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Abstract (in Czech language)

Tato práce prezentuje biologicky motivovaný model neuronové sítě, který
funguje jako autoasociativní paměť. Architektura prezentovaného modelu
odpovídá architektuře Hopfieldovy sítě, jež může odpovídat některým
částem, které byly identifikovány v hipokampální oblasti CA3 (Cornu
Amonis). Vzory v modelu nejsou statické stavy neuronů, ale cyklicky
se opakující synchronní aktivity s nízkým relativním počtem současně
aktivních neuronů. Vzory jsou do sítě uloženy pomocí Hebbova pravidla
upraveného na ukládání sekvencí. Navrhnutý model je analyzován
z pohledu kapacity spolu s numerickými simulacemi. Model je dále
rozšířen o krátkodobé posilování synapsí (STP), které je v modelu nutnou
součásí správného vybavování vzorů. Důsledkem tohoto rozšíření je
další výrazné zvýšení kapacity modelu. V práci je diskutována možnost
kombinace obou přístupů. Síť může zpracovat vzory v krátkém časovém
intervalu bez STP (rychlé vzory) nebo pomocí STP v delším časovém
intervalu (pomalé vzory). Z vlastní zkušenosti víme, že některé vzory se
mohou vybavit rychle a některé k vybavení potřebují daleko delší čas.
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Abstract

This work presents biologically motivated neural network model which
works as an auto-associative memory. Architecture of the presented model
is similar to the architecture of the Hopfield network which might be simi-
lar to some parts of the hippocampal network area CA3 (Cornu Amonis).
Patterns learned and retrieved are not static but they are periodically re-
peating sequences of sparse synchronous activities. Patterns were stored
to the network using the modified Hebb rule adjusted to store cyclic se-
quences. Capacity of the model is analyzed together with the numerical
simulations. The model is further extended with short term potentiation
(STP), which is forming the essential part of the successful pattern re-
call process. The memory capacity of the extended version of the model
is highly increased. The joint version of the model combining both ap-
proaches is discussed. The model might be able to retrieve the pattern in
short time interval without STP (fast patterns) or in a longer time period
utilizing STP (slow patterns). We know from our everyday life that some
patterns could be recalled promptly and some may need much longer time
to reveal.
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Introduction

Memory is an ability of the organism or system to store, retain and recall
information. In biology memory is mostly associative and stored pattern is
recalled as a response to some other input activity previously perceived or
being very close to the activity previously perceived. The stimulus that
leads to the response is called input and the response is called output.
There are multiple types of associative memories and possibilities how
they could be implemented.

Usually, the same memory can store lot of information and during a
process of storing and recalling information an addressing of the proper
piece has to take place. There are two technical approaches how to address
information, which leads to two different types of memories.

Location addressable memory uses the exact location of the information
to store and recall the appropriate information. This is the way computer
memory works or a sheet of a paper with notes is used. This type of
memory is mostly used by computers or other machines. When using a
computer memory the location is specified by the memory address.

In content addressable memory we store and recall information based
on its content. This type of memory is often called associative memory.
It is natural to most of the organisms and the human brain. The stream
of thoughts of our internal monologue (James, 1982) uses the content of
thoughts to address the stored information. The thoughts are of course
influenced by our perception. The recalled information may have a form of
some movement, thought or some chemical reactions. If we feel hunger and
smell a good food we would have a clear picture of the food just from its
smell even without seeing it. This may lead even to spontaneous salivation
without seeing a food as studied by I. P. Pavlov on dogs under different
conditions in (Pavlov, 1927). Pavlov described a conditional reflexes and
processes that led to strengthening or weakening of those reflexes. From
the memory point of view, these reflexes might be just a store and retrieval
processes to/from some associative memory.

The view on types of memory is different in physiology and psychology.
Memory is classified based on the experience it brings to individual. The
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memory could be declarative or procedural. The declarative memory is
used consciously to store or recall information. It could be further divided
into semantic memory containing the abstract information and episodic
memory storing the contextual information related to time, place, emo-
tions etc.

Other memory classification divides the memory into sensory memory,
short term memory and long term memory. The short term memory is
transferred into long-term memory by memory consolidation process. This
classification was proposed in (Atkin, 1968). However, all these types of
memory might have the same or similar underlying neural mechanisms
that form their behavior.

In our thesis we simply understand the information as the real vector or
the array of real numbers that correspond to some type of neural activity
and we do not take care of any further interpretation. We will focus on
associative models of neural networks.

One of the most studied memory models in neural networks are auto-
associative memories. In this case, the network does not need any separate
input and output neurons. The input is presented to the network as exter-
nal excitation or simply by setting up the neuron outputs. The network
afterwards evolves based on its dynamics and it converges to the stable
state. This stable state is considered to be the output of the network. This
is achieved by the recurrent connections in the network where output of
each neuron can be potentially connected as input to all other neurons.

Artificial neural networks usually distinguish between learning and re-
call processes. The learning process is used to set up synaptic efficiencies
in a way that will allow the model to retrieve the required patterns. This is
often based on the Hebb’s hypothesis (Hebb, 1949; Kuriščák et al. 2015).
During recall process these synaptic efficiencies do not change and the net-
work dynamics is used to recall the corresponding pattern. It was shown
in (Tsodyks and Markram 1997; Tsodyks et al. 1998) that the changes in
synaptic efficiencies could occur in a time scale small enough to also affect
the pattern recall processes.



Goals of the Thesis

Initial motivation for our work were the papers (Tsodyks and Markram
1997; Tsodyks et al. 1998) where the dynamics of detailed neural synapse
was presented. It was shown also in biological experiments that the time
window for the change of the synaptic efficiency could be as low as few
milliseconds having a recovery in range of seconds (Tsodyks et al. 1998).
This offers the possibility to include the changes of synaptic weights into
recall phase of neural network models.

Our goal was to find some improvement of the existing models that will
be extended by this dynamics and will improve the model performance.
First, we have build our model on Hodgkin and Huxley equations (Hodgkin
and Huxley, 1952) with the synapse implemented according (Tsodyks et
al. 1998). We have observed improvements in capacity and further we
wanted to simplify our model as much as possible for further analysis and
simulations while keeping its improved properties. We ended up with a
combination of Willshaw and Hopfield models which we further studied in
more detail. Our main results were published in papers which are attached
to this thesis.
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Materials and Methods

We have defined the model and we have investigated it’s memory retrieval
properties by computer simulations (Štroffek et al., 2007). We have opti-
mized the learning algorithm for sparse patterns as the number of stored
patterns was very large (Rolls and Treves, 1998).

The model we used has binary neuron outputs, binary synaptic weights
as in Willshaw model (Willshaw, 1969). We used the network as auto-
associative memory with the topology and network dynamics as in Hop-
field network (Hopfield, 1982). We have used cyclic patterns that we
stored into our network model (Štroffek et al., 2007).

We have altered the Hebb’s rule (Štroffek and Maršálek, 2012) to learn
the cyclic activities. We have decomposed the cyclic patterns into sub-
patterns which correspond to the state of neurons in the specific discrete
time step. We have altered the learning rule originally used for Hopfield
network to the form required for cyclic pattern storage.

Let us denote the length of i-th pattern as l(i), the successive sub-
patterns of the i-th pattern as it1, it2 . . . itl(i) and the activity of n neurons
in j-th sub-pattern as itj1,

itj2 . . .
itjn.

Now, let us have p patterns which we would like the network to learn.
In each k-th iteration of the learning process the network learns the k-th
pattern (a cycle of sub-patterns). Let us denote weights after the k-th
iteration as wk

ij. In each iteration we modify the weights according to the
equation:

wk
ij = max

wk−1
ij ,H

kt
l(k)
i

kt1j +

l(k)−1∑
q=1

ktqi
ktq+1

j

 . (1)

The pattern retrieval test could not be efficiently optimized for sparse
patterns. Therefore, we made a random selection of stored patterns that
we have tested for retrieval. The patterns learned were randomly gener-
ated in all tests performed. The algorithm used for pattern generation is
described in (Štroffek et al. 2007).

We have used two types of pattern retrieval tests. First test type was
focused on testing that the patterns that were stored to the network are
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8 MATERIALS AND METHODS

Figure 1: Schematics of the learning algorithm. The pattern learned
here consists of 6 sub-patterns. This cartoon shows how the synapses are
activated based on the neuron output values in example sub-patterns 5
and 6. The left column corresponds to neurons in sub-pattern 5, the
bottom row corresponds to neurons in sub-pattern 6.

successfully retrieved. We called this type of test as positive memory test.
The second type of the test was focused on testing that patterns that were
not stored to the network are not successfully retrieved. We called this
type of test as negative memory test.



Results

We have shown that if we use cyclic patterns and we extend the synapse
with short-term potentiation like behavior the capacity of the model could
be increased.
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Figure 2: Capacity obtained by negative memory test. There is a
thick contour line drawn for the relative error of 0.01 (1 %). The local
minimum is visible for P = 1.5 in the surface and the contour. We show
only negative test as it restricts the capacity of the model more than the
positive memory test.

It could be seen from the given figure that the memory capacity could
be highly increased by STP even 5 to 10 times compared to the same
model with no STP.

We made a memory estimate based on the ratio of activated synapses,
(Stroffek et al., 2007). Let us assume that the ratio of activated synapses
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is K. We denote the relative activity in sub-patterns as a and the esti-
mated number of sub-patterns stored as p. Then the estimation is

p ≈ (1−K)

(1− a2)
(2)

Discussion

We have presented very simple neural network as a combination of Will-
shaw and Hopfield models having binary neuron outputs as well as binary
synaptic weights. We have changed the way how patterns are encoded and
we additionally have extended the model with simple synaptic potentia-
tion. We tried to keep the neural activity in the patterns at physiologically
observed levels of 1− 2% (Wilson, 1999).

The above changes allowed us to store around 10-times more patterns
into the network than its number of neurons and the model still worked
well on pattern recall process. The Hopfield model is considered in general
as the appropriate model of auto-associative memories in general. Its
capacity is roughly considered 0.15N where N is the number of neurons
in the network (Wilson, 1999). Thus, we have been able to store and
retrieve more than 66-times more patterns.

Experiments with the capacity showed that there is a local maximum
for the potentiation parameter P at the value of 1.5, see Figure 2. This
was caused by a balance between positive and negative memory tests. In
general, it is good to understand that for short-term synaptic potentiation
there might exist an optimal value how much the synaptic weight should
be increased.
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Conclusions

Our goal was to find some improvement of the existing models utilizing
the dynamics of short term synaptic potentiation. We have described the
artificial neural network model that uses cyclic activities as patterns that
are stored and retrieved from the network. We think that these cyclic
patterns are in many cases more physiological then static patterns.

We additionally extended the model with short-term potentiation
which was used as vital part of the pattern recall process. We have shown
that the memory capacity significantly increases in case when the ratio
of active neurons is around 1 − 2% which corresponds to physiologically
observed values. We have done simple theoretical analysis followed by
the computer simulations.

It has been shown that the short-term potentiation occurs in time
range that could directly influence the pattern recall processes in biological
neural networks (Tsodyks and Markram 1997, Tsodyks et al. 1998). We
have shown that it is possible to find the case where these properties can
rapidly improve the behavior of the artificial neural network model.

We think that there might be more cases where the synaptic dynam-
ics of pattern recall process could improve the model performance. It
might be possible that evolution managed to find more use cases for this
phenomenon that still might be revealed.

We have described the artificial neural network model that uses cyclic
activities as patterns that are stored and retrieved from the network. We
expect that these cyclic patterns are more physiological then static pat-
terns.

We additionally extended the model with short term potentiation
which was used as vital part of the pattern recall process. We have shown
that the memory capacity significantly increases in this case.
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