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Abstract

This work presents biologically motivated neural network model which works
as an auto-associative memory. Architecture of the presented model is similar
to the architecture of the Hopfield network which might be similar to some
parts of the hippocampal network area CA3 (Cornu Amonis). Patterns learned
and retrieved are not static but they are periodically repeating sequences of
sparse synchronous activities. Patterns were stored to the network using the
modified Hebb rule adjusted to store cyclic sequences. Capacity of the model
is analyzed together with the numerical simulations. The model is further
extended with short term potentiation (STP), which is forming the essential
part of the successful pattern recall process. The memory capacity of the
extended version of the model is highly increased. The joint version of the
model combining both approaches is discussed. The model might be able to
retrieve the pattern in short time interval without STP (fast patterns) or in a
longer time period utilizing STP (slow patterns). We know from our everyday
life that some patterns could be recalled promptly and some may need much
longer time to reveal.

Keywords
auto-associative neural network, Hebbian learning, neural coding, memory,
pattern recognition, short-term potentiation
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Abstrakt v češtině

Tato práce prezentuje biologicky motivovaný model neuronové sítě, který fun-
guje jako autoasociativní paměť. Architektura prezentovaného modelu od-
povídá architektuře Hopfieldovy sítě, jež může odpovídat některým částem,
které byly identifikovány v hipokampální oblasti CA3 (Cornu Amonis). Vzory
v modelu nejsou statické stavy neuronů, ale cyklicky se opakující synchronní
aktivity s nízkým relativním počtem současně aktivních neuronů. Vzory jsou
do sítě uloženy pomocí Hebbova pravidla upraveného na ukládání sekvencí.
Navrhnutý model je analyzován z pohledu kapacity spolu s numerickými si-
mulacemi. Model je dále rozšířen o krátkodobé posilování synapsí (STP),
které je v modelu nutnou součásí správného vybavování vzorů. Důsledkem
tohoto rozšíření je další výrazné zvýšení kapacity modelu. V práci je disku-
tována možnost kombinace obou přístupů. Síť může zpracovat vzory v krátkém
časovém intervalu bez STP (rychlé vzory) nebo pomocí STP v delším časovém
intervalu (pomalé vzory). Z vlastní zkušenosti víme, že některé vzory se mohou
vybavit rychle a některé k vybavení potřebují daleko delší čas.

Klíčová slova
auto-asociativní neuronová síť, Hebovské učení, kódování v nervovém systému,
paměť, rozpoznávání vzorů, krátkodobé posilování synapsí
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Glossary

Activation Function the function that is transforming the “membrane
potential” of the neuron in a form of weighted sum
of inputs to the neuron output. Membrane poten-
tial is represented by just a single number in anal-
ogy to the experimentally measured membrane po-
tential.

AMPA is chemical compound alpha-Amino-3-hydroxy-5-
Methyl-4-isoxazole-Propionic Acid that activates
certain type of postsynaptic receptors. These
receptors are therefore named AMPA receptors.
AMPA has no effect on NMDA receptors.

Associative Memory the memory where content is addressed (associ-
ated) with another content.

Attractor the stable state of the dynamic system. In this
theses the dynamic system is an auto-associative
memory.

Auto-Associative Memory the memory where the stored content is addressed
by the content itself.

CA3 means Cornu Amonis Layer 3 which is the anatom-
ically identified group of neurons (nucleus) in hip-
pocampus.

GABA is gamma-Aminobutric acid which acts as the main
inhibitory neurotransmitter. There are two types
of GABA based receptors GABAA and GABAB.

Hard-Limiter Function is non-continuous activation function that is acti-
vating the neuron if the weighted sum of inputs
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is above the specified threshold and keeping the
neuron quiet otherwise.

Hebb Rule The learning rule inspired by the hypothesis of
Donald Hebb. He proposed that the synaptic effi-
ciency increases as a result of repeatable excitation
between neuron cells.

NMDA is chemical compound N-Methyl-D-Aspartate that
activates certain type of postsynaptic receptors.
These receptors are therefore named NMDA re-
ceptors. The original neurotransmitter for NMDA
receptors is glutamic acid. NMDA has no effect on
AMPA receptors.

Sigmoidal Function is the most commonly used continuous activation
function. As the weighted sum of inputs is get-
ting higher than the specified threshold, the neu-
ron output is getting closer to 1. As the weighted
sum of inputs is getting lower than the specified
threshold, the neuron output is getting closer to 0.

STP means short-term potentiation which is the pro-
cess that increases the synaptic excitation between
pre-synaptic and post-synaptic neuron in the short
time window.
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Chapter 1

Introduction

Memory is an ability of the organism or system to store, retain and recall
information. In biology memory is mostly associative and stored pattern is
recalled as a response to some other input activity previously perceived or
being very close to the activity previously perceived. The stimulus that leads
to the response is called input and the response is called output. There are
multiple types of associative memories and possibilities how they could be
implemented.

Usually, the same memory can store lot of information and during a process
of storing and recalling information an addressing of the proper piece has to
take place. There are two technical approaches how to address information,
which leads to two different types of memories.

Location addressable memory uses the exact location of the information to
store and recall the appropriate information. This is the way computer memory
works or a sheet of a paper with notes is used. This type of memory is mostly
used by computers or other machines. When using a computer memory the
location is specified by the memory address.

In content addressable memory we store and recall information based on its
content. This type of memory is often called associative memory. It is natural
to most of the organisms and the human brain. The stream of thoughts of our
internal monologue (James, 1892) uses the content of thoughts to address the
stored information. The thoughts are of course influenced by our perception.
The recalled information may have a form of some movement, thought or
some chemical reactions. If we feel hunger and smell a good food we would
have a clear picture of the food just from its smell even without seeing it.
This may lead even to spontaneous salivation without seeing a food as studied
by I. P. Pavlov on dogs under different conditions in Pavlov (1927). Pavlov
described a conditional reflexes and processes that led to strengthening or
weakening of those reflexes. From the memory point of view, these reflexes

13



14 CHAPTER 1. INTRODUCTION

might be just a store and retrieval processes to/from some associative memory.
In computer science, there exist a lot of data structures with algorithms

which try to change the location addressable memory to content addressable
memory. They allow us to use efficiently the location addressable memory as
“associative dictionary”.

The view on types of memory is different in physiology and psychology.
Memory is classified based on the experience it brings to individual. The
memory could be declarative or procedural. The declarative memory is used
consciously to store or recall information. It could be further divided into
semantic memory containing the abstract information and episodic memory
storing the contextual information related to time, place, emotions etc.

Other memory classification divides the memory into sensory memory,
short term memory and long term memory. The short term memory is trans-
ferred into long-term memory by memory consolidation process. This classifi-
cation was proposed in Atkinson and Shiffrin (1968). However, all these types
of memory might have the same or similar underlying neural mechanisms that
form their behavior.

In our thesis we simply understand the information as the real vector or
the array of real numbers that correspond to some type of neural activity and
we do not take care of any further interpretation. We will focus on associative
models of neural networks.

One of the most studied memory models in neural networks are auto-
associative memories. In this case, the network does not need any separate
input and output neurons. The input is presented to the network as external
excitation or simply by setting up the neuron outputs. The network after-
wards evolves based on its dynamics and it converges to the stable state. This
stable state is considered to be the output of the network. This is achieved by
the recurrent connections in the network where output of each neuron can be
potentially connected as input to all other neurons. The first published model
of an auto-associative network was in Hopfield (1982). More detailed overview
about the auto-associative networks can be found in Amit (1989).

Artificial neural networks usually distinguish between learning and recall
processes. The learning process is used to set up synaptic efficiencies in a way
that will allow the model to retrieve the required patterns. This is often based
on the Hebb’s hypothesis (Hebb, 1949; Kuriscak et al., 2015). During recall
process these synaptic efficiencies do not change and the network dynamics
is used to recall the corresponding pattern. It was shown in Tsodyks and
Markram (1997); Tsodyks et al. (1998) that the changes in synaptic efficien-
cies could occur in a time scale small enough to also affect the pattern recall
processes. We provide a brief overview of the models relevant to our work with
the reference to the literature.



1.1. NEURON MODELS 15

1.1 Neuron Models

Neuron consists of many dendrites, the cell body and the only one axon that
could be split into multiple branches. The dendrites “capture” the signals from
other neuronal cells and convey them to the cell body. The cell body integrates
the signals over period of time and across all the dendrites. If the excitation
in the cell body reaches certain threshold the neural spike will be generated in
the axon. Therefore the dendrites are incoming connections and axon is the
outgoing connection of the neuron.

1.1.1 Formal Neuron

To study more complex behavior of the neural system it is required to build
a network of multiple neurons with connections between them. The output
of neuron is usually modeled as a number that changes in time based on the
neuron inputs. The synaptic strengths are modeled as real numbers as well and
are referred as synaptic weights. The weighted sum of inputs ξ is calculated
as

ξ =
n∑

i=1

wixi + ϑ, (1.1)

where xi denotes the input, wi denotes the weight of the corresponding synaptic
connection and ϑ denotes the bias which mimics the excitation threshold and
external input. The output of the neuron is calculated from the above equation
as

x = FA(ξ) = FA

(
n∑

i=1

wixi + ϑ

)
(1.2)

where FA is the activation function that translates the weighted sum of inputs
into neuron output. The most commonly used activation functions are shown
in Figure 1.1.

There are additional neuron models used for modeling artificial neural net-
works.

1.1.2 Hodgkin-Huxley Model

Hodgkin and Huxley have published the detailed neuron model based on the
measurements of voltage on giant axon of loligo (Hodgkin and Huxley, 1952).
They have anticipated the existence of ion channels and have created the model
that describes the voltage on a fixed point of a neuron’s membrane (usually
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Figure 1.1: Most commonly used activation functions in artificial neurons.
Hard limiter activation function is used in discrete models where the neuron
output gains only binary values. The sigmoidal function with the steepness
parameter is used in the models with continuous neuron outputs.

in so-called initial segment of axon). They have proposed the system of differ-
ential equations and adjusted its parameters to fit their measurements. The
main idea of the model is based on dynamics of ion channels.

Ion Channels

A neural membrane consists of phospholipid bilayer which has bultin protein
molecules having various functions. Some of them are ion channels which are
“builtin holes” which allows a gradient based flow of ions across the membrane.
These channels could be specific – allowing flow of specific ions. The perme-
ability of these channels could be “controlled” – channel could be either open
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or closed, i.e. gated. Based on this, we can categorize the relevant channels
into

• Receptor-Gated Channels – they are opened when the specific molecule
binds to the receptors. They are a key part in synaptic transmission.

• Voltage-Gated Channels – they are opened when the voltage on cell mem-
brane reaches certain value. They are a key part in signal transmission
along the neuron membrane.

• Mechanically Gated Channels – they are opened under the mechanical
stimulation and they are based in receptors of sense organs like inner ear
or touch.

• Leakage Channels – they are open to all ions under normal circumstances.

A neural membrane contains the voltage-gated channels for sodium and
potassium ions. Sodium channels are opened at lower voltage threshold than
the potassium channels. In quiet period, the intracellular concentration of
potassium, as well as extracellular concentration of sodium, are higher. When
the voltage increases on the membrane, the sodium channels are opened (while
the potassium channels are still closed).

Sodium ions are flowing into the cell which further increases the membrane
potential. This leads to less sensitive potassium channels to be opened. The
potassium ions start to flow into the extracellular area. This balances the previ-
ous voltage changes. Furthermore, the sodium and potassium ions are switched
between intracellular and extracellular areas by the sodium-potassium pump
which then further leads to the same ion concentrations. This process con-
sumes a lot of energy. We will not describe the sodium-potassium pump in
more detail as the model considering the ion channels provides a good enough
approximation.

We can use the Ohm’s Law to calculate the ion current as i = g(u − E),
where u is membrane voltage, g is conductivity of ion channels (can dynami-
cally change in time) and E is the equilibrium potential.

Model Definition

Cellular membrane has properties of capacitor and the relation of voltage and
current on capacitor is determined by the equation

C
du

d t
= −i, (1.3)
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x Gx [mS/cm2] Ex [mV]

Na 120 115

K 36 −12

L 0.3 10.6

Table 1.1: Model parameters. The capacity of a neural membrane is 1µF/cm2.
Values of equilibrium potentials are adjusted in a way that will lead to the
resting potential of 0mV. Taken from Gerstner and Kistler (2002).

where C is capacity of neural membrane. Current i on the right side could be
described as the sum of currents on individual channel types as

i =
N∑
i=1

gi(u− Ei) + i′, (1.4)

where i′ is additional or external current. We will be interested in three types of
channels – leakage channels, voltage-gated sodium channels and voltage-gated
potassium channels. Other channel types can affect the signal transmission as
well, but the main dynamics of action potential could be described well enough
with this limitation. In our case

i = gNa(u− ENa) + gK(u− EK) + gL(u− EL) + i′. (1.5)

Leakage channels are not gated nor otherwise controlled and their conductivity
does not change in time. The conductivity of sodium and potassium channels
changes in time considering the membrane voltage. Hodgkin and Huxley have
formulated the equations which describe dynamics of these channels. They
have rewritten the equation 1.5 into the form

i = GNam
3h(u− ENa) +GKn

4(u− EK) +GL(u− EL) + i′, (1.6)

where GNa, GK a GL correspond to maximal conductivity when all the chan-
nels for the specific ion are open. Gating functions m, n a h describe the
activation dynamics of the ion channels. They are given by the equations

dm

d t
= αm(u)(1−m)− βm(u)m

dn

d t
= αn(u)(1− n)− βn(u)n

dh

d t
= αh(u)(1− h)− βh(u)h. (1.7)
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Figure 1.2: Model functions τx a x0 from the equations 1.8.

Every equation from 1.7 could be rewritten and further adapted as
dx

d t
= αx(1− x)− βxx = αx − xαx − βxx = αx − x(αx + βx)

= − (αx + βx)

(
x− αx

αx + βx

)
= − 1

τx(u)
(x− x0(u)) , (1.8)

where x could be any of the gating functions m, n or h and furthermore

τx(u) =
1

αx(u) + βx(u)
(1.9)

x0(u) =
αx(u)

αx(u) + βx(u)
. (1.10)

Functions αx and βx were chosen to match the experimentally measured data.
See the table 1.2. If the membrane voltage would be constant the solution to
the equation 1.8 would be

x(t) = −τKe−
t
τ + x0 , (1.11)

where K is the constant determined according the initial constraint and there-
fore limt→∞ x = x0. For the fixed u the value of x0 in equation 1.8 corresponds
to the convergent value of the conductivity. The parameter τx influences the
convergence speed to this value. However, the underling properties of the ion
channels are influenced by the membrane voltage and thus τx a x0 are not
constants but functions of voltage. See the Figure 1.2.

External Stimulation

Model of Hodgkin and Huxley could be used to describe the behavior of the
neural action potential. There is a graph of action potential triggered by the
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x αx βx

m
(2.5− 0.1u)

e2.5−0.1u − 1
4e−

u
18

n
0.1− 0.01u

e1−0.1u − 1
0.125e−

u
80

h 0.07e−
u
20

1

e3−0.1u + 1

Table 1.2: Empirically determined functions of the model.
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Figure 1.3: Action potential and gating functions for Hodgkin-Huxley model
triggered by the stimulation of constant current of 7µA for 2ms. The plots
were produced by the numerical calculations using Runge–Kutta–Fehlberg
method(Fehlberg, 1969, 1970).

minimal possible constant current on the left of the Figure 1.3. The graphs of
gating functions for the same time are shown on the right side of the figure.

If the stimulation with the constant current will last longer, the action
potentials will be triggered periodically. The frequency of action potentials will
depend on the intensity of the current. When the intensity of the current is
increased the frequency will be increased as well but the amplitude of the action
potentials will be decreased. There are repeating action potentials shown in
Figure 1.4 triggered by the currents of different intensities.

The interesting behavior of the model is hysteresis which could be seen
in Figure 1.5. It is the phenomenon observed if the neuron membrane is
stimulated by the linearly increasing current which will be further linearly
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Figure 1.4: Action potentials triggered by the currents of different intensities.
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Figure 1.5: Hysteresis in external stimulation

decreasing at the same steepness after reaching the maximum. Neuron starts
to trigger action potentials very close the the local maximum. Although, it
will still be triggering the action potentials on descent further even for the
currents with much lower intensity. It was first modeled an later measured on
giant axon of loligo (Guttman et al., 1980).
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1.1.3 Other Neuron Models

FitzHugh-Nagumo model (FitzHugh, 1955) is approximation of Hodgkin and
Huxley’s model with simplified equations. The timing of spikes is important in
spiking neurons (Gerstner and Kistler, 2002). The first neuron model captur-
ing the concept of spikes was integrate-and-fire neuron published in Lapicque
(1907) and it was integrating the excitation from multiple inputs over time,
see (Abbott, 1999). Leaky integrate-and-fire neuron has in addition a decrease
of the integrated neuron potential with time (Brette and Gerstner, 2005).

Another concept in artificial neural models was presented in Kohonen
(1982) as self-organizing maps. Kohonen used local rules which are used to
assign synaptic weights to the neurons without a need for the required neuron
output. He selected the winner neuron having the highest neuron output. He
then changed the synaptic weights that the output of the winner neuron will
further increase for the same input. The surrounding neurons were changed
using the variable learning strength based on the distance from the winner
neuron. The neurons in the weight space mimic the density and shape of the
presented input data.

1.1.4 Inhibition

The transmission of a neural spike on a synapse occurs with the support of
mediator that is released into the synaptic cleft. Based on the type of the
mediator, the neural spike will induce excitation or inhibition on the target
post-synaptic neuron. The type of the response is determined globally for the
whole neuron based on the mediator that the pre-synaptic cell produces. This
means that the neuron either reacts excitatory or inhibitory for all the neurons
the outgoing connections are connected to.

In artificial neural networks the inhibition is modeled by the synaptic
weights gaining also negative values. This allows the output of the neuron
to react inhibitory for target neurons when the synaptic weights are nega-
tive, see equation 1.1. However, the same neuron can be both inhibitory and
excitatory for different target neurons based on the value of synaptic weights.

There is also a possibility that inhibitory neurons can be chained. Assume
that we have three neurons chained where the first neuron is inhibitory and
it connects to the second neuron. The second neuron is again the inhibitory
neuron and connects to the third excitatory neuron. The excitation of the
first inhibitory neuron inhibits the second interneuron which has finally the
excitatory effect on third neuron, see drawing A in Figure 1.6. More complex
architectures and chains are also possible and are shown in drawings B and
C. There are similar neural circuits found in hippocampus which are shown in
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Figure 1.6: The schema of inhibition and dis-inhibition taken from Freund
and Buszaki (1996). The figures A, B and C show the various schematic
connections of chained inhibitory neurons. The figure D shows the schematics
of the corresponding neural circuits found in hippocampus.
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drawing D.

1.2 Neural Coding

There are multiple ways how the information can be encoded in neural activi-
ties. The proper encoding of information in the human brain is not yet known.
It is very likely that the encoding differs for different areas of the neural system
(Rybar et al., 2002).

The neural coding can be sparse which means that there is a certain mean-
ing of individual spikes or small groups of spikes. These spikes can have direct
effect like muscle fiber contraction. The overall neural activity for sparse en-
coding is very low. The opposite of sparse encoding is distributed encoding
where individual spikes do not have any effect and the large group of neurons
spiking together and being distributed across the whole network provides the
relevant information. The relative activity in distributed encoding is much
higher than in sparse encoding.

There are multiple options how events in neural spikes could encode infor-
mation. It is very likely that there is no unique encoding of information within
neural system. Various areas of the nervous system can use different encoding
mechanisms. We will provide a brief overview of the most commonly discussed
neural encoding mechanisms.

1.2.1 Mean Firing Rate

First mechanism of the information encoding in neural spikes is the mean firing
rate. This is usually the case when the artificial neuron output mentioned in
the equation 1.2 is continuous. It is assumed that the artificial neuron output
corresponds to the mean firing frequency. The maximal possible artificial neu-
ron output corresponds to the maximal firing frequency. The minimal possible
artificial output corresponds to the minimal firing frequency. Very often the
artificial neuron outputs are from the interval (0, 1).

Individual spikes are expected to provide no information. This encoding
would lead to slower response times as the longer time period is required to
identify the mean firing rate (Rybar et al., 2002). This is the encoding that is
used in attractor neural network models such as Hopfield network (Hopfield,
1982, 1984) mentioned later in this thesis. First version of Hopfield network
updates neuron outputs sequentially one after the other, which mimics the
mean firing rate encoding and results in longer response times of the model as
well.
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1.2.2 Time to First Spike

It is proposed by many studies that in some areas of the brain the first spike
in the spike train is more significant than following spikes in the spike train
(Tuckwell and Wan, 2005; Gerstner and Kistler, 2002). This encoding is pro-
posed mainly for cortical neurons (Tuckwell and Wan, 2005). The first spike
on certain neural pathway usually corresponds to the new event or object ob-
served by the sensory system. Likely, all the animals have to promptly react
on certain events that signal a potential danger for them. A very fast reaction
is required in some of these cases. It can be achieved by the time to first spike
neural encoding.

1.2.3 Timing and Coincidence of Spikes

It is assumed that coincidence of spikes is important for sound localization
(Jeffress, 1948). Jeffress proposed the existence of the delay line with coinci-
dence detectors. This delay line is assumed to be present on pathway from
each ear. Neurons that act as coincidence detectors are connected to both
delay lines at places with different spike delay. The coincidence detectors will
fire an action potential only if the inputs arrive synchronously at the same
time or within a very short time window. The sound can be then localized
based on the neuron firing. This delay line was found in birds, see Young
and Rubel (1983) but it was not found in mammals. An alternative mecha-
nism was proposed for humans in Marsalek and Lansky (2005). It has been
shown that Hodgkin-Huxley neurons could be used as coincidence detectors
with appropriate precision (Marsalek, 2000).

Coincidence of spikes might look similar to time to first spike encoding. The
importance of the first spikes is much higher for “time to first spike” encoding
than the rest of the spike train. However, for “timing and coincidence of spikes”
all the spikes within the spike train are equally important.

1.2.4 Polychronization

The transfer of spikes between neurons has different delays based on the local
properties. Therefore the spikes originating on one neuron can excite different
neurons in different times. When there is a group of neurons with synaptic
connections with different delays, the overall neural activity produces complex
spatio-temporal behavior which is called polychronization. The network of
Hodgkin-Huxley neurons with different synaptic delays having various1 synap-
tic dynamics and synaptic plasticity was studied in (Izhikevich, 2006). It has

1AMPA, NMDA, GABAA and GABAB
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been demonstrated that if the same pattern was repeatedly presented to the
network, the network synaptic parameters were adjusted and these complex
spatio-temporal patterns were seen. These patterns are formed by the selected
neurons together with their precise spike timings. These patterns were called
polychronous groups.

1.3 Learning in Neural Networks

Learning is the process that tries to change the behavior of the model to
give the desired results. Neural network models have parameters that can be
adjusted and the network will give different response. These parameters can
be synaptic weights, activation function steepness or other parameters of the
activation function. During the learning process, the values of these parameters
are adjusted according the learning algorithm.

One of the first hypothesis how the synaptic weights should be adjusted was
formulated in Hebb (1949). He postulated: When an axon of cell A is near
enough to excite a cell B and repeatedly or persistently takes part in firing
it, some growth process or metabolic change takes place in one or both cells
such that A’s efficiency, as one of the cells firing B, is increased. Most of
the approaches to learning in neural networks emerged from this hypothesis
(Kuriscak et al., 2015). Numerous biological processes have been described
that confirm the Hebb’s hypothesis (Kuriscak et al., 2015; Rolls and Treves,
1998; Tsodyks and Markram, 1997; Tsodyks et al., 1998). There is no need to
know the desired network outputs for changing the weights using this learning
rule. This type of approach to learning is referred as unsupervised learning.

Another approach to learning of neural networks is purely mathematical.
Neural network model is seen as a function of it’s input. There is a set of
training patterns where each training pattern consists of the network input
and the corresponding desired network output. The parameters of the network
model are adjusted by numerical methods. The aim is to minimize the error
function defined as the sum of squares of differences between actual network
output and the desired network output (Rumelhart et al., 1986). There are
numerous other approaches when the desired network output is already known
and are called supervised learning as opposite to the previous approach. It is
used mainly in models called feed forward neural networks. These models are
commonly used in various technical applications.

There are numerous use cases of neural networks that are originally moti-
vated by the biology, but in the specific application the focus is primarily on
the performance of the model in the desired case, not that much on its biologi-
cal interpretation. The artificial neural networks are used in applications that
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recognize certain properties of objects. They are also used for the translations
of texts between languages, to identify the mostly suitable advert to show, or
even to control the self-driving vehicles.

1.4 Models of Associative Memories
In computer science, the read only memory is a function from the address
space to the stored value space.

M : A→ V (1.12)

where A denotes the address space and V denotes the stored value space. Infor-
mation storage into the memory requires changes of the memory functionM.

In case of location addressable memory the address space simply contains
all the addresses of memory locations available for information retrieval. The
size of the address space is always the same as the capacity of the memory.

For the content addressable memory the address space contains all the pos-
sible values of the content. The number of possible values that can be stored
into the memory is very large. Therefore the size of the address space might
be larger than the capacity of the memory. This is especially the case for
brains of higher mammals. The content addressable memory can not give the
reasonable response to all the possible inputs.

1.4.1 Willshaw Model

One of the first models of artificial neural networks was published in Willshaw
et al. (1969). Willshaw network consists of two layers of neurons where the
output of every neuron in the first layer is connected to all other neurons in
the second layer. There are no connections between the neurons in the same
layer nor the backward connections going out from the neurons in the second
layer. The schematic diagram of the network topology is shown in Figure 1.7.

The outputs of neurons and synaptic weights have binary values 0 or 1. We
denote the number of neurons in the fist layer as N , the number of neurons
in the second layer as M and the outputs of neurons in the first and second
layers as x1 . . . xN and y1 . . . yM respectively. The outputs of neurons x1 . . . xN
are determined by the network input. Afterwards the output of every neuron
yj in the second layer is calculated using the formula 1.2 and thus

yj = H

(
N∑
i=1

xiwij + ϑj

)
, (1.13)
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Figure 1.7: Schematic diagram of Willshaw’s network

where wij denotes the synaptic weight between the i-th neuron in the first
layer and the j-th neuron in the second layer, ϑj denotes the neuron bias and
H denotes the hard-limiter function shown in Figure 1.1a

H(x) =

{
1 for x ≥ 0
0 for x < 0.

(1.14)

We have a pattern p which we would like to store to the network. The pat-
tern input to the network is px, the states of individual neurons are px1 , px2 . . . pxN
and the required output is py with states of individual neurons py1, p

y
2 . . . p

y
M .

We will denote the number of neurons with output 1 in the pattern’s input as
N ′ and the number of neurons in the pattern’s output having output 1 as M ′.
Now we will use the following formulas to determine the synaptic weights and
neuron biases

wij = pxi p
y
j

ϑi = −N ′, (1.15)

which will activate the corresponding synapses. We can store more patterns
to the network than just one but all of them have to have the same number
of active neurons in the input due to the neuron bias. This would lead to the
following equations

wij = H

(
T∑
t=1

tpxi
tpyj

)
ϑi = −N ′, (1.16)

where T denotes the number of patterns, tpx and tpy denotes the t-th network
inputs and desired network outputs respectively.
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To retrieve the output patterns we have to present exactly the same neurons
active as we have active in the input pattern. However, some more active
neurons might be present but this may lead to more patterns to be retrieved
simultaneously.

1.4.2 Attractor Neural Networks

There are neural network models where the network evolution always leads to
a stable state in time. These stable states are called attractors and models of
neural networks where the activity is leading to attractors are called attractor
neural networks. The research in attractor neural networks was started by
Hopfield with a paper presenting a neural network as an analogy to the phys-
ical theory of a spin glass in Hopfield (1982). Later on, Hopfield published
the continuous time version of the model (Hopfield, 1984) where he studied
also the possibility of constructing the hardware version of the network. Other
researchers and scientists worked in this field and studied many different vari-
ants of these models and their properties, see Amit et al. (1987); Amit (1989);
Golomb et al. (1990); Rolls and Treves (1998); Wilson (1999); Stroffek et al.
(2007); Gorchetchnikov and Grossberg (2007).

In most cases there exist an abstract energy function of a network state for
the model which approaches a local minimum during the network evolution.
If the energy function reaches the local minimum, the network state does not
change and it remains in an attractor. These kind of abstract energy functions
are called Lyapunov functions, more details can be found in Wilson (1999).

Attractor neural networks are often used in optimization tasks due to the
abstract energy function minimization. The function to be minimized in the
optimization task has to be rewritten in a form similar to the model’s energy
function. The parameters of the model are then adjusted accordingly. After-
wards, the network will minimize its energy function during its spontaneous
evolution from the random state which leads to minimization of the original
optimization task.

1.4.3 Hopfield Model

Hopfield network consists of n neurons connected with each other in a way that
the output of every neuron is the input to all other neurons in the network.
We will denote the neurons with numbers 1 . . . n, the outputs of the neurons
as x1 . . . xn and the synaptic weight of the connection between i-th and j-th
neuron as wij (neuron i is a pre-synaptic neuron and neuron j is a post-synaptic
neuron). The outputs of neurons have only binary values 0 or 1.
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Figure 1.8: Schematic diagram of Hopfield network with 5 neurons

In discrete time t = 0, the outputs of neurons are determined by the net-
work input p1 . . . pn. Then, in every following time step t = 1, 2 . . . , the output
of a randomly chosen neuron xj is updated using the formula

xj = H

(
n∑

i=1

xiwij + ϑj

)
, (1.17)

where H is the hard-limiter function (see 1.14) and ϑj is the bias which mim-
ics threshold and external excitation of j-th neuron. It is possible to show,
see Hopfield (1982), that if the synaptic weights are symmetric and diagonal
weights are non-negative – ∀i, j : wij = wji and ∀i : wii ≥ 0, this dynamics
will lead the network to a stable state so that after some time there will be no
changes in neuron outputs.

Now, we will use the Hebb’s rule to assign weights so that the stable states
of the network would be the desired states. There might be more variants
of learning rules. We will describe the original rule used in Hopfield (1982)
motivated by Hebb (1949).

Let us have T training patterns t1, t2 . . . tT which we would like to be the
stable states of the network. The individual outputs of neurons in the training
pattern tk are denoted as tk1tk2 . . . tkn. Then we will setup every weight using the
formula

wij =


1

n

T∑
k=1

(
2tki − 1

) (
2tkj − 1

)
for i 6= j

0 for i = j.

(1.18)
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It is possible to show that the patterns learned by the equation 1.18 are
stable states of the network if they are orthogonal or pseudo-orthogonal (Hop-
field, 1982; Kvasnicka et al., 1997). However, there might be more stable states
than those learned. It is easy to see that the learning rule does not make any
difference between pattern and its inverse, thus the inverse patterns are also
stable states. There are also different linear combinations of odd number of
patterns that might be stable states. These ”unwanted“ stable states are called
phantom (or spurious) patterns. See Figure 1.9 for an example of network’s
patterns and phantom patterns.

(a) Network patterns (b) Phantom patterns

Figure 1.9: Example of network patterns and phantom patterns. The four
patterns displayed in (a) were stored to the network of 100 neurons. Some
of the phantom patterns that were also stable states of the model are shown
in (b).

There are several variants of the model. The dynamics of update presented
here is called asynchronous – at every time just one neuron is picked up and
its output is updated. In synchronous dynamics the states of all neurons are
updated at the same time. However, this change in dynamics may cause that
the network’s evolution does not have to end in a stable state and may be left
in a cycle. It is also possible to show that if the weight matrix is symmetric
the network will end in a stable state or in a cycle with just two different states
(Sima and Neruda, 1996).

The capacity of the Hopfield model was studied in (Hopfield, 1982; Wil-
son, 1999; Kvasnicka et al., 1997). The maximal capacity of the model was
estimated between 0.13N and 0.15N , where N is the number of neurons in
the network. It is also expected that the number of active neurons in every
pattern is close to 50%. This result is also considered to be the capacity of
auto-associative memory in general (Wilson, 1999).
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Chapter 2

Goals of the Thesis

Initial motivation for our work were the papers Tsodyks and Markram (1997);
Tsodyks et al. (1998) where the dynamics of detailed neural synapse was pre-
sented. It was shown also in biological experiments that the time window for
the change of the synaptic efficiency could be as low as few milliseconds hav-
ing a recovery in range of seconds (Tsodyks et al., 1998). Also, the hysteresis
shown in Figure 1.5 provides good enough reason to expect that the excitabil-
ity of the neural cell can change in such a short time. This offers the possibility
to include the changes of synaptic weights into recall phase of neural network
models.

Our goal was to find some improvement of the existing models that will be
extended by this dynamics and will improve the model performance. First, we
have build our model on Hodgkin and Huxley equations (Hodgkin and Huxley,
1952) with the synapse implemented according Tsodyks et al. (1998). We have
observed improvements in capacity and further we wanted to simplify our
model as much as possible for further analysis and simulations while keeping
its improved properties. We ended up with a combination of Willshaw and
Hopfield models which we further studied in more detail. Our main results
were published in papers which are attached to this thesis. Similar topics were
also studied in Torres et al. (2002, 2007) with a focus on synaptic depression.

33
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Chapter 3

Neural Network with Cyclic
Activation

We have defined a new mathematical model of the neural network motivated by
some of the already existing artificial neural network models. The presented
neural network model works as auto-associative memory and it has unique
pattern encoding properties.

We have presented the model encoding the patterns as cycles in Stroffek
et al. (2007) which we call the regular model in this thesis. We have extended
this model with the short-term potentiation dynamics and have investigated
how this influences the memory capacity in Stroffek and Marsalek (2012) which
we refer to as extended model later in this thesis.

The presented model was implemented as computer program in C++ and
several computer simulations have been tested on a regular desktop computer
with the focus on network capacity. There were various computer configura-
tions used. Example of one of these configurations is mentioned in section
3.3. We have generated the desired number of patterns that we have stored
to the network. In subsequent steps, we have checked the subset of stored
patterns for retrieval. Additionally, the newly generated patterns not stored
to the network have been tested for retrieval. It was desired to get no response
on patterns not stored to the network. The execution of the tests was running
in the range of weeks per one complete test.

3.1 Model Definition

The model consists of N neurons. Each neuron is connected with all the others
and also self connections are present. The output of the neuron is calculated
according the equation 1.2 and therefore

35
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xj = H

(
N∑
i=1

wijxi + ϑ

)
, (3.1)

where H is hard-limiter function, xj denotes the output of the j-th neuron, wij

denotes the weight of the synaptic connection from the i-th neuron to the j-th
neuron, ϑ denotes the bias which is the same for all neurons. The synaptic
weights and also the outputs of neurons attain only binary values 0 or 1. If the
neuron output is 0, the corresponding neuron is called inactive. If the neuron
output is 1, the corresponding neuron is called active.

The evolution of the model is described in discrete time steps t = 0, 1, 2, . . . .
The outputs of neurons at the time t = 0 are given by the presented pattern.
In every time step iteration t, the values of all the neurons are computed using
the equation (3.1) from the outputs of neurons from a previous time iteration
t− 1.

The extended model has additionally 3-state synapses simulating a short-
term synaptic potentiation. The synapses for the extended version of the model
attain values 0, 1 and P . The learning rule produces only synapses with values
0 and 1. See the sections 3.6 and 3.7 for reference on how the short term
potentiation is performed during pattern recall.

3.2 Learning Rule

The patterns stored into the network are not static, but they are cycles com-
posed of low activities in the subsequent discrete time-frames. The patterns
are stored as cycles of the activity of a very small number of neurons, which
can be as low as 0.1 % of all neurons if the number of neurons is sufficiently
large. One pattern is represented by one cycle. The synchronous activity at
the exact time frame in the cycle is called a sub-pattern.

We randomly generate the patterns as described in Stroffek et al. (2007).
Let us denote N the number of neurons in the network. In a simplified
view, in the formalism above, the sub-pattern is the vector of N elements,
(x1, x2, . . . , xN), where xi ∈ {0, 1}. The pattern is a sequence of sub-patterns.

We define a relative activity as the ratio of the number of active neurons
in the whole pattern cycle to the total number of neurons. We denote the
sub-pattern relative activity as a. Briefly, a = A/N, where A is number of
active neurons in the sub-pattern. Obviously, a ∈ (0, 1). We assume that a
is a constant number near 0 and we assume that is is the same for all the
sub-patterns stored into the network.

Let us denote the length of i-th pattern as l(i), the successive sub-patterns
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Figure 3.1: Example of the network’s pattern. The pattern activity is 1.5%
and sub-pattern activity is 0.1%. The cycle is repeated eight times. A cross
denotes the activity of the corresponding neuron at the given time step.

of the i-th pattern as it1, it2 . . . itl(i) and the activity of n neurons in j-th sub-
pattern as itj1,

itj2 . . .
itjn. In a nutshell, the lower right index denotes the neuron

number, upper left and upper right indices denote pattern and sub-pattern
numbers, respectively.

Now, let us have p patterns which we would like to store to the network. In
each k-th iteration of the learning process the network learns the k-th pattern
(a cycle of sub-patterns) using the modification of the Hebb’s rule. For every
pattern, we would like to activate the connections from the neurons active in
one subpattern leading to those active in the following sub-pattern.

Let us denote weights after the k-th iteration as wk
ij, we start with w0

ij = 0
for all i and j. In each iteration we modify the weights according the equation

wk
ij = max

wk−1
ij ,H

kt
l(k)
i

kt1j +

l(k)−1∑
q=1

ktqi
ktq+1

j

 . (3.2)

This gives a value of 0 or 1 to every synaptic weight. If the value of the weight
is 1, the corresponding synapse is called active or activated. Otherwise, it is
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Figure 3.2: Schematics of the learning rule. The pattern learned here
consists of 6 sub-patterns. This cartoon shows how the synapses are activated
based on the neuron output values in example sub-patterns 5 and 6. The left
column corresponds to neurons in sub-pattern 5, the bottom row corresponds
to neurons in sub-pattern 6.

called inactive or not activated. The visualization of the learning rule is shown
in Figure 3.2.

We have to set up the bias in a way which facilitates the correct recognition
of similar patterns. We have defined a relative activity as a ratio of active
neurons in the sub-pattern to the total number of neurons. Later on, we
assume that all the patterns have the constant sub-pattern relative activity.

If we require exact matching of patterns, which means that the pattern
is recognized only when all the neurons active in the pattern are also active
in the network’s input, the bias has to be ϑ = −banc, where a is the sub-
pattern relative activity and bc denotes the nearest lower integer. We define the
similarity of sub-pattern A to sub-pattern B as the number of neurons active in
both sub-patterns A and B at the same time divided by the number of active
neurons in sub-pattern B. The similarity function is not symmetric from its
definition and attains only values from the interval [0, 1]. Now the sub-pattern
presented to the network has to be similar to some stored sub-pattern. Only
the neurons active in both sub-patterns (the presented sub-pattern and the
corresponding stored sub-pattern) will contribute to excitation of neurons in
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the next time step. The neurons active in the stored sub-pattern will contribute
because the corresponding weights are activated. However, only neurons active
in the presented sub-pattern are firing. Thus, some similarity between these
sub-patterns is desired. Let us denote α the lowest similarity for which the
presented sub-pattern is still recognized as a stored sub-pattern. From this we
get ϑ = −bαanc.

The extended model has short-term synaptic potentiation and the bias
have to be set that only potentiated synapses are able to recall the subsequent
sub-pattern in a cycle and thus ϑ = −bαanP c.

3.3 Learning Rule Optimization
It can be seen from the equation 3.2 that the the learning algorithm’s time
complexity is the square of the number of neurons multiplied by the number
of sub-patterns of all the learned patterns,

O(n2

r∑
i=1

l(i)), (3.3)

where O denotes the asymptotic upper bound, r is the number of patterns and
l(i) is the number of sub-patterns of i-th pattern. However, if the value of the
neuron in the learned pattern is 0 it can not modify any weights. Thus, it is
sufficient to perform a learning only using non zero values of neurons.

For an optimal performance the sub-patterns may be represented as an
array of active neurons and during a learning process the weights corresponding
to neurons active in the first sub-pattern and the neurons active in the following
sub-pattern should be modified.

Because the sums in the equation 3.2 are counted only for neurons active in
the sub-pattern, the time complexity of optimized version of learning algorithm
is

O(a2n2

r∑
i=1

l(i)), (3.4)

where a is relative sub-pattern activity. The asymptotic complexity have not
changed. However we have gained a fixed constant speed improvement and
thus the learning algorithm runs 1/a2-times faster.

During the computer simulation the generation of 30 patterns with the
learning process took 18 minutes. Using an optimized version of the learning
process, the learning time was much shorter – it took only 0.3 seconds. The
simulations were performed on AMD64 3400+ CPU with 512MB of RAM
running Linux, the code was compiled using the gcc compiler. The time of the
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execution duration was measured using the ’time’ command. The generated
patterns had a pattern relative activity 2% a sub-pattern relative activity
0.1% and the network has 10000 neurons.

3.4 Pattern Generation
The generation of patterns might be done in many different ways. We did it as
follows. First we generated the set of neurons active in a whole pattern. After-
wards we decomposed that set to the sub-patterns. The pattern is supposed to
provide cyclic activity where the last pattern is supposed to be followed again
by the first pattern. Therefore, we often refer to the number of sub-patterns as
cycle length. The algorithm of the pattern generation process can be described
by the following pseudo-code:

1. Randomly generate a set of neurons to be active in the whole pattern.

2. Calculate the desired number of sub-patterns as the number of active
neurons divided by the number of active neurons in a sub-pattern l =
k/[an].

3. Calculate the number of active neurons for each sub-pattern. First, let
the number of active neurons for each sub-pattern be [an] and afterwards
spread the rest of neurons uniformly using an analogy of the Bresenham’s
algorithm (Bresenham, 1965).

4. Do the pattern decomposition – generate a random distribution of neu-
rons to the sub-patterns depending on the number of active neurons for
each sub-pattern.

5. Create the resulting data structure representing the generated pattern.

3.5 Pattern Decomposition
We have a list of k active neurons in the pattern to be decomposed to the
sub-patterns and we have the array A[1..c] of integers which stores the number
of neurons still missing in each corresponding sub-pattern. The process of
distribution of active neurons to the sub-patterns is described by the following
steps:

1. Take the next active neuron in the pattern and generate an integer ran-
dom number

r ∈

{
0, 1 . . .

c∑
i=1

A[i]

}
.
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2. Find the sub-pattern for which q is minimal argument of the function

q = arg minp

(
p∑

i=1

A[i] > r

)
.

3. Assign the current active neuron into the q-th sub-pattern and decrease
A[q] by one.

4. If there is any neuron not assigned to a sub-pattern, go back to the step 1.
Otherwise, the decomposition is finished.

5. Finally, we have to create a desired pattern representation. All the steps
above are repeated for every pattern.

Finding a number q in the 2nd step takes maximally max{l(i), i ∈ {1, 2 . . . r}}
steps. Thus the time complexity of the pattern decomposition algorithm is

O(Amax{l(i), i ∈ {1, 2 . . . r}}), (3.5)

where A is the total number of active neurons in the training set.

3.6 Pattern Recall
The pattern recall starts in the discrete time 0 with a clean network where
all the neurons are quiet and their outputs are 0. The input to the network
is presented as external excitation in several subsequent sub-patterns. There
exist one-to-one mapping between the input neuron and the neurons in the
network. If the input neuron is active, the corresponding neuron in the network
is activated in the given time step. The outputs of all the neurons are calculated
synchronously after the external excitation processing is finished. Finally, the
potentiation of the synapses is calculated. The pattern recall steps could be
written as:

1. Clean all the neuron outputs and start in the discrete time step 0.

2. If the synaptic potentiation is used then mark all the potentiated
synapses as active - i.e. the synaptic weights will have the values 0 and
1 produced by the learning rule.

3. If there is an input sub-pattern to be presented go over all the inputs
and if the input is active, mark the corresponding neuron in the network
active - i.e. set the neuron output to 1.
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4. Calculate the outputs of all the neurons synchronously according the
equation 3.1.

5. If the synaptic potentiation is used then determine which synapses are
going to be potentiated. A synapse will be potentiated if the synapse was
activated by the learning rule and the pre-synaptic neuron was active in
the previous discrete time step and post-synaptic neuron is active in the
current discrete time step.

6. Increase the time step and go back to step 2 and continue.

The pattern is considered to be properly recalled if the desired neural activ-
ity remains after the external excitation vanishes. The desired neural activity
was tested after activity of several time steps without the external excitation.
The number of these time steps was usually the same as the length of the
presented pattern.

3.7 Short-Term Potentiation
The model includes the short-term potentiation that has the synaptic weights
in three states

Non-activated (N) – No pattern has activated the synapse in the learning rule
equation 3.2 and thus the synaptic weight value is 0.

Activated (A) – At least one pattern have activated the synapse and the
synaptic weight value is 1.

Strengthened (S) – At least one pattern have activated the synapse and during
the pattern recall process, the post-synaptic neuron have fired after the
pre-synaptic neuron and thus the synapse was potentiated. The synaptic
weight value is P > 1.

Pattern recall process started with only activated and non-activated
synapses produced by the learning rule equation 3.2. We then used external
input and let the network go over the first iteration of the cycle. If two
neurons fired in subsequent time steps that the post-synaptic neuron fires
after the pre-synaptic neuron and the corresponding synapse is activated,
we have strengthened the synapse. This has been done for all the synaptic
weights when applicable. The strengthened synaptic weights had value P > 1.
We have studied the cases for P ∈ (1, 2).



Chapter 4

Capacity and Computer
Simulations

We were interested in the number of patterns that could be stored into the
network and compare that with other relevant models. We have done simple
theoretical analysis followed by numerous computer simulations.

4.1 Capacity Estimates
Assume first, that the relative sub-pattern activity in the network is a constant
small number near 0 and the number of neurons is reaching infinity. We
suppose that the network would be operating well until the critical filling of a
weight matrix would be reached by the presented learning rule. Let us denote
the relative critical filling of a weight matrix as K. Later on, we refer to this
simply as to the critical filling. The relative filling of a weight matrix, which
was produced by the learning rule, could be calculated as

F = 1− (1− a2)s, (4.1)

where s is the total number of sub-patterns learned. The randomly chosen
element of a weight matrix is 0 if and only if the two corresponding neurons
in every two following sub-patterns do not have both values equal to 1. Now,
by comparing the actual and critical fillings we obtain (1− a2)s > 1−K and
after taking a natural logarithm of both sides we get:

s <
ln(1−K)

ln(1− a2)
, (4.2)

which is the upper bound for sub-pattern storage for the number of neurons
approaching infinity. The question of the exact value of the critical filling
constant K is still open.
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There was done a research of information storage in similar sparsely coded
memory nets in Nadal and Toulouse (1990). The authors argue that the max-
imal information storage is provided by the network with relative filling of 0.5.
This means that also critical filling constant K have to be less then 0.5.

Even though our explanation requires that the number of neurons is reach-
ing infinity, it also works for smaller number of neurons. In this case the critical
filling constant has to be changed – in general, it will be a function of activity
and a number of neurons.

4.2 Pattern Recall Testing

We have performed pattern retrieval tests for both of the models. We have
stored certain number of patterns into the model and then we have tested the
subset of these patterns for successful retrieval. If the number of stored pat-
terns in the extended model increases and the synaptic efficiency parameter P
used for potentiated synapses is increasing, the network is capable of respond-
ing positively to the patterns including those that were not learned. Therefore
we performed two types of memory tests as follows:

Positive memory test – We had stored the corresponding number of patterns
into the network. We had randomly chosen the subset of patterns. We
then tested the network’s response to these patterns.

Negative memory test – We had stored the corresponding number of patterns
into the network. We had randomly generated another set of patterns
which we used as input to the network. We expected the network to give
no response to these newly generated patterns.

The relative error in the positive memory test is calculated as the number of
incorrectly set neurons (active or inactive, opposite than it should be), divided
by the number of active neurons in the pattern. The relative error in the
negative memory test is calculated as the number of active neurons in the
network response, divided by the number of active neurons in the pattern.
The relative error in both cases is rounded off at the value of 2.

4.3 Computer Simulations

We have done one set of computer simulations on the regular desktop computer
for each version of the model. The goal of the simulations on the regular



4.3. COMPUTER SIMULATIONS 45

version was to investigate the capacity dependence on the pattern and sub-
pattern activities and the number of neurons. The simulation results for the
regular model are shown in Figures 4.1 and 4.2.

5
10

15
20

25
30

35 1
2

3
4

5
6

7
8

9
10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.05

PSfrag replacements

103 Neurons

102 Patterns

Relative
Error
Relative
Error

Figure 4.1: The results of the computer simulations of the regular model for
pattern activity 10%, sub-pattern activity 1%, 40 patterns were tested for
successful retrieval.
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Figure 4.2: The results of the computer simulations of the regular model for
pattern activity 1.5%, sub-pattern activity 0.1%, 200 patterns were tested for
successful retrieval.

We have chosen the two pattern and sub-pattern activities we have per-
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formed the simulations on. On both of these activities we have done a series of
the positive memory tests as described in chapter 4 and section 3.6. The ac-
tivities chosen for simulations were 10% pattern activity with 1% sub-pattern
activity and 1.5% pattern activity with 0.1% sub-pattern activity.

For the pattern activity of 10% we have done simulations on the networks
from 10000 neurons up to 40000 neurons with the step of 3000 neurons. For
each of these networks we have done a series of tests where the different number
of patterns was stored to the network. The range of patterns stored was 100
up to 1000 patterns. We have tested 40 patterns for retrieval for every number
of patterns stored. The results of these simulation are shown in Figure 4.1.

Similarly, for the pattern activity of 1.5% we performed simulations on
the networks from 10000 neurons up to 40000 neurons with the step of 3000
neurons. For each of these networks we have stored from 10000 patterns up
to 40000 patterns. We have tested 200 patterns for retrieval. The results are
shown in Figure 4.2.

It can be seen from the regular model simulation shown in Figure 4.2 that
the network with 40 thousand neurons can hold up to 34 thousand patterns of
a pattern relative activity of 1.5% and a sub-pattern relative activity of 0.1%.
This corresponds to the weight matrix filling ratio of 45.119%.

Extended version of the model brings one more additional parameter. We
wanted to investigate it’s affect on memory capacity. Therefore we have cho-
sen the fixed number of neurons and activities used in previous testing. We
used the network of 10000 neurons with pattern activity 1.5% and sub-pattern
activity 0.1%. We have tested the storage of 10000 patterns up to 200000
patterns with the step of 5000 patterns. The parameter P was tested in the
range between 1 and 1.8 with the step of 0.1. After the learning process 20
patterns were tested for successful retrieval.

Additionally we used another set of randomly generated patterns that were
not stored. These patterns were tested for retrieval. It is desirable that the
network gives no response. There is a thick contour line drawn for the relative
error of 0.01 (1 %). The local minimum is visible for P = 1.5 in the surface
and the contour. Therefore, the highest number of patterns could be stored
into the network for P = 1.5.
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Figure 4.3: The results of the computer simulations of the positive memory
test of the extended model.
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Figure 4.4: The results of the computer simulations of the negative memory
test of the extended model.
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Chapter 5

Discussion

5.1 Understanding the Results

We have presented very simple neural network as a combination of Willshaw
and Hopfield models having binary neuron outputs as well as binary synaptic
weights. We have changed the way how patterns are encoded and we addi-
tionally have extended the model with simple synaptic potentiation. We tried
to keep the neural activity in the patterns at physiologically observed levels of
1− 2% (Wilson, 1999).

The above changes allowed us to store around 10-times more patterns into
the network than its number of neurons and the model still worked well on
pattern recall process. The Hopfield model is considered in general as the
appropriate model of auto-associative memories in general. Its capacity was
briefly discussed in section 1.4.3 and roughly it is 0.15N where N is the number
of neurons in the network (Wilson, 1999; Kvasnicka et al., 1997). Thus, we
have been able to store and retrieve more than 66-times more patterns. It is
therefore very likely, that the memory capacity in the brain structures could be
much higher than it was previously expected (Wilson, 1999; Treves and Rolls,
1991; Rolls and Treves, 1998). The high capacity auto-associative memories
were studied in Davey et al. (2004). The studied models were based on Hopfield
network with various learning rules. The highest capacity observed was 2N by
the perceptron based learning rule (Davey et al., 2004; Krauth and Mezard,
1987). There are very limited resources that tries to measure possibility of
pattern storage in the brain (Voss, 2009) and it is also not clear what exact
brain areas are trained to give a proper response.

We refer to the level of activity in our model as sparse. There were more
detailed studies of sparsely coded neural networks (Amari, 1989) which showed
that the capacity of sparsely coded associative memory is n2/ (2 log n). How-
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ever, this expects that the level of activity limn→∞ a = 0. This does not
correspond to physiologically observed level of neural activity (Wilson, 1999).

The idea of pattern decomposition into sub-patterns was also tried in Kar-
basi et al. (2014). They have generated the pattern which they later decom-
posed into sub-patterns of activities. In their case, the decomposition was
intentionally done in a way that the same neurons were active in multiple
sub-patterns. They also claim that the capacity of the model is exponential
in the number of neurons. However, this is not discussed in more detail and
it would be hardly achievable without additional assumptions on the pattern
properties.

The analysis of network capacity in Stroffek et al. (2007); Stroffek and
Marsalek (2012); Golomb et al. (1990) could help to give estimates on the
number of patterns stored in biological neural networks. It is possible to have
estimate of the connectivity between neurons in the specific brain area as well
as to observer the level of neural activity. This will help to understand how
many patterns could be stored in particular area.

Experiments with the capacity showed that there is a local maximum for
the potentiation parameter P at the value of 1.5, see Figure 4.4. This was
caused by a balance between positive and negative memory tests. In general,
it is good to understand that for short-term synaptic potentiation there might
exist an optimal value how much the synaptic weight should be increased.

5.2 Model Enhancements

5.2.1 Fast and Slow Patterns

We have presented two versions of the model where the pattern encoding is
similar but the pattern recall processes are a bit different. In regular model,
it is possible to re-construct the whole cycle just by presenting any of the sub-
patterns. The recall of this pattern is fast. The extended version of the model
needs the whole pattern to be presented so the corresponding synapses will
get potentiated. The recall of this type of pattern takes much longer time and
the whole pattern cycle have to be presented for successful recall. However,
we could gain much higher capacity in comparison with regular model.

It is possible to make one model which could have these two types of recall
mixed. We would call the patterns to be recalled as in regular model as fast
patterns and patterns to be recalled as in extended version of the model as
slow patterns. We would have the 3-state synapses already produced by the
learning rule.

We would keep the original learning rule 3.2 to store the slow patterns and
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we would modify the learning rule to store the fast patterns. We would keep the
short-term potentiation dynamics during pattern recall as in extended model.
The synaptic weights that already have the value of P will not get potentiated.
The learning rule equation 3.2 would be changed to store the fast patterns as

wk
ij = max

wk−1
ij ,H

kt
l(k)
i

kt1j +

l(k)−1∑
q=1

ktqi
ktq+1

j

P

 . (5.1)

5.2.2 Polychronization

In our case, the model behaves as polychronization network having the constant
delays in signal reaching the post-synaptic neuron. Therefore, the encoding of
the presented model could be understood as simplified polychronization where
the model was having equal synaptic delays and synchronous firing across all
the neurons. However, the model could be further altered and different synap-
tic delays could be introduced. This could bring the realistic polychronization
behavior and the overlap of active neurons in different patterns could be higher.

5.2.3 Inhibition

The most common case when the pattern will fail to be recalled correctly is the
network activity divergence. The number of active neurons started to increase
in the subsequent time steps and finally all the neurons in the network were
firing at the same time.

There is always certain ratio of inhibitory neurons in real biological neural
structures (Freund and Buszaki, 1996; Hasselmo et al., 1995) that are not
present in the model. We tried to enhance the model with inhibitory dynamics
that would become a vital part of the pattern recall process. We have done
few variants but we have not succeeded to fulfill our original intention.

It would be possible to add the certain number of inhibitory neurons and
set up their parameters that the inhibitory dynamics would be triggered by the
activity significantly exceeding the desired sub-pattern activity. The inhibitory
neurons would then fire and would make all the excitation neurons not to fire.
This type of inhibitory dynamics would be beneficial in biological network or
biological like usage of the network. However, this enhancement would most
likely not improve anyhow the memory properties of the model.
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5.3 Artificial Neural Network

We have implemented the feed forward neural network application for vehicle
mass category recognition (Stroffek et al., 2010). The data were provided by
the laser scanner as 3 hour long two lane highway recording. The goal was
to give an online estimate of the mass category for the passing vehicle, e.g.
between 3, 5t and 7, 5t. The vehicles were passing the gantry with the laser
scanner under the full speed. There were totally 2, 367 vehicles identified in
the recording. We used 1, 241 vehicles directly for learning and the remaining
1, 126 vehicles were used for additional testing purposes. The best classification
achieved by the neural network model was 95.86%.

5.4 Memory and Information

Everybody intuitively understands what is the information, but how it can be
formally defined? The proper formal definition of general information is not
known. There exist some non-exhaustive definitions from the certain point of
view. Claude Shannon introduced his information theory in Shannon (1948)
which was based on the probability theory. His quantification of information
and information entropy could be used to effectively transmit a message across
the noisy channel.

The concept of information usually seems to us intuitively well understand-
able in a certain context. Information might be written on a sheet of paper,
might be spoken by someone, might be sensible to our perception and might
be encoded in a certain sequence. We will call the entity holding the informa-
tion a message. To receive information we always have to know the correct
interpretation of the message.

When we talk about some information, we usually know already the inter-
pretation of the corresponding message or we have an idea about the inter-
pretation. We receive large number of messages through our perception every
second. Based on our known interpretations of the messages, we always choose
the messages which we think have some valuable information for us. This gives
us an ability to talk and understand the information intuitively in a certain
context without a need for a formal definition.

In most cases today, the information message is a stream of bytes. The
interpretation of the message might differ and the information is useless if
we do not know the correct interpretation or semantics. However, we can
still compress the data in the message (decrease the number of bits required
to encode the message) without knowing the interpretation due to Shannon’s
understanding of information.
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Biological organisms are more complex than computers. What is the in-
formation in a context of a biological organism? If I would pick up a pen and
hold it one meter above the ground and then I would release it. Is the infor-
mation contained in a fact that I had released a pen? Would the pen interpret
that information and would start falling? Intuitively no because the pen’s fall
would just happen because of physical laws and would not depend on the pen’s
will. When acetylcholine neuromediator reaches a post-synaptic membrane on
a muscle fiber it is a signal for a fiber contraction. Is the information contained
in transmitting an acetylcholine? Intuitively we would say yes. However, the
process of neuromediator transmission and muscle contraction is also a well
observed sequence of steps that just come because of physical laws. Why there
is a difference in our understanding of information in these two example cases?
It seems that the subject receiving an information makes a difference for our
understanding of information. We know that a pen is not capable of under-
standing any information. Probably, post-synaptic membrane does just its job
according physical laws without any understanding. However, intuitively we
assume that there is someone who will understand that information and will
interpret it correctly.
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Chapter 6

Conclusions

Our goal was to find some improvement of the existing models utilizing the
dynamics of short term synaptic potentiation. We have described the artificial
neural network model that uses cyclic activities as patterns that are stored and
retrieved from the network. We think that these cyclic patterns are in many
cases more physiological then static patterns.

We additionally extended the model with short-term potentiation which
was used as vital part of the pattern recall process. We have shown that the
memory capacity significantly increases in case when the ratio of active neurons
is around 1 − 2% which corresponds to physiologically observed values. We
have done simple theoretical analysis followed by the computer simulations.

It has been shown that the short-term potentiation occurs in time range
that could directly influence the pattern recall processes in biological neural
networks (Tsodyks and Markram, 1997; Tsodyks et al., 1998). We have shown
that it is possible to find the case where these properties can rapidly improve
the behavior of the artificial neural network model.

We think that there might be more cases where the synaptic dynamics
of pattern recall process could improve the model performance. It might be
possible that evolution managed to find more use cases for this phenomenon
that still might be revealed.
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