamed Mosbah. Monadic second-order evaluations
on tree-decomposable graphs. Theoretical Computer Science, 109(1-2):49—
82, 1 March 1993.

Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width of
graphs. Discrete Applied Mathematics, 101(1):77-114, 2000.

Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel
Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameter-
ized Algorithms. Springer, 2015.

Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts
in mathematics. Springer, 2012.

Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized
Complezity. Texts in Computer Science. Springer, 2013.

Pavel Dvorak, Dusan Knop, and Tomas Toufar. Target set selection in
dense graph classes. arXiv preprint arXiv:1610.07530, 2016.

Pavel Dvorak, Dusan Knop, and Tom&s Masarik. Anti-path cover on sparse
graph classes. In 11th Doctoral Workshop on Mathematical and Engineering
Methods in Computer Science, (MEMICS’16), volume 233 of Electronic
Proceedings in Theoretical Computer Science, pages 82-86, 2016.

Yuri Faenza, Samuel Fiorini, Roland Grappe, and Hans Raj Tiwary. Ex-
tended formulations, nonnegative factorizations, and randomized com. pro-
tocols. Math. Program., 153(1):75-94, 2015.

Feder and Vardi. Monotone monadic SNP and constraint satisfaction. In
Annual ACM Symposium on Theory of Computing (STOC’93), 1993.

Tomaéas Feder and Pavol Hell. List homomorphisms to reflexive graphs. J.
Comb. Theory, Ser. B, 72(2):236-250, 1998.

Michael R. Fellows, Guillaume Fertin, Danny Hermelin, and Stéphane
Vialette. Upper and lower bounds for finding connected motifs in vertex-
colored graphs. J. Comput. Syst. Sci, 77(4):799-811, 2011.

Cristina G Fernandes, Orlando Lee, and Yoshiko Wakabayashi. Minimum
cycle cover and chinese postman problems on mixed graphs with bounded
tree-width. Discrete Applied Mathematics, 157(2):272-279, 2009.

Jif Fiala, Tomas Gavenciak, Dusan Knop, Martin Koutecky, and Jan Kra-
tochvil. Parameterized complexity of distance labeling and uniform channel
assignment problems. Discrete Applied Mathematics, pages —, 2017.

Jit{ Fiala, Petr Golovach, and Jan Kratochvil. Distance constrained label-
ings of graphs of bounded treewidth. In Annual International Colloguium
on Automata, Languages and Programming (ICALP’05), 2005.

Samuel Fiorini, Serge Massar, Sebastian Pokutta, Hans Raj Tiwary, and
Ronald de Wolf. Exponential lower bounds for polytopes in combinatorial
optimization. J. ACM, 62(2):17, 2015.

111

[41]

[46]

[49]

[50]

[51]

[52]

Till Fluschnik, Stefan Kratsch, Rolf Niedermeier, and Manuel Sorge. The
parameterized complexity of the minimum shared edges problem. In $5th
IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS’15), volume 45; 45 of LIPIcs,
pages 448-462, 2015.

Fedor Fomin, Petr Golovach, Daniel Lokshtanov, and Saket Saurab. Clique-
width: On the price of generality. In Annual ACM-SIAM Symposium on
Discrete Algorithms, (SODA’09), pages 825-834, 2009.

Eugene C. Freuder. Complexity of K-tree structured constraint satisfaction
problems. In Proc. of the 8th National Conference on Artificial Intelligence,
pages 4-9, 1990.

Markus Frick and Martin Grohe. The complexity of first-order and monadic
second-order logic revisited. Ann. Pure Appl. Logic, 130(1-3):3-31, 2004.

Jakub Gajarsky, Petr Hlinény, Martin Koutecky, and Shmuel Onn. Pa-
rameterized shifted combinatorial optimization. arXiv preprint arX-
1w:1702.06844, 2017. To appear at the 23rd Annual International Com-
puting and Combinatorics Conference (COCOON’17).

Jakub Gajarsky, Michael Lampis, and Sebastian Ordyniak. Parameterized
algorithms for modular-width. In International Symposium on Parameter-
ized and Ezact Computation (IPEC’13), volume 8246 of Lecture Notes in
Computer Science, pages 163-176, 2013.

Robert Ganian. Using neighborhood diversity to solve hard problems. arXiv
preprint arXiv:1201.3091, 2012.

Robert Ganian, Petr Hlinény, Jaroslav Nesetril, Jan Obdrzalek, Patrice Os-
sona de Mendez, and Reshma Ramadurai. When trees grow low: Shrubs and
fast MSO;. In 37th International Symposium on the Mathematical Foun-
dations of Computer Science (MFCS’12), volume 7464 of Lecture Notes in
Computer Science, pages 419-430, 2012.

Robert Ganian and Jan Obdrzalek. Expanding the expressive power of
monadic second-order logic on restricted graph classes. In 2/th Interna-
tional Workshop on Combinatorial Algorithms (IWOCA’13), volume 8288
of Lecture Notes in Computer Science, pages 164-177, 2013.

Robert Ganian, M. S. Ramanujan, and Stefan Szeider. = Combining
Treewidth and Backdoors for CSP. In 34th Symposium on Theoretical As-
pects of Computer Science (STACS’17), volume 66 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 36:1-36:17, Dagstuhl, Germany,
2017.

Luisa Gargano and Adele A. Rescigno. Complexity of conflict-free colorings
of graphs. Theoretical Computer Science, 566(77):39-49, February 2015.

Dion Gijswijt. Integer decomposition for polyhedra defined by nearly totally
unimodular matrices. SIAM Journal on Discrete Mathematics, 19(3):798-
806, 2005.

112

[53]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

Georg Gottlob, Reinhard Pichler, and Fang Wei. Monadic datalog over
finite structures with bounded treewidth. In 26th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems (PODS’07), pages
165-174, 2007.

Martin Grohe and Stephan Kreutzer. Methods for algorithmic meta the-
orems. Model Theoretic Methods in Finite Combinatorics, 558:181-206,
2011.

Martin Grohe, Thomas Schwentick, and Luc Segoufin. When is the evalua-
tion of conjunctive queries tractable? In 33rd Annual ACM Symposium on
Theory of Computing (STOC"01), pages 657-666, 2001.

Branko Griinbaum. Convex Polytopes. Wiley Interscience Publ., London,
1967.

Gregory Gutin, Mark Jones, and Magnus Wahlstréom. Structural parame-
terizations of the mixed chinese postman problem. In 25rd Furopean Sym-
posium on Algorithms (ESA’15), pages 668-679. 2015.

Pavol Hell and Jaroslav Nesetril. Colouring, constraint satisfaction, and
complexity. Computer Science Review, 2(3):143-163, 2008.

Petr Hlinény and Sang-il Oum. Finding branch-decompositions and rank-
decompositions. SIAM J. Comput., 38(3):1012-1032, 2008.

Dorit S. Hochbaum and J. George Shanthikumar. Convex separable opti-
mization is not much harder than linear optimization. J. ACM, 37(4):843~
862, October 1990.

Volker Kaibel. Extended formulations in combinatorial optimization. Op-
tima, 85:2-7, 2011.

Volker Kaibel and Andreas Loos. Branched polyhedral systems. In 14th
International Conference on Integer Programming and Combinatorial Op-
timization (IPCO’10), volume 6080 of Lecture Notes in Computer Science,
pages 177-190, 2010.

Volker Kaibel, Shmuel Onn, and Pauline Sarrabezolles. The unimodular
intersection problem. Oper. Res. Lett, 43(6):592-594, 2015.

Volker Kaibel and Kanstantsin Pashkovich. Constructing extended formula-
tions from reflection relations. In 15th International Conference on Integer
Programming and Combinatorial Optimization (IPCO’11), volume 6655 of
Lecture Notes in Computer Science, pages 287-300, 2011.

Subhash Khot. On the power of unique 2-Prover 1-Round games. In 34th
Annual ACM Symposium on Theory of Computing (STOC’02), pages 767
775, 2002.

Ton Kloks. Treewidth: Computations and Approzimations, volume 842 of
Lecture Notes in Computer Science. 1994.

113

[67]

[68]

[69]

[70]

[79]

[80]

Joachim Kneis, Alexander Langer, and Peter Rossmanith. Courcelle’s the-
orem - A game-theoretic approach. Discrete Optimization, 8(4):568-594,
2011.

Dusan Knop, Martin Koutecky, Tomas Masarik, and Tomas Toufar. Simpli-
fied algorithmic metatheorems beyond mso: Treewidth and neighborhood
diversity. arXiv preprint arXiv:1703.00544, 2017. 43rd International Work-
shop on Graph-Theoretic Concepts in Computer Science (WG’17).

Phokion G. Kolaitis and Moshe Y. Vardi. Conjunctive-query containment
and constraint satisfaction. Journal of Computer and System Sciences,
61(2):302 — 332, 2000.

Petr Kolman and Martin Koutecky. Extended formulation for csp that is
compact for instances of bounded treewidth. The FElectronic Journal of
Combinatorics, 22(4):P4-30, 2015.

Petr Kolman, Martin Koutecky, and Hans Raj Tiwary. Extension com-
plexity, mso logic, and treewidth. In 15th Scandinavian Symposium and
Workshops on Algorithm Theory (SWAT’16), 2016.

Petr Kolman, Bernard Lidicky, and Jean-Sébastien Sereni. On Fair Edge
Deletion Problems, 2009.

Martin Koutecky, Asaf Levin, Syed M Meesum, and Shmuel Onn. Approxi-
mate shifted combinatorial optimization. arXiv preprint arXiv:1706.02075,
2017.

Stephan Kreutzer. Algorithmic meta-theorems. Electronic Colloquium on
Computational Complexity (ECCC), 16:147, 2009. Appeared at IWPEC
2008.

Michael Lampis. Algorithmic meta-theorems for restrictions of treewidth.
Algorithmica, 64(1):19-37, 2012.

Michael Lampis. Model checking lower bounds for simple graphs. Logical
Methods in Computer Science, 10(1), 2014.

Alexander Langer, Felix Reidl, Peter Rossmanith, and Somnath Sikdar.
Evaluation of an MSO-solver. In 14th Meeting on Algorithm Engineering
& Experiments, (ALENEX’12), pages 5563, 2012.

Alexander Langer, Felix Reidl, Peter Rossmanith, and Somnath Sikdar.
Practical algorithms for MSO model-checking on tree-decomposable graphs.
Computer Science Review, 13-14:39-74, 2014.

Monique Laurent. Sums of squares, moment matrices and optimization
over polynomials. In Emerging applications of algebraic geometry, pages
157-270. Springer, 2009.

James R. Lee, Prasad Raghavendra, and David Steurer. Lower bounds on
the size of semidefinite programming relaxations. In Annual ACM Sympo-
sium on Theory of Computing (STOC’15), pages 567-576, 2015.

114

[81]

[82]

[83]

[84]

[85]

[36]

[87]

[33]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

H. W. Lenstra. Integer programming with a fixed number of variables.
Mathematics of Operations Research, pages 538548, 1983.

Asaf Levin and Shmuel Onn. Shifted matroid optimization. Oper. Res.
Lett, 44:535-539, 2016.

Leonid Libkin. Elements of Finite Model Theory. Springer-Verlag, Berlin,
2004.

Jests A. De Loera, Raymond Hemmecke, and Matthias Koppe. Algebraic
and Geometric Ideas in the Theory of Discrete Optimization, volume 14 of
MOS-SIAM Series on Optimization. STAM, 2013.

Daniel Lokshtanov, Daniel Marx, and Saket Saurabh. Known algorithms
on graphs on bounded treewidth are probably optimal. In 22nd Annual
ACM-SIAM Symposium on Discrete Algorithms, (SODA’11), pages T77—
789, 2011.

Johann A. Makowsky. Algorithmic uses of the feferman-vaught theorem.
Ann. Pure Appl. Logic, 126(1-3):159-213, 2004.

Frangois Margot. Composition de polytopes combinatoires: une approche
par projection. PhD thesis, Ecole polytechnique fédérale de Lausanne, 1994.

R. Kipp Martin, Ronald L. Rardin, and Brian A. Campbell. Polyhedral
characterization of discrete dynamic programming. Oper. Res., 38(1):127—
138, February 1990.

Déniel Marx. Can you beat treewidth? Theory of Computing, 6(1):85-112,
2010.

Tomas Masarik and Tomas Toufar. Parameterized complexity of fair dele-
tion problems. In International Conference on Theory and Applications of
Models of Computation (TAMC’16), pages 628-642, 2017.

Jaroslav Nesettil and Patrice Ossona De Mendez. Sparsity: graphs, struc-
tures, and algorithms, volume 28. Springer Science & Business Media, 2012.

R. Niedermeier. Invitation to Fized-Parameter Algorithms. Oxford Univer-
sity Press, 2006.

Timm Oertel, Christian Wagner, and Robert Weismantel. Integer convex
minimization by mixed integer linear optimization. Oper. Res. Lett, 42(6-
7):424-428, 2014.

Masoud T. Omran, Jorg-Riudiger Sack, and Hamid Zarrabi-Zadeh. Finding
paths with minimum shared edges. J. Comb. Optim, 26(4):709-722, 2013.

Shmuel Onn. Nonlinear Discrete Optimization. Zurich Lectures in Ad-
vanced Mathematics. European Mathematical Society, 2010. available on-
line at: http://ie.technion.ac.il/~onn/Book/NDO.pdf.

Sang-il Oum and Paul Seymour. Approximating clique-width and branch-
width. Journal of Combinatorial Theory, Series B, 96(4):514-528, 2006.

115

[97]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

Michal Pilipczuk. Problems parameterized by treewidth tractable in single
exponential time: A logical approach. In 36th International Symposium on
the Mathematical Foundations of Computer Science (MFCS’11), volume
6907 of Lecture Notes in Computer Science, pages 520-531, 2011.

Gabriele Puppis. Automata for Branching and Layered Temporal Struc-
tures: an investigation into reqularities of infinite transition systems, vol-
ume 5955. Springer Science & Business Media, 2010.

Arash Rafiey, Jeff Kinne, and Tomas Feder. Dichotomy for digraph homo-
morphism problems. arXiv preprint arXiv:1701.02409, 2017.

Prasad Raghavendra. Optimal algorithms and inapproximability results
for every CSP? In 40th Annual ACM Symposium on Theory of Computing
(STOC’08), pages 245-254, 2008.

Prasad Raghavendra and David Steurer. How to round any CSP. In Annual
IEEE Symposium on Foundations of Computer Science, (FOCS’09), pages
586-594, 2009.

Prasad Raghavendra and David Steurer. Integrality gaps for strong SDP
relaxations of UNIQUE GAMES. In Annual IEEE Symposium on Founda-
tions of Computer Science, (FOCS’09), pages 575-585, 2009.

Michaél Rao. MSOL partitioning problems on graphs of bounded treewidth
and clique-width. Theor. Comput. Sci, 377(1-3):260-267, 2007.

Robert W Rosenthal. A class of games possessing pure-strategy nash equi-
libria. International Journal of Game Theory, 2(1):65-67, 1973.

Thomas Rothvof. The matching polytope has exponential extension com-
plexity. In 46th ACM Symposium on Theory of Computing, (STOC’14),
pages 263-272, 2014.

Marko Samer and Stefan Szeider. Constraint satisfaction with bounded
treewidth revisited. J. Comput. Syst. Sci, 76(2):103-114, 2010.

Alexander Schrijver. Theory of Linear and Integer Programming. Wiley-
Interscience Series in Discrete Mathematics. John Wiley & Sons, 1986.

Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficien-
cy, volume 24 of Algorithms and Combinatorics. Springer, 2003.

Meinolf Sellmann. The polytope of tree-structured binary constraint satis-
faction problems. In 5th International Conference on Integration of Al and
OR Techniques in Constraint Programming for Combinatorial Optimiza-
tion Problems (CP-AI-OR’08), volume 5015 of Lecture Notes in Computer
Science, pages 367-371, 2008.

Meinolf Sellmann, Luc Mercier, and Daniel H. Leventhal. The linear pro-
gramming polytope of binary constraint problems with bounded tree-width.
In 4th International Conference on Integration of Al and OR Techniques

116

[111]

[112]

[113]

114]

[115]

[116]

[117]

[118]

[119]

[120]

in Constraint Programming for Combinatorial Optimization Problems (CP-
AI-OR’07), volume 4510 of Lecture Notes in Computer Science, pages 275—
287, 2007.

Stefan Szeider. Monadic second order logic on graphs with local cardinality
constraints. ACM Trans. Comput. Log, 12(2):12, 2011.

G. Szekeres and Herbert S. Wilf. An inequality for the chromatic number
of a graph. Journal of Combinatorial Theory, 4(1):1-3, 1968.

Hans Raj Tiwary. Extension complexity of formal languages. arXiv preprint
arXiv:1605.07786, 2016.

René van Bevern, Andreas Emil Feldmann, Manuel Sorge, and Ondrej
Suchy. On the parameterized complexity of computing balanced partitions
in graphs. Theory Comput. Syst, 57(1):1-35, 2015.

Frangois Vanderbeck and Laurence A. Wolsey. Reformulation and decompo-
sition of integer programs. In 50 Years of Integer Programming 1958-2008,
pages 431-502. Springer, 2010.

Laurence A. Wolsey. Using extended formulations in practice. Optima,
85:7-9, 2011.

Mihalis Yannakakis. Expressing combinatorial optimization problems by
linear programs. Journal of Computer and System Sciences, 43(3):441-466,
1991.

Giacomo Zambelli. Colorings of k-balanced matrices and integer decompo-
sition property of related polyhedra. Oper. Res. Lett, 35(3):353-356, 2007.

Dmitriy Zhuk. The proof of csp dichotomy conjecture. arXiv preprint
arXiw:1704.01914, 2017.

Giinter M. Ziegler. Lectures on polytopes, volume 152 of Graduate Texts in
Mathematics. Springer-Verlag, 1995.

117

118

	Preface
	Introduction
	MSO, CSP, Graph Widths and Extended Formulations
	Our Contribution
	Chapter 3: The CSP Polytope
	Chapter 4: The MSO Polytope
	Chapter 5: Connecting MSO, CSP, and Treewidth
	Chapter 6: Extensions of MSO Logic
	Chapter 7: Shifted Combinatorial Optimization

	Related Work
	CSP
	Extended Formulations
	Algorithmic Metatheorems

	Preliminaries
	Parameterized Complexity
	Graphs and General Relational Structures
	Graph Widths
	Treewidth and Pathwidth
	Treedepth
	Cliquewidth
	Neighborhood Diversity

	Constraint Satisfaction Problem (CSP)
	Monadic Second Order Logic
	Polytopes, Extended Formulations and Extension Complexity

	Extension Complexity of the CSP Polytope
	Integer Linear Programming Formulation
	Extended Formulation
	Proof of Theorem 3.0.1

	Applications

	Extension Complexity of the MSO Polytope
	Preliminaries
	[m]-colored τ-boundaried Graphs
	Monadic Second Order Logic and Types of Graphs
	Feasible Types

	Glued Product of Polytopes over Common Coordinates
	Extension Complexity of the MSO Polytope
	Efficient Construction of the MSO Polytope
	Extensions
	Cliquewidth
	Courcelle's Theorem and Optimization.
	Total Unimodularity

	Connecting MSO, CSP, and Treewidth
	MSO Polytope: Decomposability and Treewidth
	Decomposability of Polyhedra
	Treewidth of Gaifman Graphs of Extended Formulations
	MSO Polytope: Take Two

	Combining MSO and CSP
	CSP Polytope via Glued Product
	Courcelle's Theorem as CSP

	MSO extensions
	MSO Extensions
	Pre-evaluations
	Regarding MSO1 and MSO2

	XP Algorithm For MSOGL on Bounded Treewidth
	Applications

	Graphs of Bounded Neighborhood Diversity
	W[1]-hardness of MSOL and MSOG
	FPT Algorithm for MSOGLlin
	XP Algorithm for MSOGL

	Parameterized Shifted Combinatorial Optimization
	Sets Given Explicitly
	MSO-definable Sets: XP for Bounded Treewidth
	Relating SCO to Decomposable Polyhedra
	XP Algorithm for MSO-definable Sets
	Applications

	MSO-definable Sets: W[1]-hardness
	Remarks on Hardness

	Conclusion and Open Problems
	Constraint Satisfaction Problem
	Algorithmic Metatheorems
	Shifted Combinatorial Optimization

	Bibliography

