FACULTY
OF MATHEMATICS

AND PHYSICS
Charles University

DOCTORAL THESIS

Vladimir Maténa

Integration Paradigms for Ensemble-
based Smart Cyber-Physical Systems

Department of Distributed and Dependable Systems

Supervisor of the doctoral thesis: doc. RNDr. Tomas Bures, Ph.D.
Study programme: Computer science

Study branch: Software systems

Prague 2018






I declare that I carried out this doctoral thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In Prague date 1.7.2018 signature of the author



ii



Title: Integration Paradigms for Ensemble-based Smart Cyber-Physical Systems
Author: Vladimir Maténa

Department of Distributed and Dependable Systems: Department of Distributed
and Dependable Systems

Supervisor: doc. RNDr. Tomas Bures, Ph.D., Department of Distributed and
Dependable Systems

Abstract: Smart Cyber-Physical Systems (sCPS) are complex systems performing
smart coordination that often require decentralized and network resilient operation.
New development in the fields of the robotic systems, Industry 4.0 and autonomous
vehicular system brings challenges that can be tackled with deployment of ensemble
based sCPS, but require further refinement in terms of network resilience and data
propagation. This thesis maps the use cases of the sCPS in the aforementioned
domains, discusses requirements on the ensemble based architecture in terms
of network properties, and proposes recommendations and technical means that
help to design network aware ensemble based sCPS. The proposed solutions are
evaluated by the means of target systems simulation using state of the art realistic
network and vehicular simulators.

Keywords: smart cyber-physical systems, reliability-aware design, real-time com-
munication, autonomic components, ensembles, simulation environment, testbed

iii



v



Acknowledgments

In this text I would like to thank all who supported me through my doctoral
studies and made this work possible. First, I would like to thank my advisor
Tomas Bures for all the help, guidance, advises, ideas, and specially for keeping
high spirits in every situation. I am also deeply grateful to Frantisek Plasil who
helped me a lot especially in the beginning of my studies. His advises and guidance
let me understand my topic in a broader context and the countless hours he spent
with me writing the papers and correcting all the mistakes helped me to put this
thesis together. Further, I would like to thank Petr Hnétynka for his help and
specially for keeping an eye on all the deadlines and Pavel Parizek for constantly
pushing me forward and providing me with advises on all the technical details.

Next, I would like to thank all my colleagues at the Department of Distributed
and Dependable Systems who created a fruitful and positive work environment for
me. In particular I would like to thank Rima Al Ali, Lubomir Bulej, Jakub Daniel,
Vlastimil Dort, Ilias Gerostathopoulos, Vojtéch Horky, Pavel Jezek, Zbynék Jiracek,
Michat Kit, Jan Kofroi, Filip Krijt, Dominik Skoda, Petr Ttma, and Ji¥f Vinarek.
[ am also grateful to Petra Novotna for all the support with administrative tasks.
Without her help we all would end up stuck somewhere in a distant country.

Also I would like to thank the institutions that financially supported my work.
In particular I would like to thank Charles University Grant Agency project No.
391115.

Last but not least, I would like to thank my parents Vladimir and Jana for their
generous material and mental support as well as my grandparents who together
with my parents sparked my interest in science and technology. Finally, I would
like to thank my fiancée Hana for her great loving support, valuable advises, and
all the hours we were talking about this.



vi



Contents

1 Introduction

1.1 Smart Cyber-Physical Systems . . . . . . .. ... ... ... ...
1.2 Motivation . . . . . .. . ...
1.3 Overall Goals . . . . .. . . ... ... .. ... ...
1.4 Document Structure . . . . . . .. ...
1.5 Used Conventions . . . . . . . . . .. ... ...
2 Background
2.1 Application Domains . . . . . . . . ... ... ...
2.1.1 Robotic Systems . . . . . ...
2.1.2 Industry 4.0 . . . ...
2.1.3 Smart Cars . . . . . . . . ...
2.2  Ensemble Based Component Systems . . . . . ... ... .. ...
2.2.1 Dependable Emergent Ensembles of Components . . . . .
2.3 Network Technologies Used in the Smart Cyber-Physical Systems
2.3.1 Short Range . . . . . . ... ... oo
232 LongRange . . . . .. . ... ... ... ..
2.4 Declarative Ensemble Specification . . . . . . ... .. ... ...
2.5 Simulation Frameworks . . . . . . . .. ... ... ...
251 ROS . . . .
252 Stage . . . ..
253 Gazebo . . ...
254 MATSIm . . . ... ..
255 SUMO . . . ..
2.5.6 OMNeT++ . . . . . .
25.7 INET . . . ..
258 Veins . . . . . . .
3 Goals
3.1 Challenges . . . . . . . . ..
3.1.1 Membership Decision . . . . . . ... ... ... ... ...
3.1.2  Data Exchange in a Loosely Connected Ensemble . . . . .
3.1.3 In Ensemble Coordination with Packet Loss . . . . .. ..
3.1.4  System Evaluation Challenges . . . . . . . ... ... ...
3.2 Problem Statement . . . . . ... ... ... L.
3.3 Research Questions and Goals . . . . . . . ... ... ... ....
3.4 Contributions . . . . . ...

© -1

10
11
12

13
13
13
15
16
18
18

19
22
24
24
24
26
26
27
28
29
29
30



4 Use cases
4.1 Robotic Swarm . . . . . .
4.1.1 Search and Rescue

4.2 Industry 4.0 Robot Coordination . . . . .. ... ... ... ...

4.2.1 Collision Avoidance

4.2.2 Task Group Formation . . . . . ... ... . ... ... ..

4.3 Autonomous Driving . . .
4.3.1 Environment . . .
4.4 Local Vehicle Coordination

4.4.1 Scanning for a Parking Place . . .. .. ... .. ... ..
4.4.2 Precedence Negotiation . . . . . . . ... ... ... ....
4.4.3 'Traffic Lane Change Negotiation . . .. ... .. ... ..
4.4.4 Platooning on Highways . . . . ... .. ... ... ....
4.4.5 Optimized Speed-up in Traffic Jams . . . . . . .. ... ..
4.4.6 Joining the Roundabout . . . . . .. .. .. ... ... ..
4.4.7 Optimized Traffic Lights . . . . . .. ... ... ... ...

4.4.8 Obstacle Discovery

4.4.9 Clearing Path for Emergency Vehicles. . . . . . . ... ..
4.4.10 Identification of Dangerous Conditions . . . . .. ... ..
4.5 Global Vehicle Coordination . . . . . . ... .. ... ... ....

4.5.1 Route Optimization

4.5.2 Parking Place Registry . . . . . . .. ... ... ...
4.5.3 Long Distance Platoon Formation . . . . . . . .. ... ..

4.5.4 Car Sharing . . . .

4.5.5 Car Sharing Management . . . . .. .. ... ... ....
4.5.6 Charge Station Assignment . . . . ... ... ... ....
4.5.7 Road Billing System, Toll Collection . . . .. .. .. ...
4.5.8 Street Lane Optimization . . . . .. .. ... ... ....
4.5.9 Emergency Situation Management . . . . . . .. ... ..

5 Modeling the use case scenarios with ensembles
5.1 Ensembles of Autonomous Cars . . . . .. ... ... ... ....

5.2 Use Case Feature Analysis

5.2.1 Implementation Draft . . . .. ... ... ... ... ...
5.2.2 Membership Features . . . . . . .. ... ... ... ....

5.2.3 Ensemble Purpose

5.3 Implications for Communication . . . . . . . .. ... .. .. ...
5.3.1 Centralized Formation . . . . . ... ... ... ... ...
5.3.2 Distributed Formation . . . . . ... ... ... .. ....
5.3.3 Instance Based Centralization . . . . . ... ... ... ..

5.3.4 Mobile Broadband
5.3.5 Packet Radio . . .

5.3.6 Communication Overview . . . . . . . . . . . .. .. ...
5.4 Network Reliability and Availability . . . . . .. ... ... . ...

5.5 Real-time Communication

6 Solution Strategy

41
42
42
43
43
43
43
44
44
45
45
46
46
47
47
48
48
49
49
49
49
20
20
o1
o1
ol
o2
52
52

55
95
57
57
63
65
65
66
66
66
67
67
67
68
69

71



7 Effects of Network on Ensemble Formation 73

7.1

7.2

Bipartite Ensembles . . . . . . ... ... 0oL 73
7.1.1 Membership Condition . . . . ... . ... ... .. .... 74
7.1.2 Knowledge Exchange . . . . . . . ... .. ... ... ... 76
7.1.3 Communication Demands . . . . ... .. ... .. ... .. 7
Intelligent ensembles . . . . . . . ... ... oo 78
7.2.1 Solving Intelligent Ensembles . . . . . ... ... .. ... 79
7.2.2  Communication in Intelligent Ensembles . . . . . . .. .. 81

7.2.3 Communication Requirements of Component Coordination 82

8 Communication Groups 83
8.1 Platooning Scenario . . . . . . .. ... oo 83
8.2 Communication Using Domain Knowledge . . . . . . ... .. .. 85

8.2.1 Ad-Hoc Networks . . . . . ... ... ... .. ... .... 86
8.2.2 Infrastructure Networks . . . . . ... ... .. ... ... 86

9 Adaptive communication 91
9.1 Scenario . . . . . . . ... 91
9.2 Communication Concerns . . . . . .. ... .. .. .. ...... 92
9.3 Towards Self-Optimizing Ensembles . . . . . . . ... .. ... .. 93
9.4 Network Aware Ensembles . . . . . .. ... ... ... ... ... 94

9.4.1 Ideal System . . .. .. ... ... .. ... ... 95
94.2 Real System . . . . ... ..o 96
9.4.3 Communication Parameters . . . . . ... ... ... ... 98

10 Real-time Analysis 99
10.1 Intelligent Crossroad System Case Study . . . . . .. .. .. ... 99
10.2 Modeling with DEECo . . . . . . . ... ... ... ... ... 101

10.2.1 Components . . . . . . . . . ..o 101
10.2.2 Ensembles . . . . . . . ... 102
10.2.3 DEECo’s Deterministic Semantics . . . . . . . . . .. ... 103
10.2.4 Implementation and Deployment . . . . . .. .. ... .. 103
10.3 Closed Loop Reaction Time . . . . . .. ... ... ... ..... 104
10.4 Real-Time Analysis . . . . . . . .. ... ... ... ... ... 105
10.4.1 Obtaining the Worst-Case Computation Delay . . . . . . . 106
10.4.2 Obtaining the Worst-Case Communication Delay . . . . . 107
10.4.3 Determining System Constraints . . . . . . . . . .. .. .. 110
10.4.4 Obtaining a Feasible DEECo Configuration . . ... ... 110
10.5 Robustness to Unreliable Communication . . . . . . . . . ... .. 112
10.5.1 Safety Mechanisms . . . . . . . .. .. ... ... ... .. 113

11 Implemented frameworks 115

11.1 JDEECo . . . . . . 115
11.1.1 Modularity and Network Infrastructure . . . . . . . . . .. 117
11.1.2 Simulation and Reality . . . . . . ... .. ... ... ... 118

11.2 CDEECo . . . . . . . . 119
11.2.1 Language Mapping . . . . . . . . . . . . ... .. ... .. 119
11.2.2 Platform . . . . . . . . ... ... 121

11.3 PyDEECo . . . . . . . . 122



12 Adaptation Test-bed 125

12.1 Model Problem . . . . . . . ... .. ... ... ... ..., 125
12.1.1 Operation and Adaptation Challenges. . . . . . . . .. .. 125
12.1.2 Solution Comparison Dimensions . . . . . .. .. .. ... 127

12.2 Test-bed . . . . . . . . 127
12.2.1 User’s Perspective . . . . . . . . . . .. .. ... ... .. 128
12.2.2 Decentralized Coordination Modeling Concepts . . . . . . 129
12.2.3 Technical Architecture . . . . . . .. .. ... . ... ... 130

12.3 Example Adaptation Logic . . . . . . . . ... ... ... ... 131

12.4 Lessons Learned and Limitations . . . . ... ... ... ..... 132

12.5 Artifact Structure . . . . . . ..o 133

13 Evaluation 135

13.1 Safety Critical Communication . . . . . . .. .. ... ... ... 135
13.1.1 Evaluation under Unreliable Communication . . . . . . . . 136
13.1.2 Realism of the Evaluation . . . .. ... ... ... .... 138

13.2 Vehicle coordination in a platoon . . . . . . ... ... ... 140
13.2.1 Results. . . . . . . . . . . ... 140

13.3 Ensemble parameters and system utility . . . .. ... ... ... 142
13.3.1 Experiment Setup . . . . . . . .. ... ... ... 143
13.3.2 Simple Network Results . . . . .. ... ... ... .... 144
13.3.3 Precise Network Results . . . . . .. ... ... ... ... 146

14 Related Work 149

14.1 Knowledge propagation limits . . . . . . . .. .. .. ... .. .. 149
14.1.1 Wireless Sensor Networks . . . . . .. .. ... ... ... 149
14.1.2 Context aware routing . . . . . . . . . .. .. ... .. .. 150
14.1.3 Geographic routing . . . . . . ... ..o 150
14.1.4 Zone Routing Protocol . . . . . . . .. ... .. 151
14.1.5 Large scale Cyber-Physical Systems . . . . . . . .. .. .. 151
14.1.6 Edge Cloud . . . . .. .. .. .. ... ... ... 152

14.2 Network architectures of the sCPS . . . . . . ... ... .. ... 152
14.2.1 Ensemble Based Component Systems . . . . . . . . .. .. 152
14.2.2 Kevoree . . . . . . . . . . ... 152
14.2.3 Helena . . . . . . . .. .. 153
14.2.4 Palladio Component Model . . . . . . . . ... ... ... 154
14.2.5 AUTOSAR . . . . .. . 154
14.2.6 BlueArX . . . . . . . 155
14.2.7 ProCom . . . . . . . . . .. 155
14.2.8 Rubus . . . . . . ... 155
14.2.9 Mechatronic UML . . . .. ... ... .. ... ...... 156
14.2.10 Behavior, Interaction, Priority . . . . . . . . . .. ... .. 156

14.3 Membership evaluation . . . . . . . ... ... 157
14.3.1 Maude . . . . . . . ... 157
14.3.2 Coalition Formation Using Auctions . . . . . . . . . . . .. 157
14.3.3 Mesh networking . . . . . . ... ..o 158
14.3.4 Gossip Communication . . . . . . . . ... ... ... 158
14.3.5 Distributed Hash Tables . . . . . . .. ... ... .. ... 159

14.4 Component Coordination . . . . . . . ... . ... .. ... .... 159



14.4.1 Multi-Agent Systems . . . . . . .. ... 160

1442 AkKa . . . . .. . 160

14.4.3 Distributed Constraint Optimization Problem . . . . . . . 160

14.4.4 Dynamic Coalition Formation . . . . . .. .. ... .. .. 161

14.4.5 RoboCup Challenges . . . . . . . ... .. ... ... ... 161

14.5 Evaluation of the sCPS Experiments . . . . . .. ... ... ... 161
14.5.1 RoboCup . . . . . . . . . 162

14.5.2 Health CPS . . . . . . ... ... ... .. ... ...... 162

14.5.3 SCADA security test-bed . . . . . . .. ... ... 163

14.5.4 Cyber-Physical Security Test-beds . . . . . . . . .. .. .. 163

14.5.5 Automated Traffic Routing Problem . . . . . ... .. .. 163

14.5.6 Tele Assistance System . . . . . . . . ... ... .. 164

15 Conclusion and Open Challenges 165
15.1 Summary . . . ... 165
15.2 Open Issues . . . . . . . . . . . .. 166
Bibliography 167
List of Figures 179
List of Tables 181
Glossary 183
Acronyms 187
List of publications 189






CHAPTER 1

Introduction

At the brink of the information age the computers are finding their way from
processing information in offices and data centers into direct control of physical
entities anywhere in the world. The recent development in robotics, automotive,
logistics and aviation promises rapid emergence of autonomous and interconnected
machines. These, in the form of smart fridges, security systems, entertainment
systems, Computer Numerical Control (CNC) lathes, robotic vacuum cleaners,
and heating systems, are slowly filling our houses and factories. In the same
way the general public spaces, such as streets and air, are already containing
prototypes of self driving cars and drones. In future, streets are about to be
occupied by autonomous machines delivering packages, doing cleaning tasks,
performing maintenance, and continuously monitoring everything.

The resulting mixture of entities naturally needs to cooperate and share
information in order to maintain safety and efficiency of operation. This brings
interesting challenges not only in coordination and communication, but also in
the area of system design and architecture.

For a human in a crowded and noisy underground it is quite an easy and
natural task to coordinate with a stranger on precedence in a narrow passage.
Unfortunately, it is a bit more challenging to introduce coordination into an
open-ended, dynamic and large scale system composed of autonomous entities
using a lossy communication. A field of sCPS is addressing these challenges.

1.1 Smart Cyber-Physical Systems

The recent advances in computer manufacturing and, in particular, mobile com-
puters open a brand new field of applications. Each year we see introduction
of general purpose computational devices that are smaller and cheaper. Apart
from this, these devices are also gaining significant computational power without
raising energy demands enabling both complex applications and power savings.
Those advances encourage engineers to do two things. First, to replace legacy
single purpose controller hardware by mass produced programmable controllers
that enable introducing additional features. i.e. replacing mechanical thermostat
with temperature sensor and programmable controller that can easily maintain
stable temperature and, in addition, also collect statistics or follow defined schedule.
Second, to introduce systems that used to be impossible or just too complex and
expensive to be build. i.e. monitoring humidity of a soil in flowerpot used to be

7



beyond level of complexity suitable for deployment in households, but currently it
can be implemented by a child as a high school project.

As already mentioned, the compu-
tational power is at hand, but without
proper communication the most com-

)
Y 4 plex projects cannot be implemented.
For a long time, the wires have been

used to connect actuators and sensors

to controllers in the field of the Cyber-

“— Physical System (CPS). Even when

their reliability is very hard to replace,
the modern systems composed of small
and possibly mobile devices rely on
wireless media as means of communication. This is where the state of the art is
changing really fast. The Wi-Fi and Bluetooth are around for quite some time as
well as mobile internet connection, but the properties of these connection means
are changing. Current Wi-Fi ac can easily replace wired connection enabling
wireless high resolution video streaming. Bluetooth low energy standard can let
small, battery powerd devices operate for months or even years. Performant The
4™ Generation mobile networks (4G) mobile internet connection is about to cover
most of the population while the The 5" Generation mobile networks (5G) is
set to significantly increase its capacity to cover much more devices and remove
necesity for local Wi-Fi hotspots or even erradicate cables in some places [8].

Powerful, small and connected controllers are only one part of the new CPS.
Sensors are developing in a similar way as processing units do. Becoming cheaper,
smaller and more performant devices like Light Detection And Ranging (LIDAR)
or depth camera provide sensor data of quality that used to be hard and expensive
to achieve.

Actually, already deployed devices such as smart phones, security systems
and connected cars are already equipped with high quality sensors and necessary
processing power [9]. Most smart phones include Global Position System (GPS),
magnetic field sensor, light sensor, microphone, gyroscope and camera. The
potential of these devices is currently used mostly locally. Assuming possibilities
of current and future communication, it is going to be possible to build complex
CPS composed of many, possibly small, devices.

As the availability of communication means and smart devices started era
of massive interconnection among devices called Internet of Things (IoT), it is
presumable that those connections will be used also for remote or even distributed
control. As a result CPS composed of a large number of interconnected devices
are, at last in some literature, called sCPS.

Keeping the purpose of CPS the sCPS maintain interconnection between cyber
and physical world. The only difference is shift from rather static connection
between sensor, controller and actuator to a dynamic, open, and distributed
system composed of heterogeneous devices. Where a relation between cyber and
physical world used to be determined by cables connecting sensor and actuators
to controller, now dynamic groups of devices are in place. The resulting system
has possibly much higher capabilities, but these come at the cost overall system
complexity. Due to this sCPS introduce new challenges in architecture design and

8



Component: Car Component: Car Component: Car

Id: E5A-5846 Id: A2B-4889 Id: H9K-4926

Speed: 43 km/h Speed: 41 km/h Speed: 40 km/h

Position: Position: Position:

[50.0807606N, 14.4257564E] [50.0807601N, 14.4257426E] [50.0807595N, 14.4257435E]

B 0" o w0 e

Ensemble: Collision avoidance for cars A, B
Membership: distance(A.position, B.position) < 15m
Exchange: B.speed = A.speed - delta

Figure 1.1: An example of vehicular EBCS.

communication that needs to be addressed in order to take a full advantage of
those systems.

1.2 Motivation

As stated earlier, the current development in the field of sSCPS brings dynamic
systems composed of many, possibly small, nodes that closely cooperate together in
order to fulfill shared goals. The complexity of the problem requires a systematic
approach backed by a proper system architecture in order to implement the system
properly. An Ensemble Based Component Systems (EBCS) [10] is one of the an
architectural styles suitable for designing those systems.

An EBCS is build on top of ensembles of executable components [11]. The
component encapsulates business logic implemented by processes and a knowledge
that represent the state of the component and defines its external interface. The
ensemble is a dynamic group of components defined by a membership condition
expressed as a function of member knowledge. Once the ensemble is established
the knowledge exchange, that is a part of ensemble definition, is performed. The
exchange is a function that changes the knowledge of particular ensemble member
based on the combined knowledge of all members of the ensemble. An example
of EBCS is a collision avoidance system where cars close to each other form an
ensemble and limit speed of cars in the back in order to maintain safe distance as
displayed in Figure 1.1.

Even though the abstractions work well in theory, the real implementation of
these systems is not so straightforward. In particular, implementing the system
on top of a poor wireless network is really a challenging task that needs to be
addressed at design time and reflected in the system architecture.

Possible applications that require mentioned integration of network properties
at design time include robotic systems, Industry 4.0, and and smart cars. All
these fields are at the brink of massive expansion in the near future. Even though
the current experimental implementations are not required to address network
related design time challenges as those use simplified network model or simply
work around the problem on a lower level, the future pressure on cost reduction,
reliability, and massive integration with existing systems will force designers to
address those challenges.

The applications of dynamic grouping implemented as an EBCS are many.



In the field of robotic systems the envisioned usage ranges from coordination of
automated search and rescue missions through the coordination of military units
towards the coordination of household cleaning machines and general coordination
of IoT systems. Regarding the Industry 4.0, EBCS can offer safety enforcement
through coordination between humans and robots at workplace as well as coor-
dination on manufacturing particular products that translate into planning and
scheduling task. Finally, the dynamic groups offer many applications in the area
of automated cars. Applications in this field include collision avoidance, traffic
optimization, movement coordination, and formation of platoons.

On of the common base of all these, and most modern systems in general, is
strong usage of network communication. The general availability of the network
interfaces, their low price and power consumption together with customer demand
for well integrated and remotely managed systems fuels demand for networked
sCPS and motivates usage of EBCS.

With the new features available, from possibly large volumes of new devices
connected, also comes the hassle of managing the communication. Managing
connections among thousands of devices spread across the city or even tens of
devices populating a single household is challenging in terms of network infrastruc-
ture and deciding what data should be send where. The challenge is even more
demanding if a distributed system, operating on top of possibly restricted and
unreliable wireless network, is taken into consideration. Such kind of a system is
required in applications where reliable network is not available by design, such as
military or search and rescue applications, or in cases where the provided network
cannot be relied on due to excessive usage or poor coverage. Because of this
even, applications designed to operate in peaceful and stable environments need
to be ready for network related troubles due to congestion in populated areas
and poor coverage in countryside. Finally, systems that needs to be reliable, such
as autonomous driving, vehicle or robot coordination, and such similar systems
needs to be aware of the underlying network in order to adjust their behavior.

In all the fields mentioned above usage of EBCS faces network related problems,
preventing efficient and straightforward development, that needs to be reflected
in the architecture in order to design such systems that are naturally aware of the
network related problems. In general these can be summarized as (i) formation of
cooperation groups in real network environment; (ii) testing of the real behavior
of the proposed system.

1.3 Overall Goals

The high level goals of this thesis, based on the motivation, are aiming on the
extension of the EBCS architecture concepts with network awareness and overall
optimization of the architecture towards realistic network properties. The main
pitfall of the current EBCS architectures, with respect to the network awareness,
seem to be lack of expressiveness for the network distance between nodes hosting
the components that form the system. Moreover, the network unaware architecture
may bring an false assumption of all data being available everywhere at a very
low cost. In order to mitigate these deficiencies the high-level goals are outlined
for this thesis in the following paragraphs.

10



Distributed group formation and operation with network limits The
first goal aims on design of an architecture that supports group formation while
being aware of the network and its realistic limits. This translates into decision on
where the data, necessary to form the groups, should be spread and how to balance
network usage and utility produced by the system. Moreover, the operation of
the already formed group needs to be supported including data exchange and
coordination of group members under the realistic network conditions. This
includes coping with data loss and latency issues in coordination, especially in
case when a real-time system is considered.

Evaluation of networked sCPS applications Evaluation is necessary in
order to verify achievement of the previous goal as well as to ease development of
new applications using the proposed architecture. The following steps needs to be
taken in order to verify correct design of the proposed tools and to let the other
scientists in the field conduct experiments. First, the simulation of the target
environment needs to be created that specially focus on realistic network. Second,
a test-bed needs to be present that is easy to run and contains all the necessary
tools to enable widespread usage of it.

The goals of this thesis, as well as matching challenges and research questions
are detailed in Chapter 3 after introducing necessary vocabulary.

1.4 Document Structure

This thesis is structured as follows. Chapter 2 presents state of the art in the field
of interest while specially focusing on sCPS related architectures, applications,
networking, and simulations. Thesis goals are introduced in Chapter 3 where
challenges and research questions are formulated. In Chapter 4 desired use cases
in the field of sSCPS are described while the requirements on the network that
follow from mapping of the use cases to the EBCS are described in Chapter 5.

Chapter 6 outlines approach towards addressing goals of this thesis. First
different ensemble formation techniques are described including their implications
towards network communication requirements in Chapter 7. Next the specifics of
designing hard real-time networked sCPS based on the ensembles are presented
in Chapter 10. The real-time analysis is followed by network traffic optimization
conducted using communication groups and adaptations in communication as
described in Chapters 8 and 9 respectively. Later, the means of evaluation of the
sCPS are addressed by listing of frameworks implemented or modified as part
of this thesis, Chapter 11, and, finally, a test-bed based on the frameworks is
presented in Chapter 12.

The ideas presented in previous chapters were evaluated by means of simulation
and the results of these are displayed and described in Chapter 13. In the
Chapter 14 the work related to the topic of this thesis is listed according to the
challenges of this thesis. Finally, Chapter 15 concludes the work and discusses
possible new directions of research in the field.

11



1.5 Used Conventions

Part of the text of this thesis, located mostly in the Chapters 8, 9, 10, 12, and 13,
was reused from publications co-authored by the author of this thesis. Mentioned
publications are listed in Chapter 3. Reused text, marked with horizontal black
line following the page margin such as in the case of this paragraph, was included
verbatim with a few exceptions.

o The text parts that used to include description of terms already mentioned
somewhere else in the text were replaced by references to the description.

o Part of the text was rephrased and some of the terms replaced with syn-
onyms in order to keep consistent vocabulary and language across the whole
document.

o Some of the figures that are referenced from the reused text were not taken
verbatim but regenerated from original data in order to improve their visual
appearance and precision.

o In case of Chapter 9 the reused results were extended with previously
unpublished data using different method of simulation. These extra data
are described and a brief comparison with the original data is included.

Apart from these the reused text was taken verbatim. In general the meaning
is consistent with version of the text that was originally published.

12



CHAPTER 2

Background

In this chapter the background in the field is described that form a base of
the research presented in this thesis. Included topics range from description of
current trends in the target domains; through the description of the EBCS and
the communication techniques that are required to support the concept outlined
by the architecture; towards the means of evaluation such as different simulation
frameworks.

First, the target application domains are described in Section 2.1. Second
the EBCS software architecture, closely related to the sCPS, are presented in
Section 2.2. Then, in the Section 2.3 the network technologies suitable for
target systems are described. Following is an explanation of a declarative group
membership description in Section 2.4, while the last Section 2.5 serves as an
overview of suitable simulation frameworks.

2.1 Application Domains

The following text presents state of the art systems that can benefit from network
aware EBCS architecture. Applications in the field of robotic systems, Industry
4.0, and smart cars are described. Later, smart cars are analyzed in detail as those
can be used to generalize problems and solutions common to all the mentioned
fields of interest.

2.1.1 Robotic Systems

In this section possible applications in the domain of robotic systems are described.
As of today many tasks are already handled by various kinds of robots, moreover in
near future the set of such tasks is going to increase. Currently, most of the robots
are still stationary and require no or just simple coordination. But, in future, the
advance of [oT will make the amount of mobile robots requiring complex dynamic
coordination higher. The requirement for complex coordination comes both from
the increasing number of robots that may cooperate and rougher, less predictable
environments these robots are going to be exposed to.

One of the fields that is already gaining interest in coordination of robotic
systems is surveillance. Assuming a request to scout a terrain for intruders of
traces of dangerous chemicals, a group of unmanned vehicles is deployed in the
area. It is not important whenever these are Unmanned Aerial Vehicle (UAV) or
Unmanned Ground Vehicle (UGV) or even submarines. All of these will need to

13



coordinate on scattering the area and collision avoidance. Assuming the terrain is
not known in advance the vehicles will need to perform some sort of Simultaneous
Localization and Mapping (SLAM). Thus a new subarea, that needs to be scanned,
can be discovered during the process of scouting. Also, some of the vehicles can
be temporary, or even permanently, unavailable due to malfunction, maintenance
or necessity to charge their batteries. Due to these facts, the coordination of the
overall operation needs to deal with dynamic and open-ended system.

From the surveillance it is only a small step to the field of search and rescue
operations. Actually, the search and rescue operation can be decomposed into
the search part, which is equivalent to already described surveillance application,
while the rescue part introduces even bigger challenge for dynamic coordination
as new victims can be discovered and status of already known victims can change.
Moreover, the robotic rescuers can break or stuck when dealing with rough terrain
and the human rescue workers can easily become new victims due to accidents or
sudden changes of the environment.

Another field which is going to receive massive help from robotic systems is the
military. Recently, a widespread adoption of various kinds of the UAV have been
seen in the armies of developed countries. This trend is expected to continue and
new kinds of robotic warriors are about to enter the service. Once autonomous
units enter the service the already existent pressure on more agile coordination
of battle operations will even increase. A sign of this is the existence of Battle
Management Language (BML) [12] which is supposed to be processed both by
human warriors and autonomous robotic forces. It is not necessary to argue that
a battle scene is a dynamic environment where even the numbers, locations and
overall status of allied units is hard to predict.

Switching back to the peaceful applications, coordination of robotic vacuum
cleaners in a large household of office building poses also an interesting challenge.
Again this problem encompasses dynamic groups of cleaners and humans that need
to coordinate in order to clean the house effectively and, if possible, not to collide
with both humans and each other. Dynamic coordination introduces possibility
to change both the area to clean, number of cleaning robots and humans at the
runtime. Even though the benefit of this application may not be as significant as
the others, low requirements on safety and reliability of the system make it quite
easy to be implemented.

The vacuum cleaners are just a small step from a full home automation. Even
when the rest of the devices in household are mostly stationary objects, even
these devices can form dynamic groups. For instance security, ventilation and
multimedia systems can pair rooms and humans in order to provide the best
possible service.

One step further from smart household is the general IoT. It is easy to imagine
dynamic groups of devices beyond the household. Actually, interaction in open-
ended system composed of mobile devices heavily relies on dynamic coordination,
unless extensive planning is performed in advance. In this category devices ranging
from fridges to street lamps are expected to form dynamic groups with humans
and other actors in the system in order to serve their purpose efficiently.

Yet another example of a robotic system with necessity for dynamic coordination
is Industry 4.0. Due to its broad impact in the field, Industry 4.0 is discussed
separately in the following Section 2.1.2.

14



2.1.2 Industry 4.0

Called digitized industry, Industry 4.0 or advanced manufacturing, there is an
obvious trend in using robots and other means of automated manufacturing where
possible. Usage of mostly computer controlled hardware brings new opportunities
in manufacturing process design. Among others, this is ability to produce highly
customized products on customer demand and advanced standardization that
enable high predictability in manufacturing process.

With these new abilities also new challenges arise. One of the challenges is the
coordination necessary to maintain safety at a workplace. Current robots present
in industry are mostly static, mounted on pillars made of steel and concrete, as
those sometimes multiple ton weighting devices are used mainly for manipulation,
welding and binding of objects that humans cannot handle due to their excessive
weight or dimensions. Whereas in the future, smaller mobile robots will be deployed
to handle tasks currently performed by humans. These robots will hardly replace
all humans in the factory as some humans are still needed for: (i) supervision; (ii)
tasks that require common sense decisions; (iii) activities so rare that creation
of specialized machine for them does not pay off. Due to the fact that those
humans will need to closely cooperate with robots current safety approaches, such
as complete separation of robots and humans at the workplace, are not applicable.
Instead, the robots and the humans will need to dynamically coordinate on mutual
avoidance in space and time while allowing all workers to operate at workplace
without statically set restrictions. Due to the fact that a collision with robot
can seriously harm or even kill the colliding human, the coordination mechanism
and control processes used to perform the avoidance needs to be reliable with
respect to both failures and hard real-time processing. These two requirements
make dynamic coordination, in a possibly open-ended system, performed on top
of wireless network a very challenging task. Moreover, it is necessary to note that
in the open and dynamic system there are no guarantees on number of workers
entering the factory or accumulating in one place. Thus, the desired system needs
to handle situations where available network bandwidth and processing power on
the nodes cannot handle excessive number of workers occupying particular area
while keeping the same Quality of Service (QoS).

Together with the safety related coordination, it is important to coordinate
workers performing the same task or even coordinate on task assignment to the
workers. Assuming the production of factory is rapidly changing based on current
demand, it is necessary to decompose high level tasks set by customers, allocate
resources to sub-tasks and coordinate workers and resources assigned to particular
task if necessary.

Even when the theory behind planning and scheduling is quite different from
dynamic coordination, it might be beneficial to solve both problems together due
to the fact that once the workers are assigned to a task it is necessary to maintain
the coordination of such group. Otherwise, the dynamic reconfiguration performed
by the planner and the task scheduler needs to be reflected in coordination. Even
when this is technically possible, it would add complexity and possibly break the
clarity of the design.

15



2.1.3 Smart Cars

Fully autonomous self driving cars, or just cars with advanced driving assistance,
able to maintain speed and stick to lane, are often referred as smart cars. This area
contains quite comprehensive set of cases that can be used to motivate research
in the field of dynamic coordination.

First, the utmost important feature of all cars, collision avoidance. Modern,
fully and partially autonomous cars rely on sensors such as LIDAR, Radio Detection
and Ranging (RADAR), depth cameras to build-up virtual map of a surrounding
environment that is later used to avoid collisions with static objects, pedistrians,
and other cars. Even when those senors are, in some ways, more advanced than
human senses and can even build the map in complete darkness the processing
of the data is still not perfect. Actually, those systems are barely able to match
human drivers. Due to this, presence of accidents caused by hard to predict factors
such as broken truck behind the corner, unexpected breaking of preceding car,
or trees that suddenly fell onto the road cannnot be neglicted. Even when the
risk of such events cannot be ruled out, proper communication of such events can
improve the situation a lot. Assuming radio communication links between cars
such as Wireless Access in Vehicular Environments (WAVE) [13], it is possible to
coordinate on rapid breaking and emergency stopping in such a way that the risk
of accident is significantly reduced [14]. Also the cars can share the information
on objects blocking the road and other obstructions in the traffic.

This idea extends from the safety to a general optimization of the traffic.
Assuming the communication among cars described above, the cars can easily
share safety critical information about the obstacles on the road, but also add
information related to traffic density and other traffic related conditions such
as weather and road surface quality. Naturally, this information is about to be
transported with accordingly lower priority than the safety critical data mentioned
above. Availability of such information can be utilized to perform distributed
optimization of traffic in a city or a highway section in order to maximize capacity
of the available roads.

Another field where dynamic coordination is stressed in vehicular systems
is a movement coordination. There are many situation when drivers need to
coordinate in order to drive safely. These situations ranges from mandatory to
informal rules. First, there are infrastructure supported coordination signals such
as traffic lights, traffic signs and horizontal traffic signs. These are followed by
rules not backed by signs such as priority-to-the-right that let drivers coordinate
on crossings where no coordination infrastructure is present. Last, there are
informal rules for coordination, not backed by any law, which are not intended
to enforce safety, but to make traffic more fluent. These coordination rules are
quite many ranging from stalemate resolution at unregulated crossings to favors
to other drivers. An example of such coordination is changing a lane on a highway
so that a car joining the highway proceed without restrictions.

The informal rules are easy to implement using dynamic coordination means im-
plemented on top of necessary data spread by wireless broadcasts. In autonomous
vehicles this approach naturally replaces hand gestures and guessing of intends
on the other human drivers. Implementing this kind of voluntary coordination,
when broad into massive scale, can easily improve traffic situation and reduce
traffic jams. For example cars can form ad-hoc platoon and speed up together

16



at traffic lights while improving throughput of the crossing a lot. Furthermore,
implementation of informal rules doesn’t need to be safety critical in most cases.
For instance, when changing lines in order to let another car join a highway, the
joining car can move into a gap created by car already on highway. The presence
of the gap is guaranteed by on-board sensors of the joining car, thus the safety
does not need to rely on gap negotiation procedure.

Implementing compulsory coordination rules is a bit more chalenging as it
reuqies a safety critical system to be implemented. On the other hand, proper
implementation of dynamic coordination for these situations unlocks potential for
optimization and removes limitations of static coordination means. For instance
classic traffic lights are a rather static mean of coordination. On one hand, these
are simple to implement and quite secure. On the other hand, smart crossing [15]
with dynamic coordination of cars coming from multiple directions can achieve
much higher throughput. Unfortunately also the implementation complexity is
much higher.

Yet another field of applications for dynamic coordination is ad-hoc formation
of platoons. This technique, also called platooning, enables fuel savings due
to reduction of air drag and allows the drivers to take a rest when the car is
part of the platoon. Regarding the dynamic coordination there are actually two
challenges in this field: (i) is to coordinate cars in the platoon in order to maintain
the platoon in operational and safe state. This includes negotiation of braking
capacity, calculation of platoon speed, maintenance of gaps between cars, ordering
cars in the platoon, and coordination in case of emergency breaking events; (ii) is
to coordinate cars that are intending to join the platoon. This includes grouping
of cars sharing the same or similar destination in order to form a new platoon
and choosing the right platoon for lone cars. The main difference between those
challenges are the different conditions for communication. While the challenge (i)
relies mostly on the local low latency communication the challenge (ii) expects
usage of long range communication, possibly the mobile Internet Protocol (IP)
network connection.

Use Cases

Further motivation can be found in the use cases presented in the Chapter 4. The
automotive use cases are discuses in detail including samples of dynamic group
specification and detailed analysis of the problem. The use cases are presented in
two groups.

First, the applications that require mostly local coordination and data sharing
are presented. These include mostly safety critical application ensuring safety of
operation and local coordination of cars in the street that can be handled using
direct broadcast. i.e. precedence negotiation, low level platoon management and
obstacle discovery.

Second, the applications that build on a long range IP network. These include
high level management applications that ensure coordination of potentially large
groups of cars using infrastructure based networks such as Long-Term evolution
(LTE) or 5G. i.e parking place management and platoon building.

These serve to show the general problems that are similar to problems from
the domains mentioned above. In fact, it is not important whenever the group
of cars is being coordinated in the street, or group of robotic vacuum cleaners

17



is coordinated in an office corridor, or even a bunch of mobile manufacturing
machines are coordinated in a factory. In all these use cases the ideas, requirements,
and also the solutions are all almost the same.

2.2 Ensemble Based Component Systems

Ensemble Based Component Systems [10] are class of systems combining compo-
nent design, agent-oriented soft real-time execution, and ensemble-based commu-
nication. These bases give EBCS properties suitable to satisfy demands of the
sCPS.

The system architecture of EBCS is based on the components. As such
EBCS are dynamic systems enabling emergence of the components at runtime.
Components are packages of functionality bound to different entities in the system.
A component contains its internal data and a belief of internal state of the other
components. Each component operate in an isolation and base its actions on its
internal data and a belief of a state of the other components. The interaction
with the other components, based on a belief is described using, a design time
specified, ensembles that feature a dynamic groups of components.

Different EBCS based architectures exists. These include Handling massively
distributed systems with ELaborate ENsemble Architectures (Helena) [16], Service
Component Ensemble Language (SCEL) [11] with Java Run-time Environment
for SCEL Programs (JRESP) [17], and Dependable Emergent Ensembles of Com-
ponents (DEECo) [10].

2.2.1 Dependable Emergent Ensembles of Components

Dependable Emergent Ensembles of Components model [10] is an instance of
the EBCS. It bases on the EBCS and gives components and ensembles concrete
semantics that enable development and deployment of real DEECo based systems.

1 @Component

2 public class ExampleComponent {

3 // Component knowledge definition

4 public String id;

5 public Position position;

6 public State state;

7

8 @Process

9 @PeriodicScheduling (period = 500)

10 public static void exampleProcess (@In("position") ParamHolder<Position> pos) {
11 if (pos.distanceTo (TARGET_POSITION)) {

13 }
14 }

Listing 2.1: Example of JDEECo component and ensemble.

DEECo architecture is based on concepts of a component, knowledge and
ensemble. The component wraps processes that encode business logic of the
system and knowledge that captures the state of the component. The processes
are scheduled periodically or triggered by knowledge change. They can read and
write knowledge as well as execute arbitrary code. The ensemble is a dynamic
group of components described by a membership condition and knowledge exchange

18



function. The condition is periodically evaluated, when it succeeds the knowledge
exchange is executed on top of the knowledge of the ensemble members.

1 @Ensemble

2 (@PeriodicScheduling (period=1000)

3 public class ExampleEnsemble {

4 @Membership

5 public static boolean membership (

6 @In("member.id") String memberId,
7 @In("coord.id") String coordId,

8

@In("member.position") Position memberPos,
9 @In("coord.position") Position coordPos) {
10 return (! memberId.equals(coordId)) && ...

11 }

12

13 @KnowledgeExchange

14 public static void map (@Out ("member.state”) ParamHolder<state> memberState) {
15 memberState.value = State.InEnsemble;

16 }

17}

Listing 2.2: Example of JDEECo ensemble.

The ensemble formation process, that encompass membership evaluation and
initiation of the knowledge exchange can be either centralized or distributed.
Distributed ensemble formation is usually necessary in order to meet requirements
on resilience to hardware failures and real-time guarantees. The nature of the
ensemble membership and knowledge depends on the implementation. The most
feature complete implementation is called JDEECo. Examples of the JDEECo
component and ensemble definition are given in Listing 2.1 and 2.2 respectively.
There are other frameworks that support DEECo components and ensembles
discussed in Chapter 11. The details of two different ways of specifying ensembles
and components with respect to their network properties are described in Chapter 7.

2.3 Network Technologies Used in the Smart
Cyber-Physical Systems

The network, in many cases, a bottleneck of the whole system is discussed in this
section. The relevant network technologies with respect to the envisioned usage
are grouped in two sections. In detail, these deal with (i) long range IP based
networks that feature high throughput and global range; and (ii) mostly wireless
local area networks that provide ad-hoc operation, higher degree of resiliency, but
lack sophisticated infrastructure and therefore offer only limited range. In the
following listing the network protocols and physical network technologies are mixed
together as both provide some sort of connectivity yet the structured systems,
such as IP, forge the services provided by a low level IEEE 802.3 Ethernet, Wi-Fi,
and such into a long range network.

2.3.1 Short Range

Local area network technologies differ from long range networking, represented
by IP network, in range and predictability. In general, the range is limited by
lack of network level structure and advanced routing. Even when some sort of
routing mechanism is present in some cases, it is usually not able to handle global
operation. Typical device in such a network leverage broadcast with limits set by

19



the laws of physics. This mode of operation enables natural spreading of data to
nearby devices with predictable latency. When using the wired media or wireless
in a controlled environment, the latency is predictable enough to provide even a
hard real-time guarantees.

Apart from a bit less common technologies discussed later, a standard network-
ing technologies such as Wi-Fi and IEEE 802.3 Ethernet can be also considered
a short range communication means. These are not specially tailored for usage
in CPS but can be used for fast prototyping due to their general availability and
very high speed that can, in some cases, balance the lack of real-time guarantees.

Current versions of the IEEE 802.3 Ethernet usually operates on twisted
pair cables, and optical fibers. The basic speed of Ethernet is 100MiB/s, but it
slowly moves to default of 1GiB/s. The high performance systems can operate at
10GiB/s or even more when using optical fibers, but common hardware used in
CPS usually does not support that.

Wi-Fi operates in 2.4G H z and 5G'H z band with throughput of 150—300Mbit /s
when IEEE 802.11n radio is used or 433Mbit/s — 1.69Gbit/s when using IEEE
802.11ac radio. Aside from the high throughput the radio band of the Wi-Fi is
heavily used and the connectivity cannot be relied on. Wi-Fi is not so easy to use
when guaranteed delivery is needed in a prototype system. Although interference
with other traffic cannot be prevented in reality, in simulation this limitation is
not present. Moreover, the general spread of the Wi-Fi make its implementation
in simulation frameworks more mature. Thus usage of the Wi-Fi in simulation
can be an alternative to similar, but less supported technologies such as IEEE
802.11p.

IEEE 802.15.4

An IEEE 802.154 is a wireless
link layer technology focusing on low
throughput, short range, low cost, and
low power. It is mostly used in Wire-
less Sensor Network (WSN) and control
networks. Low implementation com-
plexity of the protocol enables usage
in small, embedded, and experimental

devices as the one displayed in Figure Figure 2.1: MRF24J40MA, an IEEE
2.1, Availability of radio broadcasts 802.15.4 transceiver with ZigBEE support
that are received by all devices in range on an extension board called click for a

with almost zero configuration neces- STM32F4 based embedded development
sary makes this technology a good start hoard.

for experiments.
IEEE 802.15.4 stadard [18], defines

multiple physical interfaces operating in multiple bands ranging from 161M H z
to 6GHz. The unlicensed band of 2.4GH z is the one where the most generally
available devices operate. Data rates depend on the frequency band and modu-
lation used. Standard data rates are defined from 19.2Kb/s to 2Mb/s as of the
amendment [19] to the standard. When a beacon source is available, the devices
can operate with a media access method that uses time slots to reduce collisions.

20



On top of IEEE 802.15.4 a ZigBee network can be build. ZigBee adds network
layer with routing and dynamic reconfiguration that supports mobility [20]. A
network can operate in typologies of a star, cluster tree, and mesh. Devices in
a network feature single coordinator, multiple full-function devices with routing
ability, and multiple reduced-function devices without routing capability.

Bluetooth

Bluetooth is a versatile technology offering wireless communication profiles ranging
from virtual serial ports to audio streaming. From the point of view of the local
or even personal area networking the Personal Area Network (PAN) profile is the
most interesting. It uses Bluetooth Network Encapsulation Protocol (BNEP) to
transmit IP packets. This is primary used to share internet connection of a cell
phone with a personal computer. On top of this stack a short ranged IP network
can be build. Moreover standard devices such as smartphones and laptops can
connect to such network in order to monitor possible prototype system using this
technology.

WAVE - IEEE 802.11p, IEEE 1609
WAVE is a technology base on a modi-

fied Wi-Fi radio described by the IEEE
m 802.11p standard. The communication

W ) model, protocol, security and physical

N 5 access are described in the IEEE 1609
standard. As its name suggest WAVE
: focuses on vehicular systems and in-

Y., = telligent t tati t It
(. elligent transportation systems. Its
purpose is to provide communication

among OBUs, present in moving vehi-
cles, and between a vehicle and a RSUs,
forming a road side infrastructure.

The physical layer of the TEEE

802.11p differs from the Wi-Fi (IEEE

802.11a) in used frequency band and modulation. IEEE 802.11p does suffer from

much less interference thanks to the usage of a licensed band and has a bit higher
throughput due to more efficient modulation.

Figure 2.2: WAVE deployment, two cars
with On-Board Units (OBUs) and a Road
Side Unit (RSU).

According to [21], dealing with performance of mentioned protocols, the radio
frequency range of 5.885GHz to 5.925GH z is divided into 7 channels serving
different purposes and having different transmit powers and expected range. The
applications running on top of these channels encompass short-range safety en-
forcement, long-range safety enforcement, and traffic optimization. Four access
categories are defined for each channel. Each of them defines different priority.
Packets belonging to a particular access category are kept in a First In First Out
(FIFO) queue while packets from different queues use different back-off time when
accessing the media.

21



Mobile ad-hoc network

A Mobile ad-hoc network (MANET) is a general term used to name an infras-
tructure-less network created ad-hoc by mobile and possibly wireless nodes. The
typical node in a MANET employs a wireless radio technology in order to establish
links to its neighbors. On top of the local links a self-healing, self-configuring
routing algorithm is usually deployed. A set of nodes deployed in a MANET is
visualized in Figure 2.3. Usage of particular link-layer technology and routing
algorithm depends on expected mobility of the nodes, throughput requirements
and other application specific constraints. In a sense, most of the local area
networks mentioned in this section can be called MANETS.

Applications of MANET are many [22], [23]. Often, specific network technology
and routing algorithm has to be used in particular domain. Sometimes MANETS
are called differently in particular field. i.e. MANETS in vehicular domain are
called Vehicular ad-hoc networks (VANETS).

) (« .

Figure 2.3: Nodes deployed in a MANET. Red nodes are auto-configured as
routers.

Distributed Congestion Control

Apart from, strictly speaking, routing protocols there are protocols used for network
layer management that is also very important when building the custom network.
One of these is Distributed congestion control. As described for usage in vehicular
networks [24] it is a protocol designed to keep media usage below a specified
threshold. In particular this is important for vehicular systems to exchange
periodic messages describing position and status of the cars to their neighbors.
As the messages are important to maintina a safety of operation a Decentralized
congestion control mechanism [25] is deployed in order to maintain some channel
capacity for emergency messages. The mechanism relies on controlling transmission
power, bit-rate, sensitivity, packet rate and transmission access control.

2.3.2 Long Range

Long range communication, in the context of the sCPS, provides reliable routing
across a larger area that cannot be serviced by the short range communication
means directly. In a sense such connectivity is provided generally by any technology

22



that supports IP and connects to the Internet. This way almost all the sort range
technologies can be used to distribute Internet connection and thus enable long
range communication. This section lists some of the technologies that provide
some sort of structured network on their own. These encompass mobile broadband
that enables internet connection, but also introduces structured network that can
offer some of the long range communication features on its own.

4G - LTE

Long-Term evolution is a high speed communication standard intended to be used
with mobile devices. It roughly matches goals set for the 4™ generation of mobile
networks. The 4G is the most advanced mobile standard deployed, but it is set to
be replaced by 5G in a near future.

Compared to the 3' generation of mobile networks the LTE differs in its core
network which is IP based and no longer relies on packet or circuit switching.
The new design simplifies the network, provides some extra QoS guarantees, and
enables low latency access.

The physical interface can handle fast moving clients. It uses wide range of
frequencies and bandwidths that differ country to country. Also the media access
method differs based on the region. In some regions Frequency Division Duplexing
(FDD) is used, while in the other ones the Time Division Duplexing (TDD) is
deployed. In general the bandwidths are in range 1 — 20 Mhz while the expected
throughput depends on the bandwidth and link quality. According to the [26],
the maximum bandwidth is considered 300 Mibit/s and 75 Mibit/s for download
and upload respectively. The lowest expected latency is around 5 ms.

5G

A 5G is a new communication standard for mobile networks. The most interesting
features, with respect to the sCPS, are a very low latency, support for many simul-
taneous connections, device to device communication, and low power consumption.
Currently there are some experimental networks deployed and some of the bands
to be used are already assigned by the regulators, but the technology has not yet
made it to the production deployment.

The 5G, as it is designed, represents a significant change compared to the
current 4G networks. It promises very low latency in communication at the level
of 1 ms. The throughput of the network should be as high as 1 Gibit/s, while
the number of connected devices is supposed to increase significantly as many
different sensors and [oT devices will connect. Many of the connected devices are
expected to maintain an active connection. Apart from the device to infrastructure
connections, it will be also possible to create device to device channels that will
further reduce latency and throughput of the communication when concidering
devices engaged in a direct communication.

The aforementioned challenges described above are about to be tackled using
multiple innovative techniques described in [8]. The key is to increase spectral
efficiency of the radio. The 5G radio will use spatial multiplexing, Multiple Input
Multiple Output (MIMO), with tenths of simultaneous channels. The range of
the cells in the network will be limited in dense areas where many femptocells
or picocells, utilizing short range communication, will be deployed in order to

23



maximize throughput. The network will use more advanced modulation that will
enable higher bit rate in low noise environments. Finally new frequency bands
will be introduced. The traditional mobile frequency bands will be fully utilized
and some new frequencies around 30 GHz, offering extremely wide bands, will be
used to boost short range communication.

2.4 Declarative Ensemble Specification

One of the ways of articulating ensemble definition is to declaratively prescribe the
ensemble structure. An Ensemble Definition Language (EDL) is used to describe
an ensemble declaratively as described in [27]. An example of EDL usage is
displayed in Listing 2.3. The code shows simple leader-follower scenario with cars.
The group specification, captured in EDL, is compiled into a Satisfiability Modulo
Theories (SMT) problem and, at runtime, a SMT solver is used to group set of
available components into ensembles. The approach described in [28] and [27] is
well suited for centralized ensemble formation in a small group of components
where the execution time of the SMT solver is not a limiting factor.

1 package Demo
2 data contract Car
3 canLead: bool

4 autonomous: bool
5 posX : int

6 posY : int

7 goX: int

8 goY: int

9 end

10
11 ensemble LeaderFollower

12 id parking : Car

13 membership

14 roles

15 leader : Car

16 follower: Car

17 constraints

18 constraint leader.canlead or follower.autonomous
19 fitness - sum distance (leader.posX, leader.posY, follower.posX, follower.posY)
20 knowledge exchange

21 follower.goX = leader.posX

22 follower.goY = leader.posY

Listing 2.3: Example of system specification using an EDL.

2.5 Simulation Frameworks

2.5.1 ROS

A Robot Operating System (ROS) is a set of libraries and tools that help developers
to design, deploy and monitor robotic applications. Despite its name the ROS
is not an alternative operating system in sense of a new kernel or a new Linux
distribution. It is rather a collection of user-space tools running on top of a
standard Linux distributions.

The ROS architecture is based on passing messages between nodes using the
publish-subscribe model. The runtime provides a network aware registry of topics
while the nodes, running as separate processes, subscribe to the topics and post
new messages. The robot controller consists of multiple nodes that communicate

24



through the message passing. The nodes periodically publish their state and react
to state changes from nodes of interest. In order to simplify deployment of nodes it
is possible to define so called launch files that capture structure of the controller in
XML. An example of a launch file that instantiates a Turtlebot controller is giver
in Listing 2.4. The nodes initialized using the exemplified launch file encompass
physical model of the robot necessary for visualization, movement related nodes,
nodes forming navigation stack of the robot, and a node implementing Adaptive
Monte-Carlo Localization (AMCL).

The message based interaction between nodes cab be exemplified on the
interaction between wheel node and movement node. A node in charge of the
wheels of the robot periodically send a message containing current state of the
odometer. The movement controller node receives messages from wheel odometer
topic, and messages from another node in charge of navigation. Based on the
messages received the movement node sends messages to the wheels control node
containing the desired state of the odometer.

The publish subscribe mechanism with periodic messages make the coupling
between modules low. Moreover, the API is non-blocking thus the system can
operate in a near real-time manner. The full real-time is not supported by the
mainstream implementation, but custom proprietary implementations that support
real-time are said to exist.

The ROS installation comes with many nodes implementing various function-
ality. Actually it is possible to put together a robot controller just by composition
of the existing nodes. Also, many message types are already defined that cover
most standard and even some obscure situations. As the community is encouraged
to submit their custom message types described in a Domain Specific language
(DSL) to the central repository the compatibility of different nodes is very high.
When it comes to the implementation of a custom node the ROS offers bindings
to C++, Python and Java.

The ROS comes with some graphical tools. The most interesting one is
probably ROSViz that enable visualization of the robot including its surroundings.
In particular the tool can be configured to display the model of the robot in
3D, positions of all its components, data from the sensors including LIDAR and
depthcamera, environment map, output of the path planner, particles used by
localization node, and many more different types of messages present in the system.

1 <launch>

2 <arg name="name"/>

3 <arg name="initial_ pose_x" default="2.0"/>

4 <arg name="initial_ pose_y" default="2.0"/>

5 <arg name="initial pose_a" default="0.0"/>

6

7 <group ns="S (arg_name) ">

8 <param name="tf prefix" value="S$ (arg_name)"/>

9 <remap from="map" to="/map"/>

10

11 <!-- Robot Model —-—>

12 <include file="\S$(find turtlebot_bringup)/launch/includes/robot.launch.xml">

13 <arg name="base" value="kobuki" />

14 <arg name="stacks" value="hexagons" />

15 <arg name="3d_sensor" value="asus_xtion_pro" />

16 </include>

17 <node name="joint state publisher" pkg="joint state publisher" type="
joint_state publisher'">

18 <param name="use_gui" value="false"/>

19 </node>

20

25



21 <!-- Move —-—>

22 <node pkg="move base" type="move base" respawn="false" name="move_base'">
23 <rosparam file="params/local_ costmap_params.yaml" command="load" />

24 <rosparam file="params/global_ costmap_params.yaml" command="load" />

25 <rosparam file="params/dwa_local_ planner_ params.yaml" command="load" />
26 <rosparam file="params/move_base_params.yaml" command="load" />

27 <rosparam file='"params/global_planner_params.yaml" command="load" />

28 <rosparam file="params/navfn _global_planner params.yaml" command="load" />
29 <param name="global_ costmap/global_frame" value="/map"/>

30 <param name="global costmap/robot_base_frame" value="/$S (arg_name)/base"/>
31 <param name="local_ costmap/global_frame" value="\S$ (arg_name)/odom"/>

32 <param name="local_ costmap/robot_base_frame" value="S (arg_name)/base"/>
33 <param name="DWAPlannerROS/global_frame_ id" value="/map"/>

34 <remap from="scan" to="base_scan"/>

35 </node>

36

37 <!—-— AMCL -—>

38 <node pkg="amcl" type="amcl" name="amcl">

39 <param name="use_map_topic" value="true"/>

40 <param name="odom_ frame_ id" value="/$ (arg_name)/odom"/>

41 <param name="base_ frame_id" value="/$ (arg_name)/base_link"/>

42 <param name="global frame id" value="/map"/>

43 <param name="initial pose_x" value="$ (arg_initial pose_x)"/>

44 <param name="initial pose_y" value="S (arg_initial pose_y)"/>

45 <param name="initial pose_a" value="$ (arg_initial_ pose_a)"/>

46 <remap from="scan" to="base_scan"/>

47 </node>

48 </group>
49 </launch>

Listing 2.4: A ROS launch script that launches a Turtlebot controller. The
controller encompasses robot model, movement controller, path planner, and

AMCL.

2.5.2 Stage

Stage! is a simple simulator of multiple robots in a 2D environment. If offers
simulation of a basic robot movement dynamics and sensor readings for odometer
and laser scanner. The simulated environment is a maze provided to the simulator
in a form of a image. The simulator uses interface called Player to interface with
the robot controller logic. There are ROS nodes that integrate with the Stage and
Player in such a way that the robot controller logic can be implemented using
ROS and the Stage provides the environment simulation.

The Stage simulator is rather old and simple, but still it can offer very good
performance in cases where 3D simulation with advanced dynamics is not necessary.
It is possible to simulate tenths or even hundreds of robots on a laptop computer.

2.5.3 Gazebo

Gazebo? is a modern robot simulator that offers many advanced features. Com-
pared to the Stage it offers simulation of a 3D environment including many physical
interactions and dynamics. It can simulate variety of sensors and different robots
using provided sensor and robot databases.

The simulation of the robot takes in account the the physics of the robot and

nttp://playerstage.sourceforge.net
’http://gazebosim.org

26


http://playerstage.sourceforge.net
http://gazebosim.org

uses OpenDE?, Bullet?, Simbody®, or DART® to simulate the dynamics of the
robot. The simulation of the sensors includes noise and offers plugins that can
implement new sensors. Gazebo also integrates with ROS so that it is possible to
deploy a ROS based robot controller connected to the simulated robot.

The Gazebo simulator is much more advanced than the Stage one, but the
advance comes at the cost of performance. Fortunately, it is possible to run the
simulation in the cloud or on a dedicated server and access the simulated robots
via the network.

2.5.4 MATSim

The Multi-Agent Transport Simulation (MATSim)” is a traffic simulator focusing
on a large scale traffic simulations. It simulates movements of cars on a graph
consisting of nodes representing intersections and edges representing roads. The
MATSim is a discrete event simulator while the core of the simulation are events
related to car entering and car leaving particular edge. On one hand, this simplifi-
cation makes an exact position of a car within an edge an unknown. On the other
hand this enables simulation of a very large systems consisting of thousands of
cars covering whole cities.

One of the downsides of the MATSim is the assumption that the path of
a car would not change. When dealing with local scope simulation of car to
car interaction, sometimes, it is necessary to reroute a car or change its goal.
Unfortunately the MATSim does not handle this well every time. Lack of stability
when changing car paths and lack of control over car at the edge level makes
MATSim a bit less usable for small scale simulations focusing on a precision of
movement in lanes.

The MATSim is quite easy to setup using Maven artifact. In order to run
the simulation a configuration file, exemplified in Listing 2.5 and a road network
graph is needed. The OpenStreetMap can be used to obtain realistic data that
can be easily converted to form such a graph.

1 <config>

2 <module name="network'">

3 <param name="inputNetworkFile" value="input/prague.xml" />
4 </module>

5 <module name="controler">

6 <param name="writeEventsInterval" value="1000" />

7 <param name="writePlansInterval" value="1000" />

8 <param name="eventsFileFormat" value="xml" />

9 <param name="outputDirectory" value="matsim"/>

10 <param name="firstIteration” value="0" />
11 <param name="lastIteration" value="0" />
12 <param name="mobsim" value="gsim" />

13 </module>
14 <module name="gsim" >

15 <param name="startTime" wvalue="00:00:00" />

16 <param name="endTime" value="00:10:00" />

17 <param name="flowCapacityFactor" value="1.00" />

18 <param name="storageCapacityFactor" value="1.00" />
19 <param name="numberOfThreads" value="1" />

20 <param name="snapshotperiod” value="00:00:01"/>

Shttp://opende.sourceforge.net
4nttp://bulletphysics.org
Shttps://simtk.org/projects/simbody
Shttp://dartsim.github.io
"http://www.matsim.org

27


http://opende.sourceforge.net
http://bulletphysics.org
https://simtk.org/projects/simbody
http://dartsim.github.io
http://www.matsim.org

21 <param name="timeStepSize" value="00:00:0.2" />
22 <param name="trafficDynamics" value="queue" />
23 </module>

24 </config>

Listing 2.5: Example of a MATSim configuration

2.5.5 SUMO

The Simulation of Urban MObility (SUMO)® [29] is traffic a simulator focusing on
a microscopic scale traffic interactions. Similarly to MATSim it uses a graph or
roads and intersections as an input of the simulation, but the edges are detailed
down to the level of lanes and intersection segments. The execution model of
SUMO is continuous, thus the car to car interaction is simulated while taking car
acceleration and break capacity into account. Particular car types can be defined
and used in the simulation as seen in the example given in Listing 2.6. Due to the
continuous mode, also the exact position of every car is available at any moment.

1 <routes>
2 <vType id="citigo" accel="2.14" decel="4.23" sigma="0.5" length="3.56" minGap="
2.5" maxSpeed="13.88" color="0,0,1" guiShape="passenger"/>

3

4 <flow id="chotkova" type="citigo" from="8135" to="16234" probability="0.2" />
5 <flow id="vitezna" type="citigo" to="8135" from="16234" probability="0.2" />
6 <flow id="uvoz" type="citigo" to="25178" from="21357" probability="0.2" />

7 <flow id="vlasska" type="citigo" from="27020" to="5178" probability="0.06" />
8 </routes>

Listing 2.6: Example of a SUMO car flow specification. Note details of a car
type specification.

The nature of the simulator enables control of a simulated vehicles without
interfering with the simulator logic. The SUMO implements Traffic Control
Interface (TraCl) that enables on-line interaction with the simulation using a
Transmission Control Protocol (TCP) connection to the simulation server. The
precision of the simulation comes at the cost of higher demand on the computation
power compared to the MATSim. Regarding the scenarios necessary evaluate
sCPS this limitation is not a serious problem.

In order to run SUMO simulation, it is necessary to have a graph representing
a street network, SUMO configuration, and a description of car flows. The street
graph is a large XML file that can be generated using provided tools from data
extracted from the OpenStreetMap. The SUMO configuration file is exemplified
in Listing 2.7 and the car flow description is exemplified in Listing 2.6.

<configuration>
<input>
<net-file value="prague.net.xml"/>
<route-files value="prague.rou.xml"/>
<additional-files value="prague.poly.xml"/>
</input>
<time>
<begin value="0"/>
<end value="100000"/>
<step-length value="0.1"/>
</time>
<gui_only>
<start value="true"/>
</gui_only>

© W N OAWN R

R i
» W N R O

8http://www.sumo.dlr.de

28


http://www.sumo.dlr.de

15 </configuration>

Listing 2.7: Example of a SUMO configuration

2.5.6 OMNeT++

OMNeT++ is a discrete event network simulator written in C++. Its modular
design enables easy composition of different modules, implementing parts of
the virtual network infrastructure and simulated application, into a complex
simulation. OMNeT++ uses NED language, exemplified in Listing 2.8, to define
modules the simulation consists of. Also NED language is used to bind multiple
modules into a network being simulated. Modules, the basic components of the
OMNeT++ simulation are declared using the NED and defined by C++ classes.
The modules exchange messages some of which simulate packets being delivered.
The messages representing packets are subject to packet loss, congestion, and
interference simulated by various modules. Each module can describe parameters
and gates (connectors) to the other modules that can be set by the NED or
specified in the simulation configuration file. The OMNeT++ offers very little
functionality on its own. The true power of it comes with libraries that provide
implementation of different network types.

1 package cz.cuni.d3s.parkingplacescanning.modules.application;
2 import org.car2x.veins.modules.application.ieee8021lp.BaseWaveApplLayer;
3

4 simple ParkingPlaceScanningApp

5 |

6 @class (ParkingPlaceScanningApp) ;
7 @display ("i=block/app2") ;

8

9 gates:

10 output toDecisionMaker;

11 input fromDecisionMaker;

12}

Listing 2.8: Example of a simple OMNeT++ module description in a DSL

At runtime the OMNeT++ offers multiple user interfaces that encompass a
command line interface suitable for batch processing of the simulations and a
graphical user interface suitable for debugging and detailed packet inspection. The
graphical user interface used to be based on the Tcl/Tk?, but the latest version
offers also Qt'° based version.

2.5.7 INET

INET! framework is an OMNeT++ extension that implements the most common
network technologies. It offers support for basic wired and wireless physical layers,
as well as most common link layer and network layer protocols.

As of the INET version 3.4.0, according to the modules defined in the source
code, the following are supported:

Radio interfaces « JEEE 802.15.4

https://www.tcl.tk
Onttps://www.qgt.io
Hhttps://inet.omnetpp.org

29


https://www.tcl.tk
https://www.qt.io
https://inet.omnetpp.org

« IEEE 802.11 o Tunnel interface (tun)

Link layer protocols
o IEEE 802.3 Ethernet

Network layer protocols

. IEEE 802.15.4 + ARP
« IEEE 802.11 « ICMP
« IEEE 802.11d

o IPv4
o Point-to-Point tunnels

o [Pv6

» Berkeley MAC (B-MAC)

o Lightweight Medium Access Pro- o Probabilistic broadcast

tocol for Wireless Sensor Networks
(L-MAC) « WiseRoute

2.5.8 Veins

Veins'?[30] in an OMNeT++ extension that provides precise simulation of the car
to car communication. It employs models of the low level network that enable
accurate simulation of interference and shadowing by objects. It also provides
extension to the OMNeT++ graphical interface that shows current position of
cars, packets, and static obstacles. A screenshot of the Grahical User Interface
(GUI) is displayed in Figure 2.4. The simulation of the car movement is provided
by SUMO, thus the road network can be generated from the OpenStreetMap
data. The OpenStreetMap data can also be used to define static obstacles based
on building polygons. Thanks to this compatibility the scenario setup is quite a
simple task.

Veins LTE'[31] combines original Veins project with another OMNeT++
extension called SIMUlte!*. Using Veins LTE it is possible to combine car to car
communication with LTE mobile broadband connections in one simulation. Thus
simulation of heterogeneous systems combining low latency car to car communica-
tion links with long range mobile broadband connections is possible as depicted
in the screenshot provided as Figure 2.4.

Phttp://veins.car2x.org
Bhnttp://veins—-1lte.car2x.org
Mhttp://simulte.com

30


http://veins.car2x.org
http://veins-lte.car2x.org
http://simulte.com

Figure 2.4: An example of a graphical output of the Veins simulation. Cars
cooperate using LTE connection in the streets of the Lesser Town of Prague. Red
rectangles with blue arrow represent cars and their direction of movement. Yellow
beams represent ongoing wireless transmission.

31



32



CHAPTER 3

Goals

3.1 Challenges

This section describes technical and design challenges following from motivation
examples and use cases described earlier in the text. It is necessary to mention
that most of these challenges are easy to solve in a centralized system with a good
network connection to all its parts. Unfortunately, motivation examples given
above are supposed to work in a quite different environment. Open-ended, dynamic
systems with loose, mostly wireless, connections and unpredictable number of
actors, which can fail at any moment, represent the biggest challenge that needs to
be addressed. Related challenges fall into four fields described below. In particular,
these are: (i) challenges related to dynamic formation of a group of entities on top
of which the coordination and data sharing shall be executed; (ii) data exchange
performed on top of a dynamic group while using unreliable communication media;
(iii) coordination of loosely connected entities; and (iv) the challenge of experiment
design and evaluation.

3.1.1 Membership Decision

When dealing with dynamic coordination and data sharing in distributed systems,
the basic question is how to define a group of entities that is supposed to cooperate
or share the data. The options are many, for instance it is possible to statically
define a table containing identifiers of entities that are supposed to be in a
particular group. That would be practical from the implementation point of view,
but almost useless in a dynamic system where new entitles in need of coordination
can emerge at any moment. It is much more practical to describe a membership
condition for the group and than check whenever the condition is met. i.e that
two robots coordinate when they are close, if they have the same color, or posses
tools necessary to perform a requested operation.

This approach expects that some information about the entities is already
present in the system. i.e. when the condition is based on a mutual distance of
the robots, then the system needs to share the information containing the location
of all the robots in order to evaluate the condition. In the case of a centralized
system, this can be implemented by sending such data to a well chosen central
server which evaluates the condition. Due to network latency, low throughput,
and reliability constraints it might be necessary to adopt a distributed operation

33



scheme, where the condition is evaluated on multiple cooperating nodes. In such a
case a proper dissemination of data necessary to evaluate the condition is required.

Such requirement on data propagation brings an interesting challenge. As the
number of entities in the system is open, the number of nodes that needs to have
data necessary for membership decision of every other node may grow beyond
manageable limits. In fact it is impossible to share the information everywhere
in any non trivial system. Instead, it is necessary to find a good approximation
of the membership condition and propagate information on particular entity in
the system only where necessary. For instance, if the condition describes pairs
with distance less than threshold, then it makes no sense to propagate positions
of entities further than the threshold distance is. Even though it seems simple in
the exemplified case, a more general or even completely universal approach is a
significant challenge.

Another challenge is the quality of the resulting coordination of data sharing
groups. As the propagation of the data necessary to evaluate membership is
limited, some groups are much easier to manage than others. Regarding the
distance example, the group that has a condition of mutual spatial distance is
much easier to manage than a group the requires its members to be scattered
across the largest area possible. The challenge is to overcome those problems or
at last identify conditions that cannot be used due to data propagation limits.

These limits are caused by a lack of connectivity that tempers with ensemble
formation. This is even a bigger issue when dealing with coordination that requires
some time to be performed. The system in question needs not only to evaluate
the condition, but also to check whenever the condition necessary to maintain the
coordination effort is met. Moreover, a deficiency in a connectivity of the entities
that are about to be coordinated can influence the coordination quality or make
the effort much less efficient. In such situations it may be necessary to brake the
already established group and form a new one that exhibit better functionality.
Detection and resolution of such conditions is the final challenge in membership
decision.

3.1.2 Data Exchange in a Loosely Connected Ensemble

Once the group of cooperating entities is established it is necessary to perform
the coordination or the data exchange among the group members. Considering
the data exchange, again the network is the source of problems. If a wireless
connection is considered a consistency in data delivery cannot be guaranteed.
Therefore hence, the system needs to deal with lost packets and lack of bandwidth.
The membership decision process, as described in Section 3.1.1, is supposed to
break the data exchange group that is malfunctioning, but until this happens the
data exchange mechanism is required to continue and optimize itself for the new
network conditions.

On one hand, when dealing with centralized data exchange, where data are first
transported to a central node that does all the processing, the consistency is not
an issue. On the other hand, once the data resulting from centralized data sharing
are used on distributed nodes, or when data exchange is performed completely
as a distributed operation, then the consistency is a significant challenge. Even
when consistency is not required every time, most of the motivating examples of

34



this thesis require at last some degree of data exchange consistency.

3.1.3 In Ensemble Coordination with Packet Loss

The same problem as the one in data exchange consistency arises in coordination.
Again, when considering action coordination using an unreliable media, then a
packet loss is a significant issue. The challenge is to design an architecture of the
system in such a way that the resulting system is resilient to network problems or
at last it exhibits a gradual tear-down where possible.

Basically, there are two paths to follow. First is to find a suitable way how
to centralize the coordination. Once the coordination decisions are made on one
node it is possible to enforce consistency.

Second is to maintain fully distributed operation but employ proper algorithms
to ensure consistency. Then the proper choice of abstraction is critical at architec-
ture level so that the abstractions provide enough details for algorithms to work,
but hide all the unnecessary complexity from the system designer.

3.1.4 System Evaluation Challenges

When dealing with a open-ended distributed and dynamic systems, such as those
described in the motivation, it is necessary to develop a proper evaluation strategy.
Dealing with the systems that are yet about to be implemented, it is almost
impossible to judge whenever the usage of the particular architecture in reality
was a success or failure. Even in cases where that would be possible, there is
usually no similar legacy system to compere to, as the technology enabling creation
of such systems emerged recently.

Natural option is to implement a pilot that would show benefits of the system
in a small scale, but the true nature of those systems unfolds only if deployed in
large numbers. In example, the true nature of a distributed open-ended system
unfolds when a large number of entities join the system and possibly overload the
network or expose too much data so that a coordinator of a group cooperation is
congested. This condition is never met when the system, build in a laboratory
conditions, encompasses only a pair of robots. Due to this a challenge arises
to implement a suitable simulation of the system that enable evaluation of the
architectural and other approaches taken during the system design with respect
to a massive scale deployment.

A related challenge is to properly simulate the environment. Actually, the
unpredictability and the complexity of the environment is the limiting factor
of the system. Once network latency is not simulated or effects of physics are
omitted, the system that would break in the reality can function flawlessly in the
simulation. This issue needs to be addressed with detailed enough simulation of
both the networking and the physics.

3.2 Problem Statement

With regard to the motivation described in Chapter 1 one of the unanswered
challenges is applicability of the current architectural approaches to the sCPS
with respect to a realistic network layer. In particular, the systematic solution

35



is necessary for dealing with dynamic groups formed on top of unreliable and
low capacity network such as Wi-Fi or ZigBee. More problems arise when the
application requires real-time reaction times or distributed operation is required.
In the latter case, when the dynamic group cannot rely on centralized components,
the system architecture needs to let the system tailor itself towards the new
properties of the network, overall system state, and mutual positions of the group
members in order to provide sustainable performance and reliability.

When focusing on the EBCS and, in particular, the DEECo, the architectures
currently used to capture sCPS, the main shortcoming is a lack of optimization
towards the network properties such as routing, latency and range. While these
architectures provide very nice abstractions for systems with good connectivity
the abstractions need to be tailored towards the system that rely on an ad-hoc
networking and a distributed operation. Moreover the challenge of developing
architectures tailored towards complex networks requires also capability to properly
evaluate the resulting design. This is even more challenging with respect to the
fact that the system operation depends on the number of components, while
the real systems can encompass very large numbers of components (automotive,
robot coordination). This brings necessity to properly simulate both the target
system and the network used to run it. The following paragraphs summarize the
challenges in more detailed and structured way.

C1: Data propagation limits. Limiting data propagation is necessary to maintain
reasonable network traffic and requires to introduce an ability to decide where to
spread the data and how to do it with respect to the properties of the underlying
network. This includes choice of a proper network structure and some sort of
approximation of the membership function used to decide where the data are
needed to establish ensembles. In particular, it is important to decide which
routing protocols will be used to spread the data.

C2: Networking in sCPS. With respect to the requirements of the sCPS it
is important to decide on network layer(s) used to propagate the knowledge
necessary to decide ensemble membership and perform in-ensemble coordination
or knowledge sharing. Also it is important to decide what technologies will be
used to share the data, ranging from distributed knowledge sharing to centralized
tupple-spaces. The whole approach needs to take in account realistic properties
of the network such as a latency, congestion, and throughput.

C3: Ensemble quality with respect to limited data. It is important to evaluate
quality of ensembles with respect to the underlying networking technology and
their membership function. The properties of realistic network such as limited
throughput, latency and packet loss may fail attempts to establish the ensemble,
due to limited propagation of the knowledge, or make ensemble decision process
inconsistent due to delays and losses in distributed ensemble formation.

C4: In ensemble coordination and knowledge sharing consistency. Similar to
consistency of membership condition, defined in Challenge C3, the consistency
of knowledge exchange and, in particular, in-ensemble coordination is a great

36



challenge as the distributed operation may be enforced by requirements on real-
time processing and system resiliency.

C5:  Proper evaluation of sCPS design. Evaluation of the architectures used
design dynamic and open-ended systems is a challenging task. It is necessary
to ensure that the desired system work not only in abstract simulation of its
interaction, but also to make the testing conditions as much realistic as possible
with respect to the deployment scale and realistic simulation of the environment.
Moreover, it is necessary to introduce tools, easy to use by other researches, that
enable further integration of developed technologies and approaches.

3.3 Research Questions and Goals

With respect to the architectures described earlier in the text, namely EBCS
and, in particular, DEECo based systems, this thesis asks the following research
questions and sets goals in order to address the challenges defined in Section 3.2.

Q1: How can data propagation in sCPS be limited in such a way that
network congestion is prevented and the system maintains high utility?

G1: Smart limits in knowledge propagation. Analyse knowledge propagation
requirements in domain of sSCPS and rise related properties of the network to
architectural level in order capture those requirement at design time. This addresses
challenge C1.

Q2: What are the effects of network limitations on distributed ensem-
ble formation? How can the design of ensemble formation be changed
in order to avoid negative effects?

G2: Distributed ensemble decision. Design methods of ensemble formation in
distributed environment with respect to realistic network properties and require-
ments native to the target domain of sCPS such as reaction time, resiliency and
dynamicity. This addresses challenges C2, C3, and C4.

Q3: How can the design of sCPS be evaluated in terms of network
awareness?

G3: Smart Cyber-Physical Systems test-bed. Deliver an easy to use test-bed for
experimenting with sCPS systems that can be reused by other researches in the
field. The test-bed will include precise simulation of the network and physical
environment so that the algorithms can be tuned in it and later used in reality
with just a little effort. This addresses challenge C5.

37



3.4 Contributions

The work presented in this thesis can be divided into several areas that loosely
match goals described earlier in the text. These areas cover work on DEECo
architecture, experiments with simulations, and creation of a test-bed.

First, the data propagation was tackled in terms of replacing the limited
propagation of knowledge data with a new concept of groupers that enable smarter
coordination over long distances. This work is presented in [1]. The data propa-
gation work was also addressed in [4] that accesses security and trust in DEECo
based system and focuses on data propagation safety. The work on low level
networking was concluded by creation of CDEECo++ framework and publishing
of a paper on application in safety critical systems [5].

Later the concept of intelligent ensembles [28] was considered when dealing
with network stack. The data propagation and ensemble formation challenges
arising from more structured intelligent ensembles were tackled in a work published
in [7].

Finally in [2] the QoS and safety was considered in a EBCS based Industry
4.0 system and performance modeling in the EBCS was briefly discussed in [3].

Reviewed Articles

[1] M. Kit, F. Plasil, V. Matena, T. Bures, and O. Kovac, “Employing domain
knowledge for optimizing component communication,” in Proceedings of
the 18th International ACM SIGSOFT Symposium on Component-Based
Software Engineering, ser. CBSE 15, Montréal, QC, Canada: ACM, 2015,
pp- 5964, I1SBN: 978-1-4503-3471-6. DOoI: 10.1145/2737166.2737172.
[Online]. Available: http://doi.acm.org/10.1145/2737166.
2737172.

[2] V. Matena, A. Masrur, and T. Bures, “An ensemble-based approach for
scalable QoS in highly dynamic CPS,” in 2017 43rd Euromicro Conference
on Software Engineering and Advanced Applications (SEAA), Aug. 2017,
pp. 234-238, ISBN: 978-1-5386-2141-7. DOI: 10.1109/SEAA.2017.62.
[Online]. Available: https://dx.doi.org/10.1109/SEAA.2017.
62.

[3] T. Bures, V. Matena, R. Mirandola, L. Pagliari, and C. Trubiani, “Perfor-
mance modelling of smart cyber-physical systems,” in Companion of the
2018 ACM/SPEC International Conference on Performance Engineering,
ser. ICPE 18, Berlin, Germany: ACM, 2018, pp. 37—40, 1SBN: 978-1-
4503-5629-9. DOI: 10.1145/3185768.3186306. [Online]. Available:
http://doi.acm.org/10.1145/3185768.3186306.

[4] O. Stumpf, T. Bure§, and V. Maténa, “Security and trust in data sharing
smart cyber-physical systems,” in Proceedings of the 2015 European Con-
ference on Software Architecture Workshops, ser. ECSAW ’15, Dubrovnik,
Cavtat, Croatia: ACM, 2015, 18:1-18:4, 1SBN: 978-1-4503-3393-1. DOI:
10.1145/2797433.2797451. [Online]. Available: http://doi.
acm.org/10.1145/2797433.2797451.

38


https://doi.org/10.1145/2737166.2737172
http://doi.acm.org/10.1145/2737166.2737172
http://doi.acm.org/10.1145/2737166.2737172
https://doi.org/10.1109/SEAA.2017.62
https://dx.doi.org/10.1109/SEAA.2017.62
https://dx.doi.org/10.1109/SEAA.2017.62
https://doi.org/10.1145/3185768.3186306
http://doi.acm.org/10.1145/3185768.3186306
https://doi.org/10.1145/2797433.2797451
http://doi.acm.org/10.1145/2797433.2797451
http://doi.acm.org/10.1145/2797433.2797451

[5] A. Masrur, M. Kit, V. Maténa, T. Bures, and W. Hardt, “Component-based
design of cyber-physical applications with safety-critical requirements,”
Microprocessors and Microsystems, vol. 42, pp. 70-86, 2016, 1SSN: 0141-
9331. DOI: 10.1016/j.micpro.2016.01.007. [Online]. Available:
http://www. sciencedirect .com/science/article/pii/
S0141933116000107,

Impact Factor: 1.025, CiteScore: 1.11, SCImago Journal Rank: 0.238

Statistics captured on 05/09/2018 from https://www. journals.elsevier.com/microprocessors—-and-microsystems.

[6] V. Matena, T. Bures, I. Gerostathopoulos, and P. Hnetynka, “Model
problem and testbed for experiments with adaptation in smart cyber-
physical systems,” in Proceedings of the 11th International Workshop on
Software Engineering for Adaptive and Self-Managing Systems, ser. SEAMS
'16, Austin, Texas: ACM, 2016, pp. 8288, 1SBN: 978-1-4503-4187-5. DOI:
10.1145/2897053.2897065. [Online]. Available: http://doi .
acm.org/10.1145/2897053.2897065.

[7] T. Bures, P. Hnetynka, F. Krijt, V. Matena, and F. Plasil, “Smart co-
ordination of autonomic component ensembles in the context of ad-hoc
communication,” in Leveraging Applications of Formal Methods, Verifica-
tion and Validation: Foundational Techniques: Tth International Sympo-
sium, ISoLA 2016, Imperial, Corfu, Greece, October 10-14, 2016, Pro-
ceedings, Part I, T. Margaria and B. Steffen, Eds. Cham: Springer In-
ternational Publishing, 2016, pp. 642-656, ISBN: 978-3-319-47166-2. DOI:
10.1007/978-3-319-47166-2_45. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-319-47166-2_45.

Implemented Frameworks and Test-beds

In order to perform experiments and validate overall usability of the approach
described in this thesis several tools and frameworks were created or extended.
First, the JDEECo framework was significantly extended in terms of the network
support and integration with the network and car traffic simulators. The work
covers implementation of a flexible scheduler and software part of a network
stack for the IEEE 802.15.4. Second, the CDEECo++ embedded runtime was
created in order to verify applicability of DEECo to hard real-time systems
with network implemented by the IEEE 802.15.4 radio. Third, the PyDEECo
framework was implemented to enable quick drafting of voting (and other) protocols
used to establish and maintain ensembles. Finally, a test-bed was created using
the JDEECo framework that enables experiments with robotic vacuum cleaner
coordination and their adaptation. The software implemented to support this
thesis is further discussed in Chapter 11.

39


https://doi.org/10.1016/j.micpro.2016.01.007
http://www.sciencedirect.com/science/article/pii/S0141933116000107
http://www.sciencedirect.com/science/article/pii/S0141933116000107
https://www.journals.elsevier.com/microprocessors-and-microsystems
https://doi.org/10.1145/2897053.2897065
http://doi.acm.org/10.1145/2897053.2897065
http://doi.acm.org/10.1145/2897053.2897065
https://doi.org/10.1007/978-3-319-47166-2_45
http://dx.doi.org/10.1007/978-3-319-47166-2_45
http://dx.doi.org/10.1007/978-3-319-47166-2_45

40



CHAPTER 4

Use cases

In order to base this thesis on realistic foundations, first the envisioned use cases
are analyzed in this chapter. As described earlier in the motivation, this work
sources its use cases from multiple domains. These are robotics, Industry 4.0,
and semi-autonomous car or fully-autonomous car cooperation problems. Choice
of the use cases is motivated by recent research projects connected with EBCS
and in particular DEECo such as (i) EU 7th Framework Programme Ascens® [32]
where robotic systems and smart navigation of cars was the topic of interest; (ii)
industry oriented project with Volkswagen AG focusing on smart navigation; and
(iii) projects with industrial partners focusing on IoT and Industry 4.0 systems:
Establish? and Trust?.

Analysis of the use cases focuses on the coordination and cooperation using
dynamic groups based on ensembles. A special focus is applied on ensemble
membership and knowledge exchange with respect to the data propagation between
the components.

This chapter is organized as follows. First the use cases arising from robotic
swarm coordination are briefly discussed. Then the coordination of robots in
Industry 4.0 environment is mentioned. Finally, broad autonomous driving use
cases are given. The reason to focus specially on autonomous driving is twofold.

First the patterns found in Industry 4.0 and robotic coordination are very
similar to the ones found in the autonomous driving domain. At the level of
software architecture it makes almost no difference to coordinate a swarm of flying
drones, a group of mobile industrial robots, or just cars in a street. In all these
cases the focus is on real-time communication and data propagation ensuring
collision avoidance and cooperation on a common goal in the group. Looking at
the tasks such as scouting an area, optimizing part delivery, or preventing street
congestion these are in fact very similar. All these share dynamic identification
of a target group, spreading information among its members and some sort of
coordination based on the group shared knowledge.

Second reason to focus on autonomous driving and traffic related problems is
the availability of tools and input data. There are tools for dealing with robots
such as ROS, Gazebo, and Stage. The problem is that these are focusing mostly
on single robot simulation and simulation of low level robot controls. Even when
the tools for multi robot simulation are getting available the realistic data for the

"http://www.ascens-ist.eu
’https://www.vtt.fi/sites/ESTABLISH
Shttp://trust40.ipd.kit.edu

41


http://www.ascens-ist.eu
https://www.vtt.fi/sites/ESTABLISH
http://trust40.ipd.kit.edu

environment and realistic task settings are rare. On contrary, in the autonomous
driving and traffic optimization domain the tools are ready to be used. Simulators
such as SUMO or MATSim are easy to run and provide sufficient level of precision
to analyze properties of dynamic groups of cars. Moreover, the source data such
as road maps and traffic density are available. Road maps can be imported from
OpenStreetMap and processed as necessary. The traffic density data are easy
to obtain. For example even real-time data can be obtained from Ito World*.
Sometimes data are available for free directly from the government of a particular
region. This is the case of United Kingdom where the Department for Transport
provides traffic counts®.

Motivated by the similarity of the problems, availability of practical tools,
and data for traffic analysis the autonomous driving use cases were chosen as
representative for the whole group. Thus the autonomous driving use cases are
presented in much more detail. The use cases described in this chapter are then
analyzed in the following Chapter 5.

4.1 Robotic Swarm

An interesting use case of a dynamic group in the world of robots is creation and
maintenance of a particular swarm shape in a space. This is the behavior that the
UAVs learned from birds, UGVs from pack hunters, and Unmanned Underwater
Vehicle (UUV) from fish. In difference from the most of animals the unmanned
vehicles usually has some other interest in maintaining the swarm than defense
against predators. A usual task for a swarm is to scout an area in an efficient way
as described in following scenario.

4.1.1 Search and Rescue

Scenario RS1 The scenario is a search and rescue mission in a city after an
earthquake. The mission is conducted by hundreds of UAVs equipped with infrared
cameras searching for survivors to be extracted from the debris. Each UAV is
equipped with a packet radio device with limited range and a localization device,
i.e. GPS. The target search area is initially known to all the UAVs.

The task is to spread UAVs across the area in such a way that the area scan is
completed in shortest possible time. Static assignment of subareas to particular
UAYV is not a good option as different areas differ in scan difficulty and UAVs can
fail or new ones can be introduced. Instead the UAVs can be seen as an ensemble
of components that interact in order to dynamically resolve the situation.

The components needs to coordinate locally on collision avoidance and fine
grained subarea assignment. The global coordination encounter at last rough area
assignment to components necessary for top level planning. In order to perform
the global coordination some sort of overlay network that ensure global data
delivery needs to be employed.

http://www.itoworld.com
Shttp://www.dft.gov.uk/traffic-counts

42


http://www.itoworld.com
http://www.dft.gov.uk/traffic-counts

4.2 Industry 4.0 Robot Coordination

Another interesting use cases emerge in domain of Industry 4.0. Dynamic grouping
using ensembles make very good sense in a dynamic factory operated by both
robots and human workers at the same time. From a high level point of view
a factory is a set of workers, robots, tools and skills that needs to be combined
together in order to manufacture a product. At last two problems in a Industry
4.0 factory can be tackled using ensembles. The first and most important is to
enforce safety by avoiding collision among workers and non-stationary robots. The
second one is a dynamic grouping of assets and tasks in order to form a group of
workers able to complete particular task.

4.2.1 Collision Avoidance

Scenario FS1 The scenario for collision avoidance is a large factory hall occupied
by both mobile robots and human workers. There is an indoor localization system
installed in the factory that provides location and time base to the robots. The
workers wear suits with embedded controller that senses its location and maintain
synchronized clock. All the robots and the worker suits are also equipped with a
packet radio such as Wi-Fi or IEEE 802.15.4.

Objective is to maintain safety at workplace by limiting robot movement and
speed limits so that, possible tragic, collisions do not occur. The system needs to
dynamically react to new robots and human workers as well as react to congestion,
limited radio range and packet loss. The system also needs to react in real-time
as the dynamics of robots and humans does not allow delays in evaluation of the
situation.

4.2.2 Task Group Formation

Scenario FS2 The second Industry 4.0 scenario differs from the first one in
being oriented on a complex dynamic group structure rather than on real-time
processing of data coming through a possibly unreliable channel. The scenario
also encompasses robots and humans, but now instead of a precise position an
ability to perform a particular task is of the utmost importance.

The factory receives tasks that needs to be completed. The tasks needs to
be matched against schedule and ability set of workers and robots and combined
into a feasible schedule. In language of ensembles robots and workers capable of
performing particular task meet the ensemble membership condition. The group
serve two purposes, first it defines feasible group of workers able to complete the
task, second it is a platform for coordination of these workers in order to actually
perform the sub-tasks necessary to finish the assigned task.

4.3 Autonomous Driving

Autonomous or semi-autonomous driving is the main source of scenarios for this
thesis. Autonomous driving problems related to dynamic grouping of cars and road
side infrastructure encompass coordination and information sharing in common
traffic. Surprisingly these problems seem to encompass situations similar to the

43



aforementioned robotic swarms and Industry 4.0 problems. As swarm coordination
seems to be quite similar to coordination of group of cars on a highway and collision
avoidance system in Industry 4.0 factory is quite close on street collision avoidance.
The use case scenarios are organized into two groups. First one encompasses
scenarios that are based on a local communication. These are inspired mostly by
coordination performed by human drivers, thus in this scenarios the sCPS are
learning from human drivers. The second group is formed by scenarios that at last
partially rely on a long range communication. These scenarios go beyond standard
situations in the traffic and open new possibilities for traffic improvements.

4.3.1 Environment

The common setup for vehicular scenarios is as follows. Semi-autonomous cars
and fully-autonomous cars operate together with standard cars in city traffic.
Naturally the cooperation between standard and autonomous cars is limited to
the bare minimum defined by the traffic rules. The autonomous cars are expected
to have the following equipment:

o GPS providing approximate location and precise time source.

» Sensors and controllers implementing self-driving ability conformant to traffic
rules. The self driving controller needs to have an interface that enable
obtaining its state and intended actions as well as providing advises on how
to solve a particular situation.

o Short range low latency radio such as IEEE 802.15.4 or WAVE intended for
local data sharing and coordination.

o Long range communication device providing Internet connectivity such as

LTE or 5G.

o Controller capable of maintaining ensembles and performing related tasks
as described later in the text.

Providing that the autonomous cars are equipped with the aforementioned
devices and systems the common task of all scenarios described later is to help
improve the traffic and solve traffic related problems. The envisioned systems
are supposed to optimize behavior of cars, but do not guarantee safety. Safety of
operation needs to be handled independently by the self-driving controller that
only takes advises from the sCPS based on components and ensembles running
on an independent controller.

4.4 Local Vehicle Coordination

Scenarios is this group are based on a coordination that is or could be performed
by human drivers. The motivation is that a human driver even when it is usually
not required by general traffic rules, also takes coordination hints from other
drivers. These hints are not only based on movements of cars that can be read
by on-board sensors of autonomous vehicles. In fact, human drivers use gestures,

44



signaling by lights and horns, guesses on the intentions of the other drivers and
even judge the other driver based on way he or she drives.

Of course the autonomous cars cannot take part in a hand gesture argument
at the unregulated crossing. But it is possible to take some of the principles and
implement them on top of a radio communication. In general the cars can publish
their intends like changing lane, parking, turning and others using radio and the
other cars in the area can adjust their behavior in order to optimize the traffic.
The communication can go beyond this and other cars can also respond to the
request and for instance agree to let the car intending to change a lane actually
do that.

As the human drivers are still assumed to remain in control in some/most of
the cases, some of the coordination performed automatically by autonomous cars
can be simplified back to the actions like blinking lights, so that the human drivers
can take place in this kind of coordination. Of course the more complex scenarios
do not allow this, but in fact the less complex ones are already implemented. For
instance the turn signals can be seen as a simple sharing of the intend to turn that
is unfortunately occasionally not followed by mutual agreement between drivers.

4.4.1 Scanning for a Parking Place

Scenario VS1 A car is about to reach its destination and needs to find a parking
place. As there is no global parking place registry nor there are organized parking
houses nearby it has to rely on a surroundings scan in order to find a free parking
spot. This is inefficient in terms of fuel consumption, time spend, final parking
position location, and travel speed during the search.

In fact this can be improved if other cars in the area that are just passing by
can help with the effort. The parking car can signal its intend to the other cars in
the area and the other cars can initiate the surroundings scan and report possible
positive results back to the car in the need of parking. This way the cars can not
only cover larger area, thus being able to find a parking place quickly, but also
the location of the parking place can be better as the other cars cover also streets
different from the one chosen by the parking car to approach its target location.
Providing that the sensor range of the cars is short the parking car cannot travel
at full speed as it needs to be able to stop at suddenly discovered free spot. If
there are enough cars capable of scanning in front of it these can take role of a
long range sensors, thus the parking car can continue at the full speed. Optionally,
some cars can be re-routed to cover the less frequent streets and thus scan a larger
area.

Such system requires dynamic grouping of parking and passing by cars based on
their location, capabilities and directions. The system needs to react to connection
quality among the cars and current street coverage in order to maintain quality of
the search service.

4.4.2 Precedence Negotiation

Scenario VS2 A scenario for precedence negotiation is a narrow passage on
a bidirectional road where only one car can fit. Another possible setup is the
unregulated crossing. In both these cases the cars need to decide which one goes

45



first. The decision is based on traffic rules and in case of human drivers also on
the gestures. Gestures are defined by traffic rules to be used when a stalemate is
reached. For instance this happens when 4 cars meet at the x-shaped crossing one
in each direction. The gestures are also sometimes used to optimize the traffic.
Some drivers pass precedence to others that would otherwise starve if the traffic
rules would have been applied literally. Finally the gestures can be used to resolve
emergency situations where no standard rules apply. This happens when cars
needs to move across the sidewalk to avoid collapsed road.

All these situations require some sort of coordination among cars that resolves
the precedence order. This is where dynamic groups or ensembles can be used.
The system needs to be dynamic to respond to new cars emerging, resilient to
network failures and latency as some cars can leave or get far from others, and
distributed as the situation might take place somewhere where the infrastructure
is not available.

The cars needs to resolve the precedence order and signal the self driving
controller with the resulting advise. The controller is responsible for performing
the action safely, it cannot rely on the negotiated precedence being honored by
others. The advise given by precedence resolution system is intended to optimize
traffic by reducing necessity to break and starve.

4.4.3 Traffic Lane Change Negotiation

Scenario VS3 Lane change scenario consists of cars going on a highway with
multiple lanes. One car decides to change the lane due to necessity to exit the
highway or just to overtake a slowly moving truck. If there are no cars around
it is not a problem, but it often happens that there is little or no space in the
target lane. Performing the lane change can be difficult if the car in need of a lane
change is restricted in movement until the current lane ends or it misses an exit.

Human driven cars use signaling, like turn signals, and guesses to realize there
is a driver in need to change the lane. Once the drivers are aware of the situation
they can take an action to improve the fluency of the traffic such as making a
space in a lane so that the other can can fit into it. Similarly the autonomous
cars can form a dynamic group in form of an ensemble with components taking
roles of cars. The component representing a car that is preventing another car
from changing lane can slow down to create a gap and signal the component
representing the lane changing car that is will be allowed to change the lane.
Finally the self driving controller in the blocking car can be asked to slow down
while the one in the lane changing car is advised to move into the resulting gap.

Moreover this scenario can be extended to the situations such as the zip
maneuver where two lanes merge into one and the cars are expected to alternate.
With the ensemble containing logic to implement advises on a final ordering of
the cars the maneuver itself can be much smoother and safer as the order does
not change at the very last moment.

4.4.4 Platooning on Highways

Scenario VS4 This scenario focuses on the creation and management of highway
platoons on a local level. It expects a highway occupied by cars where some of

46



them are capable of autonomous movement in a platoon. The platoon is basically
a train of cars that maintain a constant speed and distances between neighboring
cars in order to achieve some benefits. The benefits include air drag reduction
leading to lower fuel consumption and an ability to drive autonomously for cars
that are not capable of doing so in general traffic. Also, the creation of platoon
simplifies traffic management as a platoon can be considered a single object both in
the logical evaluation of the traffic and the maneuver planning such as coordinated
acceleration.

The cars that are about to form a platoon need to group together based on
the rules captured by the ensemble membership. Once the platoon is established
the members of the platoon need to group again in order to coordinate on the
platoon management such as the speed and mutual distances. Both grouping
steps needs to be flexible and aware of the dynamics of both the situation and
the environment such as cars leaving/entering the area and a road surface quality
changes that needs to be reflected in the platoon organization.

Apart from the scenarios described earlier, implementation of this one cannot
rely on advises to the self driving controller. Instead the platoon management
needs to be hard real-time and dependable as it needs to guarantee safety of the
operation. The cars cannot drive close enough to each other without continuous
coordination as there is not enough time for the car in the back to react to an
arbitrary move of the car in the front.

4.4.5 Optimized Speed-up in Traffic Jams

Scenario VS5 The coordinated speedup scenario is similar to the platoon one.
In a sense it is some sort of a short lived platoon that is established only for the
purpose of coordinated speedup at the traffic lights. The setup is the queue of
cars waiting at the traffic lights. The problem is the situation when the go signal
is given. The first car can accelerate without restrictions, but the following cars
need to wait for a gap to emerge in front of them thus limiting the throughput of
the crossing.

The task is to coordinate the cars waiting to form blocks of neighboring cars
that can coordinate the speedup. The block need to dynamically adjust to the new
cars joining the block during the wait phase and changing conditions during the
speedup phase. The group of cars that is supposed to described by the ensemble
membership condition needs to be established in such a way that only coordinated
speedup aware autonomous cars are part of it and no incompatible cars are placed
in between.

Again the requirement on the coordination system is to be hard real-time and
reliable. As failure to coordinate during the speedup phase can lead to crashes.
On contrary, during the wait phase the cars can decide to break the group due
to deficiency in communication, acceleration, or break capacity without putting
anyone at risk.

4.4.6 Joining the Roundabout

Scenario VS6 The scenario is similar to the lane change Scenario VS3. There
are cars passing through a roundabout, some of which are autonomous enough to

47



regulate their speed on demand. Another fully-autonomous car is about to enter
the roundabout and the cars on the roundabout take precedence. The car that is
entering may struggle to enter as there may be just limited gaps in between the
neighboring cars already present on the roundabout.

Encouraged by the generosity of some human drivers this scenario envisions
a dynamic grouping algorithm that groups together a car starving to enter the
roundabout and the cars already on the roundabout that prevent it from entering.
Once the group is established the traffic situation can be optimized by making
the cars on the roundabout move in such a way that one extra car can fit in there.
The position of the, about to emerge, gap is then given as an advise to the car
entering the roundabout so that it can schedule its arrival an minimize necessity
to break.

The envisioned dynamic grouping algorithm composes of the two parts called
group creation and speed adjustment. The group creation part maps to the ensemble
formation and the speed adjustment part can be realized as a knowledge exchange
in the just formed ensemble.

This scenario does not expect the advise system is real-time or reliable as
filing to negotiate the entry or misunderstanding between cars just results in extra
breaking and acceleration. Thus failure of the system can be tolerated.

4.4.7 Optimized Traffic Lights

Scenario VS7 This scenario envisions an ensemble grouping together a traffic
light and cars that are approach to it. Considering the standard traffic light there
are many limitations that arise from the fact that data exchange between cars
and the traffic light is limited to several light signals and occasional perception
of incoming cars by the traffic light controller. Apart from the game changer
approaches such as Autonomous Intersection Management [33]. There are works
such as an machine consciousness approach to urban traffic control [34] that aim to
improve existing systems. Hence, the dynamic grouping of cars and the crossroad
controller is discussed here as the opportunity to optimize the traffic.

Grouping together the traffic light controller and the approaching cars enable
the system to adjust light intervals according to the cars quantities and also
optimize a speed of the approaching cars so that sudden speed changes are reduced
or even eliminated.

Considering an ensemble that aims only on advising the traffic lights and cars,
the system can be seen as non-critical as failure can be tolerated. If the ensemble
is used to coordinate cars and also to send go/stop signals to them, then the
system has to react in hard real-time and possible failure may lead to crashes.
Therefore, based on the degree of optimization this system can be seen as critical
or non-critical.

4.4.8 Obstacle Discovery

Scenario VS8 Considering autonomous cars this scenario encompasses cars
passing through a road that is at risk of containing obstacles such as broken cars,
fallen trees, and accumulated snow or ice. Taking in the account low visibility or
frequent turns the cars need to significantly slow down in order to maintain safety

48



and guarantee enough break distance.

Dynamic grouping of nearby cars in ensembles based on their relative position
and sharing a view of the surrounding in the ensemble can provide the missing
confidence in sensors for most of the cars letting them to increase their speed and
lower relative distance.

Considering the system as giving advises about the on-road conditions it is
required to operate only in soft real-time as missing advise can be tolerated and
just results in a fallback to the low speed. However giving false advises can result
in significant troubles. The system needs be dependable. If the system further
limits distances between cars to the level that fallback is no longer possible than
the system has to be implemented as hard real-time. Such system is very close to
collision avoidance system or platoon management covered in Scenario VS4.

4.4.9 Clearing Path for Emergency Vehicles

Scenario VS9 This scenario encompasses cars navigating through a street at
presence of an emergency vehicle. Sometimes it is complex for cars to coordinate
on letting the emergency vehicle pass as fast as possible. This is especially true
when the space is limited such as in the city centers or the environment is harsh
such as in the case of heavy snow fall. Smart exchange of data among the cars
and the emergency vehicle may improve the situation.

Dynamic grouping of cars and emergency vehicles using ensembles envisions
matching cars that need to react to the emergency vehicle approaching and
coordinating those cars and the vehicle in order to let the vehicle pass as fast as
possible.

Considering the requirement on the system it can be seen either as pure
advisory system without necessity to provide non-functional guarantees or a strict
coordination among cars that in case of failure or delay causes an accident.

4.4.10 Identification of Dangerous Conditions

Scenario VS10 This scenario encompasses random cars and envisions data
sharing among them. Here, the ensembles define groups of cars focusing on
different aspects of the traffic. Some cars can be grouped in an ensemble that
provides coordination on safety distance maintenance. Different ensemble can be
used to share data about road quality and obstacles. Yet another one can focus
on identification of offenses against traffic rules and possibly let the autonomous
cars keep safe distance from cars driven by non-conformant drivers.

The requirements on the system in sense of reliability and real-time processing
depends solely on the property of the data the ensemble is sharing. In general
it can be said that the ensembles are non-critical with exception of the safety
distance maintenance one.

4.5 Global Vehicle Coordination

4.5.1 Route Optimization

49



Scenario VS11 The route optimization scenario encompasses cars passing
through a road network composed of segments. The usage of ensembles is to form
groups such that each one encompasses one segment, one time interval and all
the cars that plan to pass through the segment during the time interval. Such
grouping enable dynamic analysis of future road segment usage and optimization
of car routes in such a way that segment capacity is not exceeded and, possibly,
the combined travel time of all the cars is minimized.

One of the possible optimization algorithms that can be deployed on top of the
dynamic grouping provided by ensembles is a naive algorithm that just reschedule
cars that suffer from passing though busy segments to an alternative path that
contain less busy segments. Assuming true dynamic assignment of cars to groups
even such a simple algorithm might help to improve the situation. In order to
reach an optimum a more advanced algorithm with bouncing protection, possibly
based on the net flows, needs to be used.

4.5.2 Parking Place Registry

Scenario VS12 This scenario is similar to the Scenario VS1 but differs in the
scope of the operation. While the Scenario VS1 focuses on a local area and peer to
peer data exchange this scenario focuses on the global view of the parking places.
This scenario composes of cars and parking places in a larger area. Dynamic
groups are created that contain a car and its planed parking place including a
time interval. Such system of groups defines a global parking place registry.

In the language of ensembles the assignment of a new parking place to the
car is membership condition while the data exchange is the acknowledge of the
parking place by the registry system. Such acknowledgement can be provided by
a centralized registry or by the parking place itself. The parking place can either
be equipped with a controller that is part of the system and hosts the parking
place component that is part of the ensemble or the parking place components
can reside on the server and be included as a Beyond Control Entity.

The membership condition check ensures that a particular parking place can
be occupied only by a single car at a give time interval.

4.5.3 Long Distance Platoon Formation

Scenario VS13 This scenario extends the local Scenario VS4. The local version
focuses on a platoon coordination in terms of the car control. This scenario focuses
on formation of stable platoons while choosing cars that share the same destination.
This scenario encompasses all cars in the region and the highway infrastructure
in that region. Each car in the system has its destination independently set. If
all the cars just start to form platoons together, the resulting platoon would be
unstable as cars will be permanently leaving and entering the platoon due to
the different destinations. This behavior introduces risks and lowers efficiency of
the platoon. Instead the cars are suggested to form groups that share the same
destination or at last significant portion of the track. Such groups needs to be
negotiated on a possibly long distance and some of the the cars needs to be a bit
re-routed in order to take part in the platoon.

The envisioned groups of the cars are formed based on the shared destination

50



and route similarities. Such groups translate to platoons described by an ensemble
membership condition that matches common segments of the planned route of
the assumed member cars.

4.5.4 Car Sharing

Scenario VS14 The scenario is a car sharing system. There are people who use
a car to get to their destination. The objective is to match cars and passengers in
such a way that they can share a ride with someone and thus reduce total number
of cars used. Possibly some of the original passengers does not need to own a car
and rely only on a shared ride in order to get to their destination. There might
be necessary to slightly alternate some of the routes as otherwise there would be
just limited number of matches.

The ensembles are used in this scenario to describe a shared ride as a group
composed of a car and its passengers. Membership of such an ensemble is based
solely on its fitness. Fitness of a shared ride ensemble with given passengers
and car is expressed as utility (reduction in car usage) divided by a price (extra
distance and time traveled by the car used). The system has to be able to handle
possibly many passengers and cars.

4.5.5 Car Sharing Management

Scenario VS15 Car sharing management scenario is very similar to the car
sharing with global data described in Scenario VS14. In a sense it can be considered
a taxi management service. It differs from shared ride groups in a strict separation
of taxi cars and passengers. The taxi drivers has no other objectives than refueling
the cars and providing rides to the passengers. This differs from shared cars where
a car driver also has a destination.

The grouping in this scenario puts together an empty time slot of a taxi driver
and a suitable passenger transport from A to B that needs to fit inside this time
slot. The grouping does not take only time slots but also entry and leave locations
of the passengers in order to include taxi in only such ensembles that are feasible.
Possibly the system can be optimized by expressing an ensemble fitness in order
to achieve shortest wait times for taxi and passengers and/or to minimize taxi car
traveled distance.

4.5.6 Charge Station Assignment

Scenario VS16 Charging station allocation, as described in this scenario, is a
similar to parking place registry Scenario VS12, yet more important. Assuming
charging a car takes nontrivial time, it is necessary to either have many spare
charging slots or make a schedule.

Regarding the schedule, this is the place where dynamic grouping using
ensembles can help. Similar to car sharing mentioned earlier in the text the
ensembles are constructed from cars in needs of charging and free time-slots on
charging station slots. Assignment to ensembles may take in account a schedule
of the car or just urgency of the charging request.

The operation of this system, even when it does not seem to be life critical
needs to be performed in such a way that cars do not starve to charge. Compared

o1



to parking, where it is possible to send parking cars to more distant parking places
or just let them roam around for a while, a car in need of charging may not make
it to different charging station, nor it can wait in the traffic. Thus the system
should minimize the occurrences of completely discharged cars to bare minimum.

4.5.7 Road Billing System, Toll Collection

Scenario VS17 This scenario encompasses payed road segments and cars that
needs to pay for passing the segments. The envisioned ensembles have membership
defined in such a way that a car that needs to pay for a road segment is grouped
with such road segment. The ensemble knowledge exchange phase maps to the
payment. This way the dynamic groups implemented by ensembles form a road
toll collection system.

This scenario imposes some uncommon requirements on the system. First the
payment needs to be implemented by a transaction, ensuring single payment per
car per segment. Second taking part in the ensemble is not mutually beneficial
for both the car and the toll collection system. The system needs to ensure that
cars that are supposed to enter ensembles really do so.

Possible occasional failure of the system does not poses a threat to the security
as it only leads to minor financial loss. Although major and lengthy failures should
be avoided.

4.5.8 Street Lane Optimization

Scenario VS18 The scenario on long distance lane and traffic optimization
encompasses cars and a road infrastructure configurable in terms of lane assignment
and traffic sign content. The cars present their schedule in form of a list of road
segments they plan to visit. The dynamic groups are formed between cars and
their planed segments. Based on those groups described by ensembles, load and
traffic type of particular road segment is determined. From the predicted load
follow the parameters of the road segment such as lane assignment, speed limits,
and other properties.

Assuming the lanes can be configured to a safe default, the system itself is
not critical as a failure leads only to traffic complications. The reliability of the
system should minimize failures of such scale that significantly affect the traffic
fluency.

4.5.9 Emergency Situation Management

Scenario VS19 Global emergency situation management scenario is similar to
the Scenario VS9. It differs in its global reach enabling not only path cleaning
but also assigning emergency response vehicles to crashed cars and possibly
endangered persons. Moreover it enables regular cars not only to clear path,
but also to completely skip entering the crash site location due to possibility to
re-route traffic elsewhere. Interaction of the system, with traffic control can result
in assigning traffic light signs in such a way that emergency cars can proceed at
maximum efficiency.

The implementation of the system relies on multiple ensembles that solve
different aspects mentioned above in separation. It can be though of dynamic

52



groups scheduling emergency vehicle arrivals to accident sites. next there can be
dynamic group that encompasses cars that should rather avoid particular location
in order to easy traffic for emergency response vehicles. Finally, there can be
an ensemble grouping together traffic lights and emergency vehicles that ensures
emergency vehicles have precedence at traffic lights.

23



o4



CHAPTER 5

Modeling the use case scenarios
with ensembles

This chapter captures functionality required by the use cases presented in Chapter 4
using the concept of an ensemble. Based on the analysis of ensemble usage and
draft of the ensemble implementation, requirements on the ensemble functionality
are summarized. The requirements range from knowledge specification, ensemble
membership decision, knowledge exchange, communication requirements, and
non-functional requirements such as reliability, resilience and real-time processing.

5.1 Ensembles of Autonomous Cars

Regarding the DEECo ensembles, the first thing to discuss is the component.
When dealing with vehicular systems the natural components are cars. These form
a logical units of functionality and provide an encapsulation. Such a component can
be hosted on an on-board computer present in each car. The two main features
of a component are processes implementing its business logic and component
knowledge that defines its public interface.

Car as a Component

The first that needs to be decided when thinking of a car as a component is the
knowledge. It represents the public interface of the component and holds the
data the processes and ensembles work with. The DEECo relies on periodically
scheduled and triggered processes. These seems to be natural choice also for the
vehicular systems. The process of the car component is an implementation of the
business logic of the car. With respect to the use cases the processes can be split
into three categories. These are together with a knowledge discusses in separate
sections.

Car Periodic Processes

Periodic processes are the most common processes used for multiple tasks. One
of these is sensor reading. Sensors that are not capable of generating events or
provide continuous data needs to be polled periodically. Sensors such as GPS or
LIDAR are examples of sensors that either needs to be polled or generate data
stream that needs to be periodically processed. Another usage of the periodic

25



processes is the control logic of the car. Usually this is running in loops that pass
through multiple stages of analysis, planning, and execution. These stages needs
to be periodically repeated in order to keep the system running.

Processes in a Car Triggered by an External Event

External event triggered processes are an alternative to polling performed by
periodic processes. If the sensor monitored by the process supports event generation
(i.e. obstacles is detected, or a threshold value is reached) the process execution is
linked to occurrence of such event. This limits resource wasting and reduces delay
in between event occurrence and system response.

Processes in a Car Triggered by a Knowledge Change

Knowledge triggered processes are remote version of the event triggered processes.
In this case the process is linked to change in the knowledge which can be caused
by another local process, or an ensemble knowledge exchange execution. This way
the process can react to remote event with reduced latency. An example of such
event is change of availability of a parking place announced by a remote car.

Knowledge of a Car

Knowledge is a public interface and depends mostly on the use case, but some
common parts can be identified to be shared by most vehicular use cases presented.
The knowledge of a DEECo component is formed by data fields that describe
current state of the component. The knowledge fields for the car component as
required by the use cases follow:

 Id (General)
o Timestamp (General)

o GPS position (Scenarios VS1, VS12, VS4, VS7, VS8, VS11, VS13, VS15,
VS17, VS14, and VS16)

» Road segment Id (Scenarios VS17, VS7, and VS18)
» Remaining battery capacity /fuel (Scenarios VS16 and VS11)
» State/Emergency (Scenarios VS19 and VS10)

» Sensed neighbors

— Id (General)

— Relative position (Scenarios VS2, VS4, VS3, VS6, and VS9)

— Blocking cars (Scenarios VS2, VS3, VS9, and VS10)

Velocity (Scenarios VS3 and VS4)

Platoon Id (Scenario VS4)

Break / Acceleration capacity (Scenarios VS4, VS5, VS3, and VS6)
— Intended move (Scenarios VS3, VS2, VS7, and VS9)

— Obstacles (Scenarios VS8 and VS10)

26



o Communicated neighbors

Id (General)

— GPS position (Scenarios VS2, VS3, VS6, VS9, and VS19)

— Sensing capabilities (Scenario VS1)

— Blocking cars (Scenario VS10)

Platoon Id (Scenario VS13)

— Planned route (Scenarios VS11, VS13, VS14, VS15, and VS18)
Sensed parking (Scenarios VS12 and VS1)

Obstacles (Scenario VS10)

5.2 Use Case Feature Analysis

Aiming to analyze requirement on ensemble formation techniques this section
presents a draft of ensemble membership specification. The draft of the membership
condition uses various features that are later summarized. The membership
expression is based on the knowledge fields. In order to improve readability the
mapping knowledge fields drafted in preceding section is loose and some details
might not be an exact match. The point of the implementation draft is to pinpoint
features of the formation system and not to focus on syntactic details.

5.2.1 Implementation Draft

Parking Place Scanning

The membership condition, displayed in Listing 5.1 relates to the Scenario VSI1.
The condition is quite simple. There is a parking car that is supposed to be in
state when it is about to park somewhere and a scanning car that is supposed to
provide parking place surveillance. The role of both the components is shared as
one car can provide surveillance for multiple parking cars and a parking car can
have multiple scan providers.

1 membership (parkingCar: shared, scanningCar: shared) {
2 return parkingCar.wantToPark == True && scanningCar.canScan == true
3}

Listing 5.1: An ensemble grouping together a scanning and parking car.

A matching fitness condition is a bit more complicated. It is supposed to
optimize geographical location of the scanning car with respect to the parking
car position. As displayed in Listing 5.2 the parking car can provide a heat
map showing the best places where to scan. The problem is that such a map
may be not easy to spread using a limited network connectivity between the
cars. Possible alternative is to rank scanning cars based on the distance to an
optimal scanning position while omitting all cars that are more distant than
some reasonable threshold. This way the map is replaced with a single position
coordinate.

1 fitness (parkingCar, scanningCar) {
2 return parkingCar.areaOfInterestHeatmap[scanningCar.position]
3}

Listing 5.2: Fitness of an ensemble of a scanning and parking car.

57



Another approach to the parking place management is the parking place
registry described in the Scenario VS12. Then the ensemble is supposed to book
a parking place in the registry. The special requirement on the membership is to
provide role exclusivity in time denoted by the exclusive-in-time keyword. This
enables to match parking place and time slot to a car. The membership and
fitness condition code is displayed in the Listing 5.3.

1 membership (car exclusive, place: exclusive-in-time) {
2 return car.state == parking, place.state == free
3}

4 fitness(car, place) {

5 return 1 / distance (car.pos, place.pos)

6

}
Listing 5.3: Implementation draft of the fitness and membership condition of
the Parking place assignment ensemble. This implementation uses parking
place registry.

Narrow Passage Blockers Selection

Motivated by Scenario VS2 the membership condition displayed in Listing 5.4
matches two cars that mutually block each other. The required roles of the cars
are exclusive as the resolution of the situation is supposed to resolve only two cars
passing through a narrow passage in opposite directions. The exemplified simple
ensemble can be extended to cover more complex situations such as a chain of
cars blocking each other in a loop.

1 membership (carA: exclusive, carB: exclusive) {
2 return carA.blockedBy.contains (carB.id) && carB.blockedBy.contains (carA.id)
3}

Listing 5.4: Membership condition of an ensemble used to resolve two cars
mutually blocked in a narrow passage.

Universal Blocker Selection

Another two similar membership condition definitions are presented here, motivated
by Scenarios VS3 and VS6, solving the blocking cars. The idea is to form multiple
ensembles for a particular situation where the car that is performing an action,
i.e. changing lanes or joining a roundabout, is exclusive. Thus only one ensemble
instance exists per such a car. The role of the blocking car is shared as a car can
block multiple cars performing an action.

The difference between the use cases is expressed in the condition itself. The
lane change condition displayed in Listing 5.5 matches cars that have conflicting
lane interests and are driving side-by-side thus the blocking car is preventing the
other car from the changing lane.

1 membership (changingCar exclusive, blockingCar: shared) {

2 return neignbouringLanes (changingCar.lane, blocking.lane) && sidebyside (
changinCar, blockingCar)

3}

Listing 5.5: Membership condition for ensemble binding together lane changing
car and a car that blocks the target lane.

While the roundabout join condition displayed in Listing 5.6 groups the cars
that share the roundabout. These are further filtered by entry location of the

o8



entering car and projected location of the blocking car. Further, the roundabout
join condition contains fitness function that evaluates which of possibly multiple
blocking cars on the roundabout should let the entering car in. Based on the
linear function of a required slowdown of the blocking car and a wait time of the
entering car the most suitable blocking car is selected.

1 membership (joiningCar: exclusive, blockingCar: shared) {

2 return joiningCar.wantToEnterId = blockingCar.roundabout.id && blockingCar.
roundaboutPos < joiningCar.roundaboutEntryPos

3}

4 fitness(joiningCar, blockingCar) {

5 return X x waitTime (joiningCar, blockingCar) + Y % slowdown (joiningCar,
blockingCar)

6 }

Listing 5.6: Membership and fitness condition of an ensemble containing car
that is about to join the roundabout and a car present at the roundabout.

Platooning

Regarding the local platoon, depicted in Scenario VS4, there are multiple ways
how to design the ensembles that serve for the platoon coordination. Drafts of
membership functions of the two options are presented here.

One way of defining the platoon coordination group is the linked approach.
This way there are ensembles that contain pairs of cars. The first car in the pair
is leading the second one. This way the whole platoon is composed of links as
displayed in Figure 5.1. A draft of the ensemble membership function is presented
in Listing 5.7. This approach to the platoon definition requires a special feature
exclusive-in-role. The motivation for this feature is that the platoon links should
form a single chain, thus the components must be used exclusively in the links,
but exclusivity should be bound to a car in a particular role. It should be allowed
for a single car component to take par in at most one link as a leader and at most
one link as a follower.

1 membership (carA: exclusive-in-role, carB: exclusive-in-role) ({
2 return inFrontOf (carA, carB) && carA.canLead

3}

4 fitness(carA, carB) {

5 return distance (carA.position, carB.position)

6

}

Listing 5.7: Ensemble membership for linked platoon, coordination between
pairs of cars.

@ ) ﬂ 3 @ 9 - gﬂ/ﬂn-\
~ ~_ — —

Link A ensemble Link B ensemble Link C ensemble

Figure 5.1: Communication links in the linked platoon. The four member platoon
is linked by three leader-follower links A, B, and C.

Another way of defining the platoon ensemble membership is to have one
group per platoon as displayed in Listing 5.8. Although it is easier to define, the
downside might be a bit more complex code necessary for coordination.

29



membership (cars[]: exclusive) ({
cars = orderByPos (cars)
return noGaps (cars -> map x: x.position)
}
fitness (cars[]) {
cars = orderByPos (cars)
return 1 / sum(cars -> map x: x.distToNext)

}

0 N OO AW N R

Listing 5.8: Membership condition of the overall-platoon ensemble.

The global view of the platoon is different. The platoon management, VS13, is
supposed to organize cars into a platoons, thus the view of physical car positions
is not so important. The key to group cars that should share a platoon together is
the destination. The ensemble membership of such group is described in Listing
5.9. Such membership can also be interpreted as template that builds an ensemble
group by addition of individual components.

1 membership(cars[]: shared) {
2 return forall cars, car.destination == cars[0].destination
3}

Listing 5.9: Platoon management membership condition.

Coordinated speedup at the traffic light, Scenario VS5, is similar to the platoon.
The speedup group can be seen as temporally platoon formed just for the purpose
of speedup. Such group is described by ensemble membership condition depicted
in Listing 5.10. The ensemble can be in this case seen as a group that grows each
time a new car satisfies a membership condition.

1 membership (cars[]: shared) {

2 return cars -> reduce x,y -> directlyInFrontOf (x, vy)

3}

4 fitness(cars[]) {

5 return min(cars -> filter x -> x.onTheBorder -> map x —-> x.speedGainRestriction)
6 }

Listing 5.10: Membership function of the speedup coordination ensemble.

Traffic Optimization

The traffic optimization described in Scenarios VS7, VS11, and VS18 can be trans-
lated into membership conditions that group together cars and road infrastructure
in order to identify overloads, re-route cars, and reconfigure infrastructure.

First the membership condition, inspired by Scenario VS7, that defines an
ensemble of cars that can pass through the traffic lights together is discussed. The
fitness of this ensemble depends on the throughput of the particular traffic light
under the conditions defined by the cars that are supposed to pass through it as
described in a draft implementation presented in Listing 5.11. Therefore each the
ensemble instance formed contains the optimal group of cars to pass through the
particular traffic light.

1 membership (lights: exclusive, cars[]: shared) {

2 return cars -> map x -> atlightsId == lights.id
3}

4 fitness(lights, cars[]) {

5 return throughtput (lights, cars)

6 }

Listing 5.11: Draft of the traffic light interval optimization ensemble.

60



The route and lane optimization ensembles intended to cover Scenarios VS11
and VS18 are similar in the membership condition displayed in Listing 5.12 and
5.13. Both of them map cars to road segments. The difference is in the purpose of
the ensemble. The route optimization ensemble is supposed to diverge cars from
overloaded roads while the lane optimization ensemble is used to add capacity to
heavily used segments by assigning an extra lanes.

1 memebrship (segment: exclusive, cars[]: shared) {
2 return forall cars, car —-> car.route.contains (segment.id)
3}

Listing 5.12: Draft of the route optimization ensemble membership condition.

1 membership (car: exclusive, roadsegment: shared) {
2 return within(car.position, roadsegment.area)
3}

Listing 5.13: Lane optimization ensemble assigning cars to segments. Draft of
the membership condition.

Emergency and Safety

Emergency and safety use cases presented in Scenarios VS8, VS19, and VS19
group cars together in order to prevent emergency situations or at last properly
respond to them happening.

Y W

////"_‘\\\Sl

" SR ) (- cplli

Figure 5.2: Communication in the obstacle detection and clear path guarantee
ensemble. The green and the yellow car are meeting the blue and red car coming
from the opposite direction. Dotted links symbolize wireless communication, solid
arrows display sensor data flow in ensembles. The yellow car is sensing for the
green one and the blue one. The blue one is providing data to the red car. The
red car is sending sensor data to the yellow one.

The ensemble implementing Scenario VS8 encompasses cars that follow each
other on a street as defined in membership function draft displayed in Listing
5.14. The purpose of the ensemble is to exchange information about possible
obstacles on the road or to provide guarantee there are no obstacles ahead. The
expected instantiation of the ensembles is displayed in Figure 5.2. Due to the
real-time nature of the guarantee the ensemble only contains cars with sufficient
mutual distance for reporting obstacles and optimizes towards optimal distance
as displayed in Listing 5.14.

1 membership (leadingCar: shared, followingCar (s): shared) {
2 return infront (leadingCar, followingCar) && distance(leadingCar, followingCar) /
followingCar.speed < MAX_SAFE_REPORT_DELAY
3}
4 fitness(leadingCar, followingCar) {
5 1 / abs(distance (leadingCar, followingCar) / followingCar.speed -
OPTIMUM_REPORT_DELAY)

61



6 }

Listing 5.14: Ensemble membership and fitness draft that group cars together
in such a way that following cars are guaranteed to meet only known obstacles.

Emergency related ensemble, defined by the membership function displayed in
Listing 5.15, is motivated by Scenario VS9. The purpose of the ensemble is to
group together emergency vehicles and cars on their path in order to clear the
path for the emergency vehicles.

1 membership (emergencyCar: exclusive, cars[]: shared) ({
2 return forall cars -> onPath(car, emergencyCar.destination)
3}

Listing 5.15: Draft of ensemble membership function. The resulting ensemble
is supposed to distribute information about approaching emergency vehicles in
order to let other cars out of their way.

Another emergency ensemble encompasses a car in need of assistance, call
center, and assigned emergency response vehicle. The membership condition and
fitness function draft of the emergency assistance ensemble is displayed in Listing
5.16. The purpose of such ensemble is to group together car in need of assistance
with matching assistance vehicle while optimizing arrival time.

1 membership (car: exclusive, callCenter: shared, ambulance: excluisve) {

2 return car.emergency.state == True && car.emergency.assistance == Medical && !
callCenter.busy

3}

4 fitness(car, callCenter, ambulance) {

5 return regionalFitness(car.position, callCenter.region) + 1 / distance(car.
position, ambulance.position)

6 }

Listing 5.16: Draft of ensemble membership and fitness functions that group
together crashed cars and emergency services.

Car Sharing

The use cases presented in Scenarios VS14 and VS15 are both related to the car
sharing. The purpose of the ensembles in this case is to group together available
car and a passenger.

The car sharing ensemble membership condition draft is presented in Listing
5.17. The passengers are grouped with car owner that share the origin and
destination with tolerance of maximum allowed walk distance. The fitness function
further optimize the total walk distance per ensemble.

1 membership (people[]: exclusive, carOwner: exclusive) ({

2 return forall people, distance(person.position, carOwner.position) <
WALK_DISTANCE && forall people, distance (person.destination.position, carOwner
.destination.position) < WALK_DISTANCE

3}
4 fitness (people[], carOwner) {
5 return sum -> map people -> distance(person.position, carOwner.position) +

distance (person.destination.position, carOwner.destination.position)
6 }

Listing 5.17: Draft of the car sharing ensemble membership and fitness function.

Taxi management as described in Scenario VS15 has a bit simplified ensemble
definition as the taxi driver has no intended origin and destination. The drafted
membership and fitness code displayed in Listing 5.18 groups together taxi cabs

62



free at the time of journey of the passenger while the fitness function minimizes
taxi car traveling overhead.

membership (taxi:: shared, passenger: exclusive) {
return freelInTime (passeger.journey.time, taxi.schedule)

fitness (taxi, passenger) {
return 1 / distance (taxi.expectedPositionInTime (passenger. journey.time),
passenger. journey.start)

1
2
3}
4
5

6 }

Listing 5.18: Taxi allocation ensemble membership and fitness function draft.

Charge Station Assignment

Another use case, where the distance optimization is required, is the charge station
allocation Scenario VS16. In this case the ensemble contains a charging station
and cars that can charge from it. The membership ensures the charging schedule
is feasible, while the fitness function optimizes travel distance. The draft of the
implementation is displayed in Listing 5.19.

membership (cars[]: shared, station: exclusive) ({

return forall cars, suitable(car.estimatedArival, station.schedule)
}
fitness(cars[], station) {

return 1 / total_travel_distance(cars, station)

}

o G A W N

Listing 5.19: Draft of ensemble membership and fitness function that implement
charge station assignment.

Toll Collection

The toll collection ensemble, based on Scenario VS17, groups together a heavy
weight car and a road segment it is passing through. A draft of the matching
membership condition is displayed in Listing 5.20. The interesting feature of this
ensemble is that it is not mutually beneficial for both the car and the road segment
components. The mechanism of the ensemble formation should not allow the car
to cheat.

1 membership (car: exclusive, roadSegment: shared) {
2 return within(car.position, roadSegment.area) && car.type == Truck
3}

Listing 5.20: Draft of the toll collection ensemble membership condition.

5.2.2 Membership Features

Based on the draft of the implementation presented in the Section 5.2.1 the
required features are discussed here. The common base features encompass
deciding membership function based on the knowledge. The differences are mostly
in the selection of the ensembles that are eligible to join. Some minor changes to
membership semantics are required for growing ensemble specification.

63



Shared Component

Specifying the components as shared in the membership function is the basic
concept of DEECo ensemble that supports two components with a shared role. A
shared component can be part of arbitrary number of ensemble instances of any
type. The shared components are used across in many drafted examples. The
shared membership seems to be practical even in combination with ensembles
with complex structure..

Exclusive Component

A more restrictive than shared is the exclusive membership in ensemble. This is
used main for ensembles that have complex structure due to the different usage
of ensembles with more advanced structure. Ensembles with simple structure
are usually used for data exchange where overlaps are not a problem while more
structured ensembles, used for coordination, may malfunction if a particular
component is member of multiple ensembles.

An exclusive component can be part of only one instance of particular ensemble.
Ezclusive membership is handy for defining unique roles in the ensemble, i.e.
platoon leader, but comes at cost of high runtime complexity in ensemble formation
algorithm. The exclusive is also used in many examples drafted in Section 5.2.1.

Exclusive Component in Role

In some cases the exclusive is too restricting. For example in Scenario VS4 where
a platoon is described using the leader-follower links. The problem is that each
component needs to be part of two links, but exactly in one of the leader and
follower roles. In order to describe this a feature to mark component membership
as exclusive-in-role is needed.

Exclusive-in-role behaves like exclusive. The difference is that a component is
split into multiple virtual components, each having one of the roles of the original
component. The virtual components are then assigned exclusively to ensemble
instances.

Exclusive on Domain

In some of the Scenarios, such as Scenarios VS15 and VS16, where the feasibility
of a schedule is one of the constraints, it would be nice if such constraint could be
expressed at the level of the ensemble. One of the possible solutions is to define
a domain of possible values of the schedule in the component and membership
function while enforcing exclusive values in the member components.

Again this feature can be implemented by splitting each component into virtual
ones. In this case the split is defined by different values that belong to the schedule
domain. Ensemble instances than contain particular virtual component. i.e an
ensemble instance containing a virtual component taxi-car-from-8:23-to-8:56.

Growing Ensemble

In case of the ensembles that contain components meeting a special condition that
is supposed to hold once ensemble is established the membership condition can

64



be formulated as a transaction that modifies existing ensemble by adding a new
component into it. This feature is relevant to Scenarios VS4 and VS5. In this case
the membership condition would have the form of a guard that checks whenever
the new car is close enough to existing cars in the platoon or acceleration group.

5.2.3 Ensemble Purpose

The nature of the knowledge exchange depends on the purpose of the ensemble.
The ensembles that arise from the discussed Scenarios are used for data exchange,
coordination, and maintenance of a shared state. The purposes of the ensembles
in different scenarios are captured in Table 5.1.

Use case  Data exchange Coordination Shared state
VS1 stream of frames X X

VS2 X order at crossing v

VS3 commands to car lane change X

VS4 X speed and distances speed
VS5 X speed, distances acceleration
VS6 X precedence X

VS7 incoming cars X X

VS8 v X X

VS9 emergency path v X
VS10 collect threats X X
VSi11 collect road usage optimize route X
VS12 X spot usage spot allocation
VS13 X road, position platoon data
VS14 available cars stops and route X
VS15 schedule exchange taxi schedule X
VS16 plan exchange station slots X
VS17 collect payments X X
VS18 collect lane usage lane assignment X
VS19 collect accidents car assignment X

Table 5.1: Ensemble purpose of the vehicular scenarios. "X" means the scenario
does not use an ensemble such a way, "v" mark or clarification text means that
the scenario uses particular ensemble for the purpose.

5.3 Implications for Communication

The formal ensemble definition and formation is only a part of the problem.
Functionality of the ensemble depends also on (i) the ability to propagate the
knowledge of the component to the computational node that actually forms the
ensemble and (ii) propagation of the resulting data back to the components.
The key question in communication part of the ensemble formation is where the
ensemble is formed and what communication media is used. Answers to both

65



questions have serious impact on throughput latency, reliability, and overall ability
to create a real-time system.

Regarding the vehicular, robotic, and Industry 4.0 scenarios the ensemble
formation options encompass distributed operation, centralized formation on a
server, edge cloud server based formation, and formation performed per ensemble
on a mobile network node. The communication media used encompass short range
packet radio, long range mobile network with the Internet connection, and an
application specific networks build on top of a short range packet radios. The
ensemble formation and networking options are detailed in the following sections.

5.3.1 Centralized Formation

Centralized formation of the ensembles depends on a server capable of establishing
and maintaining the ensembles. The knowledge of all components, possibly hosted
directly on mobile nodes, cars, needs to be send to the server. The server maintains
ensemble instances and send possible knowledge changes arising from the ensemble
operation back to the components.

On one hand this approach bring benefits such as consistency, efficiency in
membership decision, and availability of a global view of the system. On the
other hand the necessity to transfer the knowledge and maintain the permanent
connection limits the scalability, resilience, and reliability of the system. The
mentioned problems can be mitigated by placing the server to the edge cloud or
other location close to the nodes hosting components. Then the communication
latency and throughput disadvantages are limited. Further if the ensemble forma-
tion server is part of the mobile network it may have access to a raw connection
to the network nodes hosting the components, hence providing guarantees on the
network link properties.

5.3.2 Distributed Formation

Distributed formation keeps the ensemble membership decision and maintenance
of the ensemble on the nodes hosting the components or other dedicated network
nodes that are dispensed in the environment. In case of the simple, structure
less, ensembles the formation of ensemble is fully distributed and conducted
independently on all nodes hosting a component. A replica of the knowledge of a
remote component and the local knowledge are tested for membership condition,
once the test succeeds the knowledge exchange is performed in such a way that it
only updates knowledge of the local component.

The bright side of distributed operation is the resilience to network failures,
reduced latency, and scalability. The obvious downside is a loss of consistency
and possibly limited options for ensemble membership and knowledge exchange
specification.

5.3.3 Instance Based Centralization

This is a possible middle ground in the ensemble formation. Keeping the formation
of a single ensemble instance on a single computation node, thus keeping the
consistency, but allowing any node in the system to take function of an ensemble

66



former. At the cost of increased complexity in the communication protocol and
runtime design the ensemble formation can be deployed to mobile nodes hosting
the components. Then each node tries to establish an instance of the ensemble
and once it succeeds it obtains acknowledgment from all the member components.
The acknowledged ensemble instance is than hosted on the node where it was
created and the knowledge changes are propagated to nearby nodes hosting the
member components. This way the ensemble operation would be consistent and
resilient at the same time. Moreover the ensemble forming node might run on the
central server and manage the components remotely, thus effectively providing
smooth movement between the distributed and centralized operation.

5.3.4 Mobile Broadband

Mobile data connection such as 4G and future 5G provide long range connection
and connectivity to the Internet. Sharing the knowledge using these technologies
can be realized using an IP connection to a central server, or between mobile
nodes hosting the components. Alternatively the network might allow clients to
talk directly to each other while removing communication overhead and improving
latency. Also the ensemble formation infrastructure might be part of the mobile
network.

The advantage of the mobile broadband is the high throughput and IP connec-
tivity enabling global range connections. On the other hand, the mobile broadband
availability cannot be relied on in remote places. Moreover, the latency and relia-
bility can be influenced by other clients using the same network. Also, in general
the mobile broadband cannot be relied on to provide real-time communication
media.

5.3.5 Packet Radio

MANETS such as IEEE 802.15.4 or WAVE provide short range communication.
Using this media to share the knowledge requires broadcasting the knowledge of
mobile nodes hosting the components to their direct neighbors. As the knowledge
does not reach the whole network it may be necessary to use this media in
combination with distributed ensemble formation and knowledge rebroadcasting
mechanisms.

The benefit of the packet radio systems is the removal of dependency on the
infrastructure resulting in resilient communication system. Moreover the WAVE
operates in the dedicated radio band, thus the interference with other systems is
reduced to minimum. Usage of the dedicated radio band and employment of a
suitable Media Access Control (MAC) enables creation of a real-time EBCS.

The limited range of the packet radios can be extended by adding the infrastruc-
ture that provides a global IP connectivity or by employing an application specific
routing protocol. Unfortunately both these options partially remove benefits of
packet radio systems.

5.3.6 Communication Overview

In earlier sections the options for ensemble formation and knowledge sharing were
discussed. An overview of the communication options in context of the vehicular

67



Use case Formation Communication

Centralized Hybrid Distributed 4G/5G MANET Real-time

V51
ViS2
VS3
ViS4
VS5
VS6
VST
VS8
VS9
V510
V511
VS12
VS13
VS14
VS15
V516
VS17
VS18
VS19

NAAX NSNS X N N X XXX XN
B} MAUX AR AR NN XX NN NN X
WX A X X XXX XXX NN XN X XXX
CAXCUCNUCNNCCN > %% % %S
NXAX X XXX XNCNSNSNSNSNNSNSI %
MNO% X X} X X XXX XA X NN N X XX

Table 5.2: Ensemble formation and knowledge spreading features used by example
scenarios.

scenarios is given in Table 5.2.

5.4 Network Reliability and Availability

In dependency on the scenario, impact of the network failures and outages, limiting
the knowledge propagation, on the ensemble operation and whole system may be
in some cases significant. A network shortage leads to removing of a components
from an ensemble and possibly also to destruction of an ensemble instance.
Some of the scenarios, VS4, VS5, VS8, and VS9 do not allow for ensemble
instance being broken in the middle of the operation. i.e. the platoon needs
further coordination to tear down once it is established. Therefore a sudden loss
of the connectivity may lead to a catastrophic failure. In case of the obstacle
discovery and emergency path cleanup the loss of communication and subsequent
loss of established ensembles does not directly lead to a dangerous condition, but
seriously limit the operation of the system. As a consequence all cars may need
to slow down and the cleared path for emergency vehicle is no longer guaranteed.
Another failure mode applies to Scenarios VS3, VS2, and VS6. These scenarios
include negotiation that enables a car to make a move while the other cars make
necessary space for it. The nature of the protocol is that no move is performed

68



until the gap is established and detected by the sensors. Thus the unavailability or
limited reliability of the network do not put the system into a dangerous condition.
But the lack of network connectivity locally degrade the service and may limit
the ability of the cars to perform the moves that were supposed to be negotiated.

The remaining scenarios do not pose a threat to system safety and granular
degrade with decreasing network coverage. For instance the VS15 dealing with taxi
management will suffer only minor disruptions if the connectivity is not provided
in some areas.

5.5 Real-time Communication

Achieving soft real-time or even hard real-time processing is a challenging task
even when a network is not used. The system needs to be analyzed down to the
interrupt timing and the memory allocation is better to be completely avoided
at runtime. These restrictions make even implementation of a network driver a
challenging task. As the target vehicular systems are mobile it is necessary to
think of a wireless network to be used for communication.

Once the wireless network is part of the system, it is necessary, apart from the
usual problems, to deal with network latency, packet loss, and network congestion.
The "air" is by nature a shared media where the network nodes compete for a
media access. Moreover the same media may be used by multiple systems. I.e.
the Wi-Fi provides almost no guarantees on MAC. Anyone can run a Wi-Fi
enabled device sharing a frequency band with a system of interest. Fortunately
the vehicular wireless systems such as WAVE use a dedicated frequencies, thus
the others should not interfere. But still some random interference and faults in
the MAC may cause occasional interference resulting in a packet loss.

In order to provide desired level of reliability the target system needs to run
on a dedicated frequency band, employ MAC that prevents congestion or tolerate
it, and rely on maximum of N subsequent packets being lost. The resulting
probability of a failure together with a cost of the failure determine the system
safety level.

The evaluation of the packet loss and failure rate gets complex once a packet
is supposed to be delivered using multiple hops in the network. Usually the
probability of the information being delivered on time drops dramatically once
multiple hops are introduced. Fortunately the scenarios requiring the real-time
communication do not use it for the long range communication. Naturally the
tight coordination is required only on processes taking place close to each other in
space.

As captured in the Table 5.2 the scenarios like VS6, VS8, VS5, and V'S4 require
some sort of real-time networking. The roundabout join scenario requires real-time
communication to ensure that the gap where the car is supposed to join still exists,
but the joining car can back off if too high latency is discovered or a message is
missed. Similarly the obstacle discovery scenario can deal with variable latencies
at the cost of reduce speed of cars. These scenarios belongs to soft real-time
category where a missed deadline in delivery does not result in a system failure,
but rather the system degrades its utility gradually while maintaining its safety.
On contrary, the platoon and speedup coordination are hard real-time systems
where the system fails terribly once the communication deadlines are missed.

69



Even if the imminent crash can be avoided by taking preliminary measures such
as sorting cars form beginning to the end of the platoon by descending break
capacity, missing a deadline in platoon coordination can be considered a hard
system failure.

70



CHAPTER 6

Solution Strategy

This chapter outlines an approach taken in order to address challenges and fulfill
goals of this thesis. Based on the motivation presented earlier in the text the use
cases that motivate this work were described in Chapter 4. Keeping in mind the
split of the use cases into groups based on the required communication distance
and other estimated network related properties the use cases were analyzed in
Chapter 5 while the interesting parts of their logic were captured in notion of
ensembles. Using the drafted ensembles the required features on the ensemble
specification and operation with respect to the original use cases were identified.

Based on the use cases, and in particular their analysis and mapping to
ensembles, the following chapters describe the answers to the research challenges
presented in Chapter 3. The results presented in Chapters 8, 9, and 12 were
published in conference proceedings of CBSE 2015 [1], ISOLA 2016 [7], and
SEAMS 2016 [6] respectively. The work mentioned in Chapter 10 was published
in Journal of Microprocessors and Microsystems [5]. The simulation test-bed for
experiments with sCPS, covered in Chapter 12, was also published as an artifact
and made available to other scientists in the sCPS community and beyond.

First, different ensemble formation techniques are presented with their network
related behavior explained as observed during experiments described in Chapter 13.

The classic DEECo bipartite ensembles, forming a baseline DEECo implemen-
tation, are described in separate section of Chapter 7. These are evaluated in
terms of membership condition locality, partitioning, and knowledge exchange. In
Chapter 7, also the intelligent ensembles, an extension that introduces roles and
declarative ensemble specification, are described in terms of possible distributed
operation and network related properties of their formation.

Next, the real-time operation of distributed sCPS is explained in Chapter 10.
Exemplified on the Intelligent Crossroad System (ICS) the common issues of hard
real-time system operating on top of the wireless network are explained including
a possible way how to deal with the problems using the DEECo ensembles and a
proper timing analysis.

Regarding the operation of EBCS on a realistic wireless network two distinctive
methods for optimization of the communication were outlined in Chapters 8 and
9. First, a technique that allows to save messages and even improve quality of
formed ensembles by partitioning a distributed system is described in Chapter 8.
Then a general way of adaptation based optimization of the EBCS based sCPS is
described in Chapter 9. Aiming on the autonomous optimization of the runtime
towards current network quality and throughput the proposed approach identifies

71



influential parameters and extend an architecture of the system in such a way
that these can be set by the designer as well as automatically optimized at the
run-time.

In order to properly evaluate the approach described earlier in the text an
experimental implementation of the techniques was crated. Several frameworks
were implemented allowing for deployment of components and ensembles. Features,
usage examples, and benefits of these are described in Chapter 11.

Based on the one of the provided implementations JDEECo a test-bed was
crated that enable easy experiments with adaptation of robotic sSCPS. The test-bed
described in Chapter 12 is composed of multiple simulation engines that take
care of the precise simulation of robot movement, sensor readings, and network
communication.

Measurements of various qualities of the draft implementations of the systems
outlined in Chapters 10, 8, and 9 are presented in Chapter 13 in order to prove
applicability of described approaches.

72



CHAPTER 7

Effects of Network on Ensemble
Formation

This chapter describes bipartite ensemble and intelligent ensemble in Sections 7.1
and 7.2 respectively. The reason behind two different ensemble specifications
is twofold. First, the distinction between the two is evolutionary. The concept
of bipartite ensemble was initially created and the intelligent ensemble started
as its extension that addresses lack of support for complex group description.
Second, difference is in the operation and implementation. Different formation
specification, used in intelligent ensemble, brings more expressiveness, but comes
at the cost of additional restrictions on synchronization and requires a constraint
solver to for the groups. Due to the operational differences, that sometimes prevent
intelligent ensemble from being used, both the approaches remain relevant to the
topic of this thesis. These are analyzed in this chapter in terms of requirements
on the communication, resilience, and possibilities for centralized and distributed
operation. The analysis is required in the following chapters to understand the
underlying group formation techniques and their properties that are subject to
various optimization and improvements in the following chapters. By providing
the initial group formation analysis this chapter helps in addressing goals G1 and
G2 of this thesis.

7.1 Bipartite Ensembles

This section deals with classical DEECo ensembles as outlined in [10] and imple-
mented by a JDEECo framework in terms of network requirements and resilience to
data loss. The classic DEECo ensembles follow the coordinator-member structure.
Where the ensemble membership and knowledge exchange are described for the
two components featuring the coordinator and member roles. The membership
condition is periodically applied on all pairs of components available using a
technique similar to Duck-Typing. A component containing all the fields used in
the membership condition for particular role is tested for possible membership.
This technique make the membership implicitly shared and enables existence of
star shaped ensembles centered around the coordinator component as displayed
in Figure 7.1.

The simple structure based on the coordinator and member roles enables fast
membership decision and fully distributed ensemble formation. These ensembles
are most suitable for data aggregation tasks. Achieving coordination is a bit more

73



ﬁ Ensemble ﬁ
Ensemble

Ensemble
Ensemlk W e ﬁ
/ ﬁ Ensemble W
E Ensemble

Figure 7.1: Start topology of ensembles allowing for data sharing. Coordinators
(red) are in a bipartite ensemble with nearby members (blue). Data are exchanged
from members to coordinators while aggregated results can be exchanged back to
members.

complex task as a custom structure of the ensemble cannot be enforced easily.
Therefore hence, the coordination usages are mostly limited to two component
scenarios.

7.1.1 Membership Condition

The membership condition sets the requirement on the knowledge propagation in
the network. In the JDEECo each component in the system publishes a replica
of its knowledge and sends it to the network node responsible for decision of
membership condition. In case of a centralized ensemble formation this is a
single server responsible for maintaining ensembles. If the ensemble formation
is distributed all the mobile nodes or cars in vehicular sCPS needs to receive
fresh replica of each others knowledge. Considering large systems the technique
seriously limits the availability of the system if used directly. Even when using
more mature knowledge propagation, in case of the distributed ensemble formation,
the consistency sometimes has to be sacrificed for the sake of the scalability.

In order to design a scalable and usable system it is necessary to find a sweet
spot where the knowledge replica spreading is limited enough not to conquest
the network while the utility of the system is still as high as possible. The
techniques used to reduce network load are relying on two concepts. First is the
boundary condition that limits where are the knowledge replicas spread based on
an over approximation of the membership condition. The boundary condition is
usable especially if the distributed ensemble formation is used. The second one
is partitioning the components and looking for ensemble condition satisfaction
only inside the partition. If centralized membership condition decision is used
the partitioning removes necessity to concentrate knowledge replicas on a single
node, thus allowing the system to scale. The details of mentioned techniques are
described in the following sections and their possible effectiveness is evaluated in
Chapter 13.

74



Prefer Close

If the membership condition restricts distance between member and coordinator
to a reasonably low value. Such a restriction can be used as a boundary condition
for the knowledge propagation in a distributed system. Even when the knowledge
replica spreading needs to be further limited in order to cope with congestion the
quality of the established ensembles will usually not suffer significantly.

Regarding the centralized ensemble formation the locality of ensembles can be
used to partition the system. Multiple ensemble forming nodes, responsible for
possibly overlapping areas, help the system to scale.

Prefer Random

In case of the membership condition being not related to distance between the
member and coordinator it cannot be used directly as a boundary condition with
the distributed ensemble formation. Further, it cannot be directly used to partition
the centralized system. Depending on the other properties of the membership
condition used for distributed ensemble formation, it may be possible to deploy an
artificial distance limit that reasonably limits the network usage but still enables
construction of valid ensemble instances. Assuming there is no relation between
membership and distance a quality of ensembles should gradually degrade as the
restrictions on maximum knowledge propagation distance are tightened.

In case of the centralized ensemble formation the distance can again be used
to partition the system. Using physical location to partition the system should be
as good as using any other membership unrelated value for partitioning.

Prefer Distant

Finally, in case of a high distance between components in ensemble being preferred,
there is no easy way to enable the system to scale.

Considering a system with the distributed ensemble formation it is usually not
easy to spread the knowledge only to nodes hosting distant components. Even if
that would be technically possible the restriction on distance being more that a
certain threshold is much less restricting than a condition on a maximum distance.
Therefore the network congestion is not so easy to avert this way.

If the system uses a centralized ensemble formation and also performs parti-
tioning by a component location the ensemble creation would be in most cases
disabled as the components in the same partition would not be distant enough.

Partitioning

The component location is not the only option for partitioning the EBCS. In
general the system can be partitioned by any value present in the knowledge.
There are two reasons to partition the system that are discussed in following
paragraphs.

Partitioning for Scalability As mentioned in the previous sections the DEECo
system with centralized ensemble formation do not scale well as all the knowledge
data needs to be passed to a single network node hosting the ensemble formation

75



process. Apart from mentioned partitioning by a component location, it is possible
to use any other knowledge field. i.e. the id of the component. Considering it
is a numerical value the partitions can be id mod N. Splitting the system into
partitions allow it to scale at the cost of limited ensemble creation opportunities
as components in different partitions cannot take part in a single ensemble. The
situation is different if selected partitioning is actually an over-approximation of
the ensemble membership condition. In such case the ensemble creation is not
significantly affected. Actually, if the partitioning is a strict over-approximation
the ensembles are constructed as if the partitioning was not used.

Partitioning for Ensemble Formation In case where such a partitioning ex-
ists that it directly reflects a membership condition it can be utilized to implement
the membership condition decision process. i.e. when the car components are
about to be grouped in an ensemble in such a way that ensemble members have the
same destination value in the knowledge, the partitioning by destination actually
form such groups that can be transformed to ensembles directly. In such case a
network node responsible for forming ensembles in a particular partition actually
hosts a single instance of mentioned ensemble. Such a group can be further split
into fine grained ensembles by additional constraints present in the membership
condition.

7.1.2 Knowledge Exchange

A knowledge exchange is a periodical process that follows successful formation of
an ensemble using a membership condition. The knowledge exchange is defined
by a function that read and write knowledge of both the coordinator and member
components. Put simply, the knowledge exchange can be seen as a process that
runs on a merger of the two components. While the ensemble formation phase is
sensitive to network throughput and knowledge reach, the knowledge exchange
is usually limited by a network latency and stability. This is due to the fact
that ensemble members are already identified and widespread knowledge replica
propagation is not required. Instead, the data are exchanged only among the
formed ensemble members resulting in much less overall traffic. Thus a possible
coordination or state synchronization provided by the knowledge exchange is more
sensitive to the latency than throughput.

The JDEECo implements bipartite ensembles in such a way that the knowledge
exchange is performed just once right after the membership check. This behavior
makes the knowledge distribution simpler as the same knowledge replica is used
for the membership check and the knowledge exchange.

Centralized Knowledge Exchange

In a centralized system the ensemble membership decision and knowledge exchange
are performed on a dedicated central server. This approach makes consistency
between membership condition check and knowledge exchange easy to achieve.
Also the membership condition check is easier to implement as the knowledge
replicas can be archived and deeply analyzed on a central server that is supposed
to have enough capacity to perform such task.

76



But still, the consistency of the knowledge replicas used is not guaranteed.
Moreover, consistency issues arise when a result of knowledge exchange is about
to be written back to the knowledge of the member component. Due to the delay
caused by double network latency and knowledge exchange processing delay the
knowledge of the component might have changed in a mean time. The change
might have been performed by other ensembles or a local process of the component.

Distributed Knowledge Exchange

In case of the ensemble formation being performed in a distributed manner the
consistency enforcement challenges are different. Relating to the vehicular sCPS,
the deployment of the components on the cars enables also knowledge exchange
to take place on cars. As well as the ensemble membership condition check also
the knowledge exchange is performed between the local component hosted on
a car and a remote component represented by a replica of its knowledge. The
JDEECo implements the knowledge exchange by running the knowledge exchange
function and writing the changed knowledge data to the local component only. A
symmetrical knowledge exchange is supposed to take place on a remote component.

Distributed knowledge exchange simplifies integration of knowledge changes
introduced by the ensemble operation. The exchange is performed locally on a
network node that is also hosting the knowledge that is updated with the changes.
Thus the knowledge updates can be synchronized among multiple ensembles and
component processes.

On contrary, the consistency of knowledge exchange performed on different
network nodes cannot be completely enforced. Consistency relies on ability of the
system to perform the same actions on network nodes hosting the member and
coordinator components. Latency and packet loss poses a threat to such ability
and thus has a great impact on the overall consistency of the EBCS operation.

7.1.3 Communication Demands

Aforementioned operation of the ensemble formation and knowledge exchange can
be translated to the requirements on the network in terms of reliability, reach,
throughput, and latency. The requirements differ depending on the properties
of the membership condition and a choice of either a centralized or distributed
ensemble formation.

In an EBCS with a centralized ensemble formation where the underling network
is IP based, the most of the requirements are usually satisfied. The IP network
provides global reach. Reliability and high throughput are guaranteed on the side
of the centralized server. On contrary, the latency is usually high due to complex
routing and possibly sub-optimal location of the centralized server. Moreover,
mobile nodes hosting the components are connected via a wireless network, thus
subject to interference, limited bandwidth, and link quality issues. Also the mobile
broadband solution used at the mobile node side may suffer from delays caused
by link disconnects due to longer times needed to configure the connection.

In general the deficiency in mobile broadband coverage cannot be addressed
at the level of system architecture. What can be influenced is the latency and
throughput at the mobile node side. Emerging 5G as well as, in a limited manner,
current 4G networks enable deployment of services, such as ensemble formation,

7



directly to the mobile broadband network. This technology called edge cloud
reduces latency in a server to client communication by placing the server closer to
the client both physically and logically.

In case of the distributed ensemble formation the demands are almost exactly
the opposite. Assuming the nodes hosting the components are communicating
using a dedicated short range radio such as WAVE the latency and reliability
demands are satisfied at the sort range. The problems arise at longer range where
both packet loss and necessity to perform a multi-hop packet delivery make the
situation a bit more complex. Especially in cases where a real-time cooperation of
components is necessary, the possibility of losing a packet introduces a challenge
to design the timing in a system in such a way that deadlines are met with
sufficiently high probability. Naturally, as the chance of a packet loss gets higher
the complexity of the timing design moves from hard to impossible.

The consistency of the distributed bipartite ensemble formation relies on the
assumption that the communication works the same in both directions. In detail,
this means that any pair of mobile nodes hosting two components A and B is
guaranteed to either provide bi-directional communication between A and B or
no communication at all. In case where the packets holding the knowledge replica
are lost only in one direction the ensemble in question may be only partially
established. This leads to knowledge exchange being performed only on A. Thus
the possible coordination between A and B is seriously damaged as A behaves as
cooperating with B, but B is not aware of that.

In order to support the distributed ensemble formation the network used by a
nodes hosting both the components and ensemble former has to maximize available
throughput a limit the packet loss. Experiments in the Chapter 13 prove these two
properties are connected as with a high traffic and possible congestion the packet
loss rate rises. Interesting guarantees are provided by the WAVE protocol designed
for the Vehicle to Vehicle communication (V2V) communication. The dedicated
radio channel and Time Division Multiple Access (TDMA) multiplex limit the
packet loss due to interference and transmit collisions while the separation of
communication into channels with QoS prevents losses of critical data due to
congestion. Naturally, the packet loss cannot be avoided completely, but keeping
it at manageable level is required for the system to generate desired utility.

Lack of the guarantees on latency and reliability can easily harm the consistency.
In case of a delayed delivery of a changed knowledge or lost knowledge replica it
may be impossible to apply effects of local processes and multiple ensembles the
component is part of consistently. The effect of delays and losses in packet delivery
can be mitigated by sending only changes that can be applied on a knowledge of
the component in any order resulting in a consistent knowledge state. In order to
use this feature the network itself or the network stack on the mobile nodes needs
to provide reliable clock source and equip the packets with timestamps.

7.2 Intelligent ensembles
Intelligent ensembles [28][27] are based on bipartite ensembles while focusing on

detailed description of complex groups of components featuring explicit roles.
This chapter deals with requirements on the network communication of intelligent

78



ensemble.

A knowledge in intelligent ensemble differs from the one in bipartite ensembles
by explicit definition of a set of interfaces it implements. The interface is called
role and defines a set of knowledge fields that has to be present in the knowledge
of the component. The roles are used to restrict components that can take part in
the particular ensemble. An ensemble specifies member roles and their cardinality.
Only a component with a knowledge implementing the prescribed role can join
the ensemble.

Another difference is that the membership of a component in a particular
ensemble is exclusive. Put another way, a component that implements particular
role can take part only in a single instance of the ensemble. This feature enables
complex coordination and data aggregation to take place using the intelligent
ensembles as it is possible to force ensemble instances not to overlap. Without
this guarantee a close coordination, inside a group defined by an ensemble, is hard
to achieve as a single component can be part of multiple instances possibly forcing
it do perform contradicting actions.

As the system needs to chose which of possibly many ensemble instances should
a particular component be part of a fitness function is introduced to extend the
membership condition. The fitness function evaluate utility added by a particular
ensemble instance to the system. The component is added to an ensemble in such
a way that a system utility is maximized.

The exclusive membership together with fitness optimization come at the price
of increased complexity of the ensemble formation. In fact, once the optimization
of utility value is required an ensemble membership decision becomes an intractable
problem.

Due to this the membership condition and wutility function are expressed as
logical expression using an EDL. This enables utilization of SMT solvers that
can find out the optimal component to ensemble assignment. Providing that
the number of components to evaluate is reasonably small the ensembles can be
formed this way in a manageable time.

7.2.1 Solving Intelligent Ensembles

As the ensemble membership decision is not trivial, there are several approaches to
the solution. In fact, usage of a particular ensemble membership decision technique
has implications in form of different requirements on the network infrastructure.
In detail, different decision techniques are differently sensitive to limited reach,
reliability, and throughput of the underlying network.

SMT Solvers

The standard approach to solve an intelligent ensemble, as proposed by intelligent
ensemble authors in [27], is to use an SMT solvers on top of a membership condition
and utility function expressed as logical expressions. This way the a particular
area, or the whole system, is analyzed and the ensembles are instantiated in an
optimal way as decided by the solver.

If a centralized formation of an ensembles is considered, this technique does not
impose additional requirements on the network. In case of a distributed formation
the situation is different. Due to direct optimization of ensemble utility on a

79



@ @@3

(a) Yellow car is not reachable due to network issues.

o " o b
Sl 2%&& Ry %@ o Lo

(b) Yellow car is reachable, ensembles reordered.

Figure 7.2: Instability of the optimal ensemble formation. Ensemble defines
disjunctive car pairs, fitness is awarded for mutual closeness of cars in the pair.
Inclusion of yellow car causes all ensemble instances to change.

large scale a minor change in the knowledge may result in a radically different
instantiation of ensembles. Due to this fact usage of an outdated knowledge
replica may significantly damage the system consistency. The same applies to the
case where even a single knowledge replica is lost. As displayed in Figure 7.2 the
optimal assignement of components to ensemble instances can differ dramatically
when yellow car is hidden, Figure 7.2a, or visible, Figure 7.2b. Thus intelligent
ensembles put strong additional requirements on symmetry in knowledge replica
delivery a reduced or at last predictable latency.

Auctions

In response to the downsides of the SMT based approach to formation of the intel-
ligent ensembles described in the previous section an auction based decentralized
ensemble formation system is drafted here. The idea is to weaken requirement on
the strict global optimization of instantiated ensembles by seeking only locally
optimal assignment of components to the ensemble instances. This change enables
limited knowledge propagation and simplifies ensemble formation process.

Naturally this change in the formation no longer support creation of ensembles
that are formed from components that do not belong to a single local scope. As
long as the local scope is defined by the rage of the knowledge propagation in a
distributed system this limitation do not poses additional limits. Moreover, the
the scope can be extended by long range communication links if necessary.

The operation of the auction based distributed ensemble formation system is
maintained by a set of dedicated coordination components. The are deployed on
mobile network nodes. These are hosting also the DEECo components. Alterna-
tively the coordination components can be deployed on dedicated coordination
servers or both the approaches can be combined. A coordination component
receives knowledge replicas from DEECo components nearby and attempts to
form an ensemble instance including the source components. In order to to make
a component part of the ensemble instance the coordination component needs an
acknowledgement from the component followed by a periodic keep-alive messages.
This way the membership exclusivity and ensemble consistency is enforced.

80



This is where the auctions are used. A DEECo component that is wanted by
multiple coordination components receives bids from those. A bid include increase
in the utility caused by joining this particular ensemble instance and link quality
to the coordination component. Based on the required stability and received bids
the component acknowledges the highest biding coordination component.

The bidding system enables distributed ensemble formation while assigning
components to the best ensemble it can reach. This ensures that vital ensembles
with good connectivity are created that support further in-ensemble communication
in order to perform the knowledge exchange.

7.2.2 Communication in Intelligent Ensembles

As well as in the case of the bipartite ensembles the communication requirements
in intelligent ensembles differ based on the ensemble formation and knowledge
exchange technique used. Different cases are detailed in the following sections.

Centralized Ensemble Management

The centralized ensemble formation has very similar requirements as in the case of
the bipartite ensembles. As all the knowledge replicas are send to central servers
for processing. This brings challenge to keep latencies low and maintain necessary
global IP connection throughput in remote areas.

Distributed Ensemble Formation

An auction based ensemble formation, mentioned in Section 7.2.1, is considered
for distributed ensemble formation. Assuming deployment of the components on
cars and short range radio connection using a WAVE, Wi-Fi, or IEEE 802.15.4
the operation of auction based system brings several challenges with respect to
the communication.

The most important one is the dissemination of the knowledge replicas. These
needs to reach coordination components that will possibly include source DEECo
component into an instance of the ensemble. If the dissemination using men-
tioned short range radio is used, it is critical to balance network utilization and
dissemination reach. Based on the experiments in Chapter 13 it seems that a too
wide condition on replica dissemination can easily lead to network congestion and
significantly limited system utility.

Sometimes the local dissemination of the replicas using a short range radio is
not enough. If possible, the technique used in bipartite ensembles to partition the
DEECo components can be used to send a replica of the knowledge also to one of
the remote servers that can provide additional coordination components.

Distributed Knowledge Exchange

As the intelligent ensemble has much richer structure than the bipartite ensemble
the knowledge exchange needs to have network aware semantics. One of the
possible approaches to the solution is introduction of ensemble knowledge. This
move puts an ensemble on the level of component, thus makes it a building block
of ensemble of ensembles. Apart from this architectural benefit the ensemble

81



knowledge simplifies the knowledge exchange in a distributed system. Instead
of a single knowledge exchange function that needs to be executed consistently
in a distributed system a two functions are used. The first one executed on the
coordination component, composes an ensemble knowledge based on the received
knowledge replicas. Then the ensemble knowledge replicas are disseminated the
same way as the ordinary knowledge replicas. The second function runs on,
possibly many, components that are part of the ensemble and provide mapping
from the ensemble knowledge back to the knowledge of the member component.

7.2.3 Communication Requirements of Component Coor-
dination

Intelligent ensembles differ from the bipartite ensembles in the desired usage.
Bipartite ensembles are mostly used for data sharing and aggregation. Explicit
structure of intelligent ensemble makes them suitable for close coordination of the
member components. Assuming usage in the coordination of components hosted
on autonomous mobile nodes such as cars or robots a different network properties
are required. The cooperation of mobile components require precise timing and
state awareness.

Due to this a low latency network is usually required. A WAVE radio that
uses a dedicated radio channel is one of the technologies available for this purpose
in the automotive domain. Rebroadcast of the knowledge replicas, necessary to
extend dissemination range, usually increases delivery latency. Fortunately, the
longer is the distance at which the cooperation takes place the longer are the
tolerable delays in replica delivery.

Another important property is awareness of broken or insufficient connection
among the cooperating components. Due to this another requirement is to maintain
active connection or send keep-alive messages in order to detect malfunction of the
knowledge exchange. This is necessary to implement a safe tear-down of an ongoing
cooperation among the components in order to avoid failures in coordination due
to network deficiencies.

82



CHAPTER 8

Communication Groups

This chapter addresses limiting data propagation when dealing with coordination in
a vehicular sCPS. The approach depicted on platoon scenario addresses knowledge
propagation goal G1 of this thesis and partially also coordination goal G2 of this
thesis.

Proposed solution discussed in this chapter takes into account both the local
level coordination of a platoon performed using a short range MANET and the
long range assignment of cars to different platoons. In particular, this chapter
introduces concept of groupers that remove necessity to propagate knowledge data
everywhere in the system. Proposed solutions that emerged during design and
implementation of the demonstrator were tested in the simulation and evaluated
in terms of network usage efficiency as described in Chapter 13. The results do not
only characterize the chosen scenario but also describe features of coordination in
vehicular system as a whole.

8.1 Platooning Scenario

As a running example, consider a scenario of emergency vehicles forming platoons.
The purpose of a platoon is to optimize movement (in terms of speed, safety, and
traffic disruption) of emergency vehicles towards the site of an accident. It is
assumed that each vehicle is equipped with the necessary hardware enabling both
short-range wireless communication (via MANETS) as well as infrastructure-based
connectivity (long range, dedicated to emergency services). Vehicles within a
single platoon communicate in order to maintain proper internal organization
of the platoon and to ensure satisfiability of the safety requirements such as
minimal distance between vehicles, maximal speed etc. Furthermore, all vehicles
(also across different platoons) exchange information necessary to form a platoon,
including desired destination, current location etc. The scenario together with
two types of data flows is illustrated in Figure 8.1.

In this scenario, the focus is applied on the organization of vehicles seen as
autonomous components that need to communicate globally (to form a platoon)
and locally (while in a platoon). Whereas the local coordination requires low
latency in data exchange, which is achieved by short-range communication, global
coordination accounts for optimality in terms of network utilization.

Considering the chosen scenario, components correspond to the main actors of
the system (i.e. vehicles). The template of these components is specified in Listing
8.1 by the Vehicle specification. Its state is captured by knowledge, Lines 8-17,

83



O ad-hoc

() infrastructure

Figure 8.1: Platooning scenario — ad-hoc and infrastructure networks employment

and operational functionality by processes, Lines 19-27. Every component features
a number of roles, Lines 1-5, which provide contract between the component and
ensembles. Processes are executed by the DEECo runtime periodically or in a
triggered manner. Each process execution starts with atomic reading (a part of) of
component knowledge, executing the process body, and ends with atomic writing
the results back to the knowledge.

1 role OtherVehiclesAgregator:

2 otherVehicles, position

3

4 role LocalTrainAgregator:

5 platoonId, localVehicles, speed, position
6

7 component Vehicle features OtherVehiclesAgregator, LocalTrainAgregator:
8 knowledge:

9 ID = V1

10 otherVehicles = [

11 (v2, {50.0722, 14.4568}),

12 (V4, {50.0745, 14.2356}) 1

13 localvVehicles = [(V3, {50.25636, 14,4568}, 45.6)]
14 position = {50.075306, 14.426948}

15 speed = 54.2

16 destination = 109

17 platoonId = 5

18

19 process measureSpeed:

20 out speed

21

22 function:

23 speed < SpeedSensor.read()

24

25 scheduling: periodic( 500ms )

26

27 ... /% other process definitions =%/

28

29 ensemble SameDestination:

30 coordinator: OtherVehiclesAgregator

31 member: OtherVehiclesAgregator

32

33 membership:

34 member.destination.Address = coordinator.destination.Address
35 AND !member.isPlatoonMember

36 AND !coordinator.isPlatoonMember
37

38 knowledge exchange:

39 coordinator.otherVehicles < {

40 (m.ID, m.position) | m € members }
41

42 for (m € members)

43 m.otherVehicles < {

84




44 t € coordinator.otherVehicles | t.ID # m.ID }

45 m.otherVehicles < (

46 coordinator.ID, coordinator.positon)

47

48 scheduling: periodic( 700ms )

49

50 ensemble PlatoonManagement:

51 coordinator: LocalPlatoonAgregator

52 member: LocalPlatoonAgregator

53

54 membership:

55 member.platoonId = coordinator.platoonId

56

57 knowledge exchange:

58 coordinator.localVehicles < {

59 (m.ID, m.position, m.speed) | m € members }
60

61 for (m € members)

62 m.localVehicles <+ {

63 t € coordinator.localVehicles | t.ID # m.ID }
64 m.localVehicles < (

65 coordinator.ID,

66 coordinator.position,

67 coordinator. speed)

68

69 communication boundary:

70 (sender: LocalPlatoonAgregator, node: NodeKnowledge)
71 = 3 component € node.components:

72 hasRole (component, LocalPlatoonAgregator)

73 AND component.knowledge.platoonId = sender.platoonId
74

75 scheduling: periodic( 200ms )

Listing 8.1: Examples of DEECo component and ensembles of the road trains
scenario

In Listing 8.1, ensembles reflect the two types of communication groups of vehicles
- within a platoon and across all the vehicles heading to the same destination. The
ensembles in this scenario are bipartite ensembles with role defined component
interfaces. The goal here is to propagate information about the vehicle’s desired
destination to other vehicles so that they can coordinate movement to form
platoons. It should be emphasized that, knowledge exchange, realized by the
ensembles to which a particular component belongs, is the only means of inter-
component communication.

8.2 Communication Using Domain Knowledge

Tailored for development of sCPS, the DEECo component model allows designing
a system at the architecture level without considering aspects related to its actual
deployment - component distribution, communication infrastructure, and even
its scaling in terms of the eventual number of component instances. Such an
abstraction level simplifies modeling and development of the system, as it allows
reasoning about components and ensembles in isolation, a crucial property when
dealing with complex systems. Problems arise when it comes to deployment of the
system, since there is a gap between the abstraction level of design and runtime
infrastructure. This typically implies the need to apply standard generic methods
for communication among distributed nodes. In particular in sCPS the efficiency
of communication can be substantially improved by employing application domain
data to optimize the deployment of the system.

85



This section describes how this can be achieved in DEECo by employing the
concept of communication boundary [35], and, as a key contribution, the novel
idea of communication groups.

8.2.1 Ad-Hoc Networks

DEECo and specifically its Java realization JDEECo [36], supports ad-hoc com-
munication via MANET. It relies on periodic channel-level broadcasts (and
rebroadcasts) of component knowledge. In a system, this allows a node not
only be aware of the knowledge of the components it hosts but also to learn
about knowledge of other (remote) components. This approach is appropriate for
MANET that are not fully reliable and prone to frequent disconnections due to
radio interference and mobility of nodes.

The communication protocol in JDEECo is based on bounded Gossip [35],
where knowledge rebroadcasting is limited by communication boundaries artic-
ulated in ensemble specification. A communication boundary is employed by a
node for deciding whether or not to rebroadcast the component knowledge heard
from other nodes. This way, by constraining component knowledge dissemination
to a specific geographical area, this mechanism allows better utilization of the
communication channel, which in wireless settings comes at a great price. An
example of communication boundary is given in Listing 8.1 (lines 69-73) when the
component knowledge data dissemination is bounded to the nodes of the vehicles
participating in the same platoon.

The specification of a communication boundary, is given as a predicate formu-
lated on the component knowledge to be rebroadcasted and the knowledge of a
rebroadcasting node. This way, the communication boundary reflects only the ap-
plication domain-specific knowledge known at the architectural level. (Specifically,
no information about future deployment is required.) In case of code displayed in
Listing 8.1, the domain-specific knowledge captures the fact that a platoon is a
spatially connected structure and thus it is sufficient to involve only the platoon
nodes in the rebroadcasting. As an aside, this is the only enhancement to the
original semantics of the ensemble as specified at the architectural level.

8.2.2 Infrastructure Networks

The benefits of the communication boundary is apparent for MANET and, in
particular, VANET networks; nevertheless the idea is also applicable when dealing
with more reliable infrastructure networks. In such settings, however, one can
do more than just restrict data retransmission. Having a topology that does not
change often (in particular if established links hold for a relatively long time), a
routing mechanism can be introduced to provide for optimality with respect to,
e.g., bandwidth utilization, latency, and computation balancing.

Therefore, JDEECo utilizes Gossip in case of infrastructure networks [37].
As a data dissemination protocol, Gossip is resilient to communication failures.
Nevertheless, depending on the application, standard Gossip may still be costly, es-
pecially in terms of the amount of data being transmitted. Specifically, in JDEECo
standard Gossip causes that component knowledge is published periodically to all
nodes in a system, which does not scale well for large-scale systems.

86




Communication groups

To mitigate the problem of unnecessary data transmission over the network, an
extension was introduced to ensemble definition by introducing communication
group, delineated according to the component knowledge of the coordinator and
members of an ensemble. The basic idea is to introduce the groups of components
(members) that are related to each other in terms of a specific knowledge value
(e.g. having the same value of the destination attribute). Such a group serves as a
hint for optimizing deployment in terms of communication efficiency by restricting
and localizing the area in which discovery of components to form an ensemble
is performed. Defined again at the architecture level via component knowledge
specified in roles, orthogonally to the membership, knowledge exchange, and
communication boundary, the concept of communication group just enhances
the original semantics of ensemble, not modifying the meaning of other DEECo
abstractions. For illustration, consider line 5 in code Listing 8.2, indicating that
communication groups will be based on the destination value in the coordinator’s
knowledge. In this case vehicles going to the same destination (expressed by the
membership condition) compose communication groups, each of them correspond-
ing to a specific value of the destination attribute in the coordinator’s knowledge.
The situation is visualized in Figure 8.2, where ensembles of different emergency
vehicles platoons are heading to distinct locations in Prague 6 and in Prague 4
districts.

1 ensemble SameDestination:

2 coordinator: OtherVehiclesAgregator

3 member: OtherVehiclesAgregator

4

5 communication group: coordinator.destination.CityDistrict
6

7 membership:

8 member.destination.Address = coordinator.destination.Address
9 AND !member.isRoadTrainMember

10 AND !coordinator.isRoadTrainMember

11

12 knowledge exchange:

13 coordinator.otherVehicles <« {

14 (m.ID, m.position) | m € members }

15

16 for (m € members)

17 m.otherVehicles < {

18 t € coordinator.otherVehicles t.ID =neq m.ID }
19 m.otherVehicles < (coordinator.ID, coordinator.positon)
20

21 scheduling: periodic( 700ms )

Listing 8.2: An example of communication group specification

Groupers

Communication groups are utilized to optimize deployment, where they support
the planning of inter-node communication links. For that reason an extension
to the JDEECo runtime environment is proposed by introducing the concept of
grouper. The basic idea is that a grouper limits the Gossip only to the nodes
that host the components belonging to a particular communication group. Thus
a grouper employs the communication group specification. Technically a grouper
enhances the JDEECo runtime environment in the following way. The environment
contains a set of JDEECo runtime instances (Figure 8.3). Each of them hosts a set

87



@ oo

Communication
group

Figure 8.2: Ilustration of communication groups. Each one associated with an
instance of the SameDestination ensemble.

of components, the knowledge of which is gossiping around, using the addresses
of other nodes stored in its peers table. In the enhancement, a grouper can also
be referenced in the peers table as illustrated in Figure 8.3. It is assumed that
a grouper (i) is a representative of a communication group(s), (ii) is equipped
with all the ensemble definitions in the system, (iii) has access to knowledge of all
components needed to decide the membership conditions, and (iv) can modify the
peers tables that contain a reference to it. The basic functionality of a grouper is
to continuously monitor the current ensemble memberships of all the components
in the groups it represents and update the peers tables accordingly. By modifying
the peers tables, a grouper implicitly routes the component knowledge to the
most relevant nodes (i.e. hosting the same ensemble components) in the network.
Figure 8.3 exemplifies the whole idea on the SameDestination ensemble, the
communication group of which depends on the destination field in the coordinator’s
knowledge. In this case the grouper dedicated to Prague 6 continuously monitors
the ensemble membership status of all the components it is aware of. If necessary, it
updates the peers tables of the respective JDEECo runtime instances on the nodes
hosting the components in the SameDestination ensemble. The specification of
the communication group allows a node to determine the groupers for a given pair
of an ensemble type and a component hosted on the node. This way the knowledge
of the component is routed only to a limited set of groupers (as opposed to being
propagated throughout the whole system). Also, as communication groups are
typically geographically or network-wise localized, they lead to a decentralized
solution, potentially characterized by low-latency. The decentralization also means
that the operation is possible even in case that the infrastructure network gets
partitioned into a number of disconnected subnets (i.e. without global internet
connectivity).

88




o~ JDEECo Runtime (JR-2)
“~ JDEECo Runtime (JR-3)
JDEECo Runtime (JR-4)

Components
Knowledge

ID: Vehicle-3

JDEECo Runtime (JR-1)

Components
Knowledge

ID: Vehicle-1

destination: Prague 6

_GossIP

ID: Vehicle-2 destination: Prague 6

ID: Vehicle-4

Grouper for Prague 6 (G-6)

SameDestination ensemble
A

ID: Vehicle-1 ID: Vehicle-7 ID: Vehicle-3 ID: Vehicle-5

destination: Prague 6 destination: Prague 6 destination: Prague 6 destination: Prague 6

Figure 8.3: JDEECo runtime instances — groupers associations

89



90



CHAPTER 9

Adaptive communication

Communication is an important factor for coordination and formation of dynamic
groups. Based on the communication technology used there are some parameters
such as throughput, packet loss rate, maximum range that are determined by the
technology and the environment. The only thing that remains in the hands of the
designer is configuration of the system in such a way that it leverage available
communication assets efficiently. Naturally, in case of wireless media usage the
quality of the communication changes dynamically based on the current noise in
the environment and congestion cause by communicating too much.

This chapter addresses goal G2 of this thesis with respect to the network
limitations. The problem is addressed by introduction of a resilient component
design that enable operation with limited network usage. The resulting system
can operate with various settings that limit network usage, but the cost of limited
networking is reflected in lower overall system utility. Moreover, the parameters can
be used to adapt system towards the realistic network properties while optimizing
its utility.

Considering a DEECo based system parameters that influence the communi-
cation demands and at the same time the utility of the system include ensemble
period, knowledge propagation distance, maximum replica age, and a few others.
Based on the fact that these variables captured by the system architecture are in
control of the framework it is possible to let the framework decide dynamically on
the optimal values assigned to these variables. The text in this chapter describes an
extension to DEECo architecture that enables the developer to set these variables
separately and even let the framework dynamically optimize its behaviour with
respect to the changing network conditions.

9.1 Scenario

To illustrate this enhanced semantics of ensembles, consider a game in which a
group of robots has to cooperate in order to touch as many beacons as possible,
with the beacons dynamically appearing in the game area (Figure 9.1). More
specifically, a beacon has to be touched by a pair of robots at the same time.
Additionally, the area is divided into islands and robots cannot easily move from
one island to another.

The robots in this scenario are modeled as components. A robot’s knowledge
contain its position and the position of a targeted beacon. There are two types of
ensembles in the scenario: (i) an ensemble grouping all robots on a single island

91



Figure 9.1: A robotic example visualization. Dotted areas represent islands.
Orange and green radio symbols are the beacons. Ensembles pairing robots
heading to a particular beacon are displayed using dashed curves.

(this one serves to exchange information about beacons discovered by the robots),
and (ii) an ensemble grouping two robots that are selected to touch a particular
beacon. Obviously, the former ensemble exists in multiple instances (one per
island), the latter exists in multiple instances too (up to one per beacon — there
may be less if there are not enough robots to pair with all the beacons present in
the area).

An ensemble (i) expresses that all robots in the ensemble are on the same
island. The ensemble coordinates robots within it and allows them to share their
knowledge. For instance ensemble (i) provides each robot a union of beacons seen
by each individual robot in the ensemble; ensemble (ii) tells a robot which beacon
to touch.

9.2 Communication Concerns

Due to the inherently distributed nature of sCPS, communication becomes an
important issue. The distributed character of sCPS, combined with the potentially
limited ability to communicate, prevents a centralized management of ensemble
formation and component communication — mainly due to the fact that components
need to efficiently and safely operate even in cases when communication becomes
unavailable.

In this robotic example, a centralized solution would simply not scale with an
increasing number of robots, bringing an inherent bottle-neck and a single point of
failure of the system. Thus, a decentralized solution is necessary. Not surprisingly,
this is clearly in line with the fact that systems like car-to-car communications or
swarms-of-robots typically rely on MANETS. In order to effectively distribute data
in a decentralized and highly dynamic system, MANETs commonly use protocols
that are based on proactive data distribution, i.e., Gossip [38], a rather effective
style of communication for data distribution, and geographical routing [39].

The central idea in Gossip protocols is iterative information exchange between
network nodes. In every step, a node communicates with a selected peers and
exchanges a small amount of information with them. Typically, the peers to

92




communicate with are chosen via a randomized mechanism. Commonly, the
messages are replicated by peers and thus, there is an implicit redundancy (and
therefore robustness of the protocol).

In [35] an application of gossip-based decentralized communication for Auto-
nomic Component Ensembles (ACE) was demonstrated. Nevertheless, if applied
without any further restrictions/optimizations, such communication can quickly
lead to very long communication latencies, or, even, can totally congest the whole
network. To deal with this issue, other MANETS properties like potential data loss,
varying latency, bandwidth, etc., and resulting effects like stale data, necessity
to rebroadcast data, etc. have to be taken into account (MANETS are primarily
intended for unreliable communication). To tackle these properties, the communi-
cation boundary predicate was proposed. In short, it defines the furthermost limit
where data have to be disseminated (i.e., data are not disseminated throughout
the whole network), but the resulting system is functionally equivalent to a system
where data would be disseminated everywhere. As shown in [35], this can lower
the congestion on the network and improve other non-functional properties of the
system.

The communication boundary as such provides static safe over approximation
— unfortunately, this is often not enough for complex sCPS. If the robotic example
above is considered and a further rule is added to the game. That for pairing
the robots, two robots with largest distance between them should be preferred.
The system is essentially forced to propagate data all over in order to learn
about beacons that lie really far apart. The excessive communication and ensuing
congestion and latencies then prevent the system from functioning as designed
(the robots target beacon pairs with the largest distance apart but due to latencies,
the robots are unable to coordinate in timely manner).

To remain functional in that case, the system has to adaptively modify /restrict
the communication, which of course decreases its overall effectiveness, but on
the other hand, it allows it to keep at least some functionality. This requires
that the system has the ability to dynamically scale w.r.t. to temporarily and
spatially varying properties of the communication. There are existing techniques
to do this on the communication middleware layer. However, to perform such a
scaling efficiently, the system has to possess a certain degree of domain knowledge.
In particular, the system has to know (i) how its effectiveness and potential
to reach the goals are influenced by communication (e.g., what the permissible
latencies are, what of the communication parameters have positive effects on the
system efficiency), and (ii) how the system can be restricted (e.g., by disregarding
some mutually distant components from forming an ensemble) in order to achieve
at least a sub-optimal functionality of the system. Unfortunately, there are no
universal answers to the questions above since they are highly problem specific.

9.3 Towards Self-Optimizing Ensembles

As pointed out in the previous section, there is a clear need that designers/develop-
ers of SCPS can explicitly express the information influencing the communication
in order to allow sCPS to self-optimize themselves at runtime based on the current
conditions of the network. Following the architectural hoisting concept, such

93



information has to be a part of the architectural specification. Since this is to be
provided at design time, the specification of communication parameters has to
be platform-independent, to reflect that decisions on a particular communication
platform are typically made later than those on the architectural level.

Another strong requirement is that from the architectural description, there has
to be a clear and exactly defined relationship between the views on the designed
system, considering (i) an ideal system (i.e., a system with instant communication,
without any latencies, and no congestions) and (ii) an actual system (i.e., a system
with real latencies, limited bandwidth, etc.). The ideal system view is important
since it is easy to understand it and verify (using the Model driven Architecture
(MDA) [40] terminology, it represents a platform-independent model of the system).
The actual view then reflects a reality, which should behave as the ideal system
(a platform-specific model in the MDA terminology) as much as possible. From
the functional point of the view, both the ideal and actual systems work correctly,
however the actual system can produce sub-optimal results or behave with smaller
efficiency, compared to the ideal system.

An approach presented in this section thus enhances ensembles with com-
munication related information but in an underlying platform-independent way.
These pieces of information are then interpreted by the deployment infrastructure
keeping the goal to run the actual system to correspond to the ideal system as
much as possible with regards to current conditions of network, etc.

9.4 Network Aware Ensembles

In this section, an approach is demonstrated how to equip ensembles with high-level
problem-specific information which allows the system to scale its functionality w.r.t.
the limitations of the communication. As a particular example for illustration of
the described principles the robotic game example defined in Section 9.1 is used.

Figure 9.1 shows the example in (a simplified version of) the DSL of the DEECo
component model (however, almost any component model could be used to model
the example). As introduced in Section 9.1, there is one type of component —
Robot — and two types of ensembles — the BeaconInformationEzrchange ensemble
and ForSingleBeacon ensemble.

1 component Robot

2 knowledge

3 position // robots position

4 beaconPosition // targeted beacon position

5 islandID // island, on which the robot is located
6 beaconPositions // positions of known beacons

7
8

ensemble BeaconInformationExchange

9 id islandID

10

11 membership

12 roles

13 source: Robot

14 target: Robot

15 condition

16 source != target

17

18 knowledge exchange

19 target.beaconPositions = target.beaconPositions.unionWith (source.
beaconPositions)

20

21 communication constraints

94




22 boundary

23 relay: RobotRelay, replica: Robot

24 relay.islandID == replica.islandID

25

26 ensemble ForSingleBeacon

27 id beaconPosition // targeted beacon position
28

29 membership

30 roles

31 robotsAssignedForBeacon[2]: Robot

32 condition

33 robotsAssignedForBeacon[0] .islandID == robotsAssignedForBeacon[l].islandID

== islandIDOf (beaconPosition)

34

35 fitness

36 max (distance (robotsAssignedForBeacon[0] .position, beaconPosition),
distance (robotsAssignedForBeacon[l] .position, beaconPosition))

37

38 knowledge exchange

39 robotsAssignedForBeacon[0] .beaconPosition = beaconPosition
40 robotsAssignedForBeacon[1l] .beaconPosition = beaconPosition
41

42 communication constraints

43 boundary

44 relay: RobotRelay, replica: Robot

45 relay.islandID == replica.islandID

46 optimization

47 smallestRadius > 10m

48 max staleness beaconPostion 30s

Listing 9.1: Robotic example in the simplified DEECo DSL

The first ensemble serves for spreading information about beacon positions
since the robots have just limited field of view. Simply, all robots on the same
island merge their knowledge about beacons they have seen on the island. The
ensemble is qualified by an island ID, which means that the system may create as
many instances of the ensemble as there are islands. The second ensemble serves
for both communication and coordination — it tells a pair of robots which beacon
to target. The ensemble is qualified by a beacon (represented by its position),
which means that the system may create as many instances of the ensemble as
there are beacons.

9.4.1 Ideal System

As explained above, with real-life communication in place, the ideal view of the
system and its actual view, which comes about as the result of compromises
that have to be done due to restrictions imposed by the communication, is
distinguished. The logic of the ideal system (when communication and ensemble
formation would be instantaneous) is given by the definition of membership and
knowledge exchange.

The membership defines (i) types of components taking part in the ensemble
along with their roles and (ii) a filtering condition over their knowledge. For
instance in case of the ForSingleBeacon ensemble, it groups two robots and
requires that both these robots plus the targeted beacon have to be on the same
island.

The membership may further contain the fitness definition, which is a function
used to rank potential ensemble instances if the membership condition allows
more than one solution. This indeed happens in our case as every pair of robots
on the same island satisfies the condition. Further, considering that more beacons

95



(i.e., ensemble instances) are present on the same island and that a robot can
be assigned only to one ensemble ForSingleBeacon, there ensues a large number
pair combinations. Out of these, the system selects such robots-beacon pairs that
yield the maximum sum of fitness (which in our example is the maximum sum of
distances).

The knowledge exchange specifies what knowledge fields to assign to which
roles in the ensemble. In case of the ForSingleBeacon ensemble it assigns the
beacon position to both the robots in the pair.

To reflect the fact that the system is dynamically changing (e.g., new beacons
can appear in the system), the membership (with fitness) and the knowledge
exchange are continuously reevaluated and ensembles are reformed to reflect
changes in the membership condition and to optimize with respect to the maximum
sum of fitness.

9.4.2 Real System

The actual system is essentially a restriction of the ideal system in which no global
system state is available. Technically, this boils down to limiting propagation
of data between physical nodes on which components are deployed. This takes
two forms: (i) communication happens only among nodes which may be together
involved in forming an ensemble — i.e., there is no communication across islands
because there is no ensemble needing it, (ii) ensemble instances that are hard
to create and synchronize may not be considered by the system if it would lead
to network congestion — i.e., very distant robots pairs on the same island which
would require expensive multi-hop communication are disregarded.

The data propagation limit (i) is realized by the communication boundary
[35] (captured in the specification as boundary condition under communication
constraints). It is a predicate which tells whether to re-transmit a data packet
from a given node. An important feature of a communication boundary is that by
design it is required to be implied by the membership. As such, the communication
boundary is an over-approximation of the membership and cannot omit an ensemble
instance which would normally be present in the ideal system.

The data propagation limit (ii) is realized by dynamic communication boundary,
which is controlled by setting the communication parameters (performed by the
system at runtime based on the actual network utilization). This is explained
in Section 13.3 in more detail. An important feature of this is that it can omit
ensemble instances that would normally be present in the ideal system. As such,
it makes the actual system deviate from the ideal. This tradeoff however has to
be made because otherwise the system would stop functioning completely due
to network congestion. The dynamic communication boundary is continuously
optimized by the system with two objectives — (a) keeping the network load below
the congestion point, (b) maximizing the sum of ensemble fitness.

To prevent cases when the dynamic communication boundary would become
too tight for the system to work, the ensemble specification constrains the optimiza-
tion of the boundary (specified as optimization condition under communication
constraints). These constraints are expressed in terms of time (maximum stal-
eness) and space (smallest radius) rather than particular technology dependent
communication parameters. This allows keeping the level of abstraction closer to

96




Fitness

Dynamic
communication
boundary Component

\

Communication
boundary

-

’I

Figure 9.2: Membership vs. boundary conditions in ensemble formation

the problem domain and easier to reason about on the level of the system design.

In particular the maximum staleness parameter defines the maximum age of
data that can be still relied on. In the example, as the robots have limited range to
see the beacons, the targeted bacon can become “stale”, i.e., the particular robot
does not see it yet and it was not “refreshed” via the BeaconInformationFExchange
ensemble. Thus, information about targeted beacon must not be too old (30s in
the DSL) as with increasing age of the beacon information, the probability that the
beacon has already disappeared also increases and, regarding the overall goal of
the system (maximize the number of the touched beacons), a better option might
be to discard the particular ensemble instance and form a new one using more
fresh data. The maximum staleness has to be defined per particular data elements
as each of them can “stale” in a different pace. The smallest radius defines a
minimum range around a component to which the data has to be disseminated.
In case the radius is smaller than the neighborhood defined by the communication
boundary specified in the ensemble, then the smallest radius is disregarded (this
happens for instance if an island is very small).

Figure 9.2 graphically demonstrates the relation between the ideal system
and the boundaries of the actual system. There are multiple components (robots
and beacons) and they are deployed to physical nodes. (Note that nodes are not
represented in the DSL as the particular deployment is not specified at this level
of abstraction.) In order to allow formation of ensembles, the deployment infras-
tructure has to disseminate information between the nodes. Usage of MANETSs
and Gossip (as outlined in Section 9.1 and 9.2) is considered. The communication
boundary, as described in the ensemble definition, represents a farthest limit
for the data dissemination. As it is constructed as an over-approximation of
the membership condition, all potential sets of components which satisfy the
membership condition are deployed on nodes within communication boundary.
Note that membership condition can select multiple sets, which are then ranked
by fitness. This is the case in Figure 9.2, where the fitness is shown as the number
set in green.

The communication parameters (staleness, smallest radius) can further limit the
actual dissemination, thereby establishing the dynamic communication boundary.
In the example, there are three possible ensembles to be formed for a single
particular beacon. Even though the ensemble with the fitness 40 is the best one

97



(the best fitness) it is not considered as one of its component is beyond dynamic
communication boundary.

9.4.3 Communication Parameters

Assuming the communication in ensembles is realized via an optimized Gossip
algorithm on top of a MANET, the dynamic communication boundary can be
controlled by several communication parameters, which have positive effect on
network utilization or system utility. The system utility denotes the effectiveness
of the system in reaching its goal — in the example, this can be for instance the
sum of distances of the beacons which were successfully touched by two robots
over the system lifetime. As such, the system utility is something which can
possibly be evaluated only once the system finished its operation. However, it is
assumed that the system is designed in such a way that maximizing the sum of
ensemble fitness values at any given point in time brings the system close to its
highest utility, enabling calculation of system utility at runtime.

Based on an initial round of experiments, the following key communication
parameters were identified: (i) rebroadcast period, (ii) rebroadcast radius, (iii)
max. packet age. While the semantics of the rebroadcast period is obvious,
the latter two need more explanation: Together they determine when to stop
propagating packets in the network based on their source location and timestamp.
Rebroadcast radius is expressed as the spatial distance from the source of the
packet in question, while the max. packet age limits the maximal packet age
which is still considered for rebroadcasting based on its timestamp.

It should be emphasized that setting communication parameters per ensemble
instance cannot be done in isolation, i.e., not considering how communication in
other ensemble instances would be affected. In other words, optimizing commu-
nication in a particular ensemble instance may cause increase in network load,
thus limiting communication in other ensemble instances. In order to optimize
the overall system utility it is necessary to set network parameters with respect to
all ensemble instances currently present in the system.

98




CHAPTER 10

Real-time Analysis

Considering sCPS often there are limits on maximum processing time of a particular
operation in the system. Assuming the system is in control of heavy mobile devices
such as in the case of vehicular or robotic systems these requirements are frequent
and require to think of real-time design at the level of system architecture. Any
heavy moving device can crash into another one or harm a human being. A vehicle
and vehicular systems are a good model for practising design of such systems.

In this chapter the goal G2 of this thesis in addressed in terms of coordination
in an real-time EBCS. The challenge of implementing real-time system can be
split in two. First part is to implement a hard real-time runtime and predict worst
case execution time of all tasks in the system. Once this is done a deep analysis
of different timings in the system needs to be done in order to guarantee that the
deadlines are always met. Considering the DEECo based systems the CDEECo++
provides the hard real-time capable runtime, but an approach to timing analysis
of EBCS needs to be drafted.

In the following chapter a case study that exemplifies necessary workflow
leading to proper real-time design of task execution and network communication
is described. An ICS system was chosen as it demonstrates a typical system
dealing with many moving entities connected using unreliable wireless network.
Correctness of the described calculations are validated in Chapter 13 where a
simulation of the system is described including measured delays.

10.1 Intelligent Crossroad System Case Study

An application scenario in the context of VANET [41] and autonomous vehicles is
considered, where an ICS optimizes the car throughput at a road crossing. This is
illustrated in Figure 10.1, where cars approach a two-lane crossing managed by
the ICS.

The idea is to replace traffic lights to a great extent by using Car to Infras-
tructure (C2I) communication and synchronizing in what order cars cross the
intersection for an uninterrupted flow in all directions. Note that there are different
ways of implementing this case study. In particular, one can design the ICS to
take full control over cars adjusting their speed and steering as considered in [42].
However, this concentrates almost all computation workload at the ICS — making
more expensive hardware necessary — and requires cars to be enabled for remote
operation.

99



Figure 10.1: Intelligent crossroad system (ICS)

In this study, an alternative approach is followed, where the ICS computes —
taking traffic conditions and regulations into account — and assigns a speed to
an approaching car at the intersection. The car will then have to keep this speed
constant to cross the intersection without stopping. This solution is more viable
to implement the proposed case study, since it does not require cars to be modified
for a remote operation. On the contrary, each (autonomous) car is responsible for
driving along its own trajectory and maintaining its speed as assigned to it. If
necessary, however, a car may stop to avoid a crash or accident.

The ICS assigns speeds to cars and these report their current speeds back to
the ICS via C2I communication. As discussed later, the ICS needs to keep track
of cars’ speeds in order to detect potential hazards and trigger safety mechanisms.
To this end, two operation modes are foreseen:

(i) Automatic mode: This is the default mode where all cars at the crossing
behave as expected, i.e., they maintain their corresponding speeds as com-
puted by the ICS. Here, the highest possible throughput is reached provided
that speed limit regulations are observed and safety of all traffic participants
can be guaranteed.

(ii) Manual mode: This is the exception mode where one or more cars do not
maintain their computed speeds and/or there is no communication between
a car and the ICS, e.g., conventional cars with a human driver. In this mode,
the ICS works as standard traffic lights.

The region of influence is defined by the area in which the ICS controls/
monitors all approaching cars. It is assumed that this area consists of a 50 m
radius around the intersection. In this region, vehicles are prioritized such that
their priorities increase as they get closer to the center of the intersection and
drop when they move away of it. Some of the vehicles at the ICS might also
be privileged such as, for example, ambulances or police cars in an emergency
situation, etc.

The ICS can detect when a car enters the region of influence, e.g., by radar,
pressure sensors, etc. If no communication is received from one car after it has
entered the region of influence (in particular, a car’s intended direction, its current
speed, etc. are needed), the ICS assumes that either there has been an error or it
is a conventional car with no C2I communication and switches to manual mode.

100




The same happens if communication is lost to one or more cars; a more detailed
analysis of this is given in Section 10.5.

Pedestrians can be easily handled in the manual mode. In the automatic mode,
the ICS can detect when pedestrians stand at the crossing for some time, e.g., by
pressure sensors, request buttons, etc., and stop the traffic to let them cross in a
safe manner. Again, each car is responsible for itself and should be able to react
to unpredicted situations, e.g., performing an emergency break, according to valid
traffic regulations.

This scenario exhibits different challenges that need to be faced when design-
ing dynamic distributed systems. One of those challenges is the description of
architectural changes that occur during runtime. In our case study, cars/vehicles
arrive to and leave the system at different points in time, their priorities vary
according to their distances to the crossing, etc. Such details need to be properly
reflected in the system design.

Furthermore, this scenario exhibits real-time requirements imposed to the
system. In particular, it is required that the reaction time between a car and
the ICS is kept below a certain upper bound in order to ensure an appropriate
responsiveness of the overall system, where unreliable communication needs to be
considered. In turn, meeting those real-time requirements allows us to guarantee
safety, which translates into a collision-free crossing in our case study.

Lastly, since it is not possible to guarantee a fully reliable communication, the
system has to be designed to be self-adaptive. This way, the system switches to
manual mode when it realizes that real-time requirements cannot be met. To
this end, as discussed later, a watchdog timer at all components (cars and ICS) is
configured that triggers a switch to manual mode.

10.2 Modeling with DEECo

10.2.1 Components

Listing 10.1 depicts Vehicle and ICS components using a DSL description®. Pro-
cesses of each component can be executed in response to a timer event (i.e.,
periodic execution) or as a reaction to a change in one of its attributes. In our
example, the Vehicle component has a process that sets/updates the speed of the
car or vehicle. This is repeated periodically every 5ms (see line 22). As another
example the ICS process, shown in Listing 10.1, determines whether there are
privileged vehicles in its region of influence (lines 34-40) and is executed whenever
the number of vehicles changes (line 40). Once processes are released (by DEECo
runtime environment), these are handed over to the platform’s Operating System
(OS), which is responsible for scheduling them according to a desired policy — see
Section 10.2.4.

1 interface MovingUnit:

2 id, time, crossingld, crossingDistance, crossingDirection, speed, privileged,
mode

3

4 interface MovingUnitAggregator:

!Note that this DSL specification serves for demonstration only. Later it is discussed how to
derive a C++ implementation from this specification, which can then be used on embedded
devices.

101



5 id, time, vehicles, speeds, mode
6

7 component Vehicle features MovingUnit
8 knowledge:

9 id: 42,

10 time: 1440691842456 ms,

11 crossingId: 12

12 crossingDistance: 35 m,

13 crossingDirection: South-West,
14 speed: 50 Km/h,

15 privileged: FALSE,

16 mode: AUTOMATIC,

17 e
18 process UpdateSpeed:

19 in speed

20 function:

21 Actuators.setSpeed (speed);
22 scheduling: periodic( 5 ms )

23

24

25 component ICS features MovingUnitAggregator
26 knowledge:

27 id: 12,

28 time: 1440691842458 ms,

29 vehicles: [...],

30 speeds [...]

31 privileged: [...],

32 mode: AUTOMATIC,

33

34 process findPrivilegedVehicles:

35 in vehicles, inout privileged
36 function:

37 for (v : vehicles)

38 if (v.privileged)

39 privileged.add (v)

40 scheduling: triggered( changed(movingUnits) )..

Listing 10.1: DEECo component definitions based on a DSL

10.2.2 Ensembles

The ensembles are considered to be bipartite ensembles with roles defined by the
interfaces, in our example, MovingUnit and MovingUnitAggregator In Listing 10.2,
the coordinator role is determined by the interface definition MovingUnitAggregator
and the member role by MovingUnit. The membership condition further constraints
the ensemble members to those, which are located no more than 50 m from the
coordinator’s location. Then, according to the knowledge exchange description,
the coordinator’s movingUnits attribute is updated with information about all
components that fulfill the membership condition (which is checked every peps .
time units — see line 8 — with ¢ being an index representing the component). This
way, the ICS is aware only of those vehicles, which are currently in its close
proximity.

1 ensemble UpdateMovingUnitInformation:

2 coordinator: MovingUnitAggregator

3 member: MovingUnit

4 membership:

5 coordinator.id = member.crossingIlId, member.crossingDistance < 50 m

6 knowledge exchange:
7
8

coordinator.movingUnits.add ({member})
scheduling: periodic( pens,i

Listing 10.2: A DSL example of an ensemble definition.

102




Components Ensembles
T U
[ [ J

an®
— | B P e
T Periodic T
Invocation

DEECo Runtime
Basic Software
(Os, drivers)

!

Figure 10.2: DEECo distributed deployment.

10.2.3 DEECo’s Deterministic Semantics

Technically, the runtime environment periodically propagates ensemble-relevant
knowledge to all other components or nodes in the system — note that Gossip-based
algorithms [35] might be used for this purpose. In our case study, ensemble-relevant
data are the car’s distance to the crossing, its speed, and its intended direction,
etc. This is used to evaluate whether cars are heading in the direction of the
crossing or not.

Each node then keeps relevant reference knowledge from all other nodes from
which it has received data. In other words, components or nodes join (and leave)
the system in an implicit manner without performing any handshaking. Since
ensemble-relevant information is present at all nodes, DEECo runtime environment
performs a local decision of an ensemble membership condition. If this holds true,
the local reference knowledge of the remote components involved is used for the
knowledge exchange process.

In this way, DEECo semantics separates decision taking (i.e., ensemble for-
mation and its eventual knowledge exchange) from information sharing (i.e.,
knowledge propagation) at the components. Since a DEECo component takes
decisions based on locally available data, it does not need to synchronize with
other components in the system. On the one hand, this has the advantage of
high flexibility and adaptability. On the other hand, clearly, local data might get
outdated at the different nodes, which needs to be analyzed carefully as illustrated
in Section 10.3.

10.2.4 Implementation and Deployment

The implementation and distributed deployment of hard real-time DEECo systems
are supported by the CDEECo++ framework. This framework maps DEECo con-
cepts to C++ and constitutes our runtime environment (taking care of periodically
propagating knowledge, performing ensemble formation, performing knowledge
exchange if applicable, etc.). As depicted in Figure 10.2, CDEECo++ relies on an
OS providing hardware abstraction and other services. Clearly, this OS needs to
support real-time behavior, i.e., real-time scheduling, interrupt handling, etc., to
be used in safety-critical applications. The CDEECo++ and its runtime platform

103



are further described in Chapter 11.

10.3 Closed Loop Reaction Time

In this section DEECo closed-loop reaction time in the worst case is analyzed.
This is defined as the maximum delay that it takes a DEECo-based system to
react to changes in the environment. The term closed-loop reflects the fact that
DEECo components interact with one another.

For example, if a component A experiences a change in its internal states, e.g.,
due to one or more physical variables measured by its sensors, this will take some
time to reach another component B — connected by ensembles — in the system.
Similarly, component B’s reaction to the change in component A will take some
additional time to reach back component A. The sum of these two times is the
closed-loop delay between A to B. In other words, component A and B form a
loop.

For ease of exposition, case study is used first and then the results are gen-
eralized to make them independent of the application. In the ICS case study,
knowledge needs to be exchanged from a car to the ICS and from the ICS back to
the car for the system to work as expected. However, knowledge exchange happens
based on local data when the corresponding ensemble condition is evaluated to
true at both the ICS and the car nodes separately.

As discussed above, knowledge is propagated (from the car to the ICS and
vice versa) and the ensemble membership check is performed (at the car and at
the ICS) on a periodic basis. Let Py, denote the maximum period with which
knowledge is propagated by any node in the system. Similarly, let p.,s be the
maximum period with which ensembles are formed at any node in the system.
That is:

ﬁpro = max (ppro,i> )
Vi

ﬁens = max (pens,i) ;
Vi

where ppro; and pens; are the knowledge propagation and the ensemble forma-
tion period of a node 7, respectively, with ¢ being an index that identifies the
corresponding component/node.

In order to eliminate the need for synchronization and handshaking between
components, these two processes in DEECo are not synchronized with one another
and, hence, the following conditions are present in the worst case:

(i) A car propagates its knowledge to the ICS immediately after a membership
decision has been performed at the ICS. As a result, data is received P,
time later at the ICS, when the next membership decision is performed.

(ii) In a similar manner, the ICS propagates its knowledge to the corresponding
car just after a membership decision has been performed at the car. As a
result, data is received p.,s time later at the car too.

(iii) The knowledge of the car changes immediately after knowledge has been
propagated to the ICS. As a result, the current knowledge is propagated with
a delay p,r, from the car to the ICS, when a new propagation is performed.

104




(iv) The ICS’s knowledge changes immediately after knowledge has been propa-
gated to the car. Hence, the current knowledge is not propagated until a
new propagation is started p,,, time later.

As a result, in the worst case, a delay due to the asynchronous nature of the
DEECo framework is given by the following expression:

2 X Poro + 2 X Pens. (10.1)

In addition, there is also a process running at the ICS which computes the
speed for the car that guarantees no collisions at the current traffic situation.
This process is triggered when a knowledge exchange is executed at the ICS (i.e.,
when the ensemble membership condition is evaluated to true between the car
and the ICS). Let r;cs denote the Worst-Case Response Time (WCRT) of this
process. Analogously, there is a process running at the car, which applies the new
speed values to the physical car. This process is also triggered when a knowledge
exchange happens at the car and its WCRT is r.4.

As a result, the worst-case delay D,,,. for a closed-loop reaction in DEECo, i.e.,
a reaction of a car to an input from the ICS computed based on the car’s current
knowledge, is given by the following equation also illustrated in Figure 10.3:

Dmaz =2X ﬁpra +2 X ﬁens + crcs + Cear T T10S + Tears (102)

where ¢4, is the communication delay from the car to the ICS and c¢;¢g is the
communication delay from the ICS to the car.

Since there is interference by other messages (from other cars), cq, is the
maximum possible communication delay in the network. However, from the ICS to
the car, there is no interference — assuming a full-duplex communication channel —
and the communication delay c;og is equal to the transmission time, since the
ICS does not compete for accessing the network.

The term 2 X pyro+2 X Peps in Equation (10.2) is clearly intrinsic to DEECo and
does not depend on the application, but rather on how components are configured.
In addition, cjog + ceqr is the total communication delay between the ICS and a
car, whereas r;cs + reqr is the delay due to computation at the ICS and at the
car. As a result, DEECo’s closed-loop delay in the worst-case can be generalized,
i.e., made independent of the application under consideration, as follows:

Dmax = 2 X ﬁpro + 2 X p\ens + Cmax + Rmaa:a (10'3)

where C),q, is the sum of the worst-case communication delay between any two
DEECo components and R, is the sum of the WCRTSs of computation processes
involved at the corresponding components or nodes.

10.4 Real-Time Analysis

The purpose of performing a real-time analysis is to guarantee that timing con-
straints can be met by the system, which is required in safety-critical applications.
In case of DEECo, this boils down to checking that D, as per Equation (10.3)
is below a given time upper bound, which stems from physical processes involved

105



Ensemble 1
evaluation | Pens Tics | Dens
- ppm H
Data | | | | | | |
propagation | [ [ [ [ | p l
pro

At the ICS

Cear Cics

Communication

Ppro Ppro
Data | | | | | | |
propagation [ [ [ [ [ [ [

pﬂll
Ensemble | |

evaluation Pens

At the car

max

Figure 10.3: Composition of DEECo’s closed-loop delay D,,q.: In the worst case,
data may change immediately after knowledge has been propagated at the car.
This data may also arrive after an ensemble formation has been performed at the
ICS. In addition, computation at the ICS may finish immediately after knowledge
propagation and the resulting data then reaches the car just after the end of an
ensemble formation.

and needs to be known to or obtained by the designer. In turn, D,nax depends on
Crnaz and Ry, i.e., on the delays incurred by communication and computation
processes involved — which are closely related to the technologies and techniques
used for implementing the system.

All in all; the real-time analysis consists of the following steps that we illustrate
next in the context of our case study: i) obtaining the worst-case computation
delay, ii) obtaining the worst-case communication delay, iii) determining system
constraints, and iv) obtaining a feasible DEECo configuration.

10.4.1 Obtaining the Worst-Case Computation Delay

As discussed previously, CDEECo++ — DEECo’s runtime environment — is exe-
cuted on top of an OS at each node in the system. Among others, CDEECo++
is in charge of releasing component’s processes as specified in the component de-
scription. Clearly, to be used in safety-critical applications, CDEECo++ relies on
specific technologies that make real-time scheduling and real-time communication
possible. In particular, the OS needs to support real-time scheduling; otherwise,
it will not be possible to guarantee real-time behavior.

The techniques for schedulability analysis, i.e., testing whether processes meet
their deadlines at the different nodes, strongly depend on the scheduling algorithm
used. As mentioned above, CDEECo++ makes use of FreeRTOS, which supports
fixed-priority scheduling and allows for the rate monotonic policy [43]. That is,
processes are given fixed priorities according to the following rule: The shorter a
process’s period is, the higher the priority assigned to it.

Let T denote set of processes on a given node. Further, 7; is a process that
belongs to T where e; denotes its Worst-Case Execution Time (WCET) and p;
denotes its period of repetition. For T to be schedulable, the following has to

106




hold for each 7; and 1 < i < |T:

3 {pw e; < pi (10.4)

VT]'E'/f‘ J

where |T| is the number of elements in T and T denotes the subset of processes
from T which have a higher priority than the corresponding 7;.

This expression means that for each process 7; to be schedulable (and, hence,
for T to be schedulable), the sum of all executions of higher-priority processes
in a time interval equal to p; plus its own execution e; should be less than its
deadline p;. Note that Equation (10.4) is sufficient but not necessary. A sufficient
and necessary test can be achieved by response time analysis [44]; however, the
sufficient test of Equation (10.4) is enough for the purpose of this paper. Now,
since the following holds:

VTjGi\‘ p] VTjE'/f p]

Equation (10.4) can be reshaped to:

>y Zwmetl®)
Di -

(10.5)

VT, E'/I\‘ p]

Clearly, if Equation (10.5) holds, Equation (10.4) will also hold. However, Equa-
tion (10.5) is easier to compute and operate with.

In our case study, to obtain R,... = Tics + Tear, let Tios denote set of
computation processes at the ICS. Further, we assume that a process 7; is the
one involved in the closed-loop delay, i.e., the one computing the new speed for
a given car. Considering that T/ cs is the subset with higher or equal priority
processes than 7; at the ICS, the r;cs can be computed as follows:

rics = > 2 it Y e (10.6)

VTjG'f{CS 4 VT]’G&\‘IC’S

Analogously, at the car, r., can be obtained as follows:

Tcar = Z ef] Di + Z €. (107)

\&z} E'/I\‘Cl” p'] VT Efcar

10.4.2 Obtaining the Worst-Case Communication Delay

Similar to computation delay, communication delay strongly depends on the
underlying technologies and techniques used. Since VANETSs are usually based
on wireless communication [45], we assume that IEEE 802.1Q) is the underlying
protocol, which provides mechanisms to prioritize messages [46]. In general, we
will normally have a number of Access Point (AP) which are connected to a
full-duplex switch via IEEE 802.3 Ethernet.

107



((féz))  Secer! 1 Sector Ill

Figure 10.4: Priorities are given according to the proximity to the intersection

In this section, it is assumed that communication to the AP is collision-free
as per some VANET scheme — later this assumption is removed to analyze the
effect of packet loss. For example, Space Division Multiple Access (SDMA) has
been proposed [47], [48], which guarantees a collision-free communication in busy
intersections by dividing a road into sectors and assigning different time slots to
each such sector. Other solutions combine special antennas with also a TDMA
scheme to reduce packet loss [49], [50].

Now, assuming that wireless network provides 100 Mbps and that messages
are at most 1 Kbit (1024 bits), then the transmission time cy on the wireless
network is at most — considering a 144-bit protocol overhead:

1024 + 144

= 11.68 us.
100 Mbps HS

Cw —
However, the switch then sends messages to the ICS according to their priorities.
Considering that the ICS’s region of influence is divided into sectors with different
priorities — see Figure 10.4. Cars that are in the first sector (e.g., within 10m
from the intersection) have higher priority than cars in the second sector (e.g.,
from 10 m to 20m) and so on. At a given point in time, if a car is in more than
one sector simultaneously, it will be assigned the highest priority among those
sectors. The switch then sends messages to the ICS according to these priorities.
Further the communication segment between the switch and the ICS will be
analyzed. To this end, let M denote the set of all messages being sent to the
ICS over the switch. Further, m; denotes one such message in M where ¢; is its
transmission time — note that ¢; is constant for a given ¢ which results from the
amount of bits to be sent and the bandwidth of the communication channel — and
z; denotes the minimum inter-arrival time between two consecutive such messages.
The deadline of a message is also given by z;.
Generally, for all messages in M to meet their deadlines, the following has to
hold for 1 < i < |M], where |M]| is the number of elements in M:

~ | 2§
Vm]-GM

where M is the subset of M with higher- or equal priority messages than m; and
b; denotes blocking time on the communication channel. That is, whenever a

108




message needs to be sent, a lower-priority message might eventually be using the
communication channel. Since this lower-priority message cannot be interrupted,
there is a blocking time on the bus. Clearly, in worst case, b; is given by the
maximum transmission time among all lower-priority messages:

b; = max(¢;). (10.9)

Considering that Zij oy B—J < Zij i (zi + 1) holds, the ceiling function

&

can be removed and approximate Equation (10.8) as shown below:

) bZ—FZ i\ Cj
S 9y om, () <1. (10.10)

2 2;
vm;eM 7 !

To demonstrate this, assuming that the IEEE 802.3 Ethernet link between the
switch and the ICS has a bandwidth of 1 Gbps. If messages have a length of at
most 1 Kbit (1024 bits), and the protocol overhead is of 144 bits, the transmission
time ¢; of a message m; is given by ¢g:

1024 + 144
1 Gbits

v

ip = = 1.168 ps.
Further, with help of Equation (10.10), the transmission time on the IEEE

802.3 Ethernet link can be computed taking contention by higher- and equal
priority messages into account, which is denoted by ¢g:

o= 3 Zlutb+ 3 o (10.11)
ijEI\//\IZj ijél(\/l

In addition to the transmission time, there is always a delay at the AP and at
switches in IEEE 802.3 Ethernet — denoted by e p and egy respectively, which
accounts for buffering and routing tasks. This is typically in the order of 2 us.

Chnaz = Cics + Cear can now be obtained. To this end, recall that there are two
[EEE 802.3 Ethernet links: one from the AP to the switch and another from the
switch to the ICS. The ICS does not suffer from contention at the communication
channel, since the connection from and to the APs is assumed to be full duplex.
As a result, c;cg is given by:

cics =2 X Cg+cw + esw + eap. (10.12)

On the other hand, cars share the communication channel and, hence, they
may have contention at the communication channel leading to a c.., as follows:

Coar = 2 X éE—i—CW—f—eSW—f-eAP. (1013)

109



10.4.3 Determining System Constraints

Timing constraints are clearly derived from the application. It is considered that
a car needs to be provided with new speed values at every single meter of its
trajectory (taking vehicle dynamics into account such inertia, braking distance,
etc.). If a car’s speed is at maximum 50 Km/h (assuming an urban scenario), the
time ty,, that it needs to cover 1 m of its trajectory is:
b 1m x 3600s/h
50103 m/h
On the other hand, the computation and communication overhead depends
on the number of components, in particular, cars/vehicles in the system, which
is the second constraint from the application. Clearly, the more cars enter the
ICS’s region of influence, the more computation and communication overhead
there will be. To compute the maximum possible number of cars at the crossing,
it is assumed that a car is at least 2m long and that there is a least a 1 m distance
between any two cars. As a result of this, in the worst possible case, the number
of cars n approaching the intersection from all directions is given by the following
equation:

= T2 ms. (10.14)

50m
=4x|——| =68 10.15
An Equation (10.15) can be used to configure pens and pp,, in the next section
and the timing constraint as per Equation (10.14) to perform a feasibility analysis

as discussed later.

10.4.4 Obtaining a Feasible DEECo Configuration

There will be at most 68 different ensemble instances (between the ICS and each of
the cars) at the ICS — see Equation (10.15). In addition, there will be 68 processes
to compute new speed values for each car. Since the ensemble membership check
triggers a knowledge exchange — recall that knowledge exchange is based on locally
available data and that knowledge/data propagation (from the ICS to the cars
and vice versa) is a separate and asynchronous process — when evaluated true,
it can be assumed that in the worst case all 68 ensemble processes trigger their
corresponding computation processes simultaneously. In addition, there will be
one knowledge propagation process for the ICS2.

Assuming that all processes have a WCET e; = 25us (note that most these
processes consist in checking logic conditions, assigning pointers to given memory
spaces, etc., or are simple computations), an Equation (10.5) can be applied to
the ICS as follows:

0.025 ms 2x0.025ms  (0.025ms + 68 - (2 x 0.025 ms)

— +68- - +

ppT‘O pens ﬁens
where ppr, and pe,s are the minimum periods with which knowledge is propagated
and with which ensembles are formed in the system. That is:

<1, (10.16)

ﬁpro = min (ppro,i) 5
Vi

]:V)ens = mi,n (pens,i) .
Vi

2Note that the knowledge propagation from cars does not produce any overhead at the ICS,
but at the respective cars.

110




Note that if Equation (10.16) holds for py., and peys, it will also hold for any
Dpro,i and Deps ;. The following value for pe,s is obtained assuming 2 X ppro = Dens:
i.e., that knowledge propagation is done twice as frequently as any ensemble
membership check?:

Dens => 6.88 ms,

and, hence, p,,, has to be greater or equal to 3.44ms. Note that there cannot
be a peps,i that is less than pens. Similarly, p,.,; is bounded from below by p,0.
Otherwise, Equation (10.16) will not hold.

On the other hand, the upper bounds pe,s and p,,,; need to fulfill the system’s
feasibility condition. That is, DEECo’s closed-loop delay must be at most equal
to the timing constraint ty,,:

Dinaw < tim. (10.17)

Doz is DEECo’s closed-loop delay as per Equation (10.2), i.e., where R4 =
r1cs + Tear aNd Chuae = Cros + Ceqr in general expression Dinax a8 given in Equa-
tion (10.3).

Choosing pens = 14ms — twice as much as pe,s — and hence p,,, = 7ms, i.e.,
there is 2 X Ppro = Dens. With these values of pens and ppy,, it is verified that
Equation (10.17) can be met. If not, new values of p.,s and p,,, need to be chosen
— clearly, these should be greater than or equal to their lower bounds pe,s and pp,,
respectively.

To test whether Equation (10.17) holds for the chosen pe,s and Py, it is
necessary to compute the corresponding r;cs, Tcar, Cros, and Ceq. It can be com-
puted 7705 using Equation (10.6) and assuming that all processes are respectively
released either at a Pens Or a Py, rate.

225 us

25 s
—_— 2 (2.2 ~ 10.1
o~ + 68 TAms >—|— 5us+ 68 - ( 5pus) ~ 7Tms (10.18)

rrcs = 14 ms - <

Similarly, it can be computed 7., using Equation (10.7). In the car, there
are only one ensemble process, one process to update the speed with the new
one assigned by the ICS, and a knowledge propagation process. Again, it is
assumed that the ensemble process triggers the knowledge exchange process at
cars. Assuming again e; = 25 us, results in:

20 us  2-25pus
7ms 14 ms

rcar:14ms-< )+25,us—|—2-25,us:0.18ms

Now ¢g needs to be computed, i.e., the transmission time on the IEEE 802.3

Ethernet link taking contention into account, using Equation (10.11):

1.168
X ————— H

Ppro

CB = Pyro X 68 + 68 x 1.168 yus = 158.85 ps,

where ¢; and z; have been replaced by cg and p,., respectively. Further, b;
is zero according to Equation (10.9), since it is considered the lowest priority

3This is a design decision that needs to be taken. In general, since ensemble membership
checks rely on local knowledge, it is meaningful that knowledge be updated as often as necessary
to guarantee desired functionality.

111



message for ¢g, i.e., the one suffering the most contention by other messages. The
communication delay from and to the ICS, can be computed using Equation (10.12)
and Equation (10.13):

Cics = 18.02 US, Ceqr = 333.38 US.
Finally, from Equation (10.2), follows that:
Dippar =2-Tms + 2 - 14ms + 334 us + 18.1 us + 7ms + 0.18 ms ~ 50 ms,

which is less than t;,,, = 72ms — see Equation (10.14). This means ICS is able to
meet all deadlines in the worst case.

10.5 Robustness to Unreliable Communication

In general, if many consecutive packets are lost on the communication channel,
the system will experience malfunction putting safety into risk. In this section, the
number of consecutive packets that can be lost at maximum without compromising
safety is determined. In other words, the system’s robustness under unreliable
communication is quantified.

As discussed above, Equation (10.2) states the worst-case delay incurred by
DEECo-based ICS in case of a fully reliable communication. This is obtained
considering that data at a car can be updated immediately after knowledge has
been propagated — for the reason that processes updating and propagating data
are not synchronized with each other. As a result, this data will be sent the next
time a knowledge propagation is performed, i.e., P, time later. If now this packet
is lost on the communication channel, data will incur an additional delay equal
to Dpro. Further, if k., denotes the number of consecutive packets that are lost,
then data from the car to the ICS incurs the following delay:

ﬁpro + kcar X ﬁpro + Cear (1019)

where again c.,, denotes the delay on the communication channel from the car to
the ICS.

In a similar manner, if k;cg denotes the number of consecutive packets that
are lost from the ICS to the car, then data from the ICS incurs following delay to
reach the car:

ﬁpro + k[CS X ﬁpro + Crcs, (1020)
where, as discussed above, ¢;og is delay on the communication channel from the
ICS to the car.

Let k = kewr + krcs denote the total number of packets lost between the
ICS and the car. Equation (10.19) can be combined with Equation (10.20) to
determine the closed-loop delay of the system in case of unreliable communication:

Dmaz = (2 + k) X ﬁpro + 2 % ﬁens + Cics + Cear + rres + Tcar, (1021)

where again 7705 and 7., denote the maximum delay to finish computation at the
ICS and the car respectively. Note that Equation (10.21) reduces to Equation (10.2)
for k£ =0, i.e., when no packets are lost on the communication channel.

112




Using the values of ppro, Denss Cears C1cs, Tear, and rrcs computed in the previous
section, the maximum £ can be determined, that can be tolerated without affecting
the system’s functionality and safety. That is the maximum £ that makes Dinas
be at most equal to ¢y, as per Equation (10.14). This maximum is denoted k by

kma:c:

tim — D
Kmaz = {WJ =3 (10.22)
Ppro
Equation (10.22) indicates that the sum of k., and k;cs, each of which
represents the number of consecutive packets being lost in one or the other
direction, cannot be more than 3 for the system to operate correctly.

10.5.1 Safety Mechanisms

Note that the previous results can be used to implement safety mechanisms at
the ICS and at cars. In particular, whenever communication is lost for longer
than ¢1, time between the ICS and any car in the system or vice versa, both the
ICS and the car switch to manual mode, i.e., the ICS starts working as standard
traffic lights and the driving control is returned to or taken over by cars/vehicles.

This can be implemented by DEECo processes that run at the different cars
and at the ICS and trigger the manual mode in a decentralized manner. In other
words, these processes behave as watchdog timers at the different nodes. They
force a switch to manual mode at the corresponding node, if no packets have
been received for longer than ¢, time. Note that here, for ease of exposition, we
neglect the time which is necessary to process data at cars, i.e., Pens + Tear, and at
the ICS, i.e., Pens + r1cs. Whereas there is only one such watchdog processes at a
car, there are multiple ones at the ICS; one for each car in the system.

It should be noticed that the ICS does not need to notify cars whenever it
switches to manual mode; it suffices if it stops assigning speeds to them and cars
themselves will automatically switch to manual mode. In the same way, if a car
first switches to manual mode, the ICS will detect this on its own without need
for notification from the car.

In the worst case, since it is not known which packets may be lost, there may
be up to 3 X ti, delay for the whole system, i.e., all cars and the ICS, to switch
to manual mode in a decentralized manner. This results from considering the
following conditions:

(i) A packet from ICS is sent to arrive exactly t1,, time after its last packet at
a given car.

(ii) This packet from the ICS is lost at the communication channel such that
the car (locally) switches to manual mode.

(iii) All packets from the car to the ICS also get lost such that the ICS realizes
that the car is in manual mode — and triggers itself a switch to manual mode
— not until ¢, time later.

(iv) All packets from the ICS to the remaining cars get lost such that, in the
worst case, all other cars switch to manual mode tq,, time after the ICS.

113



Figure 10.5: Simulated network consisting of three APs and a switch

As discussed above, this delay corresponds to 3m in the trajectory of a car in
our case study. Hence the ICS has to assign speeds to cars — in the automatic
mode — such that there is sufficient distance between them taking vehicle dynamics
into account (e.g., if a car suddenly breaks, it will not stop immediately due to its
inertia, etc.).

Finally, only the ICS can decide to go back to the automatic mode whenever
communication to all cars has normalized. To this end, the ICS needs to notify or
start assigning speeds to all cars in the system. Note that the delay for switching
to the automatic mode is given by ¢, since a normal communication is assumed.

114




CHAPTER 11

Implemented frameworks

Work on this thesis encompass implementation of several experimental frameworks
and proof of the concept applications. The work on the experimental applications
is covered in Chapter 13 where the code and detailed analysis of the applications is
described. This chapter gives an overview of the work on the frameworks that sup-
port the experimental applications and the test-bed presented in Chapter 12. The
frameworks implemented or extended in order to support work on this thesis and,
in particular address Challenge C5 of this thesis, include JDEECo, CDEECo++
and PyDEECo.

The JDEECo framework was not implemented from scratch. An earlier version
of the framework was extended in terms of modularity and network awareness.
The work done by the author of this thesis consisted mainly from implementing
bindings to ROS, OMNeT++, Stage, and interface to sensors and actuators
provided by the Turtlebot and some custom hardware. These extensions were
used in the artifact that is described in Chapter 12.

The CDEECo++ and PyDEECo frameworks were implemented from scratch
in order to provide alternative to JDEECo framework in cases where heavy-weight
Java implementation was not suitable. In particular, CDEECo++ provides ability
to create hard real-time applications running on bare hardware. On contrary, the
PyDEECo enables quick prototyping of new features. These can be later verified
in the simulation, implemented in the JDEECo or run on the bare hardware using
the CDEECo++.

11.1 JDEECo

JDEECo is mainline implementation of the DEECo. It is written in Java and
serves mainly for simulation of the DEECo based sCPSs but the deployment
on real devices is also supported. The latest version uses plugins to separate
different features and simulation modes that were implemented in order to provide
evaluation for various ideas. The source code of the JDEECo framework are
located on the GitHub®.

The JDEECo enables both classical bipartite ensemble and intelligent ensemble
definitions. The first one is provided by an internal DSL implemented on top
of Java classes and annotations. The intelligent ensembles are captured in an
external DSL called EDL.

Ihttps://github.com/d3scomp/JDEECO

115


https://github.com/d3scomp/JDEECo

An example of a component definition is displayed in Listing 11.1. The
component definition is based on the Java class. The knowledge is defined as
public fields, Lines 3-7. So called local knowledge that is not part of the component’
public interface is exemplified on Line 10. A process example is displayed on Lines
17-33. Knowledge fields that are read and written by the process are defined as
parameters of the process method. The knowledge fields read are accessed directly,
Line 21. The output knowledge fields are accessed using a wrapper, Line 20.

1 @Component

2 public class Follower {

3 public String id = "Follower";

4 public final String name;

5 public Waypoint position = new Waypoint (1, 1);

6 public Waypoint destination = new Waypoint (1, 3);
7 public Waypoint leaderPosition;

8

9

@Local
10 public CurrentTimeProvider clock;
11
12 public Follower (CurrentTimeProvider clock) {
13 this.name = "Follower";
14 this.clock = clock;
15 }
16
17 @Process
18 @PeriodicScheduling (period = 2500)
19 public static void followProcess (

20 @InOut ("position") ParamHolder<Waypoint> me,

21 @In("destination") Waypoint destination,

22 @In("name") String name,

23 @In("leaderPosition") Waypoint leader,

24 @In("clock") CurrentTimeProvider clock) {

25

26 if (!destination.equals (me.value) && leader != null) ({

27 me.value.x += Integer.signum(leader.x - me.value.x);

28 me.value.y += Integer.signum(leader.y - me.value.y);

29 }

30

31 System.out.format ("%06d:_Follower, %s:_me_=_%s, leader_=_%ssn",
32 clock.getCurrentMilliseconds (), name, me.value, leader);
33 }

34}

Listing 11.1: Example of a DEECo component definition in JDEECo framework.
Follower component attempts to follow the Leader at position provided by
ensemble knowledge exchange.

Listing 11.2 exemplifies ensemble definition. Again a Java class is used as a
wrapping package. A class defining an ensemble contains static methods used for
membership check, Lines 4-15, and a knowledge exchange, Lines 17-25. Parameters
of these methods are again decorated in order to provide mapping to the knowledge
fields of the coordinator and the member components.

1 (@Ensemble

2 @PeriodicScheduling (period=1000)
3 public class Convoy {

4 @Membership

5 public static boolean membership(

6 @In("member.id") String memberId,

7 @In("coord.id") String coordId,

8 @In("member.position") Waypoint fPosition,

9 @In("member.destination"”) Waypoint fDestination,

10 @In("coord.position") Waypoint lPosition,

11 @In("coord.path") List<Waypoint> 1lPath) {

12

13 return

14 !fPosition.equals (fDestination) && (Math.abs(lPosition.x - fPosition.x) +

Math.abs (1Position.y — fPosition.y)) <= 2 && lPath.contains (fDestination);

116



15 }

17 @KnowledgeExchange
18 public static void map (

19 @In("member.id") String memberId,

20 @In("coord.id") String coordId,

21 QOut ("member. leaderPosition") ParamHolder<Waypoint> fleaderPosition,
22 @In("coord.position") Waypoint 1lPosition) {

23

24 flLeaderPosition.value = lPosition;

25 }

26}

Listing 11.2: Example of DEECo ensemble definition in JDEECo framework.
Convoy ensemble pass position from Leader to Follower component.

11.1.1 Modularity and Network Infrastructure

The JDEECo framework, as described earlier, used to lack support for realistic
network. Work on this thesis include creation of a modular network infrastructure
that enables smooth transition from a fully centralized knowledge repository with
zero latency and guaranteed consistency to a distributed execution of different
components and knowledge propagation using a precisely simulated packet radio.
Previously structure-less initialization code was converted to a modular system
with plugins implementing knowledge handling and propagation. Apart from
the plugins listed in the following code examples plugins for OMNeT++ based
network devices, ROS integration plugin and MATSim vehicular simulation plugin
were created.

// Create main application container

SimulationTimer simulationTimer = new DiscreteEventTimer () ;
DEECoSimulation realm = new DEECoSimulation(simulationTimer) ;
realm.addPlugin (new SimpleBroadcastDevice());

(
realm.addPlugin (Network.class) ;

realm.addPlugin (DefaultKnowledgePublisher.class) ;
realm.addPlugin (KnowledgeInsertingStrategy.class);

© ® N oA WN R

// Create first DEECo node

DEECoNode deecol = realm.createNode () ;

// Deploy components and ensembles
deecol.deployComponent (new Leader (simulationTimer));
deecol.deployEnsemble (ConvoyEnsemble.class) ;

N e =
A W N = O

// Create second DEECo node

DEECoNode deeco2 = realm.createNode () ;

// Deploy components and ensembles
deeco2.deployComponent (new Follower (simulationTimer));
deeco2.deployEnsemble (ConvoyEnsemble.class) ;

I T S
B O © ©® N o O

// Run the simulation for 20 seconds
22 realm.start (20000)

Listing 11.3: Example of DEECo application initialization for two nodes using
the JDEECo framework in discrete event simulation mode.

Usage of a modular simulation setup code is displayed in Listing 11.3. The
simulation is wrapped in a DEECoSimulation class instance, Line 3, and driven
by a SimulationTimer, Line 2. In the example the timer is a discrete event
timer. Definition of the simulation is followed by addition of plugins used in
the simulation. The plugins define dependencies on other plugins and can use
several interfaces provided by the other plugins and the JDEECo framework itself.

117



Plugins passed as classes are instantiated on each network node in the simulation
while the plugins passed as instances are shared among the nodes in the simulation.
The shared plugins cannot exist out of the simulation environment. These are
used to provide simulated services.

SimpleBroadcastDevice plugin, Line 4, provides a simple packet radio device
to each node. It is capable of basic simulation of range and delivery delay. The
device is used by a Network plugin, Line 5, that provides serialization of knowledge
and formation of knowledge packets. DefaultKnowledgePublisher plugin, Line
6, leverages ability of network plugin to broadcast knowledge and periodically
publishes the knowledge snapshot of the local components. The knowledge replicas
received are processed by a KnowledgelnsertingStrategy plugin and stored in a
remote knowledge repository used in the ensemble formation process.

Plugin definition is followed by the definition of nodes hosting components and
deployment of the ensemble definitions. In the example two nodes are defined on
Lines 10-13 and 16-19. A node is created using a factory method on the simulation
object. Once a node is created, an initialized instance of a component class is
deployed on it followed by a class object describing a Convoy ensemble.

Finally the configured simulation can be started, Line 22. In a simulation
mode the execution of the framework is limited by the simulation time interval.

11.1.2 Simulation and Reality

Another set of plugins was developed in order to support deployment on real
devices with real packet radio. These are based on the Turtlebot platform and
STM32F4 embedded board equipped with sensors and IEEE 802.15.4 radio.

The initialization displayed in Listing 11.4 is very similar to the simulation
setup described in Section 11.1.1. It general it lacks the simulation container and
setup only a single local node.

The setup starts with creation of a timer, Line 1. A WallTimer is used to
drive the execution of processes and ensembles in synchronization with real wall
time. Then a position plugin with a static initial position is created, Line 2. This
one is used as an initial position hint to the SLAM algorithm. The robot and
sensor board are exposed using ROS interfaces. RosServices plugin, Lines 4-6,
provides interfaces to the ROS topics that can be used by the other JDEECo
plugins. After the initialization of the plugins a node can be created, Lines 9-14,
using all the plugins necessary to access the real hardware of the robot and the
sensor board. The BeeClick plugin uses RosServices plugin in order to talk to
the sensor board and also provides packet radio as communication device to the
JDEECo framework. Finally the CleanerRobot component is deployed, Line 22, on
the just created node, together with the ensembles, Lines 25-26. The Positioning
plugin instance, Line 19, is passed to the robot component in order to let its
processes sense current position of the robot and set navigation goals to its route
planner.

WallTimeTimer wallTimer = new WallTimeTimer () ;

PositionPlugin positionPlugin = new PositionPlugin (12, 5);

1

2

3

4 RosServices rosServices = new RosServices (

5 System.getenv ("ROS_MASTER URI"),

6 InetAddress.getLocalHost () .getHostName () ) ;
7
8

// Create main application container

118



9 DEECoNode node = new DEECoNode (ROBOT_ID, wallTimer,

10 new Network (),

11 new BeeClick(),

12 new DefaultKnowledgePublisher (),

13 new KnowledgelInsertingStrategy (),

14 rosServices, positionPlugin);

15

16 final String name = "Collector" + ROBOT_ID;

17

18 // Deploy DEECo node with robot specific plugins

19 Positioning positioning = new Positioning();

20

21 // Deploy Collector robot component

22 node.deployComponent (new CleanerRobot (name, positioning, wallTimer, GARBAGE));
23

24 // Deploy ensembles

25 node.deployEnsemble (DestinationAdoptionEnsemble.class);

26 node.deployEnsemble (AdoptedDestinationRemoveEnsemble.class);
27

28 wallTimer.start ();

Listing 11.4: Example of the DEECo application deployment on a real Turtle-
bot using the JDEECo and the ROS integration plugin. The CleanerRobot
component is visiting GARBAGE locations and perform group adaptation
using ensemble provided data.

11.2 CDEECo

CDEECo++ was introduced in order to enable creation of distributed hard real-
time DEECo based sCPSs. It is coded in C++ and its source code is located
on GitHub?. It is not as feature complete as JDEECo and not as flexible as
PyDEECo but implements bare minimum of features required for the bipartite en-
sembles to work with real-time processes. Internal DSL leveraging C++ templates,
classes, and structures is used to capture components and ensembles. FreeRTOS
is used to schedule internal tasks used by the framework, processes, and ensem-
bles. CDEECo-++ supports components with fixed size knowledge and processes
triggered by knowledge change or periodically scheduled. A process is restricted
to write only a single continuous block of the knowledge due to limitations that
arise from hard real-time requirements on the framework.

11.2.1 Language Mapping

Code Listing 11.5 displays example of component definition. The whole component
is wrapped in a namespace, Line 1, encapsulating definition of the knowledge,
processes, and component itself. The knowledge is defined as a C++ structure
Knowledge, Lines 3-15, containing definitions of knowledge fields and their types.
Knowledge is based on the CDEECO:Knowledge for the purpose of a type compat-
ibility. Processes are defined as separate classes within the namespace of the com-
ponent. An example process, Lines 18-25, inherits from CDEECO::Periodic Task
in order to get scheduled properly. Template arguments of the base class define
input and output knowledge of the process. Once the knowledge and the processes
are defined, the whole component is defined as a separate class in a namespace,
Lines 28-35. Based on CDEECO::Component with a template argument defining

2https://github.com/d3scomp/cdeeco

119


https://github.com/d3scomp/cdeeco

the knowledge type a component encompass its processes as fields. Reference to
a CDEECO::broadcaster and component id is passed to base class in order to
publish knowledge of the component with its id.

1 namespace PortableSensor {
2 // Knowledge

3 struct Knowledge: CDEECO::Knowledge ({
4 CDEECO: :Id coordId;

5

6 struct Position ({

7 float lat;

8 float lon;

9 } position;

10

11 struct Value {

12 float temperature;

13 float humidity;

14 } value;

15 }s;

17 // Sense value process

18 class Sense: public CDEECO::PeriodicTask<Knowledge, Knowledge::Value> {
19 public:

20 Sense (auto &component) ;

22 private:

23 SHT1x sensor = SHT1x(...);

24 Knowledge::Value run(const Knowledge in);
25 bi

27 // Component definition
28 class Component: public CDEECO: :Component<Knowledge> {

29 public:

30 static const CDEECO::Type Type = 0x00000001;

31

32 Sense sense = Sense (xthis); // Process assignment

33

34 Component (CDEECO: :Broadcaster &broadcaster, const CDEECO::Id id);
35 }s;

36}

Listing 11.5: Portable sensor component definition using CDEECo++ frame-
work.

Example of a ensemble definition is given in Listing 11.6. As in the case of
the component the whole ensemble definition is wrapped in a namespace, Line 1.
First a complex type capturing input and output knowledge type for both member
and coordinator is defined on Line 2. Then an ensemble is defined using the
base ensemble type. A constant for period of the ensemble formation is set, Line
6. Lines 8-10, feature two constructors that setup ensemble instance on a node
hosting coordinator or member. Each constructor is responsible for one direction
of the knowledge transfer. Membership condition is defined as a method taking
knowledge of both member and coordinator as a parameter, Line 13. Finally, on
Lines 15-17, the knowledge exchange is defined as two separate methods that
perform exchange each in one direction.

1 namespace TempExchange {
2 typedef CDEECO::Ensemble<Alarm::Knowledge, Alarm::Knowledge::SensorData,
PortableSensor: :Knowledge, PortableSensor::Knowledge::CoordId> EnsembleType;

class Ensemble: EnsembleType {
public:
static const auto PERIOD_MS = 2027;

@ ~N o g AW

Ensemble (CDEECO: :Component<Alarm: :Knowledge> &coordinator, CDEECO::
KnowledgeLibrary<PortableSensor: :Knowledge> &library);

120



1:::;&“

!

g CHs g
xf] s

Figure 11.1: STM32F4 discovery shield with STM32F407G board, IEEE 802.15.4
radio, SHT1x temperature/humidity sensor, and GPS plugged in.

10 Ensemble (CDEECO: : Component<PortableSensor: :Knowledge> &member, CDEECO::
KnowledgeLibrary<Alarm: :Knowledge> &library);

11

12 protected:

13 bool isMember (const CDEECO::Id coordId, const Alarm::Knowledge coordKnowledge,
const CDEECO::Id memberId, const PortableSensor::Knowledge memberKnowledge)

’

15 Alarm: :Knowledge: :SensorData memberToCoordMap (const Alarm::Knowledge coord,
const CDEECO::Id memberId, const PortableSensor::Knowledge memberKnowledge)

’

17 PortableSensor: :Knowledge: :CoordId coordToMemberMap (const PortableSensor::
Knowledge member, const CDEECO::Id coordId, const Alarm::Knowledge
coordKnowledge) ;

19 private:

20 std::default_random_engine gen;
21 }i

2 }

Listing 11.6: Example of CDEECo++ ensemble definition. Temp Exchange
ensemble aggregates temperatures in Alarm component knowledge.

11.2.2 Platform

The CDEECo++ is supposed to run on an embedded board. The current version
of the platform code uses FreeRTOS, a portable real-time operating system, for
scheduling of tasks. Together with zero memory allocation during the execution of
the platform and CDEECo++ framework code the process execution withing the
CDEECo++ framework is hard real-time. The framework code is not specially
tailored to work with particular embedded board. In theory any board supported
by FreeRTOS should work. The current version of the framework includes driver
for a IEEE 802.15.4 radio device. This driver has a well defined interface that can
be implemented by drivers for different radio hardware, but no such drivers are
provided yet. Thus the CDEECo++ is limited to the current platform by lack of
radio drivers, but can be ported beyond the system formed by STM32F4 discovery
shield with STM32F4 board and few peripherals displayed in Figure 11.1.

121



11.3 PyDEECo

Python implementation of DEECo is aiming to provide an environment for quick
prototyping of new architecture constructs. Flexibility of Python language enable
quick adoption of new ideas and integrated support for reflection based logging of
system states and visualization provide immediate and detailed feedback on just
implemented features. In order to enable quick prototyping the PyDEECo uses
an internal DSL for capturing roles, components, and ensembles.

1 class Rover (Role) :

2 def _ init__ (self):

3 super () .__init__ ()

4 self.position = None
5 self.goal = None

Listing 11.7: PyDEECo role specification.

An example of a component role definition is given in Listing 11.7. Role
naturally maps to a Python class with role data records expressed as instance
variables.

Listing 11.8 exemplifies a component definition. A component consist of a top
level class that wraps component internals. The top level class inherits from a
Component class that activates the included processes at runtime. Knowledge is
defined as an internal class, Lines 3-6, that inherits from all roles the component
is supposed to implement. The knowledge is initialized in a __ init  method of
the top level class, Lines 13-15. Process are defined as internal classes, Lines 18-20,
22-25, and 27-29. The scheduling of the process is determined using @process
annotation. The processes access knowledge directly as instance variables using self
reference. A node representing PyDEECo runtime is passed as second argument
to the process in order to provide access to runtime data such as plugin interfaces
and scheduler.

1 class Robot (Component) :

2 # Knowledge definition

3 class Knowledge (BaseKnowledge, Rover):

4 def _ init_ (self):

5 super () .__init__ ()

6 self.color = None

7

8 # Component initialization

9 def _ init_ (self, node: Node):

10 super () ._ _init__ (node)

11

12 # Initialize knowledge

13 self.knowledge.position = node.positionProvider.get ()
14 self.knowledge.goal = node.positionProvider.get ()
15 self.knowledge.color = COLORS.Red

16

17 # Process definitions

18 @process (period_ms=10)

19 def update_time (self, node: Node):

20 self.knowledge.time = node.runtime.scheduler.get_time_ms ()
21

22 @process (period_ms=1000)

23 def status(self, node: Node) :

24 knowledge = self.knowledge

25 print (f"{knowledge.time} _ms:_ {knowledge.id} _at _{knowledge.position}")
26

27 @process (period_ms=100)

28 def sense_position(self, node: Node) :

29 self.knowledge.position = node.positionProvider.get ()

Listing 11.8: PyDEECo component definition including knowledge definition,
Component initialization, and definition of the component processes.

122



Definition of an ensemble is exemplified in Listing 11.9. Ensemble definition is
wrapped in a class based on EnsembleDefinition. Current PyDEECo implements
intelligent ensembles with experimental ensemble knowledge extension, thus the
definition includes fitness function declaration, Lines 9-10 and ensemble knowledge
definition, Lines 2-7. Membership function, Lines 12-15, is an ordinary method
taking knowledge of member candidates as its arguments. The knowledge exchange
is replaced by ensemble knowledge creation method, Lines 17-22.

1 class RobotGroup (EnsembleDefinition) :

2 class RobotGroupKnowledge (BaseKnowledge, Group) :

3 def _ init_ (self):

4 super () .__init__ ()

5

6 def _ str_ (self):

7 return f"{self.__class__.__name__}_centered_at_{self.center}"
8

9 def fitness(self, a: Robot.Knowledge, b: Robot.Knowledge) :

10 return 1 / a.position.dist_to(b.position)

11
12 def membership(self, a: Robot, b: Robot):

13 assert type(a) == Robot.Knowledge
14 assert type(b) == Robot.Knowledge
15 return True

16
17 def knowledge (self, a: Robot.Knowledge, b: Robot.Knowledge) :

18 knowledge = self.RobotGroupKnowledge ()

19 knowledge.center = Position.average (a.position, b.position)
20 knowledge.members = [a, Db]

21

22 return knowledge

Listing 11.9: PyDEECo ensemble and ensemble knowledge definition.

123



124



CHAPTER 12

Adaptation Test-bed

Evaluation of the experiments with systems in the field of the sCPS and adaptations
is difficult due to the lack of common environments that enable comparison of
results. These are sparse and usually do not target SCPS domain directly. Targeting
goal G3 of this thesis focusing on the proper evaluation and with respect to the
EBCS based sCPS it was decided to put together an easy to setup simulation
environment featuring a model problem so that anyone in the scientific community
and beyond can experiment with JDEECo based solution to the model problem
and its adaptation. The choice of the model problem was inspired by the topic of
this thesis, thus the model problem features cooperation of mobile robots that
takes in account realistic network properties.

12.1 Model Problem

The reference problem provided by this test-bed is the Autonomous Cleaning
Robots Coordination (ACRC) problem. In ACRC, a number of cleaning robots is
deployed in in-door space consisting of corridors and multiple office rooms, see
Figure 12.2.

Every robot is equipped with a 360 degrees camera which provides depth
information. The robots uses the camera to observe obstacles (other robots, walls,
etc.) and for navigation, by means of AMCL. Robots are equipped with a map of
the place that they are supposed to clean. This map is used in the AMCL-based
navigation, which works by comparing a depth scan with the map.

Robots are capable of limited communication using an IEEE 802.15.4 trans-
receiver (with approx. 10 meter direct visibility range), which allows building
MANETs. This means that robots can exchange data only when they are close to
one another. Robots can extend the communication range by acting as proxies that
rebroadcast messages further. Generally, however, no global communication can
be assumed as situations when no proxy is close enough or too much interference
exists are rather often.

The basic software of the robots is formed by ROS, which is the de-facto
standard set of libraries and services for building open-source robotic platforms.

12.1.1 Operation and Adaptation Challenges

Each robot is initially given its own set of places it is supposed to visit and clean. In
the naive solution, which can be considered as the baseline, robots act completely

125



independently of one another (i.e., they do not communicate nor coordinate) and
visit places on their list in the given order.

Due to the complexity of the environment and the deficiencies in the ROS
stack (which is considered as a black-box component that is given and one has to
live with), the naive solution gives rise to multiple problems:

» A robot has only an approximation of its position and orientation. Often,
especially when other robots are present nearby, the AMCL localization fails
as the depth scans (which include other robots) cannot be matched with
the known map. As a result, the robot navigation becomes very imprecise
and sometimes, when in dense traffic, fails completely and the robot stops.

o The navigation module in a robot sometimes fails to find a route to the
destination because other robots moving by obstruct it. As the result the
robot stops.

« Due to physical space constraints, robots often get to a deadlock situation
— e.g., when one robot wants to enter the office and another wants to exit
it. The result is again that the robots stop to avoid collision. (Note that
this is a different situation to the previous point, where the failure to find a
way is only transient. In this case, however, it persists until the deadlock is
explicitly solved.)

Generally, each of these problems can be solved by pointing the robot to
the right direction. However, it practically turns out to be quite difficult to (1)
distinguish the cause of the problem, and (2) to know where to navigate the robot
to recover it from the failed state.

Though these problems could be targeted by modifying ROS, our experience
with extending and customizing ROS shows that a more practically viable solution
is to regard ROS as a black-box and build an adaptation layer over it. As such,
the robotic scenario constitutes an excellent case for adaptation. (Of course, this
is by no way a criticism of ROS, which itself is the most comprehensive open-
source solution for robotics. It is more an acknowledgement of the complexity
inherently connected with developing systems that perform in and interact with
real environments.)

To remediate the deficiencies of the baseline solution, the adaptation layer has
generally free access to the robot navigation. In particular, it can obtain estimates
of the position and can sense whether the robot moves. Based on this, it can:

« Manipulate the queue of locations to be visited (destinations).

o Pause the robot and command the robot to move to any place on the map.

Additionally, the adaptation layer on one robot may communicate with the
adaptation layers of other robots to realize more complex adaptation strategies
via cooperation.

The adaptation however comes with another set of problems, once not only
recovery of the robots from failures and deadlocks is attempted, but also optimiza-
tion of the overall performance of the system is important. Clearly, by reordering
the locations to be visited and by transferring the responsibility of cleaning a place

126




from one robot to another, the system can highly optimize itself. Theoretically, it
can even get to a point when no collisions happen because robots exchange their
destinations in such a way that they do not interfere. This is however subject to
multiple problems, which can be regarded as additional adaptation challenges:

o The uncertainty in location makes planning not completely reliable.

o Communication range is limited, which means that robots in different rooms
cannot communicate directly, but only through proxies (if present), which
have to be located in the corridor close to the office entrances.

o The communication is subject to latencies and unreliability (due to interfer-
ence) which makes it impossible for a robot to have an up-to-date knowledge
of the global state of the system and disallows strong synchronization among
robots.

12.1.2 Solution Comparison Dimensions

Having the adaptation logic in place, various metrics can be considered for
evaluation and comparison of different adaptation strategies (solutions to ACRC).
Below, metrics which were found to be useful in the experiments with ROS-
controlled robots in the ACRC. Note that since ACRC contains random elements
and non-determinism, the evaluation of a solution requires multiple simulation
runs of ACRC and statistical evaluation (e.g. by statistical testing of sample
means or quantiles).

Time to complete all the tasks (i.e., visit and clean all locations assigned to
the robots at the start) can be regarded as the basic metric when it is assumed
that the evaluated solution is able to make the robots complete all their tasks.
Experience with ACRC shows that this is more difficult than it appears to be.
For evaluating partial successes, we thus suggest the following metrics.

Number of cleaning tasks that were completed. This covers situations when
time limit for completion expires or when the system itself realizes that certain
locations cannot be cleaned — e.g., if a robot gets stuck in a room entrance and
any attempts to move the robot out of the way fail.

Total running time till system completes or gives up. This can be used as
a metric complementary to the above one, to reward solutions which possess
the ability to recognize that certain problems cannot be solved. It can serve to
resolve ties in case two solutions are statistically similar (e.g. a statistical test
cannot reject the hypothesis of the two solutions have the same average number
of cleaning tasks completed).

12.2 Test-bed

The test-bed provided as part of the artifact allows for easy experimentation with
adaptation techniques and algorithms for the ACRC problem. It is built as a
combination of ROS, the environment simulator and visualizer (Stage), network
simulator (OMNeT++) and a component model for sCPS (DEECo). Details on
the technical architecture are given in Section 12.2.3. The test-bed provides a

127



15 18 . 19 0 1 4 5 £ 8 ]

Figure 12.2: A visualization of the model problem. Green, red, blue, and black

round represent robots in a office floor.

are flower pots.

Black line repents a wall and black dots

simulation of a swarm of Turtlebots. However, as it is developed on top of the
ROS stack, it can be adapted to accommodate other ROS-controlled robots by
configuring the Stage environment simulator to take into account different robots’
dimension, their movement characteristics, sensors, etc.

12.2.1 User’s Perspective

The test-bed models the ACRC problem via DEECo component model using bipar-

tite  ensembles  described later
In particular, it represents each robot as
an instance of CleanerRobot component
and provides its baseline behavior (i.e.
the base-level subsystem [51]) in Java.
The test-bed provides a well-defined
place in the component where the adap-
tation logic is to be plugged in (i.e. the
reflective subsystem). Technically, this
is done by introducing additional pe-
riodic processes to the CollectorRobot
component, and additional ensemble
specifications (e.g. see Section 12.3).
The actual ACRC simulation is con-
figured by the number of robots and
their initial positions. The test-bed
comes with one map that comprises a
corridor and two offices. Custom maps
can be provided as Portable Network

in  the text of this section).

(o))
o
o

—_

w
[ee]

550 -

w
()]

w
Iy
L

500

w
N

450 A

w
o

400 A

N
[ee]
1

N
()]
1

350 A

Number of cleaning tasks that were completed

N
N
)
Total running time till system completes or gives up [s]

w
o
o

Figure 12.1: Box-plots of results from 10
experiment runs.

Graphics (PNG) files similar to the one shown in Figure 12.2.

128




Figure 12.3: A Robots’ perception of the environment. Back rounds are the robots.
Red and blue dot clouds are the laser scanner reflections. Red and blue path is the
path planner output. Shades of gray, forming also the black wall line, represent
local and global costmap.

The primary output of the test-bed is the direct visualization of the scenario
shown in Figure 12.2 (the visualizer itself comes with the Stage robot simulator —
Section 12.2.3). Via it, the user can observe the movement of the robots at real
time. Black lines represent walls and other obstacles impenetrable for the robots
(i.e., the map provided to the test-bed). The colored dots represent the robots.
Also, it is possible to observe the robots’ view of their environment — Figure 12.3.
The red and blue dots represent the robots’ perception about the walls/obstacles.
In Figure 12.3, there are two robots represented as the bigger black dots; the red
dots are associated with the first robot, the blue ones with the second robot. The
grey areas next to robots have a higher cost for the planning algorithm of the
robot (i.e., robots try to avoid them).

Further, the test-bed comes with a script which computes statistics of the
evaluation from the logs collected in multiple simulation runs. It generates box-
plots of the results for the last two metrics defined in Section 12.1.2 (as in Figure
12.1).

12.2.2 Decentralized Coordination Modeling Concepts

The robots behavior is developed using DEECo and uses bipartite ensembles. In
the artifact, a JDEECo is used as Java is generally easier for prototyping the
components. In the real deployment usage of CDEECo++ implementation is
envisioned.

Figure 12.1 shows a code skeleton of the baseline implementation of the
CleanerRobot component in JDEECo. JDEECo constructs are further described

129



in Chapter 11. The code example outlines public knowledge of a CleanerRobot
on Lines 3-6. Note that knowledge marked @Local, Lines 8-11, is supposed only
to be used internally by the processes of the CleanerRobot component and does
not take part in any ensemble. Signature of basic CleanerRobot processes, defined
in the baseline implementation of the CleanerRobot as provided by ACRC, are
displayed on Lines 14-38. These are (i) setting the next destination, (ii) reading
the position, (iii) reporting the status, and (iv) controlling the movement of the
robot.

1 @Component

2 public class CleanerRobot ({

3 public String id;

4 public Position destination;
5 public Position position;

6 public State state;

7

8

9

@Local public Long blockedCounter;

@Local public Long noPosChangeCounter;
10 @Local public Position oldPosition;
11 @Local public List<Position> route;
12
13
14 @Process
15 @PeriodicScheduling (period = 500)
16 public static void setDestination(
17 @InOut ("destination"”) ParamHolder<Position> destination,...)
18 {...}
19
20 @Process
21 @PeriodicScheduling (period = 100)
22 public static void sense( QOut ("position") ParamHolder<Position> position,
23 @In("positioning”) Positioning positioning)
24 {...}
25
26 @Process
27 @PeriodicScheduling (period = 1000)
28 public static void reportStatus( @In("id") String id, ...)
29 {...}
30
31 @Process
32 @PeriodicScheduling (period = 2000)
33 public static void driveRobot (

34 @In("position") Position pos,

35 @In("positioning”) Positioning positioning,

36 @In("destination") Position destination,

37 @InOut ("curDestination™) ParamHolder<Position> curDestination,...)
38 {...}

39 }

Listing 12.1: Model of ACRC baseline in JDEECo

Communication between components is in DEECo modeled by ensembles.
Topologically, an ensemble in JDEECo is a star featuring one coordinator and
multiple members.

The baseline implementation does not involve any ensembles. However, ensem-
bles are to be exploited for decentralized coordination of adaptation across several
robots. This is demonstrated in Figure 12.2, where an ensemble for location
exchange is given. It is established between robots which are close to each other
and both of them are stuck.

12.2.3 Technical Architecture

Figure 12.4 shows the architecture of the test-bed. Technically, it is a merger
of four main existing modules. The contribution of the test-bed lies properly

130




<<client>> <<server>>

deeco runtime simulation server
<<jar>>
Robot 1: g <RMI> simulation
deeco runner
component
_ <<rosmodule>> ll<<ROS>
Robot 2: £ —<<ROS>>— Robot 1: 1
comd_eic:ent _|_move base <<rosmodule>>
# <<ROS>> stage
. . PR I T
Robot3: £ runtime <<R0OS>>
deeco logic <<rosmodule>> |
map server
component P | <<rosmodule>>
<<ROS>> <<ROS>> rosomnet++
l 7
= (omnets+_|
Robot N: £7] <<rosmodule>> P
deeco F—<<ROS>>— Robot 1: =
component amcl N
l <ROS> l

Figure 12.4: Test-bed deployment diagram

configuring them and bridging them by glue and synchronization code. The

modules are:

e ROS Core — this module provides the basic software of the robot, implements

the AMCL localization, navigation and low-level movement control of the
robot.

OMNeT++ — is a network simulator. It runs independently of ROS. A
bridge between ROS Core publish/subscribe mechanism and OMNeT++ was
implemented, which exposes the MANET transceiver as a ROS topic. This
allows modules connected to ROS to communicate. OMNeT++ simulates
the latency, physical range and interference of the communication based on
robots’ positions.

Stage — is a robot simulator, which controls the simulation. It connects
to ROS Core and simulates sensors and actuators of the robot given the
simulated robot position and the map of the environment.

JDEECo — provides the component abstraction and concepts for decentral-
ized coordination as described in Section 12.2.2. It abstracts ROS topics
on location, navigation and exposes them to DEECo components to al-
low for adaptation. It further exploits the ROS topic on MANET-based
communication (backed by OMNeT++) to implement inter-component com-
munication via ensembles. JDEECo again runs independently of ROS and is
synchronized with it by a bridge that was developed as part of the test-bed.

12.3 Example Adaptation Logic

The model problem specification and the test-bed are complemented with an
example adaptation logic as part of the ACRC model problem. It provides a

131



comprehensive example of the modeling concepts (described in Section 12.2.2)
and also serves as evaluation of the test-bed to perform simulation of physical,
mobility, networking and coordination concerns.

in

In the example adaptation, the problems described in Section 12.1.1 are tackled
the following way:

(a) A process (on each robot) is introduced, which periodically detects the

situation when a robot is stuck. This is done by checking whether the robot
is moving and whether the robot has a destination set. The robot that is
not moving and wants to move is considered stuck.

(b) If a robot is detected to be stuck, a random location from its queue of

16
17
18
19
20
21
2
23
24
25

1

destinations is selected and set as its current one. This resets the navigation
module in the robot and typically gets the robot to move. The outcome via
the process described in (a) is monitored and repeat if no visible outcome is
detected.

(c) If another robot is stuck in close proximity (up to 1.5m), an ensemble with it
is established. Within the ensemble, one robot adopts the current destination
of the other robot and vice-versa. This solves the (deadlock) situations when
two robots meet in the office entrance and cannot proceed. The strategy (c)
is illustrated in Listing 12.2. Ensemble membership is defined on Lines 7-11,
and destination adoption is defined on Lines 13-24.

@Ensemble
@PeriodicScheduling (period = 3000)
public class DestinationAdoptionEnsemble {
double MAX_DIST_M = 3.0;
long BACKOFF_MS = 10000;
@Membership
bool membership (@In("coord.id") String coordId, ...) {
return coordState == Block && mbrState == Block && !coordId.equals (mbrId) &&

coordPos.distTo (mbrPos) < MAX_DIST_M;
}

@KnowledgeExchange
void exchng (@InOut ("mbr.destination"”) destination, ...) {
if (now-lastAdoption.value)<BACKOFF_MS) {
return;

}

mbrAdoptedDestinations.value.add (coordDestination);
mbrDestination.value = coordDestination;
mbrRoute.value.add (coordDestination);
mbrBlockCnt.value = 01;

lastAdoption.value = now;

Listing 12.2: Excerpt from example ACRC adaptation strategy

2.4 Lessons Learned and Limitations

The experience with development of the test-bed on top of ROS led to several
observations, which are generally interesting.

Generally, a relatively big surprise was the overall immaturity of the frameworks.

This most likely stems from the fact that ROS is primarily used as a platform for

132




controlling a single robot at real-time. Though it has very flexible architecture,
which allows running multiple robots within a single ROS system and allows
connecting different environment simulators (e.g. Stage), the practice shows that
these setups work out of the box only for trivial examples. Deploying multiple
robots without careful configuration of the environment would make ROS or the
Stage simulator crash. Similar story applies for OMNeT++, which is a mature
and production-ready network simulator used in many applications. Nevertheless,
when it comes to complex exercising of the MANET, the simulator again becomes
very fragile and without careful configuration and patching, it crashes for no
obvious reason. From this perspective, it seems that even without the DEECo
abstraction layer, the pre-configured test-bed provided can save a couple of months
of painful debugging.

Another class of problems comes from the fact that, though ROS has been
used in simulations, it is not a discrete event simulator. It consists of a number of
modules, which just run in wall-clock time. This means that (1) the simulation is
non-deterministic, and (2) if extra care is not taken, the system crashes because
the simulator, ROS, OMNeT++ and DEECo are not synchronized. This problem
was solved by introducing explicit synchronization at critical places, but still
one has to keep in mind that this solution does not result in fully deterministic
simulations.

Surprisingly enough, experience with developing the sample adaptation logic
has shown that the wall-clock timed simulation has certain advantages over a
standard off-line discrete-event simulation. Since the system is live (and behaves
as if the robots were moving in real time), one can watch the system as it runs,
inspect the laser scans, etc. Additionally, it is possible to modify the system
while it is running — e.g., a robot can be dragged by mouse to another location.
While this is not important in classical batch simulations which focus on statistical
comparison of different algorithms, it is very useful in debugging and especially
in prototyping (which in fact is one of the primary goals of the test-bed and the
reason why it was equipped with the DEECo abstractions).

12.5 Artifact Structure

The ideas described in this chapter are supported by an artifact!. The artifact
contains the source code of the test-bed, together with installation and usage
instructions. Moreover, a pre-configured virtual machine image is included in
order to enable rapid hands-on experience without the hassle of installing tons
of libraries. The artifact is formed by a single archive which contains all the
necessary files. Instructions on how to use the artifact are located inside of the
archive in index.html.

"http://d3s.mff.cuni.cz/projects/components_and_services/deeco/
files/seams—-2016—artifact.zip

133


http://d3s.mff.cuni.cz/projects/components_and_services/deeco/files/seams-2016-artifact.zip
http://d3s.mff.cuni.cz/projects/components_and_services/deeco/files/seams-2016-artifact.zip

134



CHAPTER 13

Evaluation

Evaluation of the ideas presented in this thesis, particularly in Chapters 8, 10,
and 9, is covered in Sections 13.2, 13.1, and 13.3 of this chapter respectively.

Evaluation strategy is to introduce simulations of scenarios focusing on dif-
ferent aspects of the sCPS while trying to measure applicability of the proposed
approach. Different sections describe experiments conducted with different DEECo
implementations and scenarios as described in chapters describing an evaluated
approach.

13.1 Safety Critical Communication

In this section, the analysis presented in Chapater 10 is validated by means of
simulation. To this end, an OMNeT++ simulation [52] using INET hardware
models was created.

An OMNeT++ simulation was setup by manually implementing DEECo
components as OMNeT++ modules. In particular, OMNeT++ module for each
vehicle at the intersection and for the ICS was implemented. While the ICS
is stationary, vehicles and their corresponding modules in OMNeT++ move
with given speeds. The modules generate network traffic that emulates the
communication of vehicles entering and exiting the ICS’s region of influence. This
reflects the knowledge propagation for our DEECo-based ICS, from which end-
to-end communication latencies are collected for a large set of simulated packet
transmissions.

Our network topology consists of one ICS host connected by a full-duplex switch
to three AP — see Figure 10.5. Vehicles connect dynamically to the AP adjusting

Priority levels 7

Message length 1024 bits

Packet send interval 7ms (Ppro from the analysis)
ICS response delay Dpro + Dens + T1cs = 28 ms

A car response delay Dpro + Dens + Tear = 21.18 ms
Bandwidth (Car to AP) | 100 Mbps
Bandwidth (ICS to AP) | 1Gbps

Table 13.1: Simulation parameters

135



message priorities as they get closer to the intersection. The communication from
the switch to the ICS host is performed under message prioritization according
to the IEEE 802.1Q standard. The simulation scenario spans different numbers
of vehicles (20, 50 and 70 correspondingly) exchanging packets with the ICS.
Table 13.1 summarizes the most important simulation parameters considered in
the evaluation.

Figure 13.1 and Table 13.2 show the results of the simulation with respect to
closed-loop reaction time — i.e., the Car-ICS-Car delay — and for an increasing
number of consecutive packet losses at the communication channel. In case that
no packets are lost, this figure shows that our D,,,, = 50 ms — computed at the
end of Section 10.4 — is safe. That is, in this case, all delay values in the system
are always less than 50 ms even for 70 cars, i.e., two more cars than what it is
considered and allowed by the analysis presented in the above sections.

13.1.1 Evaluation under Unreliable Communication

Simulation results for a varying number of consecutive packet losses either from
the car to the ICS or from the ICS to the car are discussed here. As it can be
observed in Figure 13.1, the system operates properly — i.e., the Car-ICS-Car
delay is below t1,, = 72ms — for up to 3 consecutive packet losses, which validates
our analysis in Section 10.5. Clearly, the more packets are lost, the higher the
Car-ICS-Car delay is; however, this is always less than the computed threshold
tim and, hence, the system can remain in automatic mode.

For case of 4 packets lost, also depicted in Figure 13.1, the Car-ICS-Car delay
starts exceeding the threshold ¢, = 72 ms — even when considering only 20 cars at
the intersection. As a result, the system cannot tolerate more than 3 consecutive
packet losses without switching to manual mode. This again is in accordance with
the computed upper bound on packet losses given in Equation (10.22).

136




LET

Message count

1le5

~
™~

4.0 A

3.5 1

3.0
2.5 A
2.0 A
1.5~
1.0 A
0.5 1
0.0 -

492 493 49.4

No packet lost

56.3 56.4

~
N
~
™~

63.3 63.4 70.3 70.4
Delay [ms]
1 packet lost 2 packets lost 3 packets lost

Figure 13.1: Car-ICS-Car closed-loop reaction times in milliseconds

72

Threshold

77.3 77.4

4 packets lost




13.1.2 Realism of the Evaluation

The presented results are based on a simulation and, thus, they may differ in
reality. In particular, a number of assumptions which may not hold were made and,
hence, have an impact on our evaluation. In the following text, this is discussed
in more detail.

e The computed ¢y, may not hold. This is based on the assumption that
cars/vehicles can have speeds of up to 50 Km/h — see (10.14). However, in
reality, it may happen that one or more cars exceed this speed limit by some
amount. A solution to this is to consider a safety margin and, for example,
compute a new tq,, for 60 Km/h instead. However, it now may happen that
the ICS cannot meet this deadline anymore. To overcome this problem, the
number of cars at the intersection can be restricted to a safe value. If more
cars than safe enter the ICS’s region of influence, it will switch to manual
mode. Clearly, this higher speed limit can also be exceeded. In this case,
the ICS can directly switch to manual mode.

e The computed maximum number of cars at the intersection n may also not
hold. This is based on assumptions on the minimum length of cars and on
the maximum possible distance between any two cars at the intersection
— see (10.15). If these assumptions do not hold in practice, the maximum
number of cars at the intersection may potentially increase. This has impact
on the WCRT of the ICS r;cg and on the worst-case communication delay
from a car to the ICS c.q.. As a result, the ICS may probably not be able
to meet deadlines any longer and, hence, it will have to switch to manual
mode to guarantee safety, if more cars than the maximum expected enter
its region of influence.

e The WCET of processes at the cars and at the ICS may be greater than
the assumed e; = 50 us. This will have direct impact on the WCRT at the
car 7., and at the ICS r;cg. As a consequence, the ICS may not be able to
meet deadlines anymore and, again, it will have to switch to manual mode,
if a given number of cars is exceeded at the intersection.

o The bandwidths assumed for the different segments (either from the car to
the AP or from the AP to the ICS) are less than those assumed in Table 13.1.
This leads to increased communication delays in both directions from the car
to the ICS and vice versa. The ICS may stop being able to meet deadlines
and, thus, it will have to restrict the number of cars at the intersection in
the automatic mode.

From the above discussion, it should be clear that discrepancies between our
simulated and a real-life ICS was accounted for by taking a conservative estimate
on the maximum number of cars that the ICS can simultaneously handle. If, in
practice, this number is exceed, the ICS will switch to manual mode preserving
safety at the cost of restricting service.

138




No packet lost | 20 vehicles 50 vehicles 70 vehicles

Mean | 49.2245 49.2507 49.2694
Std. Dev. | 0.0157 0.00298 0.03723
Median | 49.2182 49.2449 49.2582
Max | 49.3117 49.4453 49.5121

1 packet lost

Mean | 56.2245 56.2507 96.2692

Std. Dev. | 0.0155 0.00299 0.0371
Median | 56.2182 56.2449 56.2582
Max | 56.3117 56.4319 56.4987

2 packets lost

Mean | 63.2246 63.2508 63.2694

Std. Dev. | 0.0156 0.00298 0.0372
Median | 63.2182 63.2449 63.2582
Max | 63.3117 63.4453 63.5121

3 packets lost

Mean | 70.2246 70.2509 70.2693
Std. Dev. | 0.0156 0.00298 0.0371

Median | 70.2182 70.2449 70.2582

Max | 70.3117 70.4453 70.4987

4 packets lost

Mean | 77.2245 77.2507 77.2694
Std. Dev. | 0.0156 0.00298 0.0372

Median | 77.2182 77.2449 77.2582

Max | 77.3117 77.4319 77.5388

Table 13.2: Reaction time statistics (values given in milliseconds)

139



13.2 Vehicle coordination in a platoon

This section provides experimental simulation of the platoon scenario that serves
as an evaluation of the approach described in Chapter 8.

As a proof of concept a simulation of the platoons scenario was conducted
including several experiments, allowing to assess the applicability of the method!.
Total number of messages exchanged in the system was used as a metric for express-
ing communication efficiency. The simulation, conducted with use of MATSim
[53], was focused on optimization of emergency vehicles’ routings across realistic
road network of the Prague city provided by OpenStreetMap [54]. Firefighter,
police, and ambulance vehicles were considered as the emergency vehicle types.
The locations of ambulance, police and firefighter bases were set according to their
real locations. For simplicity, all non-road objects and several minor roads were
removed from the original map which yielded a road network covering the area of
approximately 100km?.

The simulation comprises three groups of experiments: (i) emergency call
response by 3 vehicles, (ii) emergency call response by 5 vehicles, and (iii) single
large platoon (convoy with the right of the way). The groups (i) and (ii) encompass
experiments differentiated by number of concurrent emergency calls (1, 2, 3, 5, 10,
15, 20), while (iii) encompasses experiments with several platoon sizes (3, 5, 10,
15, 20).

As to (i) and (ii), when an emergency call is issued (e.g. a serious car crash),
vehicles are dispatched to the accident site (destination). In the simulation, the
emergency vehicles heading to the same destination aim at forming a platoon
to make it easier to clear their path in heavy traffic by driving closely behind
each other. The emergency vehicles are dispatched from the emergency service
bases as close to the destination as possible. Specifically it is assumed that: in
(i) one of each emergency vehicle type is sent to every destination, in (ii) two
ambulance, two firefighter and one police vehicles are sent to every destination, in
(iii) emergency vehicle types are not distinguished.

Once a vehicle is on its way to the accident site, it aims at following another
emergency vehicle heading to the same destination. A platoon is established, when
the distance between two solo vehicles heading the same destination is negligible
in a street. A vehicle is allowed to join a platoon only when its prolongation
of its route to the destination is minor and has the ability to increase its speed
temporarily.

In order to show that the results do not depend on particular routing and
destination choice, 10 different simulation runs parametric in the destination
choice were executed.

13.2.1 Results

In (i) and (ii) a key result of these sets of experiments is the proof of communication
complexity reduction (from quadratic to linear). Recall that this complexity metric
is the number of infrastructure network messages — in our case those were the IP
messages. For the group (i) the number of IP messages was measured (Figure

!Source code of the scenario implementation used in the experiments is available at:
urlhttp://github.com/d3scomp/cbse-2015-tutorial

140




1.2
..... Lineartrend
..... PoWer trend ..:
1.0 A Groupers :’
v Gossip
$ 0.8 -
[@)]
@©
o
£
o 0.6 )
S
g
c 0.4 1
>
Z .
v
0.2 1 )
T T UTTUTRPRPRRY WWPPPPLTLLELL LA Y
x ...................... P A--
0.0d oo Xt
° > 10 - -~

Number of accident sites

Figure 13.2: Communication complexity comparison of Gossip and groupers;
experiment group (i) — 3 vehicles per accident

13.2); for the group (ii) this measurements are in (Figure 13.3). The reason for
not considering MANET messages is that these are local and thus not influencing
the infrastructure network load, even though small fraction of these is inherently
rebroadcasted in MANET network. From these figures, it follows that when just
Gossip is applied, the number of IP messages grows quadratically with the number
of vehicles. This is caused by the fact that IP messages from a vehicle are sent to
all of other vehicles. On the contrary, when groupers are applied the IP messages
are sent only to the vehicles sharing a particular destination, the number of IP
messages is linear in number of groups while assuming the size of the group is
constant. Moreover, here it is also visible that the effect of improvement starts
at a minimal number of destinations (such as 3 in Figure 13.2), since there is an
overhead of communication among groupers.

Note that a system that enables message passing between the MANET and
infrastructure networks (such as JDEECo originally) needs to be configured in
such a way that messages from different communication groups do not leak from
one communication group to another, otherwise this would harm the positive
effect of communication groups. As an aside, in the simulation this was ensured
by preventing rebroadcasting of IP messages by MANET.

Finally, domain specific knowledge can be further exploited by deciding ensem-
ble membership conditions in groupers. Such a feature would enable distribution
of knowledge only to those nodes that host components satisfying a particular
ensemble membership condition. In the platoons scenario (Figure 8.2), a vehicle
that is a member of a platoon is not a member of an instance of SameDestination

141



..... Lineartrend
3.04 Power trend
A Groupers .:'
v Gossip |
2.5 1
n
[
(@)
©
2 2.0
(]
1S
& L4
%5 1.5 1
o
fo]
£ 10
] .
v
0.5 1
LT UUPUPPITY PPPTLLLL LA A
................. Y EERE
x ...................... At
0.0 A T 1LY Xt
’ > 10 15 -

Number of accident sites

Figure 13.3: Communication complexity comparison of Gossip and groupers;
experiment group (ii) — 5 vehicles per accident

any more, thus not being subject to the respective knowledge exchange, since only
the “solo” vehicles and platoon leaders need to communicate via infrastructure
network. Therefore, thanks to ensemble membership condition evaluation in
groupers, it is possible to exclude those vehicles from communication group. The
effect of this optimization would be minimal in experiment groups (i) and (ii),
since the platoons considered are relatively short. In order to study this effect, the
group (iii) was introduced. From Figure 13.4 it is clearly visible that introducing
groupers deciding ensemble membership condition further reduces the number of
IP messages for larger platoons.

13.3 Ensemble parameters and system utility

Aiming to show the effect of different network parameters on the overall systems
utility, a series of experiments on the scenario described in Chapter 9 was conducted.
Note that this is meant to explain the problem, not to suggest one particular
setting of parameters, as the dependency between a particular parameter and
network load and system utility is heavily problem specific.

The problem was modeled as a DEECo application and implemented in the
JDEECo framework while the scenario specific environment and ensemble instan-
tiation heuristic were implemented as reusable plugins to JDEECo.

All the experiment setups were based on the example scenario while maximizing
distance from beacon to robot at ensemble instantiation time. In order to narrow

142




354 " Power trend
----- Power trend .
v Groupers not evaluating membership condition "
3.01 a Groupers evaluating membership condition :
§ 2.5
© K
£ 2.0 -4
o A
G
v 1.5 1 A
o R4 ®
=] K -
=z 1.0 A ‘
0.5 A x ,,,,,
004 R gt
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Number of vehicles sharing destination

Figure 13.4: The effect of introducing groupers deciding ensemble membership
condition; experiment group (iii) — single large platoon

down a huge number of candidate parameters influencing system utility, an initial
round of experiments was conducted. In this run, parameters with the potential
to optimize system utility were selected for further analysis. In the end, an
experiment setup covering a range of values of the parameters (i), (ii), and (iii)
mentioned in Section 9.4.3 was employed in the scenario simulation.

The simulation was conducted in a custom environment of the size 30230
meters, further determined by robot movement, beacon touching, and two radio
models. The radio models include a simple one featuring delivery delays between
15ms and 35ms in the limited range of 5 meters that was initially used for the
evaluation. The second model used is based on the OMNeT++ framework. It
features precise radio simulation, but it slows down the simulation in an extent
of several orders of magnitude. Due to the possibility of two radio models the
results also serve the purpose of comparing the two models in terms of usability
and precision.

13.3.1 Experiment Setup

The experiments were conducted in the following settings: The number of robots
was 6, and the number of beacons was 4. This implied that the ensemble (specified
in Figure 9.1 at Lines 26-48) existed in at most 3 instances, even though their
average number of instances was 1.4. Basically, the experiments were executed
for different values of parameters (i), (ii), and (iii) described in Section 9.4.3.
In detail, a series of experiments were conducted for different values of single

143



parameter, while all the other parameters were fixed in the series. For each
parameter value setting (configuration), an experiment was executed 100 times
with different random seeds of robot and beacon positions. This arrangement
helped determine the influence of noise in the number of underlying messages
and system utility. The whole set of experiments was executed twice. The first
execution was including simple network simulation while the second one was using
precise OMNeT++ network simulator.

13.3.2 Simple Network Results

The actual result of the simple network based simulation runs is depicted in Figure
13.5. The effect of rebroadcast period modification is depicted in Figure 13.5b
where there is a clear sweet spot between the rebroadcast period of 10 and 20
seconds. Thus setting a lower period results in producing excessive number of
messages without any significant improvement in the system utility.

The impact of the rebroadcast radius modification, displayed in Figure 13.5a
shows that the system utility is saturated at the range of 10 meters. Further
extension of the range limit just implies more messages to be sent, while the
system utility remains intact. Finally, in an effect of modifying max staleness
is presented. Essentially, removing the messages older than the desired max
staleness may cause minor reduction in number of messages sent and even slightly
improve the system utility. Since the simulation was done for a simplified radio
model, the actual position of the sweet spots and other interesting points in figures
may not be accurate, depending upon the properties of the real network, such as
latency, throughput, and congestion. Furthermore, the setting of the parameters
has to respect its effect on the smallestRadius and maz staleness communication
constraints specified in the ensemble. Here, the relation is that the rebroadcast
radius has to be greater or equal to the smallestRadius specification. Further, the
rebroadcast period, Figure 13.5b, and max. packet age, Figure 13.5¢, are positively
correlated with the data staleness, which has to be kept under the specified max
staleness.

Overall, the results indicate that it is possible to optimize system utility via
settings of communication parameters and, at the same time, minimize the number
of messages necessary to honor the communication constraints imposed in an
ensemble specification. However, it is important to keep in mind that the profit
for a single ensemble instance may impact the system utility influenced by another
ensemble instance.

Naturally, the exact sweet spots are specific to a particular scenario, so that
the results above cannot be directly applied to a different one. Nevertheless, the
simulation shows that the relationships between communication parameters and
system utility can be applied in a MANET to scenarios similar in communication
constraints. Usage of an optimization algorithm to continuously adjust the com-
munication parameters at runtime while trying to stay within the communication
constraints is envisioned. Generally, a viable starting point for the optimization is
the worst-case setting of the parameters (i.e. assuming the minimal radius and
maximal staleness. From these, the optimization can try to extend the range of
communication and increase the number of messages transmitted until it hits the
saturation of the network.

144




L 225
- - ; -+
50
* - F 200
1 -
45 “
wf 175 2
©
40 4 3
_ I 150 £
2 c
3 L
: = 125 §
2 30 2
g N 1 -100 E
- o
25 1 5
r75 £
3
20 = =
- F 50
15 1
— F 25
10 : : . . . . .
0 5 10 15 20 25 30
Rebroadcast radius in meters
(a) Prefer distant beacons - rebroadcast radius influence
+
504 - * L 500
+
+ o+
45 9
400 &
+ &
40 _ H
2 | E
Z 351 * - + 300 §
€ 1 T * o
2 30 A @
a1t S
N | L 200 ©
25 I 2
£
- 2
201 = - 1
- 100
- + o _ ¥ - i | .
-+ -+ + -+ -+ -+~ -+
5 10 15 20 25 30 35 40 45 50 55 60
Rebroadcast period in seconds
(b) Prefer distant beacons - rebroadcast period influence
50
+
+ * * * + 75
40 + + + + + n
703
- + % + + 0 %
w
- + é
= 30 P
> 5
5 : L 60 &
“i ()
: L] e
20 A $ I 55 2
1 + g
£
| =)
+ L50 <
10 1
L 45
5 10 20 30 40 50 60 70 80 9 100 120

Max. staleness in seconds

(c) Prefer distant beacons - max staleness influence

Figure 13.5: Communication parameter impact on system utility, simplified
network simulation

145



13.3.3 Precise Network Results

Originally only the simple network simulation results were used to evaluate the
experiment. This was due to lack of time to conduct experiments that run for a
week using an OMNeT++. Later the precise simulation results were obtained.
These results serve the two purposes. First the results can be used for a more
detailed evaluation of this particular scenario. Second the comparison of results
show general pitfalls of the simple and fast simulation that can be used as an
advice for future evaluation in the field of the sCPS.

Considering the values obtained from the OMNeT++ based simulation the
sweet spots are more visible and slightly shifted when compared to the simple
simulation model. From the Figure 13.6a follows that the system utility is maximal
at the 5 meter range. Further extension do not only bring zero benefits, as displayed
in simple model results, but also overload the network and possibly slightly lower
the system utility. Rebroadcast period influence displayed in 13.6b now seems to
have a sweet spot somewhere around 20 seconds. This one is caused by balance
between network congestion at low periods and data aging at high periods. The
effect of maximum staleness enforcement displayed in 13.6¢ is the same as in case
of a simple network model.

Concluding the differences in network model used the overall utility is reduced
by 10 — 15% when a precise network simulation is used. This is most probably due
to fact that the network gets congested and packets dropped or delayed. In general
the simple simulation provided results that show saturation points for different
parameters. The range of parameters can be limited using the simple simulation
output. The precise simulation added hard limits on network congestion caused
by sending too many packets too often. These can be used to limit pentameter
range in such a way that potentially dangerous system configurations that cause
network overload can be avoided.

All in all the combination of a simple and OMNeT++ based simulations
showed benefits and pitfalls of both. Simple simulation quickly reveals saturation
points where further change in parameter value do not bring significant benefit.
The precise simulation reveals the values of parameters that cause problem with
network including packet drop and delays due to congestion.

146



.
+ +
301 : * == . == 120
]
: + :
100 9
25 - 2
z <
E 80 [
= L
o
% 20 jE_)
60 ©
[
g
=)
4 p=4
s +
—— + + |
10- : : : : : : : 20
0 5 10 15 20 25 30
Rebroadcast radius in meters
(a) Prefer distant beacons - rebroadcast radius influence
40 L 450
+
351 * L 400
. _ T +
. —
30 + . . 350 €
1%
3
300 2
2257 £
E I - 250 8
1= ©
g 20 A ﬁ
n L
) . 200 £
15 ) 2
* F150 &
¥ + €
=)
10 . L 100 %
L
5 = - - L 50
-+ -_— -+ -+ —_ -+
1 5 10 15 20 25 30 35 40 45 50 55 60
Rebroadcast period in seconds
(b) Prefer distant beacons - rebroadcast period influence
35
+ + . + - 80
. T
] + T + T
30 ] _ + é % + s
% w
+ °
5
25 r ¥ + F70 @
+ E
2 [ * L 65 E
5201 * ¥ é
£ a
& 60§
PETE I I L 1 L . g
- I 55 5
* - * -g
101 . L0 2
5| * L as

Figure 13.6: Communication parameter impact on system utility, precise network

simulation

40 50 60 70 80
Max. staleness in seconds

20 30 90 100

(c) Prefer distant beacons - max staleness influence

147

120



148



CHAPTER 14

Related Work

This chapter deals with works similar to this thesis in the filed of SCPS and beyond.
Different approaches are grouped together in sections of this chapter based on
the challenges addressed in this thesis. In particular works dealing with data
propagation limits and related to Challenge C1 are described in Section 14.1;
works relevant to sCPS networking and related to Challenge C2 are discussed in
Section 14.2; works related to membership evaluation and related to Challenge
C3 are introduced in Section 14.3; works relevant to coordination and related
to Challenge C4 are discussed in Section 14.4; and relevant means of evaluation
relevant to Challenge C5 are listed in Section 14.5. Some of the works seems fit
for multiple challenges, but are listed only in the most relevant section.

The related work listed addresses, among others, two fundamental fields of
communication and component based architectures. The approach taken in this
thesis differentiate from others by putting these two together by choosing which
network properties should be reflected in architecture. This way the abstractions
necessary to develop complex software systems such as sCPS and IoT are used
while the necessary details are provided that help to optimize network behavior
and connect different layers of the system that belong together in case of the sCPS
and [oT.

14.1 Knowledge propagation limits

This section deals with related work directly of indirectly addressing Challenge C1
of this thesis. The related work encompasses mostly different routing techniques,
WSN, and edge cloud. All these solve the problems of (i) choosing where to
propagate particular piece of information, and (ii) how to do it efficiently.

14.1.1 Wireless Sensor Networks

WSNs are systems composed of many nodes covering an area of interest and
collectively sensing required values. Motivated by use cases where the nodes are
powered by batteries or solar cells, the main research direction in the field aims
on optimization of energy consumption. The WSN;, as outlined in [55], present a
network architecture that attempts to reduce energy consumption and wireless
network bandwidth usage by processing the sensed values directly on the node
that captured those and by employing a multihop routing scheme.

149



The effort to limit data that needs to be transmitted is very similar to the one
in the field of EBCS based sCPS. Moreover, similarly to the sCPS, requirements on
resilience and node fault tolerance motivate researchers to think of a decentralized
WSN [56]. The similarity between WSN and sCPS is further manifested in [57],
where the authors propose Distributed Sensing and Control (DSC) middleware that
enables dynamic node addition and removal as well as resource usage management.
Using the middleware it is possible to balance utility of the system and resource
usage. In context of sCPS this concept is very similar to the intelligent ensemble
and the fitness function as described in Chapter 7.

The connection between WSN and CPS is also recognized in [58] where
the authors propose evolution of the WSN from pure value sensing towards
bidirectional interaction between physical and virtual worlds. Further the authors
propose deployment of large decentralized WSN based CPS that meet the criteria
to be called sCPS.

In general WSN solve similar problems with communication as this thesis
addresses in the field of the sSCPS. The difference is primary focus on data in
WSN while this thesis primary aims on dynamic grouping using ensembles, that
also requires data propagation in order to work properly.

14.1.2 Context aware routing

Keeping the abstractions high and dealing with network traffic regardless of the
packet content limits possibility to optimize routing and packet delivery. In order
to further optimize it is necessary to exploit domain specific knowledge and analyze
data passing through the network in order to deliver the packets efficiently and
limit delivery of irrelevant data. In general this technique is called context-aware
routing. An example of this is [59] where context is used to discover delivery paths
based on the social behavior.

The concept of adaptive routing is similar to the communication groups
presented in Chapter 8 where the context is used to route knowledge data to
the destination where the similar knowledge is processed together. Further the
technique similar to the context aware routing is used in Chapter 9 where packet
delivery is optimized in such a way that the overall system utility is maximized
using adaptive routing of knowledge packets based on their content. The work
covered by this thesis goes beyond context aware routing and even drop packets
based on the context. This is possible due to the architecture that combines
network and component grouping, thus enabling application specific network
optimization.

14.1.3 Geographic routing

In a mesh network or a MANET, building a good routing path is significant
challenge. In [60] usage of a node location is proposed to optimize routing. This
concept is further extended in geographic routing, [61].

Geonetwork is a type of networking system relying on a geographic rounting
protocol. It is most often used in ad-hoc networks. Taking advantage of network
node geographic position in addition to its address when delivering packets
geographic routing based protocols enable packet delivery to network node at

150



a particular location or to all nodes in a chosen area. There are many ad-hoc
geographical routing protocols proposed different in an addressing scheme, route
calculation, performance, and resiliency to network node mobility. Some of these,
including Shortest path, Greedy, and Compass, are described in [39].

Geonetworking has already gained popularity in WSN and continue to advance
towards vehicle to vehicle communication. Due to this it is also important for
sCPS. The [62] already defines usage of geographic routing protocols in VANETS.
The concept of geographic routing is related to Challenge C1 of this thesis due
to ability to exploit packet context, its source, destination, or other location
information in its delivery. In Chapter 9 a similar concept of packet delivery based
on physical locations and distances is used. Comparing to the approach presented
in this thesis the difference is in level of abstraction where geographic routing is
considered a low level network while this thesis solves networking at application
level.

14.1.4 Zone Routing Protocol

Zone routing protocol, as described in [63], is a hybrid wireless network protocol
that combines proactive and reactive routing protocols to deliver packets.

Each node following the network protocol maintains a table of nodes in its
neighborhood. This table is used by the proactive routing protocol to deliver
packets to a local zone. When the proactive routing fails the sender asks nodes
at the edge of its neighborhood to establish a route. If necessary, the route
request can be processed recursively. Once the route is found the sender uses the
discovered route to send the packet.

The combination of proactive local zone and inter-zone reactive routing makes
the protocol especially suitable for vehicular systems and systems with node
mobility in general. These properties make the zone routing important technique
for the sCPS. In this thesis the zone based routing is related to the combination of
local and global knowledge packet delivery. The local packet delivery using MANET
can be seen as in-zone packet delivery while global routed packet delivery using
an infrastructure based mobile data connection is responsible for packet delivery
beyond zone limits. On comparison, an approach presented in this thesis attempts
to spread data rather than route them to particular destination. Moreover, if
directed communication is required the system already knows whenever to do
local or global delivery.

14.1.5 Large scale Cyber-Physical Systems

Another field closely related to the sCPS and network awareness are the large scale
CPS as outlined in [64] and [65]. Building on the concept of Machine To Machine
(M2M) communication, traditional CPS, and WSN an autonomous behavior based
on the in-network processing of data is envisioned. Thinking of the future in the
field of M2M and CPS, massive deployment is expected with networks of millions
of nodes. Current approaches that consists mainly from centralized solutions needs
significant redesign in order to withstand such a widespread usage.

Concepts such as local data processing and local coordination without necessity
to spread data to the whole network are related to the concepts of adaptive

151



communication and knowledge propagation using a dynamic boundary condition.
Comparing both approaches the large scale CPS lacks the complexity of sCPS in
terms of dynamic grouping and coordination.

14.1.6 Edge Cloud

Edge cloud or Fog computing is an approach where computation resources are
moved from data centers closer to the users in order to save latency and gain
additional benefits [66], [67]. Usually the edge cloud servers are located at the
edge of the network - i.e at the mobile network cells. Servers located at the edge
of the network gain low latency when talking to the end user devices as well as
they have access to some extra information about the end user device. This extra
information enables optimizing the service based on the available bandwidth,
mutual location, device type, and connection history.

This thesis stresses similar concepts of locality in data processing and adapta-
tion of knowledge propagation based on the condition of the underlying network
infrastructure. In addition to the edge cloud, the approach described in this thesis
does not rely on deployed servers as it assumes computation capacities to be
spread across the network nodes hosting the components.

14.2 Network architectures of the sCPS

In this section some of the architectural styles used to design sCPS, related to the
topic of this thesis, in particular Challenge C2, are described. The listing is not
aiming to be complete, but rather focuses on the most relevant architectures and
provides brief comparison.

14.2.1 Ensemble Based Component Systems

Ensemble Based Component Systems, further described in Chapter 2, are systems
similar to the DEECo, the component model used in this thesis. Another models
featuring autonomous components and ensembles include SCEL [11] and Helena
[16]. The Helena is covered separately in Section 14.2.3.

The SCEL is a language used to capture the whole system at a high level of
abstraction. It is used to model behavior and aggregations parametric in knowledge
and policies. SCEL does not enable creation of runnable applications on its own.
A jRESP [17], a runtime environment and framework for SCEL based programs,
is necessary to develop an executable application. Compared to DEECo used in
this thesis, the SCEL based approach focuses on adaptation and analysis of the
systems while it does not consider network layer in detail.

14.2.2 Kevoree

Kevoree! is a toolbox for creating distributed systems using the model@runtime
approach. It provides a component model suitable for defining components together
with their input and output connectors. The components are used as blocks to

Ihttp://kevoree.org

152


http://kevoree.org

build a complex system by connecting their instances to the runtime model of a
system. The model is responsible for component interaction and also defines the
deployment of different components.

The Kevoree aims to simplify adaptations of the system by enabling adaptation
at the model level. This approach simplifies system introspection due to the
runtime availability of the model. Also the adaptation execution is made easier
as the system can be modified via changes made to its runtime model. The
nature of Kevoree is based on interaction through an asynchronous model. This
feature enables interaction of components using even a limited network connection.
A communication failure does not lead to imminent system failure, instead the
changes to the model are propagated once the connection is restored.

A framework that implements Kevoree functionality is available for Java and
JavaScript (NodeJS and Web browsers). Components defined in different languages
and using different platforms can still form a single system. A Kevoree script, or
KevScript is a DSL for describing model to model transformations used to update
and build the system. The KevScript sources can be used as for both deployment
and adaptation description. Transformations that transform empty model to the
model of a target system can be considered deployment scripts. Transformations
that just alter the system can describe adaptation execution.

Communication among Kevoree components is performed using commaunication
channels that can have various implementations ranging from serial links to Skype
calls?.

Comparing to the JDEECo and the approach described in this thesis to Kevoree,
both provide roughly the same concepts of components, communication channels,
and connectors. The difference is in DEECo based systems having ensemble
based connectors that are dynamic by concept while Kevoree relies on more static
and traditional connectors. Another difference is in handling of communication.
Kevoree maintains communication channels that require quite reliable media and
continuous communication. The DEECo based systems employ periodic knowledge
publication that brings resilience and support dynamic systems.

14.2.3 Helena

Handling massively distributed systems with ELaborate ENsemble Architectures,
in short Helena [16], is an EBCS based approach to handle distributed systems.
Helena leverages formal definition of component interaction in ensembles based
on roles and role connectors.

Helena role and ensemble models are described either using a graphical tool
provided by an Eclipse SDK? integration plugin or using a HelenaText DSL. Both
definitions are processed by a code generator that generates a Java code reflecting
Helena roles as classes. The Java code can be compiled together with jHelena
execution framework into an executable application. The implementation of the
tool is available at GitHub?.

2https://heads-project.github.io/methodology/heads_methodology/
extend_kevoree_to_support_a_new_communication_channel.html

3http://www.eclipse.org

‘https://github.com/aklarl/Helena

153


https://heads-project.github.io/methodology/heads_methodology/extend_kevoree_to_support_a_new_communication_channel.html
https://heads-project.github.io/methodology/heads_methodology/extend_kevoree_to_support_a_new_communication_channel.html
http://www.eclipse.org
https://github.com/aklarl/Helena

Formal nature of Helena model definition enables to generate Promela code
instead of Java and verify the system properties using a Spin verification tool.

Helena relates to this thesis in its EBCS nature. Comparing the network
awareness of Helena and DEECo based systems, Helena aims on the formal
modeling and verification of the data flows while approach in this thesis aims on
awareness and optimization towards realistic network properties.

14.2.4 Palladio Component Model

Palladio component model (PCM)® [68] is a part of a collection of software
development tools called Palladio. The component model is the core of the tool-set
focusing on the analysis and simulation of the systems in the early development
phases. Palladio model captures components, connectors, interfaces, service
behavior, middleware, deployment, and network while focusing on the separation
of concerns of developers working at different levels of abstraction. Based on the
model specification the tools provide analysis of performance, maintainability, and
QoS.

PCM uses Eclipse Modeling Framework (EMF) as a backend for its models.
Available graphical editors based on the Eclipse IDE enable interactive creation
of system models. PCM together with tools from Palladio suite form a Palladio-
Bench environment suitable for interactive design and analysis of various systems
in early development phase.

Palladio is related to this thesis in performance modeling of the network
utilization. Comparing to the DEECo based evaluation presented in this thesis,
the PCM focuses on design time analysis based on the component description while
this thesis measures results based on realistic simulations of real code running in
a virtual environment.

14.2.5 AUTOSAR

AUTomotive Open System ARchitecture (AUTOSAR) [69] is the component
model used by many brands in automotive industry. It has been created as a
response to the growing complexity of the on-board electronics in modern cars.
The AUTOSAR architecture is split into three layers (i) application software;
(ii) Runtime Environment (RTE); and (iii) Basic Software (BSW). These are
connected using well defined interfaces that enable composition of components
from different vendors. The BSW encompasses the core of the real-time OS that
is customized to run on a particular Electronic Control Unit (ECU). The RTE
is a glue that holds different applications and BSW together. The application
software is composed of components responsible for control of various hardware
present in a car. These are expected to be provided by different vendors together
with the hardware. The core AUTOSAR can be extended in order to upgrade
its features. For instance, TIMing MOdel (TIMMO) [70] is Timing Augmented
Description Language (TADL) based model used to capture timing constraints.
AUTOSAR differs from EBCS based component models in its static binding
between components. Although AUTOSAR provides abstractions that could
enable dynamic binding, the application components and BSW are bound together

Snttps://sdgweb.ipd.kit.edu/wiki/Palladio_Component_Model

154


https://sdqweb.ipd.kit.edu/wiki/Palladio_Component_Model

at compile time using the RTE. The relevance of AUTOSAR to this thesis is
based on wide adoption of AUTOSAR in the automotive industry, the main use
case source of this thesis, and its real-time abilities.

14.2.6 BlueArX

BlueArX [71] is a component framework that together with AUTOSAR aims on
the automotive domain. The BlueArX components are of two types (i) atomic;
and (ii) structural. Atomic components are backed by a C implementation. The
structural components are composed of atomic and structural components while
some of the interfaces are exported. This way BlueArX expresses hierarchical
components. The BlueArX supports predetermined dynamics using operational
modes. Mode switching as well as component operation is real-time.

Even though the BlueArX supports some dynamics using modes it is not a
true dynamic and open-ended system such as the systems described in this thesis.
Its relevance is motivated, as in the case of AUTOSAR, by its target domain and
real-time support.

14.2.7 ProCom

Progress Component Model (ProCom) [72] is a component model that emphasizes
difference between loosely synchronized large components and fine grained tightly
synchronized small components with real-time requirements. The ProCom has
two layers. The top layer, called ProSys, is modeled as a set of concurrent
subsystems communicating via message passing. The ProSys components can
form hierarchies and consists of subsystems residing on different nodes. The low
layer, called ProSave, also support component composition into hierarchies, but
the low level components are passive and only react to activation by external
entity. Communication between ProSave components is following pipes and filters
paradigm.

ProCom is similar with models presented in this thesis in its real-time awareness,
but lacks support for dynamism and open-endedness.

14.2.8 Rubus

Rubus [73] is a component model aiming on resource constrained vehicular systems
with mixed real-time requirements. A Software Circuit (SWC) is a base building
block defined by its behavior, interface, and internal state. It serves as a unit
of encapsulation of functions. Different SWCs are connected using ports of two
types used for (i) data flow; and (ii) triggering. All synchronization is restricted
to the explicit synchronization visible at the model level, the behavior specific
code is not allowed to provide extra synchronization.

Rubus based systems are composed of hierarchies of SWCs using assemblies and
composites. These have no semantics but serve only for structural decomposition
of the system. Assemblies and composites differ in deployment where assemblies
cannot be split while composites can be split to reside on multiple nodes.

Rubus does not naively support dynamic and open ended systems but has
native support for real-time properties and their analysis which make it relevant

155



to this thesis. Fach SWC can be accompanied by a run-time profile containing
its execution time and memory consumption. Based on these Rubus supports
real-time requirements on completion deadline, offset and period jitter.

14.2.9 Mechatronic UML

Mechatronic UML® [74] is an extension to the standard UML that allows to
capture model of the complex distributed safety-critical real-time systems. It
enables model driven development, verification, and code generation by employing
hybrid mechatronic components [75] and real-time coordination patterns [76]. The
model consists of two views (i) structural; and (ii) behavioral. Structural view
(i) describes component instances connected using message exchange that can be
distributed to different nodes. Behavioral view (ii) captures behavior of a single
component. Both views are presented as platform independent models that can
be converted to a platform dependent source code. The conversion from platform
independent model to final source code is performed step by step while each step
is verified in terms of real-time requirements on the system. As the system is
build from verified model using properly verified steps the final code is proven to
be correct by construction.

Relevance of Mechatronic UML towards this thesis is based on the fact that it
captures some dynamics in the system using reconfiguration as well as it captures
real-time properties. Moreover the model can capture even wireless connections
and their real-time properties such as throughput and latency. Comparing to
this thesis, Mechanization UML lacks support for truly dynamic and open-ended
systems although some level of dynamic is supported.

14.2.10 Behavior, Interaction, Priority

Behavior, Interaction, Priority (BIP) [77] is a general framework, language, and
toolset targeting systems that require rigorous design and real-time analysis. Using
BIP the complex systems are composed from atomic components by coordination of
their behavior. The model describes components using three layers: (i) transitions
that capture component behavior using Petri nets and C functions; (ii) interactions
between the transitions captured by a set of connectors; and (iii) priority rules
that select interactions.

The components are obtained by superposition of the three layers. Composed
components are created by composition of individual layers of the source compo-
nents. BIP supports transformations, composed of elementary transformations,
that work in a behavior, interaction, priority space. These can be used to convert
models to timed ones or synchronous ones. Construction by composition of both
components and transformations enable step by step verification of the design
and ultimately provides corecness by construction for the final system.

Regarding this thesis the relevance of BIP is based on its rigorous timing
specification and analysis. Compared to DEECo based systems described in this
thesis the BIP based systems are static, not allowing to build open-ended systems.

Shttp://www.mechatronicuml.org

156


http://www.mechatronicuml.org

14.3 Membership evaluation

This section summarize work related to the Challenge C3 addressed in this
thesis. The following text deals with related group formation techniques and
communication organization technologies such as Mesh and Gossip. These are
important due to the fact that communication technology used actually influences
membership evaluation in the system. Therefore also some of the works mentioned
in Section 14.1 could have been listed here.

14.3.1 Maude

Maude? [78] is a tool that enable capturing systems state using rewriting logic.
Maude language leverage equations and rewriting rules to define rewriting systems.
Once the system is defined it is possible to ask a Maude solver to reduce a particular
assignment using the rules and equations present in the system.

Maude is relevant to the topic as one way of viewing dynamic groups in sCPS
is based on transactions. These can be seen as actions performed on the top
of an existing group, or ensemble, that modify (i) ensemble state; (ii) modify
knowledge of the members; (iii) or even change component membership. A simple
example of Maude usage is given in Listing 14.1. The exemplified code captures
three components and an ensemble. The rewriting rules define component enter
and leave action for an ensemble. Comparing to Maude, an approach used in
DEECo goes beyond membership evaluation, where Maude could be applicable,
but encompasses also networking, data exchange, and coordination.

1 fmod DEECo is

2 sort Component .

3 sort Ensemble .

4

5 op A : —> Component .

6 op B : —> Component .

7 op C : —> Component .

8

9 op E : -> Ensemble .

10 op _ADD_ : Ensemble Component —-> Ensemble .
11 op _REM_ : Ensemble Component -> Ensemble .
12

13 vars c : Component .

14 vars e : Ensemble .

15 eq e ADD ¢ REM ¢c = e .

16 endfm

17
18 reduce in DEECo : E ADD A ADD B ADD C REM C REM B.

Listing 14.1: A simple example of a DEECo based model captured using the
Maude.

14.3.2 Coalition Formation Using Auctions

Another approach to tackle dynamic grouping, that can be used to tackle the
problems of the sCPS, is to employ auction based mechanisms [79]. The auction
based approaches use rules of the market to assign agents and tasks to coalitions
while taking price of involved decisions into account.

"http://maude.cs.illinois.edu

157


http://maude.cs.illinois.edu

The general idea is as follows. The agents form coalitions that compete for
tasks while offering their price per task. Auction manager evaluates offers, verifies
that the coalition is capable of performing the task and assigns the cheapest
coalition to particular task. The process is repeated in rounds until there are no
more tasks to be assigned.

Although the solution is not optimal the protocol usually offers a good approx-
imation of the optimal solution. In a sense the auctioning system can be seen as
greedy optimization algorithm where the auctioneer is doing the greedy choice of
cheapest partial solution. A very nice property of the auction protocol from the
point of sSCPS is the fact that is is naturally distributed. Even a straightforward
distributed implementation is naturally resilient to communication and agent
failures. If the agent coalition fails or just falls apart due to the network failure
the auction of the assigned task is repeated.

Compared to the ensemble formation in DEECo, auction based coalition
formation requires handshaking among the nodes hosting the components in order
to run the auctions while DEECo requires only knowledge spreading. Even so,
incorporation of auction based ensemble formation into EBCS is an interesting
idea that is worth further investigation.

14.3.3 Mesh networking

Mesh network [80] is a form of a MANET. Similarly to MANET the Mesh networks
rely on usage of end devices as routers and require no or very little dedicated
infrastructure to work. The main difference between MANET and Mesh network
is envisioned usage of the technology. The MANET is a term used to address
custom application specific network while the Mesh network is aiming to provide
standard customer grade network infrastructure.

There are two basic types of Mesh networks. The first one, based on generally
unavailable hardware, is used universities and other organizations in order to
provide flexible wireless network. While the other type encompasses devices
available to general public that enable building of Mesh network in general indoor
or outdoor environments.

Mesh networks are relevant to membership evaluation Challenge C3 due to the
natural connection of membership evaluation, data availability and connection
stability. If an open-ended and dynamic system is taken into account the network
infrastructure needs to be as open-ended and dynamic as the system itself. Based
on current network structure the data necessary to evaluate membership may
or may not be available. Moreover the knowledge of current and near future
network structure can take part in group membership decision in cases where the
group stability is required. These requirements make underlying protocols of mesh
network relevant to membership evaluation. Compared to the overall approach
presented in this thesis Mesh networking addresses just a part of the problem and
do not provide architecture that combines both network and control systems.

14.3.4 Gossip Communication

Gossip [81] is a technique of information spreading used mainly on top of the
MANETSs. The data spreading in Gossip is inspired by human gossip when new

158



data are spread by the nodes that are already aware of them. The benefit of the
Gossip is simple implementation and by design distributed operation. Moreover
the Gossip is quite reliable, robust and scalable.

There are multiple Gossip based protocols different in concrete implementation.
The basic difference in Gossip implementation is determined by underling network.
In the IP networks, each node usually maintains connection to N other nodes
and uses such connection for gossiping. In wireless networks, or other networks
that support broadcast, the gossiping takes place locally using link broadcast.
With the different communication links different gossip limiting techniques are
employed. The basic two limiters stop gossiping particular information once (i) it
was received enough times; (ii) it originates far enough.

Relevance of the Gossip is based on the fact that knowledge spreading in
systems described in this thesis is usually Gossip based. Moreover, the data
spreading algorithm has huge effect on membership decision as the data availability
is a precursor for membership establishment. Finally, awareness of the future
connection quality is sometimes required to guarantee group membership stability.

14.3.5 Distributed Hash Tables

The communication groups as well as general knowledge spreading in DEECo
systems is actually a special case of a distributed database. This makes Distributed
Hash-Tables (DHT) relevant topic with respect to the ideas presented in this
thesis. The main difference is that systems based on DEECo architecture utilize
distributed database somewhere in its runtime, as it is an architectural concept,
while the systems using DHT use it as a middleware.

DHT consists of the two fundamental parts. First one is partitioning of the
data in a database, formed by key-value pairs, to network nodes using the key
value [82], [83]. The second part is formation of an overlay network [84] among
the network nodes that allows to determine where is the particular key-value pair
stored.

The DHT based databases are resilient to node failures due to the possibility of
data redundancy. Moreover some changes in the topology can be tolerated. With
respect to the scalability the DHT scales well when used as standard database,
but it cannot be directly used in systems where information is restricted to be
stored locally by a poor long distance connection. Comparing to the approach
presented in this thesis, DHT does not allow for data locality, thus DHT based
solutions are vulnerable to the congestion and other connection problems that go
beyond redundancy.

14.4 Component Coordination

In this section works related to the Challenge C4 addressed in this thesis are
discussed. The prominent Multi agent systems, discussed in Section 14.4.1, and
distributed constraint optimization problem, Section 14.4.3, are accompanied by
AkKa framework, dynamic coalition formation, and RoboCup challenges described
in Sections 14.4.2, 14.4.4, and 14.4.5 respectively.

159



14.4.1 Multi-Agent Systems

Multi-Agent Systems (MAS) are systems composed of multiple interacting intelli-
gent autonomous agents. The idea of MAS is to think of and program individual
agents rather than the system as whole. Considering target of this thesis, the
MAS are relevant to the applications in fields of vehicular and robotic systems.

Classic MASs are centering on individual entities, but more complex coordi-
nation scenarios covered in [85] bring MAS quite close to the EBCS. There are
various coalition formation algorithms emplyed in MAS such as [86], [87], and
[88]. The difference to the topic of this thesis is lack of inclusion of network at
the architecture level and explicit usage of coordination as a middleware rather
than capturing cooperation using the system architecture.

14.4.2 AkKa

AKKA® [89] is actor based framework Scala and Java. AkKa is aiming on concurrent
distributed systems while it uses messages to achieve asynchronous concurrency
and thus removes necessity to use locks for synchronization. AkKa actors inter-
act transparently when running on the same network node or using a network.
Aiming on servers and data processing AkKa adopted a few patterns known from
Erlang such as "Let it crash' that ensure high availability of services achieved via
monitoring of running actor state and possibly restarting crashed actors. AkKa
employs, so called, parental supervision where parent actors are responsible for
monitoring on their child actors.

The AkKa framework aims on concurrent distributed systems that are in
contrast with research presented in this thesis running on servers. Because of this
the feature set of AkKa with respect to the network and its expected properties is
quite different. Also, AkKa does not support open-ended systems directly.

14.4.3 Distributed Constraint Optimization Problem

Distributed Constraints Optimization Problem, or in short DCOP, is a distributed
version of a standard constrain optimization problem. The constraint optimization
problem is formulated for a set of variables, variable domains, and a function.
The task is to pick a value for each variable from a matching domain so that the
value of the function is minimal or maximal. The distributed version differs in
the fact that the controlled variables are spread across a set of nodes forming
a network. The computation is distributed and the nodes need to coordinate
via messages in order to solve the problem. There are Distributed Constraints
Optimization Problem (DCOP) solvers, such as FRODO 2.0 [90], DisChoco2 [91],
and DCOPolis [92], available that help implementation of systems that need to
tackle the DCOP.

An example of such problem is the distributed traffic light control. There
are N traffic lights, each with a standalone controller, in a city. Each traffic
light has a set of variables such as split of the green light among each controlled
direction, switch frequency, or pedestrian preference. The network of such traffic
lights forms a distributed system where each traffic light controller is in charge

8https://github.com/akka/akka

160


https://github.com/akka/akka

of a local crossing and controls the local variables. All the N controllers form a
distributed system and use messages to collectively optimize the values so that a
general function expressed using all the variables in the system is maximized. For
instance such system can maximize overall throughput or minimize delay time for
an ambulance car passing though the city.

The DCOP is relevant to the topic as the problem of forming dynamic groups
or ensembles can be formulated as a DCOP instance. Providing that the free
variables in the DCOP control assignment of components to the ensembles. The
optimization can result in creating as many ensembles as possible or maximizing
the overall utility of the system. Compared to DCOP this thesis does not seek
complete optimality in ensemble formation. Instead, the ensembles formation
process attempts to put together the best ensembles it can considering the current
network conditions.

14.4.4 Dynamic Coalition Formation

Dynamic coalition formation is similar problem to the formation of ensembles
in EBCS and sCPS. The problem was tackled in [93] where a MAS approach is
used to build the system. Based on the dynamic coalition formation success and
system utility the authors outline adaptation in communication of the agents that
help to build better coalitions.

To distinguish from approach taken in this thesis, the authors do not take
realistic network properties into account, but rather use a model of connection
to the neighbor node. Also the work does not propose new architecture of the
system, but rather argues necessity to optimize connections to other entities based
on the coalitions that needs to be formed.

14.4.5 RoboCup Challenges

Interesting source of related approaches to the component coordination are the
systems created to compete in RoboCup [94] challenges. naturally the teams are
driven by success and do not spare much time to generalize the concepts, but high
complexity forced some of them to take a systematic approach. Authors of [95]
present their work towards formation of rescuer teams that is directly related to
dynamic coordination. Another team developed a middleware and a language
aiming on dynamic coalition formation using an unreliable communication in
dynamic environment.

14.5 Evaluation of the sCPS Experiments

This section contains work related to the evaluation of the sCPS experiments as
defined in Challenge C5 of this thesis. The following sections describe related
test-beds, exemplars, and RoboCup challenges that can also be used to evaluate
sCPS algorithms and architectures.

161



14.5.1 RoboCup

RoboCup [94] is an international scientific initiative that promotes state of the
art intelligent robots. What makes RoboCup related to sCPS evaluation are
four different professional and one education leagues that describe rules and real
or simulated environment in which different teams can measure their abilities.
The RoboCup professional leagues include RoboCupSoccer, RoboCupRescue,
RoboCup@Home, and RoboCuplIndustrial while the first two mentioned include
simulation environment that enable evaluation comparable to the one described
in this thesis.

RoboCupSoccer

As the name suggests, RoboCupSoccer, the original RoboCup league is all about
football. There are four physical environments and rule sets defined that include
Humanoid, Standard Platform, Middle size, and Small size. These are used to
conduct matches between teams formed by real robots. The last sub-league, called
Simulation, describes virtual environment in which teams of controllers of virtual
robots can compete.

With respect to the sCPS evaluation challenge the simulation is the most
relevant part of the RoboCupSoccer as the real robot competitions aim on different
challenges than the ones addressed in this thesis. The Simulation league does
provide a standard simulator and libraries used to interact with the simulator, but
no advanced runtime to be used by the teams is available. Even when some of
the teams publish their runtime, lack of well structured baseline implementation
makes evaluation of particular technique a difficult task.

RoboCupRescue

RobopCupRescue league aims on a disaster rescue scenario where real or simulated
robots are competing in their ability to rescue victims of a disaster. The league
has several sub-leagues aiming on different scales of disaster ranging from detailed
rescue of a limited number of persons from a hostile building to the scenario where
a simulated city is on fire and virtual agents are set to extinguish the fires.

The city-wide fire extinguishing simulation is actually the most relevant to the
topic of this thesis as it requires large scale coordination of agents belonging to
several classes (Police, Ambulance, Fire brigade) while only limited communication
is available in place. The main difference between this RoboCup league and the
approach described in Chapter 12 is the scale of the simulation and readiness
to the experiments. The approach mentioned in this thesis aims to provide a
test-bed that is much easier to setup and start programming with.

14.5.2 Health CPS

Health CPS [96] presents a health-care CPS assisted by cloud and big data.
Motivated by the recent progress in medical data collection and processing, the
authors presents a three layer CPS that leverages cloud and big data to address
challenges that arise from nature of the data the system needs to process. The
specifics of the medical data are: (i) large scale operation with many wearable

162



devices; (ii) rapid data generation as many devices provide continuous stream of
data; (iii) various structure of the source data as different hardware provide data
in different format; and (iv) deep value hidden in the data needs combination of
multiple data sources and careful processing to be extracted.

As a part of the outlined architecture the authors also describe ROCHAS
a test-bed aiming on the medical CPS systems. The test-bed is composed of
real hardware and an environment setup. The focus is applied on the robot
user interface, health-care cloud assisted system, and cloud based storage and
processing. With respect to the test-bed presented in this thesis the main difference
is usage of classical CPS with reliable access to centralized cloud services while
approach in this thesis aims mostly on decentralized systems connected using a
wireless unreliable network.

14.5.3 SCADA security test-bed

Another test-bed [97] is aiming on assessment of security of Supervisory Control
And Data Acquisition (SCADA) based CPS. The authors have create their test-
bed composed of real devices used in typical SCADA systems while they deployed
those in a single location in order to simplify maintenance.

Aiming on CPS makes this test-bed related to the Challenge C5 of this thesis,
but the target system is a static industrial SCADA that is not dynamic, open-ended
or using an unreliable network.

14.5.4 Cyber-Physical Security Test-beds

Another SCADA based test-bed is described in [98]. This test-bed aims on security
in CPS controlling a power grid. Authors deployed a real SCADA system together
with realistic emulation and simulation of the rest of the power grid in order to
enable experiments with results of attacks on the power grid.

Similarly to the test-bed described in Section 14.5.3 this test-bed is aiming on
static industrial systems, but similarly to the approach presented in this thesis
relies on simulation of the hardware.

14.5.5 Automated Traffic Routing Problem

The Automated Traffic Routing Problem (ATRP) [99] is model problem designed
to evaluate different self-adaptation techniques. The problem encompasses cars
traveling on a map using a predetermined schedule. A traffic condition on the road
are subject to speed regulation, traffic jams, and closures due to construction and
accidents. The traffic routing system that is being evaluated on the model problem
can optimize qualities such as total travel time, worst case vehicle travel time,
and pollution. The systems solving the ATRP can be adaptive, non-adaptive,
centralized or distributed while also their resource consumption, resilience, and
stability can be evaluated together with resulting traffic optimality.

Together with the ATRP comes the Adasim, a discrete event simulator that
is capable of simulation of the ATRP and evaluate the proposed traffic routing
system. Adasim knows six entity types: (i) map; (ii) vehicle; (iii) routing agent;
(iv) sensors that observe the environment, (v) uncertainty filters; and (vi) privacy
policies.

163



Simulation and evaluation of a large system from vehicular domain that could
easily be addressed as a sCPS makes this work related to this thesis. The difference
is in the strong accent on the adaptation and simplified communication and sensor
noise compared to the work presented in Chapter 12 where precise network and
environment simulation is used but the general scope of the test-bed is limited to
a few robots and a single floor in a building.

14.5.6 Tele Assistance System

Tele Assistance System (TAS) [100] is an exemplar of a system providing medical
services. It encompasses a scenario where patients with chronic illnesses are
taken care of using a tele-assistance service encompassing sensors embedded in a
wearable device and third party services providing medical analysis, drug supplies,
and critical alarm response. The services have different reliability rates and prices
providing space for optimization of overall cost and reliability.

The TAS is aiming on adaptation, an important technique used to manage
complex and large systems. It is relevant to the test-bed presented in this thesis
as it is also aiming on adaptation. The difference is in the target system where
this thesis mentions adaptation of robotic CPS while the TAS is adapting service
based system.

164



CHAPTER 15

Conclusion and Open Challenges

15.1 Summary

In this thesis, there are multiple approaches that improve EBCS behavior under
realistic network conditions while aiming on applications in sCPS. First, the
possible use cases in multiple domains that include robotic systems, vehicular
systems and Industry 4.0 were listed. Special focus was applied on vehicular
use cases that feature a common base for scenarios that arise in multiple fields.
Similarities of different situations occurring in traffic to situations in swarm
robotics and Industry 4.0 were discussed in order to prove importance of selected
use case source. Each use case characterized by a brief description of a scenario.
In total 19 scenarios were described in two categories representing systems using
mostly local and global communication techniques.

The vehicular use cases were analyzed in terms of possible implementation
while a possible representation of different entities as DEECo components and
their relations as DEECo ensembles were given based on the experience with
DEECo based system design. Based on the representation, ensemble membership
conditions, a key to system specification using ensembles and components, were
drafted while different extra features not yet present in the current DEECo model
were pointed out. This way possible modes of DEECo system operation with (i)
shared or exclusive components; (ii) exclusive component binding to a role or
domain.

Use case scenarios and their drafted implementation were transformed into a set
of requirements on communication while the operational challenges were discussed.
Different stages of system operation were covered starting with determining of
what a typical component is like, what kinds of processes is it supposed to include,
and what should a knowledge of a car component include with respect to different
scenarios. Once the components were identified requirements on their grouping
using ensembles were listed. In particular: (i) the purpose of the ensemble in
different scenarios was identified to be one of data exchange, coordination, and
shared state maintenance; (ii) requirements on network throughput, latency and
reliability with respect to centralized and distributed ensemble formation were
discussed while summarizing the most suitable ensemble formation technique per
scenario; (iii) usage of mobile broadband and short range packet radio as well as
the requirements on real-time communication were described per scenario. The
specifics of the network requirements on consistency, latency, and throughput in
currently supported ensemble formation techniques were discussed in dedicated

165



chapters focusing on bipartite ensembles and intelligent ensembles respectively.

Selected approaches were evaluated by means of draft implementation and
simulation of system operation. The evaluation was based on the work published
in reviewed conference proceedings and a journal. Frameworks implementing
DEECo developed or heavily modified as part of an effort to write this thesis such
as JDEECo, CDEECo++4, and PyDEECo were used to run the draft implemen-
tation. The results presented were captured using different simulators including
OMNeT++, SUMO, MATSim, and Stage. Some of the simulations were designed
to be reusable and one of them was published as an easy to run artifact aiming to
help other scientists in the community to verify their ideas.

15.2 Open Issues

Work on this thesis proved applicability of the EBCS based techniques in the
field of sCPS by means of small to mid scale simulation. What is still yet to be
analyzed is the applicability of the approach and proposed techniques in the large
scale simulation or real life deployment. Also a closer to reality implementation of
the business logic could be employed in the simulation in order to prove real-life
usability of the chosen approaches.

One of the possible future work directions is to extend Turtlebot based test-
bed presented in Chapter 12. An output of simulation that encompasses at last
several tenths of robots would shed more light on the scalability of the ensemble
based approach. Moreover the current state of the JDEECo framework is fit
for deployment on real Turtlebots a comparison of simulation results with data
obtained from real robots would further support correctness of the approach.

Another direction of the future work is towards the vehicular systems. Re-
garding the use case scenarios described in Chapter 4 just ICS and platoon were
covered in evaluation. Using the SUMO, OMNeT++, and JDEECo or PyDEECo
it should be possible to conduct realistic network aware simulation that can include
almost realist business logic solving different car to car interactions in the traffic.
These would also further supported usage of EBCS in vehicular sCPS.

Ultimately some of the long range communication use cases listed in Chapter 4
Section 4.5 could be brought to reality in a form of a mobile application. Relative
independence of the remaining systems of a car in present in the scenarios like
Car sharing (VS14) or parking place registry (VS12) can be leveraged to easily
bring these to experimental deployment in a real traffic.

166



Bibliography

1]

M. Kit, F. Plasil, V. Matena, T. Bures, and O. Kovac, “Employing domain
knowledge for optimizing component communication,” in Proceedings of
the 18th International ACM SIGSOFT Symposium on Component-Based
Software Engineering, ser. CBSE ’15, Montréal, QC, Canada: ACM, 2015,
pp. 59-64, 1SBN: 978-1-4503-3471-6. DOI: 10.1145/2737166.2737172.
[Online]. Available: http://doi.acm.org/10.1145/2737166.
2737172.

V. Matena, A. Masrur, and T. Bures, “An ensemble-based approach for
scalable QoS in highly dynamic CPS,” in 2017 43rd Euromicro Conference
on Software Engineering and Advanced Applications (SEAA), Aug. 2017,
pp. 234-238, ISBN: 978-1-5386-2141-7. pO1: 10.1109/SEAA.2017.62.
[Online]. Available: https://dx.doi.org/10.1109/SEAA.2017.
62.

T. Bures, V. Matena, R. Mirandola, L. Pagliari, and C. Trubiani, “Perfor-
mance modelling of smart cyber-physical systems,” in Companion of the
2018 ACM/SPEC International Conference on Performance Engineering,
ser. ICPE ’18, Berlin, Germany: ACM, 2018, pp. 37-40, 1SBN: 978-1-
4503-5629-9. por: 10.1145/3185768.3186306. [Online]. Available:
http://doi.acm.org/10.1145/3185768.3186306.

O. Stumpf, T. Bures, and V. Maténa, “Security and trust in data sharing
smart cyber-physical systems,” in Proceedings of the 2015 European Con-
ference on Software Architecture Workshops, ser. ECSAW ’15, Dubrovnik,
Cavtat, Croatia: ACM, 2015, 18:1-18:4, 1SBN: 978-1-4503-3393-1. DOI:
10.1145/2797433.2797451. [Online]. Available: http://doi.
acm.org/10.1145/2797433.2797451.

A. Masrur, M. Kit, V. Maténa, T. Bures, and W. Hardt, “Component-based
design of cyber-physical applications with safety-critical requirements,”
Microprocessors and Microsystems, vol. 42, pp. 70-86, 2016, 1SSN: 0141-
9331. DOI: 10.1016/7j.micpro.2016.01.007. [Online|. Available:
http://www. sciencedirect .com/ science/article/pii/
S0141933116000107,

Impact Factor: 1.025, CiteScore: 1.11, SCImago Journal Rank: 0.238

Statistics captured on 05/09/2018 from https://www.journals.elsevier.com/microprocessors—-and-microsystems.

V. Matena, T. Bures, I. Gerostathopoulos, and P. Hnetynka, “Model
problem and testbed for experiments with adaptation in smart cyber-
physical systems,” in Proceedings of the 11th International Workshop on
Software Engineering for Adaptive and Self-Managing Systems, ser. SEAMS
’16, Austin, Texas: ACM, 2016, pp. 82—88, 1SBN: 978-1-4503-4187-5. DOI:

167


https://doi.org/10.1145/2737166.2737172
http://doi.acm.org/10.1145/2737166.2737172
http://doi.acm.org/10.1145/2737166.2737172
https://doi.org/10.1109/SEAA.2017.62
https://dx.doi.org/10.1109/SEAA.2017.62
https://dx.doi.org/10.1109/SEAA.2017.62
https://doi.org/10.1145/3185768.3186306
http://doi.acm.org/10.1145/3185768.3186306
https://doi.org/10.1145/2797433.2797451
http://doi.acm.org/10.1145/2797433.2797451
http://doi.acm.org/10.1145/2797433.2797451
https://doi.org/10.1016/j.micpro.2016.01.007
http://www.sciencedirect.com/science/article/pii/S0141933116000107
http://www.sciencedirect.com/science/article/pii/S0141933116000107
https://www.journals.elsevier.com/microprocessors-and-microsystems

[10]

[11]

10.1145/2897053.2897065. [Online]. Available: http://doi.
acm.org/10.1145/2897053.2897065.

T. Bures, P. Hnetynka, F. Krijt, V. Matena, and F. Plasil, “Smart co-
ordination of autonomic component ensembles in the context of ad-hoc
communication,” in Leveraging Applications of Formal Methods, Verifica-
tion and Validation: Foundational Techniques: 7Tth International Sympo-
sium, ISoLA 2016, Imperial, Corfu, Greece, October 10-14, 2016, Pro-
ceedings, Part I, T. Margaria and B. Steffen, Eds. Cham: Springer In-
ternational Publishing, 2016, pp. 642-656, ISBN: 978-3-319-47166-2. DOI:
10.1007/978—3—319—47166—2_45.[Onhnd.x%mﬂﬁde http:
//dx.doi.org/10.1007/978-3-319-47166-2_45.

J. Rodriguez, Fundamentals of 5G Mobile Networks, 1st. Wiley Publishing,
2015, 1SBN: 978-1-118-86752-5. [Online]. Available: http://eu.wiley.
com/WileyCDA/WileyTitle/productCd-1118867521.html.

N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T.
Campbell, “A survey of mobile phone sensing,” IEEE Communications
Magazine, vol. 48, no. 9, pp. 140-150, Sep. 2010, 1SSN: 0163-6804. DOTI:
10.1109/MCOM.2010.5560598. [Online]. Available: https://doi.
org/10.1109/MCOM.2010.5560598.

T. Bures, 1. Gerostathopoulos, P. Hnetynka, J. Keznikl, M. Kit, and
F. Plasil, “DEECO: An ensemble-based component system,” in Proceed-
ings of the 16th International ACM Sigsoft Symposium on Component-
based Software Engineering, ser. CBSE "13, Vancouver, British Columbia,
Canada: ACM, 2013, pp. 81-90, 1SBN: 978-1-4503-2122-8. DOT: 10.1145/
2465449.2465462. [Online]. Available: http://doi.acm.org/10.
1145/2465449.2465462.

M. Wirsing, M. Holzl, M. Tribastone, and F. Zambonelli, “ASCENS:
Engineering autonomic service-component ensembles,” in Formal Methods
for Components and Objects: 10th International Symposium, FMCO 2011,
Turin, Italy, October 3-5, 2011, Revised Selected Papers, B. Beckert, F.
Damiani, F. S. de Boer, and M. M. Bonsangue, Eds., Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 1-24, 1SBN: 978-3-642-35887-6. DOI:
10.1007/978-3-642-35887—-6_1. [Online]. Available: https:
//doi.org/10.1007/978-3-642-35887-6_1.

K. Galvin, M. Hieb, and C. Blais, Coalition battle management language
(c-bml) study group report, 2005. [Online|. Available: https://calhoun.
nps.edu/handle/10945/31179.

“IEEE standard for wireless access in vehicular environments (WAVE) —
networking services,” IEEE Stdandard 1609.3, 2016. [Online]. Available:
http://standards.ieee.org/findstds/standard/1609.3-
2016.html.

F. Cunha, L. Villas, A. Boukerche, G. Maia, A. Viana, R. A. F. Mini,
and A. A. F. Loureiro, “Data communication in VANETSs: Protocols,
applications and challenges,” Ad Hoc Networks, vol. 44, pp. 90-103, 2016,
ISSN: 1570-8705. DOL: 10.1016/7.adhoc.2016.02.017. [Online].

168


https://doi.org/10.1145/2897053.2897065
http://doi.acm.org/10.1145/2897053.2897065
http://doi.acm.org/10.1145/2897053.2897065
https://doi.org/10.1007/978-3-319-47166-2_45
http://dx.doi.org/10.1007/978-3-319-47166-2_45
http://dx.doi.org/10.1007/978-3-319-47166-2_45
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118867521.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118867521.html
https://doi.org/10.1109/MCOM.2010.5560598
https://doi.org/10.1109/MCOM.2010.5560598
https://doi.org/10.1109/MCOM.2010.5560598
https://doi.org/10.1145/2465449.2465462
https://doi.org/10.1145/2465449.2465462
http://doi.acm.org/10.1145/2465449.2465462
http://doi.acm.org/10.1145/2465449.2465462
https://doi.org/10.1007/978-3-642-35887-6_1
https://doi.org/10.1007/978-3-642-35887-6_1
https://doi.org/10.1007/978-3-642-35887-6_1
https://calhoun.nps.edu/handle/10945/31179
https://calhoun.nps.edu/handle/10945/31179
http://standards.ieee.org/findstds/standard/1609.3-2016.html
http://standards.ieee.org/findstds/standard/1609.3-2016.html
https://doi.org/10.1016/j.adhoc.2016.02.017

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Available: http://www.sciencedirect.com/science/article/
pPii/S1570870516300580.

R. Tachet, P. Santi, S. Sobolevsky, L. I. Reyes-Castro, E. Frazzoli, D.
Helbing, and C. Ratti, “Revisiting street intersections using slot-based
systems,” PloS one, vol. 11, no. 3, 0149607, 2016. [Online]. Available:
http://journals.plos.org/plosone/article?id=10.1371/
journal.pone.0149607.

R. Hennicker and A. Klarl, “Foundations for ensemble modeling — the
helena approach,” in Specification, Algebra, and Software: FEssays Dedicated
to Kokichi Futatsugi, S. lida, J. Meseguer, and K. Ogata, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2014, pp. 359-381, ISBN: 978-3-
642-54624-2. pOI: 10.1007/978-3-642-54624-2_18. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-54624—-
2_18.

(2018). jRESP — runtime environment for SCEL programs, ASCENS,
[Online]. Available: http://www.ascens-ist.eu/jresp.html
(visited on 06,/26,/2018).

“IEEE standard for low-rate wireless networks,” IEEE Std 802.15.4-2015
(Revision of IEEE Std 802.15.4-2011), pp. 1-709, Apr. 2016. por: 10.
1109/ IEEESTD.2016.7460875. [Online]. Available: https:/dx.
doi.org/10.1109/IEEESTD.2016.7460875

“IEEE standard for low-rate wireless networks—amendment 4: Higher rate
(2 Mb/s) physical (phy) layer,” IEEE Std 802.15.4t-2017 (Amendment to
IEEE Std 802.15.4-2015 as amended by IEEE Std 802.15./n-2016, IEEE
Std 802.15.4q-2016, and IEEE Std 802.15.4u-2016, pp. 1-25, Apr. 2017.
DOI: 10.1109/IEEESTD.2017.7900315. [Online]. Available: https:
//dx.doi.org/10.1109/IEEESTD.2017.7900315.

T. Sun, N.-C. Liang, L.-J. Chen, P.-C. Chen, and M. Gerla, “Evaluating
mobility support in ZigBee networks,” in Embedded and Ubiquitous Comput-
ing: International Conference, EUC 2007, Taipei, Taiwan, December 17-20,
2007. Proceedings, T.-W. Kuo, E. Sha, M. Guo, L. T. Yang, and Z. Shao,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 87-100, ISBN:
978-3-540-77092-3. DOI: 10.1007/978-3-540-77092-3_9. [Online].
Available: https://doi.org/10.1007/978-3-540-77092-3_09.

S. Grafling, P. Mahonen, and J. Riihijarvi, “Performance evaluation of IEEE
1609 wave and IEEE 802.11p for vehicular communications,” in 2010 Second
International Conference on Ubiquitous and Future Networks (ICUFN), Jun.
2010, pp. 344-348. DOI: 10.1109/ICUFN.2010.5547184. [Online].
Available: http://dx.doi.org/10.1109/ICUFN.2010.5547184.

J. Hoebeke, I. Moerman, B. Dhoedt, and P. Demeester, “An overview
of mobile ad hoc networks: Applications and challenges,” Journal of the
the Communications Network, vol. 3, no. 3, pp. 60—66, 2004, 1SSN: 1477-
4739. [Online]. Available: http://cwi.unik.no/images/Manet_
Overview.pdf.

169


http://www.sciencedirect.com/science/article/pii/S1570870516300580
http://www.sciencedirect.com/science/article/pii/S1570870516300580
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0149607
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0149607
https://doi.org/10.1007/978-3-642-54624-2_18
http://dx.doi.org/10.1007/978-3-642-54624-2_18
http://dx.doi.org/10.1007/978-3-642-54624-2_18
http://www.ascens-ist.eu/jresp.html
https://doi.org/10.1109/IEEESTD.2016.7460875
https://doi.org/10.1109/IEEESTD.2016.7460875
https:/dx.doi.org/10.1109/IEEESTD.2016.7460875
https:/dx.doi.org/10.1109/IEEESTD.2016.7460875
https://doi.org/10.1109/IEEESTD.2017.7900315
https://dx.doi.org/10.1109/IEEESTD.2017.7900315
https://dx.doi.org/10.1109/IEEESTD.2017.7900315
https://doi.org/10.1007/978-3-540-77092-3_9
https://doi.org/10.1007/978-3-540-77092-3_9
https://doi.org/10.1109/ICUFN.2010.5547184
http://dx.doi.org/10.1109/ICUFN.2010.5547184
http://cwi.unik.no/images/Manet_Overview.pdf
http://cwi.unik.no/images/Manet_Overview.pdf

23]

[24]

[27]

28]

J. Loo, J. L. Mauri, and J. H. Ortiz, Mobile Ad Hoc Networks: Current
Status and Future Trends, 1st. Boca Raton, FL, USA: CRC Press, Inc.,
2011, 1SBN: 9781439856505. [Online]. Available: https://www.c
rcpress.com/Mobile—-Ad-Hoc—-Networks—Current —Status-—
and-Future - Trends /Loo—-Lloret —Mauri-Ortiz/p/book/
9781439856512.

A. Autolitano, C. Campolo, A. Molinaro, R. M. Scopigno, and A. Vesco,
“An insight into decentralized congestion control techniques for VANETSs
from ETSI TS 102 687 V1. 1.1,” in Wireless Days (WD), 2013 IFIP, IEEE,
Nov. 2013, pp. 1-6. DOI: 10.1109/WD.2013.6686471. [Online].
Available: http://ieeexplore.ieee.org/document/6686471.

T. ETSI, “Intelligent transport systems (ITS); decentralized congestion
control mechanisms for intelligent transport systems operating in the 5 ghz
range; access layer part,” ETSI TS, vol. 102, no. 687, p. V1, 2011.

F. Rezaei, M. Hempel, and H. Sharif, “LLTE PHY performance analysis
under 3GPP standards parameters,” in Computer Aided Modeling and
Design of Communication Links and Networks (CAMAD), 2011 IEEE
16th International Workshop on, IEEE, Jun. 2011, pp. 102-106. DOTI:
10.1109/CAMAD.2011.5941095.

F. Krijt, Z. Jiracek, T. Bures, P. Hnetynka, and I. Gerostathopoulos, “In-
telligent ensembles: A declarative group description language and java
framework,” in Proceedings of the 12th International Symposium on Soft-
ware Engineering for Adaptive and Self-Managing Systems, ser. SEAMS
17, Buenos Aires, Argentina: IEEE Press, 2017, pp. 116-122, ISBN: 978-
1-5386-1550-8. DOI: 10.1109/SEAMS.2017.17. [Online|. Available:
https://doi.org/10.1109/SEAMS.2017.17.

T. Bures, F. Krijt, F. Plasil, P. Hnetynka, and Z. Jiracek, “Towards
intelligent ensembles,” in Proceedings of the 2015 European Conference
on Software Architecture Workshops, ser. ECSAW ’15, Dubrovnik, Cavtat,
Croatia: ACM, 2015, 17:1-17:4, 1SBN: 978-1-4503-3393-1. DOI: 10.1145/
2797433.2797450. [Online]. Available: http://doi.acm.org/10.
1145/2797433.2797450.

D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent de-
velopment and applications of SUMO - Simulation of Urban MObility,”
International Journal On Advances in Systems and Measurements, vol. 5,
no. 3&4, pp. 128-138, Dec. 2012. [Online]. Available: http://sumo.
dlr.de/pdf/sysmea_v5_n34_2012_4.pdf.

C. Sommer, R. German, and F. Dressler, “Bidirectionally Coupled Network
and Road Traffic Simulation for Improved IVC Analysis,” IEEE Trans-
actions on Mobile Computing, vol. 10, no. 1, pp. 3-15, Jan. 2011. DOTI:
10.1109/TMC.2010.133. [Online]. Available: https://doi.org/
10.1109/TMC.2010.133.

170


https://www.crcpress.com/Mobile-Ad-Hoc-Networks-Current-Status-and-Future-Trends/Loo-Lloret-Mauri-Ortiz/p/book/9781439856512
https://www.crcpress.com/Mobile-Ad-Hoc-Networks-Current-Status-and-Future-Trends/Loo-Lloret-Mauri-Ortiz/p/book/9781439856512
https://www.crcpress.com/Mobile-Ad-Hoc-Networks-Current-Status-and-Future-Trends/Loo-Lloret-Mauri-Ortiz/p/book/9781439856512
https://www.crcpress.com/Mobile-Ad-Hoc-Networks-Current-Status-and-Future-Trends/Loo-Lloret-Mauri-Ortiz/p/book/9781439856512
https://doi.org/10.1109/WD.2013.6686471
http://ieeexplore.ieee.org/document/6686471
https://doi.org/10.1109/CAMAD.2011.5941095
https://doi.org/10.1109/SEAMS.2017.17
https://doi.org/10.1109/SEAMS.2017.17
https://doi.org/10.1145/2797433.2797450
https://doi.org/10.1145/2797433.2797450
http://doi.acm.org/10.1145/2797433.2797450
http://doi.acm.org/10.1145/2797433.2797450
http://sumo.dlr.de/pdf/sysmea_v5_n34_2012_4.pdf
http://sumo.dlr.de/pdf/sysmea_v5_n34_2012_4.pdf
https://doi.org/10.1109/TMC.2010.133
https://doi.org/10.1109/TMC.2010.133
https://doi.org/10.1109/TMC.2010.133

[31]

[32]

[33]

[36]

[37]

F. Hagenauer, F. Dressler, and C. Sommer, “Poster: A simulator for
heterogeneous vehicular networks,” in 2014 IEEE Vehicular Networking
Conference (VNC), Dec. 2014, pp. 185-186. por: 10.1109/VNC.2014.
7013339. [Online]. Available: https://doi.org/10.1109/VNC.
2014.70133309.

M. Wirsing, M. Holzl, N. Koch, and P. Mayer, Software Engineering for
Collective Autonomic Systems: The ASCENS Approach, ser. Lecture Notes
in Computer Science. Springer, 2015, vol. 8998, 1SBN: 978-3-319-16309-3.
DOI: 10.1007/978—3—319—16310—9.[Onmxﬁ Available: http:
//dblp.uni-trier.de/db/series/Incs/1ncs8998.html.

M. Hausknecht, T. C. Au, and P. Stone, “Autonomous intersection manage-
ment: Multi-intersection optimization,” in 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Sep. 2011, pp. 4581-4586.
DOI: 10.1109/IR0S.2011.6094668. [Online]. Available: https:
//dx.doi.org/10.1109/IR0S.2011.6094668.

A. L. O. Paraense, K. Raizer, and R. R. Gudwin, “A machine consciousness
approach to urban traffic control,” Biologically Inspired Cognitive Architec-
tures, vol. 15, pp. 61-73, 2016, 1SSN: 2212-683X. DOI: 10.1016/j.bica.
2015.10.001. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S2212683X15000614.

T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl, M. Kit, and F.
Plasil, “Gossiping components for cyber-physical systems,” in Software Ar-
chitecture: 8th European Conference, ECSA 2014, Vienna, Austria, August
25-29, 2014. Proceedings, P. Avgeriou and U. Zdun, Eds., Cham: Springer
International Publishing, 2014, pp. 250-266, 1SBN: 978-3-319-09970-5. DOTI:
lO.1007/978—3—319—09970—5_23.[Onhﬂ* Available: https:
//doi.org/10.1007/978-3-319-09970-5_23.

(2018). jDEECo: Java framework implementing the DEECo component
system, Charles University, Department of Distributed and Dependable
Systems, [Online|. Available: https://github . com/d3scomp /
JDEECo (visited on 06/26,/2018).

S. Voulgaris, M. Jelasity, and M. van Steen, “A robust and scalable peer-
to-peer gossiping protocol,” in Proceedings of the Second International
Conference on Agents and Peer-to-Peer Computing, ser. AP2PC’03, Mel-
bourne, Australia: Springer-Verlag, 2004, pp. 47-58, ISBN: 978-3-540-
24053-2. DOI: 10.1007/978-3-540-25840~-7_6. [Online|. Available:
http://dx.doi.org/10.1007/978-3-540-25840-7_6.

R. Friedman, D. Gavidia, L. Rodrigues, A. C. Viana, and S. Voulgaris,
“Gossiping on manets: The beauty and the beast,” SIGOPS Oper. Syst.
Rev., vol. 41, no. 5, pp. 67-74, Oct. 2007, 1sSN: 0163-5980. DOI: 10.
1145/1317379.1317390. [Online]. Available: http://doi.acm.
org/10.1145/1317379.1317390

I. Stojmenovic, “Position-based routing in ad hoc networks,” IEFEE Commu-
nications Magazine, vol. 40, no. 7, pp. 128134, Jul. 2002, 1SSN: 0163-6804.
DOI: 10.1109/MCOM.2002.1018018. [Online]. Available: https:
//doi.org/10.1109/MCOM.2002.1018018

171


https://doi.org/10.1109/VNC.2014.7013339
https://doi.org/10.1109/VNC.2014.7013339
https://doi.org/10.1109/VNC.2014.7013339
https://doi.org/10.1109/VNC.2014.7013339
https://doi.org/10.1007/978-3-319-16310-9
http://dblp.uni-trier.de/db/series/lncs/lncs8998.html
http://dblp.uni-trier.de/db/series/lncs/lncs8998.html
https://doi.org/10.1109/IROS.2011.6094668
https://dx.doi.org/10.1109/IROS.2011.6094668
https://dx.doi.org/10.1109/IROS.2011.6094668
https://doi.org/10.1016/j.bica.2015.10.001
https://doi.org/10.1016/j.bica.2015.10.001
http://www.sciencedirect.com/science/article/pii/S2212683X15000614
http://www.sciencedirect.com/science/article/pii/S2212683X15000614
https://doi.org/10.1007/978-3-319-09970-5_23
https://doi.org/10.1007/978-3-319-09970-5_23
https://doi.org/10.1007/978-3-319-09970-5_23
https://github.com/d3scomp/JDEECo
https://github.com/d3scomp/JDEECo
https://doi.org/10.1007/978-3-540-25840-7_6
http://dx.doi.org/10.1007/978-3-540-25840-7_6
https://doi.org/10.1145/1317379.1317390
https://doi.org/10.1145/1317379.1317390
http://doi.acm.org/10.1145/1317379.1317390
http://doi.acm.org/10.1145/1317379.1317390
https://doi.org/10.1109/MCOM.2002.1018018
https://doi.org/10.1109/MCOM.2002.1018018
https://doi.org/10.1109/MCOM.2002.1018018

[40]

[41]

[42]

[43]

[45]

[46]

[47]

[48]

[49]

(2014). OMG: MDA guide revision 2.0, Object Management Group,
[Online]. Available: http://www.omg.org/cgi-bin/doc?ormsc/
14-06-01 (visited on 06/26/2018).

S. Zeadally, R. Hunt, Y.-S. Chen, A. Irwin, and A. Hassan, “Vehicular Ad
Hoc networks (VANETS): Status, results, and challenges,” Telecommuni-
cation Systems, vol. 50, no. 4, pp. 217-241, Aug. 2012, 1SSN: 1018-4864.
DOI: 10.1007/s11235-010-9400-5. [Online|. Available: http:
//dx.doi.org/10.1007/s11235-010-9400-5.

A. Masrur, M. Kit, T. Bures, and W. Hardt, “Towards component-based
design of safety-critical cyber-physical applications,” in 2014 17th Euromicro
Conference on Digital System Design, Aug. 2014, pp. 254-261. DOI:
10.1109/DSD.2014.87. [Online]. Available: https://doi.org/
10.1109/DSD.2014.87.

C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming
in a hard-real-time environment,” J. ACM, vol. 20, no. 1, pp. 46-61, Jan.
1973, 1SSN: 0004-5411. por: 10.1145/321738.321743. [Online].
Available: http://doi.acm.org/10.1145/321738.321743.

N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. Wellings, “Ap-
plying new scheduling theory to static priority pre-emptive scheduling,”
Software Engineering Journal, vol. 8, no. 5, pp. 284-292, Sep. 1993. [On-
line|. Available: http://igm.univ-mlv.fr/~masson/pdfANDps/
audsley93applying.pdf.

IEEE 802.11p standard: Wireless LAN MAC and PHY specifications
amendment 6: Wireless access in vehicular environments, http://stan
dards.ieee.org/findstds/standard/802.11p-2010.html.

IEEE 802.1Q) standard: LANs and WANs — MAC bridges and virtual
bridged LANs, http://standards.ieee.org/findstds/standar
d/802.10-2011.html.

N. Shah, F. Bastani, S. Kumar, and I. L. Yen, “Real-time car-to-car
communication protocol for intersecting roads,” in Proceedings of the In-
ternational Conference on ITS Telecommunications (ITST), Oct. 2008,
pp. 412-417. DO1: 10.1109/ITST.2008.4740297. [Online]. Available:
https://doi.org/10.1109/ITST.2008.4740297.

N. Shah, S. Kumar, F. Bastani, and I.-L.. Yen, “Optimization models for
assessing the peak capacity utilization of intelligent transportation systems,’
European Journal of Operational Research, vol. 216, no. 1, pp. 239-251,
2012, 1ssN: 0377-2217. por: 10.1016/j.ejor .2011.07.032.
[Online|. Available: http://www.sciencedirect.com/science/
article/pii/S0377221711006643.

S.-Y. Pyun, H. Widiarti, Y.-J. Kwon, D.-H. Cho, and J.-W. Son, “TDMA-
based channel access scheme for V2I communication system using smart
antenna,” in Proceedings of the IEEE Conference on Vehicular Networking
(VNC), Dec. 2010, pp. 209-214. po1: 10.1109/VNC.2010.5698227.
[Online]. Available: https://doi.org/10.1109/VNC.2010.
5698227.

)

172


http://www.omg.org/cgi-bin/doc?ormsc/14-06-01
http://www.omg.org/cgi-bin/doc?ormsc/14-06-01
https://doi.org/10.1007/s11235-010-9400-5
http://dx.doi.org/10.1007/s11235-010-9400-5
http://dx.doi.org/10.1007/s11235-010-9400-5
https://doi.org/10.1109/DSD.2014.87
https://doi.org/10.1109/DSD.2014.87
https://doi.org/10.1109/DSD.2014.87
https://doi.org/10.1145/321738.321743
http://doi.acm.org/10.1145/321738.321743
http://igm.univ-mlv.fr/~masson/pdfANDps/audsley93applying.pdf
http://igm.univ-mlv.fr/~masson/pdfANDps/audsley93applying.pdf
http://standards.ieee.org/findstds/standard/802.11p-2010.html
http://standards.ieee.org/findstds/standard/802.11p-2010.html
http://standards.ieee.org/findstds/standard/802.1Q-2011.html
http://standards.ieee.org/findstds/standard/802.1Q-2011.html
https://doi.org/10.1109/ITST.2008.4740297
https://doi.org/10.1109/ITST.2008.4740297
https://doi.org/10.1016/j.ejor.2011.07.032
http://www.sciencedirect.com/science/article/pii/S0377221711006643
http://www.sciencedirect.com/science/article/pii/S0377221711006643
https://doi.org/10.1109/VNC.2010.5698227
https://doi.org/10.1109/VNC.2010.5698227
https://doi.org/10.1109/VNC.2010.5698227

[50]

[51]

[52]

[53]
[54]

[55]

[56]

S.-Y. Pyun, H. Widiarti, Y.-J. Kwon, J.-W. Son, and D.-H. Cho, “Group-
based channel access scheme for a V2I communication system using smart
antenna,” IEEE Communications Letters, vol. 15, no. 8, pp. 804-806, Aug.
2011, 1ssN: 1089-7798. por: 10.1109/LCOMM.2011.060811.110324
[Online]. Available: https://doi.org/10.1109/LCOMM. 2011 .
060811.110324.

D. Weyns, S. Malek, and J. Andersson, “Forms: A formal reference model
for self-adaptation,” in Proceedings of the 7th International Conference
on Autonomic Computing, ser. ICAC "10, Washington, DC, USA: ACM,
2010, pp. 205-214, 1SBN: 978-1-4503-0074-2. DOI: 10.1145/1809049.
1809078. [Online]. Available: http://doi.acm.org/10.1145/
1809049.1809078.

A. Varga and R. Hornig, “An overview of the /omnet++( simulation
environment,” in In Proceedings of the 1st international conference on
Stmulation tools and techniques for communications, networks and systems
€ workshops, page 60. ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering, 2008, 1SBN: 978-963-
9799-20-2. pDOL: 10.1.1.231.4511. [Online]. Available: https:
//omnetpp.org/doc/workshop2008/omnetppd0-paper.pdf.

(2018). Multi-agent transport simulation, MATSim Community, [Online].
Available: http://www.matsim.org (visited on 06/26,/2018).

(2018). Openstreetmap, OpenStreetMap contributors, [Online]. Available:
http://www.openstreetmap.org (visited on 06/26/2018).

G. J. Pottie and W. J. Kaiser, “Wireless integrated network sensors,”
Commun. ACM, vol. 43, no. 5, pp. 51-58, May 2000, 1sSN: 0001-0782. DOTI:
10.1145/332833.332838. [Online]. Available: http://doi.acm.
org/10.1145/332833.332838

M. MARIN-PERIANU, N. Meratnia, P. Havinga, L. M. S. D. Souza, J.
Muller, P. Spiess, S. Haller, T. Riedel, C. Decker, and G. Stromberg,
“Decentralized enterprise systems: A multiplatform wireless sensor network
approach,” IEEE Wireless Communications, vol. 14, no. 6, pp. 57-66, Dec.
2007, 1SSN: 1536-1284. DOI: 10.1109/MWC.2007.4407228.[Onhnd.
Available: https://doi.org/10.1109/MWC.2007.4407228.

N. Cai, M. Gholami, L. Yang, and R. W. Brennan, “Application-oriented
intelligent middleware for distributed sensing and control,” IEFE Trans-
actions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews), vol. 42, no. 6, pp. 947-956, Nov. 2012, 1sSN: 1094-6977. DOI:
10.1109/TSMCC.2011.2174982. [Online]. Available: https://
doi.org/10.1109/TSMCC.2011.2174982

F.-J. Wu, Y.-F. Kao, and Y.-C. Tseng, “From wireless sensor networks
towards cyber physical systems,” Pervasive and Mobile Computing, vol. 7,
no. 4, pp. 397-413, 2011. [Online|. Available: http://www.sciencedi
rect.com/science/article/pii/S1574119211000368.

173


https://doi.org/10.1109/LCOMM.2011.060811.110324
https://doi.org/10.1109/LCOMM.2011.060811.110324
https://doi.org/10.1109/LCOMM.2011.060811.110324
https://doi.org/10.1145/1809049.1809078
https://doi.org/10.1145/1809049.1809078
http://doi.acm.org/10.1145/1809049.1809078
http://doi.acm.org/10.1145/1809049.1809078
https://doi.org/10.1.1.231.4511
https://omnetpp.org/doc/workshop2008/omnetpp40-paper.pdf
https://omnetpp.org/doc/workshop2008/omnetpp40-paper.pdf
http://www.matsim.org
http://www.openstreetmap.org
https://doi.org/10.1145/332833.332838
http://doi.acm.org/10.1145/332833.332838
http://doi.acm.org/10.1145/332833.332838
https://doi.org/10.1109/MWC.2007.4407228
https://doi.org/10.1109/MWC.2007.4407228
https://doi.org/10.1109/TSMCC.2011.2174982
https://doi.org/10.1109/TSMCC.2011.2174982
https://doi.org/10.1109/TSMCC.2011.2174982
http://www.sciencedirect.com/science/article/pii/S1574119211000368
http://www.sciencedirect.com/science/article/pii/S1574119211000368

[59]

[60]

[61]

[62]

[63]

[64]

[65]

C. Boldrini, M. Conti, and A. Passarella, “Social-based autonomic routing
in opportunistic networks,” in Autonomic Communication. Boston, MA:
Springer US, 2009, pp. 31-67, 1SBN: 978-0-387-09753-4. DOo1: 10.1007/
978-0-387-09753-4_2. [Online]. Available: http://dx.doi.org/
10.1007/978-0-387-09753-4_2.

Y. Yang, J. Wang, and R. H. Kravets, “Designing routing metrics for
mesh networks,” in IEEE WiMesh, 2005, pp. 1-9. [Online]. Available:
http://mobius.cs.uiuc.edu/system/files/wimesh05.pdf.

M. Musolesi and C. Mascolo, “Car: Context-aware adaptive routing for
delay-tolerant mobile networks,” IEEE Transactions on Mobile Computing,
vol. 8, no. 2, pp. 246-260, Feb. 2009, 1ssN: 1536-1233. poI1: 10.1109/
TMC.2008.107. [Online]. Available: https://ieeexplore.ieee.
org/iel5/7755/4731215/04585387.pdf.

T. ETSI, 102 636-4-1:7 intelligent transport systems (ITS); vehicular
communications; geonetworking; part 4: Geographical addressing and for-
warding for point-to-point and point-to-multipoint communications; sub-part
1: Media-independent functionality” vi. 1.1 (2011-06), 2011. [Online].
Available: http://www.etsi.org/deliver/etsi_ts/102600_
102699/1026360401/01.01.01_60/ts_1026360401v010101p.
pdf.

7. J. Haas, M. R. Pearlman, and P. Samar, The zone routing protocol
(ZRP) for Ad Hoc networks, IETF Internet Draft, Jul. 2002.

I. Stojmenovic, “Machine-to-machine communications with in-network
data aggregation, processing, and actuation for large-scale cyber-physical
systems,” IEEFE Internet of Things Journal, vol. 1, no. 2, pp. 122-128,
2014. [Online]. Available: http://ieeexplore.ieee.org/stamp/
stamp. jsp?tp=&arnumber=6766661l&tag=1.

J. Wan, M. Chen, F. Xia, L. Di, and K. Zhou, “From machine-to-machine
communications towards cyber-physical systems,” Computer Science and
Information Systems, vol. 10, no. 3, pp. 1105-1128, 2013. [Online]. Avail-
able: http://www.doiserbia.nb.rs/Article.aspx?ID=1820-
02141300018W&AspxAutoDetectCookieSupport=1#.VsTPZUms
Xpg.

F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and
its role in the internet of things,” in Proceedings of the First Edition of
the MCC Workshop on Mobile Cloud Computing, ser. MCC 12, Helsinki,
Finland: ACM, 2012, pp. 13-16, 1SBN: 978-1-4503-1519-7. DOI: 10.1145/
2342509.2342513. [Online|. Available: http://doi.acm.org/10.
1145/2342509.2342513.

L. M. Vaquero and L. Rodero-Merino, “Finding your way in the fog:
Towards a comprehensive definition of fog computing,” SIGCOMM Comput.
Commun. Rev., vol. 44, no. 5, pp. 27-32, Oct. 2014, 1SSN: 0146-4833.
DOL: 10.1145/2677046.2677052. [Online|. Available: http://doi.
acm.org/10.1145/2677046.2677052.

174


https://doi.org/10.1007/978-0-387-09753-4_2
https://doi.org/10.1007/978-0-387-09753-4_2
http://dx.doi.org/10.1007/978-0-387-09753-4_2
http://dx.doi.org/10.1007/978-0-387-09753-4_2
http://mobius.cs.uiuc.edu/system/files/wimesh05.pdf
https://doi.org/10.1109/TMC.2008.107
https://doi.org/10.1109/TMC.2008.107
https://ieeexplore.ieee.org/iel5/7755/4731215/04585387.pdf
https://ieeexplore.ieee.org/iel5/7755/4731215/04585387.pdf
http://www.etsi.org/deliver/etsi_ts/102600_102699/1026360401/01.01.01_60/ts_1026360401v010101p.pdf
http://www.etsi.org/deliver/etsi_ts/102600_102699/1026360401/01.01.01_60/ts_1026360401v010101p.pdf
http://www.etsi.org/deliver/etsi_ts/102600_102699/1026360401/01.01.01_60/ts_1026360401v010101p.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6766661&tag=1
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6766661&tag=1
http://www.doiserbia.nb.rs/Article.aspx?ID=1820-02141300018W&AspxAutoDetectCookieSupport=1#.VsTPZUmsxpg
http://www.doiserbia.nb.rs/Article.aspx?ID=1820-02141300018W&AspxAutoDetectCookieSupport=1#.VsTPZUmsxpg
http://www.doiserbia.nb.rs/Article.aspx?ID=1820-02141300018W&AspxAutoDetectCookieSupport=1#.VsTPZUmsxpg
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1145/2342509.2342513
http://doi.acm.org/10.1145/2342509.2342513
http://doi.acm.org/10.1145/2342509.2342513
https://doi.org/10.1145/2677046.2677052
http://doi.acm.org/10.1145/2677046.2677052
http://doi.acm.org/10.1145/2677046.2677052

[68]

[69]

[70]

[71]

[72]

[73]

S. Becker, H. Koziolek, and R. Reussner, “The palladio component model
for model-driven performance prediction,” Systems and Software, vol. 82,
no. 1, pp. 3-22, Jan. 2009, 1ssN: 0164-1212. por: 10.1016/73. jss.
2008.03.066. [Online]. Available: http://dx.doi.org/10.1016/
§.955.2008.03.066.

(2018). AUTOSAR: Layered software architecture, AUTOSAR consortium,
[Online]. Available: http://autosar.org/download/R4 .0/
AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf (visited on
06/26/2018).

K. Klobedanz, C. Kuznik, A. Thuy, and W. Mueller, “Timing modeling and
analysis for AUTOSAR-based software development - a case study,” in Pro-
ceedings of Conference on Design, Automation, and Test in Europe (DATE),
Mar. 2010, pp. 642-645. DOI: 10.1109/DATE.2010.5457125.
[Online]. Available: https://doi.org/10.1109/DATE. 2010.
5457125.

J. E. Kim, O. Rogalla, S. Kramer, and A. Hamann, “Extracting, specifying
and predicting software system properties in component based real-time
embedded software development,” in Proceedings of the International Con-
ference on Software Engineering (ICSE), May 2009, pp. 28-38. DOTI:
10.1109/ICSE-COMPANION.2009.5070961. [Online]. Available:
https://doi.org/10.1109/ICSE-COMPANION.2009.5070961.

T. Bures, J. Carlson, I. Crnkovic, S. Sentilles, and A. V. Feljan, “ProCom —
the progress component model reference manual, version 1.0,” Malardalen
University, Tech. Rep., Jun. 2008, 1skRN: MDH-MRTC-230/2008-1-SE.
[Online]. Available: http://www.es.mdh.se/publications/
1279-.

K. Hénninen, J. Maki-Turja, M. Nolin, M. Lindberg, J. Lundbéack, and
K. Lundbéck, “The Rubus component model for resource constrained
real-time systems,” in Proceedings of the IEEE International Symposium
on Industrial Embedded Systems (SIES), Jun. 2008, pp. 177-183. poI:
10.1109/SIES.2008.4577697. [Online]. Available: https://doi.
org/10.1109/STIES.2008.4577697.

S. Burmester, H. Giese, and M. Tichy, “Model-driven development of
reconfigurable mechatronic systems with mechatronic UML,” in Model
Driven Architecture, U. Amann, M. Aksit, and A. Rensink, Eds., Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005, pp. 47-61, 1SBN: 978-3-540-
31819-4. por: 10.1007/11538097_4. [Online]. Available: https:
//doi.org/10.1007/11538097_4.

H. Giese, S. Burmester, W. Schéfer, and O. Oberschelp, “Modular design
and verification of component-based mechatronic systems with online-
reconfiguration,” in Proceedings of the 12th ACM SIGSOFT Twelfth Inter-
national Symposium on Foundations of Software Engineering, ser. SIGSOFT
'04/FSE-12, Newport Beach, CA, USA: ACM, 2004, pp. 179-188, ISBN:
1-58113-855-5. DOI: 10.1145/1029894.1029920. [Online]. Available:
http://doi.acm.org/10.1145/1029894.1029920.

175


https://doi.org/10.1016/j.jss.2008.03.066
https://doi.org/10.1016/j.jss.2008.03.066
http://dx.doi.org/10.1016/j.jss.2008.03.066
http://dx.doi.org/10.1016/j.jss.2008.03.066
http://autosar.org/download/R4.0/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf
http://autosar.org/download/R4.0/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf
https://doi.org/10.1109/DATE.2010.5457125
https://doi.org/10.1109/DATE.2010.5457125
https://doi.org/10.1109/DATE.2010.5457125
https://doi.org/10.1109/ICSE-COMPANION.2009.5070961
https://doi.org/10.1109/ICSE-COMPANION.2009.5070961
http://www.es.mdh.se/publications/1279-
http://www.es.mdh.se/publications/1279-
https://doi.org/10.1109/SIES.2008.4577697
https://doi.org/10.1109/SIES.2008.4577697
https://doi.org/10.1109/SIES.2008.4577697
https://doi.org/10.1007/11538097_4
https://doi.org/10.1007/11538097_4
https://doi.org/10.1007/11538097_4
https://doi.org/10.1145/1029894.1029920
http://doi.acm.org/10.1145/1029894.1029920

[76]

[77]

[80]

[82]

[83]

H. Giese, M. Tichy, S. Burmester, W. Schéafer, and S. Flake, “Towards
the compositional verification of real-time uml designs,” in Proceedings
of the 9th Furopean Software Engineering Conference Held Jointly with
11th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. ESEC/FSE-11, Helsinki, Finland: ACM, 2003, pp. 38—
47, 1sBN: 1-58113-743-5. DOI: 10.1145/940071.940078. [Online].
Available: http://doi.acm.org/10.1145/940071.940078.

A. Basu, M. Bozga, and J. Sifakis, “Modeling heterogeneous real-time
components in BIP,” in Proceedings of the Fourth IEEE International
Conference on Software Engineering and Formal Methods, ser. SEFM 06,
Washington, DC, USA: IEEE Computer Society, Sep. 2006, pp. 3-12, ISBN:
0-7695-2678-0. DOI: 10.1109/SEFM.2006.27. [Online]. Available:
http://dx.doi.org/10.1109/SEFM.2006.27.

M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and
J. F. Quesada, “Using maude,” in Fundamental Approaches to Software
Engineering, T. Maibaum, Ed., Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2000, pp. 371-374, 1SBN: 978-3-540-46428-0. DOI1: 10.1007/3~
540-46428-X_27. [Online]. Available: https://dx.doi.org/10.
1007/3-540-46428-X_27.

S. Kraus, O. Shehory, and G. Taase, “Coalition formation with uncer-
tain heterogeneous information,” in Proceedings of the Second Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems,
ser. AAMAS ’03, Melbourne, Australia: ACM, 2003, pp. 1-8, ISBN: 1-
58113-683-8. DOI: 10.1145/860575.860577. [Online|. Available:
http://doi.acm.org/10.1145/860575.860577.

R. Bruno, M. Conti, and E. Gregori, “Mesh networks: Commodity multihop
ad hoc networks,” IEEE Communications Magazine, vol. 43, no. 3, pp. 123—
131, Mar. 2005, 18SN: 0163-6804. DOI: 10.1109/MCOM.2005.1404606.
[Online|. Available: https://dx.doi.org/10.1109/MCOM.2005.
1404606.

R. Friedman, D. Gavidia, L. Rodrigues, A. C. Viana, and S. Voulgaris,
“Gossiping on manets: The beauty and the beast,” SIGOPS Oper. Syst.
Rewv., vol. 41, no. 5, pp. 67-74, Oct. 2007, 1SSN: 0163-5980. DOI: 10.
1145/1317379.1317390. [Online|]. Available: http://doi.acm.
org/10.1145/1317379.1317390.

H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and 1. Stoica,
“Looking up data in p2p systems,” Commun. ACM, vol. 46, no. 2, pp. 43—48,
Feb. 2003, 1ssN: 0001-0782. por: 10.1145/606272.606299. [Online].
Available: http://doi.acm.org/10.1145/606272.606299.

D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D. Lewin,
“Consistent hashing and random trees: Distributed caching protocols for
relieving hot spots on the world wide web,” in Proceedings of the Twenty-
ninth Annual ACM Symposium on Theory of Computing, ser. STOC 97,
El Paso, Texas, USA: ACM, 1997, pp. 654-663, 1SBN: 0-89791-888-6. DOTI:
10.1145/258533.258660. [Online|. Available: http://doi.acm.
org/10.1145/258533.258660.

176


https://doi.org/10.1145/940071.940078
http://doi.acm.org/10.1145/940071.940078
https://doi.org/10.1109/SEFM.2006.27
http://dx.doi.org/10.1109/SEFM.2006.27
https://doi.org/10.1007/3-540-46428-X_27
https://doi.org/10.1007/3-540-46428-X_27
https://dx.doi.org/10.1007/3-540-46428-X_27
https://dx.doi.org/10.1007/3-540-46428-X_27
https://doi.org/10.1145/860575.860577
http://doi.acm.org/10.1145/860575.860577
https://doi.org/10.1109/MCOM.2005.1404606
https://dx.doi.org/10.1109/MCOM.2005.1404606
https://dx.doi.org/10.1109/MCOM.2005.1404606
https://doi.org/10.1145/1317379.1317390
https://doi.org/10.1145/1317379.1317390
http://doi.acm.org/10.1145/1317379.1317390
http://doi.acm.org/10.1145/1317379.1317390
https://doi.org/10.1145/606272.606299
http://doi.acm.org/10.1145/606272.606299
https://doi.org/10.1145/258533.258660
http://doi.acm.org/10.1145/258533.258660
http://doi.acm.org/10.1145/258533.258660

[84]

[85]

[38]

[91]

[92]

K. Dhara, Y. Guo, M. Kolberg, and X. Wu, “Overview of structured
peer-to-peer overlay algorithms,” in Handbook of Peer-to-Peer Networking.
Boston, MA: Springer US, 2010, pp. 223-256, 1SBN: 978-0-387-09751-
0. por: 10.1007/978-0-387-09751-0_09. [Online]. Available:
http://dx.doi.org/10.1007/978-0-387-09751-0_0.

O. Shehory and S. Kraus, “Methods for task allocation via agent coalition
formation,” Artif. Intell., vol. 101, no. 1-2, pp. 165-200, May 1998, 1SSN:
0004-3702. DOI: 10.1016/50004-3702(98) 00045-9. [Onlinel.
Available: http://dx.doi.org/10.1016/S0004-3702(98)
00045-9.

T. Michalak, J. Sroka, T. Rahwan, M. Wooldridge, P. McBurney, and N. R.
Jennings, “A distributed algorithm for anytime coalition structure genera-
tion,” in Proceedings of the 9th International Conference on Autonomous
Agents and Multiagent Systems: Volume 1 - Volume 1, ser. AAMAS
10, Toronto, Canada: International Foundation for Autonomous Agents
and Multiagent Systems, 2010, pp. 1007-1014, 1SBN: 978-0-9826571-1-9.
[Online]. Available: http://dl.acm.org/citation.cfm?id=
1838206.1838342.

T. Rahwan, T. Michalak, M. Wooldridge, and N. R. Jennings, “Anytime
coalition structure generation in multi-agent systems with positive or
negative externalities,” Artif. Intell., vol. 186, no. C, pp. 95-122, Jul. 2012,
ISSN: 0004-3702. DOI: 10.1016/7j.artint.2012.03.007. [Online].
Available: http://dx.doi.org/10.1016/7j.artint.2012.03.
007.

T. Sandholm, K. Larson, M. Andersson, O. Shehory, and F. Tohmé, “Coali-
tion structure generation with worst case guarantees,” Artificial Intelli-
gence, vol. 111, no. 1, pp. 209-238, 1999, 1ssN: 0004-3702. por: 10.1016/
S0004-3702(99) 00036—-3. [Online]. Available: http://www.scie
ncedirect.com/science/article/pii/S0004370299000363.

(2018). Akka, Lightbend, [Online]. Available: http://akka.io (visited
on 06/26/2018).

T. Léauté, B. Ottens, and R. Szymanek, “FRODO 2.0: An open-source
framework for distributed constraint optimization,” in Proceedings of the
IJCAI" 09 Distributed Constraint Reasoning Workshop (DCR" 09), 2009,
pp. 160-164. [Online]. Available: https://infoscience.epfl.ch/
record/146585.

M. Wahbi, R. Ezzahir, C. Bessiere, and E.-H. Bouyakhf, “DisChoco 2: A
platform for distributed constraint reasoning,” Proceedings of DCR, vol. 11,
pp. 112-121, 2011. [Online]. Available: http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.208.4895.

E. A. Sultanik, R. N. Lass, and W. C. Regli, “DCOPolis: A framework for

simulating and deploying distributed constraint optimization algorithms,”
2007. [Online]. Available: http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.86.6632.

177


https://doi.org/10.1007/978-0-387-09751-0_9
http://dx.doi.org/10.1007/978-0-387-09751-0_9
https://doi.org/10.1016/S0004-3702(98)00045-9
http://dx.doi.org/10.1016/S0004-3702(98)00045-9
http://dx.doi.org/10.1016/S0004-3702(98)00045-9
http://dl.acm.org/citation.cfm?id=1838206.1838342
http://dl.acm.org/citation.cfm?id=1838206.1838342
https://doi.org/10.1016/j.artint.2012.03.007
http://dx.doi.org/10.1016/j.artint.2012.03.007
http://dx.doi.org/10.1016/j.artint.2012.03.007
https://doi.org/10.1016/S0004-3702(99)00036-3
https://doi.org/10.1016/S0004-3702(99)00036-3
http://www.sciencedirect.com/science/article/pii/S0004370299000363
http://www.sciencedirect.com/science/article/pii/S0004370299000363
http://akka.io
https://infoscience.epfl.ch/record/146585
https://infoscience.epfl.ch/record/146585
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.208.4895
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.208.4895
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.86.6632
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.86.6632

93]

[94]

[95]

[96]

[98]

[99]

[100]

M. E. Gaston and M. desJardins, “Agent-organized networks for dynamic
team formation,” in Proceedings of the Fourth International Joint Con-
ference on Autonomous Agents and Multiagent Systems, ser. AAMAS 05,
The Netherlands: ACM, 2005, pp. 230-237, 1SBN: 1-59593-093-0. DOI:
10.1145/1082473.1082508. [Online]. Available: http://doi.
acm.org/10.1145/1082473.1082508.

(Jul. 2018). Robocup, RoboCup initiative, [Online|. Available: http:
//www .robocup.org (visited on 06/26/2018).

J. Parker, E. Nunes, J. Godoy, and M. Gini, “Exploiting spatial locality
and heterogeneity of agents for search and rescue teamwork™,” J. Field
Robot., vol. 33, no. 7, pp. 877-900, Oct. 2016, 1SSN: 1556-4959. DOI:
10.1002/rob.21601. [Online]. Available: https://doi.org/10.
1002/rob.21601.

Y. Zhang, M. Qiu, C. W. Tsai, M. M. Hassan, and A. Alamri, “Health-
cps: Healthcare cyber-physical system assisted by cloud and big data,”
IEEFE Systems Journal, vol. 11, no. 1, pp. 8895, Mar. 2017, 1SSN: 1932-
8184. pOI: 10.1109/JSYST.2015.2460747. [Online|. Available:
https://dx/dio.org/10.1109/JSYST.2015.2460747.

A. Hahn, B. Kregel, M. Govindarasu, J. Fitzpatrick, R. Adnan, S. Srid-
har, and M. Higdon, “Development of the powercyber scada security
testbed,” in Proceedings of the Sixth Annual Workshop on Cyber Secu-
rity and Information Intelligence Research, ser. CSITIRW 10, Oak Ridge,
Tennessee, USA: ACM, 2010, 21:1-21:4, 1SBN: 978-1-4503-0017-9. DOI:
10.1145/1852666.1852690. [Online]. Available: http://doi.
acm.org/10.1145/1852666.1852690.

A. Hahn, A. Ashok, S. Sridhar, and M. Govindarasu, “Cyber-physical
security testbeds: Architecture, application, and evaluation for smart
grid,” IEEFE Transactions on Smart Grid, vol. 4, no. 2, pp. 847-855, Jun.
2013, 1SSN: 1949-3053. DOI: 10.1109/TSG.2012.2226919. [Online].
Available: https://dx.doi.org/10.1109/TSG.2012.22269109.

J. Wuttke, Y. Brun, A. Gorla, and J. Ramaswamy, “Traffic routing for eval-
uating self-adaptation,” in 2012 7th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS), Jun. 2012,
pp. 27-32. DOI: 10.1109/SEAMS.2012.6224388. [Online]. Available:
https://doi.org/10.1109/SEAMS.2012.6224388.

D. Weyns and R. Calinescu, “Tele assistance: A self-adaptive service-based
system examplar,” in Proceedings of the 10th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems, ser. SEAMS
'15, Florence, Italy: IEEE Press, 2015, pp. 88-92. [Online]. Available:
http://dl.acm.org/citation.cfm?i1d=2821357.2821373.

178


https://doi.org/10.1145/1082473.1082508
http://doi.acm.org/10.1145/1082473.1082508
http://doi.acm.org/10.1145/1082473.1082508
http://www.robocup.org
http://www.robocup.org
https://doi.org/10.1002/rob.21601
https://doi.org/10.1002/rob.21601
https://doi.org/10.1002/rob.21601
https://doi.org/10.1109/JSYST.2015.2460747
https://dx/dio.org/10.1109/JSYST.2015.2460747
https://doi.org/10.1145/1852666.1852690
http://doi.acm.org/10.1145/1852666.1852690
http://doi.acm.org/10.1145/1852666.1852690
https://doi.org/10.1109/TSG.2012.2226919
https://dx.doi.org/10.1109/TSG.2012.2226919
https://doi.org/10.1109/SEAMS.2012.6224388
https://doi.org/10.1109/SEAMS.2012.6224388
http://dl.acm.org/citation.cfm?id=2821357.2821373

List of Figures

1.1

2.1

2.2
2.3

24

5.1

5.2

7.1

7.2

8.1
8.2

8.3

9.1

An example of vehicular EBCS. . . . ... ... ... ... .... 9

MRF24J40MA, an IEEE 802.15.4 transceiver with ZigBEE support
on an extension board called click for a STM32F4 based embedded

development board. . . . . . ... ..o L 20
WAVE deployment, two cars with OBUs and a RSU. . . . . . .. 21
Nodes deployed in a MANET. Red nodes are auto-configured as

TOULETS. . . . . . o e e e 22

An example of a graphical output of the Veins simulation. Cars
cooperate using LTE connection in the streets of the Lesser Town
of Prague. Red rectangles with blue arrow represent cars and their
direction of movement. Yellow beams represent ongoing wireless
transmission. . . . . ... Lo 31

Communication links in the linked platoon. The four member
platoon is linked by three leader-follower links A, B, and C. . . . 59
Communication in the obstacle detection and clear path guarantee
ensemble. The green and the yellow car are meeting the blue and
red car coming from the opposite direction. Dotted links symbolize
wireless communication, solid arrows display sensor data flow in
ensembles. The yellow car is sensing for the green one and the blue
one. The blue one is providing data to the red car. The red car is
sending sensor data to the yellow one. . . . . . . ... ... .. .. 61

Start topology of ensembles allowing for data sharing. Coordinators
(red) are in a bipartite ensemble with nearby members (blue). Data
are exchanged from members to coordinators while aggregated
results can be exchanged back to members. . . . . . . .. ... .. 74
Instability of the optimal ensemble formation. Ensemble defines
disjunctive car pairs, fitness is awarded for mutual closeness of cars
in the pair. Inclusion of yellow car causes all ensemble instances to
change. . . . . . . Lo 80

Platooning scenario — ad-hoc and infrastructure networks employment 84
[llustration of communication groups. Each one associated with an

instance of the SameDestination ensemble. . . . . . . . . . . ... 88
JDEECo runtime instances — groupers associations . . . . . . . . 89

A robotic example visualization. Dotted areas represent islands.
Orange and green radio symbols are the beacons. Ensembles pairing
robots heading to a particular beacon are displayed using dashed
CUTVES. . .« v v v v e e e et e e e e e 92



9.2

10.1
10.2
10.3

10.4
10.5

11.1

12.2

12.1
12.3

12.4

13.1
13.2

13.3

13.4

13.5

13.6

Membership vs. boundary conditions in ensemble formation . . . 97

Intelligent crossroad system (ICS) . . . ... ... ... ... ... 100
DEECo distributed deployment. . . . . . . . ... ... ... ... 103
Composition of DEECo’s closed-loop delay D,,q.: In the worst case,

data may change immediately after knowledge has been propagated
at the car. This data may also arrive after an ensemble formation
has been performed at the ICS. In addition, computation at the
ICS may finish immediately after knowledge propagation and the
resulting data then reaches the car just after the end of an ensemble

formation. . . . . . . ... 106
Priorities are given according to the proximity to the intersection 108
Simulated network consisting of three APs and a switch . . . . . . 114
STM32F4 discovery shield with STM32F407G board, IEEE 802.15.4

radio, SHT1x temperature/humidity sensor, and GPS plugged in. 121

A visualization of the model problem. Green, red, blue, and black
round represent robots in a office floor. Black line repents a wall
and black dots are flower pots. . . . . . . .. ... 128
Box-plots of results from 10 experiment runs. . . . . . .. . . .. 128
A Robots’ perception of the environment. Back rounds are the

robots. Red and blue dot clouds are the laser scanner reflections.
Red and blue path is the path planner output. Shades of gray,
forming also the black wall line, represent local and global costmap.129

Test-bed deployment diagram . . . . . ... .. ... .. ..... 131
Car-ICS-Car closed-loop reaction times in milliseconds . . . . . . 137
Communication complexity comparison of Gossip and groupers;
experiment group (i) — 3 vehicles per accident . . . . . . ... .. 141
Communication complexity comparison of Gossip and groupers;
experiment group (ii) — 5 vehicles per accident . . . . . . . . . .. 142
The effect of introducing groupers deciding ensemble membership
condition; experiment group (iii) — single large platoon . . . . . . 143
Communication parameter impact on system utility, simplified
network simulation . . . . . ... ... oL 145
Communication parameter impact on system utility, precise network
simulation . . . . . .. ... 147

180



List of Tables

5.1

5.2

13.1
13.2

Ensemble purpose of the vehicular scenarios. 'X" means the scenario
does not use an ensemble such a way, "v' mark or clarification text
means that the scenario uses particular ensemble for the purpose. 65
Ensemble formation and knowledge spreading features used by

example scenarios. . . . . ... Lo 68
Simulation parameters . . . . . .. ... .. ... 135
Reaction time statistics (values given in milliseconds) . . . . . . . 139

181



182



Glossary

Beyond Control Entity is an abstraction of an object that is out of control of
the system in question. It allows to plug such an object into an existing
system in its native way. With respect to the EBCS an external object
can be seen as a component that lack processes and its knowledge is based
on the observations of such object. Such component can take part in the
ensembles. 44

bipartite ensemble is an ensemble specified using the classical member - coor-
dinator model. See Chapter 7. 65, 67, 68, 70, 72, 73, 75, 76, 79, 96, 109,
113, 122, 123, 160

Bluetooth is a technology standard for wireless exchanging data over short
distances. It uses short-wavelength Ultra High Frequency (UHF) radio
waves and random frequency hopping. 4, 17

CDEECo++ ! is a C++ framework using DEECo architecture focusing on
embedded applications with hard real-time requirements. 34, 93, 97, 100,
109, 113-115, 123, 160

component is a software package hosted on a computation node that includes
knowledge defining its interface to other components, and processes imple-
menting the business logic. 5, 14, 15, 20, 35, 36, 38, 40, 44, 49-51, 53, 54,
58-62, 66-82, 85, 86, 88-91, 95-99, 104, 110-116, 122, 124, 125, 135, 146,
151, 152, 155, 159

costmap represents a cost for passing through a particular area in space. Usually
it is kept in a form of bitmap. The pixel value represents the cost. 123

depth camera is a device similar to camera that can capture not only color but
also distance of every pixel in the view to the camera. 4, 12

Duck-Typing is a dynamic type system based on the features of an object. i.e.
the object is considered an instance of a Duck if it Quacks like a duck and
walks like a duck. 67

edge cloud is a deployment of cloud services, i.e. servers, databases, on network
nodes located at the edge of the network in order to lower response time
and maximize throughput towards client devices. 59, 60, 72, 143

ensemble is a dynamic connector of a group of components described by a
membership condition. See bipartite ensemble and intelligent ensemble. 5,

Ihttps://github.com/d3scomp/cdeeco

183


https://github.com/d3scomp/cdeeco

7,14, 15, 20, 32, 34-38, 40-47, 49-62, 65-76, 78-82, 85, 86, 88-92, 96-100,
104, 105, 110-117, 122, 124-126, 135-138, 144, 146, 147, 151, 152, 155, 159,
160

ensemble instance is a group of components following particular ensemble spec-
ification. 52, 54, 58, 60, 62, 69, 73-75, 89-92, 104, 114, 138

FreeRTOS or Free Real-Time Operating System? is a simple OS implementing
real-time task scheduling and synchronization on embedded platforms.. 100,
113, 115

fully-autonomous car is a car with self control ability capable of standalone
navigation through the street network entirely without a driver. 35, 38, 42

Gossip is a network protocol inspired by an epidemic spread of information in a
social network. Using a gossip protocol the information is spread by nodes
that are already aware of the information. 80-82, 86, 91, 92, 97, 135, 136

hard real-time system operation is subject to deadlines. Missing a deadline is
considered a total failure of the system. An example of such system is an
airbag inflation system which needs to inflate the airbag exactly on time,
doing so earlier or later can cause harm or kill the passenger. 7, 16, 34,
41-43, 63, 65, 93, 97, 109, 113, 115

IEEE 802.11p is a wireless technology similar to Wi-Fi operating on a licensed
band of 5.9 GHz that is used as a physical layer of the WAVE protocol. 16,
17

IEEE 802.15.4 is a wireless technology focusing on short range low bandwidth
data broadcast. It shares 2.4 GHz band with Wi-Fi and is used as physical
layer for ZigBee. 16, 17, 26, 34, 37, 38, 61, 75, 112, 115, 119

IEEE 802.1Q or VLAN tagging is a protocol that allows to operate a set of
logical networks on top of a physical one. This protocol also enable setting
priorities on logical traffic. 101, 130

IEEE 802.3 Ethernet or simply Ethernet is a wired networking technology
adopted in networks ranging from local to global. 15, 16, 26, 101, 103, 105

Industry 4.0 called also smart factory or advanced manufacturing is a current
trend in manufacturing that encompasses improved data exchange, CPS,
IoT, and widespread digitization. iii, 5, 6, 9-11, 34, 35, 37, 38, 59, 159

intelligent ensemble is a form of ensembles using declarative ensemble specifica-
tion supporting multiple component roles and ensemble fitness specification.
See Chapter 7 for details. 34, 65, 67, 72-76, 109, 117, 144, 160

’https://www.freertos.org

184


https://www.freertos.org

JDEECo 2 is a Java framework using DEECo architecture. Currently it is the
most feature complete framework based on DEECo. It has broad support

for simulation execution and also supports real device deployment.. 14, 15,
34, 66-68, 70, 71, 80-83, 109-113, 119, 123-125, 135, 136, 147, 160

knowledge of the component is set of data fields that define its public interface.
The knowledge is accessed by component processes and is subject to exchange
defined by ensemble. 5, 14, 15, 34, 49-51, 57, 59-62, 68-78, 80-82, 85, 86,
89, 90, 97-100, 104-106, 110-117, 124, 129, 135, 144-147, 151-153, 159

knowledge exchange is a process of mapping knowledge among ensemble mem-
bers once the ensemble is formed. 5, 14, 15, 32, 35, 42, 46, 49, 50, 59, 60,
65, 67, 70-72, 75, 76, 79, 81, 89, 90, 96-99, 104, 105, 110, 114, 136

model@runtime is an approach where architecture models are preserved at run-
time in order to provide self reflection used mainly for software adaptations.
146

NED or Network Description, is a DSL used to capture OMNeT++ modules. 25

OMNeT++ or Objective Modular Network Testbed in C++* is an extensible
network simulator written in C++ with support for precise simulation of
different network hardware. 25, 26, 109, 111, 121, 125, 127, 129, 137, 138,
140, 160

OpenStreetMap ° is an open map of the world created by a community and
shared under a permissive license. The fact that the source data are available
in XML makes it suitable for creation of various customized maps that can
be used as inputs for traffic simulators. 23, 24, 26, 36, 134

platoon or road train is a chain of cars on highway that drive close enough to

reduce air drag while allowing easier autonomous driving for cars internal to
the train. 6, 12, 13, 40, 41, 44, 45, 53, 54, 58, 62-64, 77, 79-81, 134-137, 160

process is a piece of business logic running on top of a knowledge of a component.
Usually it encompasses a method that is periodically scheduled or triggered
by knowledge change. 5, 14, 49, 50, 71, 72, 78, 95, 99-101, 104, 105, 107,
110, 112-116, 122, 124, 126, 159

Promela % is a C like language used to capture model of the system so that it
cab be verified with Spin. 148

PyDEECo 7 is a Python framework using DEECo architecture. 34, 109, 113,
116, 117, 160

Shttps://github.com/d3scomp/JIJDEECO
nttps://www.omnetpp.org
Shttp://www.openstreetmap.org
Shttp://spinroot.com/spin/Man/Quick.html
"https://github.com/d3scomp/pydeeco

185


https://github.com/d3scomp/JDEECo
https://www.omnetpp.org
http://www.openstreetmap.org
http://spinroot.com/spin/Man/Quick.html
https://github.com/d3scomp/pydeeco

real-time system operation is subject to deadlines. Missing a deadline is consid-
ered a problem for the system operation. Either the value produced by the
system can be lowered in case of the soft real-time systems or the system
may fail due to deadline miss in case of hard real-time systems. 7, 15, 16,
21, 32, 33, 35, 37, 42, 43, 49, 55, 59, 61-63, 65, 72, 93, 95, 97, 99, 100, 113,
115, 127, 148-150, 159

ROSViz is a graphical tool that can visualize operation of a ROS system. It can
display the scene in 3D and display map, model of the robot, different types
of particles, and different messages of various types. 21

semi-autonomous car is a car with partial self control ability. In context of
this thesis a car that can follow lane on a highway without drivers attention
is assumed. 35, 38

soft real-time system operation is subject to deadlines. Missing a deadline is
considered a penalty to the system operation and may reduce utility of the
system. An example of such system is a public transport. When a bus comes
a bit later than scheduled the overall utility of the system is reduced, but
the system remains in operation with reduced utility. 14, 43, 63

Spin ® is tool for software verification. 148

Stage is a multi-robot simulator focusing on simple, but high performance simu-
lation of high quantities of robots. Stage is part of Player-Stage project®.
For details see Chapter 2 Section 2.5.2. 22, 35, 109, 121-123, 125, 127, 160

test-bed is a piece of software intended to provide test scenario and matching
simulation environment used to practice development of a particular system.

7,33, 34, 65, 66, 109, 119, 121-123, 125-127, 155-158, 160

Turtlebot 1° is a vacuum cleaner based model of robot capable of carrying a
laptop and other equipment. It is designed as a experimentation platform
for robotic systems.. 21, 109, 112, 113, 122, 160

Wi-Fi (WiFi) is a wireless local area networking technology with devices based
on the IEEE 802.11 standard. 4, 15-17, 32, 37, 63, 75

ZigBee is a wireless communication technology build on top of IEEE 802.15.4
standard radio. It focuses on PAN networking while using multi-hop ad-hoc
routing protocol to deliver messages to out-of-sight nodes. 17, 32

8http://spinroot .com
http://playerstage.sourceforge.net
Ohttps://www.turtlebot.com

186


http://spinroot.com
http://playerstage.sourceforge.net
https://www.turtlebot.com

Acronyms

4G The 4™ Generation mobile networks. 4, 19, 61, 62, 71

5G The 5™ Generation mobile networks. 4, 13, 19, 38, 61, 62, 71

ACE Autonomic Component Ensembles. 87

ACRC Autonomous Cleaning Robots Coordination. 119, 121, 122, 124, 126
AMCL Adaptive Monte-Carlo Localization. 21, 22, 119, 120, 125

AP Access Point. 101, 103, 108, 129, 132

ATRP Automated Traffic Routing Problem. 157

AUTOSAR AUTomotive Open System ARchitecture. 148, 149

BIP Behavior, Interaction, Priority. 150
BML Battle Management Language. 10
BNEP Bluetooth Network Encapsulation Protocol. 17

BSW Basic Software. 148

C2I Car to Infrastructure. 93, 94
CNC Computer Numerical Control. 3

CPS Cyber-Physical System. 4, 16, 144-146, 156158

DCOP Distributed Constraints Optimization Problem. 154, 155

DEECo Dependable Emergent Ensembles of Components. 14, 15, 32-35, 49, 50,
57, 65, 67, 69, 74, 75, 78-80, 85, 88, 89, 93, 95, 97-100, 105-107, 109-111,
113, 116, 121-125, 127, 129, 136, 146-148, 150-153, 159, 160

DHT Distributed Hash-Tables. 153
DSC Distributed Sensing and Control. 144

DSL Domain Specific language. 21, 25, 88, 89, 91, 95, 109, 113, 116, 147

EBCS Ensemble Based Component Systems. 5-7, 9, 14, 32-35, 61, 65, 69, 71,
93, 119, 144, 147, 148, 152, 154, 155, 159, 160

ECU Electronic Control Unit. 148

187



EDL Ensemble Definition Language. 20, 73, 109

EMF Eclipse Modeling Framework. 148

FDD Frequency Division Duplexing. 19

FIFO First In First Out. 17

GPS Global Position System. 4, 36, 38, 49-51

GUI Grahical User Interface. 26

Helena Handling massively distributed systems with ELaborate ENsemble Ar-
chitectures. 14, 147, 148

ICS Intelligent Crossroad System. 65, 93-95, 98-107, 129, 130, 132, 160
IoT Internet of Things. 4, 6, 9, 10, 19, 35, 143

IP Internet Protocol. 13, 15, 17, 19, 61, 71, 75, 134-136, 153
JRESP Java Run-time Environment for SCEL Programs. 14, 146

LIDAR Light Detection And Ranging. 4, 12, 21, 49

LTE Long-Term evolution. 13, 19, 26, 27, 38

M2M Machine To Machine. 145
MAC Media Access Control. 61, 63

MANET Mobile ad-hoc network. 18, 61, 62, 77, 80, 86, 87, 91, 92, 119, 125,
127, 135, 138, 144, 145, 152

MAS Multi-Agent Systems. 154, 155
MATSim Multi-Agent Transport Simulation. 23, 24, 36, 111, 134, 160
MDA Model driven Architecture. 88

MIMO Multiple Input Multiple Output. 19

OBU On-Board Unit. 17

OS Operating System. 95, 97, 100, 148

PAN Personal Area Network. 17
PCM Palladio component model. 148
PNG Portable Network Graphics. 122

ProCom Progress Component Model. 149

188



QoS Quality of Service. 11, 19, 34, 72, 148

RADAR Radio Detection and Ranging. 12

ROS Robot Operating System. 20-23, 35, 109, 111-113, 119-122, 125, 127
RSU Road Side Unit. 17

RTE Runtime Environment. 148, 149

SCADA Supervisory Control And Data Acquisition. 157
SCEL Service Component Ensemble Language. 14, 146

sCPS smart Cyber-Physical Systems. iii, 3-7, 9, 14, 18, 19, 24, 31-33, 38, 65, 66,
68, 71, 77, 79, 86, 87, 93, 109, 113, 119, 121, 129, 140, 143-146, 151, 152,
155, 156, 158-160

SDMA Space Division Multiple Access. 101

SLAM Simultaneous Localization and Mapping. 10
SMT Satisfiability Modulo Theories. 20, 73, 74
SUMO Simulation of Urban MObility. 24-26, 36, 160
SWC Software Circuit. 149, 150

TADL Timing Augmented Description Language. 148
TAS Tele Assistance System. 158

TCP Transmission Control Protocol. 24

TDD Time Division Duplexing. 19

TDMA Time Division Multiple Access. 72, 102
TIMMO TIMing MOdel. 148

TraCI Traffic Control Interface. 24

UAV Unmanned Aerial Vehicle. 9, 10, 36
UGV Unmanned Ground Vehicle. 9, 36
UUV Unmanned Underwater Vehicle. 36

V2V Vehicle to Vehicle communication. 72
VANET Vehicular ad-hoc network. 18, 80, 93, 101, 145

WAVE Wireless Access in Vehicular Environments. 12, 17, 38, 61, 63, 72, 75, 76
WCET Worst-Case Execution Time. 100, 104, 132

WCRT Worst-Case Response Time. 99, 132

WSN Wireless Sensor Network. 16, 143-145

189



190



List of publications

1]

M. Kit, F. Plasil, V. Matena, T. Bures, and O. Kovac, “Employing domain
knowledge for optimizing component communication,” in Proceedings of
the 18th International ACM SIGSOFT Symposium on Component-Based
Software Engineering, ser. CBSE ’15, Montréal, QC, Canada: ACM, 2015,
pp. 59-64, 1SBN: 978-1-4503-3471-6. DOI: 10.1145/2737166.2737172.
[Online]. Available: http://doi.acm.org/10.1145/2737166.
2737172.

V. Matena, A. Masrur, and T. Bures, “An ensemble-based approach for
scalable QoS in highly dynamic CPS,” in 2017 43rd Euromicro Conference
on Software Engineering and Advanced Applications (SEAA), Aug. 2017,
pp. 234-238, ISBN: 978-1-5386-2141-7. pO1: 10.1109/SEAA.2017.62.
[Online]. Available: https://dx.doi.org/10.1109/SEAA.2017.
62.

T. Bures, V. Matena, R. Mirandola, L. Pagliari, and C. Trubiani, “Perfor-
mance modelling of smart cyber-physical systems,” in Companion of the
2018 ACM/SPEC International Conference on Performance Engineering,
ser. ICPE ’18, Berlin, Germany: ACM, 2018, pp. 37-40, 1SBN: 978-1-
4503-5629-9. por: 10.1145/3185768.3186306. [Online]. Available:
http://doi.acm.org/10.1145/3185768.3186306.

O. Stumpf, T. Bures, and V. Maténa, “Security and trust in data sharing
smart cyber-physical systems,” in Proceedings of the 2015 European Con-
ference on Software Architecture Workshops, ser. ECSAW ’15, Dubrovnik,
Cavtat, Croatia: ACM, 2015, 18:1-18:4, 1SBN: 978-1-4503-3393-1. DOI:
10.1145/2797433.2797451. [Online]. Available: http://doi.
acm.org/10.1145/2797433.2797451.

A. Masrur, M. Kit, V. Maténa, T. Bures, and W. Hardt, “Component-based
design of cyber-physical applications with safety-critical requirements,”
Microprocessors and Microsystems, vol. 42, pp. 70-86, 2016, 1SSN: 0141-
9331. DOI: 10.1016/7j.micpro.2016.01.007. [Online|. Available:
http://www. sciencedirect .com/ science/article/pii/
S0141933116000107,

Impact Factor: 1.025, CiteScore: 1.11, SCImago Journal Rank: 0.238

Statistics captured on 05/09/2018 from https://www.journals.elsevier.com/microprocessors—-and-microsystems.

V. Matena, T. Bures, I. Gerostathopoulos, and P. Hnetynka, “Model
problem and testbed for experiments with adaptation in smart cyber-
physical systems,” in Proceedings of the 11th International Workshop on
Software Engineering for Adaptive and Self-Managing Systems, ser. SEAMS
’16, Austin, Texas: ACM, 2016, pp. 82—88, 1SBN: 978-1-4503-4187-5. DOI:

191


https://doi.org/10.1145/2737166.2737172
http://doi.acm.org/10.1145/2737166.2737172
http://doi.acm.org/10.1145/2737166.2737172
https://doi.org/10.1109/SEAA.2017.62
https://dx.doi.org/10.1109/SEAA.2017.62
https://dx.doi.org/10.1109/SEAA.2017.62
https://doi.org/10.1145/3185768.3186306
http://doi.acm.org/10.1145/3185768.3186306
https://doi.org/10.1145/2797433.2797451
http://doi.acm.org/10.1145/2797433.2797451
http://doi.acm.org/10.1145/2797433.2797451
https://doi.org/10.1016/j.micpro.2016.01.007
http://www.sciencedirect.com/science/article/pii/S0141933116000107
http://www.sciencedirect.com/science/article/pii/S0141933116000107
https://www.journals.elsevier.com/microprocessors-and-microsystems

10.1145/2897053.2897065. [Online]. Available: http://doi.
acm.org/10.1145/2897053.2897065.

T. Bures, P. Hnetynka, F. Krijt, V. Matena, and F. Plasil, “Smart co-
ordination of autonomic component ensembles in the context of ad-hoc
communication,” in Leveraging Applications of Formal Methods, Verifica-
tion and Validation: Foundational Techniques: 7Tth International Sympo-
sium, ISoLA 2016, Imperial, Corfu, Greece, October 10-14, 2016, Pro-
ceedings, Part I, T. Margaria and B. Steffen, Eds. Cham: Springer In-
ternational Publishing, 2016, pp. 642-656, ISBN: 978-3-319-47166-2. DOI:
10.1007/978-3-319-47166-2_45. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-319-47166-2_45.

192


https://doi.org/10.1145/2897053.2897065
http://doi.acm.org/10.1145/2897053.2897065
http://doi.acm.org/10.1145/2897053.2897065
https://doi.org/10.1007/978-3-319-47166-2_45
http://dx.doi.org/10.1007/978-3-319-47166-2_45
http://dx.doi.org/10.1007/978-3-319-47166-2_45

	Introduction
	Smart Cyber-Physical Systems
	Motivation
	Overall Goals
	Document Structure
	Used Conventions

	Background
	Application Domains
	Robotic Systems
	Industry 4.0
	Smart Cars

	Ensemble Based Component Systems
	Dependable Emergent Ensembles of Components

	Network Technologies Used in the Smart Cyber-Physical Systems
	Short Range
	Long Range

	Declarative Ensemble Specification
	Simulation Frameworks
	ROS
	Stage
	Gazebo
	MATSim
	SUMO
	OMNeT++
	INET
	Veins


	Goals
	Challenges
	Membership Decision
	Data Exchange in a Loosely Connected Ensemble
	In Ensemble Coordination with Packet Loss
	System Evaluation Challenges

	Problem Statement
	Research Questions and Goals
	Contributions

	Use cases
	Robotic Swarm
	Search and Rescue

	Industry 4.0 Robot Coordination
	Collision Avoidance
	Task Group Formation

	Autonomous Driving
	Environment

	Local Vehicle Coordination
	Scanning for a Parking Place
	Precedence Negotiation
	Traffic Lane Change Negotiation
	Platooning on Highways
	Optimized Speed-up in Traffic Jams
	Joining the Roundabout
	Optimized Traffic Lights
	Obstacle Discovery
	Clearing Path for Emergency Vehicles
	Identification of Dangerous Conditions

	Global Vehicle Coordination
	Route Optimization
	Parking Place Registry
	Long Distance Platoon Formation
	Car Sharing
	Car Sharing Management
	Charge Station Assignment
	Road Billing System, Toll Collection
	Street Lane Optimization
	Emergency Situation Management


	Modeling the use case scenarios with ensembles
	Ensembles of Autonomous Cars
	Use Case Feature Analysis
	Implementation Draft
	Membership Features
	Ensemble Purpose

	Implications for Communication
	Centralized Formation
	Distributed Formation
	Instance Based Centralization
	Mobile Broadband
	Packet Radio
	Communication Overview

	Network Reliability and Availability
	Real-time Communication

	Solution Strategy
	Effects of Network on Ensemble Formation
	Bipartite Ensembles
	Membership Condition
	Knowledge Exchange
	Communication Demands

	Intelligent ensembles
	Solving Intelligent Ensembles
	Communication in Intelligent Ensembles
	Communication Requirements of Component Coordination


	Communication Groups
	Platooning Scenario
	Communication Using Domain Knowledge
	Ad-Hoc Networks
	Infrastructure Networks


	Adaptive communication
	Scenario
	Communication Concerns
	Towards Self-Optimizing Ensembles
	Network Aware Ensembles
	Ideal System
	Real System
	Communication Parameters


	Real-time Analysis
	Intelligent Crossroad System Case Study
	Modeling with DEECo
	Components
	Ensembles
	DEECo's Deterministic Semantics
	Implementation and Deployment

	Closed Loop Reaction Time
	Real-Time Analysis
	Obtaining the Worst-Case Computation Delay
	Obtaining the Worst-Case Communication Delay
	Determining System Constraints
	Obtaining a Feasible DEECo Configuration

	Robustness to Unreliable Communication
	Safety Mechanisms


	Implemented frameworks
	JDEECo
	Modularity and Network Infrastructure
	Simulation and Reality

	CDEECo
	Language Mapping
	Platform

	PyDEECo

	Adaptation Test-bed
	Model Problem
	Operation and Adaptation Challenges
	Solution Comparison Dimensions

	Test-bed
	User’s Perspective
	Decentralized Coordination Modeling Concepts
	Technical Architecture

	Example Adaptation Logic
	Lessons Learned and Limitations
	Artifact Structure

	Evaluation
	Safety Critical Communication
	Evaluation under Unreliable Communication
	Realism of the Evaluation

	Vehicle coordination in a platoon
	Results

	Ensemble parameters and system utility
	Experiment Setup
	Simple Network Results
	Precise Network Results


	Related Work
	Knowledge propagation limits
	Wireless Sensor Networks
	Context aware routing
	Geographic routing
	Zone Routing Protocol
	Large scale Cyber-Physical Systems
	Edge Cloud

	Network architectures of the sCPS
	Ensemble Based Component Systems
	Kevoree
	Helena
	Palladio Component Model
	AUTOSAR
	BlueArX
	ProCom
	Rubus
	Mechatronic UML
	Behavior, Interaction, Priority

	Membership evaluation
	Maude
	Coalition Formation Using Auctions
	Mesh networking
	Gossip Communication
	Distributed Hash Tables

	Component Coordination
	Multi-Agent Systems
	AkKa
	Distributed Constraint Optimization Problem
	Dynamic Coalition Formation
	RoboCup Challenges

	Evaluation of the sCPS Experiments
	RoboCup
	Health CPS
	SCADA security test-bed
	Cyber-Physical Security Test-beds
	Automated Traffic Routing Problem
	Tele Assistance System


	Conclusion and Open Challenges
	Summary
	Open Issues

	Bibliography
	List of Figures
	List of Tables
	Glossary
	Acronyms
	List of publications

