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Abstract: This thesis consists of two parts discussing modelling of heterogeneous catalytic
reactors.

In the first one, an industrial prototype of a fluidized bed reactor serving as a hydrogen
generator based on endothermic decomposition of formic acid is studied. After initial de-
termination of the main reactor characteristics a system of nine constituents is derived and,
consequently, reduced to a three phase flow. The solid and bubble particles immersed in a
liquid are modelled by the Basset-Boussinesq-Ossen equation. Furthermore, an averaging
technique is used to derive a three phase Euler-Euler model. Finally, numerical computa-
tions with a verification towards the measurements and a CFD analysis are proceeded.

The second part discusses interfacial transport phenomena between a bulk and catalytic
surfaces of a reactor mediated via the boundary conditions. The constitutive relations,
that by construction comply with the second law of thermodynamics, follow from the
specification of suitable thermodynamic potentials together with an identification of the
bulk and surface entropy productions. The derived model is suitable for further analysis
providing clear guidelines for the incorporation of the Langmuir-type adsorption model as
well as other sorption models.
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Preface
This Ph.D. thesis consists of two parts. In both parts a modelling of heterogeneous catalytic
reactors is discussed but from two different perspectives. The first one, named "Multi-phase
modelling of a reactive flow in fluidized bed reactors", represents an industrial application
study when the heterogeneous nature of the reactor is suppressed by the volume averaging
technique resulting into standard PDE-system in bulk only. This approach is suitable
for modelling of macro-scale heterogeneous reactors when the area of the surfaces exceeds
a numerically feasible threshold for direct interface tracking/capturing and an averaging
technique need to be used.

On the other hand, the second part, named "A continuum model of heterogeneous
catalysis: thermodynamic framework for multicomponent bulk and surface phenomena
coupled by sorption", belongs in scope of theoretical studies which may be further applied
for modelling of heterogeneous reactive systems. The surface phenomena are modelled
along the bulk phenomena, i.e. without the averaging. This approach is possible for
systems with relatively low and immobile surface area. The coupling of the superficial and
bulk phenomena is mediated via boundary conditions.

The first part of the thesis concludes the work of V.O. at ICP ZHAW in Switzerland
during his Ph.D. study which was a part of the HyForm project together with groups
from EPFL, PSI and Granit SA. The two-years project, with one year of prolongation, was
supported by CTI and Swisselectric Reseach. The aim of the project was a construction of a
lab-scale prototype of an electric generator based on environmentally harmless endothermic
decomposition of formic acid whose product feeds a PEM fuel cell. The decomposition
occurs in a fluidized bed reactor whose modelling was the responsibility of V.O. and P.
Cendula. A preliminary result of the modelling part was published in the article titled
Multi-phase modeling of non-isothermal reactive flow in fluidized bed reactors by V.O., O.
Souček and P. Cendula in the Journal of Computational and Applied Mathematics, cf.
[75]. The final outcome of the project is summarized in the article Heterogeneous Catalytic
Reactor for Hydrogen Production from Formic Acid and Its Use in Polymer Electrolyte
Fuel Cells by Yuranov et al. in the ACS Sustainable Chemistry & Engineering, cf. [115].

The second part of the thesis is a preprint of the same name article by O. Souček,
V.O., J. Málek and D. Bothe which is under review in the International Journal of Engi-
neering Science. The article originally arose as a continuation of the V.O. diploma thesis,
supervised by J. Málek at MFF CUNI and D. Bothe at TU Darmstadt. Consequently,
joining of O. Souček as a co-author gave rise to a self-consistent study on the modelling of
active surfaces which, I believe, will serve as a valuable guidance for further modelling of
heterogeneous catalysis.

Comments on the contents of the thesis:
The first part of the thesis consists of four chapters and two Appendices. Chapter 1

discusses an overall introduction to modelling of fluidized bed reactors focusing on chemical
reactions and other transformations during the thermal decomposition of a liquid formic
acid into gaseous mixture of hydrogen and carbon dioxide.

Chapter 2 treats the Basset-Boussinesq-Ossen (BBO) equation describing a motion of
particles in fluid. The basic concept of the BBO equation and the consequent application
to the investigated fluidized bed reactor are presented.
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Chapter 3 concerns a derivation of a PDE-system based on balancing of partial masses,
partial velocities and a common temperature. The model of originally nine constituents
is reduced to three phase flow. Using the form of reduced BBO equation derived in the
second chapter, the partial velocities of solid and gaseous objects may be expressed in
an algebraic form depending on the liquid velocity only. Due to the application of the
volumetric averaging technique, the momentum balance adopts the form of Reynolds-
averaged Navier-Stokes (RANS) equation and an additional closure need to be used. This
is done by multiphase version of the k − ε model.

Chapter 4, the last chapter of the first part, describes numerical implementation of
the model, verification of the results towards the measurements and CFD analysis of the
system with consequent design and up-scale guidelines.

Finally, Appendix A concerns a brief introduction to the theory of volume averaging
technique applied in Chapter 3.

The second part of the thesis consists of three chapters and two Appendices. The first
chapter of the second part, i.e. Chapter 5, is a brief introduction to the problematic of
modelling on active surfaces together with definitions of the bulk and surface variables.

Chapter 6 recalls partial balances of mass and a common balance of momenta, energy
and entropy for a control volume containing active interfaces, i.e. both bulk and surface
balances need to be considered. Moreover, suitable boundary conditions are introduced.

Chapter 7 provides essential closures in scope of Classical Irreversible Thermodynamic
(CIT) for bulk as well as for active surfaces. Two possible transfer models are introduced
together with eventual further simplification to the standard Langmuir adsorption model
commonly used in chemical engineering.

Appendix B introduces a statistical lattice model for surface free energy. Finally, Ap-
pendix C provides very elegant derivation of the Euler relations in the bulk and on the
surface.
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transfer and mass diffusion)

Πchem
η ,ΣΠi,chem

η bulk and surface entropy productions due to chemical reactions
ΣΠi,diff

η , ΣΠi,chem
η surface entropy productions due to mechanical dissipation, thermo-

diffusion and chemical reactions
Πdiff−m

η , ΣΠi,diff−m
η bulk entropy production due to mass diffusion

ΣΠsor(A,B)
η surface entropy production due to sorption (Models A and B)

ΣΠfric(A,B)
η surface entropy production due to friction (Models A and B)

ΣΠet(A,B)
η entropy production due to energy transfer between bulk and surface

(Models A and B)
ρα, ρΣ

α bulk and surface partial density of α-th constituent
ρ, ρΣ bulk and surface mixture densities
Σ, dΣ active surface and its element
ταβ Maxwell-Stefan interaction coefficient matrix
ψ, Σψ specific bulk and surface Helmholtz free energies
ψM, ΣψM bulk and surface molar Helmhotz free energies
Ω bulk domain
∂Ω boundary of Ω
∇, ∇Σ bulk and surface gradient
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Part I

Modelling of multi-phase reactive
flow in fluidized bed reactors
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1. Introduction to the problem
In this section a basic concept of the examined fluidized bed reactor is presented. Starting
with simple and better-known reactors, the fluidized bed reactor principle is introduced
and, consequently, discussed on a concrete application. Alongside a physical concept of
the modelling, basic chemistry and thermodynamic of the reactor are discussed.

1.1 Fluidized bed reactors

1.1.1 Motivation
There is great diversity in application, shape and working regime of multiphase chemical
reactors. To begin with, we present three groups of commonly used multiphase reactors,
distinguished by the operating principles.

One of the representative of multiphase reactors are bubble-column reactors where bub-
bles ascent through liquid. The bubbles are typically injected to a reactor by a distributor
and they are usually subjected to purely mechanical effects, such as adiabatic expansion
and mass exchange via the interface. These reactors contain mainly two phases, no chem-
ical reaction takes place and the flow is commonly assumed to be isothermal. As an
industrial example, we mention the bubble column reactors for oxidation, polymerization,
hydrogenation etc., commonly used in manufacturing of synthetic fuels.

Second big group of multiphase reactors are the packed bed reactors. Here, the main
body of the reactor is usually filled by a (rigid) porous medium which is being penetrated
by a fluid. The inner structure of packed bed reactors is considered as immobilised, formed
by a continuous or closely packed matter. The packed bed reactors are widely used e.g. in
petroleum industry; cleaning of drinking water etc.

Fluidized bed reactors posses something from both previously mentioned. A body of
fluidized bed reactor is partially filled by (discrete, floating) particles which undergo stirring
due to a movement of other particles or a flow of the surrounding continuous phase. In some
cases, the reactor may change the behaviour and transfers from packed bed to fluidized bed
(or vice versa). This phenomena is called fluidization and it is often part of an initiation
process of fluidized bed reactors (especially in case of sand bed reactors of filters), usually
accompanied by the characteristic pressure drop profile (Figure (1.1)).

Figure 1.1: Fluidization of a fluidized bed reactor. Adopted from [54].
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A common example of a three-phase fluidized bed reactor is an aeration tank for water
treatment. It is a biological reactor where gas (usually air or oxygen) is being injected
in the form of bubbles into a mixture of waste-water and micro-organisms. This helps to
develop biological flocs which reduce the organic content of the waste-water.

The examined fludized bed reactor serving as a hydrogen generator works, however,
little bit different. In contrast to bubble columns or aeration tanks, the bubbles are not
injected into the reactor, but they are produced inside. The reactor is filled and constantly
supplied by a liquid formic acid. Besides the liquid, solid catalytic particles of a spherical
shape are present. On the surface of the particles, a molecule of the acid decomposes to a
molecule of dissolved hydrogen and carbon dioxide. Once the surrounding liquid becomes
saturated by the reaction product, gaseous bubbles are formed. The bubbles undergo
possibly rapid growth and ascent to the liquid surface on the top of the reactor. (This
phenomena is very similar to degassing of a mineral water/beer.) Consequently, the gas
leaves the reactor through a pressure valve and continues to the connected PEM fuel cell.

Since the decarboxylation of formic acid is an endothermic reaction, an external heat
source need to be provided, e.g. by immersed heating tubes. Consequently, the resulting
temperature gradients induce thermal (natural) convection which mixes the solid particles
together with the formic acid and forms a suspension.

Bubble column reactor:
liquid ⇋ gas

Dissolution of the gas into the liquid.

Packed/fixed bed:
fluid solid

⇋ fluid
Heterogeneous catalysis in porous

immobilized macro-structure

Three-phase fluid. bed:
liquid solid

⇋ gas
Heterogeneous catalysis on moving

micro-structure.

1.1.2 Hydrogen generator for PEMFC
In the recent years, proper understanding and optimization of the process of hydrogen
production at the industrial scale has become a topic of utmost importance. This is mainly
due to the primal role of hydrogen as a fuel in most types of fuel cells whose application
in various industry segments has been growing rapidly, see [22]. Production of hydrogen
by formic acid decomposition is one promising route to overcome inherently difficult and
inefficient storage of hydrogen itself, cf. [35].

Formic acid is a non-hazardous liquid with the highest content of hydrogen from all
carboxylic acids. 1 This makes it an ideal source of hydrogen which can be effectively
produced by heterogeneous catalysis under presence of certain noble metal (e.g. Ruthe-
nium). This is possible for example in a fluidized bed reactor. In this reactor the gaseous

1Acids containing a carboxylic group COOH
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bubbles, filled by mixture of hydrogen and carbon dioxide, are produced enabling direct
use in commercial PEM fuel cells (Figure (1.2)).

The development of a hydrogen generator along with a PEM fuel cell represents very
attractive technological field with a plethora of possible industrial applications, e.g. in
mobile (automotive) or decentralised power sources with fixed-site installations for power
grid backup generation and many other. A proper CFD model of the reactor with rea-
sonable complexity, tractable by numerical simulations, may provide valuable means for
understanding and optimal performance of the reactor in an industrial application.

Figure 1.2: A sketch of the generator coupled to PEMFC.

1.2 Problem description

1.2.1 Reactor design specifications

During the development of the fluidized bed reactor for the HyForm project, we investigated
several prototypes using various catalyst, reactor shapes and heating systems. In this work,
we focus on the reactor which showed the most reliable measurements simultaneously
allowing observations of the ongoing phenomena.

The reactor has a simple cylindrical shape with the inner diameter 70 mm, and length
460 mm (Figure (1.3)). The bottom and top of the reactor are made of Inconel 625 steel and
the main body is made of thick transparent high-pressure (up to 10 atm) glass allowing
visual observations or covered by an insulation layer. The heating system is formed by
several connected hollow U-shaped Inconel 625 tubes with inner diameter 3 mm and outer
diameter 4.75 mm.

Within the heating tubes flows a low viscosity oil which is externally heated in a thermo-
stat and driven by a compressor (pump). Except the known temperature in the thermostat,
there are two more sensors, namely on the inlet and on the outlet of the heating system.
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Figure 1.3: Reactor interior with highlighted heating tubes (left) and the lab installation.

The level of liquid is approximately at the height 300 mm, hence, the reactor volume
is little more than 1 L. The formic acid is injected via a nozzle located in the centre of
the bottom plate and the flow rate is regulated by a pump. Since the mass transfer of the
liquid into the gas is relatively slow, its upper surface level may be considered as constant
and we can model the reactor interior as a constant control volume avoiding the difficulties
with a free surface flow.

The catalytic particles consist of support and catalytic coating. As the support serves
commercial GPPS polystyrene with density 1.05 g

mL and approximately spherical shape
having the characteristic diameter 100µm. Nevertheless, the process of catalytic coating
cause a certain damage on the particle and we may experience irregular shapes (Figure
(1.4)).

Figure 1.4: A SEM image of a damaged catalytic particle.

The catalytic particles stay all the time within the reactor, i.e. there is no inflow/outflow
neither sink/source. Since their density is similar (little higher) to the density of the
surrounding liquid, once the liquid starts to circulate due to the thermal convection, the
particles circulate along.
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The construction of the prototype lab-scale reactor and its examination towards indus-
trial applications was a part of the Swiss project HyForm supported by CTI and Swisse-
lectric Research. The manufacturing, installation and experimental measurements of the
reactor system was made by Martin Grasemann, Andrew Dalebrook and Igor Yuranov at
EPFL under supervisory of prof. Gábor Laurenczy. The modelling part including verifi-
cation and optimal design guidelines was in charge of V.O. and Peter Cendula at ZHAW.
For further details we refer to [115].

1.2.2 Hydrogen production principle
The purpose of the reactor is a decomposition of the liquid formic acid into a gaseous
mixture of hydrogen and carbon dioxide which escape through the top of the reactor. The
process as a whole can be summarized in the following steps:

1. A highly concentrated aqueous solution of formic acid (typically 97−99 %mol)2 enters
the reactor.

2. A molecule of formic acid adsorbs onto the catalytic surface of the particle and forms
a chemical bond with the catalyst (Ruthenium).

3. The catalyst decomposes the adsorbed molecule of formic acid into the molecule of
hydrogen and carbon dioxide.

4. The molecules of hydrogen and carbon dioxide unbind the catalyst and desorb from
the catalytic surface into the surrounding liquid in the form of dissolved gas.

5. Once, the liquid becomes saturated, the dissolved gas starts to evaporate into nucle-
ating bubbles. The bubbles undergo rapid growth and ascend to the liquid surface.

6. The gas leaves the reactor through a pressure valve situated on the top of the reactor
and continues to the adjacent PEM fuel cells.

The steps 2-5 may be written in the chemical equation as 3

chemical reaction   vaporization  
HCOOH(l) −→ HCOOH∗  

adsorption

Cat(s)−→ H∗
2 + CO∗

2 −→ H2(d) + CO2(d)  
desorption

−→ H2(g) + CO2(g)

or, in a compact way, as
HCOOH(l)

Cats−→ H2(g) + CO2(g).

Moreover, along the dissolved gas evaporation, the system experiences also the evaporation
of liquid water and formic acid. This may be represented as

H2O(l) −→ H2O(g) (1.1a)
FA(l) −→ FA(g). (1.1b)

2The symbol "%mol" denotes molar fraction of the solution, i.e. the amount of a constituent (expressed
in moles) divided by the total amount of all constituents in a mixture. Analogously, we understand also
mass fraction (weighted) denoted by "wt." and volume fraction "vol.".

3The lower indices of a constituent denote the phase type, namely (l) is liquid, (s) is solid, (g) is gas.
Moreover, (d) denotes dissolved gas and "*" an adsorbed species.
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Let us mention one important fact concerning a mixture of formic acid and water. These
two liquids tends to form an azeotrope, i.e. due to the evaporation/boiling a mixture of
constant ratio of formic acid and water is formed. To ensure relatively constant production
of the gaseous hydrogen, the reactor is initially filled by the formic acid/water azeotrope.
For more information, see Remark (1.2.2).

1.2.3 Chemical reactions
Catalytic reactions: Generally speaking, catalyst acts as a reaction medium, i.e. it
enters the reaction; decreases the activation energy by formation of an additional reaction
step (Figure (1.5)); but it does not form the final product of the reaction. In the ideal
case, the catalyst neither drains nor deactivates.

Figure 1.5: Decrease in the activation energy under catalyst. Source en.wikipedia.org.

A simple chemical reaction of two species A,B forming a product C:

A+B → C

undergoes in a presence of a catalyst X several intermediate steps which may be expressed
as a system of consequent reactions:

A+X → AX

B + AX → ABX

ABX → XC

XC → X + C.

Although the catalyst is consumed in the first step of the reaction, it is subsequently
produced in the fourth step, so it does not occur in the overall reaction equation.

Kinetic regime of a reactor:
Performance of multi-phase reactors depends on many factors - not just a speed of

chemical reactions but also transport processes such as a mass transfer between the phases
or diffusion of the constituents.

From this perspective, we distinguish a kinetic and diffusive regime of a reactor. The
first one is characterised by fast transport processes when the reactor performance is mostly
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limited by the chemical reaction. The diffusive regime is, on the other hand, limited by a
speed of transport processes rather that rate of chemical reactions.

In our particular case, we consider the reactor being in the kinetic regime limited
by the decarboxylation of the formic acid. This assertion is supported by the fact that
the reactor production rate follows the exponential temperature dependency predicted by
the Arrhenius equation. 4 Other processes, such as diffusion of the dissolved gases and
consequent gas-liquid interfacial transfer, are, therefore, considered much quicker.

There are several important consequences of the kinetic reactor setting. Since the
mass transfer is not limited by the diffusion, we can assume that the reaction product is
quickly (and more or less uniformly) distributed within the whole reactor volume. Thus,
its concentrations may be fairly approximated as constant.

Thermodynamics of the reactions:
The decarboxylation of formic acid is described by the following change in thermody-

namic potentials

HCOOH(l) −→ H2(g) + CO2(g) (1.2)
∆GΘ = −32.9 kJ

mol , ∆HΘ = 31.2 kJ
mol , ∆SΘ = 215 J

mol·K .
5

It expresses that the reaction is being spontaneous and endothermic (consumes heat). The
equilibrium constant 6 can be calculated from the change of Gibbs free energy as

eqKΘ := [H2][CO2]
[HCOOH] = e− ∆GΘ

RT (1.3)

where the bracket [·] denotes the molar concentration of the species. Using the value of
Gibbs energy for the FA-decarbolylation, we obtain eqKΘ ≈ 5.8 · 105.

The enthalpy change of the reaction is typically considered to be independent of pressure
once the reaction occurs at constant pressure. This can be viewed from the thermodynamic
identity

∆H = T∆S + V∆p ∆p=0= T∆S.

On the other hand, the enthalpy change of the reaction depends on the temperature.
Following the Shomate Equation for gases [17] in the form

∆H = H −HΘ = A t+B
t2

2 + C
t3

3 +D
t4

4 + E

t
− F, (1.4)

with coefficients commonly available in the literature (e.g. [17]), we obtain the (minor)
dependency of the reaction enthalpy on the temperature (Figure (1.6)).

4The Arrhenius equation describes (empirically) the temperature dependence of reaction rates at ideal
conditions, cf. [4, 22.5].

5The values of standard state variables of the reaction, namely, the Gibbs free energy GΘ, the enthalpy
HΘ and the entropy SΘ are valid for one mole of each substance being in its standard states and the STP
condition - standard temperature (298 K) and pressure (1 atm).

6The equilibrium constant of a chemical reaction is the value of reaction quotient when the reaction
has reached its equilibrium. i.e. the forward and backward chemical rates equal.
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Figure1.6: Thetemperaturedependenceoftheenthalpychangeforhydrogen,carbon
dioxidemoleculeandformicacid.

Usingtheadditivityoftheenthalpies,i.e.

∆H =
∑

να∆Hα,

whereνα denotesstoichiometriccoeicientsofthereaction,weobtainthechangeofen-
thalpyofreaction∆H =3.42kJ

mol at100℃.Fromthis,wederivetheenthalpyofreaction
forthedecarboxylationofformicacidat100℃ havingavalueapproximately36.32kJ

mol.
TheVan’tHofequationfollowstherelation

dlneqKΘ

dT
=−

∆HΘ

R
. (1.5)

TheintegrationbetweenthetemperaturesT1ansT2gives

ln
(

K2

K1

)

=
∆HΘ

R

(
1

T1

−
1

T2

)

(1.6)

whereK1,K2aretheequilibriumconstantsatthetemperatureT1andT2. Consequently,
ttT=373K theequilibriumconstantfordecarboxylationofformicacidcorrespondto
eqK373K ≈7.3·106.

Now,wedeinetheextent(evolution)ofthereactionas7

dξ:=
d[Aα]

ναMα

(1.7)

whereνα standsforstoichiometriccoeicientofthespeciesAα. Note,thatanyreactionr
ofn-speciesA1,...,An writtenintheform

νf
1A1+νf

2A2+...+νf
nAn⇌ νb

1A1+νb
2A2+...+νb

nAn,

whereνα:=νf
α−νb

α,α=1,...,n,satisiesthefollowingrelation:

d[Aα]

ναMα

=
d[Aβ]

νβMβ

,∀α,β∈{1,...,n}.

7Strictlyspeaking,oneshouldconsiderinsteadofmolarconcentration[Aα]ageneralizedquantitycalled
activityaα([Aα]). However,forelementary(one-step)reaction,thisquantityiscommonlyconsideredas
anidentity.
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Considering the reaction at constant pressure and temperature, we use the Van’t Hoff
equation (1.5) and the relation (1.3) to obtain the dependence of change of Gibbs free
energy as

∆G =
(

dG
dξ

)
T,p

= ∆GΘ +RT lnQ (1.8)

where Q := Πn
α=1[Aα]να is the reaction quotient.

The reactor is an open system constantly held out of equilibrium, the characteristic
molar concentrations correspond approximately to

cF A(l) ≈ 26 mol
L , cH2(d) , cCO2(d) ≪ 1 mol

L .

This gives the following value for reaction coefficient and change of Gibbs free energy:

Q ≪ 1, ∆G < −43.4 kJ
mol .

Once Q < eqK373K and ∆G < 0 the reaction at the specific condition within the reactor
proceeds (is spontaneous) in the desired forward direction.

Side reactions: The decarboxylation of formic acid has been very well utilized on a
noble-metal-based heterogeneous catalyst (e.g. Ru, Pd,Au) which is practically CO-free,
cf. [35]. However, besides the main chemical reaction, there are always also other chemical
reactions but, typically, with much lower reaction rate.

Generally speaking, the molecules of incoming formic acid and water may decompose or
compose to many different molecules formed by the atoms of hydrogen, carbon and oxygen.
In the recent reactor conditions, we detected (apart of the decarboxylation product), also
traces of CO. This indicates that there is at least one more reaction present. Various
authors discuss this issue where traces of another strong acid or a nickel/copper reactor
wall may significantly increase the rate of the unwanted side-reactions. Especially the rate
of decarbonylation of FA, whose product (CO) may poison the fuel-cell membrane, can
play a crucial role. For more information, we refer to (1.2.1) or [65, pp. 90],[114], [46] etc.

Nevertheless, for our purposes we do not need to consider any other chemical reaction
than the decarboxylation of formic acid.

Remarks:

1.2.1 Side-reactions. Another possible decomposition of FA is its decarbonylation, i.e.
the reaction

HCOOH −→ CO +H2O.

This reaction often accompanies the decarboxylation. Moreover, we may consider also
another possibilities, e.g. involving a formation of intermediate product.

To give a a more rigorous answer, let us assume a presence of the following chemical
species in the reactor: HCOOH,H2, CO2, H2O,CO,HCHO, i.e. z = 3 different atoms

21



andn=6diferentmolecules:

z=3:β=1...H

β=2...C

β=3...O

n=6:α=1...HCOOH

α=2...H2

α=3...CO2

α=4...H2O

α=5...CO

α=6...HCHO

Now,wecanconstructthereactioncompositionmatrixTα,β ∈Rz×n:

T=

⎛

⎜
⎝

2 2 0 2 0 2
1 0 1 0 1 1
2 0 2 1 1 1

⎞

⎟
⎠.

Moreover,wedetermineitsorthogonal-subspacereactionmatrix Pwhere

PT =

⎛

⎜
⎝

−1 1 1 0 0 0
−1 0 0 1 1 0
−2 0 1 1 0 1

⎞

⎟
⎠.

Thisgivesusthethreepossibleindependentreactions(therows),namely

HCOOH ⇌ H2+CO2 (1.9a)

HCOOH ⇌ H2O+CO (1.9b)

2HCOOH ⇌ H2O+CO2+HCHO (1.9c)

andwe maylistsomeoftheimportantlinearcombinationscorrespondingtointermediate
steps(excludingHCOOH asthereactant)

H2O+CO⇌ H2+CO2.

H2+CO⇌ HCHO

H2O+2CO⇌ CO2+HCHO

2H2+CO2⇌ H2O+HCHO.

Thisprocedurerepresentanelegantalgebraictoolhowtolistpossiblereactionsforgiven
(detected)molecules.

1.2.2 Azeotrope.Anazeotropeis,socalled,aconstantlyboiling mixture,i.e.the molar
concentrationofmixtureequalsthemolarconcentrationofevaporatedsteam,thus,itscom-
positioncannotbealteredbydistillation. Mixtureofliquidwaterandformicacidforms
anazeotrope.Itsmassfractionratioatp=1atmcorrespondsto

RFA
H2O(p):=

wFAg

wH2O(g)

eq
=

wFA(l)

wH2O(l)

≈
77.6

22.4
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The pressure dependence of the ratio is relatively significant, hence, we approximate the
value by fitting the available data, cf. [42], with the basis functions 1,

√
x, x (Figure (1.7)

and Table (1.1)).

0 1 2 3 4 5
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75

80

85

Pressure [atm]

F
A
%
[w
t.
]

Figure 1.7: The estimated dependence of the azeotropic ratio on the pressure.

p [atm] 1 1.5 2 2.5 3 4 5
RF A

H2O [%wt] 78 81 83 84 85 86 87
RF A

H2O [%mol] 58 62 65 67 69 71 72

Table 1.1: The estimated dependence of the azeotropic ratio RF A
H2O on the pressure.

Since the formic acid is consumed by the reaction, the azeotropic ratio is not exactly
achieved in our case and RF A

H2O ≤ eqRF A
H2O. Therefore, we should expect (slightly) more water

vapour than in equilibrium, i.e. the rate of evaporation of water grows at the expense of
formic acid (Figure (1.2)).

BP temp.[℃] 102.3 105.9 107.1 107.6 107.1 106.0 104.2 101.8
[%mol] liquid 4.05 21.8 32.1 41.1 52.2 63.2 74.0 90.0
[%mol] vapour 2.45 16.2 27.9 40.5 56.7 71.8 83.6 95.1

Table 1.2: Amount of H2O in liquid and vapour of equilibrated FA-azeotrope at boiling
point (BP) and pressure 1 atm

1.2.3 Reactor auto-regulation. If the evaporation rate is not sufficient, the reactor is
being filled by the water decreasing the reaction rate - the catalytic surfaces are occupied
by the adsorbed molecules of water. In other words, the reactor partially compensates the
higher water content by increasing its evaporation rate. However, this auto-regulation works
within limited ranges only and too much water can virtually kill the reaction. To avoid this
scenario, one should always use as pure formic acid solution as possible.

Once the water content increases, a solution to suppress the higher water content is
allowing the system to reach its boiling point and, thus, rapidly increases the evaporation
ratio. This process drives the ratio RF A

H2O(p) back to the azeotropic equilibrium value.
1.2.4 Catalysis of reversible reactions. Generally speaking, all reactions proceed in
both directions. The catalyst speeds up the reaction in the both direction maintaining the
equilibrium ratio unchanged, i.e. ∆G remains the same.
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1.2.5 Nucleation. Once a molecule of H2 or CO2 is produced, it tends to a natural
physical configuration given by the state-variable-couple (T, p). However, one molecule
does not form a phase but a phase needs to nucleate, i.e. form a cluster (aggregate) of
many molecules which overcome a certain energy threshold forming a new phase (bubble).

Note, that one of the factor limiting the minimum bubble size is the pressure jump
generated by the surface tension σ. It is commonly modelled by the Young-Laplace equation

∆p = pg − pl = 2σ
r

(1.11)

where r is a radius of (spherical) bubble. Until the nucleation happens, the molecules do
not form any phase but they adopt the phase of the solution, i.e. liquid in our case.

1.2.6 Evaporation rate. Besides the main mass transfer between the dissolved gases
H2(d), CO2(d) and the bubble, we need to consider also evaporation of the liquid across the
bubble surface. These rates are commonly modelled by the Noyes-Whitney equation [73]:

mgl [ kg
s ] :=

∫
Σgl

kgl

(
ρΣ

g − ρg

)
dS (1.12)

where kgl = Dg

δgl
[m

s ] is the speed of mass transfer; Dg [m2

s ] the diffusion coefficient of the
gaseous molecule, δgl [m] is the thickness of the interface (usually assumed to be constant),
ρΣ

k [ kg
m3 ] is the k-th density of the substance on the interface Σgl and ρk [ kg

m3 ] is its (mixture)
density in the bulk. Using the Henry’s law, cf. [41], together with the Dalton’s law [21] and
the equation of state for ideal gases (3.11), we can use the Henry (atmospheric) constant
8 Hcp

k = ck(d)
pk(g)

obtaining

mk
gl = ±AΣgl

kcp
gl

(
ck(d)

Hcp
k

− pk(g)

)
, k = H2, CO2, FA,H2O (1.13)

where kcp
gl = kgl

Mk

RT
.

8All Henry’s constants describe values in the equilibrium state. In case of the atmospheric Henry’s
constant, ck(d) stands for the mass fraction of the dissolved k-th component in the liquid phase equilibrated
with the gas phase (bubble) having the partial pressure pk(g).

24



2. Motion of a particle in fluid
In this chapter the fundamentals of a particle motion in fluid based on the classical approach
using the BBO equation is given. The acting forces, such as the pressure-gradient force,
gravity, buoyancy, drag, Basset force, added mass force, wall force or lift force are discussed.
Finally, along the mass transfer via the bubble interface, collective effects are introduced
and implemented into the system. 1

2.1 Introduction
Dynamics of a particle in fluid 2 was studied by many authors. As the pioneering work
one may consider the results of Stokes [107], Boussinesq [13], Basset [5] and Oseen [76]
who laid the foundations of the BBO equation which is by many authors regarded as the
fundamental relation applicable in many (but not all) cases. 3

Later on, many great physicists introduced a complex description of the bubble fluid
dynamics, e.g. one of the first complex work in the field by Lamb [55]; popular courses of
Landau & Lifshitz presented in late 1930s in USSR and published later in English [60]; or
considerable work of Batchelor [6]. Choosing one representative example, we highlight the
work of Clift et. al. [18],[19] which represents great review of the theory supported by many
experiments. From the later results, we would like to emphasize the work of Tomiyama
[109] and the extensive monograph on Chemical Reactor Modelling by Jakobsen [48].

2.1.1 BBO equation
The motion of a small particle in an incompressible fluid can be conveniently described
by the Newton’s second law. Here, we assume that the particle behaves as a rigid sphere
neglecting its internal flow and other quantity variations (e.g. pressure or density). In
the scope of multi-phase continuum mechanics, this approach is known as Euler-Lagrange
approach.

We express the second Newton’s law, cf. [48], as
d
dt(mpvp) = FS

p + FV
p (2.1)

where mp is the mass of the particle p moving by the velocity vp and F S
p , F

V
p are resultants

of the surface and volumetric forces acting on the particle.
Usually, the only considered volume field force, acting on the particle immersed in a

continuous fluid, is the gravitation force, i.e.

F V
p = FG

p =
∫

Vp

ρpg dV = ρfgVp.

1Within this chapter we introduce several plots which were generated by Wolfram Mathematica soft-
ware. For more information about the numerical implementation see the section (4.1)

2The term "particle" represents both solid particles and gaseous bubbles. Similarly, "fluid" stands for
a liquid as well as a gas. When we do not need to distinguish the concrete ensemble, we use subscription
”p” for particle and ”f” for fluid. Otherwise, we use subscription ”s” for solid particles, ”g” for gaseous
bubbles and ”l” for liquid.

3According to Lott, cf. [62]: "The linear split of the net drag force acting on the particle is not always
valid as there can be non-linear interactions between the various forces. Such interactions are not well
understood, but are typically small enough to be neglected for many conditions."
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ThetotalhydrodynamicsurfaceforceFS,exertedbyacontinuousluidonaparticle,is
deinedas

FS
p =−

∫

∂Vp

Tf·ndS. (2.2)

Here,Tf=pfI+Sd
fstandsforthetotalstresstensorwiththeisotropicpressurepartpfI

andtheextrastressSd
f;andnistheoutwarddirectedunitnormalvectortotheparticle

surface∂Vp.
Inourcase,wedonotconsideranyexternalpressure-gradientforceinourcaseand,

thus,wemaydecomposethepressureieldintothehydrostaticandhydrodynamicpart:

pf=ρfg·r+pdyn
f (2.3)

wherercorrespondstothepositionvector.Thesurfaceforcecanberewrittenas

FS=−
∫

∂Vp

(
(ρfg·r+pdyn

f )I+Sd
f

)
·ndS (2.4)

=
∫

Vp

ρfgdV−
∫

∂Vp

(pdyn
f +Sd

f)dS

=FB
p +Fhydr

p .

Thenethydrodynamicforce(sometimesreferredasageneralizeddrag)isusuallyfurther
dividedintonumerouscontributionslikethedynamicpressuregradient,steadydrag,added
mass,lift,Bassethistory,andthewallforces:

Fhydr
p =Fdyn

p +FD
p +FAM

p +FL
p +FBA

p +FW
p ,

hence,
d

dt
(mpvp)=FG

p +FB
p +Fpg

p +FD
p +FAM

p +FL
p +FBA

p +FW
p . (2.5)

ThisequationisoneofthepossibleversionofBBO(Basset-Boussinesq-Oseen)equation,
cf.[30].

Asthenextstep,wedistinguishtheforcesaccordingtothefollowingmanner:

• Steady:buoyancyandgravityforces. Theseforcesaresteady,independentof mo-
tion.

• Inertial:inertia,added massandBassetforces. Theseforcesareconsequencesof
aparticle/luidacceleration. Theyaresigniicantusuallyforashorttime-rangeon
thebeginningof motion. Then,theirinluencedecreasesrapidlyand maybeoften
neglected.

• Dynamic: drag,pressuregradient,lift,andwallforces. Theseforcesincreasewith
particlevelocity.Theytypicallyactduringthewholetime-range.

2.1.2 Characteristicvalues

Inthesequel,wedescribetheinluenceoftheindividualforcesfordiferentlowregimes
andneglectthosewhosecharacteristicvaluesarestrictlylessthan5%oftheoverallcause
-thisrelationwillbedenotedas”≪ ”. Todoso,weneedtospecifythecharacteristic
valuesofthesystem. Thesevaluesaretakenfromtheliterature(cf.[37],[40]), measured
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in an experiment or estimated from the results of the CFD modelling. We list them in the
following tables (2.1), (2.2), (2.3).

Symbol Explanation Value Unit
R

F A
H20 Azeotropic (mass) ratio of FA and H2O 0.69 [1]

ρtrue
l Material density of the liquid at 100 ℃ 1070 kg·m−3

ρtrue
g Material density of the gas at STP 1 kg·m−3

ρtrue
s Effective density of the solid 1080 kg·m−3

µl Viscosity of the liquid 1 · 10−3 Pa·s
αl Thermal exp. coeff. of the liquid 1 · 10−3 K−1

kl Thermal conductivity of the liquid 0.2 W·m−1·K−1

σl Surface tension of the liquid 0.04 N·m−1

g Gravitation constant 9.81 m·s−2

ν0
l Viscous frequency factor 5.17 · 10−6 Pa·s
Eν

a Viscous activation energy 14.27 kJ·mol−1

Table 2.1: Table of the characterictic material values for the system.

Symbol Explanation Value Unit
vl Characteristic velocity magnitude of the liquid 0.01 m·s−1

vg Characteristic velocity magnitude of the gas 0.1 m·s−1

rg Characteristic radius of the bubbles 1 · 10−3 m
rs Characteristic radius of the solid cat. particles 5 · 10−5 m
L Characteristic length (size) of the reactor 0.1 m
tr Characteristic occupation time of a bubble in the reactor 2.1 s

Table 2.2: Table of the characterictic observed values for the system.

Symbol Explanation Value Unit
k

ṁ

gl Estimated mass transfer coefficient 5 · 10−4 m·s−1

r0 Estimated initial radius of bubbles 1 · 10−4 m
vslip

ls Slip velocity magnitude of liquid and solid phase 1 · 10−3 m·s−1

|∇ϕg| Characteristic gas-fraction gradient 0.1 m−1

Table 2.3: Table of the characterictic simulated values for the system.
4

Now, we introduce the non-dimensional Reynolds number for continuous phase (liquid)
and particle Reynolds number for discrete phases - rigid particles and gas bubbles. It
expresses the ratio of the inertial and viscous forces and characterizes the flow pattern

4The values were extracted from CFD-modelling results using typical boundary and initial conditions
for Tset = 100 ℃, cf. section 4.3.3.
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(laminar or turbulent):

Rel = ρlvlL

µl

≈ 103 · 10−2 · 10−1

10−3 ≈ 1000 (2.6a)

Res = ρlv
slip
ls 2rs

µl

≈ 103 · 10−3 · 10−4

10−3 ≈ 0.1 (2.6b)

Reg =
ρlv

slip
gl 2rg

µl

≈ 103 · 10−1 · 2 · 10−3

10−3 ≈ 200. (2.6c)

2.1.1 Effective density of a catalytic particle. The density of the solid catalytic par-
ticles outside of the reactor is a little higher than density of the liquid. However, it does
not need to be the case once the reaction occurs.

Taking the density of the GPPS 5 catalytic support 1050 kg
m3 and assuming the coating of

Ruthenium having density 12410 kg
m3 and occupying 1%[vol], we obtain the resulting density

at characteristic temperature approximately 1170 kg
m3 . However, the stuck micro-bubbles

buoy the particle and the appropriate density is lower. We call the density of catalytic
particles with stuck micro-bubbles the effective density of the solid particles ρtrue

s and we
estimate its value 1080 kg

m3 . 6

2.1.2 Intensive and extensive force. We introduce an intensive (density) quantity fi

of an extensive force Fi via the mutual relation Fi =
∫

Vp
fi dV .

2.2 Cause of the motion
The force-cause, which we denote fCgl

for gas-liquid systems and fCls
for liquid-solid sys-

tems, is usually considered as a composition of the gravitation, buoyancy and pressure
gradient force.

2.2.1 Pressure-gradient force
The pressure gradient force, sometimes call the Taylor force, is the force induced by a
local movement of the surrounding continuous phase (liquid). It is significant for high
speed flows, e.g. propellers, turbines etc., but commonly negligible in other applications.
Assuming no-slip condition for the liquid velocity on the wall and vl velocity magnitude at
the same height but in the centre of the reactor, the characteristic pressure gradient may
be estimated by Bernoulli equation as

v2
f

2 + gz + pf

ρf

= const.

This results into the following pressure gradient forces for the liquid

|fpg| = |∇pdyn| ≈
⏐⏐⏐⏐⏐pcentre

l − pwall
l

L

⏐⏐⏐⏐⏐ =
⏐⏐⏐⏐⏐

1
2ρl[(vl)2 − (vwall

l )2]
L

⏐⏐⏐⏐⏐ ≈ 0.5 N
m3 .

5General purpose polystyrene.
6Let us mention that once the effective density fluctuates around the liquid density, we may experience

a self-mixing effect. However, we may experience also an unwanted aggregation when the particles stick
together wrapped by gas to decrease the surface tension. The caught particles become, basically, chemically
inactive and we experience a drastic decrease in the reactor performance.
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This force acts on the liquid phase as well as on the immersed particles.

2.2.2 Gravity & buoyancy

In a gas-liquid system, the dominant force is typically the buoyancy of the particle, since

|fB
g | ≈ 10000 N

m3 ≫ |fG
g | ≈ 10 N

m3

and the cause-force for gas-liquid system may be taken as

|fCgl
| ≈ |fB

g | ≈ 10000 N
m3 .

The situation slightly differs in the solid-liquid system since the buoyancy and grav-
itation have a comparable magnitudes. However, for the solid-liquid density difference
∆ρgl ≈ 10 kg

m3 the force difference corresponds to |fG − fB| ≈ 100 N
m3 which is still fairly

dominant over the pressure gradient force and we take it as the estimate for the cause force

fCls
= |fG

s − fB
s | ≈ 100 N

m3 .

2.2.3 Initial bubble radius

Since the surface of the solid particles is damaged by the process of catalytic coating, cf.
fig. (1.4), it is impossible to define any characteristic size of a pore, resp. size of a surface-
cavity. Nevertheless, once a bubble detaches from the particle, it undergoes a significant
growth with the final diameter practically independent of the initial one. From this reason,
it is satisfactory to employ an approximation valid for the bubble detaching from a cavity
in a still liquid.

This situation was studied by Jones et al. [49] balancing the drag, surface tension,
inertial, pressure and buoyancy force. If the bubble grows relatively slowly, we may neglect
influence of drag, inertial and pressure force. Moreover, for bubbles with a radius > 10µm,
the pressure force (usually modelled by Young-Laplace relation, see (1.11) ) is negligible
as well. This results into a balance of surface tension force and buoyancy

2πrdσgls sinα = (ρl − ρg)g4
3πr

3
g

where rd denotes the detachment radius, σgls is the surface tension at the gas-liquid-solid
junction and α is the contact angle, cf. Figure (2.1).
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Figure 2.1: Schematic picture of the bubble detachment from a surface-cavity. Adopted
from [49].

Using the characteristic values rd = 10µm, σgls = 0.04 N
m , α = 60°, we obtain rg ≈

300µm. This is, actually, the upper bound of the bubble-radius since we have not consid-
ered any flow around the particle which would, certainly, lower the value.

Remarks:
2.2.1 Boussinesq approximation. A liquid is very often modelled as an incompressible
medium due to the small volume-expansion coefficient and practically negligible density-
variation due to a pressure change. However, the temperature change can play the funda-
mental role although its magnitude may be small. Typical example is the thermal convection
which is driven by the difference of buoyancy force (i.e. the change of density) in the hotter
and colder regions of the liquid.

To model the thermal convection of an isothermally incompressible fluid (i.e. the density
independent of pressure), Boussinesq [13] suggested a correction in the momentum balance
of incompressible fluid allowing a response on a density change due to the variation of
temperature. It appears in none but the gravity term where the density adopts the form

ρl(T ) def= ρ0
l + αlρ

0
l (T − T 0) = ρ0

l (1 + αl∆T ).

Here, the coefficient αl represents the volumetric expansion for the liquid and ρ0
l stands for

the density at the STP condition (T = 298 K, p = 1 atm).

2.3 The consequences of the motion
Drag force is very often the dominant and the only considered consequent force - equili-
brating buoyancy and gravitation force. The inertia of a particle, moving through a fluid
with higher or comparable density, is usually negligible and the drag may be treated as
steady. However, once we need to take into account an acceleration of the particle, we have
to treat the effect of added mass and an unsteady drag force.
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2.3.1 Steady drag force

When the system posses very low particle Reynolds number (Rep < 1), it can be conve-
niently approximate by the Stokes’ regime, cf. [107]. In such a case, the drag force follows
the analytical formula:

FD = 6πµfrgvslip
pf . (2.7)

For Re > 1 the Stokes’ regime is not applicable any more and the drag force need to
be expressed in the general formula rising from empirical correction of Bernoulli principle,
cf. [48, 5.2.1]:

FD = 1
2CDAΣpf

ρf |vslip
pf |vslip

pf (2.8)

where CD stands for the empirical drag coefficient - usually a function of Reynolds particle
number Rep. Its values are typically tabulated by measurements when a rigid sphere falls
in a column filled by a still liquid and the flow is assumed to be steady. In this case, the
influence of the wall forces is simply neglected (the situation corresponds to an unbounded
domain) or the wall correction coefficient in the drag force is introduced, cf. [77, 5.II.A.3],
[63]. The BBO equation reduces to the buoyancy-drag balance

FD = FB

Using the ansatz (2.8), we obtain for a spherical particle the relation

CD = 4
3dp

ρp − ρf

ρf

g
|vslip

pf |vslip
pf

(2.9)

where vslip
pf = s

t
is the measurable variable (measured time t at the given bubble trajectory

length s).
There exist a huge amount of various drag formulae fitting different (and sometimes

questionable) measurements, cf. Figure (2.2), and we refer to paper of Brown and Lawler
[15], who summarized and statistically analysed several commonly used relations. As
the authoritative result is often considered the classical work of Clift [19] who fitted the
measurement data using formula

CD = K1

Rep

+ K2

Re2
p

+K3

separated in the 8 different ranges according to the Rep magnitude. He succeeded to fit
the data in the range 0 < Rep < 105 within the standard deviation 0.0174, and 98.1 % of
the measurements with less than 10 % deviation from the modelled values.

31



Figure 2.2: Dependence of the drag coefficient CD on the solid particle Reynolds number
Rep; adopted from [36].

Once we restrict the problem to a smaller range of Reynolds numbers, we can conve-
niently use a one-formula-approach applicable for for rigid spheres falling into a still liquid.
For 0 < Rep < 1000 the result of Schiller and Naumann [88], suggesting

CD = 24
Rep

(
1 + 0.15Re0.687

p

)
, (2.10)

is commonly accepted.

2.3.2 Unsteady drag and Basset force
In the most of the experiments, the drag force is measured in the steady flow regime. The
generalization to the unsteady drag is commonly proceeded by the introduction of the
Basset history force which represents the delay in the boundary-layer (wake) evolution.
Since the force is very often negligible for all but high acceleration motions (propellers,
turbines), it is usually a priori omitted which may be, consequently, justified by a posterior
analysis.

The general prescription of the force follows

fBA
p = µfdp

∫ t

0
K(t− τ)

(
dvp

dt − dvf

dt

)
dτ

where K(t−τ) depends on the diffusion process of the vorticity. Neglecting the acceleration
of the surrounding fluid, the relation proposed by Clift [19, 11.2] reads

fBA
p = −3

2d
2
p

√
πρLµl

∫ t

0

dvp

dt (t− τ)− 1
2 dτ.

Employing the characteristics values, we obtain

|fBA
l | ≈ −3

24 · 10−6
√
π · 103 · 10−3 · 20 · 1N ≈ 4 · 10−4N ≪ |fC

gl |

|fBA
s | ≈ −3

21 · 10−8
√
π · 103 · 10−3 · 20 · 1N ≈ 1 · 10−6N ≪ |fC

ls |.
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Hence, the Basset history force can be considered as negligible in our case.

2.3.3 Added-mass force
The added mass force, or sometimes called virtual mass force, is the inertia of the sur-
rounding fluid which needs to be accounted in the force balance of the particle. Citting
Techet [108]: "When a body moves in a fluid, some amount of fluid must move around it.
When the body accelerates, so too must the fluid. Thus, more force is required to accelerate
the body in the fluid than in a vacuum. Since force equals mass times acceleration, we
can think of the additional force in terms of an imaginary added mass of the object in the
fluid."

According to the previous description, we define

F = m
d
dtvp = (mp +mAM) d

dtvp
def= Vpρp

dvp

dt  
FI

+CAMVpρp
dvp

dt  
FAM

(2.11)

where FI stands for inertial force; FAM is the added mass force; and CAM is the added
mass coefficient. There is an analytical solution for CAM of a rigid sphere (and ellipsoid) in
the case of creeping or potential flow, see Clift [19, 11.2]. However, no analytical solution
is available for more complex shapes (e.g. bubble cap). In this case, we may calculate the
added mass coefficient numerically, cf. [94], [78] as follows.

Let us treat the situation when particle is immersed in a still liquid. On the beginning
of the motion, the buoyancy balance the inertia and added mass force. All other forces
are negligible. Any movement of a particle immediately generates a velocity field of sur-
rounding liquid. This velocity field has a kinetic energy which corresponds to a work which
is done by added mass force by displacing the particle. Simply by integrating the kinetic
energy over the region and measuring the bubble displacement (usually in the centre of
mass), we may calculate the added mass force.

This force is commonly negligible for systems where the discrete phase has much higher
density than the surrounding continuous phase (e.g. drops in air). On the other hand, for
the opposite situation (e.g. bubbles in water) it is the dominant consequential force during
the initiation of the motion (typically for time < 10−3 s). In this situation, the analytical
values of added mass coefficient CAM in a still liquid are usually good approximation since
the flow may be considered potential due to the slow development of the bubble-wake.

There are a few other situations when the added mass force has to be taken into
account. One example is a rapid expansion of a freely moving bubble due to a very quick
pressure-change 7 or rapid mass transfer (e.g. boiling). Another example is a change of
the bubble-shape. 8

2.3.4 Lift force
The lift force is usually considered in the form, cf. [48, 5.2.6],

FL = CLρfVp(vf − vp) × (∇ × vf ). (2.12)
7For example a release of a cork in a bottle of champagne.
8Some authors denote the force contribution of the volume change as a part of the added mass force,

i.e. the so called Kelvin impulse, cf. [74]. Nevertheless, we follow the common definition (2.11) excluding
the volume change effect whose contribution will be covered in an extra term.
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Such a defined lift force needs to be considered for rotational flows only (i.e. ∇ × vf ̸= 0).
Here, we usually distinguish the situations when the rotation is induced by particle-rotation
in a uniform flow (Magnus force) or it is induced by the flow pattern, e.g. shear flow. In
the particular fluidized bed reactor, we consider only the latter one caused by the thermal
convection and the no-slip condition on the reactor walls.

Focusing on the characteristic value of the force, we approximate CL ≈ 1
2 and the

vorticity |∇ × vf | ≈ |vf |
Lrot

, Lrot ≈ 10−1 m. Consequently, we obtain for the following values

|fL
gl| = 0.5 · 1000 · 0.1 · 0.1

0.1 N ≈ 50 N ≪ |fCgl
|,

resp.
|fL

ls| = 0.5 · 10 · 0.01 · 0.01
0.1 N ≈ 5 mN ≪ |fCls

|.

2.3.5 Wall force
A particle moving near a wall is subject of several effects. One of them is an increase of
the added mass, since the demand on displacing the surrounding liquid increases due to
the viscosity and the no-slip condition on the wall. However, this effect has generally lower
magnitude than the other wall effect - the wall lubrication. Although the wall lubrication
may be neglected in some cases, it can lead to an incorrect behaviour in others.

A simple, commonly used pressure-drag balance for a spherical particle with diameter
dp moving in a fluid (in Stokes regime) reduces to an explicit relation for the slip velocity
in the form

vslip
pf =

(ρp − ρf )d2
pg

18µf

.

This approach is convenient in the case of bubble column reactors of a simple cylindrical
shape when the boundaries are parallel to the flow, however, it is incorrect when the
boundary has a different orientation (Figure (2.3)).

Figure 2.3: Correct behaviour on the left side and non-physical behaviour on right - pen-
etrating of the ascending particle through the boundary having different orientation that
the particle-flow.

To prevent the model from this inconsistency, a wall force has to be introduced. Antal
et al [3] was one of the first authors proposing the wall lubrication force in the form

FW = CW

ρf |vslip
pf |||

2

rg

nW
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where CW is the wall lubrication coefficient; vslip
pf || = (vp − vf ) − [(vp − vf ) · nW ]nW is the

slip velocity component tangential to the wall; and nW is the unit normal pointing away
from the wall.

The model was lately modified by Tomiyama [109], and Jakobsen [48, 5.2.5] who pro-
posed for flows characterized by vslip

pf || ≈ vslip
pf (e.g. bubbly flow) the following simplified

form:

FW = Cwρf
|vp − vf |2

rp

nW , Cw = max
{

0, Cw1 + Cw2

rp

y0

}
. (2.13)

wher the parameter values

Cw1 = −0.05, Cw2 = 0.35

represent the empirical best fit. Since the wall force acts only in a narrow region near the
boundaries, it is often not explicitly considered in the bulk but implemented as a kind of
generalized boundary condition. This is also the case of our implementation in Comsol
Multiphysics.

2.3.6 Bubble deformation

In the case of the gaseous bubbles, we are interested also in a change of bubble-shape. Due
to the effect of surface tension, the bubble surface tends to minimize its area, i.e. form
a sphere, however, the shape is, consequently, deformed by hydrodynamic forces. The
dimensionless number expressing the corresponding ratio is called the Eötvös number:

Eö =
(ρl − ρg)gde

g
2

σgl

where de
g is the equilibrated diameter of the bubble. 9 For Eö ≪ 1, the bubble remains

practically spherical. On the other hand, when Eö ≫ 1, the influence of the surface
tension forces decreases and the bubble significantly deform to a spherical cap or possibly
breaks-up.

The shape of the bubble may be characterized by the combination of Eötvös and
Reynolds number, cf. [19]:

9The equilibrated diameter de
g corresponds to diameter of a spherical bubble with the same volume as

the original bubble.
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Figure 2.4: The shape of bubbles depending on the Reynolds and Eotvos (ev. Morton)
number. Adopted from [18].

As long as the system is situated in the lower-left part of the Figure (2.4), which is
typical for spherical and elliptic bubbles, 10 the influence of the Reynolds number may be
neglected. The shape of the bubble and, in particular, the axial ratio can be estimated by
the bubble-ellipticity

E = a

b
≈ 1

1 + 0.163Eö 0.757 (2.14)

where a is the length of the vertical axes and b the horizontal axes (Figure (2.5)). Con-
sequently, the change of the surface area, drag, added mass and lift coefficients may be
discussed.

10In the case of strictly vertical ascent, the bubble shape can be conveniently approximated by a spheroid,
i.e. an ellipsoid with two equal semi-diameters.
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Figure2.5: Changeofthebubbleaxial-ratioEwiththetime. Minimumvalueatthe
reactoroccupancytimet=trandde=3mmisapproximatelyEmin=0.82.

2.3.7 Bubblevs.solid-particle motion

Inthecaseofsolid-liquidinterface,thesurroundingluidmoleculessticktothesolidsurface
duetothesurfaceroughness,thus,no-slipconditionisapplicable.However,inthecaseof
abubble,thesituationisdiferent.
Arisingbubbleinapureliquidhasamobileinterfaceand,thus,thedragcoeicient

ismuchlower(slipvelocityishigher).Ontheotherhand,thepresenceofasmallamount
ofsurfactant11maystronglyinluencetheinterfacebehaviourwhichmayquicklybecome
immobileandliquid"sticks"tothebubblesurfaceagain.However,forexpandingbubbles
(non-materialinterface)the"stick"conditionholdsinthetangentialdirectiononly.Thus,
wewritethecorrespondingconditionas

vl||=vgl||=vg||onΣgl (2.15)

wherev||denotesthetangentialcomponentofthevelocity.
Bubbleshaveusuallynegligiblemomentum,thus,thegeneratedturbulentwakedisturbs

thestraightupwardtrajectoryforrelativelysmallReynoldsnumbersgeneratingazig-zag
and,lately,alsoahelicalmotion.Thisphenomenasigniicantlyincreasestheefectivedrag
ofthebubbleandthedrag-coeicient-plateau(whenthedragisindependentoftheslip
velocity)occursmuchsoonerthaninthecaseofrigidparticlemotion.
Asaconsequence,thedragcoeicientforabubbleatlowReynoldsnumberissig-

niicantlylowerthatinthecaseofrigidparticlebutforahigherReynoldsnumberthe
situationisopposite.ThisefectwasstudiedforexamplebyKaramanev[50]orTomiyama
[109]whosuggestedamodiicationoftheoriginalmodelofSchiller-Naumann[88].
Themodiicationforpuresystemsfollows

CD=max

{

min

{
24

Rep

(
1+0.15Re0.687p

)
,
48

Rep

}

,
8

3

Ëo

Ëo+4

}

,

forslightlycontaminatedsystems

CD=max

{

min

{
24

Rep

(
1+0.15Re0.687p

)
,
72

Rep

}

,
8

3

Ëo

Ëo+4

}

,

11Anychemicalcompoundwhichhassurfaceactivity,e.g.anorganiccompoundthatisamphiphilic.
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andforhighlycontaminatedsystems

CD=max

{
24

Rep

(
1+0.15Re0.687p

)
,
8

3

Ëo

Ëo+4

}

.

Smoothed

Schiller-Naumann

Tomiyama 's threshhold

0.2 0.4 0.6 0.8 1.0 1.2 1.4
time[s]

0.5

1.0

1.5

2.0

2.5
CD

(2.16)

Inourparticularcase,weusesmoothed(locallybytheerrorfunction)Tomiyama’scorrec-
tionforcontaminatedsystem(Figure(2.6)).

Figure2.6:TheevolutionofthedragcoeicientCD
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wheretheReynoldsparticlenumberpossesthefollowingproile

Figure2.7:ReynoldsparticlenumberRep

Remarks:

2.3.1Thechangeoftheadded masscoeicient.Todeterminatetheaddedmass
coeicientforaspheroidalshape(E<1),wemayusetheformulaofLamb,cf.[55]:

CAM=
EArcCos(E)−

√
1−E2

E2
√
1−E2−EArcCos(E)

,

resultingintoavariationoftheaddedmasscoeicient(Figure(2.8)).However,sincein
ourcasetheaddedmassissigniicantduringtheinitiationonly,wemayneglectthisefect.
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Figure2.8:ChangeoftheaddedmasscoeicientCAM.

2.3.2Thechangeofthesurfacearea.Thesurfaceareaofthespheroidincreaseswith
theaxialratiodropaccordingto[113]as

S=
π

2
d2eE

−2
3

(

1+
E2

√
1−E2

ArcTanh(
√
1−E2)

)

.

TakingtheminimumaxialratiovalueEmin=0.82,thesurfaceareadiferenceofthesphere
andthespheroidislessthan1%,hence,negligible.

2.3.3Changeofthedragcoeicient.AccordingtoHaider-Levenspiel,cf.[38,p.737],
thedragcoeicientCD ofthespheroidalbubblemaybeestimatedaccordingtotherelation

CD=
24

Rep

(
1+A(S)ReB(S)p

)
+

C(S)
(
1+D(S)

Rep

)

wheretheempiricalparametersA,B,C,Darefunctionsofthebubble-axialratioS

A(S)=e2.3288−6.4581S+2.4486S
2

B(S)=0.0934+0.5565S

C(S)=e4.905−13.8944S+18.4222S
2−10.2599S2

D(S)=e1.4681+12.2584S+20.7322S
2+15.8855S3.

Here,Sdenotesthesphericitydeinedasratioofthesurface-areaofthespherehaving
thesamevolumeastheparticleandthesurface-areaoftheparticle. Forspheroiod,the
sphericityandellipticitysatisfyS=E

2
3.
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Smoothed Tomiyama 's correction

Haidler-Levenspiel for sphere

Haidler-Levenspiel for spheroid
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Figure2.9:ChangeofthedragcoeicientCDdependingonthetime-changingsphericity.

AswecanseeintheFigure(2.9),somediferencebetweenthesphericalandellip-
soidalbubbleoccurs.However,thisefectisbasicallynegligibleaslongasweconsiderthe
(smoothed)drag-correctionproposedbyTomiyama[109].

2.4 Masstransfer

2.4.1 Therocketequation

Oncethemasschangeoftheobjectneedstobetakenintoaccount,theNewton’ssecond
lawisnolongerapplicable-abubbleallowingmasstransfercannotbeconsideredasa
closedsystem.12However,asimplegeneralizationprovides,socalled,therocketequation,
cf.[20].13

Considerasystemoftwobodies,onewithmassm,velocityvandthesecondwith
mass dmandvelocityu.Thetotalmomentumequalsto

P(t)=mv+udm.

Assumingaperfectinelastic(plastic)collisionatt+dt,theinalmomentumequals

P(t+dt)=(m+dm)(v+dv)

andwemaydeinetheresultantoftheallexternalforcesas

Fext
def
=
dP

dt
=
mdv−(u−v)dm

dt
=m

dv

dt
−(u−v)

dm

dt
.

Now,weapplytherelationonthegas-suspensionsystem,wherev=vg,u=vland

vl−vg=−v
slip
gl:

Fext=
✟
✟✟
✟✟❍

❍❍❍❍
mg
∂

∂t
vg+mAM

∂

∂t
vg

  
FAM

+vslipgl
dmg
dt  

Fṁ

=FB+FstD +FW (2.17)

12CitingHalliday&Resnick[39]: "Itisimportanttonotethatwecannotderiveageneralexpressionfor
Newton’ssecondlawforvariablemasssystemsbytreatingthemassinF= dP

dt=
d
dt(mv)asavariable.

[...] WecanuseF= dP
dt toanalyzevariablemasssystemsonlyifweapplyittoanentiresystemof

constantmasshavingpartsamongwhichthereisaninterchangeofmass."
13Thedesignation"rocketequation"hasahistoricalreasons,although,itisapplicabletoanysystem
gainingorloosingitsmatterandwewilldemonstrateitontheplasticcollisionoftwobodies.
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wherewedenotedthemasstransferforceḞm dependingonthevolumeanddensitychange.

2.4.2 Interfacial masstransfer

Ifthesystemdoesnotundergoasigniicantpressurechange,thedensitychangedueto
thehydrostaticpressureorsurfacetensionisnegligibleandweobtainforsphericalbubble
withuseoftheHenry’slaw(1.13)thefollowingexpressions

dmg

dt
=

✚
✚

✚✚❩
❩

❩❩

dρg

dt
Vg+ρg

dVg

dt
=ρg4πr2

g

drg

dt

1.12
=

∫

Σgl

kgl(ρ
Σ
g−ρg)dS

1.13
=

∑

k

AΣgl
kcp

glk

(
ck(d)

Hcc
k

−pρk(g)

)

. (2.18)

Thepartialpressureofthespecies pρk(g)
inthegasphase(bubble) maybe WLOG

consideredasconstant.Themassfractionofdissolvedgaswithintheliquidmaygenerally
vary. However,sincethedissolvedgascirculatestogetherwiththeliquidanditisobject
offurtherdispersion(movementofsolidparticlesandascendingbubbles)anddifusion
efects, weconsideritsconcentrationconstantas well. Thisisinaccordance withthe
kineticregimeofthereactor.

Togetherwiththeassumptionofconstantconcentration-compositionoftheproduced
gas,seesection3.2.2,wecantreatthegas-liquidmasstransferratekglasaconstant. More-
over,inthissettingwe mayidentifythe masstransferratewiththe(averaged)chemical
rates:

⟨RΣ
gl⟩Vr =

1

Vr

∫

Vr

((
1+RFA

H20

)
ϕin

H20(l)
+1

)
ρtrue

l Ae
−Ea
RT RFA

H20ϕlϕsdV. (2.19)

Deiningthespeedofthe masstransferkṁ
gl[m

s]
def
= kgl

ρΣ
g−ρg

ρg
,wespecifythegrowthof

thebubbleas
drg

dt
=kṁ

gl ⇒ rg(t)=kṁ
glt+r0. (2.20)

14Themasstransferforce,consequently,adoptstheform

Ḟm =AΣgl
ρgk

ṁ
glvslip

gl . (2.21)

TheBBOforcebalancematbewrittenas

Fext≈FAM =FB +Fst
D +Ḟm (2.22)

whichyieldstherelation

CAMVgρl
dvg

dt
=−Vgρlg+Acs

Σgl
ρlCD|vslip

gl |vslip
gl −AΣgl

ρgk
ṁ
glvslip

gl (2.23)

whereAcs
Σgl

=πr2
gisthecrosssectionareaofthebubble.Consequently,weobtain

dvg(t)

dt
=−2g+

3

2

CD(rg(t),v
slip
gl (t))

rg(t)
|vslip

gl (t)|vslip
gl (t)−

6kṁ
gl

ρg

ρl

rg(t)
vslip

gl (t). (2.24)

However,sincethebubbleradiusrg≥r0≈0.1mm,themasstransfertermissmallenough
tobeneglectedinthesequel(Figure(2.10)).

14Thevaluekṁ
gl≈5·10−4[m/s]isestimatedfromthesimulationtogetherwithexperimentallyobserved

inalbubblediameter(dmax ≈3mm).
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Figure 2.10: Force balance development for kṁ
gl = 5 · 10−4 m · s−1, the reactor height h =

0.3 m, final bubble diameter 3 mm.

Remarks:
2.4.1 Massive mass transfer. There are several examples, when the mass transfer via
the bubble interface is much higher and the mass transfer force is not negligible any more.
One of the typical example is boiling. Estimating the value of the mass transfer rate for
boiling kṁ

gl ≈ 1 · 10−2, the mass transfer force (and added mass force) starts to play a role
(Figure (2.11)).

However, the final bubble diameter of a spherical bubble would be approx. 17.4 mm
which is physically unrealistic and one needs too use a different approach (including bubble
break-up) to describe such fast mass transfer.

2.4.2 Remark. The volume change, resp. drg

dt
, may be computed by the Rayleigh-Plesset

equation which is the one-dimensional NS equation in the spherical coordinates.
Let us now switch to a little bit different situation when the bubble is slowly inflated sur-

rounded by a liquid (in an unbounded domain). The whole system is spherically symmetric
with the centre in the middle of the bubble. The NS equation

ρl
dvl

dt = −∇pl + µl∆vl + ṁlvl, (2.25)

may be, consequently, transformed into the form

pg − pl

ρl

= rg
d2rg

dt + 3
2

(
drg

dt

)2

+ 4νl

rg

drg

dt + 2σgl

ρlrg

+ 2
3
kgl(ρg − ρΣ

g )
ρl

drg

dt . (2.26)

As long as we do not treat massive mass transfer (e.g. boiling), we may apply the equilib-
rium Young-Laplace relation

∆pgl = 2σgl

rg

and omit the second-time-derivative term together with the viscous term. As a consequence,
we obtain (

drg

dt

)2

= kgl

ρg − ρΣ
g

ρl

drg

dt , (2.27)

42



Figure 2.11: The force balance development for kṁ
gl ≈ 1 · 10−2, reactor height h = 0.4 m,

final bubble diameter 17, 4 mm.

hence,

rg(t) =
∫ t

0
kgl

ρg − ρΣ
g

ρl

dt+ r0 ≈ kṁgl t+ r0, (2.28)

which coincides with the adopted parametrization of rg(t), cf. (2.20).

2.5 The three-phase system

2.5.1 Solid-liquid system
Let us consider a rigid spherical particle with constant density ρtrue

s and diameter ds im-
mersed into homogeneous incompressible liquid with constant density ρtrue

l . The particle
Reynolds number corresponds to Rep ≈ 0.1, cf. (2.6), and the flow can be conveniently
approximated by the Stokes regime (flow) when the inertia of the particle is negligible, cf.
[48, 5.2.1]. The BBO force balance (2.5) reduces to the form

0 = FG + FB + FD. (2.29)
The drag force, satisfying the Stokes’s ansatz

FD = 6πµlrgvslip
ls , (2.30)

allows the explicit relation for the slip velocity

vslip
ls = 2

9
(ρs − ρl)r2

sg
µl

. (2.31)

The boundary condition (vslip
ls |wall

= 0) is enforced by the wall force acting near the bound-
aries and the force balance adopts the form

Cw
|vslip

sl |2

rs

nW + 9
2
νlvslip

ls

r2
s

+ ρtrue
s − ρtrue

l

ρtrue
l

g = 0. (2.32)
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2.5.2 Gas-liquid system
Considering a bubble with a constant density ρtrue

g and radius rg, the BBO balance reduces
to 15

FAM = FB + FD. (2.33)
The particle Reynolds number corresponds to Rep ≈ 300, cf. (2.6), thus, the Stokes

regime is not applicable any more, and we need to use the general drag force prescription
in the form:

FD = 1
2CDAΣgl

ρl|vslip
gl |vslip

gl , (2.34)

where AΣgl
= πr2

s is the cross section area. Employing the Tomiyama correction of the
Schiller-Naumann drag coefficient, cf. [109],

CD = max
{

24
Rep

(
1 + 0.15Re0.687

p

)
,
8
3

Eö

Eö+ 4

}
,

the force balance reads

CAM

dvslip
gl

dt = CD

rg

|vslip
gl |vslip

gl + 8
3g.

Unlike the case of solid particles, here, we need to consider several time-ranges to
characterize the corresponding force balances and flow regimes. Concretely:

1. The first regime, an initialization of the motion, occurs for t ∈ ⟨0, 1 · 10−3⟩. This
regime is characterized by a rapid but short, nearly constant acceleration, cf. fig.
(2.13). The dominant (consequential) force is clearly the added mass force, i.e. the
effect of displacement of the surrounding liquid. Since vslip

gl is practically zero, the
drag is negligible and the force balance follows

FAM = FB.

2. The second (transient) regime occurs at t ∈ ⟨10−3, 10−2⟩. The acceleration decreases
as the drag force starts to play a role. The force balance follows

FAM = FB + FD.

3. The third regime occurs at t ∈ ⟨10−2, 1.7⟩. Here (and later on) the acceleration is
low (the inertial forces are practically negligible), cf. fig. (2.13), but the growth
of the bubble drives an increase in the buoyancy and slip velocity. The growth is
initially linear (CD ≈ 24

Rep
, |vslip

gl | ≈ Ct) and, lately, becomes sub-linear (CD ≈ 3.6

Re
1
3
p

,

|vslip
gl | ≈ Ct

2
3 ). The force balance follows

0 = FB + FD.

4. In the last regime (t > 1.7 s), the growth of the bubble continuous in the sub-linear
regime but the drag coefficient is reaching its plateau (Newtonian regime) or even
rising again due to the bubble-deformation. As a consequence, the bubble velocity
stagnate or even decreases, see fig. (2.12). The force balance still follows

0 = FB + FD.
15Note that, in contradiction to the solid-liquid system, we neglect the gravitation of the bubble but

consider the added mass force since the liquid has much higher density than the gas.
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Aswecanseefromthepreviousconsideration,thereisatinytimeregionwhentheadded
massforceneedtobetakenintoaccount. Referringtotr=2.1sasthecharacteristic
reactoroccupationtime,themagnitudeoftheaddedmasstimeregionislessthan1%
andwillbeneglectedinthesequel.Consequently,theforcebalancemaybeexpressedas
FD=−F

B,i.e.

CD
rg
|vslipgl|v

slip
gl =−

8

3
g. (2.35)

Fromthisrelation,wemayexplicitlyexpresstheslipvelocityas

vslipgl =

√
8

3

rg|g|

CD
ez (2.36)

or,withthecontributionofthewallforce,as

Cw
rg
|vslipgl|

2nW +
CD
rg
|vslipgl|v

slip
gl =−

8

3
g.
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(2.37)

TheevolutionoftheslipvelocityandtheaccelerationmaybeseenintheFigure(2.12)
and(2.13).

Figure2.12:Theevolutionoftheslipvelocityvslipgl
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Figure2.13:Theevolutionofthebubbleacceleration(left)anditsLog-Logplot(right).
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Remarks:

2.5.1Boundarylayerthickness.Note,thatthewallforcecoeicientCW iszerooutside
ofthewalllayerwiththethicknessy0(t). Thisvalueisnotconstantbutdiferswiththe
reactorheightandbubbleradius:

Cw=0⇔y≥y0(t)=
Cw2
Cw1
rg(t).

Onceweassumenobubblecoalescence(neitherbreak-up)togetherwithassumptionthat
mostofthebubblesareformednearthebottomofthereactor,theboundarylayerundergoes
thedevelopmentdepictedintheFigure(2.14)
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Figure2.14: Walllayerthicknessy0dependingontime(left),resp.height(right).

2.6 Collectiveefects

Uptonowwehavebeentakingintoaccountvariousefectsactingonasingleparticlelow
inaluidbutwedidn’tincludeanyefectarisingfromacollective(swarm)behaviour. We
needtoconsiderfordensedispersedsystemsmutualinteractionsofthedispersedparticles
(collisions)aswellasinteractionsmediatedviathecontinuousphase.
Theseefectshavebeendescribedbyvariousauthorse.g.[83],[112],[91],[52].In

ourcaseofthethreephaselow,weneedtodistinguishtwosigniicantcollectiveefects.
Firstly,theinteractionofsolid-liquidphaseformingasuspension.Secondly,theinteraction
ofsolid-solidandgas-solid(mediatedviatheliquid).
Thegas-gas(orbubble-bubble)interactionwillbeneglectedduetothelowconcentra-

tionoftherandomlypoppedupbubblesmovingmostlyinverticaldirection,cf.[94],[93],
[78].

2.6.1 Collectiveslipvelocity

Theintroducedrelation(2.36)holdsforasingleascendingbubblepoppingupinthe
bottomofthereactor. However,wetreatasystemwherebubblespopupinthewhole
reactorvolume.Oncethereactoroperatesinthekineticregime,wemayassumeanuniform
concentrationofnewbubblesand,thus,wemayexpressthecollectiveslipvelocityasa
reaction-occupancytimeaverage,i.e.

vslipgl(t)=
1

|tr|

∫tr

0
vslipgl(τ)dτ. (2.38)
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Figure2.15: Thesingle-bubbleslipvelocityandaveraged(swarm)velocitycomparison
(left).Theaveraged(swarm)velocityincreasingwithheight(right).

2.6.2 Collectiveinterfacialarea

Onceweknowtheevolutionofbubbleradiusrg,wecancalculatetheinterfacialsurface
areaofasinglebubbleasAΣgl(t)=4πr

2
g(t). Analogouslytothecollectiveslipvelocity

(2.39),takingthetimeaverageofAΣgl(t),weobtainthecollectiveinterfacialsurfacearea
intheform

AΣgl(t)
def
=
1

|tr|

∫tr

0
AΣgl(τ)dτ=

1

|tr|

∫tr

0
4π(kṁglτ+r0)

2dτ. (2.39)

Sincethespeciicinterfacemasstransferrateisconstantwithinthewholereactor
volume(cf.thekineticregime(1.2.3)),themasstransferratedependslinearlyonthe
interfacialarea,i.e.

ṁgl=
AΣgl
⟨AΣgl⟩Vr

⟨RΣgl⟩Vr (2.40)

andwemaywritethepartialmassbalanceforthegasphaseas

∂t(ϕgρ
true
g )+div(ϕgρ

true
g vg)=̇mgl
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Figure2.16:Singlebubbleinterfacial-areaandcollectiveinterfacial-areacomparison(left).
Dependenceoftheinterfacial-areaontheheightofthereactor(right).
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2.6.3 Suspension: solid-liquid interaction
To model the collective effect of solid-liquid interaction, we follow the approach of Krieger
& Dougherty [51]. They represented the effects by introducing the effective suspension-
viscosity, dependent on the solid particle concentration, as

νls = νl

(
1 − ϕ

ϕmax

)−2.5ϕmax

. (2.41)

Here ϕ = ϕs

ϕls
; ϕmax is an empirical value corresponding to maximum packing 16 and νl

is the kinematic viscosity of clear liquid (ϕ = 0). Moreover, let us assert the viscosity
dependence on temperature by the Arrhenius equation for molecular kinetics [68]

νl(T ) = ν0
l e

Eν
a

RT (2.42)

where ν0
l correspond to viscous equivalent of frequency factor and Eν

a is a viscous equivalent
of the activation energy.

2.6.4 Drift diffusion
Treating the turbulent (averaged) three-phase flow, one needs to take into account also a
drift diffusion (Figure (2.17)). It is commonly a representation of two phenomena: firstly,
the rising bubbles cause local flow-eddies which drift the surrounding fluid; secondly, the
solid particles mutually collide. 17

Figure 2.17: Drift diffusion of the solid particles, adopted from [103].

According to Simonin [95] and lately by Sokolichin [103], we consider a collective slip
velocity field consisting of a single particle velocity and a drift velocity where the latter

16For random packing of small uniform spheres in cube ϕmax ≈ 0.64 which is used also in our case.
17We do not consider any gas-solid interaction.
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one depends on the gradient of volume fraction:

vg − vl = vslip
gl + vdrift

gl , vs − vl = vslip
ls + vdrift

ls

vdrift
gl = −νturb

l

ρl

1
ϕg

∇ϕg , vdrift
ls = −νturb

l

ρl

1
ϕs

∇ϕs.

Nevertheless, since we typically have |∇ϕg| < 0.1 and ρtrue
g ≪ ρtrue

l , the drift-velocity term
may be neglected in case of the gas phase but need to be considered for the solid phase.
Thus, the mass balance (3.27c) adopts the form

∂t(ϕsρ
true
s ) + div(ϕsρ

true
s vs) = div

(
ρs

ρl

νturb
l ∇ϕs

)
. (2.44)

To conserve mass of the mixture as a whole, one need to consider also corresponding
counterparts in the mass balance of the liquid. This can be elegantly implicitly satisfied
once the balance of a whole mixture is employed, i.e.

div(ϕlvl + ϕgvg + ϕsvs) = 0. (2.45)
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3. Balance equations
In this chapter, a volume averaging technique to derive an equation-system modelling the
decarboxilation of formic acid in the fluidized bed reactor is introduced. An overview of
the technique is followed by the application on the balance equations. Consequently, the
constituent relations derived in the Chapter 2 are used to obtain the final model suitable
for numerical computations.

3.1 Multi-fluid volume-averaging

3.1.1 Motivation

From perspective of continuum mechanics, we treat a system where the liquid represents a
continuous phase and the particles (bubbles and catalytic particles) represent two discrete
phases. The interfaces between them may have both material or non-material character.
Depending on the complexity of the geometry, we can track the interfaces or apply an
averaging (or mixture) techniques. In our case, the reactor is filled by too many interfaces
to track them all, thus, it is necessary to use an averaging technique.

Following the terminology of Brennen [14], we need to treat the problem as a dispersed
multiphase flow. Thus, we do not search for variables determining single dispersed particles
but for some kind of its general representation which keeps the major information of the
flow, e.g. an average of the quantities. Quoting Jakobsen [48]:

There are two main strategies that have been used deriving the existing macroscopic
models, denoted the averaging and mixture approaches, respectively. The averaging ap-
proach consists of the postulation of local instantaneous conservation equations prior to the
application of an averaging procedure deriving macroscopic Eulerian multi-fluid models.
In the mixture approach the mixture properties are postulated directly at the macroscopic
scales, and a set of macroscopic balance equations is formulated based on the conventional
conservation laws and the mixture properties. So, in this particular modeling concept the
control volume and the averaging volume coincide.

The averaging approach might be considered fundamental and preferred compared to the
mixture approach, because averaging provides certain advantages as the resulting macro-
scopic variables are explicitly related to the local variables.

In this work we give a brief awareness about a volume averaging technique, sometimes
called, the spatial averaging. For more details we refer to e.g. Appindix A, [48] or [71].

3.1.2 Averaging procedure

The main requirement for an application of the volume averaging is a proper scale-
separation, i.e.

Volume of dispersed particle Vp ≪ Averaging control volume V ≪ Reactor volume Vr.
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Here, the relation ≪ is understand in a sense of much lower magnitude. Assuming the
proper scale separation 1 , a discontinuous dispersed-object-quantity ψ may be well repre-
sented by its average which is already continuous. 2

In case of heterogeneous catalysis it is important to take into account also surface phe-
nomena. The averaging procedure than reduces the unknown set of n volumetric and m
surface variables to a set of n averaged variables. Although we lost the exact informa-
tion about the surface variables, their influence on the volumetric (averaged) quantity is
negotiated via a closure term within the averaged balance equation.

The volume averaging operator for a function ψ of an immiscible k-th phase is defined
as

⟨ψk⟩V
def= 1

V

∫
V
χkψ dV = 1

V

∫
Vk(t)

ψk dV (3.1)

where χk(t) is the phase indicator function which equals 1 in the region occupied by
phase k, denoted by Vk(t), and 0 elsewhere. Note that the averaging control volume V is
independent of time but the phase averaged volume Vk(t) is not. In addition to the volume
averaging operator, we define also the deviation (fluctuation) operator as

ψ̂k
def= ψk − ⟨ψk⟩V . (3.2)

and the volume fraction ϕk of the k-th phase as

ϕk(t) def= Vk(t)
V

=
∫

V χk(t) dV
V

. (3.3)

For the volume averaging operator we directly obtain the relation

⟨ψk⟩V = ϕk⟨ψk⟩Vk
.

A derivation of transport equation for a multiphase body may be found in Appendix
A.3, [98, 1.3] or [48, 3.4]. Here, we only recall the results, i.e. the transport equation for
the kth-phase (A.30) as

∂(ϕk⟨ρkψk⟩Vk
)

∂t
+ div(ϕk⟨ρkvkψk⟩Vk

) + div(ϕk⟨Jk⟩Vk
)

= ϕk⟨Rk⟩Vk
−

m∑
l = 1
l ̸= k

AΣkl
⟨(ṁkl

k ψk + Jk) · n⟩Σkl
. (3.4)

and the vectorial version of (A.31) as

∂(ϕk⟨ρkψk⟩Vk
)

∂t
+ div(ϕk⟨ρkvk ⊗ψk⟩Vk

) + div(ϕk⟨Jk⟩Vk
)

= ϕk⟨Rk⟩Vk
−

m∑
l = 1
l ̸= k

AΣkl
⟨(ṁkl

k ⊗ψk + Jk) · n⟩Σkl
. (3.5)

1 The scale separation in case of the investigated fluidized reactors, concretely V Å ≪ Vp ≪ V ≪ Vr,

results from the following characteristic values: V Å ∼ 10−30 m3 of atom (molecule), V p ∼ 10−14 −10−8 m3

size of a dispersed particles (bubbles, solid particles), V an arbitrary averaging (control) volume and
Vr ∼ 10−3 m3 the volume of the reactor.

2Since the averaging control volume is arbitrary small, it can be identified with a space point.
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3.1.3 Averaged massbalance

Intheprevioussection,weintroducedthevolumeaveragingwhichisnot multiplicative,
i.e. generally⟨ab⟩̸= ⟨a⟩⟨b⟩. Sincethebalanceequationscontainnon-linearterms, we
introducealsothemass-weightedvolumeaverage ofthequantityψkas

⟨ψk⟩ρk
Vk

def
=

⟨ρkψk⟩Vk

⟨ρk⟩Vk

=

∫
Vk

ρkψkdV
∫
Vk

ρkdV
(3.6a)

ψ̂ρk
k

def
= ψk−⟨ψk⟩ρk

Vk
. (3.6b)

Notethat⟨̂ψρk
k ⟩Vk

=⟨̂ψk⟩ρk
Vk

=0. Moreover,incaseofconstantdensityρk bothaverages
coincide.

Substitutingψk =1,Rk = RV
k totheequation(3.4)andneglectingthevolumetric

molecularluxesJk,weobtain

∂(ϕk⟨ρk⟩Vk
)

∂t
+⟨div(ϕk⟨ρkvk)⟩Vk

=ϕk⟨RV
k⟩Vk

−
m∑

l=1
l̸=k

AΣkl
⟨̇mkl

k ·n⟩Σkl
.

Toobtainthe massbalanceinthestandardform, wedenotethedensityofk-thphase
averagedoverthephasevolumeVkasthematerialdensity3,i.e.

⟨ρk⟩Vk

def
= ρtrue

k .

and
vk

def
= ⟨vk⟩ρk

Vk
.

Furthermore,weidentifyalso

RV
k

def
= ⟨RV

k⟩Vk
,ṁkl

k

def
= ⟨̇mkl

k ·n⟩Σkl

andtheaveragedpartial massbalanceforthek-thphasemaybe,consequently,expressed
as

∂ϕkρtrue
k

∂t
+div(ϕkρtrue

k vk)=ϕkRV
k −

m∑

l=1
l̸=k

AΣkl
ṁkl

k. (3.7)

3.1.4 Averaged momentumbalance

Substitutingψk=vk,Jk=−Tk,Rk=ρkg+RV
kvkinto(3.5),weobtaintherelation

∂(ϕk⟨ρkvk⟩Vk
)

∂t
+div

(
ϕk⟨ρkvk⊗vk⟩Vk

)
−div(ϕk⟨Tk⟩Vk

)= (3.8)

ϕk⟨ρkg+RV
kvk⟩Vk

−
m∑

l=1
l̸=k

AΣkl

⟨(
ṁkl

k ⊗vk+Tk

)
·n

⟩

Σkl

.

Usingthetensoridentity

(a⊗b)·c=(a·b)c;a,b,c∈R3,

3Inthe mixturetheory,isiscommonlyaddressedasa"true"densityofthephase.
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yields

⟨̇mkl
k ⊗vk·n⟩Σkl

=⟨(̇mkl
k ·n)vk⟩Σkl

=̇mkl
k⟨vk⟩

ρΣ
kl

Σkl

where

⟨vk⟩
ρΣ

kl
Σkl

def
=

⟨ρΣ
kvk⟩Σkl

⟨ρΣ
k⟩Σkl

.

Appliedontheaveragedmomentumbalance,wehave

∂(ϕk⟨ρk⟩Vk
⟨vk⟩ρk

Vk
)

∂t
+div

(
ϕk⟨ρk⟩Vk

⟨vk⊗vk⟩ρk
Vk

)
+div(ϕk⟨Tk⟩Vk

)= (3.9)

ϕk⟨ρk⟩Vk
g+⟨RV

k⟩Vk
⟨vk⟩ρk

Vk
−

m∑

l=1
l̸=k

AΣkl

(

ṁkl
k⟨vk⟩

ρΣ
kl

Σkl
+⟨Ti·n⟩Σkl

)

.

Although wegotridofthenon-linearterm ⟨ρkvk⟩Vk
inthe massbalance,itisnot

possiblehere,sincethenon-linearityisquadraticandanintroductionofanewaveraging
wouldleadtounder-determinedequationsystem.Thequadraticterm

⟨vi
kvj

k⟩Vk
=⟨(⟨vi

k⟩ρk
Vk

+v̂i
k)(⟨vj

k⟩ρk
Vk

+v̂j
k)⟩Vk

=⟨vi
k⟩ρk

Vk
⟨vj

k⟩ρk
Vk

+⟨̂vi
k̂vj

k⟩Vk
.

impliesaneedofanadditionalclosuresforconvectionterm(usuallyreferredasthe
Reynoldsstresstensor). Moreoverincaseofthe momentumbalance, weneedalsoa
closurefortheinterfacial momentumtransfertermṁkl

k aswellasintheaveragedliquid

velocitytermonthegl-interface⟨vk⟩
ρΣ

kl
Σkl

.
Droppingtheaveragingbrackets

Tk
def
= ⟨Tk⟩Vk

;TRe
k

def
= ⟨ρk⟩Vk

⟨̂vi
k̂vj

k⟩ρk
Vk

,ρtrue
k

def
= ⟨ρk⟩Vk

andapplyingthenotationintroducedintheprevioussection,we maywritetheaveraged
partialmomentumbalanceforthek-thphaseas

∂(ϕkρtrue
k vk)

∂t
+div

(
ϕkρtrue

k vk⊗vk

)
+div

(
ϕk(Tk+TRe

k )
)

= (3.10)

+ϕkρtrue
k g+RV

k⟨vk⟩ρk
Vk

−
m∑

l=1
l̸=k

AΣkl

(

ṁkl
k⟨vk⟩

ρΣ
kl

Σkl
+⟨Ti·n⟩Σkl

)

.

Remarks:

3.1.1 Mixturetheory.Thereareseveraldeinitionsofthevolumefractionquantityina
systemcontaining morediferentluids. Thephaseindicatorfunctionisaconvenienttool
incaseofimmiscibleluidsseparatedbyinterfaces. Ontheotherhand,thisfunctionis
notclearlydeinedforamixtureofmiscibleluids.Therefore,weintroducealsoaconcept
commonlyusedinthetheoryofmixtures:

Letusconsideravolumeelementofthe mixture(ofnconstituents)withthevolume
V. Weintroducethefollowing measures:Mk(V)-denotingthedenotingthe massofthe
k-thphaseinthegivenvolumeelementV,∀k=1,...,n. Assumingabsolutecontinuityof
these measureswithrespecttothecorrespondingvolume measure,wedeinethe(mixture)
densityas

Mα(B)
def
=

∫

B
ραdV,∀k=1,...,n.
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Moreover, knowing the material (true) density of the constituents ρtrue
k , we may define also

their volume fraction as

ϕ
def= ρk

ρtrue
k

.

3.1.2 Mixture of ideal gases. Having a mixture of N ideal gases at temperature T ,
volume V and pressure p, the volume fraction of all constituents are the same since they
always fill the whole volume. Nevertheless, we may measure their amount by their partial
pressures pα. These commonly satisfy the Dalton’s additivity law, cf. [92],

p =
N∑

α=1
pα.

Consequently, we may define the (material) density of the gas by equation of state for ideal
gases:

ρk = pkMk

RT
. (3.11)

and, applied in our case, we obtain

ϕg = ϕH2(g) = ϕCO2(g) , ρg =
pH2(g)MH2 + pCO2(g)MCO2

RT
.

3.1.3 Volume-additivity. If it is not written otherwise, we assume that liquids satisfy
the volume additivity constrain. Taking two liquids with volume V1, V2 and mixing them
together, the resulting volume is V = V1 ∪ V2. This is generally valid for the immiscible
liquids and good approximation for most of the miscible fluids (also for formic acid - water
mixture, cf. [37, 2-114]), however, it does not hold always (e.g. ethanol and water).

3.2 Balance of mass

3.2.1 Partial momenta: nine-constituents system

Let us recall all nine constituents within the reactor sorted by the phase type:

Liquid: FA(l), H2O(l)

Gas: FA(g), H2O(g), H2(g), CO2(g)

Dissolved gas: H2(d), CO2(d)

Solid: Cat(s)

and the averaged partial mass balance for the k-th phase (3.7):

∂ϕkρ
true
k

∂t
+ div(ϕkρ

true
k vk) = ϕkR

V
k −

m∑
l = 1
l ̸= k

AΣkl
ṁkl

k .
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solid patricle

gaseous bubble

Σsl

Σgl

Figure 3.1: A schematic figure of the control (averaging) volume.

In case of the fluidized bed reactor, we treat three different phases distinguishing three
kinds of interfaces: solid-liquid (sl), gas-liquid (gl) and gas-solid (gs); cf. Figure (3.1).
From the problem description in Chapter 1, we postulate the following assumptions:

1. The solid particles are treated as an idealized catalyst. Thus, we may express its
(mass) conservation as

∂t(ϕCat(s)ρ
true
Cat(s)

) + div(ϕCat(s)ρ
true
Cat(s)

vCat(s)) = 0.

2. No homogeneous reaction is considered, hence,

RV
k ≈ 0,∀k.

3. The only considered heterogeneous reaction is the decarboxilation of FA(l):

FA(l)
Cat(s)−→ H2(d) + CO2(d),

thus,
ṁls

H2(d)
= MH2

MF A

ṁls
F A(l)

, ṁls
CO2(d)

= MCO2

MF A

ṁls
F A(l)

.

Consequently, we may express the mass balances as

∂t(ϕF A(g)ρ
true
F A(g)

) + div(ϕF A(g)ρ
true
F A(g)

vF A(g)) = AΣgl
ṁgl

F A (3.12a)

∂t(ϕH2O(g)ρ
true
H2O(g)

) + div(ϕH2O(g)ρ
true
H2O(g)

vH2O(g)) = AΣgl
ṁgl

H2O (3.12b)

∂t(ϕH2(g)ρ
true
H2(g)

) + div(ϕH2(g)ρ
true
H2(g)

vH2(g)) = AΣgl
ṁgl

H2 (3.12c)

∂t(ϕCO2(g)ρ
true
CO2(g)

) + div(ϕCO2(g)ρ
true
CO2(g)

vCO2(g)) = AΣgl
ṁgl

CO2 (3.12d)

∂t(ϕF A(l)ρ
true
F A(l)

) + div(ϕF A(l)ρ
true
F A(l)

vF A(l)) = −AΣls
ṁls

F A − AΣgl
ṁgl

F A (3.12e)

∂t(ϕH2O(l)ρ
true
H2O(l)

) + div(ϕH2O(l)ρ
true
H2O(l)

vH2O(l)) = −AΣgl
ṁgl

H2O (3.12f)

∂t(ϕH2(d)ρ
true
H2(d)

) + div(ϕH2(d)ρ
true
H2(d)

vH2(d)) = MH2

MF A

AΣls
ṁls

F A − AΣgl
ṁgl

H2 (3.12g)

∂t(ϕCO2(d)ρ
true
CO2(d)

) + div(ϕCO2(d)ρ
true
CO2(d)

vCO2(d)) = MCO2

MF A

AΣls
ṁls

F A − AΣgl
ṁgl

CO2 (3.12h)
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3.2.2 Additional assumptions:
Now we employ the fact that we are interested in continuous performance only, i.e. we do
not consider an initiation of the rector. This implies the following:

1. We omit phenomena with very small relaxation time, such as evolution of the surface
species and their transport along the interfaces. 4 The equation (A.21b) reduces to

0 = RΣ
kl + [[ṁkl

i ]]kl , ∀l ̸= k. (3.13)

2. The liquid is already saturated by the dissolved gases and the reactor operates in a
kinetic regime (sec. 1.2.3), i.e.

slow reaction   fast vaporization  
FA(l) −→ FA∗

(l)  
fast adsorption

Cat(s)−→ H∗
2(d) + CO∗

2(d) −→ H2(d) + CO2(d)  
fast desorption

−→ H2(g) + CO2(g).

Consequently, we may identify the vaporization rate and the chemical rate of hydro-
gen and carbon dioxide

AΣls
ṁls

H2 = AΣgl
ṁgl

H2 (3.14a)
AΣls

ṁls
CO2 = AΣgl

ṁgl
CO2 (3.14b)

AΣls
ṁls

F A = AΣls
ṁls

H2 + AΣls
ṁls

CO2 (3.14c)
= AΣgl

ṁgl
H2 + AΣgl

ṁgl
CO2 (3.14d)

and
ṁgl

H2

ṁgl
CO2

=
ṁls

H2

ṁls
CO2

= MH2

MCO2

=⇒
[H2(g)]

[CO2(g)]
= 1

1 .

3. We assume that liquid formic acid and water already formed an azeotrope (sec. 1.2.2)
which is constant. Moreover, the amount of in-coming (prescribed by a boundary
condition) has to equal the amount of out-coming water. These may be expressed as

[FA(l)]
[H2O(l)]

= [FA(g)]
[H2O(g)]

= MH2O

MF A

RF A
H20 (3.15a)

AΣin
ṁin

H2O(l)
= AΣoutṁ

out
H2O(l)

. (3.15b)

Together with the preceding, we obtain

AΣgl
ṁgl

H2O(l)
= AΣin

ṁin
H2O(l)

(3.16a)

AΣgl
ṁgl

F A(l)
= AΣls

ṁls
F A(l)

+RF A
H20AΣin

ṁin
H2O(l)

(3.16b)
4This assumption is commonly applicable for solid-liquid interfaces as well as gas-liquid once we consider

contaminated interfaces.
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In terms of partial mass balances (3.12), we write a consequence of the previous assumptions
as:

∂t(ϕF A(l)ρ
true
F A(l)

) + div(ϕF A(l)ρ
true
F A(l)

vl) = −AΣls
ṁls

F A −RF A
H20AΣgl

ṁH20
gl (3.17a)

∂t(ϕH2O(l)ρ
true
H2O(l)

) + div(ϕH2O(l)ρ
true
H2O(l)

vl) = −AΣgl
ṁH20

gl (3.17b)
∂t(ϕH2(d)ρ

true
H2(d)

) + div(ϕH2(d)ρ
true
H2(d)

vl) = 0 (3.17c)
∂t(ϕCO2(d)ρ

true
CO2(d)

) + div(ϕCO2(d)ρ
true
CO2(d)

vl) = 0. (3.17d)

4. Finally, the kinetic regime of the reactor determinates also the characteristic values of
the dissolved gas concentration since they are expected to be close to equilibrium. For
their estimation, we take the equilibrium Henry’s constant giving the mass fraction
5 wCO2(d) = 2.1 · 10−3 and wH2(d) = 2.3 · 10−6 for H2(d), cf. [40].
Moreover, an influence of the dissolved gas on the material (mechanical) properties
of the solvent is very often negligible, thus, we omit them also here. Consequently,
the partial mass balances (3.12) may be expressed as

∂t(ϕF A(l)ρ
true
F A(l)

) + div(ϕF A(l)ρ
true
F A(l)

vl) = −AΣls
ṁls

F A −RF A
H20AΣgl

ṁH20
gl (3.18a)

∂t(ϕH2O(l)ρ
true
H2O(l)

) + div(ϕH2O(l)ρ
true
H2O(l)

vl) = −AΣgl
ṁH20

gl (3.18b)
ϕm

H2(d)
≈ 0 ≈ ϕm

CO2(d)
. (3.18c)

3.2.3 Three-phase system
A natural consequence of the previous assumptions is a reduction of the system into three
immiscible phases (fluids) with distinguished velocity-fields and concentrations. Then, a
classical multi-fluid (mixture) theory may be applicable.

In this sense, we consider gas, liquid and solid phase with corresponding volume frac-
tions ϕg, ϕl, ϕs filling the entire control volume, i.e.

ϕg + ϕl + ϕs = 1.

To balance partial masses and momenta we need to define corresponding densities and
velocities. However, the situation complicates in the case of the gas and liquid phase since
they are actually composition of other miscible fluids. We proceed as follows:

Gas phase:
We define the gas phase as a miscible mixture of H2(g), CO2(g), FA(g), H2O(g) where

ϕg
def= ϕF A(g) = ϕH20(g) = ϕH2(g) = ϕCO2(g) (3.19a)

ρtrue
g =

∑
k

ρtrue
k , ρtrue

k = pkMk

RT
, k ∈ {FA(g), H20(g), H2(g), CO2(g)}. (3.19b)

The gases are practically always considered as miscible fluids and, thus, they are supposed
to share a common velocity field vg. The vapours of water and formic acid keep the

5The mass fraction denotes the ratio of the mass of α-th constituent mα to the mass of the total mixture
(liquid phase) ml, i.e. wα

def= mα

ml
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azeotropic ratio and the molar concentration of hydrogen equals the molar concentration
of carbon dioxide, i.e.

1
1 =

pF A(g)

pH2O(g)

≈ MH2O

MF A

RF A
H2O(p).

Consequently, the corresponding balance of mass and the mass transfers follows as

∂t(ϕgρ
true
g ) + div(ϕgρ

true
g vg) = ṁgl

F A + ṁgl
H2O + ṁgl

H2 + ṁgl
CO2

which, together with the previous assumptions (3.16) and (3.14), gives

∂t(ϕgρ
true
g ) + div(ϕgρ

true
g vg) =

(
1 +RF A

H20

)
AΣin

ṁin
H20(l)

+ AΣls
ṁls

F A. (3.20)

Liquid phase:
We define the liquid phase within the system as the mixture of two miscible liquids

(FA(l), H2O(l)) and the dissolved gases (H2(d), CO2(d)), thus,

ϕl
def= ϕF A(l) = ϕH20(l) = ϕF A(l) = ϕH20(l) . (3.21a)

(3.21b)

Unlike in case of an ideal-gases mixture, here, we cannot define the density by a simple
EOS but we may use the mass fractions wα and obtain the familiar relations

ρtrue
l

def=
∑

α

wαρ
true
α , α ∈ {FAl, H2Ol, H2(d), CO2(d)}. (3.22)

In the next step, we employ the assumption (3.18) and the mass additivity, 6 resulting into

wH2(d) ≈ wCO2(d) ≈ 0 ⇒ wF A(l) + wH20(l) = 1. (3.23)

Consequently, we define the material density of the liquid phase as

ρtrue
l

def= wF A(l)ρ
true
F A + wH20(l)ρ

true
H20(l)

(3.24)

and its thermal conductivity kl together with the volume expansion coefficient αl as

ρtrue
l kl

def= ρtrue
F A(l)

wF A(l)kF A(l) + ρtrue
H2O(l)

wH20(l)kH2O(l)

ρtrue
l αl

def= ρtrue
F A(l)

wF A(l)αF A(l) + ρH20(l)wH20(l)αH2O(l) .

Since water and formic acid are miscible, both mixture-components share one velocity
field vl. Summing the equations (3.18), we obtain:

∂t(ϕlρ
true
l ) + div(ϕlρ

true
l vl) = −AΣgl

ṁgl
l − AΣls

ṁls
l (3.25a)

(3.16)= −
(
1 +RF A

H20

)
AΣin

ṁin
H2O(l)  

vaporization

−AΣls
ṁls

F A  
reaction

. (3.25b)

6The mass of a mixture equals the sum of its component-masses, i.e. no mass is lost.
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Solid phase:
The solid phase is represented by rigid spheres. It is considered as an ideal heterogeneous

catalyst, thus, not consumed neither produced. Its conservation is expressed as

∂t(ϕsρ
true
s ) + div(ϕsρ

true
s vs) = 0. (3.26)

Summing the partial mass balances (3.12), we obtain the total mass conservation and
we may write the system of mass balances in the form:

∂t(ϕlρ
true
l + ϕgρ

true
g + ϕsρ

true
s ) + div(ϕlρ

true
l vl + ϕgρ

true
g vg + ϕsρ

true
s vs) = 0 (3.27a)

∂t(ϕgρ
true
g ) + div(ϕgρ

true
g vg) =

(
1 +RF A

H20

)
AΣin

ṁin
H20(l)

+ AΣgl

(
1 + MCO2

MH2

)
ṁgl

H2(g)
(3.27b)

∂t(ϕsρ
true
s ) + div(ϕsρ

true
s vs) = 0. (3.27c)

3.2.4 Chemical rates: Collision theory
For description of a chemical rate one usually uses the collision theory. This theory de-
scribes bimolecular reactions for ideal gases treating the atoms as a rigid spheres. Con-
sidering a closed system of a unit volume containing NA and NB atoms of A and B
constituents with molar masses MA,MB. The number of collision between the molecules
(the total collision frequency) corresponds to

ZAB = NANBσAB

√
8kBT

πµ
= [A][B]N2

AσAB

√
8kBT

πµ
= Z[A][B]. (3.28)

Here, the bracket [·] denotes molar concentration of the unit mol
m3 ; NA ≈ 6.022 · 1023 is the

Avogadro constant expressing the amount of atoms in one mol; σAB = πd2
AB is the reaction

cross-section; µ is the reduced mass defined as MAMB

MA+MB
; kB is the Boltzmann’s constant

and Z is the collision frequency.
Consequently, the rate of an elementary 7 bimolecular chemical reaction

A+B → C

may be expressed as
rc

def= Zϱ[A][B] (3.29)
where A is the frequency factor and ϱ represents the steric factor, i.e. the experimental
correction of the reaction rate 8. Employing the temperature dependence modelled by the
Arrhenius kinetics, cf. [4, 22.5], [106, 1.5], we obtain the final form of the reaction rate

rc(T ) = Ae
−Ea
RT [A][B] (3.30)

where Ea denotes the activation energy and R is the universal gas constant. 9

6Commonly, dAB = rA + rB where rA, rB is the atomic radius of A and B, respectively.
7A reaction without reaction-intermediates. i.e. the reactants form directly the product. An elementary

reaction is assumed to occur in a single step and to pass through a single transition state, cf. [67].
8The steric factor can be, alternatively, defined as a ratio of the frequency (pre-exponential) factor A

and the collision frequency Z.
9Note that just a collision of atoms does not need to lead to the chemical reaction. Typically, the

possibility of the reaction depends on the angle and the energy of collision. The relation (3.30) reflects
such dependencies by the frequency factor and the activation energy.
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In the case of heterogeneous chemical reactions is the situation more complicated.
However, also here we can provide an analogue to the previous situation once we consider
volume fractions instead of molar concentrations. Here, the frequency factor loses its
original meaning, since both quantities have direct relation to the substances (atoms) but
it serves as the fitting parameter. The rate of the reaction

FA(l) + Cat(s) → H2(d) + CO2(d),

considered as a surface average of the catalytic particle can be, consequently, modelled as

⟨RΣ
sl⟩Σsl

= Ae
−Ea
RT ϕF A(l)ϕCat(s) . (3.31)

As a consequence of the kinetic regime of the reactor, the product of the heterogeneous
reaction (H2(d), CO2(d)) is supposed to be uniformly distributed within the reactor. There-
fore, the evaporation rate

H2(d) + CO2(d) → H2(g) + CO2(g),

depends on the bubble area AΣgl
and liquid saturation where the latter one in equilibrium

corresponds to the volume average of the chemical rate. Together with the third assumption
in (3.2.2) and (2.40), we obtain

ṁgl =
AΣgl

⟨AΣgl
⟩Vr

((
1 +RF A

H20

)
ϕin

H20(l)
+ 1

)
⟨⟨RΣ

sl⟩Σsl
⟩Vr .

Finally, using the volume additivity constrain

ϕl + ϕg + ϕs = 1, (3.32)

together with the relation (2.19), the mass balance (3.27) adopts the form

div(ϕlvl + ϕgvg + ϕsvs) = 0 (3.33a)

∂tϕg + div(ϕgvg) = ṁgl

ρtrue
g

(3.33b)

∂tϕs + div(ϕsvs) = div
(
ρs

ρl

νturb
l ∇ϕs

)
. (3.33c)

Remarks
3.2.1 Material properties. Material properties of pure substances are easily found in
literature, e.g. [40]. However, the properties for mixtures (e.g. azeotrope) and other non-
typical systems (e.g. dissolution of gases in FA) are often very scarce or impossible to
find. Therefore, once the data are not measured experimentally, we estimate the material
properties of mixtures by volumetric ratio of the constituents or the values are estimated
by tabulated data for similar processes (e.g. Henry constant for dissolution of CO2 and H2
in formic-acid-azeotrope are estimated by values for water).
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3.3 Balanceof momenta

3.3.1 Balanceofpartial momenta

Theaveragedpartial momentumbalanceforliquidphase(3.10)withgl,sl-interfacesand
novolumetricchemicalreactionreads

∂(ϕlρ
true
l vl)

∂t
+div

(
ϕlρ

true
l vl⊗vl

)
−div

(
ϕl(Tl+TRe

l )
)

= (3.34)

+ϕlρ
true
l g−AΣgl

(

ṁgl
l⟨vl⟩

ρΣ
gl

Σsl
+⟨Tg·n⟩Σgl

)

−AΣsl

(

ṁsl
l⟨vl⟩

ρΣ
sl

Σgl
+⟨Ts·n⟩Σsl

)

.

Inthesequel,weapplythepartialmassbalanceforliquid(3.25a)anddenote

T̃i
def
=

Ti

ρtrue
l

,T̃Re
l

def
=

TRe
l

ρtrue
l

,˜̇mkl
l

def
=

ṁkl
l

ρtrue
l

. (3.35)

Moreover,oncethereactoroperatesinthesteadystate,theazeotroperatio RFA
HO

maybe
consideredasconstantandthewholemomentumbalancemaybedividedbyρtrue

l obtaining

ϕl
dvl

dt
−ϕldiv

(
T̃ls+T̃Re

l

)
−

(
T̃ls+T̃Re

l

)
∇ϕl=ϕlg (3.36a)

−AΣgl
˜̇mgl

l

(

⟨vl⟩
ρΣ

gl

Σkl
−vl

)

−AΣsl
˜̇msl

l

(

⟨vl⟩
ρΣ

sl
Σkl

−vl

)

(3.36b)

−AΣgl
⟨̃Tg·n⟩Σgl

−AΣsl
⟨̃Ts·n⟩Σsl

(3.36c)

Sinceourprimaryvariablesarethevolumefractions,velocitiesanda(common)temper-
ature,thereareseveraltermswhichneedtobeidentiied,concretely,theCauchystress
tensorTl,turbulentterm̃TRe

l andvolume-gradientterm
(
T̃ls+T̃Re

l

)
∇ϕl;theinterfacial

velocity⟨vl⟩
ρΣ

gl

Σkl
;andtheinterfacialforcesAΣgl

⟨̃Tg·n⟩Σgl
andAΣsl

⟨̃Ts·n⟩Σsl
.

3.3.2 RANSturbulenceclosure & Cauchystresstensor

RANSturbulenceclosure:
AlthoughthesystemdoesnotpossesverylargeReynoldsnumbers,themomentumequa-

tionis(byitsaveragingconstruction)inclassoftheReynolds-averagedNavierâĂŞStokes
(RANS)equations.Fromthisreason,weneedtospecifytheclosurefortheReynoldsstress
tensordeinedas

T̃Re
l

def
= ul⊗ul,ul=⟨vl⟩−vl. (3.37)

Thereisagreatvarietyofturbulence modelwithadiferentcomplexityandcompu-
tationaldemands,however,restrictingonaturbulenceintwo-phaselow,theresultsare
relativelysparseand mostofthemareadjustmentofthestandardk−εmodelproposed
byLaunder&Spalding,cf.[58].TheBoussinesqhypothesis,cf.[48,5.3.5],appliedonthe
Reynoldsstresstensor,reads

T̃Re
l =−ul⊗ul=2νtDl−

2

3
ktI (3.38)
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where νldenotestheturbulenceeddyviscosityandkt = 1
2
uiuitheturbulencekinetic

energy. Thetransportequationsoftheturbulentkineticenergyktandtheturbulent
dissipationεt,consequently,followsas

∂tkt+div

(

kvl−
νt

σkt

∇kt

)

=2νtD
2
l−εt (3.39a)

∂tεt+div
(

εtvl−
νt

σε

∇εt

)

=C1εt

εt

kt

2νtD
2
l−C2εt

ε2
t

kt

S (3.39b)

wheretheeddyviscosityisusually modelledasνt=Cνt

k2
t

εt
andtheadjustableconstants

arechosenas

Cνt=0.09,σkt=1.00,σεt=1.30, C1εt=1.44, C2εt=1.92.

Uptonow,wehavefollowedthestandardsingle-phasek−εmodel. Ageneralization
toatwo-phaselow modelwasproposedbyElghobashi[29],Spalding[104],Schwarz &
Turner,[89]orlatelybySokolichin[103]whoproposedasingleadjustmentbyincludinga
termaccountingthedriftvelocity:

∂tkt+div

(

ktvl−
νt

σkt

∇kt

)

=2νtD
2
l−εt+Cktϕg∇puslip

gl (3.40a)

∂tεt+div

(

εtvl−
νt

σεt

∇εt

)

=C1εt

εt

kt

2νtD
2
l−C2εt

ε2
t

kt

−C3εt

εt

kt

ϕg∇pluslip
gl (3.40b)

whereCkt=0.505,Cεt=0.74andthegas-liquidslipvelocityincludesthedriftcontribution
(2.43).

Cauchystresstensor:
TomodeltheCauchystresstensorTl,weusethecompressibleNavier-Stokesansatz

Tl=−plI+λldivvl+2µlDl.

Here,Dlstaysforthesymmetricpartofthevelocitygradient,i.e.1
2

(
∇vl+(∇vl)

T
)
;λl

denotesthebulkliquidviscosityandµlthedynamicliquidviscosity.
Moreover,wecanemploytheStokes’hypothesisstating

2µl+3λl=0

andreducingtheCauchystresstensorintotheform

Tl=−plI+µl

(

2Dl−
2

3
divvlI

)

.

Interpretingtheinluenceofthesolidparticlesbyareplacementoftheoriginalliquid
viscositybypacking-dependentviscosityofthesuspensionµls(see(2.41)),togetherwith
theBoussinesqturbulencehypothesis(3.38),weendupwiththerelation

Tls+TRe
l =−plI+(µls+µt)

(

2Dl−
2

3
divvlI

)

−
2

3
ρtrue

l ktI. (3.41)
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3.3.3 Interfacialphenomena

Interfacialvelocity Theclosureoftheinterfacialvelocitywillbedoneinseveralsteps:

• Firstly, werecallthe"stick"conditionapplicableincaseofcontaminatedsystem
(2.15)

vl||=vgl||=vg||onΣgl.

• Secondly,sincetheinterfaceisconsideredasaverythinregionwithnegligiblemass,
wemayidentifyalsonormalcomponentsofliquidandgasvelocityontheinterface,
thus,

vl=vgonΣgl.

• Finally,onceweneglectanyinternallowwithinthebubble,theaverageoverthe
surfaceequalsaverageovervolume,thus,

⟨vl⟩Σgl
=⟨vg⟩Vg =vg.

Now,wehaveobtainedthemasstransferforceintheform

Ḟm =AΣgl
⟨RΣ

gl⟩Σgl
(vl−vg).

Nevertheless,as wehaveshownin(2.4),the masstransferforceinthisform maybe
consideredasnegligibleincomparisonwiththedragforce(actinginthesamedirection)
andweomitthisforceinthesequel.

Solid-liquidinterface:
Thesurfacemomentumbalanceforliquidinterfaces,cf.(A.25b),(neglectingthegravi-

tation)reads

ρΣ

ls

dΣΣvls

dt
=divΣ ΣTls+RΣ

ls
Σvls+[[(ṁls

i ⊗vi+Ti)·n]]Σls
(3.42a)

ρΣ

gl

dΣΣvgl

dt
=divΣ ΣTgl+RΣ

gl
Σvgl+[[(ṁgl

i ⊗vi+Ti)·n]]Σgl
. (3.42b)

Sincethedissolvedgasisconsideredasapartoftheliquidphase,wehavenoreaction
neitherany mass-transferbetweenthesolidandliquidphase,i.e. RΣ

ls=0andmls
i =0.

Theno-slipconditionandthefactthatthesl-interfaceisamaterialinterfacereducesthe
equation(3.42a)into

[[Ti·n]]Σls
=0. (3.43)

Now,wefocusontheinterfacialforcesAΣsl
⟨̃Ts·n⟩Σsl

andAΣgl
⟨̃Tg·n⟩Σgl

. Expressed
intheintegralform,weirstlyusetherelation(3.43)and,consequently,splitthestress
tensorintothe meanandluctuatingpart. The meanpart maybe,furthermore,divided
intoaveragedinterfacialpressurepartandaveragedextra CauchystresspartS. The
luctuatingpartiscommonlyreferredasthesl-interfacialinteractionforcefsl:

AΣls
⟨̃Ts·n⟩Σsl

=
Σls

V

1

Σls

∫

Σls

T̃s·ndS
(3.43)
=

1

V

∫

Σls

(

⟨̃Tl⟩Σsl
+

ˆ̃
Tl

)

·ndS

=⟨̃Tl⟩Σsl

1

V

∫

Σls

ndS+fls=
(

−⟨p̃l⟩Σsl
+⟨̃Sl⟩Σsl

)

∇ϕs+fls.
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Gas-liquidinterface:
Incaseofthegas-liquidinterfaceisthesituation morecomplicatedsincetheinterface

isnon-material(duetoamasstransfer).TheinterfacialvelocityofinterfaceΣvgldoesnot
needtobeequalvlresp.vgatΣgl. However,incontaminatedsystemthefollowingholds

⟨Σvgl⟩
ρΣ

gl

Σgl
≈⟨vg⟩

ρΣ
gl

Σgl
.

Consequently,wemayreducetheequation(3.42b)intotheform

[[Ti·n]]Σgl
= −divΣ ΣTgl

(A.19)
= ∇Σσgl+2Hglσglni≈

2σgl

rg

ngl

andforTg·n=
(
Tl+

2σgl

rg
I
)

·nwemayproceedanalogouslytothesl-interface.

Denotingfglthegl-interfacialinteractionforce,weobtain

AΣgl
⟨̃Tg·n⟩Σgl

=

(

⟨−̃pl⟩Σgl
+⟨̃Sl⟩Σgl

+⟨
2̃σgl

rg

I⟩Σgl

)

∇ϕg+fgl+fσgl

where

fσgl

def
=

1

V

∫

Σgl

ˆ(
2̃σgl

rg

I

)

·ndS

isthe Marangoniforce.10

Volume-fraction-gradientforces:
Implementingtheconsiderationsfromtheprevioussection,wemaywritethemomentum

balancefortheliquidphaseinthefollowingform:

ϕl
dvl

dt
−ϕldiv

(
T̃ls+T̃Re

l

)
=ϕlg (3.44a)

−p̃l∇ϕl−⟨p̃l⟩Σsl
∇ϕg−⟨p̃l⟩Σgl

∇ϕs (3.44b)

−̃Sl∇ϕl−⟨̃Sl⟩Σsl
∇ϕg−⟨̃Sl⟩Σgl

∇ϕs+⟨
2̃σgl

rg

I⟩Σgl
∇ϕg+T̃Re

l ∇ϕl. (3.44c)

Aswecanseein(3.44b)and(3.44c),wehaveobtainedtermsdependentonthevolume
fractiongradients-usuallyreferredasvolume-fraction-gradientforces. Theseforcesare
commonlyassumedtohavenegligibleefects,however,wemayproceedwithamorebenev-
olentassumption.

Letusconsideranequalityoftheliquidpressurewiththeinterfacialpressurein(3.44b)
andweneglecttheextrastresstensor,turbulentandsurfacetensionpartofthevolume-
fraction-gradientforcesin(3.44c),i.e.

p̃l≈⟨p̃l⟩Σsl
≈⟨p̃l⟩Σgl

(3.45a)

S̃l∇ϕl,⟨̃Sl⟩Σsl
∇ϕs,⟨̃Sl⟩Σgl

∇ϕg,̃TRe
l ∇ϕl,⟨

2̃σgl

rg

I⟩Σgl
∇ϕg≈0 (3.45b)

Consequently,thevolume-additivityconstraint(3.32)implies

p̃l∇ϕl+⟨̃pl⟩Σgl
∇ϕg+⟨̃pl⟩Σsl

∇ϕs≈−p̃l∇(

=1
  
ϕl+ϕg+ϕl)=0. (3.46)

10Duetothepresenceofsurfactant,the Marangoniefect,causedbyasurfacetensiongradient,occurs.
However,thepresenceofviscousforces(signiicantatthesmallsizescales)clearlysurpassesthisefect
andwe mayneglectthisforce,i.e.fσgl

≈0.
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Interfacial-interactionforces:
As wehaveshowninsection2.3,thedominantpartof fgl andflsisthedragforce

balancingthebuoyancy.Thus,wesimplywrite

fgl=fDgl
+fBgl

fls=fDls
+fBls

.

Finally,weapplytheBoussinesqapproximationforisothermallyincompressibleluids,
cf. remark2.2.1,and,togetherwiththe Kriegeransatzforviscosityofsuspension,cf.
(2.41),thereducedmomentumbalancesystemreads

dvl

dt
−div

(
T̃dyn

ls +T̃Re
l

)
=αl∆Tg+

9

2

µls

r2
s

vslip
ls +

8

3

CD

rg

|vslip
gl |vslip

gl . (3.47a)

3.4 Balanceofenergy

3.4.1 Balanceofinternalenergy

Letusrecallthelocalmass(A.21a)andmomentumbalance(A.25a)forthek-thphase:

∂ρk

∂t
+div(ρkvk)=RV

k

∂t(ρkvk)+div(ρkvk⊗vk)=divTk+ρkb+ρkRV
k.

Generally,thebalanceoftotalenergyofthek-thphaseEkyields

∂t(ρkEk)+div(ρkEkvk)=div(Tkvk+qk)+ρkbkvk+ρkrk (3.48)

wherebkstandsforvolumeforces(gravitationinourcase)andrkisfortheradiationwhich
willbeomittedinthesequel. 11

Inthenextstep,wesplitthetotalenergyintotheinternalandkineticpart,i.e.

Ek
def
= ek+

|vk|2

2

andwereducethetotalenergybalance(3.48)bythemomentumbalancemultipliedbyvk

2
.

Thisresultsintotheinternalenergybalancefork-thphase

∂tρkek+div(ρkεkvk)=Tk:∇vk+divqk. (3.49)

Now,wedividethestresstensorintothepressureandviscouspart,Tk
def
= −pkI+Sk,

obtaining

Tk:∇vk=−pk(divv)I+Sk:∇vk.

Nevertheless,theviscouspartSk:∇vkwillbeomittedinthesequel.

11Generallyspeaking,theradiationisusuallyconsiderableforsolid-gasinterfacesonlyanditsmagnitude
iscommonlyinsigniicantforsurfacetemperatureslowerthan300℃,cf.Stephan-Boltzmannlawin[60].
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3.4.2 Balance of temperature
In this section we derive the balance of the common temperature. Although it is possible
to derive it directly from the balance of internal energy assuming its dependency on the
temperature only, we proceed the derivation via the balance of enthalpy assuming its de-
pendency on temperature and pressure. This approach is favourable from two perspectives.
Firstly, we directly obtain the heat capacity at constant pressure as Cp

def= ∂h
∂T which is more

convenient (to measure) than the heat capacity at constant volume defined as Cv
def= ∂e

∂T .
Secondly, tabulated values of the heat of reaction correspond to the change in enthalpy
rather than the change in internal energy.

Defining the enthalpy of k-th phase as

hk = ek + pk

ρk

, (3.50)

we may write its balance, in the absence of radiation, as

∂t(ρkhk) + div(ρkhkvk) − dpk

dt = div qk. (3.51)

Applying the mass balance we conclude

ρk
dhk

dt = div qk +RV
k hk + dpk

dt . (3.52)

Now, we consider the liquid enthalpy being function of (common) temperature and liquid
pressure, i.e. hk = hk(T, pk). In a more general setting, one would consider also dependen-
cies on partial densities since the liquid phase is a mixture of several constituents. However,
once the azeotrope is formed, the mutual concentrations remain the same and we can omit
their mutual dependencies. Thus, the total differential of the liquid enthalpy follows

dhl(T, pl) =
(
∂hl

∂T

)
pk

dT +
(
∂hl

∂pl

)
T

dpl (3.53)

Recalling the second law of thermodynamic in terms of specific enthalpy, i.e.

dhl =
(

1
ρl

)
dpl + T dsl, (3.54)

yields
∂hl

∂pl

= 1
ρl

+ T

(
∂sl

∂pl

)
= 1
ρk

− T

⎛⎝∂ 1
ρk

∂T

⎞⎠
pk,ρk

. (3.55)

Here, we have used the Maxwell relations to switch second partial derivatives in the second
equation, cf. [53] or [48, p. 54]. Together with (3.53), we obtain

dhk(T, pk)
dt = Cpk

dTk

dt +

⎛⎜⎝ 1
ρk

− T

⎛⎝∂ 1
ρk

∂T

⎞⎠
pk,ρk

⎞⎟⎠ dpk

dt .

Employing this relation into the enthalpy balance results into

ρkCpk

dTk

dt = div qk − Tk

ρk

(
∂ρk

∂Tk

)
pk,ρk

dpk

dt .
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Furthermore, since the Boussinesq approximation for isothermally incompressible fluids is
used, we neglect the thermal expansion contribution ∂ρk

∂Tk
in the sequel.

By the averaging of the equation assuming a constant liquid density ρtrue
l and heat

capacity Cpl
, we obtain

ϕlρ
true
l Cpl

(
d⟨Tl⟩Vl

dt + ⟨v̂l · ∇T̂l⟩Vk

)
= ϕl div⟨ql⟩Vl

+ ⟨ql⟩Vl
∇ϕl

− AΣgl
⟨ṁgl

l h
gl
l + ql · n⟩Σgl

− AΣsl
⟨ṁsl

l h
sl
l + ql · n⟩Σsl

(3.56)

where ḣgl
l stands for enthalpy exchange via kl-interface.

Unlike in the momentum balance where the liquid species share one velocity field vl and
the gaseous species vg, here, we can not use similar argumentation for partial enthalpies.
Therefore, we prefer to write the liquid enthalpy change on the gas-liquid and solid-liquid
interface in the general form as

ḣgl
l =

∑
i

ṁgl
i hi, i ∈ {FA,H2O,H2, CO2}

ḣsl
l =

∑
i

ṁsl
i hi, i ∈ {FA,H2, CO2}.

As the next step, we neglect the temperature deviation within the averaging volume,
i.e. T̂l ≈ 0, 12 and we model the heat flux by standard Fourrier’s constitutive relation [48,
5.3.4] :

ql ≈ −ρtrue
l kl∇Tl (3.57)

where kl[ W
m·K ] is the conductivity of the liquid phase. As a consequence, the heat fluxes

via the interfaces are zero, i.e. ⟨ql · n⟩Σgl
= ⟨ql · n⟩Σsl

= 0.
Furthermore, we consider the composition (molar concentration) of the phases being

constant, cf. assumption (3.2.2), and we may identify the jump in the enthalpy of reaction
with the enthalpy of the mass-transfer:

⟨ṁls
l hl⟩Σsl

≈ ⟨RΣ
sl⟩Σsl

∆hr

⟨ṁgl
l hl⟩Σgl

≈ ṁgl

( (
hvap

H2O +RF A
H20h

vap
F A

)
ϕin

H20(l)
+
(
1 + MCO2

MH2

)
hsln

H2  
hvap

)
.

Here, we denoted ∆hr[ kJ
kg ] = Hf

MF A
the enthalpy of reaction; hvap[ kJ

kg ] the enthalpy of vapor-
ization; hsln[ kJ

kg ] the enthalpy of solution; and ⟨RΣ
sl⟩Σsl

[ kJ
kg ] = ρtrue

l Ae
−Ea
RT RF A

H20ϕlϕs represents
the reaction rate. Consequently, we may write the heat balance of the liquid phase in the
form

Cpl

dTl

dt − div (kl∇Tl) = ṁglhvap + ⟨RΣ
sl⟩Σsl

∆hr. (3.58)

Remarks
3.4.1 Enthalpy of solution. Since the reaction and mass transfer between the phases
occurs at different places, we need to distinguish also the corresponding enthalpies. To

12Let us mention, that employing of the temperature deviation within the control volume would lead to
requirement of an additional closure for the term ⟨v̂l · ∇T̂l⟩Vk

, i.e. a temperature-turbulent model, cf. [57].
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understand the mechanism properly, we recall the decarboxylation of formic acid in the
following general form

chemical reaction   solution  
HCOOH(l)

∆Had−→ HCOOH∗  
adsorption

∆Hr−→ H∗
2 + CO∗

2
∆Hde−→ H2(d) + CO2(d)  
desorption

∆Hsln−→ H2(g) + CO2(g)

where we denote ∆Had the enthalpy of adsorption; ∆Hr the enthalpy of reaction; ∆Had the
enthalpy of desorption; and ∆Hsln the enthalpy of solution. The change in the enthalpy of
formation, consequently, equals

∆Hf = ∆Had + ∆Hr + ∆Hde + ∆Hsln.

First three transformations (adsorption, reaction, desorption) take a place on the surface
of solid particles and may be WLOG substitute by a single transformation process, however,
the last one proceeds on the bubble interfaces and need to the treated independently.

To estimate the enthalpy of solution, we employ the results of Carrol et al. [16] approx-
imating the enthalpy of solution via the Henry constant. For the enthalpy of solution of
carbon dioxide dissolved in water, they induce the relation

∆Hsln(T )[kJ/mol] ≈ 106.56 − 6.2634 · 104/T + 7.475 · 106/T 2.

Expressing the enthalpy of solution graphically, cf. fig. (3.2), we may see, that its magni-
tude tends towards the zero-value at the temperature ∼ 148 ℃.

ΔHsln(CO2)

20 40 60 80 100 120 140
T[C]

-20

-15

-10

-5

ΔH[kJ/mol]

Figure 3.2: Enthalpy of dissolution for carbon dioxide.

Unfortunately, as far as the author knows, similar data are publicly not available for
hydrogen solution. However, since the reactor operates at the temperature around 100 ℃,
we neglect the enthalpy of solution for carbon dioxide as well as for hydrogen and identify
the enthalpy of reaction with the change in enthalpy of formation, i.e.

∆Hsln ≈ 0 & ∆Hr
def= ∆Hf ≈ 32.9 kJ/mol
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3.5 Summaryofthe model

Letusrecallasummaryofthemodelofthree-phaselowluidizedbedreactor. Wesearch
forvolumefractionsϕl,ϕg,ϕs;partial(averaged)velocitiesvl,vg,vs;common(averaged)

dynamicpressurepdyn
l ;liquidtemperatureTlandturbulentvariablesktandεtsuchthat

div(ϕlvl+ϕgvg+ϕsvs)=0 (3.59a)

∂tϕg+div(ϕgvg)=
ṁgl

ρtrue
FA

(3.59b)

∂tϕs+div(ϕsvs)=div

(
ρtrue

s

ρtrue
l

µt
l∇ϕs

)

(3.59c)

ϕl
dvl

dt
−ϕldiv

(
T̃dyn

ls +T̃Re
l

)
=ϕlαl∆Tg+ϕs

ρl−ρs

ρl

+ϕgg (3.59d)

3

8
CD

|vslip
gl |

rg

vslip
gl =−g (3.59e)

9

2

νl

r2
s

vslip
ls =−

ρtrue
l −ρtrue

s

ρtrue
l

g (3.59f)

∂t(ρ
true
l kt)+div

(

ρtrue
l kvl−

µt

σkt

∇kt

)

=2µtD
2
l−ρtrue

l εt+Cktϕg∇pdyn
l uslip

gl (3.59g)

∂t(ρ
true
l εt)+div

(

ρtrue
l εtvl−

µt

σε

∇εt

)

=C1εt

εt

kt

2µtD
2
l−C2εtρ

true
l

ε2
t

kt

(3.59h)

−C3εt

εt

kt

ϕg∇pdyn
l uslip

gl (3.59i)

Cpl

dTl

dt
−div(kl∇Tl)=̇mglhvap+⟨RΣ

sl⟩Σsl
∆hr. (3.59j)

wherevslip
gl =vg−vl,vslip

ls =vs−vl,vg=vslip
gl +vl,uslip

gl =⟨vslip
gl ⟩−vslip

gl and

1=ϕl+ϕg+ϕs

ṁgl=
ĀΣgl

⟨̄AΣgl
⟩Vr

((
1+RFA

H20

)
ϕin

H20(l)
+1

)
⟨⟨RΣ

sl⟩Σsl
⟩Vr

AΣgl
=4πr2

g(τ),rg(τ)=k
ρg

glτ+r0,f̄=
1

|tr|

∫t

0
fdτ,⟨f⟩Vr =

1

|Vr|

∫

Vr

fdV

T̃dyn
ls +T̃Re

l =−pdyn
l I+(νls+νt)

(

2Dl−
2

3
divvlI

)

−
2

3
ktI

νls=νl

(

1−
ϕs/(ϕl+ϕs)

ϕmax

)−2.5ϕmax

,ϕmax =0.64;νl(T)=ν0
le

Eν
a

RT

CD =max

{
24

Rep

(
1+0.15Re0.687

p

)
,
8

3

Ëo

Ëo+4

}

⟨RΣ
sl⟩Σsl

=ρtrue
l Ae

−Ea
RT RFA

H20ϕlϕs,hvap=
(
hH2O

vap +RFA
H20h

FA
vap

)
ϕin

H20(l)
,

Cµt=0.09, C1εt=1.44, C2εt=1.92, Ckt=0.505, Cεt=0.74,σkt=1.00,σεt=1.30.
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4. CFD simulation and analysis
In the last chapter of the first part the basic features of the numerical implementation,
results and their analysis is given. After a brief introduction of the used numerical software
and parameter fitting, a test simulation on a 2D-axially symmetric geometry is provided
together with basic mesh and time stepping sensitivity. Furthermore, results of the lab-
scale reactor, its verification and, finally, a suggestion for possible optimization and up-scale
of the reactor are discussed.

4.1 Numerics

4.1.1 Software
Wolfram Mathematica:
In the case of BBO equation (2.5), we investigate the acting forces on a single particle in
still liquid with later employment of the collective effects. As a consequence, the equations
of motion reduce form PDEs to ODEs which can be conveniently solved (numerically or
symbolically) in Wolfram Mathematica software. The numerical solution is obtained by a
default method which is of 5th order explicit Runge-Kutta method (Bogacki and Shampine
5(4) pair), see [9].

Comsol Multiphysics:
The final model (3.59) was implemented in Comsol Multiphysics software. It is a com-
plex commercial software for solving multi-physics problem using finite element method
(FEM) discretization. It includes automatized pre-processing (meshing) as well as fine
post-processing. The main advantage of the software is simple user-friendly GUI with
many predefined "physics interfaces". These are GUIs oriented on the particular problems
(e.g. Fluid Flow, Heat Transfer, AC/DC, . . . ) which significantly simplify the model
implementation.

Despite the fact that Comsol Multiphysics is commercial software, it allows to imple-
ment the weak formulation of PDE, thus, the robustness in solving variety of different
problems is ensured.

4.1.2 Integro-differential equations
In the system (3.59), we need to treat integro-differential equations in the case of mass
balance (integral term mgl) and momentum balance (integral term vslip

gl ). However, solving
such a problem numerically is very complicated and we would like to avoid it by suitable
approximations of the integrals.

The gas-liquid slip velocity vslip
gl has the vertical component only, thus, we may ap-

proximate it by a z-variable function. Choosing the basis of the approximation-function
as {1,

√
z, z}, we obtain the result

vslip
gl = 1

|tr|

∫ t

0

√8
3
rg(τ)|g|
CD(τ) dτ ez ≈ (0.0117 + 0.446

√
z − 0.195z) ez (4.1)

The results of the approximation are depicted in the Figure (4.1).
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Figure4.1:Theapproximationofthegas-liquidslipvelocity.

Similarlytotheprevious,wetreatalsothebubbleinterfacialareaĀΣgl.Here,weagain
exploitthefactthattheareaischangingintheverticaldirectiononly.Choosingthebasis
oftheapproximation-functionas{1,z,z2}weobtain

ĀΣgl=
1

|tr|

∫t

0
4πr2g(τ)dτ,rg(τ)=k

ρg
glτ+r0≈(3.15z+2.44z

2)·10−5ez[m
2]
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or,expressedgraphicallyinig.(4.2):

Figure4.2:TheApproximationofthegas-liquidinterfacialarea.

4.1.3 Fittingofthekineticparameters

Oneofthemostimportantparametersofthemodelarethechemical-kineticparameters,
namelythefrequencyfactorAandtheactivationenergyEa. Generallyspeaking,these
dataarespeciicforeachapplicationandpracticallyimpossibletoindintheliteraturefor
nonebuttheideal-gassetting.
Sincethetemperatureinthereactorisnotuniformandthereactionratechanges

rapidlyfollowingtheArrheniuskinetics(3.30),weneedtoapproximatetheaveraged1

1Averagedwithrespecttotheexponentialdependency.
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temperature as accurate as possible. To do so, we may use the measured temperature in
the middle of the reactor Tmeas

r and the overall reactor production.
In the first step, we simply calculate the kinetic parameters from the measured temper-

ature and the reactor production (assuming the steady state and the uniform temperature
profile). In the second step, we proceed the simulation of the reactor with the derived
kinetic parameters and we fit the reactor boundary conditions 2 in such a way that the
modelled reactor production corresponds to the measured production. Consequently, we
can calculate the weighted temperature average Tav from which we derive the corrected
kinetic parameters.

The whole procedure is an iterative process and can be repeated. However, the dif-
ference between the zeroth iteration (measured values) and the first iteration (corrected
values) is less than 10 % for Tr < 105 ℃ and, with respect to the measurement error, we
take the first iteration as the sufficient approximation (Figure (4.3) and Table (4.1).
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Figure 4.3: The measured and corrected kinetic parameters comparison. Left: the loga-
rithmic Arrhenius plot. Right: The Arrhenius exponential response of the reaction rate on
the temperature.

Iteration A [1/s] Ea [kJ/mol]
0-th: 9.05 · 1010 99.4
1-st: 1.25 · 1010 93.6

Table 4.1: The estimated kinetic parameters for the zero-th first approximation.

Remarks
4.1.1 Long-time solution. The reactor is supposed to supply a relatively constant amount
of hydrogen after an intermediate start-up (several minutes). This condition mostly deter-
mines the sought solution which we designate as the long-time solution. Once the system is
stable and posses a unique steady solution, the long-time solution tends to it. In our case,
the long-time solution is characterised by the following restrictions:

The hydrogen production is stable over sufficiently long period (e.g. deviation less that
5% within last 100 s) as well as the temperature profile (deviation of the averaged reactor
temperature is less than 0.1℃ within the last 100 s).

2Here, we have used a simplified assumption of uniform boundary-temperature.
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4.2 Test simulation

4.2.1 The setting
To verify the consistency of the numerical simulations, we firstly proceed the simulation
on a simple (2D axial) geometry, see the Figure (4.4), with consequent analysis of the
mesh-convergence, time-stepping and discretization.

The axially symmetric geometry consists of a cylinder with radius 35 mm and height
300 mm. The inlet of the liquid is in the middle of the bottom-plate (a tube with radius
2 mm) and the gaseous outlet is situated on the top of the reactor. The reactor (heated)
walls are assumed to have a constant temperature.

Figure 4.4: The geometry of the 2D-axially symmetric reactor [mm].

4.2.2 Numerical setting
Mesh:
The meshing algorithm of Comsol Multiphysics is based on the Delaunay triangulation [59]
and recently also on its advancing front version [61]. It uses triangle/tetrahedral elements
together with optional boundary quadrilateral/hexahedral elements. Comsol Multiphysics
allows several possible mesh-adaptivity algorithms. In our case, we use a simple a priory
adaptivity method based on the mathematical nature of the equation system. It creates
a triangle mesh inside of the domain and a boundary layer consists of several layers of
narrow quadrilateral/hexahedral elements near the boundary. The use of boundary layer,
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Mesh DOF CPU [s] [kg/s]·10−4 In/Out error [%]
UN40 52 979 1 065 1.219 1.23
UN80 359 760 11 606 1.226 0.98
UN120 850 080 31 915 1.227 0.81

S80 1 252 253 52 144 1.116 7.53
S120 3 459 079 146 422 1.224 0.98

Table 4.2: The table of the corresponding DOFs (degrees of freedom), CPU time, reactor
production and relative error between inflow and outflow for different mesh-setting.

cf. fig. (4.5) is very favourable to the problems with significant (e.g. velocity or tempera-
ture) gradients near the boundary and it is convenient also for the proper simulation of a
turbulent flow which use a boundary wall-function requiring very fine mesh-resolution in
perpendicular-to-boundary direction.

Figure 4.5: Detail of the adaptive mesh (UN1) with a boundary layer. Axially symmetric
geometry - bottom with the liquid inflow (left).

To investigate the quality of the mesh and its convergence (resp. mesh-size indepen-
dence), we have chosen several meshes with various refinements. As the decisive value we
take the reactor production and inflow/outflow mass flow error (tfin = 1000 s).

This was tested on several structured (Sx) and unstructured (UNx) meshes distin-
guished according to number of elements on the bottom plate of the geometry. The re-
sults, depicted in table (4.2), reflect the requirements of very fine mesh resolution or use
of boundary layer. The structured meshes need very fine resolution (S120) to obtain a
results with error less than 1 % leading to significant CPU demands. On the other hand,
unstructured mesh refined on the boundary leads to enough precise solution with relatively
coarse refinement (UN80) and small CPU demands.

Taking into account relatively significant error of the model parameters, we consider as
the sufficiently good mesh results the UN80 mesh-setting which will serve as the decisive
setting for further investigation.

Choice of the FEM elements and solvers:
All computations were proceed with the default Comsol combination of the FEM elements,
namely linear P1 elements for pressure and velocity of the liquid, P1 elements for tempera-
ture and P1 elements for solid-particle concentrations. Although the P1/P1 combination of
velocity/pressure elements to solve the NS equation does not a priori satisfy the Babuška-
Brezzi inf-sub condition, Comsol uses streamline stabilization (diffusion) to circumvent the
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condition and provide fast solution of the problem. For more details we refer to [44]. To
validate the correctness of P1/P1 elements we performed also the computation using P2/P1
elements as well - obtaining very similar results but with much higher CPU demands.

The (non-symmetric) matrix system obtained by the FEM-discretization is conse-
quently solved by segregated combination of three MUMPS solvers for velocity (coupled)
with pressure, temperature, solid concentration and two PARDISO solvers for gas con-
centration and turbulent variables (energy dissipation and rate of the dissipation). Both
MUMPS and PARDISO implement direct solvers for general sparse matrices. Optional
Krylov subspace methods (CG, BiCG) are available as well. For more details, we refer to
[2] and [87].

Adaptive time stepping
Comsol Multiphysics uses backward differential formula of the first and second order (BDF1
and BDF2). The step-size is adaptive by default using as the decisive criteria a magnitude
of the CFL and Von Neumann number, cf. [47]. We have proceed several tests regarding
the accuracy of the time-stepping (with limited or uniform time stepping) with negligible
deviance from the default (fast) adaptive setting. Therefore, we remain the default adaptive
time-stepping also in the further computations.

4.2.3 Comsol implementation specifications
The implementation of the problem in COMSOL Multiphysics is not so straightforward
and, therefore, we present the essential setting options necessary for successful computa-
tion. To begin with, additionally to the streamline diffusion, we need to incorporate also
an isotropic diffusion for the NS-equation. Depending on the magnitude of convective field
||vl|| and the mesh-element size h, both of the stabilizations add the additional artificial
diffusion expressed by the diffusion coefficient cart = (δis + δst)h||vl||.

As we can see, the magnitude of these stabilizations depends on the mesh size and in
the case of isotropic diffusion it may be even omitted once we sufficiently increase the mesh
resolution. Nevertheless, in the case of 3D computation, a finer mesh resolution may easily
lead to unaffordable numerical requirements.

Beside the stabilizations, we need to use also a start-up (ramp) function for better
convergence. These functions are typically a ramp function defined as

rm(t) =

⎧⎪⎪⎨⎪⎪⎩
0, t ≤ 0
t
α
, t ∈ (0, α)

1, t ≥ α

and we use them to start-up the mass transfer term mgl, reaction rate term RΣ
sl and

boundary conditions for temperature.

4.2.4 Test reactor results
In this section, we present the result of the final equation-system (3.59) together with the
BC and IC conditions from section 4.2.1. Investigating four profiles (velocity, temperature,
volume fraction of the gas and volume fraction of the catalytic particles), we illustrate the
result in the revolved 2D geometry in the Figure (4.6)
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Figure 4.6: From left: velocity magnitude profile ||v||[cm/s] with velocity arrow field; tem-
perature profile T [℃]; gas volume fraction ϕg[1] and solid volume fraction ϕs[1].

As we can see on the first (from left) profile, the flow is driven by the thermal convection
when the hotter (lighter) fluid ascents around the heated wall with the velocity magnitude
around 0.4 cm/s. Once it cools down, it descents via the middle of the reactor with a
slightly lower magnitude around 0.1 cm/s.

The second picture depicts the temperature profile. It posses the maximum temperature
on the heated wall (103 ℃) and the top of the reactor (101 ℃). The colder spots of the
reactor lies in the lower half of the reactor and at the flow-stagnation-regions placed cca
1 cm from the wall where the ascending and descending forces cancel-out each other which
results in a zero-velocity field.

The next profile describes the volume fraction of the gas. As one would expect, it
has increasing tendency with the heigh of the reactor and the maximum value (around
1.5 %) on the top of the reactor. Let us mention that somehow higher gas hold-up would
lead to two unwanted effects. Firstly, the whole volume of the gas-liquid-solid mixture
would expand due to the higher gas concentration resulting into volumetrically less efficient
system. Secondly, we may experience a formation of slug flow in the higher parts of
the reactor which may cause unwanted spitting (splashing) of the liquid and pressure
oscillation.

Finally, in the last (fourth) picture we can see the concentration of the solid (catalytic)
particles. In this regime, the particles flow more or less in well mixed regime without any
unwanted aggregation of the particles. The a priori density of the solid catalytic particles
is chosen 10 kg

m3 lighter than the surrounding fluid, however, the buoyancy in the upper part
is lower due to the presence of bubbles. This fact restrict the particles from aggregation
near the top of the reactor and support a fluctuation in the whole body of the reactor.
We can observe the maximum value 6 % approximately at 3/4 of the reactor height and
minimum value circa 1 % on the bottom of the reactor. The solid-concentration-profile is
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strongly influenced by the bubble induced turbulence which is strongest on the top of the
reactor causing more flatter profile in this parts than in the bottom.

4.3 The lab-scale reactor

4.3.1 Setting
Let us recall the geometry of the lab-scale prototype which is heated by a heating oil
circulating within a system of internal hollow tubes (Figure (4.7)).

Figure 4.7: Reactor interior [mm] with heating tubes (left) and the lab installation.

Contrary to the test reactor, here, we can not use an uniform Dirichlet boundary
condition for the surface temperature of the heating tubes (Twall = const.) but we need to
model the heat transfer within the tubes based on the inflow/outflow boundary conditions
only. Therefore, we need to employ an additional NS-equation and heat transfer equation
for the oil inside of the hollow tubes plus the heat transfer through the steel wall of the
tubes.

Since we treat a full 3D geometry and the internal tubes has much lower thickness than
the whole reactor, we need to simplify the model in order to receive numerically feasible
computations. This will be done in the following manner:

1. We exploit the fact, that the heating system is composed of four U-shaped tubes
which are symmetrically placed around the centre of the reactor. These divide the
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reactor into four symmetrical parts. Without big loss of accuracy, we may consider
even those parts symmetrical and take as a representative part one eighth of the
reactor (Figure (4.8)):

Figure 4.8: An illustration of the computational domain. Left: 1/8 of the reactor with
highlighted U-shaped heating tube; Right: The bottom view with highlighted heating tube.

2. Another significant simplification lies in the a priori computed flow pattern inside
of the internal tubes. This is done with guessed values of the temperature (usually
little lower than Tset) and corresponding dependent quantities, e.g. viscosity (Figure
(4.9)). The obtained (steady) velocity profile is, consequently, used in the overall
equation-system.

320 340 360 380
T[K]

50

100

150

200
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Figure 4.9: The estimated value of the viscosity of heating oil SAE 5W-40. The value used
in the simulation correspond to µoil(110 ℃) ≈ 8 mPa · s.
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4.3.2 The model

Todistinguishthecomputationaldomains,wedenotethehollowinterioroftheheating
tubesasΩoil

ht,thesteelheatingtubesΩsteel
ht andtherestofreactorbodyasΩr (Figure

(4.8)). Moreover,wedenotetheboundariesofΩoil
ht asΓoil

in fortheoilinlet;Γoil
out forthe

oiloutlet;andΓoil
steelforoil/steelboundary.Fortheheatingtubes,wefurthermoredenote

Γsteeltheboundarynearoilinlet/outletandΓliquid
steel fortheliquid/steelboundary.Finally,

forΩr,wedenoteΓliquid
in theliquidinlet,Γliquid

top theliquidsurfaceandΓliquid
wall therest.

Theresultingequationsystemisthefollowing:

(voil·∇)voil=−∇poil+νoil∆voil inΩoil
ht (4.2a)

divvoil=0 inΩoil
ht (4.2b)

ρoilC
oil
p

dToil

dt
=koil∆Toil inΩoil

ht (4.2c)

ρsteelC
steel
p ∂tTsteel=ksteel∆Tsteel inΩsteel

ht (4.2d)

div(ϕlvl+ϕgvg+ϕsvs)=0 inΩr (4.2e)

∂tϕg+div(ϕgvg)=
ṁgl

ρtrue
g

inΩr (4.2f)

∂tϕs+div(ϕsvs)=div

(
ρtrue

s

ρtrue
l

µt
l∇ϕs

)

inΩr (4.2g)

ϕl
dvl

dt
−ϕldiv

(
T̃dyn

ls +T̃Re
l

)
=ϕlαl∆Tg+ϕs

ρl−ρs

ρl

+ϕgg inΩr (4.2h)

3

8
CD

|vslip
gl |

rg

vslip
gl =−g inΩr (4.2i)

9
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r2
s

vslip
ls =−

ρtrue
l −ρtrue

s

ρtrue
l

g inΩr (4.2j)

∂t(ρ
true
l kt)+div

(

ρtrue
l kvl−

µt

σkt

∇kt

)

=2µtD
2
l−ρtrue

l εt

+Cktϕg∇pdyn
l uslip

gl inΩr (4.2k)

∂t(ρ
true
l εt)+div

(

ρtrue
l εtvl−

µt

σε

∇εt

)

=C1εt

εt

kt

2µtD
2
l−C2εtρ

true
l

ε2
t

kt

−C3εt

εt

kt

ϕg∇pdyn
l uslip

gl inΩr (4.2l)

ρlCpl

dTl

dt
−div(kl∇Tl)=̇mglhvap+RΣ

sl∆hr inΩr. (4.2m)
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wherevslip
gl =vg−vl,vslip

ls =vs−vl,vg=vslip
gl +vl,uslip

gl =⟨vslip
gl ⟩−vslip

gl and

1=ϕl+ϕg+ϕs
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−Ea
RT RFA

H20ϕlϕs
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⟩Vr
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vslip
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z−0.195z)ez
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l =−pdyn
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3
divvlI
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−
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3
ktI
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ϕs/(ϕl+ϕs)
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,ϕmax =0.64;νl(T)=ν0
le

Eν

RT
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24

Rep

(
1+0.15Re0.687
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,
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3

Ëo

Ëo+4

}

hvap=
(
hH2O

vap +RFA
H20h

FA
vap

)
ϕin

H20(l)

⟨RΣ
sl⟩Σsl

=ρtrue
l Ae

−Ea
RT RFA

H20ϕlϕs

Cµt=0.09, C1εt=1.44, C2εt=1.92, Ckt=0.505, Cεt=0.74

σkt=1.00,σεt=1.30.

Theinitialconditionsread:

Tl=Toil=Tsteel=Tin,vl=voil=0,p=3atm,kt=0,εt=0,ϕs=0.05,ϕg=0

andboundaryconditionsyield:

Oil:Toil=TinatΩoil
in,∇Toil·n=0atΓoil

out,Toil=TsteelatΓoil
steel,voilisgiven3

Steel:Toil=TsteelatΓoil
steel,∇Tsteel·n=0atΓsteel,Tsteel=TlatΓliquid

steel

Liquid:Tsteel=TlatΓliquid
steel,∇Tl·n=0atΓliquid

top ∪Γliquid
wall ∪Γliquid

in

vl=0,∇kt·n=0,∇εt·n=0atΓliquid
wall

vl·n=0,p=3atm,SRe
ls −(SRe

ls ·n)n=0,∇kt·n=0,∇εt·n=0atΓliquid
top

∇T·n=0,vl−(vl·n)n=0,p=0.3ρl|g|+3atm,S·n=0,

kt=0,εt=0,ϕs=0,ϕg=0atΓliquid
in

4.3.3 Lab-scalereactorresults

Asanillustrativeexampleofthecomputations, wepresenttheresultssimulatingthe
behaviourofthereactoratTset=110℃ (Tin≈108.1℃)andinitialloadingϕCat =0.05.
Thepresentedresultcorrespondstoalong-timesolution(t=1000s)whenthemainmodel
characteristics(gaseousproduction,temperatureproile,gashold-upproileetc.) posses
nearlysteadybehaviour.Concretelly,withinthelast100sthegaseousproductionchanges
0.61%,temperatureinthemiddle0.03℃ andaveragedgashold-up0.24%.
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Analogously to the test-reactor results, also here, we demonstrate the long-time be-
haviour on four profiles (liquid velocity, temperature, volume fraction of the gas and volume
fraction of the solid particles), cf. Figure (4.10) and (4.11).

Figure 4.10: Setting Tset = 110 ℃, ϕinit
s = 0.05. From left: velocity magnitude vl [cm/s]

with arrow velocity field, temperature T [℃], gas hold-up ϕg [%]; solid concentration ϕs [%].

The production of the reactor is approximately 1810 mL
min of H2 : CO2 gaseous mixture

at molar ratio 1 : 1. This correspond to 186 W of the hydrogen chemical energy from which
we may theoretically exploit 83 % via PEMFC, cf. [69], i.e. 154 W.

From qualitative perspective, we have obtained a similar behaviour to the test-reactor.
The dominant effect is again the thermal convection when the hotter fluid ascents near the
heated tubes, cools down due to the endothermic reaction and descents near the colder
wall, resp. in the middle of the reactor. Unlike in the test reactor, here, we can observe
slightly higher velocity magnitude (up to 0.8 cm/s) due to the higher temperature of the
heating tubes.

The temperature profile posses similar course as in the test reactor with the hottest
region on the top of the reactor (cca 102 ℃) and near the heating flow inlet (approx. 108
℃). The regions of the lowest temperature lies near the bottom (around 98 ℃) and in the
lower centre of the reactor (circa 99 ℃). Since the velocity profile is not so stable as in
the case of the test reactor (it slightly fluctuates), the flow-stagnation-regions with local
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Figure 4.11: The opposite view to fig. (4.10) for Tset = 110 ℃. From left: solid concentra-
tion ϕs [%]; gas hold-up ϕg [%]; temperature T [℃]; velocity field magnitude vl [cm/s].

temperature-minima do not occur in this case.
The gas hold-up profile is practically identical to the test reactor which is about to be

expected - resulting in the similar slip velocity and temperature profiles in both test and
lab cases. Finally, as an consequence of the previous observations, the solid concentration
profile practically coincides with the test-reactor case.

Choosing the second simulation temperature as Tset = 120 ℃, which corresponds to
the inlet temperature Tin = 117.3 ℃, we obtain the results depicted in fig. (4.12) As we
would expect, there is practically no qualitative change but the quantitative only. For
Tset = 120 ℃ we may observe the production rate 2741 mL

min ; slightly higher maximum
velocity magnitude (up to 1.2 cm/s) and higher gas hold-up (up to 2.4 % on the top).

4.4 Reactor verification
The verification of such a complicated multi-phase reactor when ideal conditions are hardly
achieved is rather delicate task. The available data for the particular reactor are very sparse
since the high acidity, temperature and pressure of the reactor environment complicates
the measurements.

Catalytic deactivation:
One of the typical example of such a complicated measurements is the catalyst deactivation.
The fresh load of catalyst has usually a higher activity than the repeatedly used one. 4

4The reactor is cooled down to room temperature and, consequently, heated up again.
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Figure 4.12: Setting Tset = 120 ℃, ϕinit
s = 0.05. From left: velocity magnitude vl [cm/s]

with arrow velocity field, temperature T [℃], gas hold-up ϕg [%]; solid concentration ϕs [%].

However, we assume that the performance of the catalyst is relatively stable after several
(∼ 3) runs (Figure (4.13)).
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Figure 4.13: Drop in the catalyst performance within the first runs.

Temperature dependence:
For a verification of the reactor performance dependence in the temperature we have used
a comparison of the measured and modelled temperature in the middle of reactor Tr.
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Figure 4.14: Verification of the measured and modelled reactor temperature Tr for the
thermostat-temperature Tset = 100 − 130 ℃.

. As we can see in fig. (4.14), the model closely fit the trend of the dependency having
the deviance within the temperature range 2 ℃ for Tset = 100 − 130 ℃ and 5% of the
hydrogen and carbon dioxide production.

Amount of condensate:
The amount of condensate in the out-coming gas, i.e. the vapour of liquid (FA(l) and
H2O(l)) depends on many factors and it is delicate task to estimate its value. Roughly
speaking, the aqueous solution of formic acid contains approx. 2 %[wt.] of water which
need to be evaporated. Keeping the azeotropic ratio RF A

H20 of the liquid vapour, we may
expect around 7 − 13 %[wt.] of the FA(g) on the outcome.

Since the reactor is held out of the equilibrium, we may expect little bit less of FA(g)
within the outcomming gas. However, the amount of condensate around 10 %[wt.] is to
be expected within the pressure range 3 − 5 atm. The enthalpy of vaporization for liquid
vapour at ratio 2

8 [wt.] = 2
23 [mol] corresponds approximately to 24.5 kJ

mol .

Pressure dependence:
Considering the reaction rate, there should be no significant pressure dependence. However,
there is an indirect influence of the pressure caused by change of interfacial area, thus,
change of rate of evaporation for liquid. The rate of vaporization of dissolved gas, on
the other hand, stays practically the same due to the very quick increase of dissolved gas
concentration to equilibrate the chemical reaction rate.

As a consequence of lower evaporation rate, the temperature slightly rises and subse-
quently the reaction rate somehow rises as well. The change is not radical, but we can gain
about 10 % more production by increasing the pressure from 2.5 to 5 atm, hence, reducing
the interfacial area by 37 %. If the liquid vapour consumes around 8 % of the overall energy
consumption, it reduces to 5 % increasing the reaction rate by 3 %. Therefore, we consider
the pressure dependency as negligible.

Based on the presented results, we conclude that the model is able to catch qualitative and
quantitative behaviour of the reactor within 5 % production and 2 ℃ temperature error for
Tset = 100 − 130 ℃ and P = 1.5 − 4 atm.
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4.5 CFD Analysis

4.5.1 System bottleneck
One of the important output of the CFD analysis is the determination of system bottle-
necks. From the simulation of the whole reactor system including the heating tubes, we
may observe a significant temperature drop during the oil flow through the pipe. The
temperature was measured on the inflow (Tin) and outflow (Tout) of the reactor with a
drop between 6 ℃ for the thermostat Tset = 100 ℃ and 10 ℃ for Tset = 130 ℃.

Tset[℃] Tin[℃] Tout[℃] Tr[℃] Prod. [ml/min] Tin/Tout drop
100 98.5 92.1 87.7 660 41 %
110 108.1 100.4 94.7 1240 45 %
120 117.3 109.5 101.2 2040 45 %
130 127.2 117.5 106.2 3260 50 %

Table 4.3: Measured temperatures with corresponding productions and temperature-drops.

To verify the conjecture, we made a measurement for different rotation of the pump
compressor, i.e. different pump pressure, namely 2000, 3000 (default) and 4000 rpm. The
results are shown in the table (4.4):

Tset[oC] rpm [Hz] Tr[oC] Gas flow[ml/min]
100 2000 79.3 190
100 3000 86.7 420
100 4000 90.2 560
120 2000 95.7 1060
120 3000 102.5 2050
120 4000 115.6 2600

Table 4.4: Different pump rpm for Tset = 100, 120 ℃ and corresponding change in measured
temperature Tr and reactor production.

To obtain the corresponding flow rate within the heating tube, we modelled the situation
with the prescribed inlet temperature Tin trying to obtain the measured outlet temperature
Tout. The situation is illustrated at the Figure (4.15):

From the measurements and the modelling results, we can clearly see that the weakest
point of the whole reactor is the heating system which, due to the significant temperature
drop, is not able to transfer enough heat into the system. This is caused by an insufficient
flow-rate (big pressure drop), thus, low heat supply.

Some improvements can be made by increase of the reactor pump-pressure, however,
commonly available heating liquids posses relatively high viscosity (causing the pressure
drop) and the maximum pressure provided by the pump is the limiting factor. Another
possibility to increase the flow rate is the enlarging of the inner heating tubes cross-section,
thus, reduce the pressure drop and increasing the flow rate.

The possible improvement-potential in the reactor performance for a uniform temper-
ature profile, an ideal heating (Dirichlet BC) and the real BC are illustrated in the fig.
(4.16).
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Figure 4.15: Modelling fitting for situation Tin = 108.1 ℃ and Tout = 100.4 ℃
- corresponding to Tset = 110 ℃ and 3000 rpm.
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Figure 4.16: Heating system loses and modelled reactor temperature Tr for thermostat
temperature Tset = 100 − 130 ℃.

4.5.2 System improvement and up-scale
Since the bottleneck of the system lies in the capability of the heating system to trans-
fer enough heat inside the reactor, the change of the heating tubes design or change of
operational conditions is just partial solution. To solve the problem properly, we propose
the following: The heating system should not be based on the heating oil circulation but
on a different type of heating providing more uniform temperature profile. The suggested
solution is the electrical heating system.

The biggest disadvantage of the electrical heating is the impossibility of direct temper-
ature control and possibility of unwanted hot spots. However, this problem may be solved
by convenient placement of the heating providing sufficient circulation. Similar situation
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isforexampletheplacementoftheheatingbodyinsideofajugkettlewherewecanind
aninspirationforthedesiredefectivedesign.

Onceweplacetheheatingbodyonthebottomofthereactor,thethermalconvec-
tionbecomesstrongenoughtosuicientlydistributetheheatalongthereactorandthe
magnitudeofhotspotsisrapidlyreduced.

Wepresentthefollowingup-scaledesignofthereactortoobtaindesirednet-power
5kW:thereactorhasasimplecylindricalshapewithradius75mmandheight 192mm,
i.e.thevolumeis3350ml.Theheatingbodyformedby7-mmradiuswireoflength656mm
isbasedonthebottom.Ithasresistance89 atcurrent2.58AAand230V(DC).The
electricpoweroftheheatingwireis593W.

Forsimulation wehaveused80g,i.e. cca3%[vol],ofthesolidcatalyst whichis,
actually,lesspercentagethanatthelab-scaleprototype. However,thenewreactordesign
andelectricalheatingallowstoimprovetheperformanceeasilybyincreasingitsamount.
Theoperatingpressureforthereactorisassumedtobe5atm.Sincetheformicacidforms
withwateranegativeazeotrope,itsboilingpointliesaboveboilingpointofbothofits
constituents.5

Figure4.17: Mesh,temperature[℃]andvelocityproile[m/s]oftheup-scaledreactor.

AswecanseeintheFigure(4.17),theoperatingtemperatureisabout20℃ higher
thatincaseoflab-scaleprototypeandtheliquidcirculateinhigherrate(max.4.5cm/s,
av.1.8cm/s). Theaveragetemperatureoftheheatingis142℃ and maximumis148℃,
thus,theheatingpossesrelativelyuniformtemperatureproileandwedidnotobserved
anysigniicanthot-spots.

Thereactorproducesapproximately50L/minoftheH2/CO2gasatmolarratio1:1
whichcorrespondsto5kWoftheoreticalchemicalpowerofproducedhydrogen. Using
PEMFC,the(realistic)eiciencydropto50−60%or,withtherecirculationoftheex-
haustedgasandheatrecapture,wecanmovetowardsthetheoreticalmaximumeiciency
83%. Fromthisreason,althoughthechemicalenergyoftheup-scalesystemisabout 5
kW,weshouldexpecttherealpower,reducedbytheheatingsystemconsumption,around
2kW.

5Theboilingpointat5atmisapprox.152℃ forwaterand205℃ forformicacid.
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Appendix A

Inthefollowingsectionssomestandardresultsontheaveragingprocedureformulti-luid
modelsarepresented. Afteraformalintroductionofaninterfaceasadividingsurface,
surfacialvariablessuchasthesurfacedensityandvelocityarediscussed.Furthermore,the
transportandbalanceequationsofthesystemscontainingpossiblynon-materialinterfaces
arederived.

Thebeginningofthe multi-luidvolume-averagedtheoryisdatedfromearly60’sby
Scriven[90]andStattery[99].Especially,thelatteronecanbeconsideredasthepioneerin
theieldwithmanysubsequentpublications,e.g.[100],[96],[102],[98].Forotherresources
werefertofundamentalworkofBatchelor[6]orTruesdell[111]andotherauthorsofthe
multi-luidtheoryasDeemer[24],Ranson[82]orJakobsen[48].

A.1 Interfaceasadividingsurface

A.1.1 Phaseinterface

Theconceptofphaseinterfaceisnotuniiedwithinthescientiiccommunity. Generally
speaking,aphaseinterfaceisaregionseparatingtwophasesinwhichthepropertiesor
behaviourdiferfromthoseoftheadjoiningphases. Theregioncanbedescribedby
molecularorcontinuum models. Workinginaframeworkofthelatterone, wefurther
distinguishamodelofthin3Dregionor2Ddividingsurface.

Theinterpretationofphaseinterfaceasa2Ddividingsurfacewasoriginallyproposed
byGibbs[34,p.219]anditiswidelyacceptedinscopeofcontinuummechanicsaswellas
inthiswork. QuotingJakobsen[48]:

Althoughitisappealingfromascientiicpointofviewtoregardtheinterfaceasa3D
regionofinitethickness,thecomputationaldiicultiesinvolvedconsideringtheimplicit
numericalgridresolutionrequirementsmaketheapplicationofthisconceptinfeasible.

Fromapracticalviewpointinstrumentationsizelimitationsenableonlyindirectob-
servationsoftheinterfacialpropertiesthroughtheirinluenceuponthesurroundingbulk
phases. Therefore,inengineeringapplicationsaninterfacehastraditionallybeenviewed
asasingular2Ddividingsurfaceseparatingtwoimmisciblehomogeneousbulkphases.

Inthe80s,Slattery[101]introduceda mathematicalconceptallowingexpressionofa
3Dinterface modelintermsofa2Ddividingsurface modelandviceversabyasuitable
deinitionofinterfacialquantities.Inthiswork,weadoptthisconceptexploitingthefact
thatboth(2D/3D)approachesintroduceadiferentperspectiveimportantfortheproper
understanding.

A.1.2 Mathematicaldescriptionofdividingsurface

LetusconsideramaterialparticleζofabodyB. Aone-to-onecontinuousmappingofthe
controlvolumeVanda3DsubsetofEuclideanspaceR3,iscalledconiguration:

z=χ(ζ)

ζ=χ−1(z).
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A motion of the body is one-parameter family of configurations; the parameter is time and
we may write

z = χ(ζ, t)
ζ = χ−1(z, t).

The material derivative of a (bulk) quantity A, where we track the motion of the particle,
is defined as

dA(z)
dt =

(
∂A(ζ, t)
∂t

)
ζ

.

The material velocity is, consequently, defined in the standard way as the rate of change
of the particle motion:

v(z) :=
(
∂χ(ζ, t)
∂t

)
ζ

= dz
dt .

Now, we identify the material particle ζ by their position z in some particular configuration.
This configuration is called the reference configuration χκ, hence,

zκ = κ(ζ)
ζ = κ−1(zκ).

If χ is a motion of the body, we obtain

z = χκ(zκ, t) := χ(κ−1(zκ, t))
zκ = χ−1

κ (z, t) := κ(χ−1(z, t)).

and, consequently,
dA(z)

dt =
(
∂A(zκ, t)

∂t

)
zκ

v(z) :=
(
∂χκ(zκ, t)

∂t

)
zκ

= dz
dt .

In case of an interface, treated as 2D dividing surface, is the situation a bit complicated
and we adopt the definition of Slaterry [98]: a moving dividing surface Σ(t) in the Euclidean
space is the locus of a point whose position is a function of two spatial parameters y1, y2

and time t, i.e.
z = P (y1, y2, t), z ∈ Σ(t).

The two surface coordinates uniquely determine the point on the surface at any time
and the function P is assumed to be differentiable with respect to both space and time
coordinates. The interface is generally non-material and the mapping χ|Σ does not have
an inverse, i.e although there is a position in space corresponding to every surface particle,
the converse is not true. This situation is common for interfaces mediating a mass transfer
between phases.

In the next, we identify the surface particle ζΣ by its reference intrinsic configuration
in the reference dividing surface:

yκ = Σκ(ζΣ) , resp. yα
κ = Σκα(ζΣ), α = 1, 2.

ζΣ = Σκ−1(yκ) =
(
(Σκ1)−1(ζΣ), (Σκ2)−1(ζΣ)

)
.
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IfχΣ isamotiononthedividingsurface,then

y=χΣκ(yκ,t):=χΣ(Σκ−1(yκ),t)

yκ=χ−1
Σκ(y,t):=Σκ

(
χΣ−1(y,t)

)

and

dΣA(y,t)

dt
:=

(
∂A(yκ,t)

∂t

)

yκ

=
∂A(y1,y2,t)

∂t
+

2∑

α=1

A(y1,y2,t)

∂yα

χα
κ(y1

κ,y2κ,t)

∂t

=
∂A(y,t)

∂t
+∇ΣA(y,t)·̇y

whereẏdenotestheintrinsicsurfacevelocitywhichis,basically,ananalogytothevelocity
inR2.

Oncethesurfaceisnon-material,itsusefultodescribethemotionofasurfaceparticle
usingitsreferenceextrinsicconigurationinR3deinedas:

zκ=κ(ζΣ)=κ
(

Σκ−1(y,t))
)

.

IfχisamotionofthedividingsurfaceinR3,then

z=χκ(zκ,t):=χ
(
κ

(
Σκ−1(y)

)
,t

)

zκ=χ−1
Σκ(z,t):=κ

(
χΣ−1(y,t)

)
.

Consequently,we maydeinealsotheextrinsicsurfacevelocity-thetimerateofchange
ofspatial(reference)positionfollowingthesurfaceparticle:

v(z):=

(
∂χκ(z,t)

∂t

)

zκ

=
dΣz

dt
=

dΣP(y1,y2,t)

dt

=
∂P(y1,y2,t)

∂t
+∇ΣP(y1,y2,t)·̇y

=u+ẏ.

Here,weintroducedtherateofchangeofspatialpositioninR3followingasurfacepoint
(y1,y2)as

u=(u1,u2,u3):=
∂P(y1,y2,t)

∂t
.

Notethatẏhasthetangentialcomponentonlybutuhasgenerallyboth. Therefore,
fornbeingavectornormaltotheinterfaceΣwehave

ẏ·n=0
Σv·nΣ =u·n=:vΣ

n.

Wereferto vΣ
n asthespeedofdisplacementofthesurfaceandweconclude

Σv:=
3∑

α=1

uαeα+vΣ

n·n
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whereeα,α=1,2,3denotestheCartesianbasevectorsinR3. Consequently,considering
aquantityfona movinganddeformingdividingsurfaceΣ,weexpressitsconservation
bytherelation

∂f

∂t
+∇f·u=0.

A.1.3 Surfacesensity

Letusstartwiththeconservationequationofmass.ThestatementthatthemassM ofa
bodyBoccupyingvolumeVisindependentoftimeismathematicallyexpressedas

d

dt
M(B)=

d

dt

∫

V
dm=0

where d
dt

isa materialderivativeandm isanon-negative,time-independent,scalar mea-
sure.AssumingtheabsolutecontinuityofthemeasuremtothethreedimensionalLebesque
measure,wegettheexistenceofafunctioncalleddensitysuchthat

M(B)=
∫

V
ρdV.

Thisisthestandardapproachforonephaseorcontinuousmixturebodybuttheabsolute
continuityfailsintheinterfacialregion(consideredasa2Ddividingsurface). Forthat
case,wefollowtheapproachofSlattery[98]or,resp.oneofthepossibleviewpointofthe
balanceequationconsistingdividingsurface.

LetushaveabodyconsistoftwophasesoccupyingregionV1 andV2,andits mass
densityρ1 andρ2. Thedensitiesareassumedtobeacontinuousfunctionsofposition
withinthephaseregion.Letus,therefore,considera2DdividingsurfaceΣ⊂B:Σ∩V1=
∅=Σ∩V2,andthecorrespondingsurfacedensityρΣ beingacontinuousfunctionofposition
onΣ.Themassconservationofthebody,consequently,follows

M(B)=
∫

V1

ρ1dV+
∫

V2

ρ2dV+
∫

Σ
ρΣ dS.

Ontheotherhand,wemaytreattheinterfaceasathree-dimensionalregionVIbetween
thevolumesV1andV2

V2V1

Σ

λ+

VI

λ−

ofinitethicknesshavingitsownmaterialbehaviour(FigureA.18).

FigureA.18:Interface.

DecomposingthebodydomainV=V1∪VI∪V2,weexpressthemassconservationas

d

dt

∫

V
ρdV=

d

dt

[∫

(V1∪V2)\VI

ρdV+
∫

VI

ρIdV

]

=
d

dt

[∫

V1∪V2

ρdV+
∫

VI

(ρI−ρ)dV
]

.
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where ρI = ρ outside of VI . The proper mathematical definition of the surface density ρΣ

is not an easy task and for more details we refer the readers to Slattery [98, 1.3].
Restricting ourself to very simple example of straight interface VI = Σ × [λ−, λ+], we

may identify 6 ∫
VI

(ρI − ρ) dV =
∫

Σ

∫ λ+

λ−
(ρI − ρ) dλ dS =

∫
Σ
ρΣ dS.

Consequently, we obtain the mass conservation in the standard form

d
dtM = d

dt

∫
V
ρ dV = d

dt

[∫
V1∪V2

ρ dV +
∫

Σ
ρΣ dS

]
= 0. (A.3)

The material derivative d
dt

describes the time rate of change of a physical quantity
subjected to a macroscopic velocity field v. Treating an interface with its own material
velocity Σv, we identify the material derivatives d

dt
as(

dρ
dt

)
|V1∪V2

= ∂ρ

∂t
+ v · ∇ρ

and
dΣρΣ

dt := dρΣ

dt = ∂ρΣ

∂t
+ ẏ · ∇ΣρΣ = ∂ρΣ

∂t
+ (Σv − u) · ∇ΣρΣ.

The previous considerations can be easily generalized for a body consisting of m phases
once we restrict to the situation of non-intersecting interfaces. Let Σij be the dividing
surface separating the phases i, j and ρΣ

ij its density. The mass of the body (summing over
all possible interfaces) equals:

M =
m∑

i=1

∫
Vi

ρi dV +
m−1∑
i=1

m∑
j=j+1

∫
Σij

ρΣ
ij dS.

Introducing a less formidable notation assuming integrability of the function ρ such that
ρ = ρi in phase i, we may write ∫

V
ρ dV ≡

m∑
i=1

∫
Vi

ρi dV

where V := ⋃m
i=1 Vi. Analogously:

∫
Σ
ρΣ dS ≡

m−1∑
i=1

m∑
j=i+1

∫
Σij

ρΣ
ij dS

where Σ := ⋃m−1
i=1

⋃m
j=i+1 Σij.

Remarks:
A.1.1 Surface coverage. One of the heuristic descriptions of the surface density on the
fluid-solid interface offer a uniformly thick plague formed on the solid surface. The surface
density is simply proportional to the surface coverage.

6In the sequel, we will understand definitions of other surface quantities (e.g. the surface velocity Σv)
in the same sense.
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A.1.2 Excess quantity. Let us mention that we might consider also an excess line quantity
associated with the common line, i.e. with Ccl = ∂Σ ∩ ∂V . In this case, the (mass)
conservation would be expressed by

d
dt

∫
V
ρ dV = d

dt

(∫
V1∪V2

ρ dV +
∫

Σ
ρΣ dS +

∫
Ccl

clρ dl
)

= 0.

Nevertheless, we do not consider any excess line quantity in our case and we will drop the
term in the sequel.

A.2 Multi-fluid balances in bulk and on dividing sur-
faces

In this section we introduce balance equations of mass, momentum and energy for a multi-
fluid body. We restrict ourself to a simplified example of a multiphase body consist of m
phases with non-intersecting interfaces. For more general case and proofs of the statements,
we refer to the literature, e.g. Slaterry [98, 1.3] and Jakobsen [48, 3.3].

A.2.1 Transport theorems
Let us consider an illustrative multi-phase body with non-intersecting interfaces, see e.g.
the Figure (A.19)

Figure A.19: Multi-phase system

The surfaces with subscript containing ”0” mark parts of the outer physical (material)
boundary of the body and ∂V = ⋃m

i=1 Σi0 = Σ10 ∪ Σ20. Furthermore, we denote V =
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V1 ∪ V2 ∪ V3 and Σ = Σ12 ∪ Σ23. Investigating the mass of the body, we are interested in
the expression

d
dt

(∫
V
ψ dV +

∫
Σ
ψΣ dS

)
.

Transport theorem for bulk quantities: We introduce the transport theorem for the
whole body (neglecting the excess quantity on the common lines) as

d
dt

(∫
V
ψ dV

)
=
∫

V

∂ψ

∂t
dV +

∫
∂V
ψv · n dS.

The generalized transport theorem for the phase k occupying volume Vk with boundary
∂V = ∑m

l=0 Σkl follows
d
dt

∫
Vk

ψk dV =
∫

Vk

∂ψk

∂t
dV +

∫
∂Vi

ψkvk · nk dS

=
∫

Vk

∂ψk

∂t
dV +

∫
Σk0

ψkvk · n dS +
m∑

l = 1
l ̸= k

∫
Σkl∩Vk

ψk
Σvklnkl dS.

Summing the relations through all the bulk phases, we obtain
d
dt

∫
V
ψ dV = d

dt

m∑
k=1

∫
Vk

ψk dV

=
m∑

k=1

∫
Vk

∂ψk

∂t
dV +

m∑
k=1

∫
Σk0

ψkvk · n dS

−
m∑

k=1

m∑
l = 1
l ̸= k

∫
Σkl∩Vk

ψk
Σvkl · nkl. dS (A.4)

Note, that Σvl0 = vk and nk0 = n since Σk0 are material boundaries. On the other hand,
we have Σkl = Σlk and nkl = −nlk, hence, the last term at the RHS of the equation (A.4)
can be reduced to

m∑
k=1

m∑
l = 1
l ̸= k

∫
Σkl∩Vk

ψk
Σvkl · nkl dS =

m−1∑
k=1

m∑
l=k+1

∫
Σkl∩(Vk∪Vl)

(ψk − ψl)Σvkl · nkl dS.

The quantity ψ is considered as a piecewise continuous function with (continuous)
values ϕk at Vk, thus, we define the difference ψk − ψl at x ∈ Σkl as the jump bracket:

[[ψ(x)]]kl := (ψ+
k − ψ−

l )|x∈Σkl
= lim

λ→0+
(ψk(x+ λnkl(x)) − ψl(x+ λnlk(x))). (A.5)

Consequently, the transport theorem (A.4) may be written as
d
dt

∫
V
ψ dV =

∫
V

∂ψ

∂t
dV +

∫
∂V
ψv · n dS −

∫
Σ
[[ψ]]Σv · n

=
m∑

k=1

∫
Vk

∂ψk

∂t
dV +

m∑
k=1

∫
Σk0

ψkvk · n dS −
m−1∑
k=1

m∑
l=k+1

∫
Σkl

[[ψ]]kl Σvkl · n. (A.6)

The version for the k-th phase, denoting the interface area of the k-th phase Σk :=∑m
l = 1
l ̸= k

Σkl ∩ Vk, follows

d
dt

∫
Vk

ψk dV =
∫

Vk

∂ψk

∂t
dV +

∫
Σk0

ψkvk · n dS −
∫

Σk

ψk
Σv · n. (A.7)
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Transporttheoremforsurfacequantities: Weintroducethe generalizedtransport
theoremforasurfaceas:

dΣ

dt

∫

Σ(t)
ρΣψΣ dS=

∫

Σ(t)

dΣρΣψΣ

dt
+ρΣψΣ divΣ ΣvdS (A.8a)

=
∫

Σ(t)

∂ρΣψΣ

∂t
−∇ΣρΣψΣ ·u+divΣ(ρΣψΣΣv)dS

=
∫

Σ(t)

∂ρΣψΣ

∂t
−∇ΣρΣψΣ ·u−2HρΣψΣΣv·ndS+

∫

Ccl
ρΣψΣu·nΣ dl.

(A.8a∗)

Here,weexploitthesurfacedivergencetheorem,cf.Slaterry2007[98,A.6.3]
∫

Σ
divΣ(ρΣψΣΣv)=

∫

Ccl
ρΣψΣu·nΣ dl−

∫

Σ
2HρΣψΣΣv·ndS (A.9)

whichusesthevelocitydecomposition(A.1.2)andtherelationforthe meancurvatureH
inR3

divΣ nΣ =−2H.

ForageneralluxJ(possiblybothconvectiveanddifusive),weintroducetheGauss
rule,(divergencetheoremforacontrolvolumecontaininganinterface)as:

∫

V(t)
divJdV=

∫

∂V(t)
J·ndS+

∫

Σ
J·ndS. (A.10)

Treatingimmisciblephases,wecanchoosethecontrolvolumeV(t)suchthatitconsists
nonebutonesinglephase,hence,theinterfaceΣbecomesapartoftheboundary∂V(t).
CombiningtheLeibnitztheoremandGaussrule(forJ≡ρψv),wearrivetothetransport
theoremforaregionwheretheclosingcontrolvolumesurfacepartlyconsistsofanon-
materialphaseinterface intheform:

d

dt

∫

V(t)
ρψdV=

∫

V(t)

(
∂ρψ

∂t
+divρψv

)

dV+
∫

Σ(t)
ρψ(Σv−v)·ndS. (A.11)

A.2.2 Genericbalanceequations

Integralbalances: Letusconsideranintensivequantityψwiththedensityρ,its
(non-convective)luxJandthesourcetermsRwithdensityρR. Thegoverningbalance
equationinthegenericformforatimedependentcontrolvolumeV(t)readas

d

dt

∫

V(t)
ρψdV=−

∫

∂V(t)
J·ndS+

∫

V(t)
RdV. (A.12)

Consideringamulti-phasebodywiththe(non-material)2Ddividingsurfacesasinig.
(A.18),wemaywrite

d

dt

∫

V(t)
ρψdV=

d

dt

∫

V(t)
ρψdV+

dΣ

dt

∫

Σ(t)
ρΣψΣ dS (A.13a)

−
∫

∂V(t)
J·ndS=−

∫

∂V(t)
J·ndS−

∫

Ccl(t)
JΣ ·nΣ dl (A.13b)

∫

V(t)
RdV=

∫

V(t)
RVdV+

∫

Σ(t)
RΣdS (A.13c)
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wherenΣ isanormalvectortothecommonlineCclandtangentialtoΣandJΣ istheinter-
faciallux. Consequently,thebalanceequationfor multi-phasebodycontainingdividing
surface(A.12)adoptstheform

d

dt

∫

V(t)
ρψdV+

dΣ

dt

∫

Σ(t)
ρΣψΣ dS=−

∫

∂V(t)
J·ndS−

∫

Ccl(t)
JΣ ·nΣ dl

+
∫

V(t)
RVdV+

∫

Σ(t)
RΣdS. (A.14)

Inthenextstep, wesplittheinterfacialluxJΣ intoisotropicpartςIandtherest
representingavectorlux:

JΣ =ςI+ζ.

Consequently,applyingtwodiferentsurfacedivergencetheorems,cf.[28,3.4]weobtain
∫

Ccl(t)
JΣ ·nΣ dl=

∫

Ccl(t)
(ςI·nΣ +ζ·nΣ)dl

=
∫

Σ(t)
(∇Σς+2Hςn)+divΣ ζ
  

divΣ JΣ

dS. (A.15)

Finally,usingthetransporttheorems(A.11)and(A.8a)onthemulti-phasebalanceequa-
tion(A.14)yields

∫

V(t)

(
∂ρψ

∂t
+div(ρψv)+divJ−RV

)

dV (A.16)

+
∫

Σ(t)

(
dΣρΣψΣ

dt
+ρΣψΣ∇ΣΣv+divΣ JΣ −RΣ−[[(ψρ(v−Σv)+J)·n]]

)

dS=0.

Wereferto(A.16)asthe integralbalanceformulti-phasebodycontaining(non-intersecting)
dividingsurfaces.

Localbalances: Letus mentionthatthelocalversionofthebulkandsurfacebalance
equationfollowsdirectlyfromthefactthattheequation(A.2.2)holdsforanarbitrary
volumeofthebody. Therefore,we mayintroducealsotheintegralbalanceforkth-phase
containing(non-intersecting)dividingsurfaces:

0=
∫

Vk(t)

∂ρkψk

∂t
+div(ρkψkvk)+divJk−RV

kdV (A.17a)

+
m∑

l=1
l̸=k

∫

Σkl(t)

dΣρΣ
klψ

Σ
kl

dt
+ρΣ

klψ
Σ

kl∇
ΣΣvkl+divΣ JΣ

kl−RΣ
kl−[[(ψiρi(vi−Σvkl)+Ji)·ni]]

k
ldS.

Theconservationofthequantitiesis,consequently,expressedinthefollowing local
versionofbalanceequationsforkth-phasecontaining(non-intersecting)dividingsurfaces:

∂ρkψk

∂t
+div(ρkψkvk)+divJk=RV

k inVk (A.18a)

dΣρΣ
klψ

Σ
kl

dt
+ρΣ

klψ
Σ

kldivΣ Σvkl+divΣ JΣ

kl=RΣ
kl+[[ṁkl

iψi+Ji·ni]]
k
l,∀l̸=k onΣ (A.18b)

wherewedenotedthespeciicmasstransferovertheinterfaceṁkl
i =ρi(vi−Σvkl)·n.
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Remarks:

A.2.1SurfaceTension. Inthemomentumequationforaluid/luidinterface,themolec-
ularluxrepresentstheinterfacialstressforceΣTklandthescalarςkl=σklrepresentsthe
surfacetensionoftheinterfacebetweeni-thandk-thphase.Theapplicationofthesurface
divergencetheorem(A.9)givesthefamiliarresult

∫

Ccl
kl

JΣ

kl·nΣ dl=
∫

Ccl
kl

ΣTkl·nΣ dl=
∫

Σkl

(∇Σσkl+2Hklσkln)dS. (A.19)

A.2.3 Massbalance

The massofak-thphaseoccupyingcontrolvolumeV, wheretheboundary∂V partly
consistsofaninterfaceΣ,dependsonaluxthroughtheboundaryandvolumetricsource
terms:

d

dt

∫

V(t)
ρkdV=−

∫

∂V(t)
Jk·ndS+

∫

V(t)
RkdV. (A.20)

Thenon-convective(difusive)luxtermJkstandsformolecularluxandthesourcetermRk

representschemicaltransformationscontributiontothemassofk-thphase,e.g.chemical
reactionsandphasechanges.

Speakingaboutchemicalreactions,weusuallydistinguishhomogeneous(inabulk)and
heterogeneousone(onasurface).Similarly,thephasechangewillbetypicallyconsidered
intheformofheterogeneous(RΣ

k)orhomogeneous(RV
k)nucleation. Usingpreviously

derivedtheorem(A.18)substitutingψk =1,ψΣ
kl=1andneglectingthe molecularluxes

JiandJΣ
i,wearrivetothefollowingmassbalanceexpression:

∂ρk

∂t
+div(ρkvk)=RV

k (A.21a)

dΣρΣ
kl

dt
+ρΣ

kldivΣ Σvkl=RΣ
kl+[[ṁkl

i ·n]]kl ,∀l̸=k. (A.21b)

A.2.4 Momentumbalance

Totalbalance: AccordingtothesecondNewton’slaw,themomentumofabodychanges
duetotheactingforceswhichmaybeseparatedintotwoclasses:bodyforcesFV andcontact
forcesFS:

d

dt

∫

V
ρvdV=FS+FV.

Thebodyforcesactdirectlyoneachmaterialparticle. Deiningbthedensityofbody
forcesandΣbthedensityofsurfaceforces,weexpressthebodyforceactionas

FV =
∫

V
ρbdV+

∫

Σ
ρΣΣbdS.

Withintheparticularapplication,wedonotconsideranyelectricor magneticforcesbut
thegravitationforceandthe momentumtransferforceduetothe massproduction(e.g.
chemicaltransformations).Consequently,wewrite

b(z,t)=g+RVv,Σb(z,t)=g+RΣΣv.

Contactforces,ontheotherhand,arethosethatappeartobeexertedononebody
oranotherthroughtheircommonsurfacecontact. UsingtheCauchy’sstressprinciple,we
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identifythestressvectort(z,S),S∈Σwiththevectorvaluedfunctiont(z,n). Thiscan
beexpressedasthetransformationoftheouterunitvectornbythestresstensorT,cf.
[102,p.32]. Analogously,weproceedonthesurfaceresultingintothecommonrelation

FS=
∫

∂V
T·ndS+

∫

Ccl

ΣT·nΣ dl.

Thetotalmomentumbalance(A.2.4),consequently,reads

d

dt

∫

V
ρvdV=

∫

∂V
T·ndS+

∫

Ccl

ΣT·nΣ dl+
∫

V
ρbdV+

∫

Σ
ρΣΣbdS. (A.22)

Partialbalances: Additionallytothesituationforasinglephase,inthecaseofa
multi-phasebodyoneneedtoconsideralsomomentumofamatterproducedbychemical
transformations. ThesecontributionscorrespondtothetermRV

kvkinthebulkorRΣ
ij

Σvi

ontheinterfaceresultingintheoverallmomentumbalance:

d

dt

∫

V
ρvdV+

dΣ

dt

∫

Σ
ρΣΣvdS=

∫

∂V
T·ndS+

∫

Ccl(t)

ΣT·nΣ dl (A.23)

+
∫

V
ρb+RVvdV+

∫

Σ
ρΣΣb+RΣΣvdS.

Inthenextstep, weapplythetransporttheorems(A.11)and(A.8a)obtainingthe
multi-phasemomentumbalance:

∫

V
∂t(ρv)+div(ρv⊗v)dV+

∫

Σ
∂t(ρ

ΣΣv)+divΣ(ρΣΣv⊗Σv)dS=
∫

V
divT+ρb+RVvdV+

∫

Σ
divΣ ΣT+ρΣΣb+RΣΣv+[[ṁ ⊗v·n]]dS (A.24)

wheretheouterproductofvectorsa=(a1,a2,a3)
T,b=(b1,b2,b3)

T isdeinedasthematrix
a⊗b=(aibj)

ij.UsingtheGreen’stransformations[102,p.680]

∫

∂V
T·ndS=

∫

V
divTdV+

∫

Σ
[[T·n]],

weobtainforanarbitraryvolumethelocalmulti-phasemomentumbalanceintheform:

∂t(ρkvk)+div(ρkvk⊗vk)=divTk+ρkb+RV
kvk (A.25a)

∂t(ρ
Σ

kl
Σvkl)+divΣ(ρΣ

kl
Σvkl⊗Σvkl)=divΣ ΣTkl+ρΣ

kl
Σb+RΣ

kl
Σvkl

+[[
(
ṁkl

i ⊗vi+Ti

)
·ni]]

k
l. (A.25b)

Angular momentumbalance: Inthiswork,werestrictourselftonon-polarmulti-luid
systemswhichweassumedtobeirrotational. Then,weobtainthestandardsymmetric
relation

Tk=(Tk)T,∀k
ΣTkl=(ΣTkl)

T,∀i̸=k.
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A.3 Averaging procedure
In this section we recall some basic volume averaging theorems which are essential for
derivation of transport equation for the multi-phase body. For more details see refer to
[98, 1.3] or [48, 3.4].

A.3.1 Leignitz and Gauss rule

To average a time derivative, the Leibniz rule which can be understand as a transport
equation for an averaged quantity ψk and its density ρk follows

1
V

∫
V

∂ρψ

∂t
dV =

∑
k

(
1
V

∫
Vk

∂ρkψk

∂t
dV
)

=
∑

k

(
∂

∂t

( 1
V

∫
Vk

ρkψk dV
))

− AΣkl
1

Σkl

∫
Σkl

[[ρiψi
Σvkl · ni]]kl dS. (A.26)

Now, we identify the interfacial area density AΣkl
= Σkl/V and as an analogy to the volume

averiging, we may define the interface averaging as

⟨ψΣ
kl⟩Σkl

def= 1
Σkl

∫
Σkl

ψΣ
kl dS. (A.27)

Since the averaging volume is arbitrary, we can choose a volume containing a single phase
only, i.e.

V = Vk, ∂Vk = Σk =
m∑

l=1,l ̸=k

Σkl ∩ Vk

and the Leibnitz rule gives
⟨
∂ρkψk

∂t

⟩
V

= ∂

∂t
⟨ρkψk⟩V − AΣk

⟨ρkψk
Σvkl · nk⟩Σkl

. (A.28)

In the next, we introduce the Gauss rule for volume averaging as

⟨∇(ρkψk)⟩V = ∇⟨ρkψk⟩V + 1
V

∫
Σk

ρkψknk dS.

Applied on the divergence operator, we obtain

⟨div(ρkψkvk)⟩V = div⟨ρkψkvk⟩V + 1
V

∫
Σk

ρkψkvk · nk dS.

The direct consequence of the two rules acting on the volume fraction ϕk reads

0 = ∂ϕk

∂t
− 1
V

∫
Σk

Σvkl · nk dS. (A.29a)

0 = ∇ϕk + 1
V

∫
Σk

nk dS. (A.29b)
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A.3.2 Transport equation for an averaged quantity

Using the notation ṁkl
i

def= ρi(Σvkl − vi), the transport theorem (A.11) for an averaged
quantity follows ⟨D(ρkψk)

Dt

⟩
V

= D
Dt⟨ρkψk⟩V +

m∑
l = 1
l ̸= k

AΣkl
⟨ṁkl

k ψk · n⟩Σkl
.

Applying the averaging to the local version of generic equation in bulk (A.18a), we obtain

∂⟨ρkψk⟩V

∂t
+ div

(
⟨ρkψkvkρkψk⟩V

)
+ ⟨div Jk⟩V = ⟨Rk⟩V −

m∑
l = 1
l ̸= k

AΣkl
⟨(ṁkl

k ψk + Jk) · n⟩Σkl

and, using the concept of volume fraction together the relations (A.29a) and (A.29b), we,
finally receive the transport equation for the kth-phase as

∂(ϕk⟨ρkψk⟩Vk
)

∂t
+ div(ϕk⟨ρkvkψk⟩Vk

) + div(ϕk⟨Jk⟩Vk
)

= ϕk⟨Rk⟩Vk
−

m∑
l = 1
l ̸= k

AΣkl
⟨(ṁkl

k ψk + Jk) · n⟩Σkl
. (A.30)

Let us introduce also a version for vectorial quantity ψk, where Jk denotes a (diffusive
flux) tensor:

∂(ϕk⟨ρkψk⟩Vk
)

∂t
+ div(ϕk⟨ρkvk ⊗ψk⟩Vk

) + div(ϕk⟨Jk⟩Vk
)

= ϕk⟨Rk⟩Vk
−

m∑
l = 1
l ̸= k

AΣkl
⟨(ṁkl

k ⊗ψk + Jk) · n⟩Σkl
. (A.31)
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Part II

A continuum model of heterogeneous
catalysis: thermodynamic framework
for multicomponent bulk and surface

phenomena coupled by sorption
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5. Introduction
The second part of the thesis is a preprint of the same name article by O. Souc̆ek, V.O.,
J. Málek and D. Bothe which is under review in the International Journal of Engineering
Science.

5.1 Active surfaces

5.1.1 Heterogeneous catalysis on active surfaces
Catalysis stands for the increase in the rate of chemical reactions caused by presence of
an additional agent called catalyst. As such, catalysis plays a critical role in physical
and biological sciences, chemical technology and industry. Some of the most important
applications can be found for example in reduction of atmospheric pollution, in laboratory
chemical syntheses, in petrochemistry, in the development of new ways of energy generation
and storage such as chemical conversion of hydrocarbons, and in a plethora of other areas.
A heterogeneous catalysis is a form of catalysis when the phases of the reactants and
the catalyst differ - a prototypical example is a mixture of a gaseous or fluid substances
(reactants) adsorbing onto a solid surface (catalyst). There, thanks to a reduction of the
energetic barriers by the presence of the catalyst, reactions among the reactants take place
much faster than elsewhere. The description and macroscopic modelling of the process of
heterogeneous catalysis is an interdisciplinary task combining surface solid-state physics,
physical chemistry, material science and, by interaction of the surface with the bulk, also
all the field of continuum thermodynamics.

Figure 5.1: Sketch of the typical problem geometry depicting the bulk region of the mixture
Ω with a boundary ∂Ω = Σ∪Γ∪Γin∪Γout, where Γin denotes the inflow part of the boundary,
Γout denotes the outflow part of the boundary and Σ is the active surface at which sorption,
surface chemical reactions and transport phenomena take place.

The aim of this paper is to formulate a continuum thermodynamical model describing
heterogeneous catalysis of a gas/liquid mixture on a (solid) active surface. On such a surface
the catalyzed chemical reactions together with other transport phenomena, such as diffu-
sion of species, may occur. The model is formulated in the framework of phenomenological
multi-component continuum thermodynamics applied to both bulk and surface processes
and includes their mutual coupling. The prototypical geometry of the problem, relevant
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for practical applications of heterogeneous catalysis, is sketched in Fig. 5.1. The domain
contains a bulk region Ω with boundary ∂Ω containing an active (catalytic) subregion Σ.

Our modelling approach benefits from a simplified framework of the theory of interact-
ing continua (theory of mixtures) in which the individual constituents of the mixture are
distinguished only at the level of mass balances while the balance equations for linear and
angular momentum, energy and entropy are considered for the mixture as a whole1. The
essential physical processes captured by the model are (i) surface and bulk flow dynamics,
(ii) surface and bulk energy transfer, (iii) energy transfer between the active surface and
the bulk, (iv) surface and bulk chemical reactions, (v) sorption, that is transfer of mass
between the active surface and the bulk, and (vi) surface and bulk diffusion. For all the sur-
face quantities, we implicitly follow the notion of surface excess introduced by [33]; in this
respect we follow the long-list of standard references in the field of continuum mechanics
and thermodynamics of coupled interfacial and bulk phenomena, such as [7, 27, 80, 32, 97].

The constitutive theory for bulk and surface dissipative processes is obtained through
the following thermodynamic procedure: (i) we postulate constitutive equations for bulk
and surface free energies, (ii) we identify the entropy-producing mechanisms and (iii) we
propose the constitutive relations which enforce the fulfilment of the second law of thermo-
dynamics. For most entropy-producing processes, we confine ourselves to linear constitutive
relations [i.e. we incorporate the framework of the classical irreversible thermodynamics
- CIT - 23] with the exception of chemical reactions and sorption. For these processes
non-linear logarithmic constitutive relations are postulated, which lead to standard chem-
ical and sorption kinetics. For simplicity the Helmholtz potential in the bulk is considered
in ideal-mixture form and the thermodynamic description of the surface corresponds to a
simple lattice gas model. This gives rise to a Langmuir-type sorption kinetics [56], how-
ever, the developed framework allows a straightforward extension for much more involved
sorption phenomena that have been studied in the past decades and involve multi-site ad-
sorption and nearest neighbour interactions of the adsorbed species, among other features.
See for example [85, 25, 64, 1] and references therein for an overview.

From this point of view, the framework should serve as a guideline for researchers
interested in application of the rich and still rapidly developing field of statistical mechanics
of adsorption to continuum mechanics and thermodynamic framework that is suitable for
mathematical analysis and numerical implementation for practical calculations.

The structure of the paper is as follows. In Section 2, we introduce the notation
and postulate the balance equations in the bulk and on the active surface. In Sections
3 and 4, the corresponding constitutive relations are proposed by means of irreversible
thermodynamics. In Section 5, we summarize the derived model in the form that may
serve as a starting point either for numerical implementation or mathematical analysis.

5.1.2 Notation and basic definitions
Our model comprises a fluid mixture consisting of N -1 chemical constituents reacting (or
interacting) in a solvent (N -th constituent), i.e. we distinguish

• the constituents Aα in Ω, α ∈ {1, . . . , N} def= K, (bulk constituents)

• the constituents ΣAα on Σ, α ∈ {0, 1, . . . , N} def= K0, (surface constituents)
1If we use the terminology introduced in [45], we could call this framework Class-I mixture.
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where the constituents AN and ΣAN denote the solvent constituent and the formally added
constituent ΣA0 (introduced only on the surface Σ) represents the empty adsorption sites
(vacancies). Note that ΣA0 is by definition massless, but it can be sensibly assigned a
molar number and all other molar-based quantities such as molar concentration, molar
fraction, molar energy, etc. While we apriori assume that all bulk molecules can adsorb
(i.e. all bulk constituents have their surface counterparts), we later provide a mechanism
how to distinguish between adsorbing and non-adsorbing species, see a remark in the part
on sorption in Section 7.2.3.

Let us consider a volume element of the mixture with the volume V and a surface
element with the surface area S. We introduce the following measures: Nα(V ) - denoting
the number of moles of the constituent Aα in the given volume element V ; and ΣNα(S) - the
number of moles of the constituent ΣAα on the surface element S, respectively. Assuming
absolute continuity of these measures with respect to the corresponding volume and surface
measures, we obtain the bulk and surface molar concentrations cM

α , ΣcM
α , as follows:

Nα(V ) def=
∫

V
cM

αdx , α∈K , (5.1a)

ΣNα(S) def=
∫

S

ΣcM
αdS , α∈K0 . (5.1b)

The bulk molar concentration cM of the mixture as a whole and its surface counterpart2

ΣcM are, consequently, defined by

cM def=
∑
α∈K

cM
α , ΣcM def=

∑
α∈K0

ΣcM
α . (5.2)

This allows us to introduce the bulk and surface molar fractions xα, Σxα by

xα
def= cM

α

cM
, α∈K , Σxα

def=
ΣcM

α
ΣcM

, α∈K0 . (5.3)

Introducing the molar mass Mα of the αth constituent (the same for both bulk and surface
molecules), and postulating for the vacancies M0

def= 0, we define the bulk and surface
densities ρα and ρΣ

α as follows

ρα
def= cM

αMα , α∈K , (5.4a)
ρΣ

α
def= ΣcM

αMα , α∈K0 . (5.4b)

The bulk and surface mixture densities of the mixture as a whole are defined as follows

ρ
def=

∑
α∈K

ρα , ρΣ def=
∑

α∈K0

ρΣ
α , (5.5)

and the mass fractions (concentrations) cα, Σcα are defined by

cα
def= ρα

ρ
, α∈K, Σcα

def= ρΣ
α

ρΣ
, α∈K0 . (5.6)

To each constituent we assign their bulk and surface velocities vα and Σvα, respectively.
The mixture bulk and surface velocities v and Σv are defined here as the corresponding
barycentric velocities

ρv def=
∑
α∈K

ραvα , ρΣΣv def=
∑

α∈K0

ρΣ
α

Σvα . (5.7)

2The quantity ΣcM represents in fact the surface molar concentration of adsorption sites, see B.142.
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We proceed by formulating balance equations - balances of mass, linear and angular mo-
mentum, energy and entropy - both in the bulk Ω and on the active surface Σ.

In this study, we distinguish the individual constituents of the mixture only at the level
of mass balances. Concerning the balances of momentum, angular momentum, energy and
entropy, the mixture is treated as a standard single-component continuum.
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6.Balanceequations

6.1 Balanceof mass

6.1.1 Balancesofpartial masses

Bulk:
Themassbalanceoftheα-thconstituentinsidethedomainΩreadsasfollows

∂ρα
∂t
+div(ραv+J

dif

α)=rα, α∈K, (6.1)

whererαisthechemicalproductionrateoftheαthconstituentandJ
dif
α isthedifusive

luxoftheαthconstituentdeinedasJdifα
def
=ρα(vα−v),butmodelledviaaconstitutive

relationsince,inthisstudy,theindividualvelocitiesofthespeciesarenotdistinguished
inthebalanceequations.Theabovedeinitionhoweverleadstothefollowingconstraint
(dueto(5.5)and(5.7)): ∑

α∈K

Jdifα =0. (6.2)

Conservationofmassinthechemicalreactionsdictatesthefollowingconstraintonthe
reactionrates:

∑

α∈K

rα=0 ⇐⇒
∂ρ

∂t
+div(ρv)=0⇐⇒ ρ̇=−ρdivv, (6.3)

whereweusedthedeinitions(5.5)and(5.7)andtheconstraint(6.2),yieldingthemass
balanceforthemixtureasawhole.Inthelastformofthemassbalance,weintroducedthe
dotoperatordenotingthematerialtimederivativewithrespecttothebarycentricvelocity

(̇)
def
= ∂()

∂t
+v·∇().

Surface:
TheboundaryofΩandthusalsotheactivesurfaceΣareassumedtobestaticinour
application,inparticularweassumethatΣv·n=0.ThesurfacevelocitiesΣvαaretherefore
assumedtobetangential,i.e.Σvα·n=0,α∈K.Itshouldbenotedthateverywherein
thetextwheretermsv·norvα·nappear,theyinfactstandfor(v−

Σv)·nand(vα−
Σv)·n,

whichareframe-indiferentexpressions.Undersuchanassumption1,thesurfacebalance
ofmassonΣcanbepostulatedasfollows[97,Section1.3.5]:

∂ρΣα
∂t
+divΣ(ρΣα

Σv+ΣJdifα)+ραvα ·n=
Σrα, α∈K, (6.4)

wheredivΣ()isthesurfacedivergenceoperator,thetermΣrαdescribesthechemicalreaction

productionratefortheα-thconstituentΣAα,and
ΣJdifα

def
= ρΣα(

Σvα−
Σv)arethesurface

difusiveluxes(againmodelledviaaconstitutiverelation). Thebrackets ·denotethe

jumpofthequantity(inthesenseoftraces)acrossΣ:ϕ
def
=+ϕ−−ϕ,wheretheorientation

isgivenbythe(outer)unitnormalntothesurfaceΣ,i.e.pointing“outside”fromΩ,see

1Thisassumptionallowstoixthespatialcoordinatesystemyα,andidentifytheintrinsicsurface
velocitywiththesurfacevelocity-seeSection1.2.7.in[97].
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Fig.5.1.Thedeinitions(5.5)and(5.7)implythatthedifusiveluxessumuptozero,i.e.

∑

α∈K

ΣJdifα =0, (6.5)

andconservationofmassinthesurfacechemicalreactionsimpliestheconstraint

∑

α∈K

Σrα=0 ⇐⇒
∂ρΣ

∂t
+divΣ(ρΣΣv)=− ρv·n⇐⇒ ρ̀Σ=−ρΣdivΣΣv− ρv·n,(6.6)

whereweused(5.5)and(5.7)toobtainthesurfacemassbalanceofthemixtureasawhole.

Theoperator(̀)denotesthematerialtimederivativewithrespecttothesurfacebarycentric

velocity(̀)
def
= ∂()

∂t
+Σv·∇Σ().

Thebracketedtermineq.(6.4)correspondstothemassluxoftheαthconstituent
fromthebulktothesurfaceΣ(orvice-versa),andthusdescribesthecorrespondingad-
sorption/desorptionratesΣsαdeinedas

±(Σsα)
def
=∓±ρα

±vα·n, α∈K. (6.7)

Thetotalsorptionrate,whichmeasuresthetotalgainorlossofmassoftheαthconstituent
isdeinedas

Σsα
def
=−(Σsα)+

+(Σsα)=− ραvα ·n. (6.8)

Withthisnotation,thesurfacemassbalance(6.4)takestheform

∂ρΣα
∂t
+divΣ(ρΣα

Σv+ΣJdifα)=
Σrα+

Σsα, α∈K. (6.9)

Letusnotethatthestructureofequation(6.4)correspondstothestructureofageneral
balanceequationatasingularsurfaceembeddedinabulkdomain[see,forexample70,97].
Inourapplication,weneedtotreatallthejumptermswithcertaincaution,especially
wheneverinterpretingthetermswiththe“+”sign,whichdenotecontributionsfromthe
outersideoftheinterface.Inourmodel,theinterfaceΣofinterestisinfactasubsetof
theouterboundary∂Ω,alltheoutwardluxesmustthereforebespeciiedintheformof
boundaryconditions.ThisisdoneisSection6.4.

6.1.2 Molarbalances

Usingtherelations(5.4),wecanrewritethebulkandsurfacemassbalances(6.1)and(6.9)
intermsofmolarconcentrationsasfollows:

Bulk:

∂cMα
∂t
+div(cMαv)+divJ

M,dif
α =rMα ⇐⇒ ċ

M
α=−c

M

αdivv−divJ
M,dif
α +rMα, α∈K, (6.10)

wherethemolardifusiveluxesJM,difα andmolarreactionratesrMα areintroducedinthe
followingway

JM,difα
def
=JdifαM

−1
α , rMα

def
=rαM

−1
α , α∈K. (6.11)

Theconstraints(6.2)and(6.3)canthenberewrittenas
∑

α∈K

MαJ
M,dif
α =0, and

∑

α∈K

Mαr
M

α=0. (6.12)
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Surface:

∂ΣcMα
∂t
+divΣ(ΣcMα

Σv)+divΣΣJM,difα =ΣrMα+
ΣsMα ⇐⇒

`ΣcMα=−
ΣcMαdiv

ΣΣv−divΣΣJM,difα +ΣrMα+
ΣsMα, α∈K, (6.13)

wherethesurfacemolardifusiveluxesΣJM,difα ,molarsorptionratesΣsMα andmolarpro-
ductionratesΣrMαaredeinedas

ΣJM,difα
def
=ΣJdifαM

−1
α ,

ΣsMα
def
=ΣsαM

−1
α ,

ΣrMα
def
=ΣrαM

−1
α , α∈K. (6.14)

Theconstraints(6.5)and(6.6)thenread

∑

α∈K

Mα
ΣJM,difα =0, and

∑

α∈K

Mα
ΣrMα=0. (6.15)

Finally,notethatthedeinitions(6.8)and(6.14),togetherwith(5.7)implythat

∑

α∈K

Mα
ΣsMα=− ρv·n. (6.16)

Weextendthemolar-baseddescriptionofthesurfaceprocessestoaccountalsoforthe
vacanciesassumingthatneitherdifusionnorchemicalreactions/sorptionafectthenumber
ofsurfacesites.Wepostulate(comparewitheq.(6.1.2)):

∂ΣcM0
∂t
+divΣ(ΣcM0

Σv)+divΣΣJM,dif0 =ΣrM0+
ΣsM0, (6.17)

deiningΣJM,dif0 ,ΣrM0and
ΣsM0throughthefollowingadditionalconstraints:

∑

α∈K0

ΣJM,difα =−ΣcMvΣ ,
∑

α∈K0

ΣsMα=0,
∑

α∈K0

ΣrMα=0, (6.18)

whereΣcM isdeinedin(5.2).Addingthesumof(6.1.2)overα∈K,toeq.(6.17),theabove
relationsimplythefollowingformofthebalanceofadsorptionsites

∂ΣcM

∂t
=0, (6.19)

whichimpliesthatΣcM(Σx,t)=ΣcM(Σx,0)=ΣcMini(
Σx),forallt≥0andforallΣx∈Σ.In

particular,assumingtheinitialdistributionofadsorptionsitestobeuniform,i.e.asserting
ΣcMini=constant>0,weget

ΣcM(Σx,t)=ΣcMini∈R
+, forallt≥0,andforallΣx∈Σ. (6.20)

WerelaxthisconditioninthederivationofsurfaceenergeticsinSection7.2.1,allowing
certainsmallcompressibilityinordertoobtainsensiblenotionsofquantitiessuchassurface
tension.
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6.2 Balanceof momentum

6.2.1 Balanceoflinear momentum

Bulk: Balanceoflinearmomentumforthemixtureasawholeispostulatedinthestan-
dardform

∂(ρv)

∂t
+div(ρv⊗v)=divT+ρb, (6.21)

whereTdenotestheCauchystresstensor(speciiedbyaconstitutiverelation)andbis
thespeciicbodyforcedeinedby

ρb
def
=

∑

α∈K

ραbα , (6.22)

wherebα, α∈K,arethespeciicbodyforcesactingonindividualbulkconstituents. We
decomposetheCauchystressintoasphericalpartP(meannormalstress)andatraceless
partS

P
def
=

1

3
TrT, S

def
=T−PI, (6.23)

whereTrA
def
=

∑3
k=1AkkdenotesthetraceofatensorA.

Surface: Thesurfacelinear momentumbalanceontheactivesurfaceΣ(ixedinthe
senseΣv·n=0)ispostulated[97,Section2.1.6]asfollows

∂(ρΣΣv)

∂t
+divΣ (ρΣΣv⊗Σv)+ρv⊗v−T n=divΣ ΣT+ρΣΣb. (6.24)

Here ΣTdenotesthesurface Cauchystresstensor, which weagaindecomposeintoits
sphericalandtracelessparts

ΣP
def
=

1

2
TrΣT, ΣS

def
= ΣT−ΣPΣI, ΣI

def
=I−n⊗n, (6.25)

andΣbisthespeciicdensityofsurfaceforcesdeinedby

ρΣΣb
def
=

∑

α∈K

ρΣ

α
Σbα , (6.26)

whereΣbα,α∈K,arethespeciicsurfaceforcesactingonindividualsurfaceconstituents.
Notethatboththeconvective momentumluxandtheCauchystressfromoutsidethe
domainΩmustbespeciiedaspartsofthemodelboundaryconditions,seeSection6.4.

6.2.2 Balanceofangular momentum

Weassumethe mixturetobenon-polarasawhole,consequently,thebalanceofangular
momentumforthe mixtureasa wholereducestotheassumptionofsymmetryofthe
mixtureCauchystresstensors[see64,Section4.5.3,forthesurfaceangular momentum
balance]:

T=TT , ΣT=ΣTT , (6.27)

wherethesuperscriptT denotesthetransposeofatensor.
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6.3 Balanceofenergy

6.3.1 Balanceofinternalenergy

Bulk: Thebalanceofthetotalenergyofthemixtureasawholeispostulatedin
thestandardsingle-componentformextendedforthepowerofbodyforcesactingonthe
individualconstituentsofthemixture[e.g.23,64,Section4.6.4]

∂

∂t

(

ρ(e+
1

2
|v|2)

)

+div
(

ρ(e+
1

2
|v|2)v

)

=−divJe+div(Tv)+ρb·v+
∑

α∈K

JM,difα ·bMα+se,

(6.28)
whereedenotesthespeciicinternalenergyofthemixture,Jedenotesthebulkenergy
lux,bMαaredeinedas

bMα
def
=Mαbα, α∈K, (6.29)

andserepresentstheenergysources(e.g. duetoradiation),whichwesettozerofor
simplicity,i.e. wetakese≡0. Notethatifbα=b,α∈K,thentheterm

∑
α∈KJ

dif
α ·bα

vanishesdueto(6.2). Withtheuseof(6.21),wecanrewrite(6.28)inthereducedformof
theinternalenergybalance

ρ̇e=T:D−divJe+
∑

α∈K

Jdifα ·bα, (6.30)

whereD
def
= 1
2
(∇v+(∇v)T)denotesthesymmetricpartofthevelocitygradient.Boththe

internalenergyeandtheenergyluxJeaswellasJ
dif
α arespeciiedlaterbytheconstitutive

relations.

Surface: Thebalanceoftotalsurfaceenergyispostulated[97,Section4.6.4]asfollows

∂
(
ρΣ(Σe+1

2
|Σv|2)

)

∂t
+divΣ

(

ρΣ(Σe+
1

2
|Σv|2)Σv

)

−divΣ(ΣTΣv)−ρΣΣv·Σb

−
∑

α∈K

ΣJM,difα ·ΣbMα+div
ΣΣJe−

Σse+ ρ(e+
1

2
|v|2)v−v·T+Je ·n=0, (6.31)

whereΣedenotesthesurfacespeciicinternalenergy,ΣJeisthesurfaceenergylux,
Σseare

theenergysourcesandweintroduced

ΣbMα
def
=Mα

Σbα, α∈K. (6.32)

Asinthebulk,wealsosettheenergysourcesequaltozero,i.e. Σse≡0.Thereducedform
(internalenergybalance)canbederivedfrom(6.31)bysubtractingthekineticenergy
balance(obtainedfrom(6.24)byemployingthemassbalance(6.4)andmultiplyingbyΣv)
leadingto[97,Section4.6.4]:

ρΣΣ̀e=ΣT:∇ΣΣv+
∑

α∈K

ΣJM,difα ·ΣbMα−div
ΣΣJe

− ρ
(

e−Σe+
1

2
|v−Σv|2

)

v ·n+ (v−Σv)·Tn− Je ·n. (6.33)
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6.3.2 Balanceofentropy

Bulk: Balanceofentropyforthemixtureasawholeispostulatedinthefollowingstan-
dardsingle-componentform[64,4.7.3]:

ρ̇η+divJη−sη=Πη ≥0, (6.34)

whereηdenotesthespeciicbulkentropy,Jηdenotestheentropylux,sηistheexternal
entropysourceandΠηisthebulkentropyproduction,whichisrequiredtobenon-negative
inordertofulilthesecondlawofthermodynamics.Thefunctionalformoftheentropy
followsfromthechoiceofthefreeenergy,theconstitutiveprocedurerequirestheidentiica-
tionoftheentropyproductionandtheentropylux,seeSection7.1.Consistentlywiththe
assumptionofzeroenergysourcesusedinthebalanceofenergy,weomitinthefollowing
theexternalentropysourcesineq.(6.34)bysettingsη≡0.

Surface: Thesurfaceentropybalanceispostulated[64,Section4.7.3]asfollows:

ρΣΣ̀η+divΣΣJη−
Σsη+ ρ(η−

Ση)v+Jη ·n=
ΣΠη≥0, (6.35)

whereΣηisthesurfacespeciicentropy,ΣJηisthesurfaceentropylux,
Σsηisthesurface

externalentropysource(settozerobyanassumptionΣsη≡0)and
ΣΠηisthesurface

entropyproduction–non-negativeinordertosatisfythesecondlawofthermodynamics.

6.4 Boundaryconditions

Thesystemofbalanceequationsinthebulkandattheactivesurfacemustbesupple-
mentedbysuitableboundaryconditions.Inparticular,weneedtoaddressthefollowing
boundaries:∂Ω=Σ∪Γ∪Γin∪Γout,andtheboundaryoftheactivesurface∂Σ.Forthe
consideredproblemwithinlowandoutlowboundary(seeFig.5.1),wemayconsiderthe
followingboundaryconditions.

•InlowboundaryΓin:Attheinlowboundary,wespecifytheinlowmixturevelocity
andtemperatureandthemolardifusiveluxesandmolarconcentrationsforallthe
species:

v=vin, (6.36a)

JM,difα =(JM,difα )in, α∈K, (6.36b)

cMα=(c
M

α)
in, α∈K, (6.36c)

ϑ=ϑin. (6.36d)

•OutlowboundaryΓout:Attheoutlowboundary,weprescribenormaloutlow,
normaltractiongivenbyuniformouterpressureieldandzeronormaldifusiveluxes
ofmassandenergy:

vτ=0, (6.37a)

n·Tn=−Pout, (6.37b)

JM,difα ·n=0, α∈K, (6.37c)

Je·n=0. (6.37d)
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•ActivesurfaceΣ:
Ontheactivesurfaceweneedtospecifytheouterluxes. Weshallconsiderasystem
isolatedfromitsexteriorbysettingtozerooutermassluxes,energyandentropy
luxesandassumingafree-slipcondition2. Weachievethisbysetting

+v·n=0, (6.38a)
+JM,difα ·n=0, α∈K, (6.38b)

(+Tn)τ=0, (6.38c)
+Je·n=0, (6.38d)
+Jη·n=0. (6.38e)

•Non-activesurface- Γ:Ontherestoftheboundarywemayprescribeanyset
ofstandardboundaryconditions. Considering,forexamplealsonon-penetration
conditionsandfree-slip,wecanimpose

v·n=0, (6.39a)

JM,difα ·n=0, α∈K, (6.39b)

(Tn)τ=0, (6.39c)

JM,difα ·n=0, α∈K, (6.39d)

Je·n=0. (6.39e)

•Boundaryoftheactivesurface: Attheboundaryoftheactivesurface∂Σ,see
Fig5.1,weprescribezerosurfacevelocityandmolardifusiveluxesofallconstituents
andweimposeinsulatingboundaryconditionswithrespecttotheenergyandentropy
luxes:

Σv=0, (6.40a)

JM,difα =0, α∈K0, (6.40b)
ΣJe·n

Σ=0, (6.40c)
ΣJη·n

Σ=0. (6.40d)

2Alternatively,wecoulduseno-slipconditions,i.e.take+v=0withoutspecifying+Tn.
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7. Constitutive modelling

7.1 Constitutive modelling - bulk
The constitutive relations in the bulk are delivered by specifying two scalar quantities –
the specific molar Gibbs’ free energy gM, and the rate of entropy production Πη – and
constructing constitutive relations that ensure non-negativity of the entropy production.
Here, with the exception of chemical and sorption kinetics, we look for constitutive relations
within the framework of Classical Irreversible Thermodynamics (CIT) [23], which coincides
for linear constitutive relations with the approach based on the principle of maximization
of rate of entropy production [79].

7.1.1 Bulk Gibbs’ free energy
We start from a fundamental thermodynamic relation (under the assumption of local equi-
librium) defining the entropy density ρη as a function of internal energy density and mass
densities of the constituents1

ρη = ρ̂η(ρe, ρα) , α∈K . (7.1)

Then we define the specific entropy density η̂ in terms of the specific internal energy e, the
specific volume 1

ρ
, and the mass fractions cα by

η̂(e, 1
ρ
, cα) def= 1

ρ
ρ̂η(ρe, ρcα) , α∈K . (7.2)

Assuming ∂η̂
∂e
> 0, we can invert (7.2) as follows:

e = ê(η, 1
ρ
, cα) , α∈K . (7.3)

The partial derivatives of (7.3) define the fundamental quantities: the temperature ϑ, the
thermodynamic pressure p and the chemical potentials µα:

ϑ
def= ∂ê

∂η
, p

def= −∂ê

∂ 1
ρ

, µα
def= ∂ê

∂cα

, α∈K . (7.4)

It is convenient to replace the entropy and density as primitive variables by temperature
and pressure, which can be achieved by assuming invertibility of the first two relations in
(7.4) and defining the specific Gibbs’ free energy g = ĝ(ϑ, p, c1, . . . , cN) as the corresponding
Legendre transform of ê with respect to 1

ρ
and η:

g
def= e− ϑη + p

ρ
and ĝ(ϑ, p, c1, . . . , cN) sup

1
ρ

,η

(
ê

(
η,

1
ρ
, cα

)
− ϑη + p

ρ

)
. (7.5)

Consequently, we obtain
∂ĝ

∂ϑ
= −η , ∂ĝ

∂p
= 1
ρ
,

∂ĝ

∂cα

= µα , α∈K . (7.6)

1Throughout the whole paper, the notation f = f̂(∗α), α∈K, abbreviates f = f̂(∗1, . . . , ∗N ).
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Alternatively,inordertoworkwithmolar-basedquantities,wedeinethemolarGibbs
potentialgM,themolarHelmholtzfreeenergyψM,themolarinternalenergyeM andthe
molarentropyηM throughtheidentities

cMgM
def
=ρg, cMψM

def
=ρψ, cMeM

def
=ρe, cMηM

def
=ρη, (7.7)

whichistobeunderstood,forexamplefortheGibbs’freeenergyinthesense

ĝM(ϑ,p,xα)
def
=

(
∑

β∈K

Mβxβ

)

  
=ρ/cM

ĝ

(

ϑ,p,
Mαxα

∑
β∈KMβxβ

  
cα

)

, α∈K. (7.8)

Thisdeinitiongives,withthehelpof(7.5)andthebulkEulerrelation(7.13),thefollowing
identities

∂̂gM

∂ϑ
=−ηM ,

∂̂gM

∂p
=
1

cM
,

∂̂gM

∂xα
=µMα, α∈K, (7.9)

wherethemolarchemicalpotentialisdeinedas

µMα
def
=Mαµα, α∈K. (7.10)

Inourapplication,weneednotdirectlyspecifyaparticularfunctionalformforthe(molar)
Gibbs’freeenergy,itsuicestochoosethechemicalpotential. Herewecouldadoptthe
standardformfor(possiblynon-ideal)mixtures:

µMα(ϑ,p,xβ)=µ
M

α
0(ϑ,p)+Rϑlnζα(xβ), α,β∈K, (7.11)

whereζαisthechemicalactivityandRistheuniversalgasconstant.Inthefollowing,we
howeverconsider,forsimplicity,anidealmixtureinthebulkwheretheactivityequalsthe
molarfraction,i.e.ζα=xα.Thismeansthatthemolarchemicalpotentialµ

M
αreads

µMα=µ
M

α
0(ϑ,p)+Rϑlnxα, α∈K. (7.12)

7.1.2 Entropyproduction

Takingthematerialtimederivative(w.r.t.themixturevelocity)ofρg=cMĝM,using(7.9)
andthefollowingbulkEulerrelation(derivedinC.1,seeC.162)

e−ϑη+
p

ρ
=
∑

α∈K

µαcα ⇐⇒ eM −ϑηM +
p

cM
=
∑

α∈K

µMαxα, (7.13)

weobtain,aftersomemanipulation,thefollowingidentity

ρϑ̇η=ρ̇e−
ρ̇

ρ

(

p−
∑

α∈K

µMαc
M

α

)

−
∑

α∈K

µMαċ
M
α. (7.14)

Employingtheenergybalance(6.30)andthemassbalances(6.3)and(6.10),weobtain

ρϑ̇η=(P+p)divv+S:Dd+
∑

α∈K

JM,difα ·bMα−divJe−
∑

α∈K

µMαr
M

α+
∑

α∈K

µMαdivJ
M,dif
α ,(7.15)

120



whereDddef
=D−1

3
tr(D)I. Afterdivisionbyϑandsomemanipulation,wearriveat

ρ̇η=−div

(
Je−

∑
α∈K µM

αJM,dif
α

ϑ

)

+
(P+p)divv

ϑ
+

S:Dd

ϑ
+Je·∇

(
1

ϑ

)

−
∑

α∈K

JM,dif

α ·

{

∇

(
µM

α

ϑ

)

−
bM

α

ϑ

}

−
1

ϑ

∑

α∈K

µM

αrM

α . (7.16)

Comparing(7.16)withthebulkentropybalance(6.34),wepostulatethebulkentropylux
intheform

Jη=
Je−

∑
α∈K µM

αJM,dif
α

ϑ
. (7.17)

Thisgivesthebulkrateofentropyproductionas

Πη=
(P+p)divv

ϑ
+

S:Dd

ϑ  
Πmech

η

+Je·∇
(

1

ϑ

)

−
∑

α∈K

JM,dif

α ·

{

∇

(
µM

α

ϑ

)

−
bM

α

ϑ

}

  
Πdif

η

−
1

ϑ

∑

α∈K

µM

αrM

α

  
Πchem

η

,

(7.18)
see[23].Ithastheformofageneralizedproductofthermodynamic“ainities”and“luxes”
wheretheindividualtermscorrespondtotheentropyproductiondueto mechanicaldis-
sipationΠmech

η (volumetricandisochoric),energyand massdifusionΠdif
η andchemical

reactionsΠchem
η ,respectively.

7.1.3 Constitutiverelationsinthebulk

Withtheentropyproductionintheformofageneralizedproductofthermodynamic“aini-
ties”and“luxes”,onecanproposeconstitutiverelationsinsuchaformthatthesecond
lawofthermodynamics–thenon-negativityoftheentropyproduction–isautomatically
satisied.Inthebulk,weconsiderarheologicalmodelforacompressibleviscousluidand
considertwotypesoflinearconstitutiverelationsforheatconductionand massdifusion,
onebasedontheclassicalCITprocedure,theotherbeingof Maxwell-Stefantype.

Followingtheso-calledCurieprinciplestatingthatacross-couplingoccursonlyamong
termsofthesametensorialrank,itfollowsfrom(7.18)thatascalarcross-couplingis
possiblebetweenmechanicalcompactionandchemicalkinetics,andvectorialcross-coupling
ispossiblebetweendifusiveheatandmasstransfer.Sinceforchemicalreactions,thelinear
constitutiverelationsframeworkistoorestrictiveandprobablyvalidonlyinverylimited
casesnearthethermodynamicequilibrium,weshallfollowtheapproachsuggestedby[11]
andprovidenon-linearconstitutiverelations.Consequently,wedonotconsidertheformer
cross-efects.Thethermo-difusioncross-couplingisconsideredonlyinthecontextofCIT,
whilefor Maxwell-Stefantyperelationsfor massdifusion,cross-coupling withthermal
conductionisalsoignoredforsimplicity.

• Volumetricandsheardeformation-bulkrheology:
Theirsttwotermsin(7.18)denotedbyΠmech

η correspondto mechanicalentropy
productionbycompactionandisochoricdeformations,respectively,andwithinCIT,
thelinearainity-luxrelationsyieldtheclassical modelofaviscouscompressible
Newtonianluid:

P+p=
3λ+2ν

3
divv, (7.19)

S=2νDd, (7.20)
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where λandνareviscosityparameterssuchthat3λ+2ν
3

≥0(bulkviscosity),ν≥0
(shearviscosity)implyingnon-negativityofthecontributionsofthese mechanical
dissipationmechanismstotheentropyproduction.Inviewof(7.19)and(7.20),the
Cauchystressreads

T=−pI+λdivvI+2νD. (7.21)

• Thermo-difusion- CIT:
Thethermo-difusioncontributionΠdif

η totheentropyproductionin(7.18)within
theCIT mustbeirstrecastintoaproductofindependentthermodynamicalluxes
andainities.Thedependenceisduetotheconstraint(6.2).Notationallytheeasiest
wayistoswitchfrommolarbasedtomassbasedquantitiesandeliminateforexample
thesolventluxJdif

N .Thisyields

Πdif
η =Je·∇

(
1

ϑ

)

−
∑

α∈K\{N}

Jdif

α ·

{

∇
(

µα−µN

ϑ

)

−
bα−bN

ϑ

}

, (7.22)

and,consequently,theCITyieldsthefollowinglinearconstitutiverelations

⎛

⎜
⎜
⎜
⎜
⎝

−Jdif
1

...
−Jdif

N−1

Je

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

L11 ... L1,N−1 L1,N
...

...
...

LN−1,1 ...LN−1,N−1 LN−1,N

LN,1 ... LN,N−1 LN,N

⎞

⎟
⎟
⎟
⎟
⎠

  
L

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∇
(

µ1−µN

ϑ

)
−

(
b1−bN

ϑ

)

...

∇
(

µN−1−µN

ϑ

)
−

(
bN−1−bN

ϑ

)

∇
(

1
ϑ

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(7.23)

whereLisapositivesemi-deinitematrixinordertocomplywiththesecondlawof
thermodynamics.Theof-diagonalelementsofLarerestricted(withinCIT)byOn-
sager’sreciprocityrelations,e.g.[23],postulatingsymmetryofthe matrixL. Alter-
natively,byadoptingthesametypeofconstitutiverelationsformolarbaseddifusion
luxes,employingtheconstraint(6.12),onearrivesat

⎛

⎜
⎜
⎜
⎜
⎝

−JM,dif

1
...

−JM,dif

N−1

Je

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

L̃11 ... L̃1,N−1 L̃1,N
...

...
...

L̃N−1,1 ...L̃N−1,N−1 L̃N−1,N

L̃N,1 ... L̃N,N−1 L̃N,N

⎞

⎟
⎟
⎟
⎟
⎟
⎠

  

L̃

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∇
(

µM
1−µM

N,1

ϑ

)

−
(

bM
1−bM

N,1

ϑ

)

...

∇
(

µM
N−1−µM

N,N−1

ϑ

)

−
(

bM
N−1−bM

N,N−1

ϑ

)

∇
(

1
ϑ

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(7.24)

where

µM

α,β
def
=

Mα

Mβ

µM

β, bM

α,β
def
=

Mα

Mβ

bM

β α,β∈K, (7.25)

andL̃isagainasymmetricpositivedeinitematrix.

• Maxwell-Stefandifusion:
Alternatively,onemayprovideconstitutiverelationsinvolvingmassdifusioninthe
formoftheso-called Maxwell-Stefanequations[66,105],whichexpresslocalforce
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balance between the frictional forces due to mutual motion of the constituents and
the thermodynamic forces driving the diffusion. A derivation of Maxwell-Stefan
equations within the Class-II mixture theory, where individual momenta balances
are postulated, has been delivered in [11] by several ways. Here we briefly outline a
possible derivation within a CIT setting, considering for simplicity, only the mass-
diffusion contribution to the entropy production, i.e. ignoring a possible thermo-
diffusional coupling. Taking into account only the mass-diffusion entropy production
denoted by Πdiff−m

η , we have

Πdiff−m
η

def= −
∑
α∈K

JM,diff
α ·

{
∇
(
µM

α

ϑ

)
− bM

α

ϑ

}
= −

∑
α∈K

Jdiff
α ·

{
∇
(
µα

ϑ

)
− bα

ϑ

}

= −
∑
α∈K

udiff
α ·

{
ρα∇

(
µα

ϑ

)
− ρα

bα

ϑ
− ραΛ

}
, (7.26)

where in the last expression we have introduced the diffusive velocities

udiff
α

def= Jdiff
α

ρα

= vα−v , α∈K , (7.27)

and an auxiliary function Λ, which does not contribute to the entropy production
due to the constraint (6.2). Choosing a value of Λ such that the sum of the cofactors
vanishes, meaning that

∑
α∈K

{
ρα∇

(
µα

ϑ

)
− ρα

bα

ϑ
− ραΛ

}
= 0 , (7.28)

which leads to

Λ = 1
ρ

∑
α∈K

{
ρα∇

(
µα

ϑ

)
− ρα

bα

ϑ

}
. (7.29)

We can recast (7.26) to the form

Πdiff−m
η = −

∑
α∈K

udiff
α · ddiff

α , (7.30)

where the “diffusional thermodynamic forces” ddiff
α take the form

ddiff
α

def= ρα

⎧⎨⎩∇
(
µα

ϑ

)
−
∑
β∈K

cβ∇
(
µβ

ϑ

)
− bα−b

ϑ

⎫⎬⎭ , α∈K , (7.31)

with b given by (6.22), and satisfy ∑
α∈K

ddiff
α = 0 . (7.32)

This expression can be rewritten with the use of the bulk Gibbs-Duhem relation
(C.163):

−ηdϑ+ 1
ρ
dp =

∑
α∈K

cαdµα , (7.33)
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with differentials replaced by spatial gradients, and with the help of the bulk Euler
relation (C.162) as follows2:

ddiff
α = ρα∇

(
µα

ϑ

)
− cα

ϑ
∇p− ραh∇

(1
ϑ

)
− ρα

bα−b
ϑ

, α∈K , (7.34)

where h is the specific bulk enthalpy, defined as

h
def= e+ p

ρ
. (7.35)

The Maxwell-Stefan relations are now obtained from

Πdiff−m
η = −

∑
α∈K

udiff
α · ddiff

α

(7.32)= −
∑

α∈K\{N}
(udiff

α −udiff
N ) · ddiff

α , (7.36)

as follows: employing the linear constitutive relations for ddiff
α , α ∈ K \ {N} via a

matrix ταβ of dimension (N−1)×(N−1):

ddiff
α = −

∑
α∈K\{N}

ταβ(udiff
β −udiff

N ) , α∈K \ {N} , (7.37)

and extending the matrix ταβ to N × N so that ∑β∈K ταβ = 0, α ∈ K, yields the
symmetrized expression

ddiff
α = −

∑
α∈K

ταβ(udiff
β −udiff

α ) , α∈K . (7.38)

Next, considering binary interactions, the phenomenological interaction coefficients
ταβ can be modelled as [11]

ταβ = −fαβραρβ , α, β∈K , (7.39)

where fαβ are positive friction coefficients (for α ̸=β). Such a form ensures thermody-
namic consistency Πdiff−m

η ≥ 0. Finally, assumption (7.32) reads under the relation
(7.39) as follows

0 =
∑

α,β∈K

fαβραρβ(udiff
α −udiff

β ) =⇒ fαβ = fβα α, β∈K , (7.40)

i.e. the matrix fαβ is symmetric. Rewriting back in terms of diffusive fluxes, we
obtain the following form of the Maxwell-Stefan equations

−
∑
β∈K

fαβ(ρβJdiff
α −ραJdiff

β ) = ρα∇
(
µα

ϑ

)
− cα

ϑ
∇p− ραh∇

(1
ϑ

)
− ρα

bα−b
ϑ

, α∈K,

(7.41)

together with the constraint (6.2). In the chemical engineering literature, molar
based quantities are usually employed and the Maxwell-Stefan equations are written
in the form

−
∑
β∈K

xβJM,diff
α − xαJM,diff

β

Dαβ

= cM
α

Rϑ
∇µM

α − cα

Rϑ
∇p− ραh−cM

αµ
M
α

Rϑ
∇ lnϑ− ρα

Rϑ
(bα − b) ,

(7.42)
2 From a derivation based on Class-II constitutive relations (i.e. resolving momentum balances of

individual constituents), the relation (7.34) would be modified by replacing ραh by ρhα where hα are
partial specific enthalpies, see [11].
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whereα∈KandtheMaxwell-StefandifusivitymatrixDisdeinedby

Dαβ
def
=

R

cMMαMβfαβ
, α,β∈K. (7.43)

Providedthatfαβ≥ϵ>0,α,β∈K,α̸=β,togetherwiththeconstraint(6.2)thesystem
(7.42)isinvertible[see12]andtheinversionwhenemployedinthebalanceequations
ensuresnon-negativityofspeciesconcentrations, mathematicallyaverydesirable
property.

Chemicalreactions:
Wenowintroducethenotationandassumptionsrelatedtothechemicalreactions
inthebulk. Thebulkchemicalreactionsarechemicalreactionsamongthebulk
speciesAα,α∈K.Symbolicallywewritethesereactionsas

∑

α∈K

δζ,fα Aα⇌
∑

α∈K

δζ,bα Aα, ζ=1,...,Z. (7.44)

HereZisthenumberofbulkchemicalreactions,δζ,fα ,δ
ζ,b
α aretheforwardandback-

wardstoichiometriccoeicientsoftheαreactantintheζreaction.Thestoichiometric
coeicientofthecombined(forward/backward)ζreactionisdenotedby

δζα
def
=δζ,bα −δ

ζ,f
α , α∈K,ζ=1,...,Z. (7.45)

Withtheuseofstoichiometry,themolarrate rMαofproductionoftheαconstituent
inchemicalreactionscanbeexpressedas

rMα=
Z∑

ζ=1

δζα(R
f
ζ−R

b
ζ)=

Z∑

ζ=1

δζαRζ, α∈K, (7.46)

withRfζandR
b
ζdenotingtheforwardandbackwardreactionratesoftheζthchemical

reactionandRζ
def
=Rfζ−R

b
ζ.TheatomiccompositionofthemoleculesAαallowsus

toexpressthemolarmassMαas

Mα=
R∑

b=1

SbαM b, α∈K, (7.47)

whereRisthenumberofdiferenttypesofatomswithatomicmolarmassesM b

enteringthereactionsandthematrixSbαcapturestheatomiccompositionofAα.

Conservationofmass.Thefollowingwell-knownorthogonalityrelationbetweenthe
stoichiometriccoeicientsandthecompositionmatrix,expressingtheconservationof
atomsintheindividualchemicalreactions,holds:

∑

α∈K

Sbαδζα=0, ζ=1,...,Z,b=1,...R, (7.48)

whichimmediatelyimpliestheconservationofmassinthechemicalreactions(6.12)
since,by(7.46)–(7.48),

∑

α∈K

Mαr
M

α=
Z∑

ζ=1

Rζ
R∑

b=1

M b

∑

α∈K

Sbαδζα=0. (7.49)
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The contribution to the bulk entropy production due to chemical reactions is given
by (see (7.18))

Πchem
η = − 1

ϑ

∑
α∈K

µM
αr

M
α . (7.50)

Using the expression for the molar reaction rate (7.46), we can conclude that

Πchem
η = − 1

ϑ

Z∑
ζ=1

(Rf
ζ − Rb

ζ)Aζ , (7.51)

where we introduced the affinity of the ζ bulk chemical reaction through

Aζ def=
∑
α∈K

µM
α δ

ζ
α , ζ = 1, . . . , Z . (7.52)

Considering the following non-linear constitutive relation for Aζ :

Aζ = βζRϑ ln
⎛⎝Rb

ζ

Rf
ζ

⎞⎠ , βζ ≥ 0 , ζ = 1, . . . , Z , (7.53)

we observe that

Πchem
η = R

Z∑
ζ=1

βζ(Rf
ζ −Rb

ζ)(ln Rf
ζ − ln Rb

ζ) , (7.54)

which implies that Πchem
η ≥ 0 due to the monotone property of the logarithm. Par-

ticularly, for our ideal mixture model (7.12), we express the chemical affinity (7.52)
as

Aζ =
∑
α∈K

µM
α

0δζ
α +Rϑ ln

∏
α∈K

xδζ
α

α , ζ = 1, . . . , Z . (7.55)

Defining the equilibrium constant of the ζth reaction Kchem
ζ (ϑ, p) through

−Rϑ ln
(
Kchem

ζ (ϑ, p)
) def=

∑
α∈K

µM
α

0(ϑ, p) δζ
α , ζ = 1, . . . , Z , (7.56)

and combining (7.53) and (7.55) together, yields

∏
α∈K

xδζ
α

α = Kchem
ζ (ϑ, p)

⎛⎝Rb
ζ

Rf
ζ

⎞⎠βζ

, ζ = 1, . . . , Z . (7.57)

One of the rates Rf
ζ , Rb

ζ has to be modelled, while the other is given by relation
(7.57). One possible choice which yields the standard reaction kinetics is as follows
(
Rf

ζ

)βζ

=kf
ζ (ϑ, p)

∏
α∈K

xδζ,f
α

α ,
(
Rb

ζ

)βζ

= kb
ζ(ϑ, p)

∏
α∈K

xδζ,b
α

α , ζ = 1, . . . , Z ,

(7.58)

and the coefficients kf
ζ (ϑ, p), kb

ζ(ϑ, p) must satisfy kf
ζ

(ϑ,p)
kb

ζ
(ϑ,p) = Kchem

ζ (ϑ, p), ζ = 1, . . . , Z.
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Figure 7.1: Sketch of a lattice model on the active surface Σ. The surface is represented by
a regular grid with distinct adsorption sites, which can be either occupied by a molecule
of adsorbate or empty (vacancy).

Observe that the bulk entropy production due to chemical reactions Πchem
η vanishes

only if Aζ = 0, ζ=1, . . . , Z (the so called principle of detailed balance). In that case,
it follows from (7.55) and (7.56) that

∏
α∈K

xδζ
α

α = Kchem
ζ (ϑ, p) , ζ = 1, . . . , Z , (7.59)

which is the standard equilibrium mass-action law.
Finally, let us note that a possible generalization that allows for cross-coupling be-
tween the individual reactions even in the framework of the above non-linear consti-
tutive relations, is suggested in [11].

7.2 Constitutive modelling - active surface
The phenomenological (macroscopic) constitutive model for the surface thermodynamic
potentials in our model is based on a microscopic idealization of the active surface treated
as a monolayer homogeneous lattice with adsorption sites organized in a regular grid (see
Fig. 7.1). The grid is occupied by N types of surface molecules (adsorbates) ΣA1, . . . ,

ΣAN or
by empty sites (vacancies) denoted ΣA0. In the derivation of thermodynamic potentials in
B.1, we focus on the derivation of a model, in which the molecules do not interact with each
other and each molecule can occupy only one adsorption site, but we also show how the
model can be generalized to include, for example, intermolecular interaction or multi-site
adsorption. In the derivation, we consider the possibility that the grid itself may deform
(stretch/compress) elastically. In what follows, we will further consider an incompressible
limit of this model, where this elastic stretching or compression is negligible and the density
of adsorption sites is constant.

127



7.2.1 Surface free energy
Considering a simple fixed monolayer single-site adsorption without mutual interaction
among the adsorbed particles, one arrives at the following expressions for the molar surface
Helmholtz free energy density (see B.1, (B.147))

ΣψM = −R Σϑ
∑

α∈K0

Σxα(ln Σqα(Σϑ) − ln Σxα) , (7.60)

where Σqα(Σϑ) are the molecular partition functions depending on the surface tempera-
ture Σϑ, which correspond to the internal degrees of freedom of the adsorbed molecules.
Adding a contribution resulting from possible stretching/compression of the lattice in
a simple form ΣψM

0 (Σϑ, 1
ΣcM ), eliminating dependent Σx0=1−∑

α∈K
Σxα, we obtain ΣψM =

Σ̂ψM(Σϑ, 1
ΣcM ,

Σx1, . . . ,
ΣxN). Defining the corresponding surface molar Gibbs free energy

ΣgM = Σ̂gM(Σϑ, Σγ, Σx1, . . . ,
ΣxN) via a Legendre transform of ΣψM with respect to 1

ΣcM :

ΣgM def= ΣψM −
Σγ

ΣcM
and Σ̂gM(Σϑ, Σγ, Σx1, . . . ,

ΣxN) def= sup
1

ΣcM

(
Σ̂ψM

(
Σϑ,

1
ΣcM

, Σxα

)
−

Σγ
ΣcM

)
,

(7.61)
one arrives at the following formula for the surface molar Gibbs free energy (see B.1,
(B.151)):

Σ̂gM(Σϑ, Σγ, Σx1, . . . ,
ΣxN) = ΣgM

0 (Σϑ, Σγ) −R Σϑ
∑
α∈K

Σxα(ln Σqα − ln Σxα)

−R Σϑ

⎛⎝1−
∑
β∈K

Σxβ

⎞⎠⎛⎝ln Σq0 − ln
⎛⎝1 −

∑
β∈K

Σxβ

⎞⎠⎞⎠ , (7.62)

where Σγ denotes the surface tension. From eq. (7.62), we recover the surface molar entropy
density ΣηM, the surface tension Σγ and the surface chemical potentials (with respect to the
vacancies) ΣµM

α −ΣµM
0 as follows (see B.1, (B.152))

∂ Σ̂gM

∂ Σϑ
= −ΣηM ,

∂Σ̂gM

∂Σγ
= − 1

ΣcM
,

∂ Σ̂gM

∂ Σxα

= ΣµM
α −ΣµM

0 , α∈K . (7.63)

The last set of relations (7.63) in particular yields the following explicit relation for the
molar chemical potentials (with respect to vacancies)

ΣµM
α −ΣµM

0 = R Σϑ

{
ln
(
qΣ

0
qΣ

α

)
+ ln

(
Σxα

1 −∑
β∈K

Σxβ

)}
, α∈K0 . (7.64)

In the following, we shall employ the assumption of incompressibility of the lattice in the
sense of the limit

∂

∂Σγ

( 1
ΣcM

)
= −∂2Σ̂gM

∂Σγ2 → 0 & ∂

∂Σϑ

( 1
ΣcM

)
= − ∂2Σ̂gM

∂Σϑ∂Σγ
→ 0 , (7.65)

which implies ΣcM → const., since in view of (7.62) and (7.63), ΣcM depends only on (Σϑ, Σγ)
as it holds 1

ΣcM = − ∂ΣgM
0 (Σϑ,Σγ)
∂Σγ

. In this “relaxed” sense we also understand the condition
(6.20).
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Remarks

7.2.1 Modelextension.Thepresentedmodelrepresentsarathersimpliiedsituationof
monolayersingle-siteadsorptiononahomogeneouslatticewithoutinteractionamongthe
adsorbedmolecules.Ifonewouldliketoapplyamoreadvancedmodelforthepurposeof
themacroscopicmodelling,itisonlynecessarytoidentifythethermodynamicpotentials
(e.g. Gibbs,Helmholtz). Theextendedmodelsaretypicallyformulatedintermsofthe
correspondingcanonicalpartitionfunction[see,e.g.72,81,31,84],theprocedureoutlined
inB.1providesthewayhowtoidentifythethermodynamicpotentials.Fromthispointof
view,whatwepresenthereshouldbeviewedasaframeworkthatallowsonetoincorporate
amuchmoresophisticateddescriptionofthecatalyticsurfaceproperties.

7.2.2 Surfaceentropyproduction

ThespeciicsurfacedensitiesofGibbs,Helmholtzandinternalenergyandentropyare
deinedthroughtherelations

ρΣΣg
def
=ΣcMΣgM , ρΣΣψ

def
=ΣcMΣψM , ρΣΣe

def
=ΣcMΣeM , ρΣΣη

def
=ΣcMΣηM .(7.66)

WestartfromtheexpressionforthemolarGibbspotential

ΣgM =ΣeM −ΣϑΣηM −
Σγ
ΣcM
, (7.67)

andapplyaconvectivetimederivative(withrespecttothesurfacevelocityΣv)to
ΣgM =Σ̂gM(Σϑ,Σγ,Σx1,...,

ΣxN).Aftersomemanipulationwiththeuseofrelations(7.66),
identities(7.63)andexploitingthesurfaceEulerrelation(derivedinC.2,see(C.176))

ΣcMΣψM −(Σγ+µM0
ΣcM)=

∑

α∈K

(ΣµMα−
ΣµM0)

ΣcMα, (7.68)

wearriveatthefollowingexpression

ρΣΣϑ̀Ση=Σψρ̀Σ+ρΣΣ̀e−
∑

α∈K

(ΣµMα−
ΣµM0)̀

ΣcMα − `
ΣcM ΣµM0.

Employingthesurfacemassandmolarbalances(6.6),(6.1.2),thesymmetryofthesurface
stresstensor(6.27),thesurfaceenergybalance(6.33),andapplyingthelatticeincompress-
ibilityinthesense(7.65),yields

ρΣΣϑ̀Ση=Σψ(−ρΣdivΣΣv− ρv·n)+ΣT:ΣD+
∑

α∈K

ΣJM,difα ·ΣbMα−div
ΣΣJe

−
∑

α∈K

(ΣµMα−
ΣµM0)(

ΣrMα+
ΣsMα−

ΣcMαdiv
ΣΣv−divΣΣJM,difα )

− ρ
(

e−Σe+
1

2
|v−Σv|2

)

v ·n+ (v−Σv)·Tn− Je ·n, (7.69)

whereΣD
def
= 1

2

(
∇ΣΣv+(∇ΣΣv)T

)
isthesymmetricpartofthesurfacevelocitygradient.

Wesplitthesurfacestresstensor ΣTintoisotropicandtracelessparts,see(6.25),which
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yields

ρΣΣϑ̀Ση=

(

−ρΣΣψ+ΣP+
∑

α∈K

(ΣµM

α−ΣµM

0)ΣcM

α

)

divΣ Σv+ΣS:ΣDd+
∑

α∈K

ΣJM,dif

α ·ΣbM

α −divΣ ΣJe

−
∑

α∈K

(ΣµM

α−ΣµM

0)(ΣrM

α+ΣsM

α)+
∑

α∈K

(ΣµM

α−ΣµM

0)divΣ ΣJM,dif

α

− ρ
(

e−Σe+
1

2
|v−Σv|2+Σψ

)

v ·n+ (v−Σv)·T n− Je ·n, (7.70)

whereΣDddef
= ΣD−1

2
trΣDisthedeviatoric(traceless)partofΣD.

Dividing(7.70)byΣϑ,employingthesurfaceEulerrelation(7.68)ontheirstparenthesis

onther.h.s.,andthedeinitionofthesurfacepressureΣp
def
=−Σγ−ΣµM

0
ΣcM (see(C.175)),after

rearrangingtheterms,wearriveat

ρΣΣ̀η=−divΣ

(
ΣJe−

∑
α∈K(ΣµM

α−ΣµM
0)ΣJM,dif

α
Σϑ

)

+
ΣP+Σp

Σϑ
divΣ Σv+

ΣS:ΣDd

Σϑ
+ΣJe·∇Σ

(
1

Σϑ

)

−
∑

α∈K

(ΣµM
α−ΣµM

0)
Σϑ

(ΣrM

α+ΣsM

α)−
∑

α∈K

ΣJM,dif

α ·

{

∇Σ

(
ΣµM

α−ΣµM
0

Σϑ

)

−
ΣbM

α
Σϑ

}

−
1

Σϑ
ρ

(

e−Σe+
1

2
|v−Σv|2+Σψ

)

v ·n+
1

Σϑ
(v−Σv)·T n−

1
Σϑ

Je ·n. (7.71)

Bycomparing(7.71)withthesurfaceentropybalance(6.35)andusing(7.17),weobtain:

ΣΠη=divΣ

(

ΣJη−
ΣJe−

∑
α∈K(ΣµM

α−ΣµM
0)ΣJM,dif

α
Σϑ

)

+
ΣP+Σp

Σϑ
divΣ Σv+

ΣS:ΣDd

Σϑ
+ΣJe·∇Σ

(
1

Σϑ

)

−
∑

α∈K

ΣµM
α−ΣµM

0
Σϑ

ΣrM

α −
∑

α∈K

ΣµM
α−ΣµM

0
Σϑ

ΣsM

α −
∑

α∈K

ΣJM,dif

α ·

{

∇Σ

(
ΣµM

α−ΣµM
0

Σϑ

)

−
ΣbM

α
Σϑ

}

−
1

Σϑ
ρ

(

e−Σϑη+
1

2
|v−Σv|2

)

v ·n+
1

Σϑ
(v−Σv)·T ·n

+ Je

(
1

ϑ
−

1
Σϑ

)

·n−
∑

α∈K

µM
α

ϑ
JM,dif

α ·n. (7.72)

Formula(7.72)suggeststoidentifythesurfaceentropyluxas

ΣJη=
ΣJe−

∑
α∈K(ΣµM

α−ΣµM
0)ΣJM,dif

α
Σϑ

. (7.73)

Furthermore,recallingthatJdif
α =ρα(vα−v),using(6.7),weobtain

∑

α∈K

µM
α

ϑ
JM,dif

α ·n=
∑

α∈K

µα

ϑ
ρα(vα−v) ·n

=−
∑

α∈K

(
+µM

α
+ΣsM

α
+ϑ

+
−µM

α
−ΣsM

α
−ϑ

)

−
1

ϑ

∑

α∈K

µM

αcM

αv ·n. (7.74)

EmployingthebulkEulerrelation(7.13),together withtheboundaryconditions(see
section6.4)whichexcludeluxesfromthe“outer”(+)sideofΩ,andifweomitthe−

superscript,forbrevity,weobtainthesurfaceentropyproductioninthefollowingform:

ΣΠη=
Σ
Πi

η+
Σ
Πt

η, (7.75)
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where
Σ
Πi

ηrepresentstheintrinsicsurfaceentropyproductionduetoprocessesinsidethe

activesurfaceΣand
Σ
Πt

ηcorrespondstothetransferprocessesbetweentheinterfaceand
thebulk,andthesetwotermstaketheform:

Σ
Πi

η
def
=

(
ΣP+Σp

Σϑ

)

divΣ Σv+
ΣS:ΣDd

Σϑ
  

Σ
Πi,mech

η

−
∑

α∈K

ΣJM,dif

α ·

{

∇Σ

(
ΣµM

α−ΣµM
0

Σϑ

)

−

(
ΣbM

α
Σϑ

)}

+ΣJe·∇Σ

(
1

Σϑ

)

  
Σ
Πi,dif

η

−
∑

α∈K

ΣµM
α−ΣµM

0
Σϑ

ΣrM

α

  
Σ
Πi,chem

η

=
Σ
Πi,mech

η +
Σ
Πi,dif

η +
Σ
Πi,chem

η , (7.76)

Σ
Πt

η
def
=−

∑

α∈K

(
ΣµM

α−ΣµM
0

Σϑ
−

µM
α

ϑ

)

ΣsM

α −
1

Σϑ
(v−Σv)τ·(Sn)τ−

1
Σϑ

(

n·Ten−
1

2
ρ|v−Σv|2

)

v·n

−

(

Je·n+ρ

(

e+
p

ρ

)

v·n

)(
1

ϑ
−

1
Σϑ

)

. (7.77)

whereweintroducedthebulk“extrastress”tensor

Tedef
=(P+p)I+S. (7.78)

Ourstrategy(motivatedbytheCITframework)istoregroupthetermsinbothgroups
intheformofageneralizedproductofthermodynamic“luxes”and“ainities”. Whilethe
expression(7.76)isanexactcounterpartof(7.18),thetermsinthetransferpart(7.77)are
morechallengingandallowmultiplepossibilitiesfortheconstructionofthecorresponding
constitutiverelations. WediscusstwopossibilitiesinSection7.2.3.

7.2.3 Constitutiverelationsontheactivesurface

Concerningtheconstitutiverelationswetreattheintrinsicandtransferentropyproduction
terms(7.76)and(7.77)separately, meaningthatwedonotconsideranycross-coupling
efectsbetweenthem.

Intrinsicsurfaceprocesses

Theprocessesofsurfaceentropyproductionduetomechanicaldissipation
Σ
Πi,mech

η (surface
compressionplussurfacesheardeformation),entropyproductionduetosurfacechemical
reactions

Σ
Πi,chem

η and,inally,entropyproductionduetodifusion
Σ
Πi,dif

η (ofheatandof
mass),aretreatedanalogouslytothedissipativeprocessesconsideredinthebulk. Again,
forsimplicity,wedonottakeintoaccountthe mechano-chemicalcrosscoupling,allowing
onlythe“vectorial”couplingbythermo-difusion.

• Surfacecompactionandsheardeformation-surfacerheology:
Concerningthemechanicalcontributiontothesurfaceentropyproduction,theCIT
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constitutiverelationssuggestthefollowingsurfacerheologicalmodel

ΣP+Σp=(Σλ+Σν)divΣΣv, (7.79)
ΣS=2ΣνΣDd, (7.80)

whereΣνandΣλareviscosityparameters,suchthatΣν≥0andΣλ+Σν≥0,whichimplies
that

Σ
Πi,mechη ≥0.ThesurfaceCauchystressthenreads

ΣT=−ΣpΣI+ΣλdivΣΣvΣI+2ΣνΣD. (7.81)

•Surfacechemicalreactions
ChemicalreactionsamongthesurfacespeciesΣAα,α∈K0,canbesymbolicallywritten
asfollows: ∑

α∈K0

Σδζ,fα
ΣAα⇌

∑

α∈K0

Σδζ,bα
ΣAα, ζ=1,...,ΣZ. (7.82)

HereΣZisthenumberofsurfacechemicalreactions,Σδζ,fα ,
Σδζ,bα aretheforwardand

backwardsurfacestoichiometriccoeicientsoftheαthreactantintheζthreaction,
respectively.Sinceingeneralthefreesitescanbeevacuatedor,conversely,occupied
duringasurfacechemicalreaction,weformallyaddthevacanciesΣA0intothereaction
mechanismswiththecorrespondingstoichiometriccoeicients Σδζ,f0 ,

Σδζ,b0.Denoting
thestoichiometriccoeicientofthecombined(forward/backwardζthreaction)by

Σδζα
def
=Σδζ,bα −

Σδζ,fα , α∈K0,ζ=1,...
ΣZ, (7.83)

weimposeforthevacanciesthecondition

Σδζ0
def
=−

∑

α∈K

Σδζα, ζ=1,...,ΣZ, (7.84)

statingthatthetotalnumberofsites(occupiedandvacant)doesnotchangeinthe
chemicalreactions3. Withtheuseofstoichiometry,themolarrateΣrMαofproduction
oftheαconstituentinsurfacechemicalreactionscanbeexpressedas

ΣrMα=

ΣZ∑

a=1

Σδζα(
ΣRfζ−

ΣRbζ)=

ΣZ∑

a=1

Σδζα
ΣRζ, α∈K0, (7.85)

whereΣRfζand
ΣRbζdenotetheforwardandbackwardreactionrateoftheζthsurface

chemicalreactionandΣRζ
def
=ΣRfζ−

ΣRbζ.

Thesurfacechemicalreactioncontributiontothesurfaceentropyproduction(7.76)
is

Σ
Πi,chemη =−

∑

α∈K

ΣµMα−
ΣµM0

Σϑ
ΣrMα. (7.86)

Usingtheexpressionforthemolarreactionrate(7.85),wecanrewriteitas

Σ
Πi,chemη =−

1
Σϑ

ΣZ∑

a=1

(ΣRfζ−
ΣRbζ)

ΣAζ (7.87)

3Infact(7.84)holdsinthisparticularformifeachsurfacemoleculeoccupiesexactlyonesiteandcan

beeasilymodiiedinthemulti-siteadsorptioncasebyassumingΣδζ0
def
=−

∑
α∈Krα

Σδζα,, ζ=1,...,ΣZ,
whererαisthenumberofadsorptionsitesoccupiedbyamoleculeoftypeα.
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where we define the affinity of the ζth surface chemical reaction as

ΣAζ def=
∑
α∈K

(ΣµM
α −ΣµM

0 )Σδζ
α . (7.88)

Considering the following nonlinear constitutive relation for ΣAζ :

ΣAζ = ΣβζR Σϑ ln
⎛⎝ΣRb

ζ

ΣRf
ζ

⎞⎠ , Σβζ ≥ 0 , ζ = 1, . . . , ΣZ . (7.89)

we obtain
ΣΠi,chem

η = R
Z∑

ζ=1

Σβζ(ΣRf
ζ −ΣRb

ζ)(ln ΣRf
ζ − ln ΣRb

ζ) , (7.90)

which implies that ΣΠi,chem
η ≥ 0 due to the monotone property of logarithm. Partic-

ularly, for our model, we can further use the expression for the chemical potential
(7.64) and express the chemical affinity (7.88) as

ΣAζ = R Σϑ

⎧⎨⎩ln
∏

α∈K

(
qΣ

0
qΣ

α

)Σδζ
α

+ ln
∏

α∈K

(
Σxα

1−∑
β∈K

Σxβ

)Σδζ
α

⎫⎬⎭ , ζ = 1, . . . , ΣZ .

(7.91)
Introducing the surface equilibrium constant of the ζth reaction ΣKchem

ζ through

ΣKchem
ζ (Σϑ) def=

∏
α∈K

(
Σqα

Σq0

)Σδζ
α

, ζ = 1, . . . , ΣZ , (7.92)

and by comparing (7.89) and (7.91), we obtain

∏
α∈K

(
Σxα

1−∑K
β=1

Σxβ

)Σδζ
α

= ΣKchem
ζ (Σϑ)

⎛⎝ΣRb
ζ

ΣRf
ζ

⎞⎠Σβζ

, ζ = 1, . . . , ΣZ . (7.93)

One of the rates ΣRf
ζ , ΣRb

ζ has still to be modelled, while the other is then given by
relation (7.93). Following the method presented in Section 7.1.2, one possible choice
of the reaction kinetics would be

(
ΣRf

ζ

)Σβζ

= Σkf
ζ (Σϑ)

∏
α∈K

(
Σxα

1−∑K
β=1

Σxβ

)Σδζ,f
α

, ζ = 1, . . . , ΣZ , (7.94a)

(
Rb

ζ

)βa = Σkb
ζ(Σϑ)

∏
α∈K

(
Σxα

1−∑K
β=1

Σxβ

)Σδζ,b
α

, ζ = 1, . . . , ΣZ , (7.94b)

where Σδζ,f
α , Σδζ,b

α are the forward and backward stoichiometric coefficients of the
ζth reaction, see (7.83), and the coefficients Σkf

ζ (Σϑ), Σkb
ζ(Σϑ) must satisfy

Σkf
ζ

(Σϑ)
Σkb

ζ
(Σϑ) =

ΣKchem
ζ (Σϑ), ζ = 1, . . . , ΣZ.

Observe that, as a consequence of the fact that the logarithm is strictly monotone,
the surface entropy production due to the chemical reactions ΣΠi,chem

η vanishes only
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ifΣAζ=0,ζ=1,...,ΣZ,whichistheso-calledprincipleofdetailedbalance.Inthat
casewehave

∏

α∈K

(
Σxα

1−
∑K
β=1

Σxβ

)Σδζα

=ΣKchemζ (Σϑ), ζ=1,...,ΣZ, (7.95)

representingthesurfaceequilibriummass-actionlaw.

•Thermo-difusion–CIT:
Analogouslyasinthebulk,theconstitutiverelationsforthermo-difusion(within
CIT)takethefollowingform

⎛

⎜
⎜
⎜
⎜
⎝

−ΣJM,dif1
...

−ΣJM,difN−1
ΣJe

⎞

⎟
⎟
⎟
⎟
⎠
= (7.96)

⎛

⎜
⎜
⎜
⎜
⎝

ΣL1,1 ... ΣL1,N−1
ΣL1,N

...
...

...
ΣLN−1,1 ...

ΣLN−1,N−1
ΣLN−1,N

ΣLN,1 ... ΣLN,N−1
ΣLN,N

⎞

⎟
⎟
⎟
⎟
⎠

  
ΣL

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∇Σ
(
Σ̄µM1−

Σ̄µMN,1
Σϑ

)

−
(
ΣbM1−

ΣbMN,1
Σϑ

)

...

∇Σ
(
Σ̄µMN−1−

Σ̄µMN,N−1
Σϑ

)

−
(
ΣbMN−1−

ΣbMN,N−1
Σϑ

)

∇Σ
(
1
Σϑ

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(7.97)

where

Σµ̄Mα
def
=ΣµMα−

ΣµM0,
Σµ̄Mα,β

def
=
Mα
Mβ

Σµ̄Mβ,
ΣbMα,β

def
=
Mα
Mβ

ΣbMβ, α,β∈K.

(7.98)

andwhereΣLisasymmetricpositivesemi-deinitematrixinordertoguarantee
Σ
Πi,difη ≥0.ThediagonalofthematrixcorrespondstothesurfaceFick’slawsformass
difusion(theirstN−1entries)andsurfaceFourier’slawforheatconduction(last
entry),respectively.Theof-diagonaltermsrepresentthecross-couplingefectswhich
arerestricted(withinCIT)byOnsagerreciprocityrelations,[e.g.23],postulating
symmetryofthematrixΣL.

•Thermo-difusion– Maxwell-Stefanequations:
Alternatively,theconstitutiverelationsforsurface massdifusioncantakethe

formof Maxwell-Stefanequations. Startingfrom
Σ
Πi,dif−mη

def
= −

∑
α∈K

ΣJM,difα ·
{

∇Σ
(
ΣµMα−

ΣµM0
Σϑ

)

−
(ΣbMα
Σϑ

)}

,oneproceedsanalogouslyasinthebulk,seethecomputa-

tionbetween(7.26)and(7.43),usingthesurfaceEulerrelation(7.68)andthesurface
Gibbs-Duhemrelation(C.177)intheincompressiblelimit(i.e.forΣcM=const.),one
obtainsthefollowingformofthesurfaceMaxwell-Stefansystem:

−
∑

β∈K

Σxβ
ΣJM,difα −Σxα

ΣJM,difβ
ΣDαβ

=
ΣcMα
RΣϑ
∇ΣΣµ̄Mα−

Σcα
RΣϑ
∇ΣΣp−

ρΣα
Σh−ΣcMα

Σµ̄Mα
RΣϑ

∇ΣlnΣϑ

−
ρΣα
RΣϑ
(Σbα−

Σb),α∈K, (7.99)
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whereΣhisthespeciicsurfaceenthalpydeinedas4

Σh
def
=Σe+

Σp

ρΣ
. (7.100)

ThesurfaceMaxwell-Stefandifusivitymatrixpossessesthefollowingstructure:

ΣDαβ=
R

ΣcMMαMβ
Σfαβ

, α,β∈K, (7.101)

withΣfαβbeingasymmetricsurfacefrictioncoeicientmatrixwithpositiveentries
Σfα,β≥

Σϵ>0,α,β∈K.

Transferprocesses

Wewishtoexploittheentropyproductionarisingduetothetransferofmass,momenta
andenergybetweenthebulkandsurfacephases. Werecallthatwehaveidentiiedthe
correspondingcontributionin(7.77)as

Σ
Πtη=−

∑

α∈K

(
ΣµMα−

ΣµM0
Σϑ

−
µMα
ϑ

)

ΣsMα−
1
Σϑ
(v−Σv)τ·(Sn)τ−

1
Σϑ

(

n·Ten−
1

2
ρ|v−Σv|2

)

v·n

−

(

Je·n+ρ

(

e+
p

ρ

)

v·n

)(
1

ϑ
−
1
Σϑ

)

. (7.102)

Concerningthelinearconstitutiverelationsthatcanbeobtainedfromthisexpression,
severaldiferentsuggestionscanbefoundintheliterature.Surprisingly,someofthose
seemtoviolatetheprincipleofmaterialframeindiference[independenceoftheform
oftheconstitutiverelationsontheobserver,see110]. Forexamplein[86](eq.63)a
non-objective(forϑ̸=Σϑ)termv/ϑ−Σv/Σϑisconsideredasanainityfortheconstitutive
relationofthetype(7.116)forsurfacefriction,orthenon-objective“velocity-modifed

chemicalpotentials”̃µα
def
=µα−|v|

2/2[appearingalsoin7,seeeq.(4.6.7)]areintroduced.

Here,weproposethefollowingtwopossibleformsofconstitutiverelations(ModelA
andModelB)thatarebothconsistentwiththeprincipleofmaterialframeindiference.
TheModelBinadditionprovidescompatibilitywiththejumpconditionsacrossinterfaces.

Transfer modelA
Intheirstapproach,wefollow[10],wheretheauthorarguesthatthe“ainity”v·ncan-
notbeconsideredindependentlyofthesorptionratesΣsMα.Indeedtherelation(6.16)that
expressesmassconservationforsorption,togetherwiththeconsideredboundaryconditions
imply

∑

α∈K

Mα
ΣsMα=ρv·n. (7.103)

4Here,thesameremarkappliesasinthebulkcase,i.e.iftheMaxwell-Stefanrelationswerederived
withinso-calledClassIImixturetheory(whereindividualvelocitiesofmixtureconstituentsaretaken
asindependentvariables),thetermsρΣαhwouldbereplacedbyρ

ΣΣhα where
Σhα arepartialsurface

enthalphies.
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Therefore,providingindependentlyconstitutiverelationsfortheirstandthethirdterm
ontheright-handsideof(7.102),asitispresentedin[7]or[86],contradicts(7.103).On
theotherhand,[10]suggeststoinsert(7.103)into(7.102)toobtain

Σ

Πt(A)η
def
=−

∑

α∈K

(
ΣµMα−

ΣµM0
Σϑ

−
µMα
ϑ
+
Mα
Σϑ

{
n·Ten

ρ
−
1

2
|v−Σv|2

})

ΣsMα

  
Σ
Π
sor(A)
η

−
1
Σϑ
(v−Σv)τ·(Sn)τ

  
Σ
Π
fric(A)
η

−

(

Je·n+ρ

(

e+
p

ρ

)

v·n

)(
1

ϑ
−
1
Σϑ

)

  
Σ
Π
et(A)
η

=
Σ

Πsor(A)η +
Σ

Πfric(A)η +
Σ

Πet(A)η . (7.104)

Wecaninterprettherespectiveentropyproductioncontributionsasdueto(i)sorption(ii)
surfacefrictionand(iii)energytransferacrosstheinterface.Followingthisapproachwe
canformulatetheconstitutiverelations.Forsimplicityandduetothenonlinearcharacter
oftheconstitutiverelationsforsorption,wedonotconsideranycross-couplingefects
amongthesedissipativemechanisms.Letusdiscusstheindividualmechanismsindetail.

•Sorption
Sorptioncanbeformallyviewedasaspecialtypeofchemicaltransformationinvolving
abulksubstance,itssurfacecounterpartandvacancies.Thiscanbewrittenas

Aα+
ΣA0⇌

ΣAα, α∈K. (7.105)

Theforwarddirectionrepresentstheadsorptionprocessresultingintransformation
ofthebulkconstituentAαintothecorrespondingsurfaceconstituent

ΣAα,illingthe
vacancies5.Thereverseprocess,i.e.evacuationofthesiteoccupiedbyΣAαandits
transfertothebulk(formingAα)creatingavacancy

ΣA0intheprocess,iscalled
desorption.Themolarrateoftransferoftheαthconstituentbetweenthebulkand
thesurfaceΣsMαisequaltothediferencebetweentheadsorptionandthedesorption
rates:

ΣsMα=
ΣsMα

ad−ΣsMα
de α∈K. (7.106)

Thesorptioncontributiontothesurfaceentropyproduction(7.104)reads

Σ

Πsor(A)η =−
∑

α∈K

(
ΣµMα−

ΣµM0
Σϑ

−
µMα
ϑ
+
MαΥ

(A)

Σϑρ

)

ΣsMα, (7.107)

whereweabbreviated

Υ(A)
def
=n·Ten−

1

2
ρ|v−Σv|2. (7.108)

Withthechoiceofchemicalpotentialsinthebulk(7.12)andonthesurface(7.64),
weobtain

Σ

Πsor(A)η =−R
∑

α∈K

[(

ln

(
Σq0(

Σϑ)
Σqα(Σϑ)

)

−
µMα
0(ϑ,p)

Rϑ
+
MαΥ

(A)

RρΣϑ

)

+ln

(
Σxα

xα(1−
∑
β∈K

Σxβ)

)]

ΣsMα.

(7.109)

5Thestoichiometryin(7.105)describessingle-siteadsorption,i.e.thecasewheneachmoleculeoccupies
exactlyoneadsorptionsite. For multi-siteadsorption,(7.105)shouldbereplacedbyAα+rα

ΣA0⇌
ΣAα,α∈K,whererαisthenumberofsitesoccupiedbytheαthconstituent.
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Introducing the equilibrium sorption constants Ksor
α (Σϑ, ϑ, p) through

Ksor
α (Σϑ, ϑ, p) def=

(
Σqα(Σϑ)
Σq0(Σϑ)

)
exp

(
µM

α
0(ϑ, p)
Rϑ

)
, α∈K , (7.110)

we get, using also (7.106)

ΣΠsor(A)
η = R

∑
α∈K

ln
(

Ksor
α exp

(
−MαΥ(A)

Rρ Σϑ

)
xα(1−∑

β∈K
Σxβ)

Σxα

)
(ΣsM

α
ad−ΣsM

α
de) .

(7.111)
Proposing the following non-linear constitutive relations:

ΣsM
α

ad

ΣsM
α

de = Ksor
α exp

(
−MαΥ(A)

Rρ Σϑ

)
xα(1−∑

β∈K
Σxβ)

Σxα

, α∈K , (7.112)

and referring to the monotone property of the logarithm, we observe that ΣΠsor(A)
η ≥0.

One of the rates ΣsM
α

ad, ΣsM
α

de still has to be modelled, while the other follows from
(7.112). Since in equilibrium Υ(A)

eq=0, and ΣsM
α

ad=ΣsM
α

de, the equilibrium condition
for sorption reads

1 = Ksor
α

xα(1−∑
β∈K

Σxβ)
Σxα

. (7.113)

This is the well-known Langmuir adsorption isotherm [see, e.g. 1]. Motivated by
the kinetic derivation of the Langmuir adsorption isotherm [see 56], the following
constitutive relations seem plausible:

ΣsM
α

ad = Σkad−sor
α xα(1−

∑
β∈K

Σxβ) , α∈K , (7.114a)

ΣsM
α

de = Σkde−sor
α

Σxα , α∈K , (7.114b)

where by comparison with (7.112) the adsorption/desorption rate coefficients Σkad−sor
α ,

Σkde−sor
α must satisfy

Σkad−sor
α

Σkde−sor
α

= Ksor
α exp

(
−MαΥ(A)

Rρ Σϑ

)
, α∈K . (7.115)

Henry isotherm. In [10] sorption constitutive relations are provided for a fluid-fluid
interface in a similar spirit. For an ideal mixture model due to the absence of the
constraint (6.20) of fixed adsorption sites, this leads to the so-called Henry isotherm
and associated sorption kinetics.

Non-absorbing species. While we assume implicitly that all bulk constituents can
adsorb, i.e. that they have their surface counterparts, we will argue that this is not
a restrictive assumption. Assuming that a particular bulk specie Aα has very big
(positive) bonding energy, we obtain qα→0+ (take ϵj → +∞ , ∀j in the definition of
Σqα in the discussion under (B.135)). In view of (7.110), this implies Ksor

α →0+ for
such species, and consequently, as a result of (7.113), we arrive at Σxα→0+, meaning
that these species cannot accumulate on the active surface Σ and are thus effectively
non-adsorbing.
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• Surfacefriction:
Weproposethefollowingsimplelinearrelation,theso-calledNavier-slipcondition,
betweenthetangentialslipvelocityandthetangentialcomponentofthesurface
tractionforce:

(Sn)τ=−k(v−Σv)τ, (7.116)

wherek≥0inordertoensure
Σ
Πfric(A)

η ≥0.

• Energytransferacrosstheinterface:
Forthecombinedconductiveandconvectivelatentheatluxacrosstheinterface,we
considerthefollowinglinearconstitutiverelation

Je·n+ρ(v·n)

(

e+
p

ρ

)

=−κ
(

1

ϑ
−

1
Σϑ

)

, (7.117)

whereκ≥0implies
Σ
Πet(A)

η ≥0.Theleft-handsiderepresentsthedifusiveenergylux
plustheconvectiveenthalpyluxintotheinterfaceandsuchformcanbefounde.g.
in[32].

Transfer model B:
Analternativeconstitutivemodelforthetransferprocessesfollowsfromtherequirement

ofcompatibilitywiththejumpconditionsinthefollowingsense. Takingintoaccountthe
outerdomain(whichwenowefectivelyignoreduetothechoiceoftheboundaryconditions)
andconsideringalimitsituationinwhichalltheinterfacialprocessesvanish,inparticular
neglectingtransferofsurfacemass,surfacemomentaandsurfaceenergyalongtheinterface,
weshouldrecoverthetraditionaljumpconditionsfromthetheoryofcontinuummechanics
withaninternalsurfaceofdiscontinuity[e.g.45].Inordertoachievethis,weirstrewrite
(7.77)equivalentlyasfollows

Σ
Πt

η=−
∑

α∈K

(
ΣµM

α−ΣµM
0

Σϑ
−

µM
α

ϑ

)

ΣsM

α −
1

ϑ
(v−Σv)τ·((Sn)τ−ρv·n(v−Σv)τ)

−
1

ϑ

(

n·Ten−ρ(v·n)2+ρ
|v−Σv|2

2

)

v·n

−

(

Je·n+ρ

(

e+
p

ρ
+

|v−Σv|2

2

)

v·n−(Ten)·(v−Σv)

)(
1

ϑ
−

1
Σϑ

)

. (7.118)

Asintheprevious ModelA,wecannotkeepthethirdtermontheright-handsidewith
“ainity”v·nasindependent,duetotheconstraint(7.103). Proceedingasbeforeby
absorbingthistermintotheirsttermontheright-handsideof(7.118),weobtain

Σ

Πt(B)
η

def
=−

∑

α∈K

(
ΣµM

α−ΣµM
0

Σϑ
−

µM
α

ϑ
+

Mα

ϑρ
Υ(B)

)

ΣsM

α

  
Σ
Π

sor(B)
η

−
1

ϑ
(v−Σv)τ·((Sn)τ−ρv·n(v−Σv)τ)

  
Σ
Π

fric(B)
η

−

(

Je·n+ρ

(

e+
p

ρ
+

|v−Σv|2

2

)

v·n−Ten·(v−Σv)

)(
1

ϑ
−

1
Σϑ

)

  
Σ
Π

et(B)
η

=
Σ

Πsor(B)
η +

Σ

Πfric(B)
η +

Σ

Πet(B)
η , (7.119)
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whereweabbreviated

Υ(B)def
=n·Ten−ρ(v·n)2+

1

2
ρ|v−Σv|2. (7.120)

Concerningtheconstitutiverelationsforthethreedissipative mechanisms:sorption,
surfacefrictionandenergytransfer,asintheformulationofModelB,weprovidenon-linear
logarithmicconstitutiverelationsforthesorptionratesandlinearconstitutiverelationsfor
thelattertwo. Weobtainthefollowingrelations

• Sorption
Thesorptionkineticsfor ModelBdifers(providedweusethesametypeoflogarith-
micconstitutiverelation)onlyintheformofthefactorΥ.

ΣsM
α

ad

ΣsM
α

de =Ksor
α exp

(

−
MαΥ(B)

RρΣϑ

)
xα(1−

∑
β∈K

Σxβ)
Σxα

. (7.121)

Again,oneoftheratesΣsM
α

ad,ΣsM
α

destillhastobe modelled,whiletheotherfollows
from(7.121). Again,inequilibriumΥ(B)

eq=0,sothezeroentropyproductioncondi-
tionforsorptionequilibriumimpliestheLangmuiradsorptionisotherm(7.113). A
kineticsconstitutiverelationoftheform(7.114)isagainpossible,replacingonlyΥ(A)

byΥ(B)in(7.115).

• Surfacefriction:Usingalinearconstitutiverelation,thefollowingalternativeform
oftheNavier-slipconditionisobtained

(Sn)τ−ρv·n(v−Σv)τ=−k(v−Σv)τ, (7.122)

wherek≥0inordertoensurethat
Σ
Πfric(B)

η ≥0.Thismodelofsurfacefrictiondifers
from ModelAbythepresenceofa momentumexchangetermdueto masstransfer
−ρv·n(v−Σv)τ,whichcanbefoundforexamplein[7]or[86],buthereitisexpressed

inaframe-indiferentform6,whilein[86]thegenerallynon-objectivetermvτ

ϑ
−

Σvτ
Σϑ

ispresent.

• Energytransferacrosstheinterface:
Forthecombinedconductiveandconvectivelatentheatluxacrosstheinterface
ModelB,weconsideralinearconstitutiverelationoftheform

Je·n+ρ

(

e+
p

ρ
+

|v−Σv|2

2

)

v·n−(Ten)·(v−Σv)=−κ
(

1

ϑ
−

1
Σϑ

)

, (7.123)

whereκ≥0inordertoensurethat
Σ
Πet(B)

η ≥0. This modeldifersfrom ModelAby

thepresenceofa“kinetic”termρ|v−Σv|2

2
intheconvectivecontributionandbythe

extrastresspower(Ten)·(v−Σv).Letusnotethatkinetictermsoftheirsttypeare
presentbothforinstancein[7]or[86],butunlikehere,inanon-objectiveform.The
motivationforthepresenceofthesecondtermsisclariiedbelow.

6Thetermv·nisnotframeindiferentbutitstandsthroughoutthe manuscriptforaframeindiferent
term(v−Σv)·n, whereweconsistentlyomitthetermΣv·nworkinginaframewheretheboundaryis
ixed.
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Letusnowconsiderthesituationdescribedatthebeginningofthepartdevotedto
thederivationof ModelB.This meansthatwedonotignoretheouterdomainand,si-
multaneously,thatwereducetheinterfacetojustadiscontinuitybetweenthetwobulk
subdomains.Inparticularwedonotallowaccumulationofmass,energy,stressorentropy
intheinterface,andalsothesurfaceluxesandsurfacechemicalreactionratesareidenti-
callyzero,i.e.wesetρΣ

α=0,Σe=0,Ση=0,ΣµM
α=0,andJΣ

e=0,ΣT=0,ΣJdif
α =0,Σrα=0,forall

α∈K0.Thesurfacemass,momentumandenergybalances(6.4),(6.24)(6.33)thenreduce
tothefollowingjumpconditions

ραvα ·n=0, α∈K =⇒ ρv ·n=0, (7.124a)

ρv⊗v−T n=0, (7.124b)

Je ·n+ ρ
(

e+
1

2
|v−Σv|2

)

v ·n− (v−Σv)·T n=0 (7.124c)

(7.124a),(7.124b)
=⇒ Je ·n+ ρ

(

e+
1

2
|v|2

)

v ·n− v·T n=0. (7.124d)

Thesurfaceentropyproductionduetotransferprocessesacrosstheinterface(7.119)ifthe
outer(+)partofthedomainistakenintoaccountreadsasfollows(recallthatweconsider
n=−n=−+n):

Σ
Πt

η=
∑

α∈K

(
+µM

α
+ϑ

−
Mα

+ϑ+ρ
+Υ(B)

)

+ΣsM

α +
∑

α∈K

(
−µM

α
−ϑ

−
Mα

−ϑ−ρ

−
Υ(B)

)
−ΣsM

α

−
1

+ϑ
(+v−Σv)τ·

(
(+Te+n)τ−+ρ+v·+n(+v−Σv)τ

)

−
1

−ϑ
(−v−Σv)τ·

(
(−Te−n)τ−−ρ−v·−n(−v−Σv)τ

)

−

(

+Je·+n++ρ

(

+e+
+p
+ρ

+
|+v−Σv|2

2

)

+v·+n−+Te+n·(+v−Σv)

)(
1

+ϑ
−

1
Σϑ

)

−

(

−Je·−n+−ρ

(

−e+
−p
−ρ

+
|−v−Σv|2

2

)

−v·−n−−Te−n·(−v−Σv)

)(
1

−ϑ
−

1
Σϑ

)

,

(7.125)

i.e.comparedwith(7.119),eachtermispresenttwicewithacontributionfromthepositive
andnegativesideoftheinterface.Inviewofthedeinition(6.7)andcondition(7.124a)
−Σsα=−+Σsα,α∈K andwecanthusaddthetwosumsintheirstrowof(7.125)which
yields

Σ
Πt

η=−
∑

α∈K

⎛

⎜
⎝

+µM
α −Mα

+Υ(B)

+ρ

+ϑ
−

−µM
α −Mα

−
Υ(B)

−ρ
−ϑ

⎞

⎟
⎠

−ΣsM

α

−
1

+ϑ
(+v−Σv)τ·

(
(+Te+n)τ−+ρ+v·+n(+v−Σv)τ

)

−
1

−ϑ
(−v−Σv)τ·

(
(−Te−n)τ−−ρ−v·−n(−v−Σv)τ

)

−

(

+Je·+n++ρ

(

+e+
+p
+ρ

+
|+v−Σv|2

2

)

+v·+n−+Te+n·(+v−Σv)

)(
1

+ϑ
−

1
Σϑ

)

−

(

−Je·−n+−ρ

(

−e+
−p
−ρ

+
|−v−Σv|2

2

)

−v·−n−−Te−n·(−v−Σv)

)(
1

−ϑ
−

1
Σϑ

)

.

(7.126)
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Theirsttermrepresentsentropyproductionduetotransferofmassofindividualspecies
acrosstheinterface,thesecondandthirdareentropyproductionsduetofrictionaldissipa-
tionandthelasttwoareentropyproductionsduetoenergytransferacrosstheinterface.
Fortheirstmechanismwecouldadoptforexamplelinearconstitutiverelation

−ΣsM

α =−+ΣsM

α =−L

⎛

⎜
⎝

+µM
α −Mα

+Υ(B)

+ρ

+ϑ
−

−µM
α −Mα

−
Υ(B)

−ρ
−ϑ

⎞

⎟
⎠ , L≥0, (7.127)

or,possiblyincludealsocross-couplingsviasomepositivedeinitesymmetric matrix,
orprovideanon-linearconstitutiverelationviaany monotonefunctionoftheainity
+µM

α−M α
+Υ(B)

+ρ
+ϑ

−
−

µM
α−M α

−
Υ(B)

−ρ
−ϑ

,allthesechoicesleadtocompatibilitywiththesecondlawof
thermodynamics. Notethat(7.127)togetherwith(6.7)impliesthe massjumpcondition
(7.124a).

Letuspostulateforthelattertwo mechanisms(frictionandenergytransfer)thefol-
lowinglinearconstitutiverelations(comparewith(7.122)and(7.123)):

(+S+n)τ−+ρ+v·+n(+v−Σv)τ=−+k(+v−Σv)τ, +k≥0, (7.128a)

(−S−n)τ−−ρ−v·−n(−v−Σv)τ=−−k(−v−Σv)τ, −k≥0, (7.128b)

and

+Je·+n++ρ

(

+e+
+p
+ρ

+
|+v−Σv|2

2

)

+v·+n−+Te+n·(+v−Σv)=−+κ
(

1
+ϑ

−
1

Σϑ

)

,+κ≥0,

(7.129a)

−Je·−n+−ρ

(

−e+
−p
−ρ

+
|−v−Σv|2

2

)

−v·−n−−Te−n·(−v−Σv)=−−κ
(

1
−ϑ

−
1

Σϑ

)

,−κ≥0.

(7.129b)

Letusinspecttheirstsetofequationsirst.Summingthetwoequationsin(7.128),
wethenobtain,withtheuseof(7.124a),

(S−ρ(v⊗v)n)τ+Σvτ ρv ·n
  

=0

=++k(+v−Σv)τ+−k(−v−Σv)τ. (7.130)

Consequently,theconstitutiverelationsforfrictionarecompatiblewiththejumpcondition
(7.124b)aslongastheright-handsidevanishes,whichcanbeachievedforexampleby(i)
equatingthetwoslipcoeicients+kand−k(whichisreasonablesincetheinterfaceinthis
situationdoesnothaveanyinternalstructurethatwouldallowonetodistinguishbetween
them)and(ii)deiningtheso-farunspeciied(duetotheabsenceofmasstransportwithin
theinterface)surfacevelocityΣvτsimplyasanaverage:Σvτ= 1

2
(+vτ+−vτ).

Bysummingthesecondpairofequations(7.129),weobtain

Je ·n+ ρ

(

e+
|v−Σv|2

2

)

v ·n− (v−Σv)·T n=+κ
(

1
+ϑ

−
1

Σϑ

)

+−κ
(

1
−ϑ

−
1

Σϑ

)

,

(7.131)

i.e.theenergytransferconstitutiverelationiscompatiblewiththeenergyjumpcondition
(7.124c)aslongastherighthand-sidevanishes. Thiscanbeachieved,forexampleby(i)
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equating+κ=−κ(bythesamelogicasforthefrictioncoeicientskabove),and(ii)deining
theintefacialcoldness1

Σϑ
(yetunspeciiedduetotheabsenceofthenotionofinterfacial

energyandthustemperatureinthissituation)asanaverageofthetwobulkvalues,i.e.

setting1
Σϑ

= 1
2

(
1

+ϑ
+1

−ϑ

)
.

Tosummarize,theconstitutiverelationsproposedfortransferprocessesacrossthe
interfacearecompatiblewiththejumpconditionsinthecasewhentheinterfacereduces
toadiscontinuity(meaningthatitdoesnothaveanyinternalstructure),providedthat(i)
wedonotdistinguishbetweentheenergytransfercoeicientsκandalsotheslipcoeicients
kfromthepositiveandnegativesidesoftheinterface,and(ii)wedeinetheinterfacial
velocityΣvandcoldness(1

Σϑ
),(bothundeterminedduetoabsenceofthenotionof mass

transferalongtheinterfaceandofthesurfaceenergy)asaveragesofthebulkvalues.

Remarks

7.2.2 Young-Laplacecondition.Inderivationsofboth ModelsAandB,weusedthe
observationthattheainityv·ncannotbetakenasbeingindependentofthesorptionrates
in(7.102)and,byusing(7.103),weabsorbedtheminthe“sorption”partoftheentropy
production.Ignoringthisissue,[32]proposeconstitutiverelationswithainityv·nand
show,asaconsequence,thewell-knownYoung-Laplacecondition. Wewishtoemphasize
thatthe Young-Laplaceconditioncanbeobtainedalsowithinthepresentedframework.
Indeed,letusinspectthenormalcomponentof(6.24)inequilibriumwhenthetermsTe,
ρv·n,ΣvvanishandΣTreducestothesurfacepressureΣTequil= −ΣpΣI. Assumingthe
presenceofaluidonthepositive(outer)sideoftheinterfacewithassociatedequilibrium
stress+Tequil=−+pI,weobtain

p =divΣ (−ΣpΣI)·n+ρΣΣb·n.

AssumingfurtherthatthesurfaceforceΣbistangentialandusingtheidentity

divΣ (−ΣpΣI)=−ΣpΣB:ΣI=−2ΣpΣH,

whereΣBisthesurfacecurvaturetensorandΣH isthe meancurvature[97],weinally
obtainthefollowingrelationfortheequilibriumbulkpressurejump

p =−2ΣHΣp.

ThisdifersfromthestandardYoung-Laplaceconditionbythepresenceofsurfacepressure
ratherthansurfacetensionontheright-handside. Foraluid-luidinterface,however,
Σγ= −Σp,whichfollowsfrom(C.174)and(C.175)andfromthefactthatΣµM

0=0 since
thereisnosensiblenotionofvacanciesinthiscase. Wethereforerecovertheclassicalform
oftheYoung-Laplacecondition.

7.2.3 Alternativeclosure.In[26],adependenceofthetype(7.103)isalsoconsidered
andappliedinseveralways. Oneissimilartoourapproach(eliminationofv·nterms),or
alternativelybyeliminatingoneofthesorptionratesandproviding“compaction”constitu-
tiverelationwithainityv·n[asin8,32,86].Sincetheresultingconstitutiveformulae
thendependonthechoiceoftheeliminatedsorptionrate,wedonotseeanyobjective
preferenceforsuchachoice.
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7.3 Summaryofthe model

Inthislastsection,wesummarizethemodelderivedinthisstudy,i.e. werecallallthe
balanceequations,constraintsandconstitutiverelations. Thepurposeofthissectionis
toserveasastartingpointforthemathematicalanalysisofthemodelofheterogeneous
catalysisor,asastartingpointforitsnumericalimplementation.

7.3.1 Summaryofthe model-bulk

•Balanceequations-bulk

◦Massbalance:

∂ρ

∂t
+divρv=0,

ċMα+c
M

αdivv+divJ
M,dif
α =rMα, α∈K\{N}.

◦Linearandangularmomentumbalance:

∂(ρv)

∂t
+div(ρv⊗v)=divT+ρb, T=TT.

◦Energybalance(totalenergy):

∂

∂t

(

ρ(e+
1

2
|v|2)

)

+div
(

ρ(e+
1

2
|v|2)v

)

=−divJe+div(Tv)+ρb·v

+
∑

α∈K

JM,difα ·bMα+q.

◦Energybalance(reducedformfortheinternalenergy):

ρ̇e=T:D−divJe+
∑

α∈K

JM,difα ·bMα+q,

•Constraints-bulk

∑

α∈K

Mαc
M

α=ρ,
∑

α∈K

MαJ
M,dif
α =0,

∑

α∈K

Mαr
M

α=0.

•Constitutiverelations-bulk

◦Rheology

T=−pI+λdivvI+2νD, ν≥0,and3λ+2ν≥0.
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◦Thermo-difusion(coupled)CIT

⎛

⎜
⎜
⎜
⎜
⎝

−JM,dif1
...

−JM,difN−1

Je

⎞

⎟
⎟
⎟
⎟
⎠
=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

L̃11 ... L̃1,N−1 L̃1,N
...

...
...

L̃N−1,1 ...L̃N−1,N−1 L̃N−1,N
L̃N,1 ... L̃N,N−1 L̃N,N

⎞

⎟
⎟
⎟
⎟
⎟
⎠

  

L̃

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∇
(
µM1−µ

M
N,1

ϑ

)

−
(
bM1−b

M
N,1

ϑ

)

...

∇
(
µMN−1−µ

M
N,N−1

ϑ

)

−
(
bMN−1−b

M
N,N−1

ϑ

)

∇
(
1
ϑ

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where

µMα,β=
Mα
Mβ
µMβ, bMα,β=

Mα
Mβ
bMβ, α,β∈K,

andL̃isasymmetricpositivedeinitematrix.

◦Alternativedifusionconstitutiverelations- Maxwell-Stefandifusion+Fourier
heatconduction:

−
∑

β∈K

xβJ
M,dif
α −xαJ

M,dif
β

Dαβ
=
cMα
Rϑ
∇µMα−

cα
Rϑ
∇p−

ραh−c
M
αµ

M
α

Rϑ
∇lnϑ−

ρα
Rϑ
(bα−b),

Je=κ∇
(
1

ϑ

)

, κ≥0, α∈K,

wheretheMaxwell-StefandifusivitymatrixDhasthefollowingstructure

Dαβ
def
=

R

cMMαMβfαβ
, α,β∈K.

wherefαβ=fβα≥δ>0,α,β∈K,α≠β.

◦Chemicalreactions:

rMα=
Z∑

ζ=1

νζα(R
f
ζ−R

b
ζ)=

Z∑

ζ=1

νζαRζ, α∈K,

wheretheforwardandbackwardreactionratesRfζ,R
b
ζsatisfy

∏

α∈K

xν
ζ
α
α =K

chem
ζ (ϑ,p)

⎛

⎝
Rfζ
Rbζ

⎞

⎠

β

, ζ=1,...,Z,

whichcanbeensuredforexamplebythefollowingansatzofreactionkinetics
(
Rfζ
)β
=kfζ(ϑ,p)

∏

α∈K

xδ
ζ,f
α
α ,

(
Rbζ
)β
=kbζ(ϑ,p)

∏

α∈K

xδ
ζ,b
α
α , ζ=1,...,Z,

whereδζ,fα ,δ
ζ,b
α aretheforwardandbackwardstoichiometriccoeicientsoftheζth

reaction,andcoeicientskfζ(ϑ,p),k
b
ζ(ϑ,p)mustsatisfy

kf
ζ
(ϑ,p)

kb
ζ
(ϑ,p)
=Kchemζ (ϑ,p),ζ=

1,...,Z.

144



7.3.2 Summaryofthe model-activesurface

•Balanceequations-activesurface

◦Massbalance:

∂ρΣ

∂t
+divΣ(ρΣΣv)=− ρv·n,

∂ΣcMα
∂t
+divΣ(ΣcMα

Σv)+divΣΣJM,difα =ΣrMα +
ΣsMα, α∈K\{N}.

◦Linear+angularmomentumbalance:

∂(ρΣΣv)

∂t
+divΣ(ρΣΣv⊗Σv)+ρv⊗v−Tn=divΣΣT+ρΣΣb, ΣT=ΣTT.

◦Energybalance(totalenergy):

∂
(
ρΣ(Σe+1

2
|Σv|2)

)

∂t
+divΣ

(

ρΣ(Σe+
1

2
|Σv|2)Σv

)

−divΣ(ΣTΣv)−ρΣΣv·Σb

−
∑

α∈K

ΣJdifα ·
Σbα+div

ΣΣJe−
Σse+ ρ(e+

1

2
|v|2)v−v·T+Je ·n=0.

◦Energybalance(reducedformforinternalenergy):

ρΣΣ̀e=ΣT:∇ΣΣv+
∑

α∈K

ΣJdifα ·
Σbα−div

ΣΣJe

− ρ
(

e−Σe+
1

2
|v−Σv|2

)

v ·n+ (v−Σv)·Tn− Je ·n. (7.132)

•Constraints-activesurface
∑

α∈K

Mα
ΣcMα=ρ

Σ,
∑

α∈K

Mα
ΣJM,difα =0,

∑

α∈K

Mα
ΣrMα=0,

∑

α∈K

Mα
ΣsMα=− ρv·n,

ΣcM =const.

•Constitutiverelations-activesurface

◦Rheology:

ΣT=−ΣpΣI+ΣλdivΣΣvΣI+2ΣνΣD.

◦Thermo-difusion(coupled–CIT):
⎛

⎜
⎜
⎜
⎜
⎝

−ΣJM,dif1
...

−ΣJM,difK−1
ΣJe

⎞

⎟
⎟
⎟
⎟
⎠
=

⎛

⎜
⎜
⎜
⎜
⎝

ΣL1,1 ... ΣL1,N−1
ΣL1,N

...
...

...
ΣLN−1,1 ...

ΣLN−1,N−1
ΣLN−1,N

ΣLN,1 ... ΣLN,N−1
ΣLN,N

⎞

⎟
⎟
⎟
⎟
⎠

  
ΣL

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∇Σ
(
Σ̄µM1−

Σ̄µMK,1
Σϑ

)

−
(
ΣbM1−

ΣbMK,1
Σϑ

)

...

∇Σ
(
Σ̄µMK−1−

Σ̄µMK,K−1
Σϑ

)

−
(
ΣbMK−1−

ΣbMK,K−1
Σϑ

)

∇Σ
(
1
Σϑ

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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whereΣLisasymmetricpositivesemi-deinitematrixand

Σµ̄Mα=
ΣµMα−

ΣµM0,
Σµ̄Mα,β=

Mα
Mβ

Σµ̄Mβ,
ΣbMα,β=

Mα
Mβ

ΣbMβ, α,β∈K.

◦Alternativedifusionconstitutiverelations– Maxwell-Stefandifusion+Fourier
heatconduction:

−
∑

β∈K

Σxβ
ΣJM,difα −Σxα

ΣJM,difβ
ΣDαβ

=
ΣcMα
RΣϑ
∇ΣΣµ̄Mα−

ρΣα
RρΣΣϑ

∇ΣΣp

−
ρΣΣh−ΣcMα

Σµ̄Mα
RΣϑ

∇ΣlnΣϑ−
ρΣα
RΣϑ
(Σbα−

Σb),α∈K,

ΣJe=
Σκ∇Σ

(
1
Σϑ

)

, Σκ≥0,

andtheMaxwell-Stefandifusivitymatrixpossessesthefollowingstructure:

ΣDαβ=
R

ΣcMMαMβ
Σfαβ

, α,β∈K,

withΣfαβbeingasymmetricsurfacefrictioncoeicientmatrixwithpositiveentries
Σfα,β≥

Σδ>0,α,β∈K.

◦Chemicalreactions:

ΣrMα=

ΣZ∑

a=1

Σδζα(
ΣRfζ−

ΣRbζ)=

ΣZ∑

a=1

Σδζα
ΣRζ, α∈K,

withΣRfζand
ΣRbζdenotingtheforwardandbackwardreactionrateoftheζth

surfacechemicalreactionandΣRζ
def
= ΣRfζ−

ΣRbζ. Theforwardandbackward
reactionratessatisfy

∏

α∈K

(
Σxα

1−
∑K
β=1

Σxβ

)Σδζα

=ΣKchemζ

⎛

⎝
ΣRfζ
ΣRbζ

⎞

⎠

Σβζ

, ζ=1,...,ΣZ.

Oneparticularansatzforreactionkineticsreads

(
ΣRfζ
)Σβζ
=Σkfζ

∏

α∈K

(
Σxα

1−
∑K
β=1

Σxβ

)Σδζ,fα

,
(
Rbζ
)βa
= Σkbζ

∏

α∈K

(
Σxα

1−
∑K
β=1

Σxβ

)Σδζ,bα

,

whereζ=1,...,ΣZ,andΣδζ,fα ,
Σδζ,bα aretheforwardandbackwardstoichiometricco-

eicientsoftheζthreactionandcoeicientsΣkfζ,
Σkbζmustsatisfy

Σkf
ζ

Σkb
ζ

=ΣKchemζ ,ζ=

1,...,ΣZ.

◦Sorption:
Theadsorptionanddesorptionratessatisfy

ΣsMα
ad

ΣsMα
de=K

sor
α exp

(

−
MαΥ

(A,B)

RρΣϑ

)
xα(1−

∑
β∈K

Σxβ)
Σxα

,
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where

ModelA: Υ(A)=n·Ten−
1

2
ρ|v−Σv|2,

ModelB: Υ(B)=n·Ten−ρ(v·n)2+
1

2
ρ|v−Σv|2.

Onepossiblechoiceoftheadsorption/desorptionkineticsisasfollows

ΣsMα
ad=Σkad−sorα xα(1−

∑

β∈K

Σxβ), α∈K,

ΣsMα
de=Σkde−sorα

Σxα, α∈K,

wheretheadsorption/desorptionratecoeicientsΣkad−sorα ,Σkde−sorα satisfy

Σkad−sorα
Σkde−sorα

=Ksorα exp

(

−
MαΥ

(A,B)

RρΣϑ

)

, α∈K.

◦Surfacefriction:

ModelA: (Sn)τ=−k(v−
Σv)τ,

ModelB: (Sn)τ−ρv·n(v−
Σv)τ=−k(v−

Σv)τ,

wherek≥0.

◦Energytransferacrosstheinterface:

ModelA: Je·n+ρ(v·n)

(

e+
p

ρ

)

=−κ
(
1

ϑ
−
1
Σϑ

)

,

ModelB: Je·n+ρ

(

e+
p

ρ
+
|v−Σv|2

2

)

v·n−(Ten)·(v−Σv)=−κ
(
1

ϑ
−
1
Σϑ

)

,

whereκ≥0.
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Appendix B

B.1 Statistical lattice model - surface free energy
In order to develop a (two-dimensional) continuum description of the active surface, let us
consider a (finite) surface element dΣ with corresponding surface measure |dΣ|, which is
assumed to contain dΣNs adsorption sites, assuming dΣNS≫1 in order to allow for sensible
spatial averaging and passing to the thermodynamic limit. Thermodynamic properties
of the lattice can be derived by means of lattice statistical mechanics and, despite the
fact that it can be found in classical references [see e.g. 43, 64], we outline the method of
derivation for the sake of completeness.

A reasonable starting point is the canonical partition function for the ensemble of N+1
surface molecules (including vacancies) in the following form

dΣQ = G(dΣNS,
dΣN0, . . . ,

dΣNN)
∏

α∈K0

Σqα(dΣϑ)dΣNα exp
(

− Ēc

kB
dΣϑ

)
, (B.134)

In this expression, G is a factor expressing the number of spatial configurations of the given
numbers dΣN0, . . .

dΣNN of surface species. In the simplest case of single-site adsorption,
i.e. when each surface species can occupy only one adsoprtion site G, takes the simple
combinatoric form

G(dΣNs,
dΣN0, . . . ,

dΣNN) =
dΣNS!

dΣN0! . . . dΣNN ! . (B.135)

Next, Σqα
def= ∑

j ωj exp (− ϵj

kdΣϑ
), are the molecular partition functions representing the

internal degrees of freedom of the molecules. The sum goes over all molecular configurations
with energies ϵj and degeneracies ωj. In what follows, we will not employ this definition of
Σqα and simply consider it as a given function of the local patch temperature dΣϑ. Finally,
Ēc is the average configuration energy representing the closest-neighbour interaction of the
adsorbed species (in the Bragg-Williams approximation) and kB is the Boltzmann constant.
Neglecting the interaction among the adsorbed species in the first step, we set Ēc = 0 in
(B.134).

From the canonical partition function (B.134), we obtain the Helmholtz free energy of
the patch dΣ as follows [e.g. 64]

dΣF = −kB
dΣϑ ln dΣQ , (B.136)

which under the assumptions Ēc=0 and ansatz (B.135) can be expressed using the Stirling
approximation lnN !∼N lnN−N as follows

dΣF = kB
dΣϑ

∑
α∈K0

dΣNα ln
(

Σq−1
α

dΣNα
dΣNs

)
= kdΣϑ

∑
α∈K0

dΣNα ln
(

Σq−1
α

dΣxα

)
, (B.137)

where we introduced the patch surface coverage

dΣxα
def=

dΣNα
dΣNS

, α∈K0 . (B.138)
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ThemolarHelmholtzfree-energydensitydeinedasdΣψM
def
= dΣF NA

dΣNS
,whereNA isthe

Avogardonumber,consequentlyreads

dΣψM =−RdΣϑ
∑

α∈K0

dΣxα(ln
Σqα−ln

dΣxα), (B.139)

wheretheuniversalgasconstantRwasintroducedasR=kBNA.Immediatelyfromthe
canonicalpartitionfunction,wecanalsoevaluatethemolarchemicalpotentialsasfollows
[64]

dΣµMα
def
=−RdΣϑ

∂lndΣQ

∂dΣNα

⏐
⏐
⏐
⏐
⏐
|dΣ|,dΣϑ,dΣNβ̸=α

=RdΣϑln
(
Σq−1α

dΣxα
)
, α∈K0. (B.140)

Sofarweignoredpossiblestretchingorcompressionofthelattice. Weessentiallyonly
consideredcombinatoriccontributionstothepartitionfunctionplusinternaldegreesof
freedomateachsite.Inordertoincludesuchanefect,weextendthepatchsurfacefree
energybyatermdΣψM0andimpose

dΣψM =d̂ΣψM0

(
dΣϑ,

1
dΣcM

)

−RdΣϑ
∑

α∈K0

dΣxα(ln
Σqα−ln

dΣxα) (B.141)

where
dΣcM

def
=
1

NA

dΣNS
|dΣ|

(B.142)

isthesurfacemolarconcentrationoftheadsorptionsites,whichcapturesthestretch-
ing/compressionefectsofthelattice.Sinceonly

∑
β∈K0

dΣxβ=1,wecaneliminate
dΣx0

andconsiderdΣψM =d̂ΣψM(dΣϑ, 1
dΣcM
,dΣx1,...,

dΣxN)deinedby

d̂ΣψM(dΣϑ,
1

dΣcM
,dΣx1,...,

dΣxN)
def
= d̂ΣψM0(

dΣϑ,
1

dΣcM
)−RdΣϑ

∑

α∈K

dΣxα(ln
Σqα−ln

dΣxα)

−RdΣϑ

⎛

⎝1−
∑

β∈K

dΣxβ

⎞

⎠

⎛

⎝lnΣq0−ln

⎛

⎝1−
∑

β∈K

dΣxβ

⎞

⎠

⎞

⎠ ,

(B.143)

Bydirectcalculation,withtheuseof(B.140),wearriveattheexpectedrelation

∂̂dΣψM

∂dΣxα
=dΣµMα−

dΣµM0=R
dΣϑ

{

ln

(
qΣ0
qΣα

)

+ln

(
dΣxα

1−
∑
β∈K

dΣxβ

)}

, α∈K. (B.144)

ThemolarsurfaceentropydensitydΣηM canbeobtainedfromdΣψM usingtheidentity(see
e.g.[64]):

∂̂dΣψM

∂dΣϑ
=−dΣηM , (B.145)

andinally,wedeinethesurfacetensiononthepatchby

dΣγ
def
=
∂̂dΣψM

∂
(
1

dΣcM

). (B.146)
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We have obtained a complete thermodynamic description of the patch dΣ. Motivated by
the preceding expressions, we assume that in the considered multi-component continuum
framework the surface molar Helmholtz free energy density takes the form identical to
(B.141), or (B.143). This means that we set:

ΣψM def= ΣψM
0 −R Σϑ

∑
α∈K0

Σxα(ln Σqα− ln Σxα) (B.147)

or, again, expressed in terms of the independent variables Σϑ, 1
ΣcM ,

Σx1, . . . ,
ΣxN , we define

Σ̂ψM by

Σ̂ψM(Σϑ,
1

ΣcM
, Σx1, . . . ,

ΣxN) = Σ̂ψM
0 (Σϑ,

1
ΣcM

) −R Σϑ
∑
α∈K

Σxα(ln Σqα − ln Σxα)

−R Σϑ

⎛⎝1−
∑
β∈K

Σxβ

⎞⎠⎛⎝ln Σq0 − ln
⎛⎝1 −

∑
β∈K

Σxβ

⎞⎠⎞⎠ . (B.148)

From the above, we can again recover the surface molar entropy density ΣηM, the surface
tension Σγ and the surface chemical potentials (with respect to vacancies) ΣµM

α −ΣµM
0 :

∂ Σ̂ψM

∂ Σϑ
= −ΣηM , (B.149a)

∂Σ̂ψM

∂( 1
ΣcM ) = Σγ , (B.149b)

∂ Σ̂ψM

∂ Σxα

= ΣµM
α −ΣµM

0 = R Σϑ

{
ln
(
qΣ

0
qΣ

α

)
+ ln

(
Σxα

1 −∑
β∈K

Σxβ

)}
, α∈K . (B.149c)

In order to treat the surface “incompressibility” constraint, it is convenient to work with
the surface Gibbs potential defined through the Legendre transform of Σ̂ψM with respect
to 1

ΣcM . Defining

ΣgM def= ΣψM −
Σγ

ΣcM
, and Σ̂gM(Σϑ, Σγ, Σx1, . . . ,

ΣxN) def= sup
1

ΣcM

(
Σ̂ψM

(
Σϑ,

1
ΣcM

, Σxα

)
−

Σγ
ΣcM

)
,

(B.150)
and using the surface Helmholtz free energy (B.148), the corresponding surface Gibbs’ free
energy reads

Σ̂gM(Σϑ, Σγ, Σx1, . . . ,
ΣxN) = Σ̂gM

0 (Σϑ, Σγ) −R Σϑ
∑
α∈K

Σxα(ln Σqα − ln Σxα)

−R Σϑ

⎛⎝1−
∑
β∈K

Σxβ

⎞⎠⎛⎝ln Σq0 − ln
⎛⎝1 −

∑
β∈K

Σxβ

⎞⎠⎞⎠ , (B.151)

and we obtain in the standard manner the identities

∂ Σ̂gM

∂ Σϑ
= −ΣηM ,

∂Σ̂gM

∂Σγ
= − 1

ΣcM
,

∂ Σ̂gM

∂ Σxα

= ΣµM
α −ΣµM

0 , α∈K . (B.152)
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Remark. The simple lattice model discussed in this section can be generalized in many
ways, see, for instance [85] and references therein. In order to take into account for the
nearest neighbour interaction of the adsorbed molecules, one may take in (B.134) Ēc =∑

α∈K

∑
β∈K N̄αβϵαβ, where N̄αβ is the average number of neighbouring molecules of α

and β type, and ϵαβ is the corresponding interaction energy. For single site adsorption
the average number of neighbours can be estimated using the assumption of completely
random distribution as Z

dΣNα
dΣNβ

dΣNS
where Z is a configuration number of the lattice (number

of nearest neighbours for each adsorption site). Alternatively, in order to capture multi-
site adsorption, one typically needs to modify the configuration factor G in the canonical
partition function (B.134). A classical example of such a generalization is the model of [72],
which can be for a single-component adsorption expressed through the canonical partition
function

G =
dΣNS!

dΣN1!(dΣNS − r dΣN1)!
ζ

dΣN1

dΣNS
(r−1)dΣN1

,

where r is the number of sites occupied by each molecule and ζ is a parameter related to
properties of the molecule. With such a modified canonical partition function, one then
proceeds in an analogous manner as in the presented derivation, that is, by employing
(B.136), one finds the Helmholtz free energy of the surface patch, computes the chemical
potentials and all of the necessary macroscopic thermodynamic quantities.
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AppendixC

C.1 Eulerrelationinbulk

Weperformthederivationinmolar-basedquantities,buttheprocedurecanbeeasilyrecast
intoamass-basedderivation.Letusstartfromtheconstitutiveassumptiononthedensity
oftheHelmholtzfreeenergycMψM intheform

cMψM
def
=ĉMψM(ϑ,cMα), α∈K. (C.153)

Fromhere,themolarHelmholtzfreeenergyψ̂M canbedeinedasafunctionofϑ,1
cM
,xα,

using

ψ̂M
(

ϑ,
1

cM
,xα

)
def
=
ĉMψM(ϑ,cMxα)

cM
, α∈K. (C.154)

Asaconsequence,wehavethat

∂̂cMψM

∂cMα

⏐
⏐
⏐
⏐
⏐
⏐
ϑ,cM
β̸=α

=
∂̂ψM

∂xα

⏐
⏐
⏐
⏐
⏐
ϑ,1

cM
,xβ̸=α

α∈K, (C.155)

∂̂cMψM

∂ϑ

⏐
⏐
⏐
⏐
⏐
⏐
cM
β

=cM
∂̂ψM

∂ϑ

⏐
⏐
⏐
⏐
⏐
1

cM
,xβ

. (C.156)

TakingthematerialtimederivativeofĉMψM andofcMψ̂M,weobtain

˙̂
cMψM =

∂(̂cMψM)

∂ϑ
ϑ̇+

∑

α∈K

∂(̂cMψM)

∂cMα
ċMα, (C.157)

˙
cMψ̂M =ċMψ̂M +cM

⎛

⎝
∂̂ψM

∂ϑ
ϑ̇+
∂̂ψM

∂1
cM

˙(1

cM

)

+
∑

α∈K

∂̂ψM

∂xα
ẋα

⎞

⎠ . (C.158)

Expressingin(C.158)xα=
cMα
cM
andcomparingwith(C.157),weobtainwiththeuseof

(C.155)and(C.156):

ċM
(

ψ̂M −
1

cM
∂̂ψM

∂1
cM

−
∑

α∈K

∂̂ψM

∂xα
xα

)

=0. (C.159)

Requiringthat(C.159)holdsforarbitraryċM,weconcludethattheexpressioninthe
parenthesismustbeidenticallyequaltozero. Deiningthethermodynamicpressureand
thechemicalpotentialsinthestandardmanner,i.e.bywriting

p
def
=−

∂̂ψM

∂1
cM

, µMα
def
=
∂̂ψM

∂xα
, α∈K, (C.160)

thisassertioncanberewrittenasfollows:

ψM +
p

cM
=
∑

α∈K

µMαxα, (C.161)
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whichistheEulerrelationknownfromclassicalequilibriumthermodynamics. Multiplying
bycM andusingcMψM =ρψ,wecanrewriteitinamorefamiliarform:

cMψM +p=
∑

α∈K

µMαc
M

α ⇐⇒ ψ+
p

ρ
=
∑

α∈K

µαcα. (C.162)

Takingadiferentialof(C.162)andemployingrelations(C.160)andthethermodynamic

relationηM =−∂ψ
M

∂ϑ
,onealsoobtainsimmediatelytheGibbs-Duhemrelation

−ηMcMdϑ+dp=
∑

α∈K

cMαdµ
M

α ⇐⇒ −ηdϑ+
1

ρ
dp=

∑

α∈K

cαdµα. (C.163)

C.2 Eulerrelationonsurface

WeproceedanalogouslyasinC.1,namely,westartbypostulatingtheconstitutiveform
ofΣcM ΣψM =ρΣΣψ:

ΣcMΣψM
def
= Σ̂cMΣψM(Σϑ,ΣcMα) α∈K0. (C.164)

andthemolarHelmholtzfreeenergyas

Σ̂ψM(ϑ,ΣcM,Σxα)
def
=

Σ̂cMΣψM(Σϑ,ΣcMΣxα)
ΣcM

, α∈K0. (C.165)

Usingtheidentity
˙

Σ̂cMΣψM =
˙

ΣcMΣ̂ψM , (C.166)

byanalogouscomputationasforthebulkquantities,wearriveat

ΣcMΣψM +(ΣcM)2
∂̂ΣψM

∂ΣcM
−
∑

α∈K0

∂̂ΣψM

∂Σxα

⏐
⏐
⏐
⏐
⏐
⏐
ϑ,ΣcM,Σxβ̸=α

ΣcMα =0. (C.167)

Deiningthesurfacemolarchemicalpotential

ΣµMα
def
=
∂̂ΣψM

∂Σxα

⏐
⏐
⏐
⏐
⏐
⏐
ϑ,ΣcM,Σxβ̸=α

=
∂Σ̂cMΣψM

∂ΣcMα

⏐
⏐
⏐
⏐
⏐
⏐
ϑ,ΣcM

β̸=α

=
∂̂ρΣΣψ

∂ΣcMα

⏐
⏐
⏐
⏐
⏐
⏐
ϑ,ΣcM

β̸=α

, α∈K0, (C.168)

weobtain

ρΣΣψ+(ΣcM)2
∂̂ΣψM

∂ΣcM
=
∑

α∈K0

ΣµMα
ΣcMα. (C.169)

Deiningthesurfacetensionas

Σγ
def
=
∂̂ΣψM

∂1
ΣcM

, (C.170)

weobtainthesurfaceEulerrelationintheform

ΣcMΣψM −Σγ=
∑

α∈K0

ΣµMα
ΣcMα ⇐⇒ρ

ΣΣψ−Σγ=
∑

α∈K0

ΣµMα
ΣcMα. (C.171)

Alternatively,using
∑

α∈K0

ΣµMα
ΣcMα=

∑

α∈K

(ΣµMα−
ΣµM0)

ΣcMα+
ΣcMΣµM0, (C.172)
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we can rewrite the surface Euler relation in the form

ΣcMΣψM − (Σγ+µM
0

ΣcM) =
∑
α∈K

(ΣµM
α −ΣµM

0 ) ΣcM
α . (C.173)

Note that for a vacant surface, for which ρΣ = 0 and ΣcM
α = 0, α∈K, and ΣcM

0 = ΣcM, the
Euler relation (C.171) yields

Σγ∗ def= Σγ|cM
0 =ΣcM,cM

α̸=0=0 = − ΣµM
0

ΣcM|cM
0 =ΣcM,cM

α̸=0=0 . (C.174)

Assuming ΣµM
0 =const and defining the surface pressure Σp as the difference between the

surface tension of the surface without any adsorbants and the actual surface tension, see
[64], i.e. as

Σp
def= Σγ∗ − Σγ , (C.175)

the surface Euler relation becomes

ΣcMΣψM + Σp =
∑
α∈K

(ΣµM
α −ΣµM

0 ) ΣcM
α . (C.176)

By the same argument as in the bulk, i.e. taking differential of (C.171), and employing
the thermodynamic relations, one arrives at the surface Gibbs-Duhem relation

−ΣηMΣcMdΣϑ− dΣγ =
∑

α∈K0

ΣcM
αd

ΣµM
α ⇐⇒−ΣηMΣcMdΣϑ+ dΣp =

∑
α∈K

ΣcM
αd(ΣµM

α −ΣµM
0 ) −ΣµM

0 d
ΣcM.

(C.177)
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