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List of Symbols
• N,N0,Z,R,C - sets of natural, N∪{0}, integer, real and complex numbers

• Rd - d-dimensional Euclidean space, Rd = R × · · · × R

• B(Rd) - σ-algebra of Borel subsets of Rd

• B(Rd), B(Cd) - set of bounded real functions over Rd, Cd

• Cb(Rd), Cb(Cd) - set of continuous and bounded functions over Rd, Cd

• L1(Rd, µ), L2(Rd, µ) - Lp=1,2 integrable functions w.r.t. measure µ on Rd

• ||x||2 = (∑d
i=1 x

2
i )1/2 - Euclidean norm of the vector x ∈ Rd

• x−s, x/h - (x1 −s, . . . , xd −s), (x1/h, . . . , xd/h), x ∈ Rd, h, s ∈ R, h ̸= 0

• ||f ||2 = (
∫

|f(x)|2 dx))1/2 - L2 norm of the function f : Rd → R

• ||f ||∞ = supx |f(x)| - supremum norm of the function f : Rd → R

• δxi
(dx) - Dirac measure located at xi ∈ Rd

• µf - image of the function f over the measure µ, µf =
∫
fµ(dx)

• Kt−1(A ∈ B(Rd),xt−1) - transition kernels of the signal process for t ∈ N

• Kt−1(xt,xt−1) - densities of Kt−1

• gt(yt|xt) - conditional densities of the observation process

• f̂ , p̂ - kernel density estimates of densities f and p

• | · | - absolute value of a real or complex number

• |α|, α! - for the multi-index α ∈ Nd
0, |α| = ∑d

i=1 |αi|, α! = α1! · · ·αd!

• Dα - differential operator for α ∈ Nd
0, i.e., Dα = ∂|α|/(∂α1 . . . ∂αd)

• F [·],Hν [·] - Fourier and Hankel transform of order ν, resp.

• P∝
S(β,L), PS(β,L) - the classes of β-Sobolev functions and densities

• Γ, B - Gamma and Beta functions

• (·)n = Γ(· + n)/Γ(· ) - the Pochhammer symbol

• (·)+ = max{0, · } - positive part

3





1. Introduction
Particle filtering enables its users to efficiently compute integral characteris-
tics (moments) of distributions of interest. In the area of filtering and its
applications, these distributions are traditionally referred to as the filtering
distributions. In particle filtering, a filtering distribution is approximated by
an empirical measure. This measure is constructed in the form of a weighted
sum of Dirac measures located at randomly (empirically) generated points
called particles. Particles are generated sequentially by the algorithm which is
an instance of the sequential Monte Carlo methods [Doucet et al., 2001, Doucet
and Johansen, 2011, Crisan and Rozovskii, 2011].

The theoretical result that justifies the application of particle filtering is
convergence of the generated empirical measures to the theoretical filtering dis-
tribution as the number of used particles goes to infinity [Crisan and Doucet,
2002, Doucet et al., 2001]. Approximating the filtering distribution by an
empirical measure is beneficial for estimating moments of the distribution be-
cause they correspond to weighted sums of the values of moment functions
over generated particles.

The filtering distribution has typically a density with respect to the cor-
responding (in the sense of the dimension) Lebesgue measure. This density
is called the filtering density. Knowing an analytical approximation of the
filtering density has advantages. For example, the possibility of computing
analytical approximations of densities of the related conditional distributions.
The other benefit is that one can get a deeper insight into the character of the
filtering distribution through the analysis of its density approximation.

From these practical, and of course also theoretical, reasons the issue of
the analytical approximation of the filtering densities is the subject of ongoing
research. Various authors have addressed this topic, such as [Musso et al., 2001,
Le Gland and Oudjane, 2004, Hürzeler and Künsch, 1998, Künsch, 2005] and
recently [Crisan and Míguez, 2014].

1.1 State of the art

In [Musso et al., 2001], the authors refer to their previous works in which they
introduced the particle filters that employ kernel estimates at different places
in their computational schemes. The filters are called the pre-regularized and
post-regularized particle filter, respectively, and differ in where exactly the

1



kernel density estimate is applied in the classical particle filtering algorithm.
They further introduce the local rejection regularized particle filter (L2RPF
filter) and show that it generalizes the post-regularized particle filter and the
KF filter introduced in [Hürzeler and Künsch, 1998]. The convergence analysis
of the post-regularized filter is presented in details in [Le Gland and Oudjane,
2004].

In [Künsch, 2005], the author investigates configurations if the acceptance-
rejection method and importance sampling with an additional resampling step
are used in particle filtering. The author shows that rejection sampling has
a smaller asymptotic variance than the standard importance sampling resam-
pling method. However, the computational effort for rejection sampling is
generally greater than for the importance sampling. Whilst the author pro-
vides several convergence results for a kernel estimate to converge to the corre-
sponding filtering density in terms of convergence in probability and a version
of the central limit theorem, the assumptions of Theorem 2 in [Künsch, 2005,
p. 2006], which applies to the importance sampling resampling method, ex-
clude the common filtering settings that consider an additive Gaussian noise.

A summary discussion of the above papers is also presented in Section 3.1
of [Crisan and Míguez, 2014]. In fact, the paper [Crisan and Míguez, 2014]
is the closest to our work as it addresses the application of kernel density
estimation in particle filtering in a very similar way to what we do. However,
our work, which is mainly inspired by Tsybakov’s book [Tsybakov, 2009], builds
on Fourier analysis of kernel density estimates. This fact enables us to obtain
a stronger version of certain results presented in Crisan and Míguez [2014],
which is discussed in details in the last chapter, Chapter 5, of the thesis.

1.2 Structure of thesis and main results

The thesis comprises of five chapters. The first introductory chapter is followed
by Chapter 2 that recalls notation, concepts and theorems we need in order to
present our work. Namely, we review essentials of the orthogonal polynomials,
the Fourier and Hankel integral transforms, basics of particle filtering with
special emphasis put on the related convergence results and the analysis of
kernel density estimates in the frequency domain.
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Chapter 3 delivers the main theoretical results. We present the upper
bounds on the mean integrated squared error (MISE) of the kernel density
estimates of the filtering densities and its partial derivatives. The bounds first
show that the standard kernel estimation methodology is applicable in particle
filtering as the MISE error converge to zero with an increasing number of
generated particles. Second, they provide estimates on the convergence rate
in dependance on the number of particles, the dimensionality of the signal
process and smoothness of the estimated filtering density. In its basic version,
the result has been published in [Coufal, 2016].

We are interested in lower bounds too. We extend the approach presented
in Chapter 2 of [Tsybakov, 2009] to the multivariate design. The approach,
rooted in information theory, investigates the minimax lower bounds on estima-
tion error if a set of deliberately constructed probability measures is considered.
It turns out that the standard kernel density estimates are efficient estimators
because the lower bounds meet the upper ones. The result together with the
extension of the upper bounds on partial derivatives has been submitted for
publication in [Coufal, 2018a].

Finally, we address the filtering density’s smoothness assumption in the
introduced convergence theorem. There is assumed that the filtering density
has certain character, namely the Sobolev one. This assumption can be checked
directly for the initial density of the signal process, however, this does not hold
for other operation times as we do not have an explicit representation of the
filtering density at our disposal. The purpose of the third part is to provide
a handy tool for checking persistence of the Sobolev character of the filtering
density over time, and, as the consequence, to ensure that the kernel estimates
converge through whole operation time of the filter. This result has been
published in [Coufal, 2018b].

Chapter 4 deals with designing kernels to be practically used for estimat-
ing the filtering densities as theoretically introduced in Chapter 3. The con-
vergence theorem assumes that the kernels of the specific order are used to
construct the filtering density estimates. The chapter focuses on designing
both univariate and multivariate kernels of the given order. The presented
approach draws on using the orthogonal polynomials to construct the kernels
with required properties.

Chapter 5 delivers a discussion on originality of the presented work in the
context of the results reported in [Crisan and Míguez, 2014].
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1.3 Notation and typography

The mathematical symbols used throughout the thesis are summarized in the
related list. Special symbols and notation are defined and mentioned before
they are used for the first time.

Within the thesis, italic is used to emphasize new or important concepts.
Definitions, lemmas and theorems are typeset in italic as well. The ends of

proofs are denoted by the � symbol.
The thesis was typeset in LATEX2ε, MiKTeX 2.9 distribution, using standard

Computern Modern Fonts with several enhancements, especially AMS-LATEX
mathematical symbols.
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2. Preliminaries
This chapter reviews notions, definitions and theorems we need in the sequel.
Providing references to original sources would make the thesis lighter, however,
it could lead to inconvenience due to the inconsistency in notation. So we put
all the material here to have the thesis self-referencing and make a reader as
comfortable as possible.

2.1 Orthogonal polynomials

This section reviews the orthogonal polynomials. Whilst the basic facts are
known for the classical families such as Hermite or Jacobi family (with the
special cases of Gegenbauer, Chebyshev and Legendre polynomials), this is
generally not the case for the polynomials in multiple dimensions. Below we
recall some essential facts about the selected families, certain interrelations and
the construction of the orthogonal polynomials on the unit disc and unit ball
in Rd. The main source of information provided here are the comprehensive
books [Dunkl and Xu, 2014], [Abramowitz and Stegun, 1964] and [Weisstein,
2002].

2.1.1 Univariate orthogonal polynomials

Let µ be a non-negative Borel measure on R with an infinite support. The
sequence of univariate polynomials {Pn(x) ∈ L2(R, µ)}∞

n=0 is called orthogonal
with respect to the measure µ if for each n,m ∈ N0, Pn(x) is a polynomial of
degree n and ∫

Pn(x)Pm(x) dµ = hnδnm

with hn being a normalization constant and δnm the Kronecker symbol. The
sequence is called orthonormal, if hn = 1, n ∈ N0. It is known that if∫

|x|n dµ < ∞ for all n ∈ N0, then the sequence {Pn(x) ∈ L2(R, µ)}∞
n=0 can be

constructed explicitly by the standard Gram-Schmidt orthogonalization pro-
cess applied on the monomial sequence {1, x, x2, . . . }. Since the Gram-Schmidt
process has the property that the first n orthogonal vectors spans the same
space as the original first n vectors, i.e., that P0, . . . , Pn span the same space
as 1, x, . . . , xn, P0, . . . , Pn form a basis for polynomials of degree n or less.
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Depending on specification of the orthogonal measure µ, various families
of the orthogonal polynomials are introduced. Below we cover some of the
classical ones. Namely, Hermite, Legendre, Gegenbauer and Jacobi families.
For each of these families the orthogonality measure is absolutely continuous
w.r.t. the Lebesgue measure on R and has the form dµ(x) = w(x) dx, with
a positive weight function w(x) on some interval and normalization constant
c = [

∫
w(x) dx]−1.

2.1.2 Hermite polynomials

The (physicists’) Hermite polynomials {Hn(x)}∞
n=0 can be generated by pro-

gressive differentiation of the unscaled Gaussian function e−x2 ,

Hn(x) = (−1)nex2 dn

dxn
e−x2

, n ∈ N0.

The first five polynomials read as

H0(x) = 1,
H1(x) = 2x,
H2(x) = 4x2 − 2,
H3(x) = 8x3 − 12x,
H4(x) = 16x4 + 8x2 + 12.

The Hermite polynomials are orthogonal with respect to the weight func-
tion w(x) = e−x2 for x ∈ R, c = π−1/2 and therefore∫ ∞

−∞
Hn(x)Hm(x)e−x2

dx = hnδnm, n,m ∈ N0

with hn =
√
π2nn!.

2.1.3 Legendre polynomials

The Legendre polynomials {Pn(x)}∞
n=0 can be generated according to the so-

called Rodrigues’ formula

Pn(x) = 1
2nn!

dn

dxn
(x2 − 1)n.

6



The first five polynomials reads as

P0(x) = 1,
P1(x) = x,

P2(x) = 1
2(3x2 − 1),

P3(x) = 1
2(5x3 − 3x),

P4(x) = 1
8(35x4 − 30x2 + 3).

The weight function corresponds to the indicator of the [−1, 1] interval,
i.e., w(x) = 1[−1,1](x), c = 1/2 and∫ 1

−1
Pn(x)Pm(x) dx = hnδnm, n,m ∈ N0

with hn = 2/(2n+ 1).

2.1.4 Gegenbauer polynomials

The Gegenbauer polynomials {C(λ)
n (x)}∞

n=0 are also called the ultraspherical
polynomial. For a parameter λ > −1/2, the related weight function writes
w(x) = (1−x2)λ−1/2 on the interval [−1, 1] with the constant c = B(1

2 , λ+ 1
2)−1

where B is the Beta function. The case λ = 1/2 corresponds to the Legendre
polynomials, i.e.,

C(1/2)
n (x) = Pn(x).

The generating formula for the Gegenbauer polynomials writes

C(λ)
n (x) = (−1)n

2n n!
Γ(2λ+ n)Γ(λ+ 1

2)
Γ(2λ)Γ(λ+ 1

2 + n)(1 − x2) 1
2 −λ dn

dxn
(1 − x2)λ+n− 1

2 .

The first four polynomials reads as

C
(λ)
0 (x) = 1,

C
(λ)
1 (x) = 2λx,

C
(λ)
2 (x) = 2λ(λ+ 1)x2 − λ,

C
(λ)
3 (x) = 4

3λ(λ+ 1)(λ+ 2)x3 − 2λ(λ+ 1)x.
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Finally, for λ > −1/2 orthogonality writes∫ 1

−1
C(λ)

n (x)C(λ)
m (x)(1 − x2)λ−1/2 dx = hnδnm n,m ∈ N0

with hn = (π21−2λΓ(n+ 2λ))/(n!(n+ λ)[Γ(λ)]2).

2.1.5 Jacobi polynomials

The Jacobi polynomials {P (α,β)
n (x)}∞

n=0 are the most general family of the clas-
sical orthogonal polynomials. They are orthogonal with respect to the weight
function w(x) = (1 − x)α(1 + x)β, α, β > −1 on the interval [−1, 1] with con-
stant c = 2−α−β−1B(α+ 1, β + 1)−1. They generalize (not only) these families
of the orthogonal polynomials:

• Gegenbauer polynomials

C(λ)
n (x) =

Γ(λ+ 1
2)Γ(n+ 2λ)

Γ(n+ λ+ 1
2)Γ(2λ) P

(λ− 1
2 ,λ− 1

2 )
n (x) = (2λ)n

(λ+ 1
2)n

P
(λ− 1

2 ,λ− 1
2 )

n (x),

• Legendre polynomials Pn(x) = C(1/2)
n (x) = P (0,0)

n (x).

• Zernike polynomials (see below) for 0 ≤ m ≤ n, n−m even

Rm
n (ρ) = (−1)(n−m)/2ρmP

(m,0)
(n−m)/2(1 − 2ρ2).

An explicit representation of the Jacobi polynomials involves the hypergeo-
metric function. As we are only interested in the above special cases, of the
many interrelations valid for the the Jacobi polynomials [Abramowitz and Ste-
gun, 1964, Sec. 22.5], we only mention the symmetry, evaluation at x = 1 and
a specific relation to the Gegenbuer polynomials. It holds

P (α,β)
n (−x) = (−1)nP (β,α)

n (x), P (α,β)
n (1) =

(
n+ α

n

)
(2.1)

and

P
(α,− 1

2 )
n (x) =

(
1
2

)
n

(α + 1
2)n

C
(α+ 1

2 )
2n

⎛⎝√x+ 1
2

⎞⎠ . (2.2)

The normalizing constant for the Jacobi polynomials reads as [Abramowitz
and Stegun, 1964, p. 774],

h(α,β)
n = 2α+β+1

2n+ α + β + 1
Γ(n+ α + 1)Γ(n+ β + 1)

n!Γ(n+ α + β + 1) .
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2.1.6 Multivariate orthogonal polynomials

Moving to multiple dimensions makes the situation more complicated. The
point is that sets of multivariate monomials (multivariate counterparts of the
univariate monomial sequence {1, x, x2, . . . }) can be ordered in various ways,
which leads to different orthogonal sets when the Gram-Schmidt process is
used. Moreover, the orthogonality domains, i.e., the supports of the related
weight functions, can be much more complicated. Here we survey results which
are important from the point of view of Chapter 4. That is, we focus on the
multivariate orthogonal polynomials over the unit disc and the unit ball in Rd,
d ≥ 3. Namely, the Zernike polynomials covers the d = 2 case and the d ≥ 3
case is covered by the polynomials rooted in spherical harmonics [Dunkl and
Xu, 2014]. As in the previous section, we denote c = [

∫
w(x) dx]−1.

2.1.7 Zernike polynomials

The Zernike polynomials {Zm
n (ρ, ϕ) : m ∈ Z, |m| ≤ n}∞

n=0 are orthogonal poly-
nomials over the unit disc. They are used extensively in optics in connection
with modelling human vision and image analysis. Though a compact represen-
tation of Zm

n exists in complex coordinates, we follow the standard approach
of splitting Zm

n into the even and odd polynomials [Weisstein, 2002, p. 3234].
These are specified as

Zm
n (ρ, ϕ) = Rm

n (ρ) cos(mϕ), 0 ≤ m ≤ n,

Z−m
n (ρ, ϕ) = Rm

n (ρ) sin(mϕ), 0 < m ≤ n,

respectively, for n,m ∈ N0,m ≤ n, ρ ∈ [0, 1], and ϕ ∈ [0, 2π).

In this representation, Rm
n : [0, 1] → R, 0 ≤ m ≤ n are the radial polyno-

mials which are specified as

Rm
n (ρ) =

⎧⎨⎩
∑n−m

2
k=0

(−1)k(n−k)!
k!( n+m

2 −k)!( n−m
2 −k)!ρ

n−2k for n−m even,
0 for n−m odd.

Using the Jacobi polynomials, the even part is compactly written

Rm
n (ρ) = (−1)(n−m)/2ρmP

(m,0)
(n−m)/2(1 − 2ρ2). (2.3)
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The first non-zero radial polynomial up to the fourth order read as

R0
0(ρ) = 1,

R1
1(ρ) = ρ,

R2
0(ρ) = 2ρ2 − 1,

R2
2(ρ) = ρ2,

R3
1(ρ) = 3ρ3 − 2ρ,

R3
3(ρ) = ρ3,

R0
4(ρ) = 6ρ4 − 6ρ2 + 1,

R2
4(ρ) = 4ρ4 − 3ρ2,

R4
4(ρ) = ρ4.

The weight function for the Zernike polynomials corresponds to the indi-
cator of the unit disc, i.e., w(x) = 1||x||2≤1, x ∈ R2 with c = π−1. In polar
coordinates, orthogonality writes∫ 1

0

∫ 2π

0
Zm

n (ρ, ϕ)Zm′

n′ (ρ, ϕ)ρ dϕ dρ = ϵmπ

2(n+ 1)δmm′δnn′ (2.4)

where ϵm = 2 if m = 0 and ϵm = 1 if m > 0.

2.1.8 Orthogonal polynomials on the unit ball

We start with some notation from Section 3.1 of [Dunkl and Xu, 2014]. For
a multi-index α = (α1, . . . , αd) ∈ Nd

0, d ∈ N and x = (x1, . . . , xd), a monomial
in the variables x1, . . . , xd is the product xα = xα1

1 · · · xαd
d . The number |α| =

α1 + · · · + αd is called the total degree of the monomial xα. Note that by
definition x0 ≡ 1, x ∈ R, i.e., if |α| = 0, then xα = 1, x ∈ Rd including the
x = 0 = (0, . . . , 0) case; and 0α = 0, if |α| > 0.

A polynomial P in d variables is a finite linear combination of monomials.
The degree of a polynomial P , deg P , is defined as the highest total degree of
its monomials. By Πd we denote the set of polynomials in d real variables. For
n ∈ N0, Πd

n denote the linear space of polynomials in several variables of degree
at most n. A polynomial is called homogeneous of degree n if all the monomials
appearing in it have the same total degree n. We denote the linear space of
homogeneous polynomials of degree n in d variables by Pd

n. Every polynomial
in Πd can be written as a linear combination of homogeneous polynomials.
Formally written, one has

Pd
n = span{xα : |α| = n, α ∈ Nd

0}, Πd
n = span{xα : |α| ≤ n, α ∈ Nd

0}.
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For P,Q ∈ Πd, denote by ⟨·, ·⟩ the inner product on Πd with respect to the
weight function Wµ, i.e.,

⟨P,Q⟩ =
∫

B
P (x)Q(x)Wµ(x) dx.

The polynomials P,Q are said to be orthogonal with respect to the weight
function Wµ if ⟨P,Q⟩=0. A polynomial P is called an orthogonal polynomial
w.r.t. Wµ if P is orthogonal to all polynomials of lower degree, i.e.,

⟨P,Q⟩ = 0, ∀Q ∈ Πd with deg Q ≤ deg P.

Let Vd
n(WB

µ ) denote the space of orthogonal polynomials w.r.t. WB
µ of order

exactly n, that is,

Vd
n(WB

µ ) = {P ∈ Πd
n : ⟨P,Q⟩ = 0,∀Q ∈ Πd

n−1}.

The dimension of Vd
n(WB

µ ) is the same as that of Pd
n so it is natural to use

a multi-index to index the elements of an orthogonal basis of Vd
n(WB

µ ). The
elements of such a basis are denoted {Pα : |α| = n} or {P d,n

α(j) : |α| = n}Nd,n

j=0
where Nd,n is cardinality of {Pα : |α| = n}. Clearly, in the second case some
total ordering of multi-indices in {|α| = n} is considered. Lexicographic or
graded lexicographic orders are discussed in [Dunkl and Xu, 2014, p. 59].

Denote Sn(WB
µ ; f) the n-th partial sum of the Fourier orthogonal expansion

of function f ∈ L2(Rd,WB
µ ) w.r.t. Vd

n(WB
µ ). That is

Sn(W ; f) =
n∑

k=0

∑
|α|=k

[∫
f(x)Pα(x)WB

µ (x) dx
]
Pα =

n∑
k=0

Nd,k∑
j=0

bk
jP

d,k

α(j) .

One important property of this operator is that it is a projection operator
onto Πd

n, i.e., Sn(W ;P ) = P if P ∈ Πd
n [Dunkl and Xu, 2014, p. 293]. Hence

considering a homogeneous monomial xα of degree n, i.e., if |α| = n, it holds
that xα ∈ span{Vd

n(WB
µ )}. We will use this fact in the proof of Lemma 4.1.

To specify the orthogonal polynomials on the unit ball, we mainly follow
[Dunkl and Xu, 2014], Sections 4.1 and 5.2. For d ≥ 3 and every n ∈ N0, let
Hd

n be the linear space of harmonic polynomials (homogeneous solutions of the
Laplace equation ∆P = 0) of degree n on Rd [Dunkl and Xu, 2014, Def. 4.1.1,
p. 115]. It is known that the dimension of this space is

dim Hd
n =

(
n+ d− 1
d− 1

)
−
(
n+ d− 3
d− 1

)
.

We are interested in constructing a basis of Hd
n.
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Let Tn(u) and Un(u) be the Chebychev polynomials of the first and the
second kind, respectively. (We have not covered these polynomials explicitly
in the preceeding list, as this is the only place we need them, we ask the reader
to go elsewhere for checking their properties.) For x = (x1, x2) ∈ R2, define

g0,n(x1, x2) = ||x||n · Tn(x2/||x||),
g1,n−1(x1, x2) = ||x||n−1 · Un−1(x2/||x||).

These are homogeneous polynomials of degree n in two dimensions and the set
{g0,n, g1,n−1} constitutes a mutually orthogonal basis for H2

n. For d ≥ 3 and
n = (n1, n2, . . . nd) ∈ Nd

0 with n1 = 0 or 1, define

Y (n) = gn1,n2(x1, x2)
d∏

j=3
(x2

1 + · · · + x2
j)nj/2C(λj)

nj
(xj(x2

1 + · · · + x2
j)−1/2) (2.5)

with
λj = λj(n1, . . . , nj−1) =

j−1∑
i=1

ni + j − 2
2 .

Then Y (n) is homogeneneous of degree |n| and {Y (n) : |n| = n with n1 =
0 or 1} is an orthogonal basis of Hd

n. This result, stated in the hyperspherical
coordinates, is presented in [Dunkl and Xu, 2014, p. 116, Theorem 4.1.4]. The
presented formulation is taken from [Piñar and Xu, 2017].

Let Bd = {x ∈ Rd : ||x||2 ≤ 1} be the unit ball in Rd. For µ > −1/2, the
classical orthogonal polynomials over Bd are defined w.r.t. the weight function
WBd

µ with the corresponding normalization constant cBd
µ ,

WBd
µ (x) = (1 − ||x||2)µ−1/2, cBd

µ =
[∫

Bd
WBd

µ (x) dx
]−1

=
Γ(µ+ d+1

2 )
πd/2Γ(µ+ 1

2) .

The following lemma gives a tool for constructing the orthogonal polyno-
mials over the unit ball in dimension d = 3 and higher [Dunkl and Xu, 2014,
p. 142, Proposition 5.2.1].

Lemma 2.1. For n ∈ N0, 0 ≤ j ∈ N0 ≤ n/2, let {Y n−2j
ν : 1 ≤ ν ≤ dim Hd

n−2j}
be an orthonormal basis of Hd

n−2j, the polynomials

P n
j,ν(x) = (hµ

j,n)−1P
(µ− 1

2 ,n−2j+ d−2
2 )

j (2||x||22 − 1) · Y n−2j
ν (x) (2.6)

form an orthonormal basis of Vd
n(WB

µ ); the constant is given as

(hµ
j,n)2 = (cBd

µ )−1 (µ+ 1
2)j(d

2)n−j(n− j + µ+ d−1
2 )

j!(µ+ d+1
2 )n−j(n+ µ+ d−1

2 )

where (x)n = Γ(x+ n)/Γ(x), n ≥ 0 is the Pochhammer symbol.
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We have adapted the specification of the normalizing constant, because in
[Dunkl and Xu, 2014] they have them specified as hn = c

∫
Pn(x)Pn(x)w(x) dx

(see Section 1.4 or check the proof of the lemma) and we consider the specifi-
cation hn =

∫
Pn(x)Pn(x)w(x) dx.

In Chapter 4, we are interested in products P n
j,ν(0)P n

j,ν(x). Let us show
that these products are non-zero only in limited cases. Since Y n−2j

ν is a homo-
geneous polynomial, one has Y n−2j

ν (0) = 0, unless its degree is zero, i.e., unless
j = n/2. Consequently, P n

j,ν(0) = 0 unless j = n/2. Therefore if n is odd, all
products P n

j,ν(0)P n
j,ν(x) are zero. If n is even, then only the products related

to Hd
0 space are non-zero. In what follows, we will consider even n, indexed

by j, i.e., n = 2j for j ∈ N0.
If n = 2j, j ∈ N0, then we work with Hd

0 space in Lemma 2.6. dim Hd
0=1

and Y (n = 0) = {Y 0
1 (x)} from (2.5). Because C(λ)

0 = 1 for any λ > −1/2, one
has Y 0

1 (x) = 1. Hence, the non-zero P 2j
j,ν(0)P 2j

j,ν(x) products write

P 2j
j,1(0)P 2j

j,1(x) = (hµ
j,2j)−2P

(µ− 1
2 , d−2

2 )
j (−1) · P (µ− 1

2 , d−2
2 )

j (2||x||2 − 1), j ∈ N0

where on the right-hand side there is the respective Jacobi polynomial.

2.2 Radial and Bessel functions

This section recalls the concept of radial functions which are basically the
functions that depend on norms of their arguments. Specifically, the radial
functions are invariant to rotations when the Euclidean norm is considered.
Bessel functions come in play when dealing with the Fourier transform of the
radial functions.

2.2.1 Radial functions

Through the thesis, we will work exclusively with the radial functions using
the Euclidean norm on Rd. The formal definition reads as follows.

Definition 2.1. A function Φ : Rd → R is called radial if there exists a uni-
variate function ϕ : R → R such that Φ(x) = ϕ(||x||2) where || · ||2 is the
Euclidean norm on Rd.
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Remark that starting with rotation invariance, i.e., if g(x) = g(Ox) for
every orthogonal matrix O, then g is radial if and only if there exists a univari-
ate function ϕ such that the above definition applies, i.e., iff g(x) = ϕ(||x||2),
see [Sasvári, 2013, Lemma 3.6.2. on p. 160].

2.2.2 Bessel functions

Bessel functions originate in solutions of spherical tasks specified in terms of
differential equations. There are several types of these functions. We only
recall the Bessel functions and the spherical Bessel functions of the first kind
Jν and jν , respectively. For the properties of these functions see [Weisstein,
2002, pp. 198 and 2779, resp.] or [Abramowitz and Stegun, 1964, Sec. 9, 10].

Definition 2.2. For ν > −1 and x ≥ 0 the Bessel function of the first kind
Jν : [0,∞) → R is specified by its series expansion as

Jν(x) =
(
x

2

)ν ∞∑
k=0

(−1)k

k! Γ(k + ν + 1)

(
x

2

)2k

. (2.7)

In fact, the above power series converges in the entire complex plane and
for x > 0 Jν can be extended recursively on all ν ∈ R using differentiation.

Definition 2.3. The spherical Bessel function of the first kind jν : [0,∞) → R
is derived from Jν as

jν(x) =
√
π

2xJν+1/2(x) = xν
∞∑

k=0

(−1)k

k! (2k + 2ν + 1)!!

(
x2

2

)k

. (2.8)

Remark that J1/2(x) =
√

2
π
·sin(x)/x =

√
2
π
·sinc(x); and limx→0+ x−νJν(x) =

1
2νΓ(ν+1) , which can be easily seen from the series expansion. Especially, for
ν = 1 one has limx→0+ x−1J1(x) = 1

2 .
For the spherical Bessel function of the first kind one gets from the series

expansion limx→0+ x−νjν(x) = 1
(2(ν+1/2))!! . For double factorial, it holds (2n)!! =

2nn!
√

2/π, hence the limit writes

lim
x→0+

x−νjν(x) = 1
(2(ν + 1/2))!! =

√
π

2
1

2ν+1/2(ν + 1/2)!
ν=(d−2)/2=

√
π

2d/2Γ(d+1
2 )
(2.9)

14



0 5 10 15 20
(a)

-0.5

0

0.5

1 J0(x)

J1(x)

J2(x)

J3(x)

0 5 10 15 20
(b)

-0.5

0

0.5

1 j0(x)

j1(x)

j2(x)

j3(x)

Figure 2.1: (a) Bessel function of the first kind Jν ; (b) spherical version jν .

2.3 Fourier and Hankel transforms

Within the thesis we work intensively with the Fourier transform. We also con-
sider the Hankel transform as a tool for dealing with the multivariate Fourier
transform of the radial functions. The Hankel transform calls for using Bessel
fuctions of the first kind recalled above.

2.3.1 Fourier transform

In the thesis we consider the multivariate Fourier transform as specified in
Definition 2.4 below that differs from the mainstream version which uses the
negative exponent and scaling by (2π)−d/2 factor [Rudin, 1991]. The reason is
that we want the Fourier transform to correspond to the specification of the
characteristic functions when applied on densities of probability distributions.
Non-symmetry in the Plancherel’s formula is the price we pay for not using
scaling.

The Fourier transform applies on functions from L1(Rd) with the standard
extension to L2(Rd) space.

Definition 2.4. Let f ∈ L1(Rd). Its multivariate Fourier transform is speci-
fied as

F [f ](ω) =
∫
Rd
e i⟨x,ω⟩f(ω) dx . (2.10)
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The basic properties of the Fourier transform are well known [Pinsky, 2008,
p. 91]. Let f, g ∈ L1(Rd), Dαf ∈ L1(Rd) for a multi-index α ∈ Nd

0, then the
following properties of the Fourier transform are relevant to our research:

• boundedness: |F [f ](ω)| ≤ 1, for f being a density

• linearity: F [af + bg](ω) = aF [f ](ω) + bF [g](ω), a, b ∈ R

• shifting: F [f(x − s)](ω) = ei⟨ω,s⟩F [f ](ω), s ∈ Rd

• scaling: F [f(x/h)/hd](ω) = F [f ](hω), h > 0

• shifting & scaling: F [f((x − s)/h)/hd] = ei⟨ω,s⟩F [f ](hω), s ∈ Rd

• complex conjugate: F [f ](ω) = F [f ](−ω)

• convolution: F [f ∗ g](ω) = F [f ](ω)F [g](ω)

• differentiation: if Dαf exists and Dαf ∈ L1(Rd), then
F [Dαf ](ω) = (+i)|α|(ωα1

1 ωα2
2 · · · ·ωαd

d )F [f ](ω), for a multi-index α ∈ Nd
0

• symmetry: if f(−x) = f(x), then F [f ](−ω) = F [f ](ω)

• isometry, provided by the Plancheler’s formula for f ∈ L2(Rd):
∫
Rd
f 2(x) dx = 1

(2π)d

∫
Rd

|F [f ](ω)|2 dω.

2.3.2 Hankel transform

The Hankel transform is an integral transform that use Bessel functions as its
kernel. The transform is useful when dealing with problems that show circular
symmetry. The definition follows.

Definition 2.5. The Hankel transform of order ν of a function ϕ : [0,∞) → R
is defined as

Hν{ϕ(r)}(s) =
∫ ∞

0
ϕ(r)Jν(sr)r dr.

where Jν is the Bessel function of the first kind of order ν > −1
2 .

16



Of the properties of the Hankel transform, we metion that it is self-inverse, i.e.,

Hν{Hν{ϕ(r)}} = ϕ(r);

and its role when computing the multivariate Fourier transform of the radial
functions as the Fourier transform of (Euclidean) radial functions are again
radial functions [Pinsky, 2008, A. D. Poularikas (Ed.), 2000].

The proof of the following theorem (adjusted for our definition of the
Fourier transform) can be found in [Stein and Weiss, 1971, Theorem 3.3].

Theorem 2.1. Let Φ ∈ L1(Rd) be continuous and radial, i.e., Φ(x) = ϕ(||x||2).
Then its Fourier transform F [Φ](ω) is also radial F [Φ](ω) = ϕH (||ω||2) where

ϕH (s) = (2π)d/2
√
sd−2

∫ ∞

0
ϕ(r) r d

2J(d−2)/2(sr) dr = (2π)d/2s−νHν{ϕ(r) · rν}(s)

for ν = (d− 2)/2, i.e., ν = −1
2 , 0,

1
2 , 1, . . . for d = 1, 2, 3, 4 . . . .

2.4 Particle filtering

Particle filtering is a methodology for solving the filtering problem in generally
nonlinear/non-Gaussian settings which typically do not allow for analytical
solutions. The filtering problem is casted in different ways [Fristedt et al.,
2007, Särkkä, 2013]. In the thesis, we consider the variant with discrete time
and continuous state space. A detailed description is provided, for example, in
[Doucet and Johansen, 2011, Doucet et al., 2001]. Here we present the review
of the filtering problem in the context of particle filtering as given in [Coufal,
2016, Section 2].

2.4.1 Filtering problem

The filtering problem is a problem of determining the optimal estimate of an
inaccessible state of a stochastic process using accessible observations. The ob-
servations constitute a stochastic process called the observation process. The
observation process is assumed to be interconnected with the principal stochas-
tic process called the signal process. States of the signal process are the subject
of estimation. The mathematical formulation follows.
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Let {Xt}∞
t=0, {Yt}∞

t=1 be two stochastic processes specified on a common
probabilistic space (Ω,A, P ) such that

• Xt : (Ω,A) → (Rdx ,B(Rdx)), t ∈ N0, dx ∈ N,

• Yt : (Ω,A) → (Rdy ,B(Rdy)), t ∈ N, dy ∈ N.

The first process {Xt}∞
t=0 is the signal process. It represents generally an

inhomogeneous Markov chain with a continuous state space Rdx endowed with
its standard Borel σ-algebra B(Rdx). The probabilistic behavior of the chain is
determined by the initial distribution π0(dx0) of X0 and the set of transition
kernels {Kt−1 : B(Rdx) × Rdx → [0, 1], t ∈ N}. We denote by Kt−1(dxt|xt−1)
the measure induced by the transition kernel Kt−1 for xt−1 ∈ Rdx being fixed.

The second process {Yt}∞
t=1 is the observation process. Rdy is the continuous

state space of the process and B(Rdy) its Borel σ-algebra. The observation
process is derived from the signal process using the transformation

Yt = ht(Xt) + Vt, t ∈ N (2.11)

where ht : Rdx → Rdy , t ∈ N are Borel functions and Vt : (Ω,A) → (Rdy ,B(Rdy))
are i.i.d. random variables that are independent from X0:t = (X0, . . . ,Xt) for
all t ∈ N. Due to (2.11) and the Markov character of {Xt}∞

t=0, the indepen-
dence of Vt transfers on observations as

P (Yt ∈ dyt|X0:t,Y1:t−1) = P (Yt ∈ dyt|Xt). (2.12)

For t=1, the left-hand side reads as P (Y1 ∈ dy1|X0:1).
Within the thesis, the colon is used to denote finite sequences. That is, we

use for example Y1:t−1 = (Y1, . . . ,Yt−1) or y1:t = (y1, . . . ,yt), etc.
The ultimate purpose of filtering is to provide as wide information as pos-

sible on the current state Xt of the signal process using the current and past
observations y1:t = (y1, . . . ,yt). The well known practical example of filtering
is target tracking when one is interested in estimating the current position of
a moving object (e.g., a plane or a missile) based on some indirect measure-
ments (radar signals) [Zhao, 2006].

2.4.2 Filtering distribution and filtering density

In terms of probability theory the filtering problem reads as the task for speci-
fying the conditional distribution P (Xt|Y1:t = y1:t). This distribution is called
the filtering distribution.
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Assuming L2 integrability of Xt, a restricted version of the filtering problem
ask only for the specification of E[Xt|Y1:t = y1:t], i.e., of the conditonal expec-
tation of the filtering distribution. It is a classical result that provided the L2

integrability of Xt, the L2-optimal estimate of Xt based on Y1:t corresponds
just to E[Xt|Y1:t].

If the filtering distribution has a density with respect to the corresponding
(in the sense of the dimension) Lebesgue measure, then this density is called
the filtering density. The specification of the filtering density reads as another
version of the filtering problem.

To induce the existence of the filtering density, it is assumed that all the
involved distributions have bounded densities with respect to the corresponding
Lebesgue measures. Namely, it is assumed that

• π0(dx0) = p0(x0) dx0

• Kt−1(dxt|xt−1) = Kt−1(xt|xt−1) dxt

• P (Vt ∈ dvt) = gv
t (vt) dvt

where p0 : Rdx → [0,∞) is the density of the initial distribution π0(dx0).
Kt−1(xt|xt−1) : Rdx → [0,∞) is the conditional density of Kt−1(dxt|xt−1) and
gv

t (vt) is the density of the distribution of the noise variable Vt. This density
is considered not only bounded but also strictly positive, i.e., gv

t (vt) > 0 for all
vt ∈ Rdy and t ∈ N.

The assumption on existence of densities enables the specification of the
conditional densities of our interest. The density of P (Yt ∈ dyt|Xt = xt) will
be denoted gt(yt|xt) and using (2.11) it writes

gt(yt|xt) = gv
t (yt − ht(xt)). (2.13)

The joint density of (X0:t,Y1:t) has then form

p(x0:t,y1:t) = p0(x0)
t∏

k=1
gk(yk|xk)Kk−1(xk|xk−1), (2.14)

which is induced by the conditional independence of observations (2.12) and
by the standard theory of Markov chains with a continuous state space.

The filtering density at time t ∈ N is denoted by p(xt|y1:t). Using (2.14),
it reads as

p(xt|y1:t) = p(xt,y1:t)
p(y1:t)

=
∫
p(x0:t,y1:t) dx0:t−1∫
p(x0:t,y1:t) dx0:t

. (2.15)

The above integrals are generally inexpressible in a closed form. However,
certain recursive analytical relations can be stated. These relations are called
the filtering equations.

19



2.4.3 Filtering equations

The filtering equations describe recursively development of the filtering density
p(xt|y1:t) over time. They consist of the prediction formula (2.16) and the
update formula (2.17).

The prediction formula gives the expression for the so-called prediction
density which is the density of P (Xt ∈ dxt|Y1:t = y1:t−1). The update formula
then gives the specification of the filtering density p(xt|y1:t).

Lemma 2.2. Let the joint density of (X0:t,Y1:t) be given by formula (2.14),
then

p(xt|y1:t−1) =
∫
Kt−1(xt|xt−1)p(xt−1|y1:t−1) dxt−1, (2.16)

p(xt|y1:t) = gt(yt|xt)p(xt|y1:t−1)∫
gt(yt|xt)p(xt|y1:t−1) dxt

, t ∈ N (2.17)

with p(x1|y1:0) understood as p(x1) and p(x0|y1:0) as p(x0).

Proof. A basic proof can be found, for example, in [Särkkä, 2013], see The-
orem 4.1 on page 54; or in Section 2.6.2 of [Doucet et al., 2001] where it is
presented in a more general form. �

Development of the filtering density over time is split into two sub-steps
by the filtering equations. The prediction density p(xt|y1:t−1) is obtained in
the first sub-step and, in the second one, is updated to the filtering density
p(xt|y1:t) on the basis of the current observation yt ∈ Rdy .

Speaking in the language of distributions, the filtering distribution is usu-
ally denoted by πt, i. e., πt(dxt) = p(xt|y1:t) dxt. The filtering distribution
is also alternatively referred to as the update distribution (measure). The
prediction density then corresponds to the density of the so-called prediction
distribution (measure) denoted by πt, i. e., πt(dxt) = p(xt|y1:t−1) dxt.

2.4.4 Particle filtering

Time development of the filtering distribution can be seen as a recursive al-
ternation between the prediction and update distributions πt and πt. This
characterization fits to a particle filter operation because the filter alternately
generates empirical prediction and update measures.

In particle filtering, empirical measures are constructed as weighted sums of
Dirac measures localized at particles generated by the filter. The justification
of this representation stems from the Strong Law of Large Numbers (SLLN).
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Assuming that {Xi = xi}n
i=1, n ∈ N is an i.i.d. sample from a given dis-

tribution µ, i. e., Xi ∼ µ, and constructing the empirical measure δn(dx) as

δn(dx) = 1
n

n∑
i=1

δxi
(dx) = 1

n

n∑
i=1

δXi
(dx) (2.18)

the SLLN states that for any integrable function f , the integral over this
empirical measure converges a.s. to the integral over the distribution µ. Note
that in (2.18), the last expression points out the random character of δn(dx),
in fact, δn(dx) is a random measure.

Dealing with the filtering problem practically, we are not able to directly
generate i.i.d. samples from πt because we do not have any closed-form repre-
sentation of the filtering density at our disposal. However, due to the product
character of the joint density p(x0:t,y1:t), one can state an algorithm which re-
cursively generates samples (particles) that are used for constructing empirical
counterparts of πt and πt.

The construction of empirical measures proceeds sequentially. The parti-
cles generated in the previous cycle of operation are employed in the current
cycle. In each cycle, a stochastic update of particles and their weights is per-
formed. The weights are updated on the basis of the current observation. The
procedure is in fact an instance of the sequential Monte Carlo methods applied
in the context of the filtering problem [Doucet et al., 2001]; and the algorithm
follows the recursion described by the filtering equations. However, there is
one extension.

In the raw mode of operation, the update measure is constructed as a non-
uniformly weighted sum of Dirac measures. As explained in [Doucet et al.,
2001], as t ∈ N increases, the distribution of weights becomes more and more
skewed and after a few time steps only a single particle has a non-zero weight.
To avoid this degeneracy, the resampling step is introduced.

During the resampling step, a non-uniformly weighted empirical measure
is resampled into its uniformly weighted counterpart. The basic type of resam-
pling draws on the idea of discarding particles with low weights (with respect
to 1/n) and promote those with high weights. Practically, this is done by sam-
pling with replacement from the set of original particles with the probabilities
of selection given by the original particles’ weights. It means that the resam-
pled particles might be duplicated. In fact, the numbers of duplicates corre-
spond to a sample from the multinomial distribution M(n, w̃(x1

t ), . . . , w̃(xn
t )).

Let us stress here that the resampled particles does not constitute an i.i.d.
sample.

The particle filter’s operation is presented in Algorithm 1.
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Algorithm 1: Particle filtering algorithm

0. declarations
n ∈ N - the number of particles,
T ∈ N - the computational horizon,
p0 - the initial density of X0,
Kt−1( · |xt−1), t = 1, . . . T - the transition densities.

1. initialization
t = 0,
sample {xi

0 ∼ p0}n
i=1,

constitute π̂n
0 (dx0) = 1

n

∑n
i=1 δxi

0
(dx0),

set πn
0 (dx0) = π̂n

0 (dx0), i. e., {xi
0 = xi

0}n
i=1.

2. sampling
t = t+ 1,
sample {xi

t ∼ Kt−1( · |xi
t−1)}n

i=1,
for i = 1:n compute

w̃(xi
t) = gt(yt − ht(xi

t))∑n
j=1 gt(yt − ht(xj

t))
,

constitute π̂n
t (dxt) = ∑n

i=1 w̃(xi
t) δxi

t
(dxt).

3. resampling
using M(n, w̃(x1

t ), . . . , w̃(xn
t )), resample {xi

t}n
i=1 from {xi

t}n
i=1

constitute πn
t (dxt) = 1

n

∑n
i=1 δxi

t
(dxt).

4. if t = T end, else go to step 2.

The particle filter sequentially generates three empirical measures in each
single cycle of its operation. These are the empirical prediction measure πn

t ,
the empirical update measure before resampling π̂n

t and the empirical update
measure after resampling πn

t . The third measure then forms the empirical
counterpart of the filtering distribution πt.
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A comparison of developments of the empirical measures and the theoretical
distributions is presented in Figure 2.2.

π0 → πn
1 → π̂n

1 → πn
1 → . . . → πn

t → π̂n
t → πn

t

π0 → π1 → π1 → . . . → πt → πt

Figure 2.2: Development of distributions in particle filtering.

2.4.5 Convergence results

In the particle filter, it is known that the empirical measures πn
t and πn

t con-
verge weakly a.s. (they are the random measures) to their theoretical coun-
terparts as the number of generated particles goes to infinity. We will not go
into details of the proof of the assertion, we only mention the result and its
L2 variant related to our research. To present the convergence theorems, we
denote the class of real bounded functions on Rdx by B(Rdx), the class of real
bounded and continuous functions on Rdx by Cb(Rdx), the supremum norm of
a function f : Rdx → R by ||f ||∞ and the integral of f over the measure µ
by µf . Further, it is assumed that the transition kernels of the signal process
possess the Feller property. That is, Kt−1f ∈ Cb(Rdx) for any f ∈ Cb(Rdx) and
t ∈ N where (Kt−1f)(xt−1) =

∫
f(xt)Kt−1(dxt|xt−1). The other assumption

is that the densities gt(yt|xt) of (2.13), t ∈ N are bounded, continuous and
strictly positive functions.

Theorem 2.2. Let {πn
t }T

t=1 and {πn
t }T

t=1 be the sequences of empirical mea-
sures generated from particle filtering for some fixed observation history {Yt =
yt}T

t=1, T ∈ N. Then for all t ∈ {1, . . . , T} and f ∈ B(Rdx),

lim
n→∞

|πn
t f − πtf | = 0 a.s., lim

n→∞
|πn

t f − πtf | = 0 a.s.

Proof. See [Doucet et al., 2001], Chapter 2 for a broader discussion of the
convergence theorems. Other source is [Crisan and Doucet, 2002, Section IV].
Paper [Crisan and Míguez, 2014] has even the proof of the a.s. convergence
for certain unbounded functions, see Proposition 2.1(b). �

Theorem 2.3. Let {πn
t }T

t=1 be the sequence of empirical measures generated
by the particle filter for some fixed observation history {Yt = yt}T

t=1, T ∈ N.
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Then for all t ∈ {1, . . . , T} and f ∈ B(Rdx),

E[|πn
t f − πtf |2] ≤ c2

t ||f ||2∞
n

(2.19)

with ct > 0 being a constant for fixed t ∈ {1, . . . , T}.

Proof. In this formulation, the theorem is presented in [Crisan and Doucet,
2002, Section V], (the authors use ct instead ours c2

t ). �

Corollary. Theorem 2.3 holds also if f ∈ BC(Rdx), i. e., if f is a bounded
complex function of real variables on Rdx .

Proof. If f ∈ BC(Rdx), then f(x) = h(x) + ig(x), where i denotes the imagi-
nary unit; and f, g ∈ B(Rdx). Inequality (2.19) holds because for the squared
modulus of πn

t f − πtf one has |πn
t f − πtf |2 = (πn

t h− πth)2 + (πn
t g − πtg)2. �

Remark that the L1 version of Theorem 2.3, i. e., E[|πn
t f − πtf |], is treated

in [Doucet et al., 2001, Theorem 2.4.1]. The theorem is further mentioned for
general Lp norm, p ≥ 1, in [Crisan and Míguez, 2014, Proposition 2.1(a)].

2.5 Kernel estimates in Fourier domain

This section reviews theory of kernel density estimates in the Fourier domain as
presented in [Coufal, 2016, Section 3]. It delivers the multivariate counterparts
of results presented in [Tsybakov, 2009, Chapter 1].

2.5.1 Basics of kernel methods

Let X1, . . . ,Xn, n ∈ N be a set of independent random variables identically
distributed as the real random variable X : (Ω,A) → (Rd,B(Rd)), d ∈ N.
Let the distribution of X have density f : Rd → [0,∞) with respect to the
d-dimensional Lebesgue measure. A nonparametric kernel density estimate of
f is constructed on the basis of an i.i.d. sample {Xi = xi}n

i=1 from the distri-
bution of X. The estimate is constructed as a generalization of the classical
histogram by replacing the indicator function, which specifies individual bins
of the histogram, by a more general function K : Rd → R that is commonly
referred to as the kernel function or simply as the kernel.

24



The definition formula of the standard d-variate nonparametric kernel den-
sity estimate writes as

f̂n(x) = 1
nhd

n∑
i=1

K
(

x − xi

h

)
= 1
nhd

n∑
i=1

K

(
x − Xi

h

)
. (2.20)

In the formula, the last expression points out the random character of the
estimate. That is, for each x ∈ Rd, the estimate f̂n(x) constitutes a random
variable whose distribution is determined by the distribution of X and by the
value of the parameter h > 0 which is called the bandwidth.

Due to the random character of f̂n(x), there is relevant the question on con-
sistency and unbiasedness of the estimate. In the univariate case, the classical
result by Parzen [Parzen, 1962] (see also [Silverman, 1986, Sec. 3.7.1]) states
the conditions under which the estimate is consistent. The result extends to
the multivariate case, see e. g. [Givens, 1995]. Certain conditions are imposed
on the properties of the kernel function and on development of the bandwidth
h as a function of the sample size n ∈ N. We mention only that h is required
to develop in such a way that 1) limn→∞ h(n) = 0 and 2) limn→∞ nhd(n) = ∞.

The investigation on the bias of f̂n(x) is closely related to the investigation
on the quality of the estimate in terms of the mean squared error (MSE). For
a fixed point x ∈ Rd, the error is specified as MSEx(f̂n) = E[(f̂n(x) − f(x))2].
Employing properties of mean and variance, it writes as

MSEx(f̂n) = (E[f̂n(x)] − f(x))2 + var[f̂n(x)] = (bf̂n(x))2 + σ2f̂n(x) (2.21)

where the term bf̂n(x) = E[f̂n(x)] − f(x) is the bias and σ2f̂n(x) = var[f̂n(x)]
the variance of the kernel density estimate f̂n(x) at the point x ∈ Rd.

The MSEx(f̂n) is the local measure of the quality of the estimate. It is
desirable to introduce also a corresponding global measure. Expectedly, such
measure deals with local errors accumulated over the whole domain of the esti-
mated density. Mathematically, the accumulation is performed by integration.
This leads to the notion of the mean integrated squared error (MISE) of a
kernel density estimate.

Using (2.21) and the Fubini’s theorem, the MISE of the kernel density
estimate f̂n is expressed as

MISE(f̂n) = E
∫

(f̂n(x) − f(x))2 dx =
∫

(bf̂n(x))2 dx +
∫
σ2f̂n(x) dx. (2.22)

The formula consists of two summands which are the integrated versions of the
squared bias and variance terms of the MSEx(f̂n). The value of the MISE(f̂n)
depends on the value of the bandwidth h.
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Because MISE(f̂n) represents the global error of the estimate, one tries to
minimize it by localizing the minimizer h∗

MISE of (2.22). Analytical solution
to this task is known only in some specific cases, e. g., when the estimated
density corresponds to a convex sum of normal densities, see [Silverman, 1986,
p. 37] or [Wand and Jones, 1995, Sec. 2.6] for exact formulas. To deal with the
minimization problem generally, the widely used approach is to investigate the
asymptotic behavior of the MISE(f̂n) with respect to the sample size n ∈ N
going to infinity. This is called AMISE analysis and leads to the specification
of the asymptotic minimizer h∗

AMISE.
However, in Section 1.2.4 of his book [Tsybakov, 2009], Tsybakov provides

a deeper criticism of the asymptotic approach. It stems from the fact that
the optimality of h∗

AMISE is related to a fixed density f and not to a well
defined class of densities. In Proposition 1.7, Tsybakov shows that for the fixed
density f , it is possible to construct such a kernel estimate that the MISE(f̂n)
diminishes, but this cannot be done uniformly over a sufficiently broad class of
densities. Examples of such classes, e. g., Hölder, Sobolev or Nikol’ski classes,
are presented in [Tsybakov, 2009]. The Sobolev class is treated in Definition 2.7
below.

Based on this criticism, Tsybakov presents a different approach to the MISE
analysis in Section 1.3 of [Tsybakov, 2009]. The approach relies on Fourier
analysis.

2.5.2 Fourier analysis of kernel estimates

In the probability theory, Fourier analysis is intimately connected with the
notion of the characteristic function. Let X : (Ω,A) → (Rd,B(Rd)) be a
d-variate real random vector with the joint distribution µ(dx). The charac-
teristic function φX(ω) : Rd → C of X is defined as the integral transform

φX(ω) = E[ei⟨ω,X⟩] =
∫
ei⟨ω,x⟩ µ(dx), ω ∈ Rd (2.23)

where ⟨·,·⟩ denotes the standard dot product in Rd. It is well known that the
transform provides the complete characterization of the distribution of X; and
we often speak about the Fourier transform of the random vector X or the
distribution µ.

The other quite common view of the Fourier transform comes from the area
of applied mathematics. Let f : Rd → R be an integrable function (a signal
in electrical engineering), i. e., let f ∈ L1(Rd), then its Fourier transform is
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specified as
F [f ](ω) =

∫
ei⟨ω,x⟩f(x) dx, ω ∈ Rd. (2.24)

Formula (2.24) can be treated as the special case of formula (2.23) when the
distribution of X is absolutely continuous with respect to the d-dimensional
Lebesgue measure and has the density f , i. e., if µ(dx) = f(x) dx. On the
other hand, in (2.24) f need not be necessarily a density.

The uniformly weighted sum of Dirac measures δn(dx) introduced in for-
mula (2.18) represents a probability distribution which does not have a density
with respect to the corresponding Lebesgue measure. Its characteristic func-
tion is denoted φn(ω) and specified as

φn(ω) =
∫
ei⟨ω,x⟩δn(dx) = 1

n

n∑
j=1

ei⟨ω,Xj⟩, ω ∈ Rd. (2.25)

Note that φn(ω) constitutes a random variable for every ω ∈ Rd being fixed.
Under the assumption of L1(Rd) integrability of the employed kernel K,

we can consider the Fourier transform of the kernel density estimate (2.20).
Using the linearity and the shifting & scaling property of the Fourier transform,
F [f̂n](ω) is specified by formula

F [f̂n](ω) = 1
n

n∑
j=1

F
[

1
hd
K

(
x − Xj

h

)]
= 1
n

n∑
j=1

ei⟨ω,Xj⟩F [K](hω). (2.26)

Writing KF(ω) for F [K](ω), we obtain the compact expression of F [f̂n](ω)
in the form

F [f̂n](ω) = φn(ω)KF(hω). (2.27)

This shows that the standard kernel estimate, which is based on an i.i.d. sam-
ple, is obtained by the convolution of the employed kernel with the uniformly
weighted sum of Dirac measures corresponding to the sample.

Let us assume that both density f and kernel K belong also to L2(Rd).
Then employing the Plancherel’s theorem and (2.27), we get for the MISE of
(2.22) the expression

MISE(f̂n) = 1
(2π)d

E
∫

|φn(ω)KF(hω) − φ(ω)|2 dω. (2.28)

The next theorem provides the exact MISE(f̂n) for any fixed n ∈ N.
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Theorem 2.4. Let f ∈ L2(Rd) be a density and K ∈ L1(Rd)∩L2(Rd) a kernel.
Then for all n ≥ 1 and h > 0 the MISE of the kernel estimator f̂n of (2.20)
has the form

MISE(f̂n) = 1
(2π)d

[∫
|1 −KF(hω)|2|φ(ω)|2 dω + 1

n

∫
|KF(hω)|2 dω

]
− 1

(2π)d

1
n

∫
|φ(ω)|2|KF(hω)|2 dω. (2.29)

Proof. The proof is just a copy of the original univariate Tsybakov’s
proof, see [Tsybakov, 2009, p. 22] (generally, we do not need the symmetry of
the kernel here). It rests on developing the formula (2.28) using the facts that
|z|2 = zz for z ∈ C and E[φn(ω)] = φ(ω). �

Now, we are going to discuss the individual terms in the Fourier MISE
formula (2.29). We start with the notion of the order of a kernel. To do so we
consider the differential operator Dα with the multi-index α = (α1, α2, . . . , αd),
α ∈ Nd

0. For a suitably differentiable function f : Rd → R, one has Dαf =
∂|α|f/∂α1x1 · · · ∂αdxd with |α| = ∑d

i=1 αi being the order of the derivative.

Definition 2.6. Let ℓ ≥ 1 be an integer. We say that the kernel K: Rd → R is
of order ℓ, if K is L1(Rd) ∩L2(Rd) integrable, its Fourier transform KF(ω) =
F [K](ω) is real, satisfies KF(0) = 1 and has all partial derivatives DαKF up
to the ℓ-th order such that DαKF(0) = 0 for all |α| = 1, . . . , ℓ.

The above definition imposes the following conditions on a multivariate
kernel to be of order ℓ ≥ 1, ℓ ∈ N:

•
∫
K(u) du = 1,

•
∫
uα1

1 · · ·uαd
d K(u) du = 0 for |α| = 1, . . . , ℓ.

Indeed, at the origin we have KF(0) =
∫
ei⟨0,u⟩K(u) du =

∫
K(u) du = 1. For

the α-th partial derivative, one has

DαKF(ω) =
∫

(iu1)α1 · · · (iud)αd ei⟨ω,u⟩K(u) du.

Thus, 0 = DαKF(0) = (+i)|α| ∫ uα1
1 · · ·uαd

d K(u) du.
As an example, mention that for the standard multivariate Gaussian kernel

K(u) = (2/π)−d/2 exp(−1
2 ||u||22), one has KF(ω) = exp(−1

2 ||ω||22) and the
kernel is of order ℓ = 1.
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The first term. For the first term in the Fourier MISE formula (2.29), we
are able to say something more specific if we consider the order of the kernel
involved in the estimate.

Lemma 2.3. Let K: Rd → R be a kernel of order ℓ ≥ 1, ℓ ∈ N. Then there
exists a constant A > 0 such that

supω∈Rd\{0}
|1 −KF(ω)|

||ω||ℓ2
≤ A (2.30)

and ∫
|1 −KF(hω)|2|φ(ω)|2dω ≤ A2h2ℓ

∫
||ω||2ℓ

2 |φ(ω)|2dω (2.31)

for any function f with the Fourier transform φ(ω) and h > 0.

Proof. We employ the multidimensional Taylor’s theorem [Brabec and
Hr uza, 1986]. Because the kernel K is of order ℓ ≥ 1, its Fourier transform
KF(ω) is real and we have by the Taylor’s theorem

KF(ω) = KF(0) +
∑

1≤|α|≤ℓ

DαKF(0)
α! ωα +Rℓ(ω)

with limω→0 Rℓ(ω)/||ω||ℓ2 = 0 for the reminder, i. e., Rℓ(ω) = o(||ω||ℓ2).
As the partial derivatives vanish at origin, the remainder writes Rℓ(ω) =

KF(ω) − KF(0) = KF(ω) − 1 and limω→0 |1 − KF(ω)|/||ω||ℓ2 = 0 by the
Taylor’s theorem.

Let us define Aℓ(ω) = |1 − KF(ω)|/||ω||ℓ2 for ω ̸= 0, and Aℓ(0) = 0. The
function Aℓ : Rd → [0,∞) is continuous on Rd and attains its maximum on the
unit ball ||ω||2 ≤ 1. Let M1 = max{ω:||ω||2 ≤ 1}{Aℓ(ω)}. Because K ∈ L1(Rd),
we have 0 ≤ |KF(ω)| ≤ M2 < ∞. Indeed, |KF(ω)| ≤

∫
|ei⟨ω,u⟩| |K(u)| du ≤∫

|K(u)| du = M2 < ∞. Therefore, |1−KF(ω)|/||ω||ℓ2 ≤ 1+M2 for ||ω||2 > 1.
Composing both cases one gets Aℓ(ω) ≤ max{M1, 1 + M2} = A < ∞ for
ω ∈ Rd.

The inequality (2.31) is implied by (2.30) as follows:

supω∈Rd\{0} |1 −KF(hω)|/||hω||ℓ2 ≤ A,

|1 −KF(hω)|2 ≤ A2||hω||2ℓ
2 ,∫

|1 −KF(hω)|2|φ(ω)|2dω ≤ A2h2ℓ
∫

||ω||2ℓ
2 |φ(ω)|2dω.

This concludes the proof. �
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The other terms in formula (2.29) refer to the properties of the kernel and
density under considerations. We mention only two straightforward observa-
tions.

The second term. The second term can be translated from the frequency
to the “time" domain using the Plancherel’s theorem and the scaling property
of the Fourier transform. Change of variables gives the final result:

1
n

∫
|KF(hω)|2 dω = (2π)d

nh2d

∫
K2(x/h) dx = (2π)d

nhd

∫
K2(u) du. (2.32)

The third term. The third term is actually the correction term. We have
the following inequality for it:

1
(2π)d

1
n

∫
|φ(ω)|2|K(hω)|2 dω ≤ ||KF ||2∞

n

∫
f 2(x) dx.

2.5.3 Upper bound on the Fourier MISE formula

Concerning an upper bound on the Fourier MISE formula (2.29), we sum up
the above results. First of all, to obtain the upper bound we can omit the
correction (the third) term in (2.29). The second term is solely determined by
the properties of the kernel, which is expressed by formula (2.32). Finally, to
obtain a bound on the first term, the properties of the density the data are
sampled from and the properties of the kernel have to be matched somehow.
To do this we introduce the so-called Sobolev class of densities and functions.

Definition 2.7. Let β ≥ 1 be an integer and L > 0 a real. The Sobolev class of
functions P∝

S(β,L) consists of L1(Rd) integrable functions f : Rd → R satisfying∫
||ω||2β

2 |F [f ](ω)|2 dω ≤ (2π)dL2. (2.33)

The function f ∈ L1(Rd) is called β-Sobolev if f ∈ P∝
S(β,L). If f ∈ L1(Rd) is

known to be a density we use the notation f ∈ PS(β,L).
The condition (2.33) is related to integrability of partial derivatives of densi-

ties in the Sobolev class; e. g., it can be shown that if
∫
(∂f/∂xj)2 dx ≤ Lj < ∞

for all j = 1, . . . , d, then (2.33) holds for β = 1 and L = ||(L1, . . . , Ld)||2. Fur-
thermore, if f ∈ PS(β, L), for some β ∈ N and L > 0, then f ∈ L2(Rd).

The announced matching is provided by fitting the order of the kernel to
the Sobolev character of the estimated density. The next theorem, which is
the variant of Theorem 1.5 in [Tsybakov, 2009], provides the final result.
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Theorem 2.5. Let n ∈ N be the number of i.i.d. samples from a distribution
with the density f : Rd → [0,∞) which is β-Sobolev for some β ∈ N and L > 0.
Let K be a kernel of order β. Assume that the inequality (2.30) holds for some
constant A > 0. Fix a > 0 and set h(n) = an− 1

2β+d . Then for any n ≥ 1 the
kernel density estimate f̂n satisfies

sup
f∈PS(β,L)

E
∫

(f̂n(x) − f(x))2 dx ≤ C ·n− 2β
2β+d (2.34)

where C > 0 is a constant depending only on a, β, d, A, L and the kernel K.

Proof. By Lemma 2.3 and from the definition of the Sobolev class of
densities, one has∫

|1 −KF(hω)|2|φ(ω)|2 dω ≤ A2h2β
∫

||ω||2β
2 |φ(ω)|2 dω ≤ (2π)dA2h2βL2.

Plugging this into the Fourier MISE decomposition formula (2.29) and using
1

(2π)dn

∫
|K(hω)|2dω = 1

nhd

∫
K2(u) du one gets for h = an− 1

2β+d ,

h2β = a2βn− 2β
2β+d , (nhd)−1 = n−1a−dn

d
2β+d = a−dn− 2β

2β+d

and

MISE ≤ 1
(2π)d

[∫
|1 −KF(hω)|2|φ(ω)|2 dω + 1

n

∫
|KF(hω)|2 dω

]
≤ A2h2βL2 + 1

nhd

∫
K2(u) du,

≤ (AL)2a2βn− 2β
2β+d + a−dn− 2β

2β+d

∫
K2(u) du,

≤
[
(AL)2a2β + a−d

∫
K2(u) du

]
· n− 2β

2β+d ,

≤ C(a, d, A, L,K) · n− 2β
2β+d . �

The theorem provides the upper bound on the MISE of the multivariate
kernel density estimate (2.20), if the order of the employed kernel fits to the
Sobolev character of the density of the distribution the data are sampled from.
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3. Kernel density estimates in
particle filtering
This chapter delivers the upper and lower bounds on the kernel density esti-
mates of the filtering densities in particle filtering. The upper bounds originally
proved in [Coufal, 2016] are extended to the bounds on the partial derivatives
of the filtering densities using tools of Fourier analysis. In contrast, derivation
of the lower bounds draws on notions and techniques of information theory. As
the lower bounds meet the upper ones, the standard kernel density estimates
are in some sense optimal in the context of particle filtering.

We start by unifying the notations of the preceding sections and we further
denote the dimensionality of the signal process state space by d instead of for-
mer dx. Recall that particle filtering generates at each time step t = 1, . . . , T ,
T ∈ N the empirical measure πn

t (dxt) = 1
n

∑n
i=1 δxi

t
(dxt). The πn

t measure
approximates the related filtering distribution πt that is assumed to have the
density pt(xt) = p(xt|y1:t) with respect to the d-dimensional Lebesgue mea-
sure, i. e., πt(dxt) = pt(xt) dxt.

A carrier of the empirical measure πn
t is the set of particles {xi

t ∈ Rd}n
i=1,

n ∈ N. This set does not constitute an i.i.d. sample from πt. If one constructs
the standard kernel density estimate on the basis of {xi

t}n
i=1, the selected kernel

K and bandwidth h, i. e., the estimate

p̂n
t (xt) = 1

nhd

n∑
i=1

K

(
xt − xi

t

h

)
, (3.1)

we ask if p̂n
t still converges in the MISE to the filtering density pt, provided that

the number of particles goes to infinity. More broadly, we are also interested in
estimating partial derivatives of the filtering density using the corresponding
partial derivatives of the kernel estimate (3.1).

3.1 Upper bounds

The next theorem provides the upper bound on the MISE of kernel density
estimate of Dαpt. Clearly, if |α| = 0, then no differentiation is applied and the
result corresponds to that of Theorem 4.1 in [Coufal, 2016].
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Theorem 3.1. In the filtering problem, let {πt}T
t=0, {Dαpt}T

t=0, T ∈ N be
the sequences of the filtering distributions and partial derivatives of the corre-
sponding filtering densities for some multi-index α = (α1, . . . , αd), |α| ∈ N0.
Let Dαpt, t ∈ {0, . . . , T} be β-Sobolev for some β ∈ N and Lt,α > 0, i.e.,
Dαpt ∈ P∝

S(β,Lt,α). Let {πn
t }T

t=1, {Dαp̂n
t }T

t=1, n ∈ N be the sequences of the
empirical measures generated from particle filtering and the partial derivatives
of the related kernel density estimates (3.1) with the bandwidth varying as
h(n) = an− 1

2β+d+2|α| for some a > 0. Let the kernel K employed in the esti-
mates be of order β and ||DαK||22 < ∞. Then we have the following upper
bounds on the MISE of Dαp̂n

t for t ∈ {1, . . . , T}:

E
[∫

(Dαp̂n
t (xt) −Dαpt(xt))2 dxt

]
≤ C2

t,α · n− 2β
2β+d+2|α| (3.2)

where

Ct,α = ALt,αa
β + cta

−(d/2+|α|)||DαK||2. (3.3)

In (3.3), A is the constant of Lemma 2.3, ct, t ∈ {1, . . . , T} are the constants
of Theorem 2.3 and ||DαK||2 is the L2 norm of the α-th partial derivative of
the kernel K.

Proof. Remind that for any sufficiently differentiable function f : Rd → R
and its α-th partial derivative Dαf : Rd → R, both assumed in L1(Rd), one has
for their Fourier transforms F [f ](ω) and F [Dαf ](ω), respectively, the equality

F [Dαf ](ω) = (+i)|α|(ωα1
1 ωα2

2 · · · · ωαd
d )F [f ](ω). (3.4)

The Fourier transform of (3.1) read as F [ p̂n
t ](ω) = ψn

t (ω)KF(hω), where ψn
t

is the characteristic function of πn
t and KF is the Fourier transform of the

kernel K. Moreover, considering the convolution p∗
t = pt ∗ (h−dK(·/h)), one

has F [p∗
t ](ω) = ψt(ω)KF(hω) with ψt being the characteristic function of πt,

see Section 2.5.2 for details.
In order to prove the theorem, we employ the complex exponential in (2.19).

Let f(xt) = ei⟨ω,xt⟩, then ||f ||∞ = 1. Employing the characteristic functions
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of πn
t and πt, the inequality (2.19) writes

E[|ψn
t (ω) − ψt(ω)|2] ≤ c2

t

n
,

|(+i)|α|(ωα1
1 · · · · ωαd

d )KF(hω)|2 · E[|ψn
t (ω) − ψt(ω)|2]

≤ |(+i)|α|(ωα1
1 · · · · ωαd

d )KF(hω)|2 · c
2
t

n
,

E [|(+i)|α|(ωα1
1 · · · · ωαd

d )(ψn
t (ω)KF(hω)) − (+i)|α|(ωα1

1 · · · · ωαd
d )(ψt(ω)KF(hω))|2]

≤ |(+i)|α|(ωα1
1 · · · · ωαd

d )KF(hω)|2 · c
2
t

n
.

Using (3.4) and integrating, we get∫
E
[
|F [Dαp̂n

t ](ω) − F [Dαp∗
t ](ω)|2 dω

]
≤ c2

t

n

∫
|F [Dαh−dK(x/h)]|2 dω,

E
[∫

|F [Dαp̂n
t ](ω) − F [Dαp∗

t ](ω)|2 dω
]

≤ c2
t

nh2d

∫
|F [DαK(x/h)]|2 dω,

E
[∫

((Dαp̂n
t (xt) −Dαp∗

t (xt))2 dxt

]
≤ c2

t

nh2d

∫
(DαK(x/h))2 dx,

≤ c2
t

nh2d+2|α|

∫
(DαK(u)

⏐⏐⏐u=x/h)2 dx,

≤ c2
t

nhd+2|α| ||D
αK||22.

We assume that Dαpt is β-Sobolev in terms of validity of (2.33). As kernel
K is assumed to be of order β, we can again apply the Plancherel theorem,
formula (3.4) and use Lemma 2.3 to get∫

(Dαp∗
t (xt) −Dαpt(xt))2 dxt = (2π)−d

∫
|F [Dαp∗

t ](ω) − F [Dαpt](ω)|2 dω

= (2π)−d
∫

|1 −KF(hω)|2 |F [Dαpt](ω)|2 dω

≤ A2h2βL2
t,α.

As there is nothing random here, the inequality remains valid if we apply
expectation on the left side. Considering the product measure λd ⊗P (P is the
probability measure the expectation E is taken w.r.t.) with the corresponding
L2 norm || · ||λd⊗P = [

∫ ∫
| · |2d(λd ⊗ P ) ]1/2, the triangle inequality gives

||Dαp̂n
t (xt) −Dαpt(xt)||λd⊗P ≤ AhβLt,α + ct

(nhd+2|α|)−1/2 ||DαK||2.
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The bandwidth h develops with n as h(n) = an− 1
2β+d+2|α| for some a > 0. So

one has hβ = aβn− β
2β+d+2|α| . Further, (nhd+2|α|)−1 = n−1a−(d+2|α|)n

d+2|α|
2β+d+2|α| =

a−(d+2|α|)n− 2β
2β+d+2|α| and therefore (nhd+2|α|)−1/2 = a−(d+2|α|)/2n− β

2β+d+2|α| . The
above inequality then reads

||Dαp̂n
t (xt) −Dαpt(xt)||λd⊗P ≤ (ALt,αa

β + cta
−(d+2|α|)/2||DαK||2) · n− 2β

2β+d+2|α| .

Squaring to obtain the MISE, we get the statement of the theorem

E
∫

(Dαp̂n
t (xt) −Dαpt(xt))2 dxt ≤ C2

t,α · n− 2β
2β+d+2|α| (3.5)

for Ct,α = ALt,αa
β + cta

−(d+2|α|)/2||DαK||2. �

Let us discuss the theorem.

1) First of all, the theorem is proved without any assumption on the
i.i.d. character of particles constituting the empirical measures πn

t . This is
the crucial observation, as we know that due to the resampling step the gen-
erated particles are not i.i.d.

2) Convergence. For t ∈ N fixed, we immediately see from (3.5) that
the MISE of kernel estimates goes to zero as the number of particles increases
and the bandwidth decreases accordingly, i. e.,

lim
n→∞

E
∫

(Dαp̂n
t (xt) −Dαpt(xt))2 dxt = 0.

3) Consistency. The theorem proposes that the bandwidth develops with
the number of particles n as h(n) = an− 1

2β+d+|α| for some a > 0, β, d ∈ N.
Obviously, limn→∞ h(n) = 0, and limn→∞ nh(n) = limn→∞ an

2β+d+|α|−1
2β+d+|α| = ∞.

4) The dimension matters. One has n− 2β
2β+d1+|α| < n

− 2β
2β+d2+|α| for d1 < d2,

and therefore we must increase the number of particles in order to assure a
given accuracy as the dimension increases.

5) The order helps. Contrary to the previous result, n− 2β1
2β1+d+|α| > n

− 2β2
2β2+d+|α|

for β1 < β2. Hence the greater is the order of the employed kernel, the tighter
is the bound on the related MISE, in fact, it tends towards n−1. In Chapter 4
we present techniques for constructing the kernels of arbitrary orders, however,
the order of the used kernel is primarily driven by the Sobolev character of the
filtering density.
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6) The theorem assumes that Dαpt are β-Sobolev functions over time steps
t ∈ {0, . . . , T}, T ∈ N with β ∈ N being constant over time. It is the question
when this assumption holds. In Section 3.3, we show that the Sobolev character
of Dαpt is retained over time, if a certain condition holds on the transition
kernels of the signal process.

3.2 Lower bounds

This section provides the lower bounds on the kernel density estimates in par-
ticle filtering. To establish the bounds we follow the approach referred in
Chapter 2 of [Tsybakov, 2009] that provides the general framework for speci-
fying minimax lower bounds in the nonparametric context. The theorem reads
as follows:

Theorem 3.2. In the filtering problem, let {πt}T
t=0, {pt}T

t=0, T ∈ N be the
sequences of filtering distributions and corresponding filtering densities. Let
pt, t ∈ {0, . . . , T} be β-Sobolev for some β ∈ N and Lt > 0. Let {πn

t }T
t=1,

{p̂n
t }T

t=1, n ∈ N be the sequences of the empirical measures generated from
particle filtering and related kernel density estimates (3.1) with the bandwidth
varying as h(n) = an− 1

2β+d for some a > 0. Let the kernel K employed in the
estimates be of order β. Then we have the following minimax lower bounds on
the MISE of p̂n

t for t ∈ {1, . . . , T}:

lim inf
n→∞

sup
pt∈S(β,Lt)

E
[∫

(p̂n
t (xt) − pt(xt))2 dxt

]
≥ c2

t · n− 2β
2β+d (3.6)

where ct is constant with respect to n.

Proof. The proof builds on the technique used for proving Theorem 2.8 in
Tsybakov [2009]. It provides the lower bounds as a consequence of the follow-
ing three conditions which are assumed to hold simultaneously:

1. there exists a suitable set of hypotheses, which is actually the set of M+1,
M ∈ N distributions with appropriate Sobolev densities;

2. the hypotheses are well separated,
but they are

3. not too far from the certain basic hypothesis in terms of the KL diver-
gence.
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To ensure and check these conditions, we follow the Tsybakov’s line of proof,
see Section 2.6.1 of Tsybakov [2009], while changing the original univariate
setting to the multivariate one, adapting to density estimation and using some
suggestions by Chigansky1.

We start with the univariate compactly supported C∞ bump function

K0(u) = exp
(

− 1
1 − u2

)
· 1|u|≤1.

Asymptotically, the Fourier transform of this function decays faster than any
polynomial [Johnson, 2015], so K0 satisfies the inequality (2.33) for any β ∈ N.

Define function K1 by combining two shifted and scaled basic bump func-
tions: K1(u) = K0(4u+ 1) −K0(4u− 1), u ∈ R. K1 is a compactly supported
“wave" function on the interval [−1/2, 1/2]. It is positive on (−1/2, 0) and
negative on (0, 1/2). By construction,

∫
K1(u) du = 0.

A multivariate version of K1 writes K(u) = ∏d
i=1 K1(ui) for u ∈ Rd.

Clearly,
∫
K(u) du = 0 and ||K||∞ < ∞.

K is β-Sobolev for any β ∈ N. Indeed, K1 is β-Sobolev because K0 is
β-Sobolev. The modulus of the Fourier transform of K reads as |F [K]| =∏d

i=1 |F [K1](ωi)|. Integral (2.33) then writes
∫
(∑i ω

2
i )β ∏d

i=1 |F [K1](ωi)|2 dω.
Employing the multinomial theorem and the fact that each F [K1](ωi) is β-
Sobolev for any β ∈ N shows that the integral can be decomposed into the
β-Sobolev summands.

Construction of hypotheses. For a real number c0, which will be specified
below, and given number of particles n ≥ 1 set

m = ⌈c0n
1

2β+d ⌉, hn = 1
m

where ⌈z⌉ is the smallest integer which is strictly greater than z ∈ R.
Further, for k ∈ {1, . . . ,m}d let

xk = k − 1/2
m

,

i.e., xk ∈ [0, 1]d. And finally, for L > 0 define the functions

gk(x) = LhβK
(

x − xk

hn

)
, k ∈ {1, . . . ,m}d.

Remark that
∫
gk(x) dx = 0 for all k.

1http://pluto.huji.ac.il/∼pchiga/teaching/Nonparametric/TsybakovSolutions.pdf
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As in [Tsybakov, 2009] we consider the set of all binary sequences of length
md : Ω = {ω = (ω1, . . . , ωmd), ωi ∈ {0, 1}} = {0, 1}md and select2 the M + 1,
M ∈ N well separated hypotheses pjn, j = 0, . . . ,M from the set

E =

⎧⎨⎩pω(x) = ϕ(x) +
∑

k∈{1,...,m}d

ωkgk(x), ω ∈ Ω

⎫⎬⎭
where ϕ(x) is the density of the d-variate standard normal distribution. Using
the lexicographic order of the Cartesian product, each ω ∈ Ω maps uniquely
to the sequence {ωk ∈ {0, 1},k ∈ {1, . . . ,m}d}. If ωk = 1, then the multi-
dimensional “wave" Kk(x) = K((x − xk)/hn) centered at k is present in pω

and absent if ωk = 0. The map further allows for treating the sum ∑
k∈{1,...,m}d

as the sum ∑md

k=1, which will be used in the following text. Finally, note that∫
pω(x) dx = 1 and pω are positive for sufficiently large n because ||K||∞ < ∞.

For any two ω,ω′ ∈ Ω, one has ||pω − pω′||22 =
∫

[0,1]d(pω − pω′)2 dx =∑md

k=1(ωk −ω′
k)2 ∫

∆d
k
g2

k(x) dx = L2h2β+d
n ||K||22 ρ(ω,ω′) where ∆d

k is the support
of Kk and ρ(ω,ω′) is the Hamming distance between ω and ω′, ρ(ω,ω′) =∑md

k=1 I(ωk ̸= ω′
k).

Separation of hypotheses. Using the VG bound, we want to show that
||pjn − pkn||2 ≥ 2s for s specified below, j, k ∈ {0, . . . ,M}, j ̸= k.

We have

||pjn − pkn||22 = ||pω(j) − pω(k) ||22
= L2h2β+d

n ||K||22 ρ(ω(j),ω(k))

≥ L2h2β+d
n ||K||22

md

2 · 8 = (L/4)2h2β+d
n ||K||22 md

= (L/4)2h2β+d−d
n ||K||22 = (L/4)2||K||22 m−2β

for md ≥ 8. Now, for n ≥ n∗ where n∗ = (7/c0)2β+d, one has m ≥ 8 hence
also md ≥ 8; and further m2β ≤ (1 + 1/7)2βc2β

0 n
2β

2β+d ≤ (2c0)2βn
2β

2β+d , i.e.,
m−2β ≥ (2c0)−2βn− 2β

2β+d , implying ||pjn − pkn||2 ≥ 2s with

s = An− β
2β+d , A = L

8 ||K||2(2c0)−β.

KL divergence. Because 1 + z ≤ ez for z ∈ R, it holds also log(1 + z) ≤ z,
z ∈ R. From the construction of the VG bound, ω(0) = 0, and therefore

2This is possible due to the Varshamov-Gilbert bound, see [Tsybakov, 2009, Lemma 2.9,
p. 104], and replace m by md.
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p0n = ϕ. We have

KL(pjn, pj0) =
∫
pjn log pjn(x)

p0n(x)dx =
∫
pjn

⎛⎝log ϕ(x) +∑md

k=1 ω
(j)
k gk(x)

ϕ(x)

⎞⎠ dx
≤

∫ ⎛⎝ϕ(x) +
md∑
k=1

ω
(j)
k gk(x)

⎞⎠ ∑md

k=1 ω
(j)
k gk(x)

ϕ(x) dx =

∫
[0,1]d

(∑md

k=1 ω
(j)
k gk(x))2

ϕ(x) dx ≤ ϕ−1(1) ||g1||22
md∑
k=1

ω
(j)
k

≤ ϕ−1(1)L2||K||22  
=C

h2β+d
n md = C h2β+d

n md ≤ C nh2β+d
n md.

As nh2β+d ≤ c
−(2β+d)
0 , it follows that KL(pjn, pj0) ≤ C c

−(2β+d)
0 md. The VG

bound ensures that M ≥ 2md/8, i.e., md ≤ 8 logM/ log 2. Hence setting

c0 =
(

8C
α log 2

) 1
2β+d

=
(

8ϕ−1(1)L2||K||22
α log 2

) 1
2β+d

provides that KL(pjn, pj0) ≤ α logM . Specifically, c0 can be chosen in such
a way that α ∈ (0, 1/8).

Now, the statement of the theorem follows as the consequence of Theorem
2.5 (or Theorem 2.7) in [Tsybakov, 2009]. �

3.3 Sobolev character of filtering density

Here we deal with the substantial assumption in Theorem 3.1 that requires
Dαpt ∈ P∝

S(β,Lt,α), i.e., that the derivatives of the filtering density are β-
Sobolev in terms of inequality (2.33). This might be directly verified for p0, but
a straightforward verification for higher time instants t > 1 is inconvenient.
Here we present a tool for making this more comfortable. It corresponds to
a condition on the Fourier transform of the transition kernels in the signal
process. This condition then ensures persistence of the Sobolev character as
required. The theorem bellow is an extension of Theorem 5.2 in Coufal [2016].

To present the theorem let us recall the prediction and update formulas
(2.16) and (2.17), respectively, describing the evolution of the filtering density
over time. The equations can be written in a more concise form as

pt(xt) =
∫
Kt−1(xt|xt−1)pt−1(xt−1) dxt−1, pt(xt) = gt(xt)pt(xt)

πtgt

.

40



In the formulas, pt(xt) is the abbreviation for the density of the prediction
distribution, i.e., pt(xt) = p(xt|y1:t−1), gt(xt) is the shortcut for the condi-
tional density gt(yt|xt) and πtgt =

∫
gt(xt)pt(xt) dxt.

Theorem 3.3. In the filtering problem, let Dαp0 ∈ P∝
S(β,L0,α). Let {Kt−1, t ∈ N}

be the set of the transition kernels, and {DαKt−1, t ∈ N} be the set of its partial
derivatives. Let {F [DαKt−1](ω|xt−1), t ∈ N} be the set of the corresponding
conditional Fourier transforms, i.e.,

F [DαKt−1](ω|xt−1) =
∫
ei⟨ω,xt⟩DαKt−1(xt|xt−1) dxt.

For all t ∈ N, let F [DαKt−1] be bounded by some function Kα
b : Rd → C in

such a way that for any xt−1 ∈ Rd and ω ∈ Rd,

|F [DαKt−1](ω|xt−1)| ≤ |Kα
b (ω)|.

Let Kα
b be β-Sobolev for some LKα

b
> 0, i.e., Kα

b ∈ P∝
S(β,LKα

b
). Then Dαpt ∈

P∝
S(β,Lt,α), t ∈ N with the recurrence for Lt,α written as Lt,α = ||gt||∞LKα

b
/πtgt.

Proof. The theorem holds for Dαp0 by the assumption. From the predic-
tion formula, multiplying both sides of the prediction formula by the complex
exponential gives

ei⟨ω,xt⟩ pt(xt) = ei⟨ω,xt⟩
∫
Kt−1(xt|xt−1)pt−1(xt−1) dxt−1.

By integration, the left-hand side translates to the characteristic function
ψt(ω) of pt(xt), i.e.,

ψt(ω) =
∫
ei⟨ω,xt⟩pt(xt) dxt.

The right-hand side has then form∫ ∫
ei⟨ω,xt⟩Kt−1(xt|xt−1)pt−1(xt−1) dxt−1 dxt

=
∫
pt−1(xt−1)

(∫
ei⟨ω,xt⟩Kt−1(xt|xt−1) dxt

)
dxt−1

=
∫
pt−1(xt−1)F [Kt−1](ω|xt−1) dxt−1.

Multiplying by (+i)|α|(ωα1
1 · · · · · ωαd

d ) we move both sides to the Fourier trans-
forms of the corresponding partial derivatives. That is,

(+i)|α|(ωα1
1 · · · · · ωαd

d )ψt(ω) = (+i)|α|(ωα1
1 · · · · · ωαd

d )F [pt] = F [Dαpt]
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and ∫
pt−1(xt−1)(+i)|α|(ωα1

1 · · · · · ωαd
d )F [Kt−1](ω|xt−1) dxt−1 =

=
∫
pt−1(xt−1)F [DαKt−1](ω|xt−1) dxt−1.

Multiplication by the corresponding complex conjugates gives the expression

|F [Dαpt]|2 =
⏐⏐⏐⏐∫ pt−1(xt−1)F [DαKt−1](ω|xt−1) dxt−1

⏐⏐⏐⏐2 .
The Jensen’s inequality and the boundedness of F [DαKt−1] further gives

|F [Dαpt]|2 ≤
(∫

|DαF [Kt−1](ω|xt−1)| pt−1(xt−1) dxt−1

)2
≤

(
|Kα

b (ω)|
∫
pt−1(xt−1) dxt−1

)2
= |Kα

b (ω)|2.

Thus, ∫
||ω||2β|DαF [pt]|2 dω ≤

∫
||ω||2β|Kα

b (ω)|2 ≤ (2π)dL2
Kα

b
.

The above formula shows that Dαpt ∈ P∝
S(β,LKα

b
) for any t ∈ N. We proceed

with specifying the Sobolev constant Lt,α for the partial derivative Dαpt.
The gt function reads gt(xt) = gt(yt|xt) = gv

t (yt−h(xt)). As the densities of
the noise terms gv

t are considered bounded and strictly positive in Section 2.4.1,
we have supxt,yt

{gv
t (yt − h(xt))} = ||gt||∞ < ∞ and 0 < πtgt < ∞.

Again, multiplying the update formula by the complex exponential, inte-
grating, multiplying by (+i)|α|(ωα1

i1 · · · · ·ωαd
id

) and the respective conjugates we
move to the Fourier transforms of the partial derivatives and get

(πtgt) pt(xt) = gt(xt) pt(xt),

(πtgt)
∫
ei⟨ω,xt⟩pt(xt) dxt =

∫
ei⟨ω,xt⟩gt(xt) pt(xt) dxt,

(πtgt) (+i)|α|(ωα1
1 · · · · · ωαd

d )ψt(ω) ≤ ||gt||∞ (+i)|α|(ωα1
1 · · · · · ωαd

d )ψt(ω),

||ω||2β (πtgt)2 |F [Dαpt]|2 ≤ ||ω||2β ||gt||2∞ |F [Dαpt]|2,

(2π)−d
∫

||ω||2β|F [Dαpt]|2 dω ≤
||gt||2∞L2

Kb,α

(πtgt)2 = L2
t,α,

which concludes the proof. �

The theorem tells us that in particle filtering, the β-Sobolev character
of Dαpt is retained over time if the set {F [DαKt−1](ω|xt−1), t ∈ N} of the
conditional characteristic functions of transition kernels is uniformly bounded
by some common β-Sobolev function.
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4. Designing kernels
When using kernel estimates in particle filtering, selecting the kernel and the
number of particles is left to the user. This chapter deals with the first option
as computing power of used hardware affect mostly the second. Theorem 3.1
tells us that one should match the order of kernel with the Sobolev character
of the filtering density to enjoy the presented convergence rates. The Sobolev
character can be assured using Theorem 3.2. So the natural question arise -
“How to design/select a kernel of the given order in the given dimension?”

The chapter consists of two sections. The first section addresses kernels
from the dimensionality point of view. That is, we deal with the dimension d
in specification of the kernel, K : Rd → R. In the context of particle filtering,
this is the dimension of the signal process state space. There are various one-
dimensional kernels proposed to use for kernel estimation [Silverman, 1986,
Wand and Jones, 1995, Tsybakov, 2009]. When moving into multiple dimen-
sions there are two common approaches used for designing multivariate kernels
on the basis of one-dimensional functions. They lead to constructing the prod-
uct and radial kernels, respectively [Wand and Jones, 1995]. We discuss how
to compute their Fourier transform as this is important for investigating the
orders of these kernels.

The second section covers designing the kernels of the given order in the
given dimension. We discuss designing of univariate kernels in both unbounded
and bounded domains as well as an extension to the multivariate case. Namely,
we will deal with the kernels supported on the unit disc and unit ball in the
multiple dimensions. The corresponding Fourier transforms are discussed and
presented as well.

4.1 Multivariate kernels

In this section we mention several basic univariate kernels which are com-
monly used in kernel density estimation. Further, we discuss constructing the
product and radial kernels together with computing their multivariate Fourier
transforms.
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4.1.1 Product kernels

Various univariate kernels for use in kernel density estimation have been pro-
posed and discussed in literature [Silverman, 1986, Tsybakov, 2009, p. 43, p. 3,
resp.]. Several of them are listed in Tab. 4.1 together with their univariate
Fourier transforms. The listed kernels are even functions centered at origin.
Hence the related Fourier transforms are real.

kernel K(u) Fourier transform F [K](ω)

Gaussian K(u) = exp(−u2) F [K](ω) =
√

π exp
[

− ω2

4

]
Epanechnikov K(u) = 3

4 (1 − u2)+ F [K](ω) = 3[sin(ω)−ω cos(ω)]
ω3 , F [K](0) = 1

biweight K(u) = 15
16 (1 − u2)2

+ F [K](ω) = 15 [(3−ω2) sin(ω)−3 ω cos(ω)]
ω5 , F [K](0) = 1

rectangular K(u) =
{

1 0 ≤ |x| ≤ 1
0 otherwise F [K](ω) = 2 sinc(ω)

sinc K(u) = sinc(x) F [K](ω) = π · 1[|x|≤1]

Table 4.1: Univariate kernels and their Fourier transforms.

In the context of particle filtering, one needs to have an adjustable width
of kernels. This is achieved by scaling the argument by the width parameter
b > 0. That is, we consider the kernels Kb with their appropriate Fourier
transforms, both written as

Kb(u) = K(u/b), F [Kb](ω) = bF [K](bω).

The product kernels are constructed by multiplying copies of univariate
kernels along the individual dimensions of the input space. That is

Kb(u) =
d∏

i=1
Kb(ui).

The multiplicative form induces the separability of variables that makes the
multivariate Fourier transform being the product of the one-dimensional Fourier
transforms of the original univariate functions. Therefore the properties of the
Fourier transform for multivariate product kernels are derived from the uni-
variate counterparts, i.e.,

F [Kb](ω) =
d∏

i=1
F [Kb](ωi).
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It is a basic fact that the product of univariate Gaussians gives a multi-
variate Gaussian, which is a radial function invariant w.r.t. rotations. This is
due to the fact that the multivariate Gaussian’s formula incorporate the Eu-
clidean norm that transforms multidimensional inputs to a single dimension.
This property is a natural choice for specifying general radial kernels.

4.1.2 Radial kernels

The radial kernels have the form of a radial function. That is

K(u) = ϕ(||u||2)

where ϕ : [0,∞) → R is an univariate function, which usually has the property
limr→∞ ϕ(r) = 0, and || · ||2 is the Euclidean norm. Generally, other norms can
be considered, but in the context of this thesis the Euclidean norm is exclusive
because of the characterization of the radial function using the Euclidean norm
in terms of the Fourier transform as presented in Section 2.3.

For the reader’s convenience we recall the respective theorem stating that
the Fourier transform of a d-variate radial function can be computed using the
Hankel transform of the related univariate function.

That is, for a continuous radial function Φ(x) = ϕ(||x||2) ∈ L1(Rd) its
Fourier transform writes F [Φ](ω) = ϕH (||ω||2) where

ϕH (s) = (2π)d/2
√
sd−2

∫ ∞

0
ϕ(r)r d

2J(d−2)/2(sr) dr = (2π)d/2s−νHν{ϕ(r) · rν}(s)
(4.1)

for ν = (d− 2)/2, i.e., ν = −1
2 , 0,

1
2 , 1, . . . for d = 1, 2, 3, 4 . . . .

The formula gives a convenient tool for specifying the Fourier transforms
of the multivariate radial kernels via the Hankel transforms of the related
univariate functions multiplied by term rν .

In Table 4.2, there are presented several univariate functions with their
Hankel transforms. They contain special functions, namely the Bessel func-
tions of the first kind Jν . Several sources providing tables of the Hankel trans-
form pairs are available, such as [A. D. Poularikas (Ed.), 2000] or [Debnath
and Bhatta, 2007]. The comprehensive source is [Bateman, 1954]. However,
in [Bateman, 1954], the alternative definition of the Hankel transform is used:
hν{f(x)}(y) =

∫∞
0 f(x)Jν(xy)(xy)1/2 dx. The relation between both versions

writes Hν{f(x)xν}(s) = s−1/2hν{xν+1/2f(x)}(s).
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function name univariate function ϕ(r) Hankel transform Hν{ϕ(r) rν} Btm. Vol. II

Gaussian ϕ(r) = exp(−a2r2) Hν(s) = sν

(2a2)ν+1 exp(− s2

4a2 ) p. 29 (10)

cut power ϕ(r) = (a2 − r2)µ
+ Hν(s) = 2µΓ(µ+1)aν+µ+1

sµ+1 Jν+µ+1(as) p. 26 (33)

rectangular pulse ϕ(r) =
{

1 0 ≤ r ≤ 1
0 otherwise Hν(s) = s−1Jν+1(s) p. 22 (6)

jincν ϕ(r) = r−(ν+1)Jν+1(ar) Hν(s) = sν

aν+1 · 1[0,a](s) p. 48 (7)

Table 4.2: Hankel transforms of univariate functions ϕ(r) rν .

function name scaled function ϕb(r) = ϕ(r/b) Hankel transform Hν{ϕb(r) rν}

Gaussian ϕb(r) = exp(−(r/b)2) Hν(s) = b2(ν+1)sν

2ν+1 exp(− 1
4 (bs)2)

cut power ϕb(r) = (a2 − (r/b)2)µ
+ Hν(s) =

bν−µ+12µΓ(µ+1)aν+µ+1

sµ+1 ·
· Jν+µ+1(abs)

rectangular pulse ϕb(r) =
{

1 0 ≤ r/b ≤ 1
0 otherwise Hν(s) = bν+1s−1Jν+1(bs)

jincν ϕb(r) = (r/b)−(ν+1)Jν+1(r/b) Hν(s) = b2(ν+1)sν · 1[0,1](bs)

Table 4.3: Hankel transforms of scaled univariate functions ϕ(r/b) rν .

It is known that the Hankel transform is its self-inverse. Let us check
this for the rectangular and the generalized jinc functions [Weisstein, 2002,
p. 1579]. If one is interested in Hν{r−1Jν+1(r)}, then the last row of Tab. 4.2
gives Hν{r−(ν+1)Jν+1(r) rν} = 1[0,1](r) · rν for a = 1, which is indeed ϕ(r) of
the third row multiplied by rν . Note that the standard jinc function reads as
jinc(x) = x−1J1(x).

To compute the Fourier transforms of the radial kernels with adjustable
widths we scale the argument of functions in Table 4.2 by the parameter b > 0
and update the presented Hankel transforms accordingly. To do so note that
Hν{f(r/b)rν}(s) = bν+2Hν{f(r)rν}(bs), which can be directly derived from
the definition formula of the Hankel transform. Moreover, b2(ν+1) = bd and
bν+1 = bd/2. The updated formulas are presented in Table 4.3.

In Table 4.4, we have computed the Fourier transforms of the scaled mul-
tivariate radial functions Φ(x) = ϕb(||x||2) = ϕ(||x||2/b) for the univariate
functions ϕb of Table 4.3. The Fourier transforms were computed following
formula (4.1), i.e., by multiplying by factor (2π)d/2s−ν , with the order of the
Hankel transform set to ν = (d−2)/2 = d/2−1 where d ∈ N is the dimension.

To check the computations of transforms in Table 4.4, we computed their
univariate variants for the specific setting of parameters µ, a, b so that we
match the transforms in Table 4.1. The results are presented in Table 4.5.

46



function name multivariable expression d-variate Fourier transform

Gaussian ϕb(||x||2) = exp(−||x||22/b2) F [ϕb](ω) = bdπd/2 exp(− b2

4 ||ω||22)

cut power ϕb(||x||2) = (a2 − ||x||22/b2)µ
+ F [ϕb](ω) =

(2πb)d/2(2/b)µΓ(µ+1) ad/2+µ

||ω||d/2+µ
2

·

· Jd/2+µ(ab||ω||2)

b - ball in Rd ϕb(||x||2) =
{

1 0 ≤ ||x||2/b ≤ 1
0 otherwise F [ϕb](ω) = (2πb/||ω||2)d/2Jd/2(b||ω||2)

jincν ϕb(||x||2) =
(||x||2/b)−(ν+1) ·

· Jν+1(||ω||2/b)
F [ϕb](ω) = bd(2π)d/2 · 1[0,1](b||ω||2)

Table 4.4: Scaled multivariable radial functions and their Fourier transforms.
function name univariate expression 1D-Fourier transform

Gaussian ϕb=1(|x|) = exp(−x2) F [ϕ1](ω) = π1/2 exp(− ω2

4 )

cut power - Epanechnikov ϕb=1(|x|) = 3
4 (1 − |x|2)1

+ F [ϕ1](ω) = 3
4

(2π)1/221Γ(2)
|ω|3/2 · J3/2(|ω|)

cut power - biweight ϕb=1(|x|) = 15
16 (1 − |x|2)2

+ F [ϕ1](ω) = 15
16

(2π)1/222Γ(3)
|ω|5/2 · J5/2(|ω|)

rectangular pulse ϕb=1(|x|) =
{

1 0 ≤ |x| ≤ 1
0 otherwise F [ϕb](ω) = (2π/|ω|)1/2 · J1/2(|ω|)

sinc sinc(x) =
(π/2)1/2(|x|)−1/2 ·

· J1/2(|x|)
F [ϕ1](ω) = π · 1[0,1](|ω|)

Table 4.5: Univariate radial functions and their Fourier transforms.

We see that the formula for Gaussian in Tab. 4.5 matches the one pre-
sented in Tab 4.1. Situation gets a bit complicated for cut power. The
Epanechnikov kernel corresponds to the choice µ = 1, a = 1, b = 1 and
multiplication by factor 3/4. From linearity of the Fourier transform and Ta-
ble 4.4 one gets for d = 1 the expression F [epa](ω) = 3

2

√
2π

|ω|3/2J3/2(|ω|). Note
that Γ(2) = 1. The Bessel function of the first kind J3/2 admits the closed rep-
resentation J3/2(|s|) =

√
2
π

sin(|ω|)−|ω| cos(|ω|)
|ω|3/2 , which together gives F [epa](ω) =

3√
2π

sin(|ω|)−|ω| cos(|ω|)
|ω|3 . Additionally, one can rid off the absolute value because

the Fourier transform in discussion is an even function, i.e., F [epa](|ω|) =
F [epa](ω). An analogous discussion holds for the biweight kernel.

The univariate jinc function reads

jincν=−1/2(|x|) = |x|−1/2J1/2(|x|) = (π/2)−1/2j0(|x|)

The spherical Bessel function of order ν = 0 corresponds to the sinc function,
i.e., j0(|x|) = sin(x)/x, j0(0) = 1. Hence the Fourier image of (π/2)1/2jincν=−1/2
gives the Fourier transform of the sinc function and vice-versa.
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Speaking about the orders of the presented kernels, a direct evaluation of
the Fourier transforms and their partial derivatives at origin could give us the
answer, however, it is inconvenient to do so directly. In the following section,
we present an easy to use criterion for distinguishing the first order kernels
from the higher order ones and how to design kernels of the given order in the
given dimension.

4.2 Higher order kernels

Higher order kernels enjoy faster convergence rates when estimating the higher
order Sobolev filtering densities. The announced criterion corresponds to the
fact that for a kernel K of order ℓ one has∫

uαK(u) du =
∫
uα1

1 · · ·uαd
d K(u) du = 0

for any multi-index α ∈ Nd
0 with |α| ≤ ℓ. Thus for ℓ = 2 one gets expressions

such as
∫
u2

iK(u) = 0, i = 1, . . . , d which hold if and only if K(u) ̸≡ 0 takes
also negative values on a set of positive Lebesgue measure. So this gives us
immediately that all the presented kernels are (after proper scaling) of order
ℓ = 1, except the generalized jinc function.

At first sight, it may looks strange to use kernels which are negative at
certain parts of its domain with no guarantee that kernel estimate takes only
positive values as we are estimating densities. This issue is addressed in [Tsy-
bakov, 2009, p. 10]. Let us cite from the related paragraph.

The estimators based on higher order kernels can also take negative values.
This property is sometimes emphasized as a drawback of estimators with higher
order kernels, since the density p itself is nonnegative. However, this remark
is of minor importance because we can always use the positive part estimator
p̂+ = max{0, p̂(x)} whose risk is smaller than or equal to the risk of p̂, i.e.,
(adapted for our case)

E
∫

(p̂+
n (x) − p(x))2 dx ≤ E

∫
(p̂n(x) − p(x))2 dx.

Tsybakov also suggests the technique for constructing kernels of specific
order ℓ ∈ N. It draws on orthogonal and consequently (after proper scaling)
orthonormal polynomials. Inspecting Section 1.2.2 of [Tsybakov, 2009], one
can state the following lemma that holds for multivariate kernels.
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Lemma 4.1. Let {P d,n

α(j) : |α| = n}Nd,n

j=0 , be an orthonormal basis of the space of
orthogonal polynomials of degree n ∈ N0 with respect to the weight function Wµ

on Rd, i.e., the basis of Vd
n(Wµ). Then for any ℓ ∈ N the function Kd

ℓ : Rd → R
defined by formula

Kd
ℓ (u) =

Nd,ℓ∑
j=0

P d,ℓ

α(j)(0)P d,ℓ

α(j)(u)Wµ(u) (4.2)

is a d-variate kernel of order ℓ.

Proof. We just recast the univariate version of the proof of Proposition
1.3 in [Tsybakov, 2009]. As {P d,n

α(j) : |α| = n}Nd,n

j=0 is some basis of Vd
n(Wµ), one

has from the properties of the Sn(Wµ,u
α) operator, see Section 2.1.8, that any

monomial uα for α ∈ Nd
0 that |α| = n, n ≤ ℓ can be expressed as

uα =
Nd,n∑
j=0

bα
j P

d,n

α(j)(u), u ∈ Rd. (4.3)

Clearly, bα
j are the coefficients of the linear combination for expressing uα in

the basis {P d,n

α(j) : |α| = n}Nd,n

j=0 .
Now, considering Kd

ℓ of (4.2) and decomposition (4.3) one gets

∫
uαKd

ℓ (u) du =
Nd,n∑
j=0

Nd,ℓ∑
k=0

∫
bα

j P
d,n

α(j) (u)P d,ℓ

α(k)(0)P d,ℓ

α(k)(u)Wµ(u) du

=

⎧⎪⎪⎨⎪⎪⎩
0 for n < ℓ,∑Nd,ℓ

j=0 b
α
j P

d,0
α(j) (0) = 1 for n = 0,∑Nd,ℓ

j=0 b
α
j P

d,ℓ=n

α(j) (0) = 0 for n = ℓ > 0,

Indeed, if n = |α| = 0, then the left side of (4.3) writes u0 = 1, and for
n = |α| > 0 one has 0α = 0. Using the above result, we have

DαF [K](0) =
∫

uαK(u) du =
{

1 for |α| = 0,
0 for |α| = 1, . . . , ℓ,

which proves that K is the d-variate kernel of order ℓ. �

In what follows, we use the different families of the orthogonal polynomials
recalled in Chapter 2 to design the multivariate kernels following Lemma 4.1.
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4.2.1 Hermite kernels

Here we explicitly construct higer order multivariate kernels for the Hermite
basis. We start with the higher order 1D kernels. As for the Hermite orthogo-
nal polynomials one has Hn(0) = 0 for n even, it is enough to consider ℓ even
in formula 4.3. Let us explicitly constuct 1D-kernels of the second and fourth
order.

Hn(x) Hn(0) hn =
√
π 2nn!

H0(x) = 1 H0(0) = 1 h0 =
√
π

H1(x) = 2x H1(0) = 0
H2(x) = 4x2 − 2 H2(0) = −2 h2 =

√
π 8

H3(x) = 8x3 − 12x H3(0) = 0
H4(x) = 16x4 + 8x2 + 12 H4(0) = 12 h4 =

√
π 384

Table 4.6: Hermite orthogonal polynomials.

For the second order one has

K1
2(u) =

[ 1
h0
H0(0)H0(u) + 1

h2
H2(0)H2(u)

]
· e−u2

= 1√
π

[
1 − 2

8(4u2 − 2)
]

· e−u2

= 1
2
√
π

[
3 − 2u2

]
· e−u2

and for the fourth one

K1
4(u) =

[ 1
h0
H0(0)H0(u) + 1

h2
H2(0)H2(u) + 1

h4
H4(0)H4(u)

]
· e−u2

= 1√
π

[
1 − 2

8(4u2 − 2) + 12
384(16u4 − 48u2 + 12)

]
· e−u2

.

= 1
8
√
π

[
4u4 − 20u2 + 15

]
· e−u2

.

As Gaussians are eingenvalues of the Fourier transform, the Fourier trans-
form of K1

2 writes
F [K1

2 ](u) = 1
4 (ω2 + 4) · e− ω2

4
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Figure 4.1: (a) 1D Hermite kernel of order ℓ = 2 - K1
2 ; (b) FT of K1
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Figure 4.2: (a) 1D Hermite kernel of order ℓ = 4 - K1
4 ; (b) FT of K1

4 .

with d
dω

F [K1
2 ] = −1

8u
3 e− ω2

4 and d2

d2ω
F [K1

2 ] = 1
16u

2(u2 − 6) e− ω2
4 . Hence,

F [K1
2 ](0) = 1, F [K1

2 ]′(0) = 0 and F [K1
2 ]′′(0) = 0, so K2

1 is really of order
ℓ = 2. It is even of order ℓ = 3, but one has F [K1

2 ](4)(0) = −3/4.
The Fourier transform of K1

4 writes

F [K1
4 ](ω) = 1

32(ω4 + 8ω2 + 32) · e− ω2
4 .

Clearly, F [K1
4 ](0) = 1 and F [K1

4 ](ℓ)(0) = 0 up to ℓ = 4. Thus K1
4 is the kernel

of 4-th order (in fact it is of 5-th order). Graphs of both kernels and their
Fourier transforms are presented in Fig. 4.1 and Fig. 4.2, respectively.

Now let as switch to the multivariate versions, we construct the correspond-
ing 2D-kernels.
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One has

K2
2(u1, u2) = 1

2
√
π

[
3 − 2u2

1

]
· e−u2

1
1

2
√
π

[
3 − 2u2

2

]
· e−u2

2

= 1
4π [4u2

1u
2
2 − 6(u2

1 + u2
2) + 9] · e−||(u1,u2)||22 .

The corresponding Fourier transform reads as

F [K2
1 ](ω1, ω2) = 1

16(ω2
1 + 4)(ω2

2 + 4) · e−
||(ω1,ω2)||22

4 .

For the fourth order, the respecive formulas write

K2
4(u) = 1

82

[ 2∏
i=1

(4u4
i − 20u2

i + 15)
]
e−||u||22 ,

F [K2
4 ](ω) = 1

322

[ 2∏
i=1

(ω4
i + 8ω2

i + 32)
]
e−

||ω||22
4 .

4.2.2 Legendre kernels

The Legendre kernels are based on the Legendre polynomials. The Legendre
polynomials form an orthogonal and after scaling corresponding orthonormal
basis of L2([−1, 1]) space. Their associated weight function is the characteristic
function of [−1, 1] interval.

Pn(x) Pn(0) hn = 2
2n+1

P0(x) = 1 P0(0) = 1 h0 = 2
P1(x) = x P1(0) = 0
P2(x) = 1

2(3x2 − 1) P2(0) = −1
2 h2 = 2

5
P3(x) = 1

2(5x3 − 3x) P3(0) = 0
P4(x) = 1

8(35x4 − 30x2 + 3) P4(0) = 3
8 h4 = 2

9

Table 4.7: Legendre orthogonal polynomials.

Following the same approach as for the Hermite polynomials gives us the
explict forms of the corresponding higher order univariate kernels.
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Figure 4.3: (a) 1D Legendre kernel of order ℓ = 2 - K1
2 ; (b) FT of K1
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Figure 4.4: (a) 1D Legendre kernel of order ℓ = 4 - K1
4 ; (b) FT of K1
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K1
2(u) =

[1
2 − 1

2
5
2

1
2(3u2 − 1)

]
· 1[−1,1](u)

=
[9
8 − 15

8 u
2
]

· 1[−1,1](u),

K1
4(u) =

[1
2 − 1

2
5
2

1
2(3u2 − 1) + 3

8
9
2

1
8(35x4 − 30x2 + 3)

]
· 1[−1,1](u)

=
[ 15
128(63x4 − 70x2 + 15)

]
· 1[−1,1](u).

Graphically, both kernels together with their Fourier transforms are pre-
sented in Fig. 4.3 and Fig. 4.4, respectively.

53



The Fourier transform of K1
2 writes

F [K1
2 ](ω) =

√
2π
ω

[1
2J1/2(ω) + 5

4J5/2(ω)
]

=
√
π

2ω

[
J1/2(ω) + 5

2J5/2(ω)
]

= j0(ω) + 5
2j2(ω) = −3[(ω2 − 5) sin(ω) + 5ω cos(ω)]

2ω3

and one has

d
dωF [K1

2 ](ω) = 9(2ω2 − 5) sin(ω) − 3ω(ω2 − 15) cos(ω)
2ω4 ,

d2

dω2 F [K1
2 ](ω) = 3[x(7x2 − 60) cos(ω) + (ω4 − 27ω2 + 60) sin(ω)]

2ω5 .

Considering limits at u = 0 and ω = 0, the above formulas admit a con-
tinuous extension and K1

2(0) = 1, F ′[K1
2 ](0) = 0, F ′′[K1

2 ](0) = 0. Thus K1
2 is

indeed the kernel of order ℓ = 2.
For the fourth order kernel the Fourier transform writes

F [K1
4 ](u) =

√
2π
ω

[1
2J1/2(ω) + 5

4J5/2(ω) + 27
16J9/2(ω)

]
=

√
π

2ω

[
J1/2(ω) + 5

2J5/2(ω) + 27
8 J9/2(ω)

]
= j0(ω) + 5

2j2(ω) + 27
8 j4(ω).

Again K1
4(0) = 1 and it can be checked that dj

dωj F [K1
4 ](0) = 0 for j = 1, . . . , 4.

Considering the multivariate product Legendre kernels, there is no special
property we can use to simplify the product of univariate parts. That is why
we do not present these kernels explicitly here and move directly to the radial
kernels.

4.2.3 Zernike kernels

The Zernike kernels are derived from the Zernike polynomials which are or-
thogonal over the unit disc as described in Section 2.1.7. In order to use
Lemma 4.1 we are interested in the orthonormalized products

1
hn

Zm
n (0, 0)Zm

n (ρ, ϕ) = 1
hn

Rm
n (0)Zm

n (ρ, ϕ) n,m ∈ N0,m ≤ n
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and recall, that the non-zero radial polynomial up to the fourth order read as

Rm
n (x) Rm

n (0) hn = ϵmπ
2(n+1)

R0
0(ρ) = 1 R0

0(0) = +1 h0 = π
R1

1(ρ) = ρ R1
1(0) = 0

R0
2(ρ) = 2ρ2 − 1 R0

2(0) = −1 h2 = π
3

R2
2(ρ) = ρ2 R2

2(0) = 0
R1

3(ρ) = 3ρ3 − 2ρ R1
3(0) = 0

R3
3(ρ) = ρ3 R3

3(0) = 0
R0

4(ρ) = 6ρ4 − 6ρ2 + 1 R0
4(0) = +1 h4 = π

5
R2

4(ρ) = 4ρ4 − 3ρ2 R2
4(0) = 0

R4
4(ρ) = ρ4 R4

4(0) = 0

Table 4.8: The radial parts of the Zernike orthogonal polynomials.

We see that only R0
0, R0

2 and R0
4 are non-zero at the origin. As in all these

cases m = 0, one has Z0
2j(ρ, ϕ) = R0

2j(ρ) for j = 0, 1, 2 and also hn = π
n+1

because ϵ0 = 2 in (2.4). Inspecting the representation (2.3),

Rm
n (ρ) = (−1)(n−m)/2ρmP

(m,0)
(n−m)/2(1 − 2ρ2), n−m even,

we see that Rm
n (0) is positive only for m = 0 with n = 2j, because the terminal

values of Jacobi polynomials are positive. Hence the sums of orthonormalized
products write

ℓ=2k∑
n=0

n∑
m:|m|≤n

1
hn

Rm
n (0)Zm

n (ρ, ϕ) =
k∑

j=0

2j + 1
π

R0
2j(ρ), k ∈ N. (4.4)

Further, in this case

R0
2j(ρ) = (−1)jP

(0,0)
j (1 − 2ρ2) = (−1)jPj(1 − 2ρ2), R0

2j(0) = (−1)jPj(1)

where Pj are the Legendre orthogonal polynomials with Pj(1) = 1 for j ∈ N0.
Using Lemma 4.1, the Zernike kernels of order ℓ = 2k, k ∈ N have the form

K2
ℓ=2k(||u||2) = 1

π

⎡⎣ k∑
j=0

(2j + 1)Pj(1 − 2ρ2)
⎤⎦ · 1||u||2≤1, u ∈ R2.

Because they are radial functions we can compute their Fourier transforms
using the Hankel transform. Inspecting [Bateman, 1954, p. 13 (1)], one gets
the Hankel transform of order zero (d = 2, i.e., ν = 0) of terms Pj(1 − 2ρ2) as

H0(Pj(1 − 2ρ2)) = s−1J2j+1(s).
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Figure 4.5: (a) 2D Zernike kernel of order ℓ = 2 - K2
2 ; (b) FT of K2
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Figure 4.6: (a) 2D Zernike kernel of order ℓ = 4 - K2
4 ; (b) FT of K2
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Therefore, following Theorem 2.1, the respective Fourier transform is obtained
by multiplying with the factor (2π)d/2s−ν = 2π, which gives

F [K2
ℓ=2k](ω) = 2(||ω||2)−1

k∑
j=0

(2j + 1)J2j+1(||ω||2), ω ∈ R2.

Let us concretize the above formulas for ℓ = 2, 4. We have

K2
2(ρ) = 1

π

[
1 − 3(2ρ2 − 1)

]
· 1[0,1](ρ),

K4
2(ρ) = 1

π

[
1 − 3(2ρ2

2 − 1) + 5(6ρ4
2 − 6ρ2

2 + 1)
]

· 1[0,1](ρ),
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which simplifies to

K2
2(ρ) = 1

π
(4 − 6ρ2) · 1[0,1](ρ),

K4
2(ρ) = 1

π
(30ρ4 − 36ρ2 + 9) · 1[0,1](ρ).

In Cartesian coordinates this clearly writes

K2
2(||u||2) = 1

π
(4 − 6||u||22) · 1||u||2≤1,

K4
2(||u||2) = 1

π
(30||u||42 − 36||u||22 + 9) · 1||u||2≤1.

The 2D-Fourier transforms have form

F [K2
2 ](||ω||2) = 2(||ω||2)−1 [J1(||ω||2) + 3J3(||ω||2)] ,

F [K2
4 ](||ω||2) = 2(||ω||2)−1 [J1(||ω||2) + 3J3(||ω||2) + 5J5(||ω||2)] .

Both kernels together with their Fourier transforms are presented in Fig. 4.5
and Fig. 4.6, respectively. Note that for the Bessel function of the first kind
one has limr→0+ r−1J1(r) = 1/2 and limr→0+ r−1J1+2j(r) = 0 for j > 0. Hence
F [K2

2 ](0) = F [K2
4 ](0) = 0. Checking the partial derivatives is left to the

interested reader. It is of further interest to design the kernels supported on
the d-dimensional unit ball for general d ≥ 3. These kernels are called the
spherical kernels.

4.2.4 Spherical kernels

To design the spherical kernels we are interested in the products introduced at
the end of Section 2.1.8 that write

P 2j
j,1(0)P 2j

j,1(x) = (hµ
j,2j)−2P

(µ− 1
2 , d−2

2 )
j (−1) · P (µ− 1

2 , d−2
2 )

j (2||x||22 − 1), j ∈ N0.

As we will consider the classical weight function WBd
µ=0(x) = (1 − ||x||2)−1/2 we

use µ = 0 in the formula and the above then writes

P 2j
j,1(0)P 2j

j,1(x) = (h0
j,2j)−2P

(− 1
2 , d−2

2 )
j (−1) · P (− 1

2 , d−2
2 )

j (2||x||22 − 1), j ∈ N0

with
(h0

j,2j)−2 = cBd
0
j!(d+1

2 )j(2j + d−1
2 )

(1
2)j(d

2)j(j + d−1
2 )

and cBd
0 =

Γ(d+1
2 )

πd/2√π
.
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Using the symmetry relation in (2.1) one gets

P 2j
j,1(0)P 2j

j,1(x) = (h0
j,2j)−2P

( d−2
2 ,− 1

2 )
j (1) · P ( d−2

2 ,− 1
2 )

j (1 − 2||x||22), j ∈ N0,

and further from (2.1) and (2.2), respectively,

P
( d−2

2 ,− 1
2 )

j (1) =
(
j + d−2

2
j

)
= Γ(j + d/2)

Γ(d/2)Γ(j + 1) =
(d

2)j

j! ,

P
( d−2

2 ,− 1
2 )

j (1 − 2||x||22) =
(1

2)j

(d−1
2 )j

C
(1/2+(d−2)/2)
2j ((1 − ||x||22)1/2).

Putting all together and denoting ν = (d− 2)/2 one gets

P 2j
j,1(0)P 2j

j,1(x) = (h0,d
j,2j)−2 (d

2)j(1
2)j

j!(d−1
2 )j

· C(ν+1/2)
2j ((1 − ||x||22)1/2)

= cBd
0
j!(d+1

2 )j(2j + d−1
2 )

(1
2)j(d

2)j(j + d−1
2 )

(d
2)j(1

2)j

j!(d−1
2 )j

· C(ν+1/2)
2j ((1 − ||x||22)1/2)

= cBd
0

(d+1
2 )j(2j + d−1

2 )
(d−1

2 )j(j + d−1
2 )

· C(ν+1/2)
2j ((1 − ||x||22)1/2)

= cBd
0

( 4j
d− 1 + 1

)
· C(ν+1/2)

2j ((1 − ||x||22)1/2).

Finally, applying Lemma 4.1 for WB
µ=0(x) = (1 − ||x||2)−1/2 we get the

following formula for specification of the spherical kernels of order ℓ = 2k,
k ∈ N in d ≥ 3 dimensions:

Kd
ℓ=2k(||x||2) = cBd

0

ℓ∑
j=0

( 4j
d− 1 + 1

)
C

((d−1)/2)
2j ((1−||x||22)1/2)·(1−||x||22)−1/2·1[||x||2≤1]

(4.5)
The kernels are clearly radial functions, hence their Fourier transform can

be computed using the Hankel transform. The appropriate function for using
[Bateman, 1954] writes

ϕ(r) = rν+1/2 · (1 − r2)−1/2 · Cν+1/2
2j ((1 − r2)1/2) · 1[0,1](r).

Entry (13) on page 44 of [Bateman, 1954] gives for α = 0 the transform (after
multiplication by the s−1/2 factor)

H {ϕ}(s) = (−1)j 2−1/2π1/2s−1/2 · C(ν+1/2)
2j (0) · Jν+1/2+2j(s)

= (−1)jC
(ν+1/2)
2j (0) · jν+2j(s).
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Figure 4.7: Spherical kernels of order (a) ℓ = 2 and (b) ℓ = 4.

Hence the d-variate Fourier transform of (4.5) reads as

F [Kd
ℓ=2k](ω) = (2π)d/2cBd

0
||ω||ν2

ℓ∑
j=0

(−1)j(4j + d− 1)
d− 1 C

(ν+1/2)
2j (0) · jν+2j(||ω||2)

=
2d/2Γ(d+1

2 )
√
π||ω||(d−2)/2

2

ℓ∑
j=0

(−1)j(4j + d− 1)
d− 1 C

((d−1)/2)
2j (0) · j(d−2)/2+2j(||ω||2).

To check the result, using (2.9) one has

F [Kd
ℓ=2k](0) =

2d/2Γ(d+1
2 )√

π
lim

r→0+
r−νjν(r) = 1.

Fig. 4.7 shows the above Fourier transform formula for a univariate ar-
gument, i.e., F [Kd

ℓ=2k](|s|), s ∈ R, for increasing d and ℓ = 2, 4 to see its
dependence on the dimension.
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5. Discussion
In accordance with its assignment, the thesis delivers three theoretical results
related to using kernel methods in particle filtering including a more practi-
cal discussion on designing suitable kernels. Namely, in Chapter 3, we have
presented

• The upper bounds on the kernel density estimates of the filtering densities
and their partial derivatives.

• The lower bounds on the kernel density estimates of the filtering densi-
ties.

• The condition for checking persistence of the Sobolev character of the
filtering densities.

Chapter 4 then focuses on working with kernels from a more practical point
of view.

To assess originality of the thesis contribution, we compare our results with
those presented in [Crisan and Míguez, 2014]. This paper is highly relevant to
this purpose as its topic significantly overlaps with the one presented in the
thesis. We discuss explicitly differences between the two groups of results.

The results of Crisan and Míguez [2014] in Section 4 split into two groups.
The first comprises a.s. convergence results – Theorems CM-4.1, CM-4.2, CM-
4.3 and CM-4.5; all drawing on Lemma CM-4.11. The second group comprises
the results for integrated versions (w.r.t. the probability and Lebesgue mea-
sures) – Theorems CM-4.4 and CM-4.6. Note that Theorem CM-4.5 falls into
the first group as integration is provided only w.r.t. the Lebesgue measure.
Results of Section 5 are aimed on applications and will not be discussed here.

Our theorems relate mainly to the second group. In fact, we have presented
a stronger version of Theorem CM-4.4 due to the different assumption on the
estimated density - the Sobolev character instead of the Lipschitz continuity.

Theorems CM-4.4 and CM-4.6 are restricted to densities and kernels com-
pactly supported on K ⊆ Rd. Thus, for example, they do not cover the basic
Gaussian case. It is clear that their constants cα,K,t and cK,t grow to infinity
as the volume of K does. The reason for introducing the compact support re-
quirement is that the inequality (4.13) of [Crisan and Míguez, 2014] cannot be
simply integrated w.r.t. Lebesgue measure on Rd as the right-hand side would
turn to an uninformative unlimited upper bound. Our Theorem DC-3.1 is not

1 To make a clear distinction between the theorems of the paper and the thesis, we denote
the theorems of [Crisan and Míguez, 2014] as CM-x.x and ours as DC-x.x.
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restricted by these limitations. In our approach, the behavior of Dαpt with
respect to integration over Rd is induced by the requirement on its Sobolev
character. Similarly, this is also the case for the used kernel when its behavior
is determined by its order.

Further, for β = 1, the bound in our Theorem DC-3.1 is tighter than
that of Theorem CM-4.4 and equals the one presented in Theorem CM-4.6.
Indeed, in Theorem CM-4.6 it is required that the filtering density has bounded
partial derivatives up to order 2, which implies that the density is 1-Sobolev.
The bound in Theorem CM-4.6 writes b2 = n−4/2(dx+2); see the discussion in
paragraph 4.4 of [Crisan and Míguez, 2014] for transforming k to the number
of particles n. Our bound for β = 1 then writes b1 = n−2/(2+d), so b2 = b1 (in
both cases the constants are omitted). Remark that Theorem CM-4.6 applies
to |α|=0.

The lower bounds on kernel density estimates are not discussed in [Crisan
and Míguez, 2014] at all. In fact, up to our knowledge our result is the first
case of introducing these bounds into the context of particle filtering.

Theorem DC-3.3 on persistence of the Sobolev character corresponds to
Remark CM-3.4 of [Crisan and Míguez, 2014]. The difference is that we are
more specific. In Remark CM-3.4, it is required that gyt

t (gv
t in our notation)

is bounded similarly as in our case, but we do not have any requirement on
derivatives of gv

t . Speaking about the transition kernels, our requirement is
that they are uniformly bounded by a common β-Sobolev function, which is
a simpler condition than that of the remark.

To sum up, due to our assumptions we are able to obtain stronger results
for MISE in terms of a general integration domain. Moreover, in [Crisan and
Míguez, 2014] the transition to a.s. versions comes from the integrated versions
via Lemma CM-4.1. Thus, using this lemma we might obtain the a.s. version
for ISE (the counterpart of Theorem CM-4.5) without further restrictions on
supports of the filtering densities and employed estimation kernel.

Chapter 4 is geared towards a more practical aspects of estimating the
filtering densities. Namely, on how to design multivariate kernels of the given
orders in the given dimension. The ability to do so make possible to enjoy
higher convergence rates in estimation. Hence, from a practitioner point of
view, it is an important complement to the presented theory.

In conclusion, we express the conviction that the thesis brings original
material and ideas related to using kernel density estimation in particle filtering
and adds its share to the research in the respective field.
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