
BACHELOR THESIS

Michal Fibich

Grid-based Online Multiplayer Strategy
Game

Department of Software and Computer Science Education

Supervisor of the bachelor thesis: Mgr. Jakub Gemrot, Ph.D.
Study programme: Computer Science

Study branch: Programming and Software Systems

Prague 2018

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In date signature of the author

i

I would like to thank my supervisor Mgr. Jakub Gemrot, Ph.D. for his feedback,
suggestions and valuable advice. I would also like to thank my friends who have
supported me during my studies.

ii

Title: Grid-based Online Multiplayer Strategy Game

Author: Michal Fibich

Department: Department of Software and Computer Science Education

Supervisor: Mgr. Jakub Gemrot, Ph.D., Department of Software and Computer
Science Education

Abstract: Playing a massively multi-player on-line real-time strategy game is
connected with expectation of playing with other players close to your position
in the game. Some games of this kind have a very long life cycle where the
progress of each player is persistent. A match can take months, even years to
finish. However, every match is very dependent on the amount of participants
which is not always ideal. Different seasons of the year can cause massive drops
in the amount of players. There have already been attempts to incorporate an
artificial intelligence to these matches, but the goal was to provide a win condi-
tion instead of fighting a decreasing player base. That is why we have started
developing a framework which includes the basic mechanics of the game and al-
lows customization of basic game elements such as units, resources, buildings or
entire nations. Part of the framework is an artificial intelligence which is capable
of playing games created using the framework along with players. The problem
was to find a proper behaviour for the artificial intelligence that has a balance
between computational complexity and effectivity. A positive outcome of this
experiment will influence the critical phases of these types of games by adding
entities controlled by mentioned artificial intelligence until the amount of active
players returns to acceptable level. This might also increase the chance of success
of new game servers that use this framework.

Keywords: video game online multiplayer strategy game grid

iii

Contents

1 Introduction 4
1.1 Our Goals . 5
1.2 Structure . 5

2 Problem Analysis 7
2.1 About Travian . 7
2.2 Key Components of Travian . 8

2.2.1 Real-time gameplay . 9
2.2.2 Length of life cycle of game worlds 9
2.2.3 Persistent game progress 9
2.2.4 Available Tribes . 9
2.2.5 Ownership of Multiple Villages at once 11
2.2.6 Buildings and Resource Fields 11
2.2.7 Resource Management . 13
2.2.8 Military Combat . 14
2.2.9 Village Management . 15
2.2.10 Player Strategies . 15
2.2.11 Player Interaction and Alliances 19
2.2.12 Victory Condition . 19

2.3 Main Differences of Framework 20
2.3.1 Generic Victory Conditions 20
2.3.2 Replacement of Consumable Resource 20
2.3.3 Founding New Village . 21
2.3.4 No Loyalty . 21
2.3.5 Capturing Enemy Cities 21
2.3.6 No Research . 21
2.3.7 Possibility of Controlling Multiple Nations 21
2.3.8 Resource Fields . 21
2.3.9 Exchanging Resources . 22
2.3.10 Combat Formulas . 22
2.3.11 Canceling Actions . 22
2.3.12 Events Instead of Oases 22
2.3.13 Upgrades of Military Troops 23
2.3.14 Alliances . 23
2.3.15 Artificial Intelligence as Player 23

2.4 Used Technology . 23
2.5 Goals Breakdown . 23

3 Implementation 25
3.1 Network Protocol . 25
3.2 Data Serialization . 25
3.3 Client-Server Communication . 26
3.4 Saving the Game . 27
3.5 Loading of Game Configuration 27
3.6 Data Storage . 28

1

3.7 World Map . 28
3.7.1 Obtaining Map Information 28
3.7.2 Positioning Algorithm . 30
3.7.3 Adding Event Tiles To Map 31

3.8 Timed Actions . 32
3.9 Artificial Intelligence . 32

3.9.1 Random . 33
3.9.2 Rule Directed with Parameters 34

3.10 Simulator . 35

4 Experiments and Results 37
4.1 Generating Input . 37

4.1.1 Static Game Elements . 38
4.1.2 Dynamic Game Elements 38
4.1.3 Picked Strategies and Configurations 38

4.2 Experiment Participants . 39
4.2.1 Rule Directed AI . 40
4.2.2 Random AI . 41

4.3 Running The Experiments . 41
4.4 Results . 41

Conclusion 44
Future Work . 44

Bibliography 46

List of Figures 47

List of Abbreviations 50

A User Documentation 51
A.1 System Requirements . 51
A.2 Running the Game . 51
A.3 Generating Configuration Files 52
A.4 Server Configuration . 52
A.5 Main Menu Screens . 54

A.5.1 Introduction Screen . 54
A.5.2 Server Configuration Screen 55
A.5.3 Join Existing Game Screen 56

A.6 Game Screens . 57
A.6.1 Player Configuration Screen 58
A.6.2 Cities Overview Screen . 59
A.6.3 World Map Screen . 59
A.6.4 Action Reports Screen . 60
A.6.5 Player Messages Screen . 62
A.6.6 City View Screen . 62
A.6.7 Building View Screen . 62
A.6.8 Send Attack and Support Screen 67
A.6.9 Send Private Message Screen 68

2

B Advanced User Documentation 69
B.1 XML File System . 69
B.2 XML Configuration . 70

B.2.1 Game Resources . 70
B.2.2 Unit Types . 70
B.2.3 Nations . 71
B.2.4 Event Tiles . 76

B.3 Image Configuration . 77

C File Attachments 78

3

1. Introduction
Our thesis is about development of a framework for creating Massively Multi-

player On-line Real-Time Strategy1 (MMORTS) games with persistent progress
similar to browser games Travian2 and Tribal Wars3. These games are being
played on-line by large amount of players. The most common feature of these
games is, that the players have to beat their opponents. This is typically achieved
by either getting the highest score within set amount of time, researching a secret
technology, or similar alternatives of a victory condition. Another feature of these
games is, that players own cities. Cities are points in the world and every point
has unique coordinates, where each player can own an arbitrary amount of cities.
A world is usually a flat grid consisting of points representing a city or an empty
ground. World map allows players to view cities all over the world. The visibility
of details of enemy cities is minimal. Players can send attacks from their cities
at enemy cities, but there is no control over military units during combat. The
results of each combat are evaluated automatically by the server and all the
participants are informed about the outcome. All the actions of the players are
executed in real-time. Even when the player is not currently playing the game,
everything is still active and the cities the player owns, can still be interacted
with by other players. These games are known for their long life cycle of each
game world (12-14 months).

One of the problems of these games is that the gameplay is very dependent
on the amount of players actively playing the game. It is important to keep
the population stable. However, the length of the life cycle implies that the
player activity and world population changes according to many factors, such as
holidays, different seasons of the year or weekends. Because of that, the amount
of active players can drop to critical levels, leading to loss of additional active
players and may cause a game world to end prematurely. If that case occurred,
setting a new victory condition according to statistics of players would completely
change the tide of the game, making it unfair to those who prepared towards a
strategy that would help them win later in the game.

One possible way to fight this problem is to use artificial intelligence (AI)
as a replacement for inactive players. There is very little related work for AI in
MMORTS games. The main reasons are that the branching factor in these games
is very high and the the provided information about enemies is incomplete. An
implementation of AI in these games was seen in Travian, called Natars4. How-
ever, it is used to provide a victory condition instead of providing a substitution
for inactive players. The AI only controls a tribe of Natars which has an un-
fair advantage over other playable tribes, for example, their units do not cost
resources. Sometimes, this AI is present in the early stages of the game but does
not attack other players and provides special benefits to those who capture their
cities. Other implementations of AI in this MMORTS sub-domain have not been
seen on live servers yet.

1http://gaming.wikia.com/wiki/Massively_multi-player_online_real-time_
strategy_video_games

2http://www.travian.com/
3https://www.tribalwars.works/
4http://travian.wikia.com/wiki/Natars (Last Access Date: 3rd of May 2018)

4

http://gaming.wikia.com/wiki/Massively_multi-player_online_real-time_strategy_video_games
http://gaming.wikia.com/wiki/Massively_multi-player_online_real-time_strategy_video_games
http://www.travian.com/
https://www.tribalwars.works/
http://travian.wikia.com/wiki/Natars

In this thesis, we would also like to test whether it is possible to create an
AI that is capable of playing any game from a certain MMORTS sub-domain on
a decent level. Doing this will make the game world superficially alive without
giving the AI an unfair advantage. This can help increase the success rate of new
companies which are trying to start their first MMORTS server while they are
not well known. Another goal is to seemingly increase the population in case of
critical drops in the amount of active players which can stabilize the situation until
new players join the world. The AI also opens new possibilities for MMORTS
game worlds, where developers can experiment with new victory conditions and
game mechanics.

Our main goal is to develop a framework which helps developers create their
own alternatives of this type of game in a short period of time without complex
development and testing. The implementation of the Server and Client is provided
in libraries. The framework allows server administrators to configure the game
worlds in a way of changing the world size or change the graphics of the world map
displayed by Client. Our second goal is to develop an AI and test its capabilities.

1.1 Our Goals
The goals of this work are summarized in this chapter.
The main goal of our thesis is to develop a framework for persistent MMORTS

games. This framework should be capable of creating games similar to browser
games Travian or Tribal Wars. The framework will be bundled with a simple
client. The client should be capable of providing basic visual representation of
the game world and controlling the cities owned by a player.

Our secondary goal is to prepare an artificial intelligence which will be capable
of playing the game on sufficient levels of credibility. It should not be provided
by more complete information compared to player or any other kind of unfair
advantage over players.

1.2 Structure
In chapter 2 Problem Analysis we will describe the reasons of why we have

chosen one approach of implementing the features and mechanics and the AI
over other possible approaches. We will also explain the importance and possible
contributions of this work for the game industry.

In chapter 4 Experiments and Results we will show the results of experiments
that have been performed using a simulator. These experiments consist of multi-
ple runs of short matches where the main test subject is the Artificial Intelligence.
The results show how minor changes to the parameters of the Artificial Intelli-
gence combined with different games procedurally generated by the framework
affect the efficiency of the AI itself. The results also show that the framework
works as expected and how the parameters help the AI adapt to games which
prefer different types of strategy.

User documentation is covered in Appendix A User Documentation. It will
decsribe how the game can be ran, how to change the configuration of a server,
how to connect to the server and how to play the game. It will be primarily

5

focused on describing each screen of the game and components on them. After
reading the user documentation, it will be easy to start and play the game.

Advanced User documentation is included in Appendix B Advanced User
Documentation. It will be focused on explaining how to create new games using
the provided framework.

Conclusion - This chapter is about contributions of the entire thesis and pos-
sible options for future work and improvements.

6

2. Problem Analysis
In this chapter we will describe Travian as a representative of MMORTS

games. We will briefly mention the background of this game and focus on the
gameplay and mechanics. After summarizing information about Travian, we will
describe what our framework should offer. Finally, we will talk about possi-
ble obstacles we have to consider when creating AI for the framework and the
requirements it should meet.

2.1 About Travian
[Kiran Lakkaraju, 2018, Ch. 8.9.1: Travian was first released on September

5, 2004 by Gerhard Müller with Travian Games GmbH in Munich. The game is
written in PHP and is available in forty-one languages. There are more than 5
million players on more than 300 game servers worldwide. In 2006 Travian won
the Superbrowsergame Award in the large game category.]

Travian has gained massive community and the gameplay revolves around
player interaction. Every year, the developers of the game create a new version
of the game which brings something new compared to the classic version. This is
one way to keep the attention of the community.1

For those, who played the game for years, tournaments are hosted every year.
They are intended for the most skilled players. The participants have a chance
to win special prizes.

Figure 2.1: Graphical representation of a village in Travian. The action bar on top
shows village name, gathered resources, resource maximum, current production,
tribe and offers multiple navigation and configuration buttons. The panel on the
right side shows incoming attacks and units present in the city. Bottom bar shows
in-game time and building and training queues.
Source: https://www.kingdoms.com/

1https://www.travian.com/international/game/playerinteraction

7

https://www.kingdoms.com/
https://www.travian.com/international/game/playerinteraction

2.2 Key Components of Travian
In this section we will briefly summarize the key components of Travian. We

will then describe each component in depth.
The main components are:

(K1) The game is played in real time.

(K2) The game world has a long life cycle.

(K3) The game progress is persistent for each game world.

(K4) Player can play the game as one of three basic tribes. It is possible to pick
a different tribe in different game worlds.

(K5) Players can own an arbitrary amount of villages in one game world. All
villages have bonuses dependent on picked tribe.

(K6) Each village has a set of buildings they can construct, upgrade or even
downgrade and deconstruct. Each building provides different bonuses. Con-
structing or upgrading a building costs set amount of resources and set
amount of time.

(K7) Resource management is an important part of the game-play from start to
finish. There are four basic types of resources: wood, clay, iron and crop.

(K8) Military units take time to travel outside the village, but there is no control
over the flow of battle during combat. The results of the combat are known
immediately after units arrive to their target destination.

(K9) Village management is an aspect of the game that can be handled indi-
vidually or collectively. In Travian, it is impossible to keep expanding one
village indefinitely. To gain more influence and power, it is necessary to
establish a new village or conquer a village of another player.

(K10) Strategy is the key to success. There are multiple strategies that can be
played and they can yield different results on different game worlds.

(K11) The MMO aspect of Travian allows the game to place a big importance
on player interaction. Player interaction combines all of the components
mentioned above together and making them gain on importance. The most
important example of player interaction in Travian are Alliances which are
established by players and consist of players having the same intentions.

(K12) Travian as many others games offers a victory condition. As the game
keeps going for long enough, normally for about 280 days, tribe of Natars
enters the world. They own plans for a building that leads to victory.
Players need to start attacking villages owned by Natars in order to retrieve
these plans. Once a player manages to retrieve the plans, players from
their alliance start working together on helping the player finish building
this structure. This typically includes sending resources. They also have
to protect it so that other alliances do not destroy it in order to buy more
time to build their own structure to achieve victory.

8

2.2.1 Real-time gameplay
This concept of the game ensures that all actions performed by players are

processed and executed as soon as they are received by the client. This mostly
matters in terms of combat between players. It allows players to plan ahead
and execute an attack that will catch their enemy unprepared. It also allows
to execute a set of consecutive attacks where each attack has different goal, for
example to lower the enemy defenses, destroy his defensive army and immediately
after that, conquer the city of enemy by last few attacks.

2.2.2 Length of life cycle of game worlds
The length of the life cycle of a game world is typically about 280 days.

However, it is possible to play on so called SpeedTx2 worlds. The letter T can
be replaced with numbers 2, 3, 5 and 10. The number indicates that the events
on this world occur T-times faster in comparison to common worlds. On speed
worlds the length of life cycle of the game world decreases drastically.

The shortest life cycle of a game world was running for 42 days. It was a test
run of a Speed10x speed world on German servers in 2010.

2.2.3 Persistent game progress
Because of the length of life cycle of the classic game worlds, having a persis-

tent progress is a necessity. When a player stops playing the game for one night
or even couple of days, they are still able to log back in to the game and continue
playing.

However, the villages of the player are present in the game even when he
is not currently playing. This may lead to the player getting attacked or even
annihilated by other players during his absence. Players who lose their progress
by getting conquered prefer starting out in a new, different game world. The
reason is, that older game worlds already has players who have already spent
a long time playing the game and already own multiple villages or even formed
powerful alliances with other players. This gives the player who just joined the
world a very small chance of becoming one of the strongest players on given game
world without getting conquered once again.

2.2.4 Available Tribes
3 In Travian, each playable tribe offers different special features. The Romans,

the Gauls and the Teutons are the three basic playable tribes in the classic version
of Travian. However, there are two additional playable tribes in the special
version, Travian Fire and Sand. These tribes are the Egyptians and the Huns.
To keep it simple, we will only break down the features of the tribes present in
the classic version.

The Romans are recommended tribe for a player who just started playing
Travian. Their troops are balanced in both attack and defense. On the other
hand, their defense against cavalry is the lowest of all tribes.

2http://travian.wikia.com/wiki/Speed_server
3https://t4.answers.travian.com/?view=answers&action=answer&aid=7

9

http://travian.wikia.com/wiki/Speed_server
https://t4.answers.travian.com/?view=answers&action=answer&aid=7

The special features of the Romans are:

• Simultaneous construction of resource fields and buildings.

• Higher defense bonus from city wall.

• Merchants can carry moderate amount of resources while traveling at aver-
age speed.

• Exceptionally powerful infantry, but below average cavalry.

• Training of troops is long and expensive.

The Gauls train units that are very strong defenders. Their cavalry is above
average in terms of speed which makes them viable for surprise attacks, fast
pillaging, even sending out a quick army of powerful defenders to support a
nearby village. This tribe is also recommended for beginners as they are harder
to beat when they are defending and they are capable of hiding their resources
better than other tribes to prevent pillaging.

The special features of the Gauls are:

• Fastest units in the game.

• Moderate defense bonus from their walls.

• Merchants can carry an above average amount of resources while traveling
at above average speed.

• Ability to hide more resources from the attackers to prevent pillaging of
resources.

• Expensive siege weapons.

• Cheap settlers.

The Teutons are the most offensive tribe out of all three of them. Their
units are the cheapest out of all tribes and can carry the most resources after a
successful fight. However, the movement speed of their units and their fighting
capabilities are worse than those of the Gauls or the Romans. This tribe is
recommended to experienced players who play offensively.

The special features of the Teutons are:

• Their walls are very hard to destroy, but they also offer very little defense.

• Merchants can carry the most resources out of all tribes, but they also move
at the slowest pace.

• Their troops are unequivocally cheap, fastest produced, and have the best
resource carrying capacity.

10

2.2.5 Ownership of Multiple Villages at once
In Travian, players typically start out with one village. The players can

construct and upgrade every building available in this village and they are also
able to produce every resource and train every unit. However, buildings, building
upgrades and units use up Population. The population needs one of the resources
called Crop to be able to survive. Therefore there is a limit of Population a player
can sustain in one village without external help. Because of that, the players are
forced to expand their territory by getting more villages under their control.

There are two ways of getting more villages. One way is to found a new village.
To found a village, it is necessary to train set amount of units called Settlers. To
be able to train these units, the player needs to fulfill certain prerequisites. When
the player is ready to get a new village, they pick an empty spot on the map where
no other village is present. Then, the player sends out the Settlers and once they
arrive to their destination, a new village is established and immediately becomes
controlled by the player.4

Another way is to conquer an existing village owned by another player or a
neutral village. Compared to founding a new village, this process is more complex
but may yield higher rewards. First, the player needs to recruit an administrator.
This unit has different name for all three tribes and the attributes and resource
cost differs, but the use remains the same. To be able to recruit such unit, the
player must fulfill certain prerequisites. A village of another player can only be
conquered when only when specific conditions are met. One of those conditions
is that the attacked village is not the capital and not the only village owned by
the victim. Every attack which includes an administrator reduces loyalty of the
enemy village by set amount of points. The maximum loyalty for every village is
100 points. To gain control over the new village, the loyalty of the targeted village
must fall down to zero. The only way to bring the loyalty of a village back up is
to construct and keep upgrading a building called Palace or Residence. After a
village gets conquered, all units owned by the previous owner in that village will
disappear and the walls that were protecting the village will get destroyed. Any
research or tribe specific buildings will also disappear. It is possible to conquer
a village owned by the same player who sends the attack to perform the reset
mentioned above. This approach enforces many different strategies which may
vary from player to player and it can also involve actions of entire alliances. 5

2.2.6 Buildings and Resource Fields
Resource fields6 are the most basic way of harvesting resources in the game.

These fields are located outside a village. For each resource out of the four
available resource types in the game, there is a unique resource field which can
be used for the production. These resource fields are:

• Woodcutter

• Clay Pit
4https://t4.answers.travian.com/index.php?aid=108
5https://t4.answers.travian.com/index.php?aid=101
6http://wiki.kingdoms.com/tiki-index.php?page=Resource+Fields

11

https://t4.answers.travian.com/index.php?aid=108
https://t4.answers.travian.com/index.php?aid=101
http://wiki.kingdoms.com/tiki-index.php?page=Resource+Fields

• Iron Mine

• Cropland

Wood, clay, iron and crop is used to construct and upgrade buildings and
resource fields. However, wood, clay and iron can be used to research and train
troops, while crops is used to feed troops and the population in the village.

Figure 2.2: Graphical representation of resource fields in game. In the middle of
the picture, there is a village seen in figure 2.1. Everything around the village
are the four types of resource fields.
Source: http://blog.travian.com/2014/08/
alpha-diary-settling-has-the-highet-priority/

Buildings7 are divided into 5 categories.

• Infrastructure

• Military

• Resources

• Wonder of the World

• Special Buildings

Infrastructure buildings is a category which is focused on storing, trading and
hiding resources. Additionally, these buildings are intended for spreading the
influence of the village, including founding new villages around the world. It is
possible to improve the construction speed and the durability of all buildings in
the village. Durability of buildings matters only during defense against enemy
catapults and rams.

The strength of army and training of individual units is maintained in build-
ings from the military category. It is possible to research new troops, even train
the units to be stronger and more agile.

This category of buildings increases the base resource production that comes
from resource fields.

7http://wiki.kingdoms.com/tiki-index.php?page=Buildings

12

http://blog.travian.com/2014/08/alpha-diary-settling-has-the-highet-priority/
http://blog.travian.com/2014/08/alpha-diary-settling-has-the-highet-priority/
http://wiki.kingdoms.com/tiki-index.php?page=Buildings

Buildings from this specific category are only available in village which starts
constructing Wonder of the World. This building is typically used to determine
a victory of an alliance in the game world. The category includes the Wonder of
the World itself. However, they also allow building multiple specific buildings to
store more resources and build stronger walls around the village to make it easier
to protect the Wonder of the World from getting destroyed by Natars and enemy
alliances.

While the resource fields and all buildings from the four categories of buildings
and identical for each tribe, buildings from Special Buildings8 category differ for
all tribes. This category provides tribe specific walls to protect villages from
incoming attacks. Moreover, there is one unique building in this category for
each tribe which adds a tribe specific bonus to the village.

An example of how the buildings are represented in the game can be seen in
figure 2.1.

2.2.7 Resource Management
Many RTS games utilize resource management and Travian is not an excep-

tion. As we mentioned above, there are four resources that can be harvested by
the player. There are multiple ways the resources can be obtained.

The most common way of obtaining resources is to keep upgrading resource
fields, which are part of each village. The resources from these fields are passively
gained over time. The production of resources does not change depending on
whether the player is actively playing the game or he went off-line for a couple
hours. The only moment when the production of resources from resource fields
stops, is when the resource hits the maximum limit. The maximum limit is
controlled by a building, typically a warehouse or granary. The efficiency of
resource fields can be affected by constructing and upgrading buildings specifically
oriented for production of resources.

The production from resource fields can be increased even further with bonuses
from special currency purchased for real money or from bonuses of oases. An oasis
is a special type of tile in the world which can randomly spawn close to a village
owned by a player. After raiding an oasis and conquering it, the village that
performed the final attack receives a bonus to production depending on the type
of oasis.

Besides the passive ways of resource acquisition, it is possible to actively trade
resources with villages owned by other players or with non-player characters.
Trading is performed from building called marketplace. Players have the ability
to send resources from one village to another village as reinforcement without
requesting anything for exchange.

The most active and strategically the most difficult way of obtaining resources
is by raiding enemy villages. Military units have a variable amount of resources
they can carry after a successful raid. However, to be able to raid enemy villages
for resources, player has to destroy the defensive units guarding the village. After
all defensive units are eliminated, the player has to raid the village periodically
to make sure the player does not gain enough resources to train new defensive
units and prepare to defend against next raid. There are many factors that can

8http://wiki.kingdoms.com/tiki-index.php?page=Special+Buildings

13

http://wiki.kingdoms.com/tiki-index.php?page=Special+Buildings

stop a player from raiding a village. As an example, we will mention two different
ways. It can be done by requesting a defensive reinforcement from players from
alliance to provide protection from incoming raids until the threat is eliminated
or by diplomatically talking to the player who is raiding the village.

2.2.8 Military Combat
Because the combat in Travian is automated and the players can only see

the time of arrival of units to their destination and the outcome of the battle
afterwards, it is crucial for the player to know how the outcome is calculated in
order to be able to maximize the efficiency at which they can use their army.

Each unit has four attributes which are used in combat:

• Attack Power

• Defense Power against Infantry

• Defense Power against Cavalry

• Carry Amount
9 In the calculations, siege units like catapults or rams, are classified as infantry

unit type. When a player attacks a village with cavalry and infantry units, the
total attack power is calculated as follows:

AP =
∑
u∈U

u(C) ∗ u(AP)

Where U is a set of different kinds of attacking units. Element of the set u,
contains information about the count (C) of that kind of unit, their attack power
(AP), defense power against cavalry (DP[C]) and defense power against infantry
(DP[I]).

When a village is defending against an attack, the situation becomes more
complex. We will calculate the attack power of attacker granted by cavalry AP[C]
and infantry AP[I] by including only the information of units that belong to
these categories. Let P[C] be proportion of AP[C] and AP. P[I] is proportion
for infantry units. The sum of these two proportions will always be equal to one
and one. Using these variables we can calculate the defensive power DP of the
besieged village. Let U’ be the set of different kinds of defending units.

DP =
∑

u′∈U ′
u′(C) ∗ u′(DP [C]) ∗ P [C] +

∑
u′∈U ′

u′(C) ∗ u′(DP [I]) ∗ P [I]

The value of DP is further influenced by the level of walls in the village.
Therefore, this case is relevant for case when the walls are not constructed at all.

Comparing values of AP and DP will indicate the winner of the battle. In
case AP is greater, attacker wins. If the value of DP is higher, it is the defender
who wins. All units of the defeated player die. The amount of survivors of the
winner is calculated from the proportion of the power of the defeated village and

9https://wbb.forum.travian.com/thread/75248-combat-system-formulas/

14

https://wbb.forum.travian.com/thread/75248-combat-system-formulas/

the power of the winner. This proportion is applied to the total number of units
of the winner.

When the winner is the attacker, the units that survived will take all resources
the defender has in his village that are not hidden from attackers. The amount of
resource that can be taken by each unit is limited by the carry amount attribute.

There is a very small chance that the values of AP and DP are equal. In that
case, all units of both attacker and defender are killed.

2.2.9 Village Management
When players receive their first village after joining a new game world, they

have to focus on multiple aspects of the game at once. They need to create a
strong army to be able to protect their own village, they need to have at least
an average passive production of resources from resource fields, they need to
perform research of new units and prepare their city for capturing or founding a
new village.

After getting their second village, they usually start thinking about utilizing
their new village to fulfill a specific purpose. Some villages become filled with
defensive units, ready to be sent to alliance members in need of help. Other
villages become offensively oriented and are used to pillage surrounding villages
and making enemies defenseless. Sometimes the village becomes focused on pro-
duction of resources or gets fortified by walls and serves as a point of strategic
advantage on the map in case of war between alliances. There are many ways a
village can be used and specialized.

2.2.10 Player Strategies
Strategy is essential to become a successful player of Travian. The play style

is very often the main factor that determines the final strategy. There are many
strategies that cover all phases of the game from start to finish. However, they are
usually not very successful, because the success is dependent on what players are
near villages owned by a player trying to follow a strategy guide. For example,
using a strategy that revolves around domination of surrounding villages and
focusing on raiding and pillaging is very ineffective when all villages around the
player are owned by members of his alliance.

Because it is very hard to create such strategy, there are entire threads on
forums, discussions, even entire websites dedicated to trying to create new strate-
gies. Most of the better strategies consist of use of smaller strategies depending
on the flow of the game. In this section we will describe some of the small strate-
gies and how they are performed.

Defensive Strategies

Attack Dodging is a strategy where a player who is getting attacked orders
all units to move out from the village until the attack is done. This is being done
when a player is not sure if he can defend against the attack or the player wants
to spare his offensive units which are ineffective in defense and would die easily.
This can be achieved by sending the units to attack or reinforce other village.

15

However, that can make the army become unavailable for a long period of time
because the troops need to complete the whole trip. This trip can take about one
hour on short distance.

To prevent the troops from having to finish the whole traveling sequence, a
player can perform a dodge. In Travian, it is possible to revert an order to at-
tack or reinforce a village within the first 90 seconds. Using this mechanic, it is
possible to send the army away a couple seconds before the attack is about to
happen and once the village is safe again, a player can revert the order and the
units will safely return back to village within seconds instead of minutes to hours.

Timed Counterstrike also utilizes timing to achieve desired results. Be-
cause it is possible to see the time of the impact of incoming attack by both
players, the defender can see how long it takes for the enemy to travel the dis-
tance between those two villages. The defender can prepare an attack that will
arrive one second after the units of the attacker arrive back to their home vil-
lage. This way the attacker will only have one second to send his offensive units
away to dodge the counterattack, making the defender turn the tide of the battle.

Double Conquer becomes useful when it becomes too difficult to defend
against a conquering attack. When a village gets conquered, the loyalty becomes
zero. It needs a new infrastructure to gain back loyalty to prevent it from being
conquered again. This is used in this strategy. A player can give up on the
village and then conquer it back by timing a conquering attack on their own vil-
lage so that the attack arrives immediately after getting conquered by the enemy.
Losing a village however causes it to reset all the researches, troops and army
upgrades as mentioned in subsection 2.2.5 Ownership of Multiple Villages at once.

Oasis Protection is important because it grants bonus resources. Addi-
tionally, oases carry ten percent of the resources owned by the main village and
the amount is replenished every ten minutes. Because oases do not have walls
or any other way of increasing the defensive capabilities, the best way to protect
the oasis is to attack an oasis and take the resources a short time before the enemy.

Defense Villages are involved in almost every strategy that tries describing
every phase of the game from the first day until the end. These villages are a
specific specialization mentioned in subsection 2.2.9 Village Management. This
type of specialization is usually unit type specific. It can focus on defense against
infantry units or cavalry units. How many of these villages a player establishes
and when he starts preparing them is entirely up to the player and the flow of the
game. The goal of these villages is to provide reinforcements for other villages
owned by the same player or entire alliances. It is recommended to convert all
villages into defense villages as soon as a player from the same alliance starts
building a World Wonder.

Offensive Strategies

The Blacksmith has a name after a building. This building is used to up-
grade combat capabilities of troops trained in the village where upgrades were

16

performed. The strategy revolves around upgrading offensive troops as much as
possible. The bonus from upgrades does not apply for units that are present in
the village as reinforcement. This strategy is not suggested as defensive strategy,
because a player cannot spread influence or capture cities using defense and the
likelihood of getting attacked, when the area around a player is eradicated by
force, is small.

Fake Attacks are important part of offensive play in Travian. We already
mentioned that attacker and defender can see the time of arrival of an attack.
What the defender cannot see is what units are coming. Therefore it is possible
to assume what types of units are in the incoming attack but the quantity cannot
be guessed. This opens a possibility to fake attacks. Fake attacks usually consist
of only 1 unit of chosen kind of troops. There are multiple reasons why a player
wants to fake an attack. Most common examples are:

• To alert an enemy and to make him aware about the activity of the player
to make the enemy reconsider their actions.

• To demoralize a player. Waves of fake attacks that take hours or even days
to arrive can put lots of pressure on a player receiving the fake attacks
and he might expect them to be conquering attacks coming from a strong
player. This situation can make the player completely quit the game world
leaving his villages unprotected.

• To force a player to spread his defenses and ask for reinforcements into
multiple villages at once. Faking attacks on four different villages and
attacking only one of them results in significant reduction in lost units
during the real attack. This way it is easy to hide the real target of attack
and the victim might lose a village without being given a chance to properly
protect his village.

When sending out fake attacks, it is the best idea to send slow units like cat-
apults because travel speed of attacking units is defined by the slowest moving
unit in the attack. This can help hide even more information from the defender.
Additionally, it is much easier to spot a fake attack if the travel speed appears to
be too fast or equal to a movement speed of a defensive unit.

Cleaner waves are sent as attacks at enemy villages with purpose to kill all
or most of the defenders in the village. A cleaning wave should always be ac-
companied with rams to lower the enemy walls making their troops less effective.
Sending a cleaning wave without rams would result in much greater loss of troops
in the attack. Sometimes the difference is so big that it can determine if the
attacker manages to kill all defenders. Optionally, cleaning waves should contain
some catapults to bring down infrastructure, however, they are usually sent in
separate attacks as part of the waves.

The Conqueror is based on trying to conquer every village around the player
which seems appealing based on the displayed population. Capturing a village
owned by an active player can be difficult, because the village might receive
reinforcements from alliance the player belongs to. When picking the next target

17

to be conquered, it is important to consider the distance between both attacker
and defender, how many villages the defender owns and how far away they are
from each other to be able to predict the speed at which the targeted village can
be reinforced. As an offensive player it is crucial to pick villages with as many
crop resource fields as possible so the new village can feed as many troops as
possible.

Once the target has been decided, the next step is to start preparations for
the attack. Each successful attack containing an Administrator decreases loyalty
of a village by 20 to 30 percent. The chances of successfully capturing a village
are much higher when the village is captured in one run. This can be achieved
by training and preparing multiple Administrators responsible for lowering the
loyalty of a village. On average a player needs between 5 to 7 Administrators to
completely conquer a village. In the early stage of the game, when it is too hard
to be able to train multiple administrators in single village, it is a good idea to
ask alliance for help in decreasing the loyalty. However, from mid game onwards,
it should be easy enough to have more Administrators than required.

When the preparations are ready, it is time to start planning and executing the
attack. Typically, a player needs to perform these steps in order to successfully
conquer an enemy village:

1. Estimate the number of successful Administrator attacks required to fully
conquer the village.

2. Send scouts to reveal the defense present in the village while the player is
not alarmed.

3. Attack when the defending players is likely asleep to lower the chances of
the defender to get reinforcements.

4. Attack the village with catapults in order to destroy the infrastructure
making the village more vulnerable to being captured.

5. Send the Administrators in separate waves of attacks to make sure they are
performed as quickly as possible.

The last two steps include attacking in waves. The waves can differ depending
on likes of the attacker and the assumptions about the enemy. The most common
way of forming the waves is as follows:

1. Send 4 or 5 waves from the main village. Make the first few waves fake
waves. The remaining waves should consist of cleaner waves and Adminis-
trators. Catapults should be ordered to attack infrastructure.

2. Send another 3 waves from each village containing Administrators. It is
suggested to time those waves to be about one minute apart. The reason
for that delay is to make sure the incoming attacks do not hit and kill the
units sent by the attacking player. This can happen in case the village gets
captured sooner than expected because of random chance or miscalculation.

3. Make sure that each wave with Administrators has enough offensive troops
to prevent the Administrators from getting killed by units from dodged
performed by the defender.

18

Immediately after conquering a village it is important to build back the in-
frastructure to gain back the loyalty and to get as many reinforcements in the
captured village to prevent it from being captured back.

2.2.11 Player Interaction and Alliances
In the early stage of the game, there are usually many alliances. They can

be either small or large, however they are formed by random players who are
grouping together without knowing too much about each other. Majority of
these alliances are typically dissolved because they get defeated by larger alliances
who make the strongest players join them. Later in the game, these stronger
alliances tend to merge with other alliances to form bigger alliances. Eventually,
they become multi winged alliances, which are known as meta alliances. These
alliances form within each quadrant of the game world and many of them do
not even make it to the end game because they fight other meta alliances. The
winning meta alliance in each quadrant is then able to join the race in building
the World Wonder in the final stages of the game.

The most dangerous type of alliance is the one formed by players who played
together on previous game worlds. These people know each other, know majority
of mechanics, tricks and dangers of the game and are not willing to accept an
inexperienced player to join their ranks.

Alliances make collective decisions and then they cooperate to achieve their
goals. However, players are just people and a behavior is not restricted by the
game rules. Therefore it is possible for some players to be official members of
one alliance, but their intentions are to spy for a different alliance that plans an
ambush. Spies are a very common strategy in Travian and it is hard to find a spy
in an alliance since they look exactly the same as every other member of alliance.
The alliances that are formed from previous game worlds tend to place a spy in
alliances even immediately after launch of a new game world.

Diplomacy is a very common factor which affects the outcome of the game. In
the early stages of the game it is not recommended to form a friendly alliance with
as many players as possible so there are players that can be raided for resources
and villages to conquer. Later in the game during the mid game phase, it is
suggested to start forming alliances with those that managed to become strong
to be able to create even stronger alliances. This still leaves the weak alliances
around for raiding and capturing. By the end of this stage of the game there
should be many wings under the strongest alliance. A stage right before the end
game begins is called late game. During the late game stage of the game players
want to finalize their diplomatic agreements and prepare for end game and World
Wonder. Because of that, diplomacy in end game is typically non-existent.

2.2.12 Victory Condition
The first player to construct their World Wonder to level 100 is declared to

be the winner of the game world. The players with the highest total population
and the most successful attacking and defending streaks are also mentioned in
the declaration.

After the winner is declared, the game stops and players can no longer build,

19

trade or initiate attacks. After a period of time, the next game world begins, and
the game starts from the beginning.

2.3 Main Differences of Framework
In this section we will describe differences of our framework in comparison

with components described in section 2.2 Key Components of Travian. It is worth
mentioning, that compared to Travian, player does not start with a village, but
with a city. However, the functionality of the entity remains the same.

2.3.1 Generic Victory Conditions
The framework does not come with a default victory condition. The game

world goes on until it is stopped manually. The reason behind that is, that there
is no victory condition we know of that would work for all games created by the
framework.

Examples of generic victory conditions would be:

1. Certain amount or proportion of players are left with no village to control.

2. A player reaches specific score milestone.

3. A player managed to capture or establish certain amount of cities.

4. World runs for certain amount of time.

In simulation we will describe in ?? ??, we used a combination of the first
and last victory conditions mentioned above, which worked well, but had some
problems which can be seen in chapter 4 Experiments and Results.

2.3.2 Replacement of Consumable Resource
Travian utilizes a resource called Crop to maintain the army and workers in

buildings. The resource is passively gained from resource fields, and the army and
workers decrease the production. Once the amount of crop required to maintain
the village exceeds production, the amount of stored crop starts decreasing and
the troops will starve and eventually die. Death of troops would cause the required
crop to maintain the village to get back to acceptable levels. The amount of crop
required to maintain a village is affected by reinforcements.

Our framework does not use this method of limiting the amount of troops and
workers in one city. Instead, we directly limit the amount of population each city
can reach.

The difference is, that upgrading buildings and training more units increase
the population of the city. Trying to upgrade a building or train units that would
bring the population above the value of maximum, is an action that cannot be
performed. However, receiving reinforcements from other cities does not affect
the amount of population.

Downgrading buildings that require population and losing units in battle
brings down the amount of used population.

20

2.3.3 Founding New Village
As mentioned in 2.2.5, Travian allows training units called Settlers. These are

being sent to empty positions on the map to establish a new base. With greater
distance, the traveling time of the settlers increases.

In the framework, there are no units that have similar use compared to Tra-
vian. However, it is possible to open world map interface to find an empty spot.
When a position is picked, it is possible to establish a new city using resources
in the city.

The action of founding new city in the framework is instantaneous and the
resource cost increases with greater distance between the two positions on world
map. The process of founding resources is covered in user documentation in
subsection A.6.3 World Map Screen.

2.3.4 No Loyalty
The framework has no support for such feature. Every city can be captured

after first successful attack containing a unit capable of capturing enemy cities
which survived the fight.

2.3.5 Capturing Enemy Cities
In Travian, it is impossible to capture a village which is marked as capital

city. This feature is not present in the framework and a player can lose all of his
villages. When a player has no village left to control, they are defeated and there
is no action left to be performed other than starting a new city under new name.

When a player captures a city, the player inherit all progress that was done
in the city by the other player. Moreover, all ongoing actions are also inherited
with all units trained in the city that are still alive. The only thing that changes
is the ownership of the city.

2.3.6 No Research
This feature is not available in the framework at all. There is no similar

feature that would be capable of mimicking the same behavior.

2.3.7 Possibility of Controlling Multiple Nations
Compared to Travian, where capturing a village of different tribe, it becomes

a city of the same tribe the player who captured the village is using.
In the framework, it is possible to capture a city controlled by different nation

and gain the ability to construct the buildings and units specific for the nation of
captured city. This adds a new component for strategies that can be used while
playing the game.

2.3.8 Resource Fields
Passive income of resources is handled using buildings instead of resource

fields found in Travian. Additionally, there are no buildings that provide bonus

21

to the total passive resource production from buildings in the framework.

2.3.9 Exchanging Resources
Travian uses merchants to send resources to other cities. They are also used

for performing exchanges of resources. Merchants require certain amount of time
to travel between cities to deliver the resources from one city to another.

The framework uses a different approach. It is possible to exchange resources
from a building directly. The exchange happens instantly, however, the exchange
ratio does not change depending on the demand of resource.

2.3.10 Combat Formulas
When a player attacks with only one type of unit, the calculations are just

like in Travian.
The calculations when a player attacks with multiple types of units are dif-

ferent. In such case, the attack happens in waves. Every wave contains only one
type of units, resulting in attack having the same amount of waves as the amount
of unique unit types of attacker.

Because each wave contains only one type of units, the calculations become
the same as for the case of one unit type combat in Travian. The order in which
the waves are executed is defined by the order of unit type definitions described
in subsection B.2.2 Unit Types of attachments.

2.3.11 Canceling Actions
While Travian allows canceling construction and military orders, the only

action that can be canceled is to cancel the order of reinforcements to protect
another city and to return them back to the city they were sent from.

2.3.12 Events Instead of Oases
In the framework there are no oases that can be captured to provide bonuses

for a city they were captured from.
As a replacement, there are events that can appear around the game world.

Events appear on the world map and can be seen by everybody. They can be
attacked and supported like every other city. Events are not controlled by artificial
intelligence or another player. They are passive and they are not a threat and
they only prevent players from establishing a new city on the position where the
event is placed. On the other hand, attacking the events can yield extra resources,
but they can be very heavily guarded by neutral units.

They can also serve as a trap, when players decide to send reinforcements to
the specific event tile which will make it more dangerous when a player decides
to attack it, especially if the event can only be attacked by a special type of unit.

Events are further described in subsection B.2.4 Event Tiles of attachments.

22

2.3.13 Upgrades of Military Troops
This feature is completely missing from the framework and there is no re-

placement for it.

2.3.14 Alliances
Because there is no default victory condition, alliances are also missing. There

is no reason to team up.

2.3.15 Artificial Intelligence as Player
In Travian, the only villages that are controlled by AI are villages of Natars.

These appear in the end-game phase of the game as part of the preparations for
the World Wonder leading up to the victory condition and the end of game world.

Our framework allows adding cities which are controlled by generic AI imme-
diately after creating the game world. It is possible to make the AI controlled
cities appear periodically so that individual AI controlled cities have different
progress and can be attacked even by new players joining the world.

How the AI works and what behavior of the AI is provided by the framework
will be covered in section 3.9 Artificial Intelligence.

2.4 Used Technology
Our goal is to be able to see whether it is possible to create a generic AI. We

also wanted to have a simple client-server application. This played a vital role in
choice of the used programming language.

Because of that, the framework is running on .NET platform and C#. The
main reason of choosing this platform is that it comes with Windows Forms class
library which allows high variety of customizations and custom event handlers.
It was used to create the first client to visually represent and allow the users to
play the games created in the framework.

We have successfully avoided using external database. Instead, we used .NET
language integrated query (LINQ) combined with instances of generic classes.
There were two main reasons for this approach. One was to prevent the in-game
information to be loaded in memory by both external database and the server.
The second reason was to make running the server as simple as possible. However,
it would be much easier to manage the game data with an external database such
as MySQL.

2.5 Goals Breakdown
A. Main goal. Create a Framework for MMORTS games which allows to:

1. Define new and modify existing nations
2. Add and modify unit types
3. Add and modify resource types

23

4. Add and modify available units for each nation
5. Add and modify available buildings for each nation
6. Modify the price of establishing a new city
7. Modify the starting resources of each city
8. Add and modify events which can appear on the world map
9. Perform all the modifications listed above from XML documents
10. Modify the graphics used by Clients without modifying the Client itself
11. Play any game created using the Framework using the provided Client

B. Secondary goal. Develop an Artificial Intelligence which can:

1. Play games created with the Framework
2. Build, upgrade, downgrade owned buildings
3. Train military units
4. Attack surrounding cities of other players
5. Defend against attacks of other players
6. Establish new cities
7. Conquer cities owned by other players
8. Win the game.

24

3. Implementation
In this chapter, we will cover the implementation of algorithms, features and

mechanics of the framework and game elements. We will also include possible
improvements of these algorithms.

We will discuss the choice of networking protocol and how it is used to transfer
game data during communication of server with client, including an example.
Later, we will describe how we implemented save game system and how we load
different configurations of the game elements.

Then, we will talk about the data stored by the server. A description of world
map, including how sharing of map information with clients is handled. We will
describe an algorithm that chooses positions on map for new players, why the
approach is important and how it is related to placing new events on the map.

We will define timed actions and how we implement them. Then, we will list
what artificial intelligence is present in our framework and how the AI works.
This will include definitions of action and selection of actions for AI.

We will conclude this chapter with a description of simulator, which utilizes
the implementation of the game to provide a testing environment for generated
games and the created AI.

3.1 Network Protocol
The server is using Transmission Control Protocol (TCP) to establish connec-

tion with clients. The frequency of sending packets between server and client is
not high. Additionally, latency is not important part of games that can be run
by the framework. Therefore, TCP suits our needs better than UDP.

The game is played in real-time, but once the client receives information about
currently viewed city, everything is being calculated without help of the server.
The next packet containing new information from the server is received again
once the player performs some server-side action.

Because the client relies on receiving every packet from the server after each
performed action, while the communication between client and server is not very
frequent, TCP fits our purposes better than UDP.

3.2 Data Serialization
The framework utilizes two types of serialization provided by .NET libraries.

1. Binary Serialization

2. XML Serialization

Binary serialization is an important part of the framework which allows con-
verting objects of the game into binary information that can be stored for later
use or sent to another system. It is used in communication between server and
client that will be described in section 3.3 Client-Server Communication, where

25

both client and the server are required to support binary serialization. It is also
used to save and load the game progress described in section 3.4 Saving the Game.

XML Serialization is used to load and store definitions of configurable game el-
ements covered in section B.2 XML Configuration of attachment called Advanced
User Documentation. The process of XML serialization is used exclusively by the
server.

3.3 Client-Server Communication
The communication between server and client is essential in the framework.

Both client and server use string messages to specify their communication. The
client sends only string messages that use UTF8 encoding. The server is capable of
sending a serialized object containing string message and another serialized object
relevant to the type of request received from client. The string with relevant
object is encapsulated in our implementation of Packet class.

The objects are serialized by the server using binary serialization to make
it possible to transfer all information over network. After a client receives the
response, client proceeds to deserialize the packet, identifies the string message
and if required, deserializes the appended object to expected class or type.

In future, it would be better to use request IDs instead of strings, because
string comparison is slower. However, the string usually contains additional
information about the request. The additional information is passed using a
chosen separator which is >. The typical response of a client is in format
COMMAND>INFORMATION.

We will describe an example of the communication when client sends a request
to retrieve a new version of world map.

1. The client sends a string request GETNEWWORLDMAP>103 104. The
message before the > symbol is the identifier of the request. The values
that come after > are the values for the request. In this case, the client is
asking for new information about world map around city on position with
coordinates X = 103 and Y = 104.

2. The server receives the request, checks if it contains the symbol > and splits
using the symbol.

3. The server proceeds to check if the request is a valid string message.

4. The server identifies the values and prepares required information about the
world map for the answer. Then, the information information is serialized
and inserted into an instance of Packet class. The packet also receives
a command used for response NEWMAP and values for the command. A
response contains three values, which are the total size of the map with the X
and Y coordinates of the upper left corner of the part of map the server sends
data about. The string message contained in the Packet is NEWMAP>200
98 99 and the appended serialized object is a two-dimensional array of
instances of BasicTileInfo class. The purpose of the class will be covered
in subsection 3.7.1 Obtaining Map Information. The server serializes the
Packet and sends it to the client.

26

5. The client receives the response, deserializes the packet and identifies the
string message. Based on the information received in the string message,
the client knows that the appended object contains a 2-dimensional array
of BasicTileInfo and deserializes the object accordingly. With the infor-
mation provided, the client stores the information and displays the world
map.

The server stores information about currently connected clients in instances
of ClientDetails class. The objects store information such as the name of the
player and the TCP socket which is used for communication.

Static class CommConstants contains constants used by both client and the
server. It contains information such as size of buffer, number of port the server
is listening on, message used by client when trying to establish connection and
the message the server answers with. The list of all commands can be found in
class Commands. Any command that is not listed in this class and is used in
communication will be handled as undefined command.

3.4 Saving the Game
Currently, the save game system only allows maximum of one save game file.

Implementing more save slots is not demanding. However, in a game with very
long life cycle, it typically does not make sense to create and continually manage
more than one saved game progress.

Games are saved using binary serialization process so that it keeps all used
data structures (e.g. Dictionary) intact. XML serialization process does not
support serialization of some of the more complex data structures by default.
Another reason why we have chosen binary serialization over XML serialization
for save game system is that we do not want to allow easy manipulation with saved
game data by a user who does not have enough experience with programming.

3.5 Loading of Game Configuration
To load and store XML documents, we use XML serialization technology

provided by .NET libraries. It is important to mention, that this method does
not support serialization of queues and some other data structures by default.

XML documents are used to add, modify and remove game elements such
as buildings, troops, types of in-game resources, types of units, game events or
entire nations that can be played. The documents are very important part of the
framework and in case they are missing, they are automatically generated back
after an attempt to start the server.

Because the contents of files generated by XML serialization technology are
easy to read by human, they can be modified by any file editor. How to properly
edit these files, how the folder hierarchy works and what exactly can be config-
ured can be found in section B.2 XML Configuration of attachments. Different
configurations of the XML documents will be intensively used for multiple runs
of simulation during experiments.

27

3.6 Data Storage
The runtime data containing information about players, their progress and the

status of the entire game world is stored by the server. The server distributes the
data to clients depending on their requests. However, clients can only perform
requests to change the obtained data. The server will then perform required
checks, perform the change to the data if possible and sends the modified data to
the client. This way, third-party modifications done to client data cannot affect
the data stored by the server.

What data the server stores and how they are related to each other is covered
in the source code provided in Appendix C File Attachments in ServerImplemen-
tation Namespace.

We will briefly summarize the most common data structures used to store
game elements.

• World Map is a two-dimensional array that can contain classes extending
WorldMapTile abstract class.

• Players, buildings, units and actions of units, such as attack, support, re-
turn, are stored using generic List class.

• Screens of game client are stored in holder classes that store each formular
and allows switching between them without having to display more than
one screen at the same time. Each screen is described in section A.6 Game
Screens in attachments.

• Building upgrades, downgrades and unit training are stored in generic List
class, but the list is being treated as queue. This is being done because of
the limitations of XML serialization process.

• World events and cities are extensions of WorldMapTile abstract class.
The WorldMapTile class includes information about basic features of a
tile on a map. These include name of the owner, nationality of the tile,
available buildings, units, resources and production. A city provides very
little additional features making it identical with WorldMapTile abstract
class. However, events have ability to regenerate units, fighting the event
yields additional resources to attackers and the rewards and units can be
generated based on predefined sets of rewards and units including their
amounts.

3.7 World Map
The world map has been implemented based on an example of old represen-

tation of map in Travian, with an example shown in figure 3.1.

3.7.1 Obtaining Map Information
Client sends a request to retrieve an information about part of map. The

server processes the request and sends the client information about surrounding

28

Figure 3.1: An old visualization of map in Travian. The controls and layout were
used as an example when designing map for our framework.
Source: http://www.glenzippo.co.uk/travian/Hero2.htm

tiles on the map. The information is passed using instances of special class called
BasicTileInfo.

This class stores information about the position of the tile in the game world,
name of the owner, nation of the city and the amount of points of the city. In
case of event tile, it also contains the description and name of image specific for
the type of event.

Empty tiles in the world are represented with null value. Wrapping it in
instance of BasicTileInfo allows us to store the information about the position
of the tile.

However, cities and events contain lots of information that we do not need
to send to the player. Having to serialize and send data about each city is
unnecessary and it would result in much higher consumption of server resources
when communicating with each client. Because of that, we have decided to include
only the necessary information in instances of BasicTileInfo.

We mentioned that the client only receives part of the map, which is also im-
portant to reduce the network traffic between client and server, especially since
the information about surrounding positions on the map is constantly being up-
dated. The part of the map received by the client is stored in a two-dimensional
array of this information. Whenever a client encounters a null value when trying
to display the map to player, it immediately sends another request to the server
asking for another part of the map. To be able to perform the update easier,
checking for null values in stored array of world map information is always per-
formed one step ahead. When the client receives the new part of map, it adds
the information to the two-dimensional array.

29

http://www.glenzippo.co.uk/travian/Hero2.htm

3.7.2 Positioning Algorithm
In section 3.6 Data Storage we described the data structure used by this

algorithm. In this section, we will cover the algorithm which uses the mentioned
data structure and how it works.

We already mentioned that the life cycle of each game world can be very long.
However, new players can join the server as long as there is an empty position
where the player can start. Here we encounter a problem of placing a new player
with small city in case there are already players with multiple cities.

Placing the player randomly in the game world would be problematic espe-
cially in the early stages of the game world, when there is not enough players.
First few players in the game world would appear far away from each other. In
the later stages it still would not prevent the new players from being placed close
to players that have been playing for a few months, which would give the player
no chance to be a part of the competition. Another problem is, that players
should be grouped depending on their progress and when they joined the world,
while keeping them close to players that have joined only a couple days earlier.

A solution to this problem is, to start adding new players in the center of the
map and keep spreading them towards the edges of the map in circles, similar
to growth rings of a tree. This way the players will be sorted from the oldest
players, in the center of the map, to the player who recently joined, closer to the
edges of the world map. For this, we will need a data structure that simulates the
growth rings of tree with respect to cardinal directions. Because of the cardinal
directions, the data structure is implemented as a special kind of tree structure.

The construction of the data structure is performed at the start of the server.
An algorithm tries to find the center of the world map. There, it creates a block
covering tiles in a square of configured dimensions. This block becomes the root
node of the data structure. To make it simple to explain, let the dimensions of
the block be set to one, making it cover exactly one tile on the world map per
block. From here, we will refer to each block as a tile.

Each tile, which is not on the edges of the map, has eight other tiles around
it. These tiles are in eight different cardinal directions. These are the eight child
nodes of the root node of data structure.

Every child node has up to three child nodes. These are:

1. MiddleBlock has all three children, one is in the same cardinal direction as
parent node and the other two are the left and right branch neighbors of the
cardinal direction. For example, if the parent node has cardinal direction
NORTH, the MiddleBlock will have children from NORTH, NORTHEAST,
and NORTHWEST from the perspective of parent node.

2. LeftBlock only has one child node, which is the left branch described in
MiddleBlock.

3. RightBlock only has one child node, which is the right branch described
in MiddleBlock.

The final data structure covers the world map as shown in figure 3.2. If we
take EAST marked by letter E in the picture, the part of map marked with M
is covered by MiddleBlock nodes. The L and R are covered by LeftBlock and

30

RightBlock nodes. As we can see, NE and E partially cover the same piece of
map.

Figure 3.2: Visualization of the data structure used by positioning algorithm.
The whole picture is entire map with highlighted cardinal directions. The colors
represent children of each node. The middle of the map is the root node of the
data structure.

It is worth mentioning, that the representation in the figure 3.2 is not identical
in game. There are blank spots near the edges of the world map, in case it is not
possible to fit in another block of specified dimensions.

Tiles covered by the blocks from neighboring cardinal directions slightly over-
lap, which is intended. It helps create quadrants of players on the world map.

The algorithm that picks the position using the data structure uses a simple
BFS algorithm. Based on the cardinal direction chosen by the player connecting
to the server, the one of the eight child nodes is chosen as start of the BFS search
for the first empty spot on the map in a block that has less than configured
amount of cities that can be placed on the same block.

3.7.3 Adding Event Tiles To Map
Events are generated periodically from the start of server. The position for

an event tile is found using the positioning algorithm from 3.7.2. New events are
only added to block that already contain player controlled cities. The purpose of
events has been mentioned in subsection 2.3.12 Events Instead of Oases.

What kind of event is generated is determined using following algorithm.

31

1. From the list of all events, make a list of those that would manage to appear
after applying their chance of appearing.

2. If there are no events left in the list, no event is placed in the found position.

3. If the the new list of events contains at least one event, randomly choose
one of them.

4. Generate the units that will be present in the event tile, their amount and
everything described in subsection B.2.4 Event Tiles based on the values in
specific intervals.

3.8 Timed Actions
Some actions are not finished instantly. Instead, they require certain amount

of time in order to be finished. This includes upgrades and downgrades of build-
ings, training of units, attacking enemy cities, sending reinforcements or waiting
for units to return back to their city of origin. We call these action timed ac-
tions. The amount of time required needs to be accounted with, especially when
the server shuts down an the progress is saved for later use.

We decided to remember the time required to finish each of these actions.
Once the timer reaches zero, the specific action is executed.

However, implementing timed actions as a discrete simulation would require
much computer performance. Instead, the server supports updating cities on de-
mand. Human players who are currently not actively playing do not require their
cities to be updated. Same applies for players controlled by artificial intelligence,
which is currently not doing anything.

The update occurs when a player performs an action which involves the city
or if some other action somehow affects another city. An example of such action
is a player attacking reinforcements present in other city.

Every city is also updated every set amount of time. This amount of time can
be configured by modifying the value of CityTileUpdatePeriod described in
section A.4 Server Configuration.

3.9 Artificial Intelligence
As we already mentioned in subsection 2.3.15 Artificial Intelligence as Player,

artificial intelligence can be a vital part of the experience from start to finish of
the game world.

In our framework, AI has a set of basic actions The behavior of AI is defined
by algorithms for action selection. The implementation of the basic actions
is provided by the framework and the actions are identical for each type of AI.
The algorithms for action selection are implemented separately and always use
the implementation of basic actions provided by framework.

Every AI consists of a collection of arbitrary amount of algorithms, which are
represented by an instance of class implementing an IExecutable interface. How
the algorithms are executed and in which order depends on individual implemen-
tation of AI.

32

We will list the basic actions below and provide name of the file containing
the definitions of these actions in brackets.

• Enqueue Building Upgrade (UpgradeBuilding.cs)

• Enqueue Building Downgrade (DowngradeBuilding.cs)

• Enqueue Unit Training (TrainUnits.cs)

• Send Attack (SendAttack.cs)

• Send Reinforcements (SendSupport.cs)

• Return Reinforcements (ReturnUnits.cs)

• Establish New City (EstablishNewCity.cs)

If an AI uses any action from the list mentioned above, it should definitely
use the predefined actions to prevent undefined behavior. More about the meth-
ods provided in the files can be found in the source code in Appendix C File
Attachments.

Every action of AI is performed per city for both types of AI implemented in
the framework. This means that no action is executed as attempt to capture one
city of enemy from multiple cities owned by the AI.

We implemented two types of AI in our framework. One of them is using
random actions, which was used to see if the basic actions can be properly used
by AI. We named this type of AI Random.

The other AI is an attempt to implement a logic that controls the flow of
executed actions based on generic rules with configurable parameters. This type
of AI is presented as Rule Directed with Parameters.

3.9.1 Random
Random AI does use any logic when playing the game. It has a basic set of

algorithms to upgrade buildings, establish new city, train units, support cities
owned by the AI and to attack surrounding cities that are not owned by the AI.

All these algorithms are performed every time the AI is updated and if it
cannot afford the action specific for the algorithm, it skips it and continues with
another algorithm.

All actions performed by the algorithms are also randomized. They try up-
grading random building from list of all affordable buildings, train any affordable
unit, attack any enemy around and establish a new city as soon as the AI has
enough resources to do so. The only difference is the supporting algorithm which
supports only cities that are being attacked.

This type of AI serves as a test of the implementation of basic actions. How-
ever, in games with very low branching factor, where there are very few buildings
to upgrade and kinds of units to train, this type of AI becomes very effective.

33

3.9.2 Rule Directed with Parameters
This type of AI is using more complex algorithms than the Random AI. It

also performs some calculations which are stored in the memory and frequently
accessed afterwards. What calculations are being performed and what kind of
rules the AI utilizes will be described in this section.

Parameters

Because the branching factor is affected by the configuration of the game
created by the framework, using rules for specific situations will not always give
us positive results.

We decided to try defining the rules based on configurable parameters. The
parameters are as follows:

• Military Ratio

– Total Percentage
– Aggressiveness
– Defensive Percentage
– Offensive Percentage

• Building Ratio

– Total Percentage
– Production Percentage
– Defenses Percentage
– Construction Building Percentage
– Recruitment Percentage

• Expanding Urge

The sum of Total Percentage of both ratios should always be 100. The
percentages of each ratio should always add up to 100 per ratio.

The AI will try making decisions that will keep the ratios in every owned city
similar to ratios provided in its parameters. For example, if an AI is parametrized
to have 40% building and 60% military ratio, it will try keeping the population
used up by buildings and military troops in 40:60 ratio. The subsequent percent-
ages are handled in the same way.

Parameters of Aggressiveness and Expanding Urge are handled in a dif-
ferent way. The aggressiveness increases the likelihood of the AI to perform an
attack on a city which is stronger than the city owned by the AI.

Expanding urge decreases the levels of progress in current city required before
the AI tries establishing a new city.

Some of the actions use special calculations of these three classes with single-
ton instances containing required results.

34

• City Memorizer is being used by actions to attack enemies and estab-
lish new cities. The instance of this class remembers data about discovered
enemy positions and empty positions. It is used to quickly access corre-
sponding cities so that the AI does not need to search for these positions
around his city using BFS algorithm, which can get very slow once the
world becomes overcrowded by cities owned by the same AI.

• Building Cost Memorizer contains information about resource cost of
buildings at all levels of upgrade. It is used for fast access to increase the
response rate of the AI.

• Efficiency Table is being used when picking which units should be trained.
The data stored in the instance of this class contains information about how
effective each unit of each nation is against certain units. Using this table,
the AI tries recruiting the most effective units currently available. The data
is also used when picking units that should attack the enemy.

The effectiveness of the rule directed AI has been tested by the simulator
described in section 3.10 Simulator and the results will be shown in chapter 4
Experiments and Results

3.10 Simulator
Creating a balanced game using a framework is not a trivial task. Addition-

ally, the created artificial intelligence has to be tested and their difficulty and
performance is hard to be measured because the game world lasts for long period
of time.

To test the AI and how balanced the design of configured game is, we decided
to develop a simulator.

The simulator uses the implementation of world server with different config-
uration and does not accept any connections. It is used to run the game with AI
controlled players only.

The simulation does not start the default server loop. Instead, it is replaced
by the simulation loop. The loop of simulation is turn based and has five phases:

1. Perform an update of every city.

2. Prepare sets of actions every AI wants to perform during this turn.

3. Execute all prepared actions. An action returns a value which is not relevant
outside of simulation. The value represents a sleep time of the AI, which is
calculated as time required to finish the performed action or the expected
time until the action can be performed. The simulation remembers the
shortest waiting time required after execution of this phase is finished.

4. Perform a check of victory condition. For simulation, we made the sim-
ulation to end once 2

3 of all players are left with no village to control, or
the server time reaches five days. If the victory condition is reached, the
simulation loop ends.

35

5. Add the value remembered from phase three to the time of the server and
continue with phase one.

Using the simulator, it is possible to simulate entire life cycle in much shorter
amount of time. This lets us collect data about the AI and the game in a short
period of time.

36

4. Experiments and Results
We have decided to run some experiments to confirm our hypothesis that

there is no optimal configuration of the rule directed AI, with respect to all game
configurations. In other words, our hypothesis is that each game configuration
calls to a different play-style and thus for different parameterization of our rule
directed AI, described in subsection 3.9.2 Rule Directed with Parameters.

We also want to show, that different configuration of game elements, which
changes the way the game should be played, affects the performance of rule
directed AI with different configuration of parameters.

We have chosen simulator described in section 3.10 Simulator as our testing
environment. In the next sections of this chapter, we will describe how we gener-
ated the different configurations of the game and what configurations of the rule
directed AI were used. Then, we will talk about how we ran the experiments and
how we collected the data. The chapter will be concluded by discussion of the
results and how they confirm our hypothesis.

4.1 Generating Input
The input of the experiments for the simulator consists of different sets of

configurations of one type of game. Using a game containing many different game
elements would allow us to collect more data, which would make the results harder
to observe. To be able to collect data that can be observed, we had to generate
as simple type of game as possible. If we manage to confirm our hypothesis in a
simple type of game, the hypothesis would likely be confirmed in a more complex
type of game. We decided to prepare a game with the following elements:

1. Only one type of units. More types of units only provide higher diversity,
which we want to prevent.

2. Only one type of resource. More types of resources also increase the diver-
sity of the game.

3. Cities start with no resources.

4. Only one playable nation. More nations would mean higher diversity.

5. Each city has six buildings. There are eight different types of buildings
but AI does not exchange resources, leaving us with only seven types of
buildings. Action Center type of building is not affected by upgrades, so
we can merge it with any other building.

6. Each city can train only three unique units. One offensive, one defensive
and one used to conquer enemy cities.

7. Disabled random events.

There are static and dynamic elements of the game we are generating for
the input. We will describe those in subsection 4.1.1 Static Game Elements and
subsection 4.1.2 Dynamic Game Elements. What influenced the configuration
will be covered in subsection 4.1.3 Picked Strategies and Configurations.

37

4.1.1 Static Game Elements
Static elements always remain unchanged while generating new configuration

for the simulator input. In this case, the static elements are types of resources,
starting amount of resources, playable nations, buildings and types of units.

We created a game with one type of resource called Gold, and a city would
always start with no resources. The game only offers one nation of Barbarians
which can be played with predefined set of building and units.

• Buildings

– Construction Building which is used to give orders to troops and
perform building upgrades and downgrades.

– Population Building increases the limit of maximum population of
the city.

– Production Building increases the production of Gold of the city.
– Protection Building increases the defensive bonus of troops in city.
– Storage Building increases the maximum limit of Gold that can be

stored in the city.
– Training Building allows training of troops.

• Units

– City Attacker is a basic offensive unit.
– City Protector is a basic defensive unit.
– City Conqueror is a unit capable of capturing enemy cities.

Attributes of the buildings and units listed above are part of the dynamic
game elements.

4.1.2 Dynamic Game Elements
Dynamic elements are directly changed by the process of generating new con-

figuration of the game. These elements are resources required to establish a new
city, attack power and defensive power of units, salvage amount of resources for
units, resource cost of unit that captures enemy cities, resource production speed
of buildings and the defensive bonus of walls. All of these attributes are being
generated by the project in namespace GameGenerator.

4.1.3 Picked Strategies and Configurations
How the game configurations should be generated became a problem. We had

to try generating the games so the play-style promoted certain strategies that
can be played out by our tested AI.

In Travian, there are many different strategies, from which we have listed some
in subsection 2.2.10 Player Strategies. Most of the strategies can be performed
by players in games created by our framework. However, our AI does not utilize
them and it is hard to defend against some of the strategies. In spite of that,

38

there is a concept we can use for the AI. The strategies fall under offensive and
defensive categories.

We decided to use these two strategy categories as strategies. If the AI focuses
on offensive units and attacking other cities, it is playing an offensive strategy.
If the AI builds its own defense, it plays defensive strategy. We picked third
strategy based on the parameters of the AI, which is expansive strategy. If the
AI tries spreading its influence as often as possible, the play-style falls under this
strategy.

We started generating the values of dynamic game elements depending on the
three picked strategies - offensive, defensive and expansive. We placed an equilat-
eral triangle into a three-dimensional space. Each vertex would gain maximum
on different axis and other values would be minimum. These vertices are games
that are in favor of one strategy and other strategies would be on their minimum.
An example of such triangle is shown in figure 4.1.

Figure 4.1: A 2-dimensional triangle in 3-dimensional space. Each vertex repre-
sents a specific strategy. Picking any point on the triangle is a new configuration
for the simulator input.

Configuring a game to be in favor of offensive strategy means increasing the
attack power of offensive units. It would also increase the amount of salvage that
can be carried by offensive units.

Defensive game would instead increase the defensive capabilities of defensive
troops. It also increases the defensive bonus provided by protective buildings.

Expansive strategy would influence the production of resources from buildings.
It would also decrease the resource cost of training a conqueror unit and the
resource cost of establishing a new city.

We recursively generated points withing the triangle with certain distance
between every two points. We passed the values of the points to a method that
would set the dynamic elements of the game based on the values. Using this
method we recursively generated exactly 66 different configurations of the game.

4.2 Experiment Participants
Because we need to perform multiple tests and the life cycle of the game is still

estimated to take hours per game world, there cannot be any human participants.
The only participants in the experiments are players controlled by artificial

intelligence.

39

4.2.1 Rule Directed AI
Because there are many parameters of the rule directed AI and we want to try

out as many combinations of parameters as possible, while keeping the simulation
time per game world at acceptable levels, we need to generate the configurations
of parameters with low density.

We recursively generated different parameters for rule directed AI and made
sure there are no repetitions. We placed following restrictions on the parameters
during the process of generating.

• Expanding Urge cannot exceed 100%.

• Values of Total Percentage of Military and Building ratios change by
25% and the sum of their totals always has to be 100%.

• Values Expanding Urge, Construction Building Percentage and of
Production Percentage change by 25%.

• Values of Defensive Percentage and Offensive Percentage change by
25% and their sum always has to be 100%.

• Value of Aggressiveness changes by 35% and cannot exceed 100%.

• Value of Defenses Percentage changes by 50%.

• The sum of production, recruitment, defenses and construction building
percentages has to be 100%.

Then, we manually configured the parameters of the first AI to following
values:

• Building Total Percentage was set to 100%, from which the Recruit-
ment Percentage was also set to 100%. Other building percentages re-
mained zero.

• Military Total Percentage was set to 0%, Aggressiveness to 0% and
Offensive Percentage to 100%.

• Expanding Urge was set to 0%.

The first parameters of the AI were used as start of recursion, which used the
limitations. Once the parameters were generated, we received exactly 106 differ-
ent configurations with very high differences between parameters. Because the
input games are very simple, the big differences between parameters will not cause
us problems. The process of generating the AI parameters can be found in Simu-
lation10x10.Configuration namespace in class RuleDirectedAiParametrizer.

40

4.2.2 Random AI
The simplistic nature of the games used as input for experiments allows us to

add one more AI to the game, which will be implementation of random AI.
The chances of this AI picking a good strategy is relatively high. This can

help us estimate the efficiency of different configurations of our parametrized AI.
However, the results of random AI is used as a baseline for the results. The AI
with parameters that fits the configuration of the game the most, should perform
better than random. On the contrary, the worst fitting parameters of the AI for
the game should perform worse than the random AI on average.

4.3 Running The Experiments
The game contains a score system that collects data based on multiple actions

performed and player interaction. However, the system collects data of more than
one unique type of action into one score category. This makes it hard to see why
the player performed well or worse than usual.

We prepared a special scoring system used only for the simulation. Instead of
counting score based on how important the actions were, we counted the amount
of actions instead.

We placed the 66 generated game alternatives in one folder and let the sim-
ulation load each one of them. The world was configured to be able to provide
enough space for all 106 players controlled by rule directed AI with different pa-
rameter configuration and 1 player controlled by random AI. All of them were
randomly placed in the game world.

Each game was played 100 times by the AI and the output of each result of
game world was saved into a different comma-separated value (CSV) file. This
resulted in 6600 files containing results of 107 players controlled by AI.ontaining
results of 107 players controlled by AI.

4.4 Results
Each file from the collected data contains the following information about

each AI at the time it was stopped:

• Time of the end of the match and the limit at which the match would end
prematurely.

• Nation played by the AI.

• Type of the AI - Rule directed or Random.

• The amount of cities owned, captured, lost and established.

• All parameters of the AI, for random we used a value N/A.

• Amount of attacks sent and received.

• How many units were killed during attack and defense.

41

• How many units were lost during attack and defense.

• How many offensive, defensive and conqueror units were trained.

• Amount of buildings upgraded and downgraded.

• Amount of gold produced, stolen by attackers and stolen from attackers.

We collected 100 examples of results of each game configuration we generated.
We have picked the ones that were the most interesting and counted the average
statistics of these games for each AI that participated.

There are multiple ways of estimating which AI performed the best. It is
possible to measure it with the amount of cities the AI owned when the game
world ended, or the amount of units the AI defeated in combat, or even the
amount of gold produced. Depending on different information used to measure
the efficiency of the AI, we get different results. Because each game prioritizes
different play-style, we decided to measure the efficiency the AI based on different
information.

We inspected results of multiple game configurations and picked three of them
that provide interesting observations.

We selected games, that ended sooner than the 5-day limit ran out, with the
following Offensive:Defensive:Expansive configuration ratios:

1. 20:20:60 - This game prioritizes the strategy of expansion while keeping
threats coming from other strategies low and balanced. For this game con-
figuration, we decided to measure the efficiency by the amount of cities
the AI established by the end of the game. For this configuration, random
AI ended up being on 37th place. Rule directed AI with 50:50 ratio of
buildings and military ratio ended up being the most efficient based on the
information used to measure the success of the AI. The expanding urge of
the most successful AI was mostly 25% and above. An interesting observa-
tion from this type of game is, that the most successful AIs had the same
same percentages of buildings ratios.

2. 50:20:30 - This game prioritizes offensive strategy and keeps defensive and
expansive strategies low. This game configuration had a very easy choice
for the information used to compare the efficient with. We picked the
amount of captured cities. For this configuration of the game, the random
AI finished as 11th, which captured about 5-times lower amount of enemy
cities than the best three rule directed AIs. This time, the parameters of
the most efficient AI were in 75:25 ratio of military and buildings. Their
aggressiveness was 70% and above and they did not prefer upgrading their
defensive structures. Surprisingly, the ratio of offensive and defensive units
was 50:50 for half of the most efficient AIs.

3. 30:50:20 - This game prioritizes defensive strategy and keeps the offensive
and expansive strategies low. The choice of information to estimate the
efficiency with for this configuration was to use the amount of enemy units
killed during defense. In this case, the random AI was the 6th most efficient.
Since this type of game is mostly based on military units, just like the

42

previous game, it is not a surprise that the most efficient rule directed AI
also used 75:25 ratio of military and buildings. Their aggressiveness in this
case was 35% and above. Three out of two most efficient rule directed AIs
used 25:75 offensive to defensive military unit ratio.

The tables of these three game configurations have many different columns,
we included the results of the experiments Appendix C File Attachments of this
thesis.

To make sure the different choice of information used to estimate the efficiency
of the AI was not affecting the results, we tried comparing these three games
using the same information. We did not get the same results, however, the
parameters of the most efficient AI were changing as expected but with less
significant differences of the parameters.

It is possible that testing more types of AI with different configurations in
one game, meaning that the differences of parameters of each AI would be lower,
would increase the precision of the results. In spite of that, the results of these
three games, which are not very different, have confirmed our hypothesis by
showing even slight changes in the most efficient parameters of the most efficient
types of AI.

43

Conclusion
In this chapter, we will provide a conclusion of this thesis. We will compare

the results of our work with our goals described in section 1.1 Our Goals.
We have developed a framework which allows creating and configuring per-

sistent MMORTS games. The games created by the framework are capable of
emulating most of the basic features offered by these types of games nowadays.

The framework contains two different implementations of artificial intelligence.
These were used in a simulator we have created, to test the capabilities of the AI,
as well as provide a testing environment for the different types of games created
using the framework.

The simulator was later used to perform various experiments, which were
used to test our hypothesis that different configuration of the games created
using the framework calls to a different play-style, which should result in different
configuration of AI required to beat its opponents.

From the set of experiments we performed, we have picked three different
configurations of the game to statistically confirm the hypothesis. While it was
not easy to determine what kind of information should be used to check the
efficiency of AI in games that prefer different play-style, we tried comparing the
results for two cases.

In one case, we compared the performance of AI in the game using different
piece of information collected from the game, which makes sense because different
play-style calls for use of different game features. In this case, the results of
experiments have proven that the parameters of AI change in a significant way.

In the other case, we tried comparing the performance of AI using the same
piece of information. Even in this case, the results have shown that the different
parameters of AI influence their effectiveness. However, the differences were no
longer as significant.

We have successfully created a client which directly communicates with the
server, is capable of retrieving dynamic information about the game and provides
basic visual representation of the game world, mostly using text representation.
The client allows performing actions with cities owned by the player and allows
basic interaction with other players in form of private messages and coordinated
attacks on their cities.

Future Work
This thesis provides multiple opportunities for future work. As the MMORTS

industry keeps growing and the existing games keep being expanded with new fea-
tures, it is possible to implement the features that are missing in the framework,
but are present in similar games.

Another way would be to provide wider variety of configuration for the games
that can be created using the framework. For example, making some of the
features possible to be turned off and on from the server configuration files, or
adding more parameters to the XML documents.

Making the client more graphically appealing and dynamic is another way of
improving the framework. That would include creating a new design of the client

44

and providing an art style for visualization of units, buildings and entire cities,
including the background and panels.

There is a possibility of adding a more clever artificial intelligence to the game,
which would provide a greater challenge for the players. Since it is very simple
to add new AI to the game, it would be possible to compare multiple types of AI
in a simulator.

45

Bibliography
Donald Francis Beal. The nature of minimax search. Dissertation thesis, 1999.

Marsland Tony Bjornsson Yngvi. Multi-cut alpha-beta-pruning in game-tree
search. Theoretical Computer Science, 252(1-2).

Hyun Sung Chu. Building a simple yet powerful mmo game architecture. 2014.

Rolf T. Wigand Kiran Lakkaraju, Gita Sukthankar. Social Interactions in Vir-
tual Worlds. First Edition. Cambridge University Press, Cambridge, United
Kingdom, 2018. ISBN 978-1-107-12882-8.

Peter Norvig Stuart Russell. Artificial Intelligence. 3rd Edition. Prentice Hall
Press Upper Saddle River, NJ USA, 2009. ISBN 0136042597 9780136042594.

46

List of Figures

2.1 Graphical representation of a village in Travian. The action bar
on top shows village name, gathered resources, resource maximum,
current production, tribe and offers multiple navigation and con-
figuration buttons. The panel on the right side shows incoming
attacks and units present in the city. Bottom bar shows in-game
time and building and training queues. 7

2.2 Graphical representation of resource fields in game. In the middle
of the picture, there is a village seen in figure 2.1. Everything
around the village are the four types of resource fields. 12

3.1 An old visualization of map in Travian. The controls and layout
were used as an example when designing map for our framework. . 29

3.2 Visualization of the data structure used by positioning algorithm.
The whole picture is entire map with highlighted cardinal direc-
tions. The colors represent children of each node. The middle of
the map is the root node of the data structure. 31

4.1 A 2-dimensional triangle in 3-dimensional space. Each vertex rep-
resents a specific strategy. Picking any point on the triangle is a
new configuration for the simulator input. 39

A.1 Console window after starting the world server from a console. It
contains information about IPv4 and IPv6 addresses that can be
used to connect to the server and which port the server listens on.
Additional output information is configurable. 52

A.2 Default contents of a WorldServer.txt file. It contains configuration
of basic server settings and how server actions should be logged. . 53

A.3 Part of the screen with all components that shows right after run-
ning the game. Components that have cursor over them are high-
lighted by changing text color to black. Every other component is
written in white color. 54

A.4 Options that are offered when a user hits an option to close the
game marked by letter ’X’ while viewing screens from section A.5
Main Menu Screens. 55

A.5 Options that are offered when a user hits an option to close the
game marked by letter ’X’ while viewing screens from section A.6
Game Screens. 56

A.6 A server configuration screen that allows configuration of most of
the attributes from section A.4 Server Configuration. 56

A.7 Lets the user write down an IPv4 or IPv6 address of the machine
that hosts a server. The IPv4 address in the picture is used to
connect to server running on the same computer. 57

A.8 Main components of game screens highlighted on an example of
City View Screen. 57

47

A.9 Player setup screen allows the player to set up their user name,
name of their first city, position in which the player would prefer
being placed in and which nation they would like to play. 59

A.10 After a player sets up his credentials for the game, this is the first
screen that pops up. The aim of this screen is to list all cities
owned by the player to be able to access any of them as fast as
possible. 59

A.11 A world map screen showing surrounding cities and three event
tiles nearby. 60

A.12 Action reports screen showing multiple attacks performed on a city
owned by selected player. The action report always states which
city has been attacked and in case of multiple cities have the same
name, world map coordinates are provided to distinguish the cities. 61

A.13 An example of an opened action report. It displays details about
units attacking the city and units protecting the city at the time
of attack. It also contains information about stolen units and how
many units survived the fight on both sides. 61

A.14 A screen with list of private messages. Each message can be se-
lected and opened for reading. 62

A.15 An opened message from list of messages in figure A.14. 62
A.16 Information that appears when a construction building is selected.

It shows the resource cost, population requirement of upgrade of
each building in the city and amount of time it takes to finish the
upgrade. The seconds building cannot be downgraded anymore
and because of that, the Downgrade option is disabled. 63

A.17 When a building has reached its maximum upgrade level available,
it becomes maxed out. 64

A.18 A window of LumberJack Hut which is a combination of two
building categories. These categories are Resource Production
and Military Troop Recruitment. 64

A.19 A window that allows exchanging resources. These values and the
exchange ratio is specific for a MarketPlace on upgrade level 1. . 65

A.20 An example of window from section Military Troop Recruitment. 66
A.21 An example of a building from military action category. It provides

details about ongoing military actions that involve the city. 66
A.22 When a player selects an option to attack a player, this is the

screen that opens. It is possible to specify the amount of units and
the values will not go above the amount of units the player owns. 67

A.23 A screen that shows immediately after selecting an option to send
a private message to a player. 68

B.1 Contents of StartingResources.xml file showing all relevant el-
ements of the XML tree. The contents are identical to contents of
file EstablishCityCost.xml. 70

B.2 Contents of UnitTypes.xml file showing all relevant elements of
the XML tree. 71

48

B.3 Contents of f Lumberjack Hut.xml file showing elements of the
XML tree. The building in this file is a combination of two different
building types. 72

B.4 Contents of b Spearman.xml file showing elements of the XML
tree. 74

B.5 Preview of all images included in the default game provided by the
framework. 77

49

List of Abbreviations
MMORTS Massively Multi-player On-line Real-Time Strategy
AI Artificial Intelligence
AP Attack Power
DP Defense Power
LINQ Language Integrated Query
SQL Structured Query Language
XML Extensible Markup Language
DLL Dynamic Link Library
GUI Game User Interface
IP Internet Protocol
BFS Breadth-First Search
TCP Transmission Control Protocol

50

A. User Documentation

A.1 System Requirements
The server has been implemented using features of .NET Framework 4.5. We

did not use any external database and managed to be able to use and save all
data using C# serialization.

The only requirement to be able to use and run the framework and games
created for the framework is to have .NET Framework of version 4.5 or above.

A.2 Running the Game
In this chapter we will describe how the game server can be started and how

players can connect to it.
The game server can be started in two ways. Each approach requires seven

libraries (*.dll files) to be able to successfully start. The names of these libraries
are:

• Common.dll

• NetworkingConstants.dll

• NetworkingPackets.dll

• SerializationBinary.dll

• SerializationXml.dll

• ServerConfiguration.dll

• ServerImplementation.dll

First approach to run the server is by starting it from console. To do that, all
that has to be done is to run a file called WorldServer.exe from a folder con-
taining all required libraries. This opens a console and the server automatically
starts. The console window will contain an IPv4 and IPv6 address on which the
server is listening including a specific port. The console window will look similar
to figure A.1.

Depending on the configuration of the server, the console will periodically
display more information about what is happening on the server. Which messages
appear in the console of the first approach and the configuration of the server can
be configured in a file WorldServer.txt generated and mentioned in A.3. The
process of configuration is covered in A.4.

The second option to run the server is directly from the client by running file
WinFormsGameClient.exe. The major difference is, that there is no World-
Server.txt configuration file that can be used to change the settings of the
server. The configuration is set up directly from the interface. Additionally, this
approach does not show information about IP addresses, port or what actions are
happening on the server. This approach still generates all other files described in
A.3.

51

Figure A.1: Console window after starting the world server from a console. It
contains information about IPv4 and IPv6 addresses that can be used to connect
to the server and which port the server listens on. Additional output information
is configurable.

A.3 Generating Configuration Files
When the server starts, it checks for files required by the framework. If there

are no files or some of them are missing, the framework generates those and saves
them on a disk. The location of these files is strictly defined and changing the
file system may result in the framework being unable to find the files making it
generate them again.

In the root folder of the framework, up to four new folders can be created and a
new file called WorldServer.txt appears when the server starts from the console.
The meaning of the folders in Appendix B Advanced User Documentation and the
configuration of WorldServer.txt is covered in section A.4 Server Configuration.

A.4 Server Configuration
As mentioned in section A.2 Running the Game, the game world can be

configured from a file called WorldServer.txt which can be opened and it will
look like figure A.2. This file allows configuration of the following:

• WorldSize specifies the dimensions of the game world. The world will have
[WorldSize]x[WorldSize] dimensions.

• AIAddSpeedInMinutes specifies the frequency of adding new players
controlled by artificial intelligence to the game world. The frequency is in
minutes.

• InitialAICount specifies the amount of players controlled by artificial in-
telligence to the game immediately after a server is launched. Half of this
value will be used to add Random AI player. The other half is used to add
Rule Directed AI players.

• AutoSpawnCount is an amount of AI players added periodically while
the server is running. Similar to the value of InitialAICount, half of this
value will be used to add Random AI player. The other half to add Rule
Directed AI players.

52

Figure A.2: Default contents of a WorldServer.txt file. It contains configuration
of basic server settings and how server actions should be logged.

• BlockSize specifies size of a block used by new player position finding
algorithm. The dimensions are [BlockSize]x[BlockSize]. The value is
not recommended to be changed unless there is a good reason for it and the
user knows how the algorithm works.

• MaxPlayersPerBlock says how many player cities can be placed in every
block by the positioning algorithm.

• EventTilesPlacedPerPeriod is an amount of event tiles placed in each
block occupied by at least one player.

• EventTilePlacingPeriod value specifies how often should the server gen-
erate event tiles on the map. The value is the amount of minutes.

• EventTileUpdatePeriod is a frequency in seconds at which event tiles
are checked and updated.

• AiRandomUpdatePeriod is a frequency in seconds at which players con-
trolled by artificial intelligence are checked, updated and try performing
some actions.

• AiRDirUpdatePeriod has the same meaning as AiRandomUpdatePeriod
but it applies for Rule Directed AI controlled players.

53

• CityTileUpdatePeriod is a frequency in seconds of checking and updat-
ing all city tiles.

• LogLevel specifies what kind of messages should be logged by the server.
All values and their meaning is listed in the file itself. These values are
considered flags, which means that they can be combined in order to be
able to use arbitrary amount of the values for this attribute.

None of the values in the configuration files should be negative. All of the
values should be natural numbers.

A.5 Main Menu Screens
In this section, we will go through each screen of the Game User Interface

(GUI) which visualizes the games runnable by the framework. The GUI shows
when file called WinFormsGameClient.exe is started. We will describe each
screen that we can get to during the runtime and describe their components up
to the point where a game is entered.

A.5.1 Introduction Screen
The first screen that shows up after running WinFormsGameClient.exe is

a screen with four possible options for selection. Part of the screen is shown in
figure A.3 with a highlighted option.

1. Start New Game

2. Join Existing Game

3. Load Game

4. Close Game (X)

Figure A.3: Part of the screen with all components that shows right after running
the game. Components that have cursor over them are highlighted by changing
text color to black. Every other component is written in white color.

54

Start New Game

This choice immediately brings the user to a new screen seen in figure A.6
and described in subsection A.5.2 Server Configuration Screen.

Join Existing Game

This brings the user to a new screen shown in figure A.7. The new screen is
further described in subsection A.5.3 Join Existing Game Screen.

Load Game

This option attempts to search for a saved game in a default folder. If the
folder is not found or some of the save files are missing, the game is not loaded
and the user can choose another option.

Close Game (X)

An option to close the game is present on every screen. This option shows a
small window shown in figure A.4 which asks if the user wants to quit the game
and the user can choose an answer from two offered options.

Figure A.4: Options that are offered when a user hits an option to close the game
marked by letter ’X’ while viewing screens from section A.5 Main Menu Screens.

The window changes when the user enters screens from section A.6 Game
Screens to what it looks like in figure A.5. The selection of options changes to
three options.

• Save and Exit which saves the progress of the game server and then closes
the game.

• Exit and Don’t Save which closes the game without saving the progress.

• Cancel option closes the window with the three options without saving the
progress or exiting the game.

A.5.2 Server Configuration Screen
Allows setting the server configuration attributes of WorldServer.txt for

the console version of the server, which is not present in the client. The screen
allows setting everything except of update periods and the level of logging, which
is disabled by default.

55

Figure A.5: Options that are offered when a user hits an option to close the game
marked by letter ’X’ while viewing screens from section A.6 Game Screens.

When everything is set, hitting Confirm button will proceed to the next
screen described in subsection A.6.1 Player Configuration Screen. Additionally,
clicking the button will create a server in the background and the client connects
to it. Because of that, playing the game is still based on communication between
client and server.

Figure A.9 shows how the screen looks like without modified game files.

Figure A.6: A server configuration screen that allows configuration of most of the
attributes from section A.4 Server Configuration.

A.5.3 Join Existing Game Screen
This screen allows the user to write an IPv4 or IPv6 address of a machine that

is hosting a server the user wants to connect to. By default, the field containing
IP address is set to the one seen in the figure which is used to connect to server
running on the same machine.

Once the IP address field is filled with desired address, hitting the Connect
button will attempt to connect to the server. If the connection fails, the user will
remain on the same screen. Otherwise, the user will be redirected to a new screen
described in subsection A.6.1 Player Configuration Screen.

An IP address of a server can be seen when a user starts the server from
console. Running the server from console is described in the first approach of
section A.2 Running the Game.

56

Figure A.7: Lets the user write down an IPv4 or IPv6 address of the machine
that hosts a server. The IPv4 address in the picture is used to connect to server
running on the same computer.

A.6 Game Screens
Screens in this chapter receive additional components that are present on each

screen, but there are some exceptions which will be listed in this chapter.

Figure A.8: Main components of game screens highlighted on an example of City
View Screen.

The main components of game screens are highlighted in figure A.8.
The new components that are the same on all game screens are:

• Refresh Button can be used to refresh the current screen by requesting
most recent information about the currently opened screen.

• Navigation Panel contains links to four other screens. Overview redi-
rects to screen described in subsection A.6.2 Cities Overview Screen, World
Map redirects to subsection A.6.3 World Map Screen, Action Reports
option redirects to subsection A.6.4 Action Reports Screen and Player
Messages option redirects to screen described in subsection A.6.5 Player
Messages Screen.

57

• Current City Panel switches the screen back to overview of city the player
was managing the last time. The screen is described in subsection A.6.6
City View Screen. The X and Y values in brackets represent the position
of the city in the world map.

• Resource Panel displays information about resources currently stored in
the city. The panel also contains the information about the maximum of
each resource the city can store and the current and maximum population
the city has.

• Production Panel shows information about resource production in the
city the player is currently viewing.

• Unit Panel shows units that are currently present in the city, including
reinforcement. Additionally, the panel displays warnings about incoming
and outgoing attack and support actions.

Game screens contain Current Screen Panel which is dynamic depending
on a screen we are currently viewing.

A.6.1 Player Configuration Screen
This screen is accessed when player joins an existing server or starts a new

game on his own. Figure A.9 shows the layout and default values of each field.
The screen is the only one that does not contain any of the new components of
game screens.

There are four configurable fields.

• Choose Your In-Game Name field is a name the player would like to use
when playing the game. This name becomes a user name which is used to
connect back to a server where the player already has progress. When the
name is in use, the player will be prompted to enter the password associated
with the user name to be let in the game with the progress connected to the
user name. If the password entered does not match, the user will receive a
message and will be allowed to choose a new name or try another password.

• Choose The Name of Your First City is a name with almost no re-
strictions. Players can change a name of their cities anytime during the
game.

• Choose The Place You Would Like To Spawn At can be set by
choosing from a selection of eight different cardinal directions and a choice
to randomly pick one of them. Depending on the choice, a position of the
player is picked in the game world.

• Choose The Nation You Would Like To Play can be set by choosing
from a list of playable nations. If a player is connecting to a server hosted
from console, the list of playable nations is downloaded from the server.
The choice of nation is permanent.

58

Once the configuration is ready, hitting the Confirm button will confirm the
changes. If everything works out properly and the server is not full or the name is
not taken, the player will be taken to the next screen described in subsection A.6.2
Cities Overview Screen.

Figure A.9: Player setup screen allows the player to set up their user name, name
of their first city, position in which the player would prefer being placed in and
which nation they would like to play.

A.6.2 Cities Overview Screen
A player always finds himself at this screen after logging in to the game that

looks similar to a screen in figure A.10. A few seconds after entering this screen
as a new player, a window to set up a password pops up. The password has
almost no restrictions and can even be empty but cannot be changed later.

Because no city is selected at the point of displaying this screen, Current
City Panel, Resource Panel, Production Panel and Unit Panel are not
present at this screen.

Figure A.10: After a player sets up his credentials for the game, this is the first
screen that pops up. The aim of this screen is to list all cities owned by the player
to be able to access any of them as fast as possible.

A.6.3 World Map Screen
This screen is only accessible when a player has a city selected. The map

shows the city owned by a player in the middle of the piece of map unless the
city is too close to an edge of the map.

From this screen it is possible to send attack orders, reinforcements, private
messages when clicked on a tile containing a city. On tiles with events it is only
possible to send out attack and support orders. When the tile is empty, the
player can is offered to establish a city on that tile. Attack and support actions

59

open new screens covered in subsection A.6.8 Send Attack and Support Screen.
Private messages are described in subsection A.6.9 Send Private Message Screen.

Hovering over each tile with cursor shows a tool-tip message providing ad-
ditional information. For empty tiles it is the position of the tile and resources
required to establish a city on that position. The cost increases with greater dis-
tance. Tiles that contain a city will show information about who owns the city,
how many points the city has and what nation the city uses. Event tiles show
description about the event, which can be configured in the framework.

To navigate on the map, it is possible to use arrow keys on the keyboard which
will move the map view by one tile to the chosen direction.

An example of how the map is displayed can be seen in figure A.11.

Figure A.11: A world map screen showing surrounding cities and three event tiles
nearby.

A.6.4 Action Reports Screen
Action reports are stored in this screen. They contain information about

which city got attacked and the position of the city on the world map, see figure
A.12 for reference.

Each action report can be selected to show detailed information about the
action. In case of defense, all information is shown to the player like in figure
A.13. However, if the player performed an attack which resulted in all of their
units getting killed, the action report does not contain any information about the
status about the enemy defensive units.

60

Figure A.12: Action reports screen showing multiple attacks performed on a city
owned by selected player. The action report always states which city has been
attacked and in case of multiple cities have the same name, world map coordinates
are provided to distinguish the cities.

Figure A.13: An example of an opened action report. It displays details about
units attacking the city and units protecting the city at the time of attack. It
also contains information about stolen units and how many units survived the
fight on both sides.

There is a limit of action reports that can be stored at once. So once a player
has too many action reports, the oldest reports will start being replaced by new

61

ones.

A.6.5 Player Messages Screen
A player can read private messages received from other players from this

screen. Figure A.14 displays the overview of all received messages.

Figure A.14: A screen with list of private messages. Each message can be selected
and opened for reading.

Selecting one of the messages in this screen changes the Current Screen
Panel so that it shows the text of the selected message as shown in figure A.15.

Figure A.15: An opened message from list of messages in figure A.14.

A.6.6 City View Screen
The purpose of this screen is to allow the player to see all buildings available

in the city for construction. Each building has its current upgrade level shown
next to it. An example of this screen can be seen in figure A.8.

Selecting any of the buildings opens a new screen that shows information
about the building and allows performing actions specific for the type of building.
Description of each building and their use is covered in subsection A.6.7 Building
View Screen. Hovering over a name of a building on this screen causes a tool-tip
text to appear, giving a short description of the building.

A.6.7 Building View Screen
This screen has different use and shows different information depending on

what purpose the selected building has. We will describe all buildings provided

62

in the default game, seen in Current Screen Panel of figure A.8, depending on
the following categories:

• Building Construction - Construction Building

• Resource Storage - Warehouse

• Resource Production - Lumberjack Hut, Quarry, Steel Mine

• Resource Exchange - Marketplace

• Inns - Tavern

• Military Troop Recruitment - Barracks, Stables, Siege Workshop

• Military Action - Commanding Center

• City Protection - Walls

Now we describe each category and buildings they include for the default game
provided by the framework.

Building Construction

Buildings from this category allow construction, upgrading and downgrading
of all other buildings in the city. Each building has Upgrade and Downgrade
options as shown in figure A.16.

Figure A.16: Information that appears when a construction building is selected.
It shows the resource cost, population requirement of upgrade of each building in
the city and amount of time it takes to finish the upgrade. The seconds building
cannot be downgraded anymore and because of that, the Downgrade option is
disabled.

The downgrade option cannot be used if the building has already reached the
minimal level it can reach. Downgrading a building takes much lower amount of
time than upgrading but grants not resources in return.

When the upgrade option can be clicked, it means that the city has enough
resources to be able to start upgrading the structure. When a building is maxed
out, the information about resource requirements is replaced with Maxed Out!
message as seen in figure A.17 and the Upgrade option disappears, leaving it
with only one option which is Downgrade.

63

Figure A.17: When a building has reached its maximum upgrade level available,
it becomes maxed out.

Resource Storage

Buildings from this category serve the purpose of storing resources in the city.
Upgrading buildings from this category increases the maximum capacity of each
resource the city can store at one time.

The window itself provides information about the amount of resources the
building can store and how much population the building requires at current and
next level.

Resource Production

Resources are gained passively from these buildings. In the default game that
comes with the framework, every resource producing building only produces one
kind of resource.

Lumberjack hut, however, produces one type of resource and also allows train-
ing a unit called LumberJack.

Buildings that only provide production of a resource show information about
the production and population required by the building on previous, current and
next level of the building. For LumberJack, the window also adds options from
figure A.20. How exactly a windows of this combined building looks like can be
seen in A.18.

Figure A.18: A window of LumberJack Hut which is a combination of two
building categories. These categories are Resource Production and Military
Troop Recruitment.

64

Resource Exchange

Exchanging resources is important once player accumulates way too many
resources of certain type and there is no way to spend them. For this purpose, in
the default game of this framework, there is a building called Marketplace that
allows exchanging resources for any other resource. However, the ratio is not one
to one, moreover, the ratio is not in favor of the player.

The ratio can be made more fair by upgrading the building, but it also in-
creases the amount required to perform an exchange of resources. How the screen
looks like is shown in figure A.19.

Figure A.19: A window that allows exchanging resources. These values and the
exchange ratio is specific for a MarketPlace on upgrade level 1.

Inns

Inns allow cities to increase the maximum of population of the city. Population
is required to build and upgrade more buildings and to train larger armies.

A window showing details about this building category shows the information
about population capacity provided by the building and population used by the
building itself for previous, current and next level of the building.

Military Troop Recruitment

These types of buildings allow recruiting new units for the currently selected
city. In this window, each unit that can be trained from that building contains
the following:

• Unit Name

• Tool-tip when hovering over the name of the unit showing the type of
unit, attack power, defensive powers and movement speed. Additionally,
this tool-tip provides information about required buildings that need to be
built before the unit can be trained.

65

• Unit Resource Cost required to train the unit

• Population Cost of the unit

• Time Required to train one unit of the kind

• Numeric Field containing amount of units of the kind the player is willing
to train.

• Train option which starts training the amount of units provided by Nu-
meric Field.

Figure A.20 shows how the window looks like for Stables provided in the
default game of the framework.

Figure A.20: An example of window from section Military Troop Recruit-
ment.

There are units with abilities. Units called Ram can attack enemy protection
structures to lower the defensive capabilities of enemy city.

Very important unit is Conqueror, which can capture enemy city if the unit
is present in an attack and survives the fight.

Military Action

These types of buildings offer an option to change the name of the currently
selected city. However, the main use of this building is to provide more informa-
tion about ongoing military actions related to currently selected city.

Figure A.21: An example of a building from military action category. It provides
details about ongoing military actions that involve the city.

66

The additional information consists of the source of enemy attack or rein-
forcements, or where are the troops from currently selected city being sent. The
details include time of arrival of the units to their destination. An example is
provided in figure A.21.

When hovering over an action where the currently selected city is the initiator
of the action, a tool-tip window appears showing more information. Typically
it shows the amount of units involved in the action. In case of units that are
returning back from a successful raid on enemy city, the window also shows the
amount of salvaged resources which they are bringing back from the action.

If the currently selected city has reinforcement in other cities, it is possible to
give them an order to return back. The order can only be given from this type
of buildings.

City Protection

Buildings from this category provide additional defense bonus to all troops
present in the city at the time of defense against enemy attacks. Because the
bonus can become high, there are types of units that can start attacking the pro-
tection buildings directly during attack, which will cause the protection buildings
to degrade certain amount of levels.

There are no special options for this building category. The only information
provided when viewing details of protection buildings is the bonus to defense and
population used for the current and next level of the structures.

A.6.8 Send Attack and Support Screen
Attacks are being sent from screen seen in figure A.22. It allows specifying

how many units should be sent at target city. The city to attack is specified when
choosing an attack option from world map.

Figure A.22: When a player selects an option to attack a player, this is the screen
that opens. It is possible to specify the amount of units and the values will not
go above the amount of units the player owns.

All game panels are present when planning the attack from this screen. Be-
cause of that it is possible to see how many units there currently are in the city.
The units panel also shows incoming attacks for the player to be aware of possible
dangers.

67

Screen for sending support is almost identical with the screen to send an
attack.

A.6.9 Send Private Message Screen
This screen is used to write messages to other players. The recipient is chosen

by selecting a city owned by that player on the world map. The messages have
set limit of characters.

Private messages can be used as reminders or notes when the recipient is the
same player as sender of the message.

An interface for sending messages is shown in figure A.23.

Figure A.23: A screen that shows immediately after selecting an option to send
a private message to a player.

68

B. Advanced User
Documentation

In this chapter, we will describe the elements of the game configurable by
modifying XML documents which are generated in section A.3 Generating Con-
figuration Files.

B.1 XML File System
The files are stored in a hierarchy of folders. It is very important not to change

the hierarchy unless it is allowed. Which changes to the hierarchy are allowed
and how to configure the files will be covered in section B.2 XML Configuration.
The root folder of the hierarchy is called XMLData.

The hierarchy of folders that is generated by the framework looks like this:

XMLData

EventTileTemplates

BanditCamp.xml

Forest.xml

WorldBoss.xml

InGameResources

EstablishCityCost.xml

StartingResources.xml

Nations

Persian Empire

Buildings

Units

Roman Empire

Buildings

Units

UnitTypes

UnitTypes.xml

69

B.2 XML Configuration
We will go through each folder on the first level of the XMLData folder

hierarchy. XML files store their data in format that can be read by human while
being able to. Because of that, any software capable of editing text files is enough
to be able to configure and create new games using this framework.

B.2.1 Game Resources
It is possible to configure starting resources of every city from file Startin-

gResources.xml located in the InGameResources folder. This means that
even a city that is established starts out with the amount of resources specified.
The resources will also become the only resources that can be used in the game.

Figure B.1: Contents of StartingResources.xml file showing all relevant ele-
ments of the XML tree. The contents are identical to contents of file Estab-
lishCityCost.xml.

As seen in figure B.1 the root element of the XML tree is called ArrayOfRe-
sources. It is possible to add arbitrary amount of Resource child elements to
the root. Each Resource child element consists of Name and Amount child
elements, which specify how the resource type will be called and how many units
of that resource each new city receives.

Another file in this folder is called EstablishCityCost.xml which has exactly
the same structure as StartingResources.xml. The difference is, that this file
is used to provide the base resource cost required to establish a new city on an
empty tile. The meaning of the values specifying base resource cost is, that the
values are not modified by distance modifiers. Because of that, the values in the
game will always be higher than the defined ones.

B.2.2 Unit Types
This section covers contents of UnitTypes folder, specifically the only file it

contains called UnitTypes.xml.
In figure B.2 we can see the structure of the XML document. The root of XML

tree is called ArrayOfString and its child elements can only be called string.

70

Similar to resource types, the number of child elements of the root element can
be arbitrary.

Figure B.2: Contents of UnitTypes.xml file showing all relevant elements of
the XML tree.

This file provides data about all available types of units that can be used in
the game. Each unit that will be defined for nations in subsection B.2.3 Nations
is required to use exactly one of the unit types defined in this file.

Assigning a unit type, which is not defined in this file, to a unit, should
never be done. The reason for that is, that combat uses the definitions to be
able to calculate the power of both sides. If the type of unit cannot be found
in definitions, its power will be evaluated to be none and the unit will have no
effect, which will cause it to die.

B.2.3 Nations
Nation definitions are found in Nations folder. Each sub-folder specifies name

of a nation that can be picked and played by players. Each of these sub-folders
should contain last set of sub-folders that need to be called Buildings and Units.
These two folders contain only XML files which we can modify, remove and add
new ones. However, these files have more complex structure.

Definitions of both units and buildings use resource cost and unit type defini-
tions from previous subsection B.2.1 Game Resources and subsection B.2.2 Unit
Types. As mentioned before about unit types, the names of unit types need to
strictly follow the definitions. Same applies for the names of costs of resources
when specifying building and unit resource costs.

Buildings

The corresponding folder can have an arbitrary amount of XML files. Each
file provides definition of one building. The buildings in the game are being shown
in alphabetical order based of the file names.

We will list and describe 17 basic attributes that are required to be specified
for each type of the building. There are other attributes that have to be specified
depending on the choice of building type, which we will also mention in their
description. An example of a file with definition of a building that combines
two types of building can be seen in figure B.3, which also shows an example of
configuration of the common attributes. The list of the 17 basic attributes is as
follows:

1. CurrentLevel specifies the starting level of this building in new cities.

2. MaxLevel sets the maximum level the building can be upgraded to. The
minimum is always set to zero.

71

Figure B.3: Contents of f Lumberjack Hut.xml file showing elements of the
XML tree. The building in this file is a combination of two different building
types.

3. BuildingName is the name of the building shown in game.

4. InitialCost can contain any amount of Resource child elements up to
the amount of resources defined in EstablishCityCost.xml. The value is
affected by PerLevelCostIncrease multiplier.

5. InitialPopulationCost is the base value used to calculate population re-
quirement of each upgrade.

6. InitialUpgradeTimeInSeconds is the base value used to calculate time
in seconds required for building upgrades and downgrades.

7. PerLevelCostIncrease is multiplier of InitialPopulationCost that in-
creases with each upgrade.

8. PerLevelBonusIncrease is multiplier of building bonuses which increases

72

with every upgrade. Bonuses provided by a building depend on the type of
building.

9. PerLevelUpgradeTimeIncrease is multiplier which affects the value of
InitialUpgradeTimeInSeconds which increases with every upgrade of
the building.

10. IsUnitTrainingBuilding specifies whether the building allows training
of units. Setting value of this attribute to true enables an element called
TrainableUnitTypes which can contain arbitrary amount of child ele-
ments of string specifying names of unit types the building can train. The
PerLevelBonusIncrease multiplier increases the speed at which the units
can be trained.

11. IsProductionBuilding specifies whether the building is capable of pro-
ducing resources. Setting value of this attribute to true enables element
called InitialProduction which can contain arbitrary amount of child el-
ements of Resource with names matching names from EstablishCity-
Cost.xml. The PerLevelBonusIncrease multiplier increases the pro-
duction per second.

12. IsMarketPlace allows the building to exchange resources. The PerLevel-
BonusIncrease multiplier changes the exchange ratio in the favor of player.
This type of building can always exchange any type of resource for any other
resource type.

13. IsStorageBuilding specifies whether the building can store resources. Set-
ting value of this attribute to true enables element called InitialCapacity
which can have arbitrary amount of child elements of Resource with names
matching names from EstablishCityCost.xml. The listed resources will
be the resources that can be stored in the building. The amount of stored
resources is affected by value of PerLevelBonusIncrease multiplier.

14. IsPopulationBuilding enables the building to increase the population
limit. Setting value of this attribute to true enables element called Ini-
tialPopulation which specifies the base amount of population it provides.
The amount is affected by value of PerLevelBonusIncrease multiplier

15. IsProtectionBuilding makes the building increase the defensive capa-
bilities of units defending the city. The bonus is equal to the value of
PerLevelBonusIncrease.

16. IsActionCenter specifies, if the building allows changing name of the city
or view details of ongoing actions in which the city is involved, including
calling back reinforcements from other cities. Every city needs to have
exactly one building of this type.

17. IsConstructionBuilding gives the player options to upgrade and down-
grade buildings in the city. The value of PerLevelBonusIncrease mul-
tiplier increases the speed at which buildings can be upgraded and down-
graded.

73

Units

The corresponding folder can have an arbitrary amount of XML files. Each
file provides definition of one kind of unit. The units in the game are being shown
in alphabetical order based of the file names.

Figure B.4: Contents of b Spearman.xml file showing elements of the XML
tree.

Unlike buildings, attributes of units are all the same for each type of unit.
Specifying the type of unit only affects the way they interact with other units
during combat. An example of unit definition can be seen in figure B.4. There
is a total of 12 attributes that have to be configured for each kind of unit and

74

a UnitCount attribute which is intended for debug purposes only and should
always be set to zero.

• UnitName is the name of the unit that will be used and shown in game.

• UnitType is the type of the unit. The value has to match exactly one
value from the unit type definitions in file UnitTypes.xml.

• Cost can contain any amount of Resource child elements up to the amount
of resources defined in EstablishCityCost.xml. Defines the amount of
resources required for every unit of this kind.

• PopulationCost specifies the amount of population required by every unit
of this kind.

• TrainingTimeInSeconds is the base time required to train one unit of this
kind. The time decreases with higher value of PerLevelBonusIncrease
of building that trains the unit.

• Attack is the attack power of the unit.

• Defenses is an element which can contain an arbitrary amount of child ele-
ments of TypeWithPower which specifies the amount of defensive power
against unit type of given name. When a type of unit is not defined in
the child elements, that unit type becomes invisible for this unit in combat
and they will not interact with each other. This allows creating unit types
similar to spies in Travian.

• MovementSpeed is the speed at which the unit moves between cities.
Higher speed leads to lower time required to attack or support a targeted
city.

• SalvagePerEachResource specifies the amount of resources of each type
this unit can steal from enemy cities upon victory. This value is specified
for one unit of this kind.

• DestroysDefenseBuildings grants the unit the ability to target and dam-
age enemy protection buildings during attack.

• CapturesEnemyCities grants the unit the ability to capture entire enemy
city if at least one unit of this kind survives the attack.

• BuildingRequirements is an element which can contain an arbitrary
amount of child elements of Requirement which specifies name of a build-
ing and only building with a required level of that building. A unit that
has such requirements cannot be trained unless all defined requirements are
met.

75

B.2.4 Event Tiles
A folder called EventTileTemplates contains definitions of various events

that can be generated and added to the game world. They show as a tile, typically
with a different picture than empty tiles or tiles with city.

The events can be observed by players. Depending on the description of the
event, the player can decide whether he wants to take advantage of it. Events
usually provide additional resources for players who attack or completely annihi-
late the tile. Once the event is annihilated by defeating the last unit present on
the tile, the tile becomes empty and can be used by anybody to establish a city
on that position.

It is possible to add arbitrary amount of files containing information about
events to the EventTileTemplates folder. Each file combines attributes from
subsection B.2.3 Nations and new attributes that are specific for events. There
are 14 attributes that need to be configured, other attributes should always be
kept on their default values. Because the definition of event templates is very
complex, the definition of each attribute will be mentioned without many details
about the structure of the XML documents. Using the examples provided by the
framework, it is possible to see the structure of these definitions.

1. Owner is the name of the tile owner. Can be a completely made up name
and is only intended as visual component of the tile.

2. TileName is the name of the tile itself. Just like name of the owner of this
tile, the purpose of this attribute is intended to be shown to players.

3. CityNation is the name of the nation of this tile. Another attribute to be
shown to players with no practical use.

4. Description is a text that shows to player. This is another visual compo-
nent of the tile, which can be used to provide additional information.

5. ImageName a name of the image that should be used to show the event
tile on the world map.

6. Buildings can contain arbitrary amount of child elements of Building
definitions of completely new and unique buildings. It is mandatory to
define a building with IsActionCenter property and other buildings that
have an effect are those that produce resources.

7. OwnedUnits can contain arbitrary amount of child elements of Train-
ableUnit definitions of unique units specific for this event template. The
definition of units and buildings is identical to the structure seen in subsec-
tion B.2.3 Nations.

8. AvailableResourcesMinMax contains an element of Min and Max.
Both of these elements need to have exactly as many child elements of
int as the number of elements in Resources attribute which is similar
to definition of resources owned by cities. The values represent ranges of
resources that are stored in the event tiles once they are generated.

76

9. AnnihilationMinMax has the same definition as AvailableResourcesMin-
Max. These values are used to generate the values for AnnihilationRe-
ward. The definition of annihilation rewards is the same as of Resources.
The rewards are given away to player who defeats the last unit of the gen-
erated event tile.

10. PerKillMinMax has similar use as AnnihilationMinMax, however, the
rewards are given away for every killed unit present in the event tile.

11. Regeneration contains definition of the regeneration period. The regen-
eration period specifies how often the generated event tiles of this kind
regenerate and how many units of each kind should appear back every time
a regeneration process starts.

12. AppearanceChance specifies the chance of the event tile appearing when-
ever new event tiles should be added to the game world.

13. InitialSpawn specifies the amount of each kind of unit immediately after
the event is added to the game world.

14. ProbabilityOfPresence adds another random factor to the event tiles.
When a tile is generated, depending on the values of this attribute, event
tiles generated by the same template can contain different kinds of units..

B.3 Image Configuration
In subsection B.2.4 Event Tiles we have seen that it is possible to add cus-

tomized images to the event templates. This can be done, because the server
sends pictures to each client that connects to the server. Images that are being
used and sent are stored in folder called Images in the root folder of the frame-
work. The default game provided by the framework contains five images shown
in figure B.5.

Figure B.5: Preview of all images included in the default game provided by the
framework.

It is possible to modify, add and remove images from this folder depending on
whether they are used in the modified game or not. When the game is configured
properly, the client will be able to process and show the new images in the game
window.

77

C. File Attachments
In the attachments of this thesis, we included an archive containing following

data.

1. Developer Documentation.chm contains documentation of the code.

2. Source Code contains the source code of this project. Also contains the
implementation of Simulator and Game Generator projects.

3. Experiment Results contains the information about all 66 tested game
configurations from all 100 runs for each game. Also contains the sum-
marized information of the three picked game configurations to test our
hypothesis in the thesis.

4. Generated Games contains configurations of 66 tested games used in
experiments.

78

	Introduction
	Our Goals
	Structure

	Problem Analysis
	About Travian
	Key Components of Travian
	Real-time gameplay
	Length of life cycle of game worlds
	Persistent game progress
	Available Tribes
	Ownership of Multiple Villages at once
	Buildings and Resource Fields
	Resource Management
	Military Combat
	Village Management
	Player Strategies
	Player Interaction and Alliances
	Victory Condition

	Main Differences of Framework
	Generic Victory Conditions
	Replacement of Consumable Resource
	Founding New Village
	No Loyalty
	Capturing Enemy Cities
	No Research
	Possibility of Controlling Multiple Nations
	Resource Fields
	Exchanging Resources
	Combat Formulas
	Canceling Actions
	Events Instead of Oases
	Upgrades of Military Troops
	Alliances
	Artificial Intelligence as Player

	Used Technology
	Goals Breakdown

	Implementation
	Network Protocol
	Data Serialization
	Client-Server Communication
	Saving the Game
	Loading of Game Configuration
	Data Storage
	World Map
	Obtaining Map Information
	Positioning Algorithm
	Adding Event Tiles To Map

	Timed Actions
	Artificial Intelligence
	Random
	Rule Directed with Parameters

	Simulator

	Experiments and Results
	Generating Input
	Static Game Elements
	Dynamic Game Elements
	Picked Strategies and Configurations

	Experiment Participants
	Rule Directed AI
	Random AI

	Running The Experiments
	Results

	Conclusion
	Future Work

	Bibliography
	List of Figures
	List of Abbreviations
	User Documentation
	System Requirements
	Running the Game
	Generating Configuration Files
	Server Configuration
	Main Menu Screens
	Introduction Screen
	Server Configuration Screen
	Join Existing Game Screen

	Game Screens
	Player Configuration Screen
	Cities Overview Screen
	World Map Screen
	Action Reports Screen
	Player Messages Screen
	City View Screen
	Building View Screen
	Send Attack and Support Screen
	Send Private Message Screen

	Advanced User Documentation
	XML File System
	XML Configuration
	Game Resources
	Unit Types
	Nations
	Event Tiles

	Image Configuration

	File Attachments

